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ABSTRACT

Continuous discount functions and forward rate curves are needed for nearly all asset

pricing applications. Unfortunately, forward curves are not directly observable so they

must be constructed from existing fixed-income security prices. In this paper I present

two algorithms to construct maximally smooth forward rate and discount curves from the

term structure of on-the-run U.S. treasury bills and bonds. I use on-the-run treasuries to get

the most recent and liquid prices available. The maximum smoothness criterion produces

more accurate prices for derivatives such as swaps and ensures that no artificial arbitrage will

be introduced when using the constructed forward curve for pricing out-of-sample securities.

When coupon bonds are included among the securities it is necessary to both strip the

coupon payments and interpolate the spot curve. To be consistent, these steps must be done

simultaneously but this complication usually leads to highly nonlinear algorithms.

The first method I describe uses an iterated, piecewise, quartic polynomial interpolation

(IPQPI) of the forward curve that only requires the solution of linear equations while

maintaining minimal pricing errors and maximum smoothness of the interpolated curves.The

second method uses a genetic programming (GP) algorithm that searches over the space of

differentiable functions for maximally smooth forward curves with minimal pricing errors.

I find that the IPQPI method performs better than the GP and other algorithms

commonly used in industry and academics.

ix



CHAPTER 1

INTRODUCTION

1.1 Summary of this Research Project

This research extends the model of Adams and van Deventer (1994), (hereafter AvD) and

modified by Lim and Xiao(2002), by introducing a procedure that simultaneously strips

and smoothes the yield curve iteratively by bootstrapping. The new method, the Iterated

Piecewise Quartic Polynomial Interpolation (referred to as the IPQPI method) is based on

constructing a series of piecewise maximally smooth polynomials which make up the forward

curve and integrating the coupon stripping procedure into the curve construction process.

The IPQPI method is then tested and compared to some of the prevailing methods currently

in use. The IPQPI method appears to perform better than the alternatives based on pricing

ability, smoothness, and the practicality of its implementation.

The IPQPI method has some drawbacks that were well documented in past research

for all polynomial based methods, however. This leads me to explore an alternative

method to constructing the yield curve which is based on Genetic Programming. This

method is based on evolutionary principles and is independent of the researcher’s notion

about what the specific function might be. I briefly describe the guiding principals of the

genetic programming and give a detailed description of the experiment I construct. Genetic

programming’s ability to produce a forward curve that prices well and is sufficiently smooth

is shown to be limited in the context of the platform I used and the specification I provided

to the system to perform its intended task.

In the remainder of this chapter I provide a broad overview of the research of yield and

forward curve construction and then I define some important concepts and establishes a

consistent set of notational conventions. The theoretical and empirical literature related to

term structure models is then reviewed in chapter two . In chapter three I take a closer look
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at the AvD method, and then describe my IPQPI extension. the final chapter is dedicated

to Genetic Programming. I review Genetic Programming and its main building blocks at

the beginning of the chapter and then and I describe my experiment design and its outcome.

1.2 Overview of the Research

The Term Structure of Interest Rates is a function that defines the relationship between

yield-to-maturity and the time-to-maturity on fixed income securities

Asset pricing in general, and the valuation of fixed income securities in particular, depend

upon an accurate estimation of the yield curve, especially when the cash flow that these

securities generate does not occur at the same point in time as the cash flow stemming from

the securities that are used to estimate the term structure itself. Cochrane (2001) noted

that prices of all assets are a function of two arguments: the expected value of the payoff,

and the stochastic discount function. The fundamental asset pricing equation is:

Pt = E[mt(τ) ·Xt+τ ]

where Pt is the time t price of the asset, mt(τ) is the stochastic discount function at time

t for a time t + τ payoff, and Xt+τ is the cash payoff at time t + τ . In the case of a zero

coupon bond we write (where the payoff is $1):

δt(τ) = E[mt(τ)].

Knowing the discount function, δt(τ) for all maturities τ , one can discount any cash

flow and price any asset. However, since δt(τ) is not directly observable, it must be

estimated. Past research has shown that deriving the discount rate from the forward rate

produces a discount function which has the desired properties and accuracy sufficient for

pricing assets. Modeling the forward curve directly forces the researcher to recover the

zero coupon yield curve from the observable yield on existing securities and then use some

kind of an interpolation method to determine the curve between the relatively few available

observations.

Diebold and Li (2006) indicated that past research with regards to the construction of

the yield curve and the estimation of the discount function, have diverged into theoretical

and empirical branches. The theoretical methods (or the Equilibrium Approach) typically
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characterize the behavior of the short term rates, which is determined by a set of parameters,

which in turn can be estimated from real data. Such are, among others, the seminal papers by

Vasicek (1977) and Cox et al. (1985). This approach is useful when one is trying to synthesize

the dynamics that are at play in determining the behavior of the curve under different

economic scenarios, but they are not developed enough at this point to help practitioners

with asset pricing.

Empirical methods (No Arbitrage Approach) for term structure construction are indepen-

dent of a specific economic theory. They merely aim to represent the term structure at a point

in time based on available information, mainly for asset pricing purposes. The construction

of the term structure is subject to several statistical and mathematical constraints, all of

which are concerned with the exclusion of arbitrage possibility in the pricing process. To that

end, the major requirements from the constructed curve is continuity and smoothness. These

properties will ensure that all assets are priced logically and that each distinct discount value

is yielding a distinct asset price, assuming an identical cash flow. The method proposed in

this paper belongs to this category of research.

Fabozzi (2000) describes the two approaches to valuing a treasury bond, or determining

the discount rate δt. The traditional approach is concerned with discounting each cash flow

(coupons and principal) to it’s present value and adding these values to arrive at the value

of the bond today. In this process, each coupon, and the principal payments are discounted

to the present time by a single, unified, discount rate δt . It is noted as follows:

Pti =
n∑
t=1

δt · Zi

where Zi is the time i >= t cash flow.

However, from a theoretical standpoint, this approach is flawed, since it views all cash

flows from the bond as identical, thereby discounting all at the same rate. Theoretically, each

cash flow from the bond is independent of the other flows. Therefore each of these payments

should be discounted independently by the proper discount rate that corresponds to that

cash flow’s maturity. An intuitively appealing reason, among others, is that the flows that

are scheduled for the near future are more certain to happen than the more distant ones.

This justifies a higher discount rate. The no arbitrage approach accomplishes this by viewing

each payment as a zero coupon “mini” bond, discounting each independently by the proper

discount rate for its maturity. The value of all of these mini-bonds combined is the value of

3



the bond. This is noted as follows:

Pt =
n∑
t=1

δt(i) · Zi

This approach is superior to the traditional one, in that it does not allow an agent to buy

the bond, and then sell the cash flows from the coupons for a profit.

Viewing each coupon as a separate bond is not just an academic exercise to bond valuation

It is also conducted in practice. The practice of selling the cash flows from the individual

coupons separate from the principal is called Stripping. There is an active market for

stripped securities, and they are referred to as treasury strips. This forces practitioners to

determine the theoretical rate on a zero coupon security, for all maturities, hence construct

the estimated zero yield curve, in order to assist with the pricing of these securities.

The complete term structure of spot interest (or the yield on zero coupon bonds) rates

is not readily observable and must be estimated. This is because the term structure is

constructed from a limited number of treasuries. In the case of the U.S., The on-the-run

treasuries, the most recently issued and most liquid of all treasuries, are the ones used to

construct the curve. Some of the reasons off-the-run treasuries are not used are that they are

not very liquid, and hence their prices are biased by a liquidity premium, that will introduce

a bias to the zero rates they will produce. The on-the-run treasuries are issued in a few

maturities - which gives rise to the interpolation issue which was eluded to above. Out

of these few observations only the ones that mature in one year or less are true discount

bonds. Hence a major part of the estimating the entire yield curve is actually concerned

with extracting the spot rates (zero coupon rates), as well as discount factors, from the

coupon payments of the longer-maturity bonds. This necessitates a solution to the following

problems:

I. Researchers must first recover the yield on a zero coupon curve from a limited number

of observations of yields on coupon bonds, by interpolating the curve between the

available observations using one of the many methods available (see Hagan and West

(2006) for an extensive survey of available methods), while preserving the desired

smoothness and continuity of the curve.

II. The data contains securities with different attributes such as different levels of liquidity,

coupon or non coupon bonds, and securities with different tax treatments, all of which
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have a bearing on their prices. Researchers must account for all of these factors and

arrive at the true zero coupon rate for each maturity.

A.V-D proposed a method for fitting the yield curve by defining a maximum smoothness

criteria for the forward curve. A necessary condition for the A.V-D method to work is the

existence of a zero coupon curve.

The method I present is designed to combine the interpolation and smoothing features

of the method proposed by A.V-D (and augmented by Lim and Xiao (2002)) with a zero

coupon stripping process. The result is a simultaneous approach to stripping and smoothing

which produces an elegant tool for practitioners. The importance of combining the two

processes was noted by Hagan and West (2006). In a standard linear bootstrapping method

that is independent of the stripping process, a linear search for the first “unknown” node (the

terminal bond cash flow) is conducted. It is preformed at maturity of the bond one is trying

to price by scanning the yields at that maturity, until the correct yield which prices the bond

correctly is discovered. Interpolation then takes place between the last known node and the

one that was just now estimated. The coupons are then priced of this linear approximation,

and will inevitably be biased. By combing the stripping and the smoothing process, the

initial estimate for any bond x is being revised, along with the pricing of its coupons, every

time I add a bond, x+ 1, x+ 2...,x+m etc’. This ensures that the curve is not ‘rigid’ in the

sense that the initial estimate of the yield on bond x is allowed to accommodate the pricing

characteristics of all the other bonds and coupons that follow it on the curve.

A second contribution is made by introducing a Genetic Programming (GP) approach

to fit the forward curve. Genetic Programming is a branch of research in computational

science that uses evolutionary principles to search for an optimal solution by searching over

functional spaces. The interesting feature that GP adds to our topic of research is that we

will attempt to fit the yield curve without any preconceived notions about the functional

form beyond those restrictions implied by financial theory. In particular, the GP does not

impose the restriction that the forward curve should be of the piece-wise polynomial class

of functions, as was widely assumed in past research. The GP experiment failed to produce

the desired outcome and I discuss possible reasons for that at the end of Chapter 4.

Additional motivation for yield curve modeling comes from the fact that other than

pricing assets, the term structure of interest rates has additional important applications

5



(which are outside of the focus of this research). For example, it is of major importance in

macroeconomics, particularly in the field of Monetary Policy (see Svensson (1995), Dahlquist

and Svensson (1996), Shiller (1991), where it has been shown that the spread between long

and short term rates is useful in predicting future interest rates, and forward rates. This, in

turn, helps practitioners predict income and inflation (see Estrella and Mishkin (1998)).

1.3 Definitions and Notation

A zero coupon bond (also referred to as a “discount bond”), is a financial instrument that

promises to pay a single payment at a specified date in the future. A zero coupon bond does

not make any intermediate payments between the time of purchase,and the time of maturity.

U.S. government obligation with maturities of less than 12 months are issued in the form of

a discount bond.

A coupon bond is a bond that makes intermediate interest payments at specified dates

during the time the bond is outstanding. At maturity, the last interest payment, as well as

the face value (principal) of the bond are due. Coupon payments are made every six months,

but the rate is always quoted on an annual basis. U.S government obligations that are issued

with more than 12 months to maturity are issued in this format. The coupon yield is the

simplest measure of yield and is determined at the time the bond is issued. It is simply the

rate of the coupon, expressed as percentage of the face value of the bond.

The measure of return that takes into account the coupon yield as well as changes in

the market price of the bond is called the current yield. The current yield is defined as the

coupon payment divided by the current price of the bond.

The yield to maturity (denoted y) measures the total return one earns on a bond,

assuming it is held to maturity. In addition to the factors accounted for by the current

yield, yield to maturity also accounts for the reinvestment, at the same rate of return that

the bond has, of cash flows received via the coupon payments.

The discount bond market, which we describe below, is characterized by the following

assumptions, as in Adams (2001):

Continuous Trading: Trading occurs continuously from the current time to some distant

future time such that all maturities of all instruments fall between now and the trading

horizon.
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Frictionless Markets: Transactions costs are absent, and there are no tax implications to

any trade. No restrictions on trade, and goods are infinitely divisible.

Competitive Markets: Any agent can buy and sell without affecting market prices.

Efficient Market Information is available to all agents simultaneously, and full use of it is

possible at all times.

Complete Markets: Any desired cash flow can be constructed from a suitable financing

strategy based on a portfolio of discount bonds.

No Arbitrage: The price of a portfolio is the sum of constituent parts.

Profit Maximization: All agents are rational and prefer more to less.

Now we establish some notational conventions that will we use throughout the paper,

and explain the mathematical relationships between the different curves that play a role in

our problem

Let the time t price of a T -period zero coupon bond, with a face value of $1 be

δt(T ) =
1

(1 + y/n)n

where n is the number of compounding periods until maturity. For pure discount bonds, the

price is δt(T ) ∈ (0, 1] which we refer to as the discount rate at time t of a $1 zero coupon

bond paying off in period t+ T .

When we have continuous-time compounding we have

δt(T ) = exp (−yt(T )T ) .

For a coupon bond we let Pt(T ) be the period t price of a bond that matures at time

t+T . If the bond has a face value of $1 and pays a coupon of Ci at dates ti, t ≤ t1 < · · · < tn

(where tn ≤ T ), then the yield to maturity, or internal rate of return, is the rate y which

solves the equation

Pt(T ) = 1 · exp(−y T ) +
n∑
i=1

Ci exp(−y ti).

Note that the above expression assumes continuous compounding. If we assume a fixed

coupon C that is quoted in annual terms but paid semi-annually for n > 1 payments with
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simple compounding, we solve for the yield to maturity from

Pt =
n∑
i=1

C/2

(1 + y/2)(i−1−ν/ε) +
1

(1 + y/2)(n−1+ν/ε)

where ε is the number of days between the previous coupon payment and the next coupon

payment, and ν ≤ ε is the number of days from the purchase date (settlement date) to

the next coupon payment. This is essentially places a restriction on the yield to reflect the

accurate maturities of the cash flows.

A Holding Period Return on the bond is the rate of return on the bond over some period

of time that is less than the time to maturity and is defined as

Ht(n, T ) =
δt+n(T − n)

δt(T )

where n is the holding period, T is the maturity date of the zero coupon bond, and t and

t + n < t + T , are the buying and selling dates, respectively. The complication is that

δt+n(T − n) is not known at time t.

The Forward Rate is the rate at which one can contract today, to borrow or lend funds

tomorrow. The forward rate represents the consensus expected value trading agents hold

with respect to the spot rate to be realized at some point in the future.

Let Ft(n, T ) be the time t price of a forward contract to deliver a T − n maturity zero-

coupon bond at date t+n which matures at date t+T . The forward rate can be decomposed

into a series of spot rates. The arbitrage free condition dictates that the following two

investment plans yield an identical rate of return (Assume a T period investment horizon):

(1) Invest funds today for n periods (at today’s spot rate, δ + n), then reinvest again next

period for an additional T − n periods (at today’s implied forward rate, Ft(n, t)), and (2)

Invest for T periods, at today’s spot rate for a T period investment horizon at today’s spot

rate, δt(T ) . So in order to avoid arbitrage, it must be the case that

Ft(n, T ) =
δt(T )

δt(n)
.

Define the continuously compounded yield to maturity of the forward contract (commonly

referred to as the forward rate) to be ft(n, T ) and compute it from

Ft(n, T ) = exp (−ft(n, T ) (T − n)) .
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Then, from the definition of the zero coupon yields, we get the forward rate as follows:

ft(n, T ) =
1

T − n
(yt(T )T − yt(n)n) .

In the limit, as n→ T , we get the instantaneous forward rate at time t for maturity T as

ft(T ) =
d

d T
(yt(T )T ) = yt(T ) + T

d

d T
yt(T ).

Thus, the forward rate is the spot rate plus the slope of the spot curve times its maturity.

The forward curve is above the spot curve when spot rates are increasing with maturity (the

normal yield curve) and below the spot curve when spot rates are decreasing with maturity

(an inverted yield curve). Note that the forward curve intersects the spot curve at the

maximum or the minimum of the spot curve to the extent a minima or a maxima exist. If

the yield curve is flat then the forward rate equals the spot rate for all maturities.

Integrating the forward curve gives∫ T

0

ft(τ) dτ =

∫ T

0

d(τ yt(τ)) = T yt(T )

so that

yt(T ) =
1

T

∫ T

0

ft(τ) dτ.

In this sense, the spot rate is the average of the forward rates.

We note that,

δt(T ) = exp

(
−
∫ T

0

ft(τ) dτ

)
= e−y·T

so δ(T ) is smooth with respect to f(·) and y(·), and

ft(T ) = −
d
dT
δt(T )

δt(T )

so the forward rate is the percentage change in the discount rate.

To summarize, the term structure of interest rates can therefore be represented by the

discount rate, the instantaneous forward rate, or the yield to maturity, as follows:

δt(T ) = exp(−yt(T )T ) = exp

(
−
∫ T

0

ft(τ) dτ

)
(1.1)

ft(T ) = yt(T ) + T
d

dT
yt(T ) = −

d
dT
δt(T )

δt(T )
(1.2)

yt(T ) =
1

T

∫ T

0

ft(τ) dτ = − 1

T
ln δt(T ). (1.3)

Finally, we note that the spot rate and the forward rate start at the same point, yt(0) = ft(0).
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CHAPTER 2

OVERVIEW OF THE LITERATURE

2.1 Theoretical Foundations of the Term Structure

There were four early economic theories with regards to the term structure of interest rates.

The first is the expectation hypothesis (EH) (see Lutz (1940), among others), which relies on

the assumption that bond prices are derived from the expectations agents have with regards

to future spot rates. The premise is that the holding period return is equal to repeated

investment in a series of short term IOUs, which collectively equal the holding period for the

long term bond. Alternatively it can be thought of as if the expected return for a fixed unit

if time is equal for bonds of all maturities.

The second is the liquidity preference hypothesis (see Hicks (1946)) (LP), which is an

extension of the EH approach, but it places a higher degree of importance on the risk

preference of the agent. Risk averse agents will demand higher forward rates compared

with actual expected spot rates. This will increase with time to maturity, since the time to

maturity is the main source of risk.

The market segmentation hypothesis(see Culbertson (1957)) (SH), also attempted to

explain the premium placed on long-maturity bonds. It postulates that agents have risk

preference that is highly segmented, causing bonds of different maturities to trade in

disconnected markets. It follows that the supply and demand for bonds in one segment

does not affect the price of bonds in the other segment. The result is that different yields

will exist for different maturities, and these yields will behave differently under similar market

conditions.

The preferred habitat theory (see Modigliani and Sutch (1966)) (PH) is essentially a blend

of both SH and LP. They adopt the principle of equality between expected returns, modified

by risk premiums on longer maturities securities, which is the basic premise of the LP,
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but they also blend SH and stress the principle of habitats in which lenders and borrowers

are choosing long term securities for various reasons, such as long investment horizon etc’.

Modigliani and Sutch are also incorporating the views of Keynes (1936) and Duesenberry

(1958) with regards to the stochastic process that govern the evolution of interest rates.

Keynes postulated that there is some Long Term Rate that is the common experience of all

agents in the economy, and that the spot rate gravitates towards. Duesenberry argued that

interest rates are exploratory in nature and do not gravitate towards a long term “acceptable”

level. Modigliani and Sutch’s model accommodate both views.

Roll (1971) set up one of the early attempts to test the theories above. He constructed a

mean variance model and a condition for market efficiency to relate ex-ante expectations and

ex post data observations. The underlining assumption was that rational expectations should

not differ from the ex-post results in a systematic manner, hence it is a testable hypothesis

to see if rational expectations are consistently correct ex post or not. Roll counted four

risk elements that are a major determinants of interest rates: (1) Default; (2) Liquidity; (3)

Inflation Uncertainty; and (4) incompatibility between bond maturity and investors horizon.

He then adds an additional one which is termed Portfolio Interaction. In essence it is a

combination of the rational expectations hypothesis which links forward rates and expected

future spot rates with the Sharpe (1964) Capital Asset Pricing Model. Roll derives a relation

between the portfolio risk of bonds and the term structure Liquidity Premium, which is the

main premise of the Liquidity Preference Theory.

2.2 Equilibrium Approach

Beginning with Vasicek (1977), a number of partial Equilibrium models have attempted to

model the behavior of the term structure of interest rates. He and others such as Brennan and

Schwartz (1979), John C. Cox and Ross (1981), as well as Langetieg (1980) have all made ad

hoc assumptions with regards to the stochastic process that govern the evolution of interest

rates. A characterization of the term structure was then deduced from these assumptions

in the context of an efficient market. These models yielded very specific formats for the

stochastic process, and did not conform well to the observed data. The yield curve one

would actually observe in the marketplace demonstrated more varied shapes than the ones

proposed by these models. Hence practitioners could not rely on these early models to price
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securities.

Cox et al. (1985) (CIR) were the first to formulate a model for the term structure of

interest rates in the context of a general equilibrium. They allow consumption decisions,

technology driven production, as well as multiple classes of investment vehicles and risk

preferences to enter as determinants of the curve. This approach essentially combines the

PH, as well as EH, and LP in the following sense: they allow the agents a choice of what

type of bonds to buy (which is in essence SH), when to consume and when to save (PH),

and the choice of different investment vehicles (LP). Their model is one in which identical

individuals are seeking to maximize their lifetime utility, and the production possibilities are

determined by the state of the technology which changes randomly over time (A). The agent

is to maximize utility, U(·): ∫ t′

t

U(C(s), A(s), s)ds

subject to a standard budget constraint. The supply in the economy is a derivative of

the state of the technology with evolves over time. Each agent is choosing (1) optimal

consumption C∗, where C(s) is consumption at time t ≤ s ≤ t
′
; (2) optimal proportion

of wealth to be invested in each of the production processes; and (3) optimal proportion of

wealth to be invested in contingent claim. Any remaining wealth will be lent out, or borrowed

to satisfy the budget constraint. In equilibrium, the interest rate and the expected rate of

return on contingent claims are such that all real capital is invested in production. The source

of variation in the economy is stemming from only one factor - the state of the technology, A

, which follows a random process. In equilibrium, under a steady state A, interest rates are

gravitating towards a long-term value θ. This behavior exhibits four important properties:

(1) no negative rates (2) zero rates can only go up (3) when rates increase, the corresponding

variance increases as well, and (4) there is a steady state distribution for the rates.

CIR noted the price of a bond at time T as P and write the first order condition to the

maximization problem as

1/2σ2rPrr + k(θ − r)Pr + Pt − λrPr − rP = 0

where the subscripts denote partial derivatives, r is the short-term interest rate, and the

term λr is the covariance of changes in interest rates with the percentage of the portion of

optimally-invested wealth. Note that factor k determines the speed of the gravitation of the

rates towards their steady state θ.
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The term 1/2σ2rPrr + k(θ− r)Pr + Pt represents the expected price change of the bond,

and is the result of Ito’s formula. It follows that the expected rate of return on the bond

is r + (λrPr/P ), or, the instantaneous return premium on the bond is proportional to its

interest elasticity.

The solution to the problem is an efficient allocation between consumption and invest-

ment, which include an equilibrium price for the bond

P (r, t, T ) = A(t, T )e−B(t,T )r

where A is the equilibrium amount allocable to investment which is being discounted by

B (the yield to maturity), which in turn is a function of risk aversion, as well as time to

maturity. This expression is roughly equivalent to δt(T ) = exp[−(T−t)yt(T )] in our notation.

The absence of arbitrage in equilibrium suggests that the bond price is also equal to the

risk free rate plus a risk premium only. The dynamics these prices are following are denoted

by:

dP = r[1− λB(t, T )]Pdt−B(t, T )Pσ
√
rdzt

CIR note that as at the limit (T → ∞),the yield to maturity will converge to a steady-

state-dependant condition:
2κθ

γ + κ+ λ

which implies

ft,T→∞(T )→ yt(T )

so that the forward rate converges to the spot rate in the limit. This, in turn, implies that

the derivative of the yield curve must converge to zero as T −→∞. Finally, when the time

of the purchase of the bond approaches the maturity of the bond (t → T ), the yield to

maturity will approach the spot rate for all parameter values.

The CIR model shared similar short-comings with the partial equilibrium models which

have preceded it: it was able to explain movements in the level of the term structure as

well as some of the changes in slope but did not work well to explain curvature, or inverted

curve. Subsequent studies that have followed in the footsteps of CIR have generalized the

CIR framework in an effort to achieve a better fit to the data. One such improvement was

made by Longstaff (1990) who introduced a non-linear relationship between technology and

production. Longstaff and Schwartz (1992) added a second layer of dynamics in the form
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of volatility in short term interest rates. This enabled the estimated term structure to be

more flexible in its shape, taking into account not only the level of interest rates, but the

volatility of them as well.

Hull and White (1990) also extended the work of Vasicek (1977) and CIR. They presented

extensions for the two above models. Their contribution is showing that the stochastic

process that governs short term rates can be deduced from the term structure of interest rates,

and the term structure of spot or forward interest rate volatilities. Knowing the nature of

this stochastic process enables either model to price contingent claims. The conjecture is that

the market’s expectations with regards to future rates involves time-dependent parameters,

as well as state variables and the spot rate itself. To incorporate this, the CIR model is

modified to include θ(t), which is a time-dependent drift, in the following manner. For

Vasicek’s model :

dr = [θ(t) + a(t)(b− r)]dt+ σ(t)dz

here θ is a time dependent drift and a, b, and σ are all positive constants, r is the short term

rate, and dz is a Wiener process. For the CIR model the equivalent expression is

dr = [θ(t) + a(t)(b− r)]dt+ σ(t)
√
r dz

Hull and White report that the extended Vasicek’s model analytically derives parameters

and short term rates, as well as European bond options, which is an appealing practical tool.

Jordan and Mansi (2003) estimated the term structure from a sample that contained on-

the-run treasuries only. This alleviated some of the issues associated with different attributes

of securities such as different levels of liquidity, coupon or non coupon bonds, and securities

with different tax treatments, but exacerbated the interpolation problem as there are only

8 observed data points across the spectrum of maturities, so the gaps are wider. They

compare a number of methods and they show that continuous time models perform better

than discrete ones, and that there are two sources of errors in the price prediction: (1)

interpolation errors, which is related to the method used by the modeler to estimate the

curve; and (2) random pricing errors. The random pricing error is small (about 7%) in

relation to the total pricing error.

Dai and Singleton (2000) augmented the work of CIR, Vasicek and others, by defining

the “affine” model for the Term Structure. Their aim was to formally characterize and point

out the differences and similarities of the different specifications of the affine models used by
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their predecessors. The defined an“admissability test” for affine models based on their price

predictability. Those models that pass the test, were then classified into separate “families”

based on their factors. Each of these families can be characterized by a “maximal” model,

that is the generalization of all members of that family. The idea is to find that “maximal”

model and compare it to earlier models in order to find an over-identifying factors in the

earlier models. In the their model the price of a zero coupon bond δt(T )is:

δt(T ) = EQ
t [e−

∫
t rsds]

where EQ
t is the risk neutral expectation, and r is the short term rate. The N -factor affine

term structure model is constructed assuming the short rate, r(t) is a an affine function of

a vector of unobserved state variables Y (t) = (Y1(t), Y2(t)....YN(t)).

The instantaneous short rate is defined as

r(t) = δ0 + ΣN
i=1δiYi(t) = δ0 + δ

′

yY (t)

and Y (t) follows the vector process

dY (t) = κ̃(θ̃ − Y (t))dt+
∑√

S(t)dW̃ (t). (2.1)

where last term is the “affine” diffusion” and W̃ (t) is an N dimensional independent standard

Brownian motion under the risk neutral measure, κ̃, as well as
∑

are N ×N matrices, and

S(t) is a diagonal matrix with the ith element defined as

[S(t)]ii = αi + β
′

iY (t) (2.2)

where both the drift in (2.1) and the conditional variances in (2.2) are affine in Y (t).

This family of models accommodates time varying means and volatilities of the state

variables through affine specifications of the risk neutral drift volatility coefficients. Another

nice property is that they produce a closed—form expression for the price of a zero-coupon

bond, which simplifies implementation. Dai and Singleton have shown that the models that

have preceded them imposed undue restrictions, and essentially over-identified the “true”

(maximal) model. They have attempted to fit the model to the data, without much success,

but note that the reason for it lies with their formulation of the risk premium—which they

say may not be linear, as they have modeled it. Cochrane (2001) indicated that these models
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all maintain multiple factors as determinants of bond prices, not just short term rates, as

most earlier models. The general form is a linear one, in which the log price of the bond

is determined by a number of state variables. Other bond prices are also part of the state

variables. Short term rates will be forecasted by lagged values of both short and long term

rates. Campbell (1997) listed some of the advantages of the affine class models: first, log bond

yields inherit the conditional normality assumed for the underlying state variables. Second,

because log bond yields are a linear functions of the state variables, one can re-normalize the

model so the yields themselves are the state variables. Some of the disadvantages are: (1)

affine models are limiting the way in which rate volatility is able to change with the level of

rates; and (2) the covariance matrix of bond returns of affine model has a rank of K since

all K bonds are linearly related. Therefor, one must add an error term to the model.

The equilibrium approach, however, fell short of the most basic requirement posed by

practitioners - it was not able to price assets. The central role that the yield curve have

in pricing contingent claims, and the growing popularity of these instruments in financial

markets, as well as the deficiencies that the theoretical models described above exhibited,

gave rise to a new developments in yield curve research. An empirical estimation of the yield

curve, one that is accurate enough to price assets in the marketplace, began to develop along

side the equilibrium models. The method was to fit a function to an observed set of data,

while satisfying several basic assumptions that stem from the theory. We call this branch of

research the no-arbitrage approach.

2.3 No Arbitrage Approach

One of the early building blocks of the no-arbitrage approach was McCulloch (1971). He

developed a technique of fitting a smooth curve (discount function) to observations of prices

of bonds with varying maturities using polynomial splines. The discount function, is then

utilized in derivation of security prices, forward rates, and the yield curve.

The discount function is defined as the present price (value) of $1 payable in T periods

from now. It is continuously differentiable, and monotonly decreasing. The set up is as

follows:

p = 100 δt(T ) + C

∫ T

0

δt(T )dt

where p is the price of the bond, and C is the coupon rate. δt(T ) is the discount function
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for the T time maturity and it takes the form of

δt(T ) = 1 + Σk
j=1aihi(T ) (2.3)

where h is continuously differential between 0 and k, and δ is 1 at the present time.

McCulloch notes that the actual form of h is unknown and is subject to debate but any

form must satisfy h(0) = 0, and h is continuously differentiable. He proposes the use of

polynomial spline in the form of:

hj(t) = mj j = 1, 2, . . . , k.

The theoretical motivation he offers is that: (1) a polynomial does not depend on the

distribution of T , and (2) it does not provide a greater capability for providing resolution

for the value of T where T is more likely to occur. Since investors are much more concerned

with small deviations in the very short term (short maturities), but are less so for very long

maturities securities, he can use a relatively low order polynomial to fit the observations

more accurately close to the origin of the curve which is appealing to practitioners.

The discount function δ(T ) is an exponentially decaying function where the rate of decay

is actually the instantaneous forward rate, noted as:

ft(T ) = −δ′t(T )/δt(T ).

Exponentiate both sides and the instantaneous forward rate can be stated as

ft(T ) = lim
h→0

[
δt(T )/δt(T + h)− 1

h

]
Combining with 2.3 one can see that:

f̂t(T ) =
−
∑

j âjf
′
j(T )

1 +
∑

j âjhj(T )

The mean forward rate is the average of the instantaneous forward rate (f(m)):

ft(T1, T2) =
1

T2 − T1

∫ T2

T1

T 2 · T1(T )dT

This gives the rate of decay of the discount rate δ(m) The yield curve is the average of

the rate of decay or

yt(T ) =
1

T

∫ T

o

ft(x)dx

17



McCulloch (1975) is extending his model by examining the tax-adjusted yield curve. But

a greater contribution of this paper for our purposes is the introduction of cubic splines.

Since an r degree spline is a piecewise function with an r degree polynomial which has

(r − 1) continuous derivatives, the rth derivative is a step function. As noted above, in the

short end of the yield curve one can find many observations for note maturities, much more

so than for long maturities. This justifies the use of cubic splines, which provide greater

flexibility since the parameters in one interval are not affected by observations in another.

The intervals of the cubic spline must be spaced out correctly to include roughly equal

number of observation in each adjacent knot. Another motivation for the use of cubic spline

is the shape of the forward curve it produces, which is smoother than the one produced by the

quadratic one. McCulloch reports that the cubic spline performed better in fitting the long

term as well, exhibiting a “credible” 3.5 % or 4.5 % premium for long maturities over shorter

ones. This is was an improvement over the polynomial spline that showed unreasonable long

term premium that was between -9 % and +57%.

Vasicek and Fong (1982) (VF) proposed using exponential splines to fit calculated spot

rate observations. Their model was:

Pt,k + At,k = δt(Tk) +

Lk∑
j=1

Ckδt(Tk − j + 1) +Qk −Wk + εk, k = 1, . . . , n (2.4)

where δt(T ) is the discount function - the value, at time t, of one unit of payment due at

time T . n is the number of bonds used to estimate the term structure, Tk is the time to

maturity of the k-th bond, Ck is the semi annual coupon rate of the k-th bond, expressed

as a fraction of the bond value, and Pk is the price of the k-th bond, expressed as a fraction

of the par value. Qk is the is the price discount attributed to the effect of taxes. Wk is the

price discount due to call features, and εk is a residual error with a mean of 0. We also have

Ak = Ck(Lk − Tk) is the accrued interest portion on the k-th bond,where Lk = Tk + 1 being

the number of coupons to be received.

Polynomial splines, VF argued, are not well suited to fit this function since they have

different curvatures than exponentials, which makes them inferior in trying to fit the yield

curve, and although some modifications can be made to “make them close to an exponential

curve by choosing a sufficiently large number of knot points, the local fit is not good”.

Specifically, their critique of McCulloch is based on the fact that the derivatives of the log

of the discount function are not stable under his construct, especially when it was combined
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with estimated tax rates, which increased its sensitivity to errors in the tax rate estimation.

Also, polynomials cannot be forced to asymptote for long maturities, as observed in the data.

It is also argued that this is the reason McCulloch’s curve is not stable for long maturities.

Working with the log of δt was not possible since the transformation is not linear. VF instead

applied the transformation directly to the argument of the function δt. This transformation

allows the fitting of the model to be done with linear combinations of splines:

t = − 1

α
ln(1− x), 0 ≤ x < 1.

They then approximate δt by a new function , G(x):

δt = δ(− 1

α
ln(1− x)) ≡ G(x)

and G(x) ∼ (1 − x)γ/α where α is now the limiting value for the forward rate, and can be

fitted to the data along with the other parameters.

If gi(x) is the base of a polynomial spline space, then any spline in that space is a linear

combination of the base, hence if G(x) is in the space, we have:

G(x) =
m∑
i=1

βigi(x)

for x between 0 and 1.

G(x) is now a decreasing function defined over the interval 0 ≤ x < 1, with G(0) = 1

and G(1) = 0 The model is now linear in G(x) and can be fitted with polynomial splines.

The model can be re-written and the term structure can be estimated using the following

format:

Pk + Ak =
m∑
i=1

βigi(x) +

Lk∑
j=1

Ckgi(Xjk)− q
Ck
Pk

(
dP

dY

)
− wIk + εk.

where Wk = dP
dY k

Ik, Now call the left hand side Uk, and define

Zki = gi(Xk1) +

Lk∑
j=1

Ckgi(Xkj) i = 1, 2, . . . ,m.

One gets:

Zk,m+1 = −Ck
Pk

(
dP

dY

)
and Zk,m+2 = −Ik for k = 1, 2, ...n.

19



Now define β as

β̂ = (Z ′Ω−1Z)−1Z ′Ω−1U

were U = (Uk), Z = (Zki), and Ω is the residual covariance matrix from the term structure

model in (2.4). The sum of squares here is a function of α only and is defined as:

S(α) = U ′Ω−1U − β̂′z′Ω−1U The value of α that minimizes this sum of squares is the

one to use to produce β, and when fitting the curve. Estimating the parameters, the model

reduces to :

δ̂t =
m∑
i=1

β̂igi(1− exp−α̂t) (2.5)

for t ≥ 0.

If one rewrites (2.5) in terms of t, then any interval between knot points G(x) is a cubic

polynomial, and δ(t) takes the form:

δt = a0 + a1e
−αt + a2e

−2αt + a3e
−3αt.

δ(t) is then continuous in the first and second derivatives at the knot points. VF named this

family of models “Third Order Exponential Splines”.

The major contribution VF see in using exponential splines is that they increase the

stability of the projected forward curve, and improve the asymptotic properties of the forward

curve for long maturities so that the curve is more robust in the longer maturities.

Shea (1985) reviewed VF’s work and made the following observations:

1. Their model is indeed linear in the β s but not so in the α s. It is therefore inescapable

to use nonlinear routines in estimating it.

2. VF asserted that present value functions are exponential decays, but they did not

enforce that condition. This caused these functions to deviate from that pattern.

3. The Discount function transformation G(x) was almost never linear when estimated

using polynomial spline approximations. This caused great variations in the short term

maturity space and contributed to the instability of the model.

4. VF were correct to point out that polynomials have a difficulty in modeling exponential

functions, but neglected to state that this does not extend to local polynomial

approximation.
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Shea summarizes that the using exponential splines in the way VF did is not more likely

to produce stable forward curves than in using ordinary polynomial splines, as long as the

assumed exponential form of the discount function is modeled in only a piecewise fashion.

Splines approximations are joint, but local, approximations of a function. Hence one can

expect that “in a piecewise polynomial function, each polynomial piece of which is estimated

over a not too wide domain, might very well mimic a piecewise exponential”. It follows that

there is no material difference between polynomial and exponential splines, and the fact the

exponential splines require additional manipulation of the data, as well as a higher degree

of computational burden, Shea proposes to give preference to polynomials .

Nelson and Siegel (1987) have proposed a second order differential equation based model

to capture the determinants of the yield curve shape. Their model is motivated by the

expectation hypothesis as well as no arbitrage arguments. They construct the following

f(T ) = β0 + β1exp(−T/τ) + β2[(T/τ)exp(−T/τ)] (2.6)

where f(T ) is the instantaneous forward rate to maturity T , τ is a constant, the βs are

determined by the initial state of the yield curve, and T is the time to maturity.

The reason for this construction is that their survey of past research showed that virtually

all yield curve research showed the term structure function to be monotone, humped or

occasionally S shaped. The construction above is a ready format that yields such functions:

β1exp(−m/τ) is a monotonically decreasing factor of the time to maturity (if β1 is positive),

and the humped shape is achieved by the last factor, β2[(T/τ) exp(−T/τ)]. When time to

maturity approaches infinity, the forward rate is approaching the constant β0, and as we

approach the time to maturity the rate approaches β0 + β1. The claim is that if spot rates

are generated by a differential equation, then the forward rates being forecasted, will be the

solutions to these equations.

If (2.6) is integrated between 0 and m and then divided by T one gets

y(T ) = β0 + (β1 + β2)[1− exp(−T/τ)]/(T/τ)− β2 exp(−T/τ)

where β0 is the long-term to maturity effect, β1 is the effect of the short term maturities,

and β2 is medium, and all the βs are linear, given τ . They test their model on US Treasuries

and find a high correlation (.96) between the present value of a long term bond implied

by the fitted curves generated by their model, and the actual reported price of the bonds.
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Gimeno and Nave (2006) report that nine out of the thirteen central banks that report their

estimation methods to the Bank of International Settlements, use a function developed by

Nelson and Siegel (1987) and augmented by Svensson (1995).

Jordan and Mansi (2003) have compared five methods for curve construction using on the

run treasuries only. They show that the exponential function based Nelson Siegel method,

and the four-parameter model of Mansi and Phillips (2001) outperform several other methods

in pricing ability. However, as Redlemen (2004) pointed, these methods still lack in pricing

accuracy, since one cannot reconstruct the par value of the bond by using the present value

of the cash flows modeled.

Svensson (1995) showed how central bankers can use the Nelson and Siegel model (albeit

extended, and a bit more flexible) to predict the forward rate curve. This is important since

central banks are including the forward rate curve as one of the forward looking indicators

when devising policy. Svensson makes the argument that the forward rate curve can be

thought of as a time-path for short term rates. It follows that a logical interpretation is

to divide the expectations into short, medium, and long term rates. This is very useful to

central bankers, much more so than looking at spot short rates which are essentially the

average of future short rates. Svensson claims that yield error minimization in the context of

monetary policy is more relevant than price error minimization. Trying to minimize pricing

errors can result in large yield errors, since prices are very sensitive to yield errors in the

short term.

Svensson’s innovation was to add a fourth term to the Nelson and Siegel construct. The

new, modified Nelson and Siegel model, was specified as

y(T ) =β0 + β1 exp(−T/τ) + β2[(T/τ1) exp(−T/τ1)]

+ β3[(T/τ2) exp(−T/τ2)]
This formulation imposes a horizontal asymptote on the term structure. This is necessary

since the expectations today as to what interest rate will be 20 years from now, should not

be materially different than the expectation of the rates 30 years from now. This asymptote

stabilizes the long term rates, an issue that has plagued most previous models. Since the

forward rate plots a time path for the evolution of spot rates, it is easier to interpret in the

context of monetary policy in terms of short, medium and long term rates. This is most

useful for policy making. Svensson documents that this extended Nelson and Siegel model

is able to fit the data better than the original one.
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Fama and Bliss (1987) have constructed the yield curve via estimated forward rates at

the observed maturities. They rely on CIR and others that have documented that interest

rates are slow mean reverting. This fact is the driving force behind the forward rate’s ability

to predict future spot rates. This is true mostly for extended forecast horizons. They also

documented that the expected premiums on maturities between 1 and 5 years vary through

time, and can have negative values. This is in contrast to the intuitively appealing liquidity

preference theory.

Diebold and Li (2006) (DL) extended the Nelson and Siegel approach to forecast the

yield curve out of sample. They interpret the betas as factors of level slope and curvature ,

instead of them being related to maturities horizons. This can be done since, unlike factor

analysis, the Nelson-Siegel approach imposes structure on the factor loadings:

yt(τ) = β1t + β2t(
1− e−λtτ

λtτ
) + β3t(

1− eλtτ

λtτ
− e−λtτ )

Nelson and Siegel’s interpretation of β1 is that it is a long term factor, since it does not

decay to 0 in the limit. Alternatively DL claim that it can also be viewed as the LEVEL

factor, since if β1 rises, it raises the yield on all maturities, uniformly. β2 which was viewed

by Nelson and Siegel as the short term factor due to it starting at 1 and the exhibiting quick

decay, is interpreted by DL as the slope of the curve. DL define that slope as the difference

in yield between the 10 year bond and the 3 month bill, which is a good approximation of the

slope, but a better one is the difference y∞ − y0 which is exactly β2. They also note that an

increase in β2 will affect short term rates much more so than long terms, thereby changing

the slope. DL define the curvature of the curve as being twice the two year yield minus the

sum of the yields of the 3 month bill and the 10 yr bond. β3 has hardly any loading on very

short or very long maturities, and mostly affects maturities in the middle part of the curve,

as Nelson and Siegel pointed out. Changing the middle of the curve, without changing the

extremes, will affect the curvature of the curve.

DL list the following stylized facts that were documented by their predecessors, and to

which the DL model is claimed to adhere:

1. The average yield curve is increasing and concave. In this context, average means

average of the βs.

2. The yield curve assumes a variety of shapes over time.
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3. Yield dynamics are persistent, but spread dynamics are much less so. In this context,

β1 is persistent, but β2 is less so.

4. The short end of the yield curve is more volatile than the long end. Here, the short

end is positively related to β1 and β2, where as the long end is only dependent on β1.

5. Long term rates are more persistent than short term ones. In the DL model this is

exhibited by β1 being the most persistent factor, and it being related to the long term.

DL’s aim was to build a model that would exhibit a behavior that resembles the facts that

were documented in the past. To accomplish that, they fit the curve based on the following

procedure:

1. Fix λ at a value that maximizes the loading on the curvature factor.

2. Estimate the βs using OLS on the monthly yield data and the corresponding residuals.

Since the maturities are not equally spaced (more observations for the short term), a

larger weight is placed on the space where more observations exist.

DL perform a horse race to compare the predictability power of different methods of yield

curve construction. They report that for long term forecasting their model performs better

than the competitors, and the count the advancements their model is making from the ones

that preceded it:

1. It can be used to produce yield at maturities other than those observed in the data

(which is appealing to individuals who are trying to price securities).

2. It guarantees a smooth yield curve and forward curve.

3. It guarantees a positive forward rate for all horizons.

4. It guarantees that the discount function will start at 1 and will approach 0 as maturity

approaches infinity.

Ho and Lee (1986) priced interest rate contingent claims using an Interest Rate Movement

Model. They take the complete yield curve as given and derive the stochastic process

that causes it to change over time, in an arbitrage free manner, and is consistent with the
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equilibrium framework. The pricing of these contingent claims is done relative to an observed

term structure, and is different from CIR in that the term structure is not endogenized.

Ho and Lee noted that their approach is an improvement over their predecessors in that

all information contained in the observed term structure is utilized in the pricing process,

and in pricing a straight (discount) bond, the theoretical price is assured to be determined

by the observed term structure.

The model is assuming that:

1. The market is free of transaction costs and taxes.

2. The market clears at discrete points in time.

3. The bond market is complete in the sense that there are bonds trading for each

maturity.

4. At each point in time, there are n possible states for the world.

The arbitrage free condition requires that if a portfolio of two risky bonds is assembled

in such a way that the portfolio realizes a risk free rate over the next period, then the risk

free rate must be the rate on a one period discount bond. Specifically in this model:

πh(T ) + (1− π)h× (T ) = 1

for n, i > 1, where π is some constant independent of time T (or, binomial probability of the

state of the world), and h is the perturbation function that governs the stochastic process

for the price of the bond (h* is the “other” state of the world in this binomial model). The

price of the bond is therefore:

P
(n)
i (T ) = [πP n+1

i+1 (T − 1) + (1− π)P n+1
i (T − 1)]P n

i (1)

This states that the price of the bond equals the expected bond value at the end of the

period, discounted by the prevailing discount rate.

The discount function evolves from one state to another independently of the sequence

of the states of the world. It only depends on the number of each kind of states. The

path-independent condition is given by:

h∗(T ) =
φT

π + (1− π)φT
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where φ is the spread between h and h*. There is a direct relationship between the spread

and the rate variability between the states of the world. This implies that the longer the

maturity of the bond is, the difference in terms of its price is larger as this spread is larger.

Hence φ affects the bond’s volatility. The one period rate yt(1) is

yt(1) = − lnP n
i (1) = ln

[
P (n)

P (n+ 1)

]
+ ln(πφ−n + (1− π)) + i lnφ.

Hence, the one period rate is the forward rate plus a bias. The bias would be zero if there

will be no uncertainty [φ = 0]. This stochastic process depends only on the information in

the initial term structure, and the probabilities of the states of the world. In order to price

a contingent claim using this model one would have to:

1. estimate the discount function at the time of the pricing using one of the available

methods, such as cubic splines as in McCulloch (1975),

2. estimate π (the constant) and φ (the uncertainty coefficient) for an input into the

model.

Heath et al. (1992) (hereafter, HJM) gave a unified framework for the no arbitrage

approach and used it to price contingent claims. They defined the no-arbitrage pricing

theory as having two purposes:

1. price all zero coupon , default free, bonds of varying maturities from a finite number

of state variables, and

2. price all contingent claims using the price of the zero coupon bonds.

In this approach, given an initial forward rate curve and a stochastic process that governs its

motion, an arbitrage free model is developed, which can price contingent claims in a manner

that is not dependent of the market price of risk. This approach did not require an “inversion

of the term structure” to eliminate the market price of risk from contingent claims value.

The inversion of the yield curve to remove the market price of risk is necessary since these

models [Vasicek (1977), Langetieg (1980), Brennan and Schwartz (1979), among others] are

all deriving the price of the zero coupon bond from a set of state variables. These state

variables are in themselves priced to reflect the market price of risk, hence they introduce

this bias into the price of the zero coupon bond. This inversion carries several issues with it:
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(i) It is computationally problematic since bond price functions are highly non-linear, (ii)

spot rates and the parameters in the bond pricing function are not independent of the market

price of risk. It is therefore possible that an arbitrage opportunity exists if you introduce a

parameterized form of the market price of risk as a function of the state variables .

HJM generalized the approach advocated by Ho and Lee (1986), by constructing a

continuous time economy, and adding additional factors to it. Lee and Ho imposed the

exogenous stochastic process on zero coupon bond prices while Heath et. al. imposed it

on the forward rates themselves. A given initial forward curve is assumed, then a general

continuous stochastic process is defined for the evolution of the curve across time. In contrast

to the Cox et al. (1985) general equilibrium model, HJM’s model is taking the stochastic

process for forward rates as a given and prices contingent claims from it, while CIR is fixing a

particular market price for risk and endogenously deriving the stochastic process for forward

rates.

White (1993), (hereafter, HW) innovated by introducing some numerical procedures to

improve the arbitrage free approach to the modeling of the term structure. Within the

arbitrage free approach, they identified three methods of modeling:

1. The short rate, as in Hull and White (1990),

2. The behavior of instantaneous forward rate at all future times, as in HJM , and

3. The price of discount bonds, δt , as in Ho and Lee (1986). Under this approach, the

model specifies the behavior of all bond prices, at all times.

HW model the short rate as a markov process. They use a single factor, arbitrage free model,

that can be extended to include several factors. The markov, risk-neutral process is specified

for the short rate in terms of the unknown function (at time t) θ(t), which is the single

factor in this model. The next step is a procedure that enables the modeler to choose the

correct θ(t), which is consistent with the initial, given, term structure. This is accomplished

utilizing a trinomial tree of probabilities of the state of the world in the next period. This

procedure is capable of duplicating, at each node of the tree, both the expected drift in the

short rate, and its instantaneous standard deviation. HW show that both the CIR, Vasicek,

and the Ho and Li models can be implemented using a time varying state variables in a

single factor model.
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AvD presented a new approach to yield curve estimation and smoothing. They defined

the criterion for the “best” curve, as one that has maximum smoothness in the forward

curve.

They claimed their method can be used to “fit yield curves with one explicit function that

is both consistent with all observed points on the yield curve and provides the smoothest

possible forward rate curve consistent with the chosen functional form.” This maximum

smoothness feature is appealing to practitioners who are mostly concerned with precluding

arbitrage that may be the result of kinks in the yield curve. The AvD. method is different

from that of McCulloch and VF in that they actually define the maximum smoothness

criteria on the forward curve, whereas McCulloch, VF, and others have fitted the splines

on the observations of the yield curve, then mitigated the fluctuations in the forward curve

by reducing the degree of the polynomial. As Shea noted, these efforts were not enough to

eliminate unreasonable volatility between observations on the forward curve. AvD proposed

dealing with the more sensitive forward curve itself, and imposing the maximum smoothness

criteria directly on it.

AvD show that their method outperforms other methods (cubic spline of bond prices

and of bond yields, among others) as measured by smoothness and accuracy (“goodness of

fit”). This maximum smoothness approach is also a useful criterion in comparing different

smoothness degrees generated by different functional forms. We will examine the AvD

method in detail in the following chapter, as it is directly related to what we propose to do.

Roger J-B Wets (2002) pointed out that the only input into the AvD framework is the zero

coupon curve. This, they indicate, necessitated the use of some interpolation method (which

will introduce an error, per Jordan and Mansi (2003)), as well as selection of the securities

to be used, which may not be unique. The method we propose in this paper resolves these

issues They proposed a new method for constructing the zero curve for maturities longer

than one year, after reviewing the limitations of the standard, widely used bootstrapping

techniques. Their proposed method is guided by two principles: The complete portfolio and

smooth curves. The complete portfolio principle is motivated by the fact that the zero curve

is affected by the selection of inputs in its construction.

The advocated method starts by selecting a level of smoothness desired (z ∈ Cq), where

z is the zero curve, whose qth derivative is a continuous piecewise linear function. This

requires fixing a finite number of parameters. The interval (0, T ) is then broken into N
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intervals, and the parameters are individually tailored or each one of those. The curve is

then fitted piecewise. If the resulting total curve fails an accuracy criteria, an adjustment is

made by the increasing the number of intervals in the estimation spectrum. essentially, they

construct the following price error minimization problem: Find z ∈ Cq,pl([0, T ], N) so that

‖ s − z(m1 : mL) ‖ is minimized where pl stands for piecewise linear, and s and m are an

array of spot rates and maturities, respectively.

Turan and Karagozoglu (2000) have tested the effects of the AvD smoothing technique on

the pricing ability of eurodollar future options. They provided evidence that the technique

significantly improves pricing accuracy, at least in the context of the model proposed by

Black (1990).

Hagan and West (2006)(HW) have reviewed a number of interpolation and bootstrapping

methods that are in use by practitioners. Of particular importance to us is their critique of

the AvD method. HW show that under certain conditions, the AvD method can produce a

negative forward curve. Specifically they claim that the high degree of smoothness required

by the method is achieved at the cost of losing any stiffness of the forward curve. Namely, a

relatively small changes in the yield curve may cause the forward curve to react with large

movements. They also point out that the AvD method does not preclude a negative forward

rate. They show that if you have a flattened yield curve that has a bump on it (say, around

the 5 years maturity node), you have a forward rate that is negative at some maturities. We

make a note of their remark, but in our opinion if we actually observe a spot rate that has a

blimp in it, the forward curve should reflect this pricing anomaly by exhibiting its own out-of-

normal values. Another important contribution is their observation that bootstrapping and

interpolation should not be considered separately. Indeed, the information in both processes

is completing each other. Our approach adopts this point of view and does implement

stripping and smoothing procedures that are intertwined.
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CHAPTER 3

ITERATIVE PIECEWISE QUARTIC POLYNOMIAL

INTERPOLATION METHOD

AvD have indicated that past research was focused on structuring the yield curve in a way

that aimed to produce a meaningful forward curve. These past methods have modeled the

discount function, δt, hoping to produce a forward rate that is “well behaved” in the sense

that it was positive, robust and smooth. These attempts were pointed out by Shea (1985),

among others, to be flawed, as the forward curve still exhibited unreasonable behavior. To

construct a better forward curve, AvD took a different approach - by directly modeling the

forward curve, rather than indirectly through the discount or the yield (spot) curve. The

advantage of directly modeling the forward curve is clear if one examines the relationships

between the forward, yield and discount rates, which we have specified in the introduction.

The spot, discount and forward curves have varying degrees of sensitivities, with the forward

curve being the most sensitive to changes in both the discount and spot rates. Modeling the

forward rate by constructing the discount or spot rates is similar to fixing a pair of eyeglasses

while wearing gloves. It is cumbersome to construct a reasonable forward curve that way.

Instead, if one models the forward curve directly and embeds all of the desired properties

into it, then by construction the spot and discount rates will have the characteristics that

the modeler requires.

3.1 Overview of the AvD method

AvD’s method is designed to construct the forward curve, given a set of zero coupon bonds.

The model I present is based on their work, and extends it to include coupon bonds by

integrating the coupon stripping process into model. Since my model is an extension of

theirs, it is useful to review their work in some detail here. AvD’s approach was to define
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a maximum smoothness criteria for the forward rate, and search for the curve that satisfied

it while constrained to fit the data. Their definition of this maximum smoothness is the

minimum of the second derivative (curvature) of the forward curve. A forward curve of this

kind will ensure that the yield curve function will be forced to change very slowly. This will

exclude abrupt changes to the yield function, thereby excluding potential arbitrage.

Let δ(ti), i = 1, . . . ,m be the price of a zero coupon par 1 bond that matures at time

ti Let f(t) and y(t) denote the instantaneous forward and spot curves, respectively. Recall

that ∫ ti

0

f(s)ds = − log δ(ti), i = 1, . . . ,m.

AvD solve for the smoothest possible forward curve among the class of piecewise polynomials

that satisfies m pricing constraints, where their notion of smoothness is the total curvature

of the forward curve. They also impose initial and terminal constraints on the forward curve

so that the optimization problem becomes

min
f

∫ tm

0

(
f
′′
(s)
)2

ds (3.1)

subject to the constraints:

1. exp
(
−
∫ ti

0
f(s)ds

)
= δ(ti) for i = 1, 2, ...,m, which will ensure that the curve

accurately prices each bond.

2. f(0) = y(0), which will ensure that the forward rate and the spot rate are equal at

time 0.

3. limt→∞ f
′
(t) = 0 which will ensure that the forward rate is flat at the asymptote and

will converge to y(t)

The optimization problem is complicated by the fact that the first constraint is a function

of f
′′
. To see this, rewrite the first constraint as∫ ti

0

f(s)ds = − log δ(ti) (3.2)

and integrate the left hand side by parts twice to get∫ ti

0

f(s)ds = tif(ti)−
1

2
t2i f
′(ti) +

1

2

∫ ti

0

s2f ′′(s)ds
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Define

g(t) = f ′′(t) 0 < t ≤ t

and

Qi = tif(ti)−
1

2
t2i f
′(t), for i = 1, 2, . . . ,m

so the optimization problem can be rewritten as

min
f
Z[g] =

∫ tm

0

g2(s)ds

subject to
1

2

∫ ti

0

s2u(ti − s)g(s)ds = − log δti −Qi, i = 1, . . . ,m.

This is a variational calculus problem. Thus, if the function g∗ is the solution to the

minimization problem then we have

d

dε
Z[g∗ + εh]

∣∣
ε=0

= 0

for any continuous function h defined over [0, tm], such that h(s) = g(s)− g∗(s), where g∗ is

optimal.

AvD find the solution to be

d

dε
Z[g + εh]

∣∣
ε=0

= 2

∫ T

0

[
g(s) +

1

4
s2

m∑
i=1

λiu(ti − s)

]
h(s)ds (3.3)

where u(ti) is an indicator function defined as

u(ti − ti−1) =

{
1 if ti−1 ≤ t ≤ ti

0 otherwise
(3.4)

AvD claim that the spline functions are of the form:

fi(t) = cit
4 + bit+ ai for ti−1 < t ≤ ti and i = 1, 2, ...,m. (3.5)

Lim and Xiao (2002) (LX), however, have pointed out an error in (3.3) above. They

noted that Qi, is, by it’s definition a function of g(s)

Qi = ti

∫ ti

0

[
u(ti − s)

∫ s

0

g(v)dv

]
ds− 1

2
t2i

∫ ti

0

u(ti − s)g(s)ds+ r0ti

yet AvD, have treated Qi as a constant when deriving (3.3).
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LX reformulate the minimization problem, with Qi expressed as a function of g(·):

min
g(·),λi

Z[g, λ] =

∫ tm

0

g2(s)ds+

∫ tm

0

[ m∑
I=1

λiu(ti − s)[ti
∫ s

0

g(v)dv

− 1

2
t2iu(ti − s)g(s) +

1

2
s2g(s)]

]
ds

+
m∑
i=1

λi(r0ti + ln δ(ti))

where λi is the Lagrange multiplier of the ith constraint.

They show that g∗(t) (the optimal g) is a continuous function in second order polynomial

form in each interval, of the form

g∗(t) = −1

4

m∑
j=i+1

λj(tj − t)2, when ti < t ≤ ti+1, and i = 0, . . . ,m− 1.

Integrating g∗ twice yields

fi(t) = ait
4 + bit

3 + cit
2 + dit+ ei

for i = 1, ...,m and ti−1 < t ≤ ti. Thus, the maximum smoothness forward curve is

an unconstrained fourth order polynomial function in each segment of the curve (between

observations).

The next step is to determine the coefficients a, b, c, d and e. I follow LX and transform

the problem into a quadratic form. Integrate f
′′
(t) to get:∫ ti

ti−1

f
′′
(t)dt =

∫ ti

ti−1

(12ait
2 + 6bit+ 2ci)

2dt =
144

5
∆5
i a

2
i

+ 36∆4
i aibi + 12∆3b2i + 16∆3

i aici + 12∆2
i bici + 4∆1

i c
2
i

= XT
i hiXi

where

Xi =


ai
bi
ci
di
ei

 , h =


144
5
45
i 1844

i 843
i 0 0

1844
i 1243

i 642
i 0 0

843
i 642

i 441
i 0 0

0 0 0 0 0
0 0 0 0 0


and

∆l
i = tli − tli−1, for l = 1, . . . , 5.
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The objective function is now of the form:

min
X

X ′hX

where

X =


X1

·
·
·

Xm+1

 , h =


h1 0
·
·
·

0 hm+1

 .
The important observation to make is that the objective function is quadratic so that the

gradient is linear in the coefficients. The constraint functions are also linear functions of the

coefficients, and that is shown next. Note that an m + 1 polynomial was added here so as

to impose the terminal condition, which will be discussed below.

The objective function is minimized subject to the following constraints:

1. Fitting the observed prices with minimal error

2. Continuity of the spline function at the nodes: This imposes the condition that at the

nodes, where the splines are connected, the function will be smooth with no abrupt

changes in the slope. Alternatively this can be noted as fi(ti) = fi+1(ti).

3. Continuity of the first derivatives (slope) of the spline function at the nodes (f
′
i (ti) =

f
′
i+1(ti))

4. Continuity of the second derivative (curvature) of the spline function at the nodes

(f
′′
i (ti) = f

′′
i+1(ti))

5. Boundary conditions on the initial point of the forward curve and the terminal slope

of the forward curve. The initial point is determined be interpolating backward, using

the one week, and 30 day rates to arrive at the instantaneous maturity rate . The

terminal condition is designed so that we will have a flat forward curve at the last

observed maturity, and beyond, so that f(t) = constant for all t > tm. This is done by

adding a spline in the segment beyond the last observed maturity by essentially adding

a maturity at infinity tm+1 =∞.

I now show how to formally impose these constraints into the minimization problem:
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1. Fitting the observed prices: The zero-coupon bond price given by (1.3) may be written

as

− lnδ(tj) =

∫ tj

0

f(t) dt

=

j∑
i=1

∫ ti

ti−1

fi(t) dt

=

j∑
i=1

∫ ti

ti−1

(
ait

4 + bit
3 + cit

2 + dit+ ei
)
dt

=

j∑
i=1

(
1

5
ait

5
i +

1

4
bit

4
i +

1

3
cit

3
i

+
1

2
dit

2
i + eiti

)

(3.6)

so that the log of the zero-coupon bond price is linear in the coefficients X.

Recalling the previous notation ∆n
j = tnj − tnj−1, the difference of the log prices of two

consecutive zero coupon bonds can be written as

− ln

(
δ(tj)

δ(tj−1)

)
=

1

5
∆5
jaj +

1

4
∆4
jbj +

1

3
∆3
jcj

+
1

2
∆2
jdj + ∆jej.

(3.7)

The full set of pricing constraints for all m bonds may then be written in matrix form

as

~A1
~X = ~B1 (3.8)

where

~A1 =


Dt1 01×5 · · · 01×5 01×5

01×5 Dt2 · · · 01×5 01×5
...

...
. . .

...
01×5 01×5 · · · Dtm 01×5


m×5(m+1)

, (3.9)

Dtj =
(

1
5
∆5
j ,

1
4
∆4
j ,

1
3
∆3
j ,

1
2
∆2
j , ∆j

)
1×5

, (3.10)

and

~B1 =


ln
(
δ(t1)/δ(t0)

)
ln
(
δ(t2)/δ(t1)

)
...

ln
(
δ(tm)/δ(tm−1)

)

m×1

. (3.11)
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2. The second set of constraints are now imposed to ensure that the forward curve

remains smooth as it transitions through node points in the piecewise polynomial

approximation. To ensure continuity at the node points it is required that the forward

rate at node ti has the same value whether computed using the left-side polynomial or

the right-side polynomial:

fi+1(ti) = fi(ti), i = 1, . . . ,m, (3.12)

or

(ai+1 − ai)t4i + (bi+1 − bi)t3i + (ci+1 − ci)t2i
+ (di+1 − di)ti + (ei+1 − ei) = 0, i = 1, . . . ,m. (3.13)

Define T4i = (t4i , t
3
i , t

2
i , ti, 1)1×5 and write all m of these constraints in matrix form as

~A2x = ~B2 (3.14)

where

~A2 =


−T41 T41 01×5 01×5 · · · 01×5 01×5

01×5 −T42 T42 01×5 · · · 01×5 01×5
...

...
...

...
...

...
...

01×5 01×5 01×5 01×5 · · · −T4m T4m

 (3.15)

is an m× 5(m+ 1) matrix and ~B2 is a m× 1 vector of zeros.

3. To impose differentiability at the nodes it is required that

f ′i+1(ti) = f ′i(ti), i = 1, . . . ,m (3.16)

or

4(ai+1 − ai)t3i + 3(bi+1 − bi)t2i + 2(ci+1 − ci)ti

+ (di+1 − di) = 0, i = 1, . . . ,m. (3.17)

Define T3i = (4t3i , 3t
2
i , 2ti, 1, 0)1×5 and write all m of these constraints in matrix form

as

~A3
~X = ~B30m×1 (3.18)
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where

~A3 =


−T31 T31 01×5 01×5 · · · 01×5 01×5

01×5 −T32 T32 01×5 · · · 01×5 01×5
...

...
...

...
. . .

...
...

01×5 01×5 01×5 01×5 · · · −T3m T3m

 (3.19)

is an m× 5(m+ 1) matrix and ~B3 is a m× 1 vector of zeros.

4. To ensure that the first derivatives of the forward curve are smooth at the nodes the

following is imposed

f ′′i+1(ti) = f ′′i (ti), i = 1, . . . ,m, (3.20)

or

12(ai+1 − ai)t
2
i + 6(bi+1 − bi)ti + 2(ci+1 − ci) = 0, i = 1, . . . ,m. (3.21)

Define t2i = (12t2i , 6ti, 2, 1, 0, 0)1×5 and write all m of these constraints in matrix form

as

~A4
~X = ~B4 (3.22)

where

~A4 =


−T21 T21 01×5 01×5 · · · 01×5 01×5

01×5 −T22 T22 01×5 · · · 01×5 01×5
...

...
...

...
. . .

...
...

01×5 01×5 01×5 01×5 · · · −T2m T2m

 (3.23)

is an m× 5(m+ 1) matrix and ~B4 is a m× 1 vector of zeros.

5. To ensure the boundary condition f(0) = y0, we simply impose e1 = y0. The terminal

boundary condition f ′(tm) = 0 is more difficult to impose. LX use the condition

d1 = 0 which is clearly incorrect. The terminal condition is imposed by adding an

additional (m+1)st segment to the piecewise polynomial with the coefficient restrictions

am+1 = bm+1 = cm+1 = dm+1 = 0 so that f(t) = em+1 for all t > tm. The terminal

height of the forward function is left unconstrained and the continuity and smoothness

constraints described above will ensure a smooth transition to the zero slope of the

forward curve at node tm.

These five boundary conditions may be written in matrix notation as

~A5
~X = ~B5 (3.24)
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where

~A5 =


0 0 0 0 1 0 · · · 0 0 0 0 0
0 0 0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 0 0 · · · 0 0 0 1 0


5×5(m+1)

(3.25)

and

~B5 =


y0

0
0
0
0

 . (3.26)

Stacking all of these linear constraints gives

~A ~X = ~B (3.27)

where

~A =


~A1

~A2

~A3

~A4

~A5


(4m+5)×5(m+1)

and


~B1

~B2

~B3

~B4

~B5


(4m+5)×1

. (3.28)

The procedure for interpolating the zero coupon portion of the yield curve is continuing

on the footsteps of LX except that the terminal condition on the forward curve is handled

differently, as detailed above. An additional segment is added to the piecewise spline function

with some additional coefficient restrictions on the terminal spline. Since the matrix sizes

differ to reflect these changes, the details for this step are provided next. First, it is shown

how to construct the objective function as a quadratic expression. Next,the constraints are

constructed as linear equations and lastly, the PQPI system is solved.

Recall that there are m securities with maturities t1, . . . , tm where m is the number of

securities. The settlement date in this list is not considered, so t1 is the maturity of the first

real security—the one-week LIBOR in this example. Define t0 = 0.

3.2 Solving the IPQPI System

The constrained optimization problem may now be written in matrix notation as

min
~X,~λ

Z( ~X,~λ) = ~X ′ ~H ~X + ~λ′( ~A ~X − ~B) (3.29)
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where ~λ is the 4m+ 5 vector of Lagrange multipliers corresponding to the constraints.

The first-order conditions are

∂

∂ ~X
Z( ~X,~λ) = 2 ~H ~X + ~A′~λ = 0 (3.30)

and
∂

∂~λ
Z( ~X,~λ) = ~A ~H ~X − ~B = 0, (3.31)

or (
2 ~H ~A′

~A 0

)(
~X
~λ

)
=

(
0
~B

)
(3.32)

from which an explicit solution can be found(
~X∗

~λ∗

)
=

(
2 ~H ~A′

~A 0

)−1(
0
~B

)
. (3.33)

3.3 Iterative Piecewise Quartic Polynomial
Interpolation Algorithm

The LX/AvD method that was presented above, requires zero coupon yields at m maturities

as inputs. These are not generally available since coupon bonds have to be stripped to

arrive at their zero coupon yields. To that end, I extend the AvD method by introducing

a simultaneous stripping and bootstrapping design. I integrate the stripping process into

the AvD smoothing routine to create a unified tool one can use in practice. The combined

method is dubbed Iterative Piecewise Quartic Polynomial Interpolation (IPQPI), and its

algorithm is illustrated next. To aid in the illustration of the method, the reader may refer

to Figure 3.1 below.

Initially, a smooth zero curve is fitted through the observations that are already in the

form of zero coupons (the short term, up to one year, maturities). I call this the known

portion of the zero curve so all that is required at this stage is implementing the standard

LX/AvD approach, to fit the curve. In the example in the figure, this portion of the curve is

the first year - from 0 to y(1), where y1 is the last known node - in our case, the one year bill.

The coupon-bond observations are then added sequentially, but the coupons associated with

the bonds’ yields must be stripped, so as to arrive at the zero-coupon yield of each bond.

The addition of the coupon bonds is implemented as follows: First, I use linear bootstrap
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to get an initial guess of the zero rate for the very first coupon bond maturity (the 2 year

bond in this example)which is y(2) in figure 3.1). Next, I define the aggregate value of all

coupons that mature along the known portion of the curve as K = c1. K is then subtracted

from the observed price of the 2 year bond (P (ti), which is given in the data) to arrive at

the aggregate value of all other coupons and principal that lay beyond the known portion of

the curve. I refer to that value as D and in figure 3.1. Mathematically this is expressed as

D = c2+c3+c4, where c2 through c4 are coupon payments. At this point, a gradient search

is performed for the right spot rate for the principal on maturity date. At the conclusion of

this gradient updating, the value of D satisfies P (ti) = K + D, and the forward curve has

been updated through the maturity of the first coupon bond. Note as a result of the updating

of y(2), all coupons up to that point have been repriced, as a result of the polynomial having

to change in order for y(2) to be priced just right. The coupons labeled c1 as well as c2, c3

and c4 were all repriced up from their original location.

This process is continued by stepping through each coupon bond with increasing maturity.

The smoothed zero curve and forward curves must be re-computed at each iteration of the

process, and the coupons will continue to be repriced as each gradient search is conducted as

a result of the polynomials changing to accommodate the most recent bond. The procedure is

quite computationally intensive, however, the benefit is that a smooth forward curve which

produces zero curves and discount functions which price all bonds with high precision is

produced. After the final forward curve is computed, pricing errors and other statistics are

calculated for the purpose of evaluating the estimated curve.

I now proceed to describe the algorithm in a more detailed manner. The inputs to the

algorithm are: (1) the settlement date; (2) the over night repo rate or the federal funds

rate (the anchor for the short end of the yield curve); (3) the yield, coupon and maturity

date of the bills and bonds along the yield curve at the settlement date. The outputs of

the algorithm are the coefficient vector, X, for the piece-wise fourth-order polynomial spline

function describing the forward curve. From these coefficients we are able to construct the

forward curve, the zero curve, and the discount function as described above.

Let y be the yield to maturity, and DM be the number of days to maturity. I denote the

smoothed zero curve as ZC.

1. Compute the maturity in years, t(i), of each security, i = 1, . . . ,m.
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Figure 3.1: An illustration of the IPQPI method.

2. Use the LX/AvD method to fit a smooth forward curve through the known nodes for

the zero coupon securities (bills). These securities are by definition already priced at

the spot rate. This produces a coefficient vector X for the zero curve up through the

longest maturity of the bills (t(k) = 1 in Figure 3.1).

3. We now turn our attention to the coupon bonds. First, we must determine the timing

of the remaining cash flows form each coupon bond. We construct a vector that has

three elements:

(a) nc, the number of coupons remaining. In the case illustrated in Figure 3.1, these

are coupons c2, c3 and c4.

(b) w, the portion of the first coupon payment to which we are entitled (this is the

number of days between the settlement date and the payment date of the next

coupon.
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(c) cd, number of days until each of the remaining coupon payments.

4. Recalling that coupons pay twice a year we set up the cash flow vector

Zi =


w · coupon/2
coupon/2
...
coupon/2
coupon/2 + face value


5. Compute the dirty price for the ith bond as:

P =
nc∑
j=1

Z(j)

(1 + y)j−1+w

recall that nc is the number of coupons still outstanding, and y is the yield to maturity

of the bond. A dirty price is a price that does not takes into account the portion of

the first coupon that is payable to the previous bond holder. A so called ‘clean’ price

does account for this proration.

6. Now we use the linear bootstrap method to get an initial guess for the spot rate of the

ith bond (the 2-year bond in this example). I show that as the square y(2) in Figure

3.1

(a) Let L be the number of coupon payments for the ith bond that are made along the

already known portion of the zero curve constructed in the previous step (that is

c1 in Figure 3.1),and let y(1) denote the maturity of the last known point along

this zero curve.

(b) Let t(i) denote the maturity of the ith bond—the bond we are currently pricing

(the 2-year in our example) —and approximate the spot curve between maturities

t(k) and t(i) using a linear function by guessing the endpoint spot rate (that is

the square at t = (2) in the case of the 2-year bond).

(c) Define D to be that part of the ith bond’s price which is made up of coupons

that mature after the last known date along the known zero curve (y(1) in our

example):

D = P −
L∑
j=1

Z(j) exp[−t(j) · y(j)]
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(d) Use this linear approximated piece of the zero curve to price the quantity D above

and adjust y(t) until D is priced correctly. This provides an initial guess for the

spot rate at t(i).

7. Now add y(n) to the “known” zero coupon rates. Using this new node we re-run the

AvD to produce a new smooth forward curve up through maturity t(n).

8. Price the ith bond using the new forward curve:

P̂ =
nc∑
j=1

Z(j) exp[−t(j) y(j)]

and compute the pricing error Perror = |P̂ − P |.

9. Iteratively adjust the terminal spot rate (y(2) in my example) using the binary search

algorithm until Perror is reduced to near zero. To determine which direction to adjust

the curve, define ỹ(ti) to be the estimated spot rate of the bond with maturity ti. ỹ(ti)

is perturbed up and down by ỹ(ti)/100 along the gradient search ỹ(ti) to get ỹu and ỹd.

From these perturbations we compute f̃u and f̃d and then P̃u and P̃d. The derivative

dt̃(ti)/dỹ(ti) is then approximated using the centered difference method

dP̃ (ti)

dỹ(ti)
≈ P̃u − P̃d

ỹu − ỹd
=
P̃u − P̃d
ỹ(ti)/50

. (3.34)

We now update our estimate of the spot rate at ti using

˜̃y(ti) = ỹ(ti) +
dỹ(ti)

dP̃ (ti)

(
P (ti)− P̃ (ti)

)
. (3.35)

This gradient updating of ỹ(ti) is repeated until the estimated spot rate changes by

less than 10−9.

At the end of this process we adjusted the terminal point in the figure to the circle

y(2). Note that when we move the terminal point - the maturity of the bond, from

the square to the circle at y(2), the entire curve is adjusting and repricing the coupons

all the way from the origin. It is clear that all the coupons c1, c2, c3 and c4 are being

adjusted upward. Note also that the 6 month bill is still being priced correctly since

that is a constraint we placed on the system.

10. Now we move on to the next coupon bond and return to step (3).
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The algorithm is tedious but straight forward. The essential feature is that the forward

curve is constructed sequentially one bond at a time. As each bond is added the entire curve

must be recomputed so that all constraints are satisfied. By taking small steps, we reduce a

multidimensional optimization problem into a sequence of univariate optimization problems.

3.4 Data and Results

I use yield curves from two different dates to test my method. The September 9th, 2009 data

comes from that date’s edition of the Wall Street Journal (WSJ), and represents a “normal”,

(upward sloping) yield curve. The August 31, 1981 data comes from the Treasury Bulletin

(TB) for that month, and is chosen since it is an “inverted” yield curve (one in which the

yield on the long term issues is lower than the yield on the short issues). Note that for 1981

data, the yield on the 180 day security is 17.16 percent, which is appreciably higher than

the 14.74 percent on the 30 year bond.

Both the WSJ and the TB are providing the so-called “clean (bid) price”, which is the

price the purchaser is paying, net of any accrued interest that belongs to the seller. I translate

these to “dirty prices” - the price which does not adjust for this interest, but rather reflects

the gross price to be paid by the security’s purchaser. I do not use this yield data, and it is

presented here for the convenience of the reader only. The algorithm employed is computing

the continuous-time, dirty price yield-to-maturity which is slightly different from the one

presented here, which are clean price bond equivalent yields. This is also the reason why the

curves shown below do not go through the center of the circled observations for the yields

which come from the data.

The September 9th 2009 data shown in Table 3.1 is for the on-the-run treasuries for that

date. It has 5 bills (one week, 30 days, 90 days, 180 days, and one year) and 6 coupon

bonds (2 year, 3 year, 5 year, 7 year, 10 year, and 30 year), for a total of 11 securities,

plus the zero maturity rate which is a product of a backward interpolation procedure that

is aimed at anchoring the curve right at 0 maturity (since the first observation we have

is the 7 day maturity), and is based on the slope between the one week, and the 30 day

securities. The coupon column represents the annual coupon rate that is paid to the bond

holder semiannually. Note that since the bills are in the form of a discounted note, they do

not carry any coupon payments. The actual price column has the dirty price in dollar terms.

The yield reported by the publications is the clean price, bid yield-to-maturity. From these
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Table 3.1: Actual and estimated bond prices for the yield curve on date 9/9/2009.

Maturity Coupon Actual Price Yield Est. Price Penny Error

9/9/2009 0 100.0000 0.0808 100.0000 0.0
9/17/2009 0 99.998160 0.08415 99.998160 0.0

10/10/2009 0 99.994580 0.09 99.994580 0.0
12/30/2009 0 99.969780 0.12982 99.969780 0.0

3/4/2010 0 99.899780 0.20806 99.899780 0.0
8/26/2010 0 99.626580 0.38978 99.626580 0.0
8/31/2011 1.0 100.18111 0.92 100.181347 -0.0237
8/15/2012 1.75 100.99389 1.4443 100.994116 -0.0226
8/31/2014 2.375 100.05905 2.3751 100.062716 -0.3666
8/31/2016 3.0 99.605836 3.0753 99.605594 0.0242
8/15/2019 3.625 101.43376 3.4828 101.427963 0.5797
8/15/2039 4.5 102.96196 4.3408 102.961960 0.0

11 observation the algorithm constructs the discount, spot and forward curves. The last two

columns show my method’s price estimates, and the pricing errors in pennies.

As shown in Table 3.1, the IPQPI method’s computed forward curve prices the observed

bonds quite accurately, with all errors of less than one penny. There are zero pricing errors

for the zero coupon bonds. While one might expect this since the spot rates for these

bonds are directly observed, recall that the forward curve is also influenced by the coupon

payments from longer maturity coupon bonds intermingled amongst these bills. Thus, it is

a nontrivial result to produce zero pricing errors for the bills when bonds are included in the

set of securities. The largest error for the 2009 data set is .5797 cents on the ten year bond

which amounts to a 0.0057% error. Note that for the 2009 data (Figure 3.2) the forward

curve stays above the spot curve throughout the spectrum of maturities. This is since the

spot rate is increasing as maturity rises. It is also apparent that the forward curve is much

more volatile than the spot curve. This is the reason why modeling the forward curve rather

than the spot or discount curves yields better results - the changes in spot or discount rates

are simply hard to notice compared with the forward curve. If a smooth forward curve can

be produced, then one is assured of producing smooth spot and discount curves. The forward

curve produced by the IPQPI method never goes negative and is exhibiting stability at long

maturities, as y(T →∞)→ f(tm)

The 2009 curve is a classical upward sloping term structure that simple models such as
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Figure 3.2: Forward and Spot rates for 9/9/2009.

Table 3.2: Actual and estimated bond prices for the yield curve on date 8/31/1981.

Maturity Coupon Actual Price Yield Est. Price Abs. Error

8/31/1981 0 100.0000 14.37 100.0000 0.0
9/3/1981 0 99.8775 14.53 99.8775 0.0

9/10/1981 0 99.5867 14.91 99.5867 0.0
10/1/1981 0 98.7247 14.91 98.7247 0.0

11/27/1981 0 96.1989 16.28 96.1989 0.0
2/25/1982 0 92.2422 17.16 92.2422 0.0
8/12/1982 0 85.6506 16.90 85.6506 0.0
7/31/1983 15.875 99.806096 16.77 99.804069 0.2027

11/15/1984 16.0 103.75815 16.34 103.755268 0.2882
11/15/1986 13.875 97.009511 15.88 97.008831 0.0680
7/15/1988 14.0 94.663043 15.70 94.66145 0.1593
8/15/1991 14.875 97.896739 15.40 97.892565 0.4174
8/15/2001 13.375 90.519022 15.10 90.427431 9.1591
5/15/2011 13.875 98.009511 14.74 98.009511 0.0
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Figure 3.3: Forward and Spot rates for 8/31/1981.

Svensson’s and Nelson-Siegel’s can accommodate easily. A more challenging curve to fit is

an inverted yield curve and, in particular, one that has considerable variation in the short

term rates. A good example of such a term structure is the one from August 31, 1981.

Turning our attention to this more complex 1981 curve (Table 3.2) we note that most

pricing errors are less than one penny, with the exception of the 20 year bond which carries

a pricing error of 9.1 cents (0.101%). The 8/31/1981 term structure produces a maximum

spot rate at six months maturity so the forward curve intersects the spot curve at that point.

The spot and forward curves begin at the same point at the zero maturity date and both

curves are very stable at long maturities. This latter property is non-trivial and often not

observed in polynomial interpolation methods.

In addition, note that the IPQPI method presented is able to produce a forward curve

that is flexible enough to accommodate the non trivial dynamics exhibited at the very short

end of the 1981 curve. Figure 3.4 is a closeup look at the first year of maturities for 1981
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Figure 3.4: Forward and Spot rates for 8/31/1981 - Early Maturities.

curve. The six month (0.5 maturity in the figure) yield is the highest anywhere on the curve.

The yield on the 30 day and 90 days are equal, and the produced polynomial is pricing all

securities between these two at a lower yield than both of them - note that the forward curve

intersects the spot curve at all inflection points, and is actually lower than then the sport

rate immediately following the 30 day security.

3.5 Alternative methods and comparison

To test the IPQPI method and evaluate its performance, I compare it with several other

prevalent methods:

LBLI: A simple linear bootstrap and linear interpolation method applied to the spot curve.

LBPQPI: A linear bootstrap method on the spot rates of the coupons with a piecewise

quartic polynomial interpolation through these rates.

48



NS: The Nelson-Siegel method described in chapter two

SV: The Svensson extension of Nelson-Siegel described in chapter two

The linear bootstrap with linear interpolation (LBLI) method is simply a piecewise linear

interpolation of the spot curve using a bootstrap method to compute the spot rates at each

node. This is straightforward for zero coupon bonds when the spot rates at those maturities

are directly observed. For bonds, we add one bond at a time and adjust the estimated

spot rate up or down until that bond is correctly priced. Note that the linear segments

determined in prior steps are not adjusted during this process. The resulting spot curve will

be continuous but not differentiable at the node points. This method is admittedly a “straw

man” but it is useful for illustrating some important features of the IPQPI method.

The LBPQPI method computes the spot rates at the maturities of the bonds in the same

way as LBLI except, in the final step, we use a piecewise quartic polynomial interpolation

of the computed spot rates to estimate the forward curve. This approach separates the

interpolation and stripping steps and is the most straightforward extension of the various

methods, including the Lim and Xiao (2002) method, applied to coupon bonds but that

require spot rates as inputs.

The Nelson-Siegel (NS) and Svensson (SV) methods are described chapter two and, due

to their widespread use, are the most serious contenders for the IPQPI method.

Evaluating the forward curve, is somewhat subjective because there is no unique solution

to the curve stripping and interpolation problem. I chose to test the curves produced by

each method on two key attributes: (1) smoothness, and (2) pricing ability.

Table 3.3 reports the pricing errors of the five algorithms for each of securities as well as

some summary statistics to evaluate the methods. The first two columns give the maturities

and actual prices of the on-the-run treasuries for the yield curve on September 9, 2009, and

are replicated here from Table 3.1. The first six securities (including the settlement date in

the first row) are zero coupon bills and the last six securities are the coupon bonds. The next

columns show each method’s pricing error in cents
[
100 ∗

(
P (ti)− P̂ (ti)

)]
for each security.

At the bottom of the table I report some useful statistics for each method. The “Ave Abs

Error” row reports the average of the absolute pricing errors in pennies:

Ave Abs Error =
1

m

m∑
i=1

∣∣∣100
(
P (ti)− P̂ (ti)

)∣∣∣ . (3.36)

49



The Maximum Absolute Error is the largest pricing error on an individual security, in

pennies. “Smoothness” reports the smoothness of the instantaneous forward curve as

measured by the integral of the squared second derivatives

Smoothness =

√∫ tm

0

(f ′′(t))2 dt

−1

(3.37)

≈


√√√√tm−1∑

t=2

(f(t+ 1)− 2f(t) + f(t− 1))2

−1

(3.38)

where the second equation is the discrete approximation. The smoothness values in Tables

3.3, and 3.4 are computed with f measured in percentages rather than decimals. Taking

the square root of the integral converts the units back to percents for easier interpretation.

Taking the inverse of the measure means that the less “jerk” there is in the forward curve,

the larger the Smoothness value will be. A straight line would have a smoothness score of

infinity. There is a trade off between smoothness and pricing ability. For example, a linear

forward curve would be very smooth but produce very large pricing errors. Alternatively,

one could get zero pricing errors with a forward curve that allows discontinuities. Our goal

is to find a curve that is as smooth as possible with minimal pricing errors.

Table 3.3 and associated Figures 3.5 and 3.6 shows the advantage of modeling the yield

curve using the proposed IPQPI method. First,note that the LBLI method produces zero

pricing errors for both the zero coupon bills and the coupon bearing bonds. This is what the

LBLI algorithm is designed to do. The spot yields at each node are chosen to exactly price the

security maturing at that node. Since there is no feedback from one node to previous nodes

during the computations, zero pricing errors is an easy criteria to satisfy. The problem with

this method is that, because the spot curve is piecewise linear, it produces discontinuities in

the spot and forward curves at the nodes. The reason for the discontinuities is clear from

equations (1.1). The very low smoothness statistic of 0.3747 reflects these discontinuities in

the forward curve that are clearly visible in Figure 3.6. Even though all of the securities used

to construct the curves are priced exactly, the discontinuities in the discount and forward

curves would create large pricing errors in derivatives and other out-of-sample securities

priced from the curves this method produces. The discontinuity introduces an imaginary

arbitrage opportunity into the pricing of the securities that are on both sides of them. The
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Table 3.3: Pricing errors and summary statistics of the five algorithms for the yield curve on
9/9/2009. The first column gives the maturity dates of the securities. The first six securities
with maturities through 8/26/2010 are zero coupon bills. The pricing errors are reported in
cents so an error of 7.0506 means that the bond was underpriced by $0.070506. Max Abs
Error is the largest error reported on an individual security, in cents. Ave Abs Error is the
average absolute pricing error in cents. Smoothness is the inverse of the square root of the
integral of the squared second derivative of the instantaneous forward curve.

Maturity Actual Price LBLI LBPQPI NS SV IPQPI

9 / 9/2009 100.000000 0.0000 0.0000 0.0000 0.0000 0.0000
9 /17/2009 99.998160 0.0000 0.0000 0.1347 -0.0627 0.0000
10/ 1/2009 99.994580 0.0000 0.0000 0.3272 -0.2129 0.0000
12/ 3/2009 99.969780 0.0000 0.0000 0.5388 -1.4698 0.0000
3/ 4/2010 99.899780 0.0000 0.0000 -0.3814 -4.1485 0.0000
8/26/2010 99.626580 0.0000 0.0000 -1.5419 -7.0121 0.0000
8/31/2011 100.181110 0.0000 -0.1384 3.3512 -4.1230 -0.0237
8/15/2012 100.993890 0.0000 -0.0146 -1.5876 7.0506 -0.0226
8/31/2014 100.059050 0.0000 0.2346 13.2677 23.3190 -0.3666
8/31/2016 99.605836 0.0000 1.0061 -42.5339 -39.4277 0.0242
8/15/2019 101.433760 0.0000 5.0049 32.8824 17.9175 0.5797
8/15/2039 102.961960 0.0000 -62.4890 -4.5924 -0.9220 0.0000

Ave Abs Error 0.0000 5.7302 8.4283 8.8055 0.0847
Max Abs Error 0.0000 62.4890 42.5339 39.4277 0.5797

Smoothness 0.3747 5212.6532 4518.4341 4403.6792 5187.5767

arbitrage is not reflected in the data, but it seems to exist to a trader that uses the LBLI

method to price his trades.

The LBPQPI method applies a PQPI to the spot rates {y(t1), . . . , y(tm)} computed by

LBLI rather than using the linear segments between the nodes of the spot curve in the

LBLI method. As expected, this produces a very smooth forward curve. This process

maintains the zero pricing errors for the zero coupon bills but introduces pricing errors for

the coupon bonds. The thirty year bond has a large $0.62 pricing error. This occurs because

the linear segment between the ten year and thirty year node points used to compute the

thirty year spot rate y(t30) contains forty coupon payments for the thirty year bond. When

PQPI is used to smooth the forward curve the value of these coupon payments can change

dramatically and create large pricing errors. This method clearly illustrates the importance

of simultaneously stripping the coupon bonds and interpolating the forward curve. Doing
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Figure 3.5: Spot rates for 9/9/2009 - all methods.

these steps sequentially introduces inconsistencies between the spot rates and the intervening

forward and spot curves.

The very high smoothness score of the Nelson-Siegel method illustrates why this approach

remains so popular. The primary disadvantage of the NS method is that the possible shapes

of the spot and forward curves are quite limited and may produce substantial pricing errors.

The average pricing error of 8.4 cents with maximum errors of 42 cents are too large for

most applications. The Svensson extension of NS allows for more flexible curves and may

improve pricing. In the 2009 data set presented here, the average pricing error is about the

same as the NS method at about 8.8 cents, and a maximum error of 39.4.

The IPQPI method has low pricing errors, averaging at less than a tenth of a penny, while

maintaining the smoothest possible forward curve among the class of piecewise polynomials.

The largest pricing error is just over half a penny, and is observed on the ten year bond.
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Figure 3.6: Forward curves for 9/9/2009 - all methods.

Table 3.4 and the related Figures 3.8 through 3.10 show the results for the 1981 data.

Here, the inverted curve produces different results, but with the same basic interpretation.

Worth noting is the low degree of smoothness of the IPQPI method, which is still the

smoothest possible forward curve among the class of piecewise polynomials. The reason

for this low smoothness is visible in Figures 3.8 and 3.10. The IPQPI method is able

to accommodate for the dynamics of the short end of maturities and prices these short-

maturities securities very well, albeit by paying a price by exhibiting a low degree of

smoothness. The NS and the SV are not able to price securities at the short end of the

curve, but preform better at the latest maturities. This is true especially for the SV method

which is attributed to the additional term in the SV method (compared to the NS method)

that allows more flexibility in the shapes of the forward and spot curves. All securities up

to the 5 year one have similar pricing errors, but the 10 year security is priced better by SV

compared to NS by a factor of 10, and both the 20 and 30 year are priced better by a factor
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Table 3.4: Pricing errors and summary statistics of the five algorithms for the yield curve
on 8/31/1981. The first column gives the maturity dates of the securities. The first six
securities with maturities through 8/12/1982 are zero coupon bills. The pricing errors are
reported in cents so an error of 7.0506 means that the bond was underpriced by $0.070506.
Max Abs Error is the largest error reported on an individual security, in cents. Ave Abs
Error is the average absolute pricing error in cents. Smoothness is the inverse of the square
root of the integral of the squared second derivative of the instantaneous forward curve.

Maturity Actual Price LBLI LBPQPI NS SV IPQPI

8/31/1981 100.0000 0.0000 0.00000 0.0000 0.0000 0.0000
9/3/1981 99.8775 0.0000 0.00000 1.3552 1.5580 0.0000

9/10/1981 99.5867 0.0000 0.00000 3.9314 4.5971 0.0000
10/1/1981 98.7247 0.0000 0.00000 11.9557 13.9258 0.0000

11/27/1981 96.1989 0.0000 0.00000 9.6107 14.5283 0.0000
2/25/1982 92.2422 0.0000 0.00000 -6.7373 1.3031 0.0000
8/12/1982 85.6506 0.0000 0.00000 -5.9390 4.1361 0.0000
7/31/1983 99.806096 0.0000 -0.20870 -22.5051 -14.4496 0.2027

11/15/1984 103.75815 0.0000 0.71650 4.9817 2.5074 0.2882
11/15/1986 97.009511 0.0000 -2.61050 23.1559 11.0490 0.0680
7/15/1988 94.663043 0.0000 -2.60690 1.6472 -8.2545 0.1593
8/15/1991 97.896739 0.0000 -3.21920 -6.4815 0.6790 0.4174
8/15/2001 90.519022 0.0000 -14.5672 -25.2764 0.4120 9.1591
5/15/2011 98.009511 0.0000 -15.8360 19.3851 -0.1547 0.0000

Ave Abs Error 0.0000 2.8404 10.2116 5.5396 0.7353
Max Abs Error 0.0000 15.8360 25.2764 14.5283 9.1591

Smoothness 0.3043 4.2892 38490.9519 11763.2074 4.2892

of 100. This superior pricing ability comes at a price of a lesser degree of smoothness by a

factor of 3. The largest pricing error exhibited by the IPQPI method is a 9.15 pennies on

the 20 year bond. All other securities priced by the IPQPI method have an error that is less

than one penny. Worth noting is the pricing error on the 30 year bond which is 0.

This chapter has described the Iterated Piecewise Quartic Polynomial Interpolation

algorithm for simultaneously interpolating and stripping a yield curve consisting of coupon

paying bonds. The algorithm is accurate, flexible and relies only upon the solution of linear

systems of equations and produces maximally smooth forward curves.

The IPQPI method performs very well overall. Although the Nelson-Siegel algorithm

produces smoother forward curves it does so at the cost of much larger pricing errors. IPQPI

produces pricing errors an order of magnitude smaller than the Svensson algorithm while

54



Figure 3.7: Spot rates for 8/31/1981 - all methods.

at the same time producing smooth forward curves. Computationally, IPQPI is very stable

and an order of magnitude faster than the highly nonlinear Svensson approach. The method

is also easy to modify by adding additional constraints for specific pricing applications.
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Figure 3.8: Spot rates for 8/31/1981 - early maturities for all methods.
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Figure 3.9: Forward curves for 8/31/1981 - all methods.
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Figure 3.10: Forward curves for 8/31/1981 - early maturities for all methods.
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CHAPTER 4

A GENETIC PROGRAMMING APPROACH TO

FITTING THE YIELD CURVE

4.1 Introduction

Since the topic of this research is concerned with constructing a spot and forward curves, as

well as the discount function for pricing purposes, it may be the case that the search for the

fitting solution has been restricted thus far to a rather limited number of functions. To date,

research in the field has been concentrated on several methods which we can conveniently

accommodate using our standard mathematical and statistical tools. For pricing purposes

we are not really concerned about how we got to the curve, but we are very concerned

with regards to the characteristics of it. The need to search for a pricing function in a

wider space is evident, and in light of this, the use of genetic programming (GP) methods to

compute the forward curve is being proposed. GP has several advantages over the traditional

parametric approaches I surveyed in Chapter 2. First, it is a non parametric method that is

not dependant on any specific functional assumptions, that may contain specification errors.

Second, GP only responds to the data, and the data shapes the result in a way a parametric

approach cannot accommodate. Third, the method is relatively easy to implement.

The GP system will search in the space of continuous, smooth (twice differentiable)

functions for the best functional form that produces a yield curve that fits the data. In theory,

a search over a wider space of functions cannot yield a solution that will perform worse than

the IPQPI method, since polynomials are included in the space searched. An additional

motivation to expand the search space for an adequate function is the local stability of the

forward curve function, which has serious real world implications as to portfolio hedging

costs. As pointed by Hagan and West (2006), among others, a polynomial based method

is sensitive to local changes in observed yields. This sensitivity can cause the entire curve
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to shift when small changes occur to one of the securities in the portfolio. For example, an

abrupt change in the yield on the 10 year note, which is used by mortgage lenders, among

others, to hedge their portfolios of commercial real estate loans, and therefore is traded

heavily and is sensitive to macroeconomic related news, can shift an entire curve that is

based on polynomials. Due to the nature of curve construction by polynomials, this may

impose a high cost to reposition portfolios that are hedged based on this forward curve. A

more stable curve, one which moves only locally to accommodate a rise or a fall in a the

yield of a particular security, but does not shift much elsewhere, is a more desirable curve

by practitioners.

This chapter is organized as follows: First, I give a brief overview of GP, and I review

an example of curve fitting experiment (using GP) from the literature. I then discuss my

methodology and the GP system I use, as well as the results. The results I obtained from

the GP approach are short of my expectations. The problem proved to be difficult for the

system to solve, and at the end of the chapter I discuss possible reasons for these results.

4.2 Genetic Programming

Computational science has evolved rapidly over the last 20 years. One of the fastest devel-

oping area of research is concerned with “machine intelligence” and genetic programming

is one of several branches in this area of research. Poli et al. (2008) define GP as an

evolutionary computation (sometimes referred to as revolutionary algorithms ) technique

that solves problems without requiring the user to know or specify the form or structure of

the solution in advance. At the most abstract level GP is a systematic, domain-independent

method for getting computers to solve problems automatically starting from a high-level

statement of what needs to be done.

In a GP process, a population of computer programs is evolving to produce the desired

outcome. That is, generation by generation, GP stochastically transforms populations of

programs into new, hopefully better, populations of programs. GP is a random process, and

it can never guarantee results. On the other hand, the randomness of the process may lead

it to better solutions than deterministic methods. In essence, GP is a search technique that

explores the space of computer programs.

Every GP system contains the following building blocks:
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1. GP finds out how well a program (“population member”) works by running it, and

then comparing its behavior to some ideal. This comparison is quantified to give a

numeric value called fitness (the “fitness score”). The ideal is defined by the user, and

that is where the GP process is aiming to evolve. The fitness score is calculated by the

fitness function. The fitness function is defined by the user to qualify members of the

population and rank them by the degree of their similarity to the ideal.

2. The programs that receive a better (high or low, depending on the design of the

experiment) fitness score are chosen to breed and produce new programs for the next

generation.

3. The new generation of programs are run and compared again to the ideal, etc’.

4. The GP process stops when a certain criteria is met, such as the similarity level to

ideal has been achieved,or when the user instructs the system to stop.

GP produces a syntax for the best function (this is the function that has the best fitness

score in the last generation to run) it finds, and presents it in the form of a “tree”. The tree

contains the function that is the best-fitting member of the population in the last generation.

Figure 4.1 shows a simple example of a tree which contains 9 nodes (a node is an argument

or an operator in the function), and 2 “levels” (a level is a layer of arguments).

The GP process begins with an initial generation of functions, which is being generated

randomly by the system. There are several techniques to accomplish this task, all of which are

concerned with the size and depth of the initial tree (discussed below). Some methods allow

the user to plant her own function in the initial population (a practice called “seeding”). The

seeded individual is thought to be better than all the randomly generated initial members of

the population, hence its descendants are poised to take over the evolving population within

a few generations - which may lead to a lack of diversity in the GP process. I further discuss

this problem below. The most common methods used to initialize the population are:

1. The Full Method : In this method, the initial individuals are generated so that they are

perfectly balanced in the sense that all branches of each of the trees are of the same

depth, which is defined by the user. However, each tree (a population member) may

be of different size (number of brunches) or depth.
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Figure 4.1: GP function “tree” output. Source: Poli et al. (2008)

2. The Grow Method : This method is designed to produced un-balanced trees with

branches that are different lengths.

3. Ramped Half and Half Method This a hybrid method of the Full and Grow method.

Here, some part of the initial generation is generated using the Full method, and the

other part is generated using the Grow method, using a range of depth limits that are

being applied randomly to population members.

The next step in the GP process is to evaluate the fitness of each member using the

fitness function. The members are evaluated using a fitness function and are assigned a

fitness score. Those members that are determined to be better than others, have a higher

probability of producing offsprings, which will hopefully achieve a yet better fitness score.

There are several methods a GP system can select members for breeding. The most common

method is the Tournament Method. In a tournament method, a portion of the population is

selected to participate in a contest (the user can determine that as well, or leave it for the

system to choose the quantity of participants). The participants are compared to each other,
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Figure 4.2: An Illustration of Crossover. Source: Poli et al. (2008)

and the one with the best fitness score is chosen to parent a new function. Parenting can

happen using several processes. The primary processes that are used to create new programs

and are based upon genetic operations are:

• Crossover: The creation of a child program by combining randomly chosen parts from

two selected parent programs. In this case the parents are the two “winners” of the

tournament - the two best members. See Figure 4.2 for an illustration of this genetic

operator

• Mutation: The creation of a new child program by randomly altering a randomly

chosen part of a selected parent program. Here, the is only one best function that wins

the tournament, and is chosen to mutate. See Figure 4.3 for an illustration of this

genetic operator

The user generally can determine the rate of mutation and the rate of cross overs in each

generation (ie, what percentage of the population will be subject to each genetic operator),

but she cannot decide which specific individual will be the one used for it.
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Figure 4.3: An Illustration of Mutation. Source: Poli et al. (2008)

When the genetic process is finished in a particular generation, a fitness score is calculated

again, and the best(in terms of fitness) n individuals (n being the population size allowed in

each generation) will move on to the next generation to repeat the process again.

GP systems are vulnerable to several issues that may cause the evolution process of

the programs to either stop, or slow down significantly due to overloading of the computer

resources. The first issue a good GP system design must face is the bloating issue. Tree

syntaxes can get very complicated in a GP model. This is due to the fact that the search

space the GP is processing is virtually unlimited. The functions that are being evaluated

can have hundreds of nodes, and the syntax can have a “depth” of hundreds of “levels”.

This can slow the computer process significantly, and hinder the evolution of the best-fitting

programs from one generation to the next. Designers of GP systems have a built in a solution

to solve this problem in the form of a mechanism whereby the user has the ability to limit

the depth of the syntax, as well as control to the the size of the population that is being

evaluated at each generation. There are also mechanisms to “trim” the tree by looking for

operators, and function parts that are repeating themselves without adding anything to the
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fitness of the function. The second issue every GP system must contend with, and which is

more subtle, is the genetic diversity of the population in each generation. This issue becomes

more severe at advanced generations. If the function we have at generation 1500 is still too

far off from the ideal (“far off” is defined by the user, and most likely will mean low degree of

fitness), it may be the case that there is not enough diversity in the population to modify the

function enough to get the best fitting individual to a fitness level that is satisfactory to the

experiment criteria (the evolution process “got into a corner”). GP systems must be able to

recognize that an evolution process is not advancing at a pace that is satisfactory, and then

re-shuffle the existing population by trying new and radical changes to the functions being

examined so it has a chance to find better fitting individuals eventually.

4.2.1 Symbolic Regression Example

Kamal and Eassa (2002) show how to fit data that was generated from a function, using GP.

Ten observations were generated and plotted on the X/Y plane (see figure 4.4 and they use

a fitness function that minimizes the sum of the square errors as follows:

Fitness =
1

1 +
∑n

1 [Yi − f(Xi)]2
(4.1)

where Yi is the observed value and f(Xi) is the value given by the proposed function

that is being evaluated. The smaller the sum of the squared errors - the larger the fitness

score which implies a better fit. Figure 4.5 shows the learning that is taken place by the GP

system in Kamal and Easa’s research. Notice how the GP system is producing members that

get better at fitting the curve. They report that GP has been able to fit the observations

without an error (see Figure ??),and the best fitting individual yielded the syntax presented

in Figure 4.7, where E is the exponential function. The computed function evaluates to

f(x) = e−x[ex + ex−2x] = [1 + e−2x]−1 (4.2)

and produces a perfect fitness of 1.

Their demonstration is very useful to my case, since I am concerned with a similar task

- fitting a curve through a set of points. My case is more complicated since the observations

are not directly observable. Recall that I am fitting the unobserved forward curve which is

implied by a few observed securities along the yield curve. Thus, some preliminary work

is required to “prepare” the points that will be incorporated into the GP process as the
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Figure 4.4: Kamal and Easa’s data plot.

model-to-fit (the “ideal”). The “optimal” forward curve will not be unique and may take

several different shapes while still satisfying the constraints.

4.3 Using GP to Find the Forward Curve

The GP goal in this research is to search the space of smooth functions over a large class of

differentiable functions in order to find forward curves that accurately price the on-the-run

bonds. Recall that the idea behind the usage of a GP system to accomplish the goal of fitting

the forward curve is to remove any pre-conceived notion of what the function might look like,

and to see if the current state of the research is limited by methods are easily accommodated

by standard computational tools. This focus on functions that we can conveniently process

may limit our ability to find a smoother function. The curve produced by GP will then

be compared to the function produced by the IPQPI method described in Chapter 3 to

evaluate its performance. There are several software platforms one may use to implement a

GP system. I use the GPLAB toolbox (version 3) in MATLAB developed by Sara Silva (see

Silva (2007)) to implement the GP experiment.
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Figure 4.5: GP learning how to fit the curve in Kamal and Easa’s experiment.

The main building block of any GP implementation process is defining the ideal to be

matched. Practically, this is done by carefully designing a fitness function which will be

used to assign a fitness score to each individual function. The individual functions in the

population shall be ranked and either evolve or be discarded based on their fitness score.

The design of the fitness function needs to penalize and reward functions so the fittest

function will have the properties of a “good” forward curve (the ideal to be matched). These

properties are: pricing ability, differentiability and smoothness, as well as initial and terminal

conditions that are appropriate for the curve.

In any given generation the GP creates a population of N programs, {fi(t)}Ni=1 , t =

1, . . . , T , for the forward curve. To evaluate the fitness of each program I first compute the

spot rate and discount function curves implied by the forward curve program. To construct

the spot curve yi(t) I first set yi(1) = fi(1) since the spot and forward curves must have the

same origin. Then the spot curve can be computed recursively from the forward rate as

yi(t) =
1

t
(fi(t) + (t− 1)yi(t− 1)) , t = 2, . . . , T. (4.3)
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Figure 4.6: Kamal and Easa’s best curve.

Figure 4.7: Kamal and Easa best curve’s tree.

68



Given the spot rate, the discount function can be computed as

di(t) = exp (−yi(t)t) , t = 1, . . . , T (4.4)

where t is measured in years to maturity.

The pricing ability of each program is evaluated as the sum of the absolute pricing errors

in cents of all m bonds

F1 =
m∑
j=1

100
∣∣∣P̂i,j − Pj∣∣∣ (4.5)

where P̂i,j = CF ′j di and CFj is the T × 1 cash flow vector of the jth bond and di is the T × 1

discount function for program i.

For short-maturity zero coupon bonds considerable changes in the spot rate imply only

small changes in the asset’s price. Experience has shown that, because of this, the GP has

quite a lot of trouble fitting the short end of the yield curve. To help the GP, I have included

in the fitness function a penalty for missing the spot rates for the zero coupon Treasury Bills

F2 =
mzc∑
j=1

1

tj
100 |y(tj)− yi(tj)| (4.6)

where tj is the maturity in years of the jth zero coupon bill and mzc is the number of zero

coupon bills. Since y is measure in decimals, the scale is adjusted to percent by multiplying

by 100 and the absolute error is weighted by the inverse of the maturity of the bills so that

the shortest maturities have the highest weight.

Next I impose a penalty for programs that do not produce smooth forward curves

F3 =
T−1∑
t=2

(fi(t+ 1)− 2fi(t) + fi(t− 1))2 (4.7)

which is the same as the objective function
∫ T

0
(f ′′i (t))2 dt I used in the IPQPI method in

the previous chapter.

The initial condition for the forward curve is enforced using the penalty term

F4 = 100 |fi(1)− f0| (4.8)

where f0 is the initial value for the forward curve from the input data for the yield curve.

The terminal condition is imposed as

F5 =
30∑
s=1

100 |fi(T )− fi(T − s)| (4.9)
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which penalizes the program if it produces a forward curve that is not flat over the final

thirty days of the curve.

To impose non-negativity on the computed forward curves I use

F6 = # ({fi(t) < 0} , over t = 1, . . . , T. (4.10)

which is a simple count of the number of days for that the forward curve fi is negative.

In early generations the GP tends to create many population members with very poor

levels of fitness and it can take a considerable number of generations before those members

are killed off by the cross over and mutation operations. To help speed up the process

two additional terms are added in the fitness function. These terms are only used during

early generations and are then dropped after the population settles into the neighbor of a

reasonable forward function.

The first condition penalizes the program if it produces a forward curve whose average

level over the first 1000 days of maturities (about 2.7 years) is too far from the average of

the forward curve generated by the IPQPI method. Let f̄i be the average value of fi and f̄p

be the average value of the forward curve from IPQPI over maturities from 1 to 1000 days.

Then the penalty is

F7 = 100
∣∣f̄i − f̄p∣∣ . (4.11)

Similarly, I penalize the program if it produces forward curves whose gross slope is too

different from the gross slope of the IPQPI forward curve. I compute the gross slope as the

average value of the forward curve over the first 1000 days of maturities minus the average

value of the forward curve over the last 1000 days or the last 2.7 years of maturities along

the forward curve. The penalty is

F8 = 100 |slope fi − slope fp| . (4.12)

The final fitness function is then

fitnessi =
8∑
i=1

wiFi (4.13)

where F7 and F8 are set to zero after a few generations once at least one of the programs

produces a forward curve with a level and slope that is within a percent of the forward curve

generated by the IPQPI method.
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Since fitness is one number that is assigned to each function in the population, and there

are several arguments that make up the score, a correct weighing scheme for each part of the

fitness function is key to GP’s success in sorting which functions are better than others. The

weights wi were chosen by experimentation and I used wi = 1 for i = 1, 2, 5 − 8, w3 = 106

and w4 = 103. This puts a high weight on smoothness and the initial condition (which is

hard to hit with the GP) and uniform weights on all other penalties. It is important to

balance the proper weights on each of the arguments and make them as equal as possible

so as to prevent GP from trying to minimize the error on one argument at the expense of

another. For example, if F3 is weighed too lightly compared to F1 in the fitness function,

then GP may produce a curve that prices correctly, but oscillates widely between coupons

and maturities, producing a curve that is not reasonable. I found that the GP system I

used was very sensitive to changing weights and yielded very different curves every time the

fitness function was weighted differently. GP’s ability to learn and retain the “best” members

completely depends on the specification of the fitness function. The system is focusing on

the the arguments that contribute the most to the fitness score and almost ignore the other

arguments.

To illustrate the weighing problem, consider two members of a generation with fitness

scores as follows: Member X has a fitness score of 32 , made up of 2 arguments, F1 = 1 for

pricing ability, and F3 = 31 for smoothness, as follows: Fitness of X=F1 +F2 = 32. Member

Y has a fitness score of 30, where F1 = 14 and F3 = 16. Here, member X is less likely to

survive,and member Y is more likely to breed, despite the fact that X prices much better

than Y (15 times better), and it is only about 2 times worse in its smoothness. Also, for Y

itself, the breeding process will likely focus on reducing the F3 argument since it is larger

than F1.

4.3.1 Results and Discussion

In this section I run the GP system on the 9/9/2009 and 8/31/1981 data sets which were

discussed in Chapter 3 above. Each GP-produced curve is analyzed and then compared to

its counterpart from the IPQPI method.

The 9/9/2009 run was processed using a population size of 100 individuals, for 305

generations. The tree depth was limited to 28 levels to limit bloating and aid in the reduction

in processing time. The fittest individual displayed in Figure 4.8 has 268 nodes in its tree
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Figure 4.8: 9/9/2009 Yield Curve function produced by GP - syntax representation .

and is quite complex. The smoothness level is 2782. Figure 4.9 shows that individual’s

curves and we can see why the smoothness figure is relatively low. It is clear that the curve

bends at the 5 year maturity somewhat abruptly and there are also some kinks at the curve

following the 10 year maturity mark.

The pricing errors exhibited by GP’s fittest individual for the 9/9/2009 reported in Table

4.1 are mostly tolerable (less than one penny) except for the 5 and 7 year maturities, where

errors are in excess of 25 cents. Consequently, that area of the curve around the 5 and 7 year

maturities is also the one that has the kink, and evidently the GP was having a difficulty

accommodating it. Table 4.2 reveals the dynamics of the fitting process. Although the fitness

score itself is meaningless in this case since it has no units, examining its components and

their contribution to the total fitness score shows where the difficulty in the fitting process
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Figure 4.9: 9/9/2009 Yield and Forward Curves produced by GP .

Table 4.1: Actual and GP-estimated bond prices for the yield curve on date 9/9/2009.

Maturity Coupon Actual Price Yield GP Est. Price Penny Error

9/9/2009 0 100.0000 0.0808 100.0000 0.0
9/17/2009 0 99.998160 0.08415 99.997538 0.0622

10/10/2009 0 99.994580 0.09 99.993219 0.1361
12/30/2009 0 99.969780 0.12982 99.965132 0.4648

3/4/2010 0 99.899780 0.20806 99.892857 0.6923
8/26/2010 0 99.626580 0.38978 99.610792 1.5788
8/31/2011 1.0 100.18111 0.92 100.183501 -0.2391
8/15/2012 1.75 100.99389 1.4443 100.991604 0.22846
8/31/2014 2.375 100.05905 2.3751 99.801678 25.7372
8/31/2016 3.0 99.605836 3.0753 99.856307 -25.0471
8/15/2019 3.625 101.43376 3.4828 101.435254 -0.1494
8/15/2039 4.5 102.96196 4.3408 102.960466 0.1494
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Table 4.2: Contribution to fitness for the 9/9/2009 data.

Fitness Argument Score Weight Contribution to Fitness

F1 Price in pennies 54.4850 1 54.4850
F2 Bill Yields (BP) 1.4982 1 1.4982

F3 Smoothness 0.0 106 0.1291
F4 Initial Condition 0.0149 103 14.9

F5 Terminal Condition 0.0071 1 0.0071
F6 Non negativity 0.0 0 0

F7 Level different from IPQPI 0.0 0 0
F8 Slope different from IPQPI 0.0 0 0

is coming from. GP was focusing on trying to reduce the pricing errors on the coupon bonds

more than any other factor in the fitness function. Note the load on that component - which

is 54.485 out of the total fitness score of 71.0019 (about 77%). The initial point constraint,

F4, has a load of 14.9 and we can note that this translate to a 0 pennies error (in Table 4.1).

The relatively low smoothness of the curve is surprising as well. I have conjectured that

since the search space for GP includes polynomials, as well as simple functions such as NS

and SV, that the system cannot do worse in terms of smoothness, but it appears this is not

the case in this particular example. Recalling that the forward curve is constructed from

the area under the yield curve, combined with the constraints on the system placed via the

fitness function, it is quit clear that the GP system can have a different solution to the curve

each time it runs. In fact, at every run, the system begins the search from scratch, and it

is not guaranteed that the solution one yields from that particular run would be optimal

compared to the deterministic methods. The solution will be the best out of the population

of that specific evolutionary system, but it may not be the best it can be.

To compare and contrast the IPQPI method and the GP method, I plot the two curves

in Figure 4.13 and exhibit the pricing errors from both methods in Table 4.3. The curves

are similar to each other in early maturities, but diverge around the 3 year mark. As noted

earlier, GP has some difficulty smoothing the curve around the 5 and 10 year, and the

smoothness figure is much lower than IPQPI’s figure. Also GP is not able to flatten the

curve as it is approaching the 30 year mark (note the GP curve’s slope is positive) . The

fitness function loading on the terminal condition are not coming into play since the pricing

errors are still too large, and that is what is driving the evolution of the population. The GP
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Table 4.3: Comparison of Pricing Errors for 9/9/2009: GP and IPQPI.

Maturity Actual Price GP IPQPI

9 / 9/2009 100.000000 0.0000 0.0000
9 /17/2009 99.998160 0.0622 0.0000
10/ 1/2009 99.994580 0.1361 0.0000
12/ 3/2009 99.969780 0.4648 0.0000
3/ 4/2010 99.899780 0.6923 0.0000
8/26/2010 99.626580 1.5788 0.0000
8/31/2011 100.181110 -0.2391 -0.0237
8/15/2012 100.993890 0.22846 -0.0226
8/31/2014 100.059050 25.7372 -0.3666
8/31/2016 99.605836 -25.0471 0.0242
8/15/2019 101.433760 -0.1494 0.5797
8/15/2039 102.961960 0.1494 0.0000

Ave Abs Error 4.540405 0.0847
Max Abs Error 25.7372 0.5797

Smoothness 2782.9754 5187.5767

system is facing an optimization problem that is far more complex and complicated than the

one solved by the IPQPI system. The search space is wider, the constraints/fitness function

are more complicated, and the evolutionary process itself is not guaranteed to follow the

same path each time the system is run.

Table 4.4 shows the pricing results of the experiment using the 8/31/1981 data, and

Figure 4.11 shows the syntax representation for the best fitting individual I was able to

obtain. Recall that the 1981 data represents an inverted yield curve. Examining Table 4.4

reveals that GP has failed to produce an acceptable curve that fits this data set. The pricing

errors are large, and the smoothness figure is less than one tenth of that of the 9/9/2009

data. Figure 4.12 shows the curve itself. Examining the curve one learns what is the reason

for the low level of smoothness it exhibits. The curve makes a sharp turn around the 1 year

mark, and there are some unexplained kinks in it at the 5 to 8 year maturities, as well as

between the 10 and the 14 years. Note however that the terminal condition is satisfied to a

higher degree than it is with the 2009 data. TheF5 coefficient is about 23 times smaller in

the 1981 data (see Table 4.5 than it is in the 2009 data. This is also evident in the Figure

4.12 as the curve is flat as it approaches the 30 year mark.
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Figure 4.10: 9/9/2009 Forward Curves by GP and IPQPI.

Figure 4.13 shows the IPQPI and the GP curves overlaying, highlighting the differences

between the curves. In Figure 4.14 I zoom on the early maturities. Notice that the IPQPI

curve is accommodating the fluctuations in the yield in the short term effectively, while GP,

which is focusing on minimizing pricing errors, is ignoring these fluctuations since they do

not have a large enough impact on bill prices.

4.4 Summary

The GP experiment results were mixed at best. The method was not able to produce a

smooth curve that also prices the securities with an acceptable level of pricing errors. This

outcome could be the result of one of the following reasons:

Limited Computing Power and inadequate GP System During the experiment the GP
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Table 4.4: Actual and GP-estimated bond prices for the yield curve on date 8/31/1981.

Maturity Coupon Actual Price Yield GP Est. Price Penny Error

8/31/1981 0 100.0000 14.37 100.0000 0.0
9/3/1981 0 99.8775 14.53 99.841931 3.5569

9/10/1981 0 99.5867 14.91 99.560909 2.5791
10/1/1981 0 98.7247 14.91 98.690053 3.4647

11/27/1981 0 96.1989 16.28 96.207027 -0.8127
2/25/1982 0 92.2422 17.16 92.226174 1.6026
8/12/1982 0 85.6506 16.90 85.379924 27.0676
7/31/1983 15.875 99.806096 16.77 99.511201 29.4895

11/15/1984 16.0 103.75815 16.34 103.195439 56.2711
11/15/1986 13.875 97.009511 15.88 96.358619 65.0892
7/15/1988 14.0 94.663043 15.70 94.116912 54.6131
8/15/1991 14.875 97.896739 15.40 97.599552 29.7187
8/15/2001 13.375 90.519022 15.10 91.216724 -69.7702
5/15/2011 13.875 98.009511 14.74 98.589431 -57.9920

Table 4.5: Contribution to fitness for the 8/31/1981 data.

Fitness Argument Score Weight Contribution to Fitness

F1 Price in pennies 402.0274 1 402.0274
F2 Bills Yields (BP) 330.6868 1 330.6868

F3 Smoothness 0.0 106 0.0
F4 Initial Condition 0.0003 103 0.3

F5 Terminal Condition 0.0003 1 0.0003
F6 Non negativity 0.0 0 0

F7 Level different from IPQPI 0.0 0 0
F8 Slope different from IPQPI 0.0 0 0

system generation processing speed slowed significantly after only a few hundreds of gen-

erations. This happened although I limited the depth level to 28. It appears the machine

which was running the experiment was having a hard time completing the calculation in a

reasonable amount of time. For example, when running the the 1981 data experiment, it

took the system about 10 hours to run about 500 generations (between 1000 to 1500), where

the speed at which the first 200 generations were run was about 10 seconds per generation.

It may be the case that a better machine would be able to process the experiment better
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Table 4.6: Comparison of Pricing Errors for 8/31/1981: GP and IPQPI.

Maturity Actual Price GP IPQPI

8/31/1981 100.0000 0.0000 0.0000
9/3/1981 99.8775 3.5569 0.0000

9/10/1981 99.5867 2.5791 0.0000
10/1/1981 98.7247 3.4647 0.0000

11/27/1981 96.1989 -0.8127 0.0000
2/25/1982 92.2422 1.6026 0.0000
8/12/1982 85.6506 27.0676 0.0000
7/31/1983 99.806096 29.4895 0.2027

11/15/1984 103.75815 56.2711 0.2882
11/15/1986 97.009511 65.0892 0.0680
7/15/1988 94.663043 54.6131 0.1593
8/15/1991 97.896739 29.7187 0.4174
8/15/2001 90.519022 -69.7702 9.1591
5/15/2011 98.009511 -57.992 0.0000

Ave Abs Error 28.71624 0.7353
Max Abs Error 69.7702 9.1591

Smoothness 210.0438 4.2892

and achieve better results in a more reasonable time frame. Also, there are several other

GP systems available to researchers. It is possible that the internal design of the GPLAB

algorithms in MATLAB, which was used here, is geared towards resolving certain kinds of

problems, but not others. MATLAB is an interpreted language and not compiled (such as

C++, or FORTRAN), which makes it very expensive to run in terms of computing overhead

costs and time of processing.

Misspecified Fitness Function The fitness function is the user’s instructions to the GP

system in its search for the optimal function. I have touched on it earlier in the chapter,

but will do so again here - the fitness function produces one numerical value, which is a

composition of several parts, each of which needs to be weighed, and added to the mix. The

weights are determined by trial and error, since there are no rules to follow. The user would

like to have the chosen function to satisfy all of the parts that make up the fitness function.

A misspecified fitness function may lead the GP system down the “wrong path” of evolution.

I suspect this was not the reason for the results since my system was not able to get to a

fitness score that was low enough. Had the system got to a very low fitness score, and the
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Figure 4.11: 8/31/1981 Yield Curve function produced by GP - syntax representation .

curve/function would still have the wrong properties, then a miss-specification of the fitness

function would have been the prime suspect as to the reason. But my system was not able

to get to that point to begin with, hence pointing the cause of the outcome to items 1 and

2 above.

Problem is just too complex It may be the case that the problem GP is facing is just too

hard to solve in a limited number of generations. The unobserved nature of the spot curve,

and the many forms a forward curve may take for each spot curve, combined with the large

search space GP is facing is just too complicated for GP to solve within several hundreds of

generations.

The IPQPI method presented in Chapter 3 however is preforming well. It is fixing

the polynomials and is just searching for the optimal coefficients so the problem it faces
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Figure 4.12: 8/31/1981 Yield and Forward Curves produced by GP .

is much narrower in scope. It produces a maximally smooth forward curve (within the

family of polynomial functions) and it prices better than all the smooth methods it is being

compared to. It does so while combining the stripping and smoothing routines into one

comprehensive process. It is easy to program, intuitive, and can accommodate additional

constraints fairly easy. The next steps in this avenue of research would be (1) designing a

stabilization mechanism for the IPQPI method (to make the effect of a local bump in the

data, local) and (2) Experiment with GP on different platforms.
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Figure 4.13: 8/31/1981 Forward Curves by GP and IPQPI.
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Figure 4.14: 8/31/1981 Forward Curves by GP and IPQPI - Early maturities.
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