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The SABR model is used to model a forward Libor rate, a forward swap
rate, a forward index price, or any other forward rate. It is an extension of
Black�s model and of the CEV model. The model is not a pure option pricing
model� it is a stochastic volatility model. But unlike other stochastic volatility
models such as the Heston model, the model does not produce option prices
directly. Rather, it produces an estimate of the implied volatility curve, which
is subsequently used as an input in Black�s model to price swaptions, caps, and
other interest rate derivatives.

1 Process for the Forward Rate

The SABR model of Hagan et al. [2] is described by the following 3 equations
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with initial values f0 and � = �0: In these equations, ft is the forward rate,
�t is the volatility, and W 1

t and W
2
t are correlated Brownian motions, with

correlation �. The parameters are

� � the initial variance

� v the volatility of variance

� � the exponent for the forward rate

� � the correlation between the Brownian motions.

The case � = 0 produces the stochastic normal model, � = 1 produces the
stochastic lognormal model, and � = 1

2 produces the stochastic CIR model.

2 SABR Implied Volatility and Option Prices

The prices of European call options in the SABR model are given by Black�s
model. For a current forward rate f , strike K, and implied volatility �B the
price of a European call option with maturity T is

CB(f;K; �B ; T ) = e
�rT [fN(d1)�KN(d2)] (2)
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d1;2 =
ln f=K � 1

2�
2
BT

�B
p
T

and analogously for a European put. The volatility parameter �B is provided
by the SABR model. With estimates of �; �; v; and �; the implied volatility is
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Once the parameters �; �; �; and v are estimated, the implied volatility �B is a
function only of the forward price f and the strike K: Since the SABR model
produces implied volatilities for a single maturity, the dependence of �B on T
is not re�ected in the notation �B(K; f).

3 Estimating Parameters

The � parameter is estimated �rst, and is not very important in the model
because the choice of � does not greatly a¤ect the shape of the volatility curve.
With � estimated, there are two possible choices for estimating the remaining
parameters

� Estimate �; �; and v directly, or

� Estimate � and v directly, and infer � from �; v; and the at-the-money
volatility, �ATM .

3.1 Estimating �

From equation (3), the at-the-money volatility �ATM is obtained by setting
f = K in equation (3), which produces
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Taking logs produces

ln�ATM � ln�� (1� �) ln f:
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Hence, � can be estimated by a linear regression on a time series of logs of
ATM volatilities and logs of forward rates. Alternatively, � can be chosen
from prior beliefs about which model (stochastic normal, lognormal, or CIR) is
appropriate. In practice, the choice of � has little e¤ect on the resulting shape
of the volatility curve produced by the SABR model, so the choice of � is not
crucial. The choice of �, however, can a¤ect the Greeks. Barlett [1] provides
more accurate Greeks and shows that they are less sensitive to the choice of �:
This is described in Section 5.3.

3.2 First Parameterization�Estimating �; �; and v

Once �̂ is set, it remains to estimate �; �; and v. This can be accomplished by
minimizing the errors between the model and market volatilities

�
�mkti

	
(from

interest rate derivatives, for example) with identical maturity T . Hence, for
example, we can use SSE, which produces

(�̂; �̂; v̂) = argmin
�;�;v

X
i

�
�mkti � �B(fi;Ki;�; �; v)

	2
: (5)

We then use �; �; �; v in equation (3) to obtain �B and plug �B into Black�s
formula (2) to get the call price. Other objective functions are of course pos-
sible, such as the one by West [5] that uses vega as weights. A free Matlab
program for estimating the SABR parameters in this fashion is available at
www.Volopta.com.

3.3 Second Parameterization�Estimating � and v

We can reduce the number of parameters to be estimated by using �ATM to
obtain �̂ via equation (4), rather than estimating � directly. This means that
we only need to estimate � and v, and obtain an estimate of � by inverting
equation (4) and noting that � is the root of the cubic equation"
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�
�� �ATMf1�� = 0: (6)

West [5] notes that it is possible for this cubic to have more than a single real
root, and suggests selecting the smallest positive root in this case. It is relatively
straightforward to estimate the parameters using this second parameterization.
In our minimization algorithm, at every iteration we �nd � in terms of � and v
by solving equation (6) for � = � (�; v). Hence, for example, SSE from equation
(5) becomes

(�̂; �̂; v̂) = argmin
�;�;v

X
i

�
�mkti � �B(fi;Ki;�(�; v); �; v)

	2
: (7)

This estimation will take more time to converge. Indeed, at every iteration
step, the minimization algorithm produces � and v, but it must use a root-
�nding algorithm to obtain � from equation (6) that uses the parameters �; �; v
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as inputs along with f;K; �ATM ; and T . The three parameter values �; v; and
� = �(�; v) are then plugged into equation (3) to produce �B , which is used in
the objective function (7). The value of the objective function is compared to
the tolerance level (or other convergence criterion) and the algorithm moves to
the next iteration. A free Matlab program for estimating the SABR parameters
under this parameterization scheme is available at www.Volopta.com.

4 Illustration

We illustrate the SABR model under both parameterizations by reproducing
Figure 3.3 of Hagan et al [2]. We use � = 0:5 and �t the SABR model using
both estimation approaches. This appears in Figure 1 below.
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Figure 1. Fitted SABR volatilities under both estimation
methods, � = 0:5

The �gure illustrates that the choice of estimation has little e¤ect, and that
both methods produce a set of implied volatilities that �t the market volatilities
reasonably well. The error sum of squares (SSE) from the �rst method is
SSE1 = 2:33�10�4, which is slightly larger than that from the second method,
SSE2 = 2:74 � 10�4. The parameter estimates obtained under both methods
are presented in Table 1. The sets of parameters are very similar.

Table 1. Parameter Estimates
Parameter Method 1 Method 2

� 0.037561 0.036698
� 0.5 0.5
� 0.100044 0.098252
v 0.573296 0.599714
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Free Matlab code for parameter estimation under both methods is available
at www.Volopta.com.

4.1 The Backbone

Given values of �; �; � and v, we can vary the value of f and trace out the ATM
volatility �B(f; f) from Equation (4) to obtain the backbone. For a �xed value
of f , if we plot the SABR volatilities �B (K; f) from Equation (3), this will
trace out the smile and skew. This is illustrated in Figure 2, which reproduces
Figure 3.1 in Hagan et al [2], using the parameters in Table 1 estimated under
Method 1 and using a maturity T = 1 year.
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Figure 2. The backbone with its smiles and skews when
� = 0

Figure 3 plots the backbone and its smiles and skews, but using � = 1. This
reproduces Figure 3.2 of Hagan et al [2]. Since the value of � is di¤erent, the
parameter estimates in Table 1 are no longer valid. We must re-estimate the
parameters wtih � = 1 instead of � = 0. The updated parameters, estimated
using Method 1, are � = 0:13927, � = �0:06867, and v = 0:5778:
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5 Option Sensitivities

The Greeks from the SABR model resemble those from Black�s model, but
contain additional terms to re�ect the fact that �B is not constant. This is
explained by Hagan et al. [2], Lesniewski [3], and Barlett [1].

5.1 Vega

Vega, the sensitivity of the option price to volatility, �, is obtained by applying
the chain rule on the call price from equation (2) and using equation (3)

Vega =
@CB
@�B

� @�B
@�

(8)

In practice, �nite di¤erences are used to evaluate the derivative @�B
@� , rather

than obtaining this derivative analytically from equation (3).

5.2 Delta

Delta, the sensitivity of the option price to the forward rate, is dependent on
the parameterization used. If the �rst parameterization is used then delta is
the total derivative

Delta =
@CB
@f

+
@CB
@�B

� @�B
@f

(9)

If, on the other hand, the second parameterization is used then delta is

Delta =
@CB
@f

+
@CB
@�B

�
�
@�B
@f

+
@�

@f

�
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to re�ect the fact that � is a function of f:

5.3 Barlett Updated Greeks

Bartlett [1] has proposed re�nements of the Greeks in equations (8) and (9). In
this section we explain the development of these updated Greeks.

5.3.1 Updated Delta

The SABR Delta in equation (9) is obtained by assuming a shift in the forward
rate while keeping the value of � constant

f ! f +�f

� ! �:

Bartlett [1] explains that since � and f are correlated, a shift in f will likely be
accompanied by a shift in �. Hence a more realistic scenario is

f ! f +�f

� ! �+ �f�:

To calculate �f� we use the the well-know result that the two correlated
Brownian motions W 1

t and W
2
t from equation (1) can be expressed in terms of

two independent Brownian motions Wt and Zt by setting, for example, dW 1
t =

dWt and dW 2
t = �dWt +

p
1� �2dZt. Hence we can write the SABR model

from equation (1) as
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This implies that the volatility process from equation (10) can be written as

d�t =
�v

f�t
dft + v�t

p
1� �2dZt:

The instantaneous change in volatility, d�t, can now be expressed in two terms
(1) the instantaneous change in the forward, dft, and (2) the level of the volatil-
ity, �t. The change in volatility due to a change in the forward is the �rst
term

d�t
dft

=
�v

f�t
:

The SABR delta is updated by including the change in �B brought on by changes
in �
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5.3.2 Updated Vega

Analogously to the SABR Delta, the SABR Vega in equation (8) is updated by
assuming a shift in the volatility while keeping the value of f constant

f ! f

� ! �+��:

Bartlett [1] explains that a more realistic scenario is

f ! f + ��f

� ! �+��:

Turning to equation (1) again, the forward process can be written
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This implies that the forward process from equation (11) can be written as

dft =
�f�t
v
d�t + f

�
t �t

p
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The instantaneous change in volatility, dft, can be expressed in two terms (1)
the instantaneous change in the forward, d�t, and (2) the level of the volatility,
�t. The change in the forward due to a change in volatility is the �rst term

dft
d�t

=
�f�t
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:

The SABR delta is updated by including the change in �B brought on by changes
in �
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A free Matlab program for the updated Greeks is available atwww.Volopta.com.

6 SABR Re�nements

The original formula by Hagan et al. [2] in Equation (3) has been shown to
break down when the strike is small and the maturity is long. In response, a
number of researchers have sought to re�ne the implied volatility. One such
re�nement is summarized by Jan Oblój [4], so we state his results here. The
implied volatility surface � (x; T ) for log-moneyness x = log (F=K) and maturity
T can be approximated as

�B (x; T ) � I0B (x)
�
1 + I1H (x)T

�
: (12)
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In this expression, we have

I1H (x) =
(1� �)2 �2

24 (fK)
1�� +
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4 (fK)
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�
2� 3�2
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and four cases for I0B (x).
Case 1 : x = 0.

I0 (0) = �K��1:

Case 2 : v = 0:

I0 (x) =
x� (1� �)
f1�� �K1�� :

Case 3 : � = 1:
I0 (x) =

vx

ln

�p
1�2�z+z2+z��

1��

�
where z = vx

� .
Case 4 : � < 1.

I0 (x) =
vx

ln

�p
1�2�z+z2+z��

1��

�
where z =

v(f1���K1��)
�(1��) : As before, the SABR implied volatility �B (x; T )

is plugged into Black�s formula in Equation (2), and the price of the call is
obtained. A free Matlab program for estimating the SABR parameters under
this re�ned scheme is available at www.Volopta.com.
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