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This study constructed a risk free term structure based on the Taiwan government bond market, with 
maturities of up to 120 years. In Taiwan, only government bonds with maturities of up to 30 years could 
be observed. Additionally, the short-term interest rate also has had spurious volatility and caused the 
GARCH volatility models to be difficult to converge in the estimation of long-term volatility levels. This 
paper suggested a threshold GARCH model to infer the equilibrium volatility term structure. 
Furthermore, this paper used the Vasicek equilibrium interest rate model to extrapolate the long-term 
interest rate to the Unconditional Forward Rates (UFR) suggested by Quantitative Impact Study 5 
(QIS5). The proposed method avoided the arbitrage determination of parameters in QIS5. The numerical 
analysis showed that the proposed method produced liability values for long-term annuities that were 
less than that of QIS5. 
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INTRODUCTION 
 
The term structure of the interest rate plays an important 
role in the financial industry, especially in the life 
insurance industry, which sells long-term contracts. To 
reveal the economic value of insurance policies, and to 
increase the transparency of financial reports, modern 
accounting principles and risk management disciplines 
such as International Financial Reporting Standards 
(IFRS) and Solvency II require fair valuation, which is 
supposed to perform with a risk free term structure. 
Traditionally, the cash flows or duration in the insurance 
field last for several decades, and can even last more 
than one hundred years. Therefore, it is necessary to 
extrapolate a risk-free term structure for long-term policy 
valuation, which can have a great impact on both 
insurance policies and the value of insurance companies. 

 
 
 
*Corresponding author. E-mail: ckchang@fcu.edu.tw. Tel: +886-
4-24517250.Fax: +886-4-24517092. 

 
Abbreviations: UFR, Unconditional forward rates; QIS5, 
quantitative Impact study 5; IFRS, international financial 
reporting standards; UFR, ultra forward rate; ADF, augmented 
dickey fuller; MLE, maximum likelihood estimation.  

However, there is not enough market trading data for the 
long-term bond market, especially for maturities that are 
greater than 30 years. There has been some research on 
extrapolating the yield curve beyond the last point with 
available market data. QIS5 Technical Specifications 
uses the Smith-Wilson (2001) method to extrapolate the 
forward rate by inputting the zero coupon bond price into 
the matrix arithmetic. EIOPA suggested the forward rate 
curve should reach the unconditional ultra forward rate 
(UFR) at a maturity of between 70 and 120 years. 
Thomas (2007) set a convergence parameter arbitrarily.

 

Liu (2008) constructed a volatility term structure based on 
the GARCH and EWMA methods for the liquid available 
market data. Liu (2008) then determined the speed of 
reversion to UFR via fitting the volatility term structure 
with Vasicek (1977) models. Similarly to Thomas (2007), 
in EWMA, a memory parameter for the weighs of past 
volatilities should be determined subjectively, and it is 
sensitive to the pattern of volatility term structure. 

In Taiwan, only government bonds with maturities of up 
to 30 years can be observed. There is insufficient 
information about the yield curve for valuing long-term 
claims and assessing risk. Additionally, liquidity data for 
Taiwan government bonds suggests that instruments are 
insufficiently traded beyond 10 years. Even when data on 
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longer term nominal forward rates is available, the 
information that can be obtained from the market prices 
may be spuriously volatile, due to the methods used by 
practitioners (and central banks) to construct the forward 
curve. Not only is there little observed data for the long 
term interest rate market, short term interest rates are 
spurious due to recent governmental financial or 
monetary policies, especially after the financial crisis 
during 2009. Gospodinov (2005) indicated that the short 
rate directly affects the slope of the yield curve, and 
therefore the inflation expectation and aggregate demand 
in the economy. A thorough understanding of the time-
series properties of the short rate is of ultimate 
importance for policy makers and economic agents. The 
main aim of this paper was to extrapolate the long-term 
forward rate curve of the Taiwan economy. While it is 
inherently difficult to estimate long-term interest rate 
volatility and understand how long it takes to reach such 
levels, this paper aimed to use a more objective 
approach that was easy to understand. First, this paper 
suggested the GARCH model to determine the 
equilibrium volatility term structure without a subjective 
setting of parameters. 

It was observed that, in the Taiwan market, the 
decrease of short-term forward rates during 2009 caused 
the GARCH model to be difficult to converge for para-
meter estimation. To overcome the non-linearity evolution 
of short-term rates, this study used Threshold GARCH to 
obtain the volatility term structure of short-term interest 
rates. Next, adopting the method put forward by Liu 

(2008)0, the theoretical volatility term structure was 
derived, based on the equilibrium Vasicek interest rate 
models. Using the extrapolated term structure, the liability 
values were examined under the principles of stability 
and consistency for a long-term annuity. The rest of this 
work is organized as follows: First is a summary of the 
collected market data used for extrapolation. This is 
followed by an introduction of the GARCH and Threshold 
GARCH model to obtain the volatility term structure. The 
relevant parameters are then derived by which a long-
term risk free term structure is extrapolated. Subse-
quently, a comparison of the difference of liability values 
for the deferred annuities between the term structures by 
the proposed method and QIS5 is considered. Finally, 
conclusions and further research directions are then 
outlined. 

 
 
DATA AND METHODOLOGY 

 
The data used for empirical analysis was the annualized yield to 
maturity of government bond price at monthly frequency, taken from 
GreTai Securities Market, which is the over-the-counter market in 
Taiwan, for the period of January 2006 to December 2010. For the 
published term structures, some parametric models (Nelson and 
Siegel, 1987) and the extension by Svensson (1994) were used to 
construct forward rate curves from available bond prices. These 
models could induce spurious volatility for longer maturity forward 
rates, because  the  estimated  terminal  values  (which  are  closely  

 
 
 
 
linked to long forward rates) often vary to give a better fit to the 
data. Due to the consideration of liquidity in the Taiwan bond 
market, this paper adopted yields with maturities between 1 to10 
years as a proxy for the volatility term structure. According to 
Carriere (1999), there are correlations between the spot yields of 
consequent maturities that can be eliminated by using the forward 
rate, which is derived from taking the difference on spot rates. Let 

n

t
y  represent the spot yield with a maturity of n years at time t. The 

forward rate between year n-1 to n, denoted by
n

t
f , can be 

obtained as follows.  
 

1log(1 ) ( 1) log(1 )n n n

t t tf n y n y
−= ⋅ + − − ⋅ +           (1) 

 
The augmented Dickey Fuller (ADF) test demonstrates that there is 
a significant unit-root relationship between two observed forward 
rates. After taking the log and difference transformation to the 
forward rate data, the unit-root phenomena were not significant for 
the change in the log-forward rate after year three. Throughout this 
paper, the focus remained on the year-to-year change of log 
forward rates. 
 

1log logn n n

t t t
u f f −= −                                       (2) 

 
This paper performed extrapolations with the volatility term 
structure, rather than the term structure from market bond prices. 
As shown previously, the volatility term structure depicts the 
apparent decay of variability for changes in the long-term forward 
rates based on available liquid market data, which may be helpful 
for determining the speed of convergence to the Unconditional 
Forward Rate (UFR). Furthermore, some literature, such as 
Andersen (1997) calibrated the market price data with many 
parameters, implying a numerical difficulty, such as the local 
optimization relevant to the initial parameter settings. Another way 
to gain the volatility term structure is to use the market implied 
volatility from interest rate derivatives such as caps or floors. 
However, many empirical studies have suggested that market 
implied volatility derived from the option market is not an efficient 
and unbiased predictor of realized volatility (Amin and Ng, 1997), 
Canina and Figlewski (1993) and Christensen and Prabhala (1998). 
 
 
DERIVATIONS 
 
Estimation of equilibrium volatility term structure 
 
To infer the real equilibrium level of volatility term 
structure more subjectively, it makes sense to understand 
the dynamics of the short-term volatility of changes in the 
forward rates. Intuitively, the GARCH (1.1) model may be 
used to measure the equilibrium or long-term average 

volatilities of the change in log forward rates 
n

t
u  for the 

forward periods 1n =  to 10. The GARCH (1.1) model 
can be expressed as follows: 
 

2 2 2

0 1 1 1 1t t ta a bσ ε σ− −= + +                             (3) 

 
Another advantage of the GARCH (1.1) models is the 
recognition   that   over  time,  the  variance  tends  to  get
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Figure 1. Time series for the forward rate. 

 
 
 
 
pulled back to a long-run average level of 

( )0 1 11a a b− − , implying the mean reversion, which is 

suitable for the determination of equilibrium volatility 
level. It is remarkable that when the Maximum Likelihood 
Estimation (MLE) method is applied to the GARCH 
models to estimate the long-run average volatility 

( )0 1 11a a b− − , the convergence fails for short-term 

volatilities such as maturity years one and three. Figure 1 
indicates there were significant drops in the forward rate 
during 2009, due to the Taiwan government’s monetary 
and financial policies during the financial crisis. According 
to Gospodinov (1995), the presence of possible 
nonlinearities in the conditional moments of the short rate 
may have important implications for the dynamics of the 
long rates. Although EWMA can avoid the problem, its 
parameter π  plays a key role in the term structure model 

of the interest rate but is exposed to ambiguity due to the 
arbitrage determination. To explain the dropping short-term 
rates during 2009 and overcome the divergence of the 
long term average volatility in GARCH (1.1) models, this 
study adopted the Threshold GARCH (TGARCH) model 
proposed by Zakoian (1994), which is characterized by a 
leverage effect for the downward interest rate scenarios 
and has the following form:  

 
2 2 2 2

0 1 1 1 1 1 1 1t t t t t
a a S bσ ε γ ε σ− − − −= + + +            (4) 

 

Where 
 

1

1

1

1  ,    0

0  ,    0

t

t

t

if
S

if

ε

ε

−

−

−

<
= 

≥
                             (5) 

 

That is, depending on whether 1t
ε −  is above or below the 

threshold value of zero, 
2

1t
ε −  has different effects on the 

conditional variance 
2

t
s : when 1t

ε −  is positive, the total 

effects are given by 
2

1 1t
a ε − ; when 1t

ε −  is negative, the 

total effects are given by ( ) 2

1 1 1ta γ ε −+ . The leverage 

effect can be used to explain the high volatility in short-
term interest rates due to the dramatic drops in 2009, as 
depicted in Figure 1. The model is also known as the 
GJR model, because Glosten, Jagannathan and Runkle 
(1993) all proposed essentially the same model. 
Appendix C shows the long-term average volatility, 
estimated parameters and model diagnosis under both 
TGARCH and GARCH. 

As   previously   described,  for  the  short-term  forward
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Figure 2. Estimated volatility term structure for maturity year 1 to 10 using GARCH and TGARCH. 

 
 
 
rates with the forward period n=1 and n=3, the GARCH 
model failed to derive the asymptotic volatility whereas 
TGARCH successfully obtained the asymptotic volatility. 
According to the significance of leverage effect parameter 

1γ  or the gamma statistics (significant if larger than two), 

the leverage effects were significant within the forward 
period n=3 and became insignificant thereafter, implying 
lower non-linearity for higher maturity, which coincided 
with Figure 2. This paper adopted TGARCH for the 
forward years n=1 to 3, and GARCH for the maturity 
years four to 10. Figure 2 shows the estimated volatility 
term-structure. The model diagnosis, shown in the right 
panel of APPENDIX , verified that the TGARCH model 
achieved acceptable fitness for the data of the forward 
years one to three in terms of the Ljung-Box statistics. 
The residual ARCH and Correlation effects were not 
significant. Notably, the normality was not accepted for 
the case n=1. Similarly, the GARCH model achieved 
acceptable fitness for the data of the forward years four 
to ten, in terms of the Ljung-Box statistics. The residual 
ARCH and Correlation effects were not significant. 
 
 
Extrapolation by volatility term structure 
 
This paper adopted the Vasicek (1977) model to fit the 
proposed volatility term structure. The mean version 
inherent in the Vasicek model guarantees the existence 
of the long-term average short rate or the equilibrium 
term   structure.   Theoretically,  the  Vasicek  model  also 

verifies the decay of variability for the change of long-
term forward rates, which coincides with the empirical 
results described previously. Particularly, this paper 
employed the optimization with constraints, which 
produced the long term UFR consistent with the QIS5 
technical specifications (2010). Assume that the short 
rate follows the Vasicek model: 
 

( ) 11
t t t

r rϕ θ ϕ σε−= − + +                                        (6) 

 

Where σ  represents the volatility of the short rate, φ  is 

the autocorrelation of the short rate, θ  represents the 
short rate in equilibrium and ε is white noise. The forward 
rate during the n-1 to n year ahead at time t can be 
derived as follows: 
 

( )
2

1
1 2 11 1

1
2 1

n
n n n

t tf r
ϕ

ϕ θ σ φ
ϕ

−
− − −

= − − + 
− 

             (7) 

 
In equilibrium, the forward rate during the n-1 to n year 
ahead can be derived by letting observed time t tend to 
infinity. That is, 
 

( ) ( )
2

2 2 1 11
1 1

2

n n n nf ϕ θ σ ϕ ϕ ϕ ϕ θ− −= − − + + +⋅⋅⋅⋅+ +         (8) 

 
The volatility of change in the log forward rate is given by: 
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Figure 3. The in-sample fitting for the volatility term structure. 

 
 
 

( ) ( )
( )2 2 12

1 2

1
lim Var log log 21

1

n

n n

n t t n
t

s f f
f

σ ϕ
ϕ

ϕ

−

−
→∞

 
≡ − = −  

− 
                   (9) 

 
The details are described in APPENDIX . Notably, as 

seen in Equation 9, it was found that the volatility of the 

forward rate would go to zero as long as0 1φ< < , that 

is, the time series of the short rate was stationary. The 
UFR is defined as the forward rate (or yield rate) with 
infinity maturity, that is: 
 

2

1
lim

2 1

n

n
f f

σ
θ

ϕ→∞

 
= = −  

− 
                          (10)                    

 
Liu (2008) derived the theoretical volatility of changes of 
the log forward rate by replacing the forward rate during 

the n-1 to n year ahead 
n

f  with the UFR f  in Equation 

(9) and then deriving a Nelson-Siegel (1987) form for the 
volatility of change in the log forward rate, where the 
decay parameter would be chosen arbitrarily. Different 
from Liu (2008), this paper directly fit the previous 
estimated volatility term structure from Equation (9) for 

parametersθ , ϕ  and σ , by which the forward rate could 

be extrapolated to the UFR. The sum of the squared error 

between the estimated ˆ
n

s  and theoretical volatility term 

structures 
n

s  for maturity n from 1 to 10 was chosen as 

the fitting criteria. In practice, to  sustain  the  consistency  

of the term structure, QIS5 will suggest an exogenous 
UFR for each economy area by comparing many 
economical factors such as inflation, regional differences 
and long-term expectation. This paper adopted this 
information by performing the optimization procedure with 

the UFR constraint. Equation (9) shows the optimization 
for the Vasicek parameters to extrapolate the forward 
rate.  
 

10
2

, ,
1

ˆmin     s.t.   4.2% 
n n

n

s s f
ϕ θ σ

=

− =∑                  (11) 

 

The estimated parameters were ˆ 0.636966ϕ = , 

ˆ 4.2589%θ = and ˆ 1.2476%σ = , with an average error 
of 0.315% for each maturity. The optimal value for the AR 

(1) parameter value ϕ̂  was between 0 and 1, implying a 

stationary short rate process and convergence for the 
equilibrium of the volatility term structure. Figure 3  
demonstrates the results of the optimization in Equation 
(11). The short-term volatilities were lower than the ones 
from the TGARCH model. After year five, the fitted 
volatilities decayed to zero due to Equation (9). Figure 4 
compares the risk-free nominal term structures at the end 
of year 2010 by the proposed GARCH method and the 
Smith-Wilson approach used by QIS5. The term structure 
by the proposed extrapolating method based on the 
GARCH model converged to UFR more rapidly than that 
based on QIS5. A steep term structure implies a high 

speed of mean reversion.  Using  Equations  7 and 8,
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Figure 4. The spot rate curves for GARCH and QIS 5. 

 
 
 
this paper inferred the equilibrium forward rate by letting 
the time horizon tend to infinity. However, the Smith-
Wilson method fit the observed market data directly, 
which may reflect low interest rate levels in the current 
government bond market.  
 
 
CASE COMPARISONS 
 
To compare the term structures of the proposed GARCH 
method and the Smith-Wilson method suggested by 
QIS5, this paper used these two term structures to value 
a deferred annuity with a deferred period of 30 years and 
a payment period of 25 years, and a benefit payment of 
$1 per year. To consider mortality and gender effects, this 
paper valued a life annuity by referring to the TSO 2002 
Life Table and a certain annuity. Due to a high speed of 
convergence, the annuity values by the proposed method 

were less than that of QIS5. Table 1 points out that the 
term structure by the proposed GARCH method 
produced lower liability values than that of QIS5. For the 
male case with $4.7 QIS5 liability value, this method 
produced a liability value that was less than that of QIS5 
by $1. For the female case with $5.7 QIS5 liability value, 
this method produced a liability value that was less than 
that of QIS5 by $1.2. For annuity-certain with $7.2 QIS5 
liability value, the proposed method had a lower liability 
value by $1.4.  

Conclusions 
 
This paper addressed the problems encountered during 
the extrapolation of nominal risk-free term structures 
based on the Taiwan government bond market. The 
scarcity of liquid trading data makes it necessary to 
extrapolate long-term interest rates using mark-to-model 
methods. This paper worked on the GARCH models 
implying mean reversion and equilibrium property, with 
the advantages of simplicity and avoiding the arbitrary 
determination of model parameters. An empirical study 
showed that the dramatic decreases for short-term yields 
in the Taiwan government bond market during 2009 
caused the GARCH models to fail to infer the volatility of 
short-term interest rates. This paper proposed the 
Threshold GARCH model to determine the volatility term 
structure through which to extrapolate the long-term risk-
free nominal term structure under the Vasicek interest 
rate model. The empirical experiments indicated that the 
proposed Threshold GARCH method successfully 
deduced the equilibrium volatility level of short-term 
interest rates. 

This paper suggests using the Threshold GARCH 
model for maturities of less than three years and the 
GARCH model for maturities from four to ten years. The 
GARCH type models also achieved statistically accep-
table inference in goodness of fit. The proposed optimi-
zation  process  extrapolated  the  long-term  rate  to   the 



 
 
 
 
Table 1. Valuation of deferred annuity liability with GARCH and QIS 
5 term-structures. 
 

Case GARCH QIS 5 

Male $3.89691 $4.76344 

Female $4.68426 $5.73535 

Annuity-certain $5.88527 $7.22349 

 
 
 
the UFR level suggested by QIS5. Compared with 
QIS5for deferred annuities, the proposed term structure 
produced lower liability values for the insurers, due to the 
higher speed of mean reversion. Future studies are still 
required regarding the extrapolation of long-term interest 
rates. Extrapolation must be undertaken for maturities 
over 10 years and available market data shorter than 10 
years should be adopted. The smoothness should be 
taken into account due to the stability consideration 
required by QIS5. Furthermore, the term structures in 
Taiwan were only available after year 2006, and are 
interpolated using the Nielsen and Siegel methods, which 
may cause the term structure to be more volatile and 
create bias between the published term structure and 
market trading prices. The consistency property needs to 
be investigated, and should be performed with more 
liquid market data.  
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APPENDIX A 
 
Descriptive statistics 
 
Table 3 shows the descriptive statistics for the NSS monthly data of changes in the log forward rates. 
 
Table 1. Descriptive statistics of changes in the log forward rates. 
 

Maturity Mean Median Min Max Std Skew Kurt ACF(1) ACF(2) ACF(12) 

1 -0.0171 -0.0088 -3.6869 3.0471 0.7187 -0.4336 17.7712 -0.4264 0.0773 -0.0212 

2 -0.0117 -0.0036 -0.4300 0.5553 0.1430 0.3539 5.1102 -0.2653 0.2582 0.1492 

3 -0.0080 0.0008 -0.3228 0.1836 0.0856 -0.6326 2.4782 -0.0488 0.1915 0.2010 

4 -0.0049 -0.0016 -0.2359 0.1534 0.0782 -0.4103 0.5791 0.0722 0.0254 0.0713 

5 -0.0024 -0.0048 -0.1835 0.1515 0.0752 -0.1871 0.3004 0.1405 -0.0098 -0.0107 

6 -0.0003 -0.0075 -0.1830 0.1815 0.0735 0.0620 0.7183 0.1700 0.0136 -0.0571 

7 0.0014 -0.0025 -0.1848 0.1975 0.0739 0.3600 1.4639 0.1523 0.0308 -0.0865 

8 0.0026 0.0000 -0.1848 0.2311 0.0757 0.5905 2.0585 0.1069 0.0195 -0.1059 

9 0.0035 0.0014 -0.1827 0.2591 0.0780 0.7164 2.3906 0.0567 -0.0068 -0.1176 

10 0.0040 0.0016 -0.1782 0.2744 0.0803 0.7378 2.4011 0.0156 -0.0384 -0.1188 

11 0.0042 -0.0014 -0.1742 0.2781 0.0824 0.7065 2.1774 -0.0107 -0.0671 -0.1059 

12 0.0041 -0.0040 -0.1821 0.2706 0.0845 0.6402 1.7453 -0.0270 -0.0930 -0.0840 

13 0.0037 0.0018 -0.1908 0.2551 0.0872 0.5553 1.2473 -0.0360 -0.1205 -0.0554 

14 0.0032 -0.0018 -0.1974 0.2399 0.0900 0.4422 0.8502 -0.0413 -0.1500 -0.0249 

15 0.0026 -0.0068 -0.2224 0.2496 0.0935 0.3004 0.6987 -0.0486 -0.1880 -0.0029 

16 0.0018 -0.0072 -0.2698 0.2602 0.0974 0.1531 0.8278 -0.0581 -0.2323 0.0110 

17 0.0010 -0.0107 -0.3155 0.2701 0.1018 0.0345 1.2255 -0.0695 -0.2834 0.0178 

18 0.0001 -0.0096 -0.3573 0.2818 0.1073 -0.0344 1.7476 -0.0841 -0.3313 0.0169 

19 -0.0009 -0.0074 -0.3964 0.2916 0.1140 -0.0316 2.2331 -0.1000 -0.3748 0.0107 

20 -0.0018 -0.0096 -0.4322 0.3007 0.1228 0.0156 2.4529 -0.1153 -0.4030 0.0059 

21 -0.0029 -0.0164 -0.4635 0.3446 0.1335 0.0740 2.3602 -0.1313 -0.4125 0.0027 

22 -0.0039 -0.0212 -0.4923 0.3862 0.1466 0.1038 2.0421 -0.1480 -0.4009 0.0034 

23 -0.0049 -0.0206 -0.5173 0.4275 0.1625 0.1058 1.6283 -0.1639 -0.3726 0.0077 

24 -0.0061 -0.0155 -0.5367 0.4672 0.1812 0.0856 1.1807 -0.1791 -0.3288 0.0153 

25 -0.0072 -0.0120 -0.5560 0.5033 0.2034 0.0404 0.7804 -0.1919 -0.2756 0.0237 

26 -0.0084 -0.0106 -0.6006 0.5396 0.2303 0.0111 0.4485 -0.2025 -0.2108 0.0342 

27 -0.0097 -0.0059 -0.6906 0.5729 0.2641 0.0052 0.2796 -0.2085 -0.1366 0.0434 

28 -0.0110 -0.0083 -0.7789 0.8055 0.3103 0.0284 0.5468 -0.2071 -0.0457 0.0503 

29 -0.0125 -0.0190 -1.1902 1.2272 0.3862 0.0491 1.8517 -0.1964 0.0817 0.0488 

30 -0.0165 -0.0231 -2.4383 2.1238 0.5586 -0.4655 8.4662 -0.1222 0.0032 -0.0750 
 

ACF (k) is the k-th order autocorrelation function. 
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APPENDIX B 
 
Augmented Dickey-Fuller Test 
 
Table 2 shows the Augmented Dickey-Fuller Test for the forward rate data. The second column represents the statistics (with the p-value in parentheses) of the 
original forward rate data, and the third column represents the statistics (with the p-value in parentheses) of changes in the log-forward rate data.  
 

Table 2. Augmented dickey-fuller test 
 

Maturity (in years) Original forward rate Change in log-forward rate 

1 -2.2423 (0.4768) -3.3069 (0.0791) 

2 -2.4236 (0.4035) -2.9607 (0.1865) 

3 -2.2500 (0.4737) -3.3156 (0.0777) 

4 -2.3280 (0.4422) -3.7554 (0.0277) 

5 -2.5220 (0.3637) -4.1369 (0.0100) 

6 -2.7261 (0.2812) -4.3982 (0.0100) 

7 -2.8486 (0.2316) -4.5286 (0.0100) 

8 -2.8953 (0.2127) -4.5193 (0.0100) 

9 -2.8910 (0.2145) -4.4296 (0.0100) 

10 -2.8490 (0.2315) -4.3332 (0.0100) 
 

The numbers in parentheses denote the p-value. 

 
 
 
APPENDIX C 
 
Estimation and diagnosis for GARCH and TGARCH 
  
Table 3 contains the parameters and statistics related to the GARCH and TGARCH volatility models. 
 
Table 3. GARCH and TGARCH table for the volatility of changes in the log forward rates. 
 

Maturity   Estimated parameter  Model diagnosis 

n=1 Asym.Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH na 
 -0.0001469 

(0.8246) 

4.6092087 

(0.0000) 

0.2509544 

(0.0000) 
  

 
220.4 (0.0000) 6.199  (0.9057) 

3.9026 

(0.9851) 

6.1987 

(0.9057) 

TGARCH 0.3829292 
 0.0052641 

(0.009627) 

-0.3926156 

(0.0000) 

0.7271505 

(0.0000) 

1.2591307 

(0.0000) 
13.76372 

 
581.4 (0.0000) 12.78 (0.385) 

1.4062 

(0.9999) 

12.7828 

(0.3850) 

 

0a 1a 1b 1γ



 
 
 
 
Table 3. Contd. 
 

n=2 Asym.Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.14364983 
 0.005365 

(0.18509) 

0.240428 

(0.08047) 

0.09133 

(0.499567) 
  

 
27.09 (0.0000) 13.05  (0.3657) 

6.9038 

(0.8639 

13.0467 

(0.3657) 

TGARCH 0.1226665 
 0.0009037 

(0.00488) 

-0.2086650 

(0.0000) 

0.9532635 

(0.0000) 

0.3906833 

(0.0000) 
7.875236 

 
4.444 (0.1084) 12.06  (0.4408) 

2.997 

(0.9956) 

12.0612 

(0.4408) 

n=3 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH na 
 -0.0005485 

(0.0000) 

-0.0232482 

(0.2084) 

1.0891589 

(0.0000) 
  

 
5.406 (0.06699) 21.49 (0.04359) 

11.7708 

(0.4643) 

21.4946 

(0.0436) 

TGARCH 0.08160859 
 0.001560 

(0.03741) 

-0.282826 

(0.01423) 

0.878132 

(0.0000) 

0.341060 

(0.01999) 
2.396209 

 
8.32 (0.01561) 17.75  (0.1234) 

6.3901 

(0.8952) 

17.7531 

(0.1234) 

n=4 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

Correlation Effect 

GARCH 0.07665592 
 0.008068 

(0.3928) 

-0.095961 

(0.3401) 

-0.277066 

(0.8733) 
  

 
0.911  (0.6341) 7.149  (0.8476) 

15.0864 

(0.2367) 

7.1494 

(0.8476) 

TGARCH 0.07692194 
 0.001672 

(0.1325) 

-0.284555 

(0.01028) 

0.897621 

(0.0000) 

0.208776 

(0.0144) 
2.52729 

 
1.442  (0.4862) 10.58  (0.5653) 

14.6316 

(0.2622) 

10.5789 

(0.5653) 

n=5 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.07462323 
 0.007285 

(0.1510) 

-0.117117 

(0.3005) 

-0.191169 

(0.8377) 
  

 
0.1879  (0.9103) 6.457  (0.8913) 

15.2531 

(0.2279) 

6.4570 

(0.8913) 

TGARCH 0.07715432 
 0.0006958 

(0.2196) 

-0.2911573 

(0.000082) 

1.0537704 

(0.0000) 

0.2410047 

(0.001007) 
3.473995 

 
1.225   (0.542) 7.262  (0.8398) 

10.4816 

(0.5738) 

7.2621 

(0.8398) 

n=6 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.07327679 
 0.006820 

(0.04597) 

-0.156541 

(0.06955) 

-0.113649 

(0.85187) 
  

 
0.08367 (0.959) 9.881  (0.6264) 

15.4069 

(0.2199) 

9.8814 

(0.6264) 

TGARCH 0.08261096 
 0.0003467 

(0.2212) 

-0.2311733 

(0.0000) 

1.0662396 

(0.0000) 

0.2282704 

(0.000442) 
3.739251 

 
0.4912  (0.7822) 9.86  (0.6282) 

10.8077 

(0.5455) 

9.8604 

(0.6282) 

n=7 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.07305755 
 0.008209 

(0.000592) 

-0.145751 

(0.00048) 

-0.392204 

(0.128858) 
  

 
2.278  (0.3201) 8.671  (0.7308) 

15.5597 

(0.2122) 

8.6708 

(0.7308) 

TGARCH na 
 0.000116 

(0.7484) 

-0.144687 

(0.002603) 

1.054933 

(0.0000) 

0.190457 

(0.006184) 
2.847485 

 
0.04408  (0.9782) 10.36  (0.5841) 

13.6624 

(0.3228) 

10.3632 

(0.5841) 

0a 1a 1b 1γ

0a 1a 1b 1γ

0a 1a 1b 1γ

0a 1a 1b 1γ

0a 1a 1b 1γ

0a 1a 1b 1γ
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Table 3. Contd. 
 

n=8 Asym.Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.07314084 
 0.0071379 

(0.039219) 

-0.1097516 

(0.004216) 

-0.2245342 

(0.706775) 
  

 
5.784 (0.05547) 7.051  (0.8542) 

14.2016 

(0.2880) 

7.0510 

(0.8542) 

TGARCH 0.1440554 
 0.0002531 

(0.2527) 

-0.1438501 

(0.0000) 

1.0658850 

(0.0000) 

0.1315341 

(0.09963) 
1.674906 

 
0.1862  (0.9111) 8.882   (0.713) 

12.0566 

(0.4411) 

8.8823 

(0.7130) 

n=9 Asym.Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.07732394 
 0.002108 

(0.8943) 

0.029026 

(0.8436) 

0.618460 

(0.8236) 
  

 
14.29 (0.000788) 5.784  (0.9266) 

13.6843 

(0.3213) 

5.7835 

(0.9266) 

TGARCH na 
 0.0001552 

(0.4422) 

-0.1165725 

(0.0000) 

1.0706573 

(0.0000) 

0.1267125 

(0.02954) 
2.234411 

 
0.6952  (0.7064) 8.651  (0.7324) 

12.4478 

(0.4104) 

8.6512 

(0.7324) 

n=10 Asym. Stdev.  
    

Gamma 

statistics 

 
Normality (JB test) 

Ljung-Box 

statistics 

Residual 

ARCH effect 

Residual 

correlation effect 

GARCH 0.08100820 
 0.002298 

(0.5230) 

0.157581 

(0.5429) 

0.492178 

(0.5052) 
  

 
18.47 (0.000097) 5.075  (0.9554) 

10.4485 

(0.5767) 

5.0749 

(0.9554) 

TGARCH na 
 0.0001181 

(0.4326) 

-0.1050579 

(0.0000) 

1.0694472 

(0.0000) 

0.1131277 

(0.04023) 
2.101094 

 
0.4457  (0.8002) 9.143  (0.6907) 

12.6533 

(0.3947) 

9.1428 

(0.6907) 
 

 “na” represents divergence for the optimization. The numbers in parentheses denote the p-value. “Asym. Stdev” represents the long-term average level of volatility.  

 
 
 
APPENDIX D 
 
Volatility term structure of changes in the log forward rates 
 
Using the Vasicek model, the short rate follows an AR (1) process, that is, 
 

( ) 11 ,
t t t

r rϕ θ ϕ σε−= − + +  
                                        (D.1) 

 

Where 
t

ε  is an independent Gaussian process with a mean of zero and a variance of one. The unconditional second moments of the short rates are: 

 

( )
2

2

2

1
Var  ,

1

t

tr
ϕ

σ
ϕ

−
=

−
                                                          

(D.2)
 

 

And  

0a 1a 1b 1γ

0a 1a 1b 1γ

0a 1a 1b 1γ
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( ) ( )( ) ( )
2( 1)

1 1 1 1 2

1
Cov , Cov , 1 Var .

1

t

t t t t t tr r r r r
ϕ

ϕ θ ϕ σε ϕ ϕ
ϕ

−

− − − −

−
= − + + = ∗ =

−   
(D.3) 

 
With the stationary condition 0<φ<1, the equilibrium short rate can be inferred by letting time t tend  
 
to infinity, that is:   
                               

( )1
 .

1
r

ϕ θ
θ

ϕ

−
= =

−                                                                     
(D.4)

      

         

Let 
n

t
b  denote the discount factor for cash flow at n years ahead. Under the Vasicek model, the affine term structure is 

related to the short rate 
t

r  and can be transformed as follows:  

 

log .n

t n n tb A B r− = +  
                                               (D.5)

     
 

 
Given the no-arbitrage condition: 

 

( )1 1

1 .n n

t t t t
b E b b+

+= ⋅
                                                   

(D.6)
  

  

The recursive relationships for the sequences 
n

A  and 
n

B  can be induced as follows: 

 

( ) 2 2

1

1
1 ,

2
n n n n

A A B Bϕ θ σ+ = + − −  
                                   

(D.7) 

 
and 
 

1
.

1

n

n
B

ϕ

ϕ

−
=

−
 

                                                                               
(D.8) 

 

From Equations D.7 and D.8, the n-period ahead one-period forward rate, denoted by 
n

t
f , can be derived as follows: 

 

( ) ( ) ( )
2

1
1 2 1

1 1

1 1
1 .

2 1

n
n n n

t n n n n t t
f A A B B r r

ϕ
ϕ θ σ ϕ

ϕ

−
− −

− −

 −
= − + − = − − + 

− 
 

                    
(D.9) 

 
Using Equations D.2 and D.3 the second moments of the log forward rates can be expressed as follows: 
 

( )
2

1 2
2

2

1
Var  ,

1 1

n n t
n

tf
ϕ ϕ ϕ

σ
ϕ ϕ

− − −
=  

− − 
                                               

(D.10) 

 
and 
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( )
2

1 2
2

1 2

1
Cov log log  .

1 1

n n t
n n

t tf f
ϕ ϕ ϕ

σ ϕ
ϕ ϕ

−

−

 − −
− =  

− −                                                     
(D.11)

  

 

 

Equation D.12 derives the volatility of the change in the log forward rates by the Delta method with the transformation

( )1 1
,   log logn n n n

t t t t
g f f f f− −∆ − . 

 

( )

( ) ( )

( ) ( )

1

1

1 1 1

1

Var log log

1

Var log Cov log ,log1 1
,  .

1Cov log , log Var log

n n

t t

n n n n
t t t t

n n n n n
t t t t t

n

t

f f

f f f f

f f f f f

f

−

−

− − −

−

−

 
      = − 
    −  
 

                    
(D.12)

  

 
Substituting Equations D.9, D.10, D.11 and into D.12 and letting time t tend to infinity, the equilibrium volatility term 
structure can be derived for the change in the log forward rates as follows: 
 

( ) ( )
( )2 2 12

1 2

1
lim Var log log 2 1  .

1

n

n n

t t nt
f f

f

σ ϕ
ϕ

ϕ

−

−
→∞

 
− = −  

− 
                                          

(D.13) 

 
Meanwhile,  
 

( ) ( )
2

2 2 1 11
1 1  .

2

n n n nf ϕ θ σ ϕ ϕ ϕ ϕ θ− −= − − + + + ⋅⋅⋅ ⋅ + +                                                 
(D.13)

 

 
 
 


