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Abstract

In this paper, we derive a probabilistic approximation for three different versions of the
SABR model: Normal, Log-Normal and a displaced diffusion version for the general constant
elastic of variance case. Specifically, we focus on capturing the terminal distribution of the
underlying process (conditional on the terminal volatility) to arrive at the implied volatilities of
the corresponding European options for all strikes and maturities. Our resulting method allows
us to work with a variety of parameters which cover the long dated options and highly stress
market condition. This is a different feature from other current approaches which rely on the
assumption of very small total volatility and usually fail for longer than 10 years maturity or
large Volvol.
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1 Introduction

In financial markets, we usually observe that implied volatility as a function of strike displays skews
(negative slope) or smile shapes. The existence of smiles/skews suggests that the Log-Normal
assumption of the underlying process (Black&Scholes (1973)) should be relaxed to develop a more
general class of models. In the literature, we have the class of one factor models such as the local
volatility models which assume the dependence of volatility on both time and underlying or the
more ambitious two factor stochastic volatility models assigning a separate stochastic component
to the volatility. Although any given market smile and skew can be fitted quite well with the
local volatility models, Hagan et al. (2002) pointed out their poor dynamics that predict wrong
movements of the smiles as the underlying moves. This fact implies that even simple derivatives
can only be hedged properly with the stochastic volatility models.

We will study one of the most frequently used stochastic volatility models in practice: the
SABR model that was originally proposed in Hagan et al. (2002). It is widely used to model
the forward price of the stock or the forward LIBOR/Swap rates in the fixed income market.
The model is essentially a stochastic volatility extension of the constant elastic of variance (CEV)
model (studied in Schroder (1989) and Cox (1996)) with a lognormal specification of the volatility
process. In Hagan et al. (2002), the authors use singular perturbation techniques to obtain explicit,
closed-form algebraic formulae for the implied volatility enabling very efficient implementation of
the model on a daily basis. The quality of this so-called SABR formula is quite satisfactory given
short maturity and strikes not so far from the current underlying. It becomes much poorer for
pricing the long dated options or strikes on the wing. In addition, the formula itself has an internal
flaw, i.e. implied volatilities for long maturity computed by this formula usually imply negative
density of the underlying at very low strike.

A number of other approaches have been developed in the current literature to improve the ap-
proximation of the SABR model. Two common techniques are singular perturbation (e.g. Hagan
et al. (2002), Hagan et al. (2005) and Wu (2010)) and heat kernel expansion (e.g. Henry-Labordere
(2005) and Paulot (2009)). Our method, which is based on a probabilistic framework, focuses on
the marginal distribution of the underlying at maturity to arrive at the required implied volatili-
ties. Once we fit an appropriate approximation to the underlying’s marginal distribution, implied
volatilities can be immediately recovered by inverting the option prices and we do not have the
problem regarding negative density as in Hagan et al. (2002).
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While the idea is conceptually clear, developing an effective framework for it is not straight-
forward. One reason is from the solution of the SDE for the underlying process. For the Normal
and Log-Normal versions of the SABR model where we are able to write the explicit solutions in
distribution for the SDE, the correlation parameter causes the presence of both terminal volatility
and realized variance leading to a challenging high dimensional problem. Some authors, hence,
assume zero correlation to remove this difficulty and then only the realized variance needs to be
considered. This assumption, however, gives rise to a much more restricted SABR model. We keep
the general correlation structure but build up our approximation by conditioning the underlying’s
distribution on the terminal volatility and approximating this distribution. The resulting approx-
imate conditional distribution (with correct mean and variance) has to be theoretically appealing
(close to the true distribution) but simple enough to allow for computational efficiency. We propose
the Normal and Normal Inverse Gaussian distributions for such purposes.

Another challenge for our approach is the CEV structure of the SABR model which admits no
explicit solution. In order to find a way around this, we study the simpler displaced diffusion (DD)
model where our previously mentioned method can be applied. The DD models (first studied in
Rubinstein (1983)) are the simplest way of incorporating skews even without stochastic volatility in
finance literature. Despite the difference between the two models’ dynamics, Marris (1999) noted
that for a certain model parametrization the option prices and implied volatilities produced by the
deterministic CEV and DD models are almost identical across a wide range of strikes and maturities.
The comparison is studied further in Svoboda-Greenwood (2009). See also Rebonato (2002) for a
discussion on the CEV and DD models for the interest rate area. Other authors, thereby, adopt
the more tractable DD structure with the intuition based on the CEV in the stochastic volatility
setting without having investigated the connection between them, e.g. Joshi & Rebonato (2003),
Piterbarg (2005) and Larsson (2010). In this paper, we attempt to fill in this gap in literature at
least numerically with the aim of transferring the intuition from the CEV to DD version of the
SABR model for which one can derive an approximation with much less effort.

The paper is organized as follows. Section 2 compares the SABR model and its displaced
diffusion version with the mapping connecting them numerically. We develop our approximation in
section 3 where we quote the appropriate formulae and match the parameters for implementation.
In section 4, we numerically investigate the quality of our approximation in conjunction with other
approximations and Monte Carlo simulations. Section 5 concludes the paper.

2 SABR model

Under the SABR model, the dynamics of the underlying asset is given by:

dFt = σtF
β
t dWt β ∈ [0, 1],

dσt = νσtdZt ν > 0, (2.0.1)

where Wt and Zt are correlated Brownian motions such that dWtdZt = ρdt for all t ≤ T with
ρ ∈ [−1, 1]. The model assumes that the underlying process is already a (local) martingale∗ under
some equivalent martingale measure.

Each parameter in the SABR model has a specific role in determining the shapes of the skews
and smiles. Hagan et al. (2002) was the first to point out these roles through their SABR formula
which will be introduced in section 3.2.2. The parameter β has a primary effect on the skew, i.e.

∗When β = 1 and ρ > 0, the underlying process is not a martingale.
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reducing β from 1 to 0 gives rise to more negative (downward) slope of the implied volatility curves.
Furthermore, Hagan et al. (2002) also mentioned that β determines the “backbone” which is the
curve that the at the money (ATM) volatility traces as F0 varies. Often, one extracts β from
historical data and fixes it upfront for certain markets. It is also noted in Hagan et al. (2002) that
market smiles can be fit equally well with any specific value of β. For our later model analysis, we
will separate the SABR model into three sub-models:

1. β = 0: this model is referred to as the Normal SABR model.

2. β = 1: this model is referred to as the Log-Normal SABR model.

3. β ∈ (0, 1): this model is referred to as the CEV-SABR model.

The ρ-parameter in the SABR model has a similar impact on the skew, i.e. more negative ρ enables
a more downward sloping curve. Therefore, ρ is often chosen to match the skew. It also features in
general market practice that the implied volatility curves exhibit different levels of curvature. Large
curvature usually occurs for short dated options while the smiles tend to flatten out as maturity
increases. For that reason, ν known as Volvol (volatility of volatility) is always considered alongside
with the market given parameter T (maturity). Finally, the initial volatility σ0 has a unique role
of matching up the ATM implied volatility which corresponds to the most liquid option in any
market.

2.1 A displaced diffusion version of the SABR model

The non-stochastic CEV model is known to enable a very flexible modelling of volatility skew.
Despite this advantage, the CEV structure lacks closed-form solution and numerically it is not very
straightforward to implement. The same difficulties also apply to the CEV-SABR model. For our
method, we use a much simpler alternative model with the same capability as the CEV-SABR
model. In practice, the DD model has been posited for such purpose since it is equally capable of
capturing the skews. A further advantage which makes practitioners prefer this model is the fact
that the DD structure is very similar to the Log-Normal structure which admits an explicit form
for the terminal distribution of the underlying and can be easily handled. Therefore, we study the
DD version of the SABR model (DD-SABR) which is specified by the following SDEs

dFt = σ̂t(Ft + θ)dWt,

dσ̂t = νσ̂tdZt,

dWtdZt = ρdt. (2.1.1)

The CEV-SABR and DD-SABR models become comparable via the following mapping

σ̂t = σtβF
β−1
0 ,

θ = F0
1− β
β

.

It is well known that in the deterministic volatility case (ν = 0), the forward dynamics in (2.0.1) and
(2.1.1) with the above mapping are very similar and implied volatilities produced by the two models
are almost identical across a wide range of strikes. This mapping was first discussed in Marris (1999)
and studied further in Svoboda-Greenwood (2009). It was then widely adopted by other authors
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and practitioners even in the stochastic volatility setting without having been investigated. Note
that the mapping is perfect when β = 1 for which the DD-SABR model collapses to the Log-Normal
SABR model. For the rest of the paper, the DD-SABR model is always equipped with the mapping
to match the intended CEV-SABR model.

Having chosen to work with the DD-SABR model, we want to stress the importance of the
CEV-SABR one and compare the two models numerically for completeness. We will split our
comparison into two parts. The first part is about the mapping quality when strikes are near the
money while the second one focuses on the wing behaviour. The reason is that the SABR model
best represents the market given strikes not too far from the current underlying level. When pricing
long-dated options, both models tend to break down in the wings since each of them has its own
shortcomings. In our comparison, we only look at the smiles exhibited by the two models when
their ATM volatilities are matched as this is the comparison that matters in practice.

2.1.1 Near the money

We have systematically investigated the mapping under different regimes and scenarios when strikes
are not far from at the money. In the results presented here, the parameters are taken to be
consistent with our later numerical study and representative enough so that similar results are
expected to hold for all cases.

Figure 2.1 illustrates the effects of both ν and T on the mapping. For up to medium long
maturity (15 years) and low Volvol ν (0.3), the mapping is quite accurate with errors recorded to
be very small across all strikes. The maximum error is about 60 basis points (bp) at the lowest
strike. When Volvol is higher, the DD-SABR model displays more curvature on the smiles but the
differences still remain acceptably small (maximum 100 bp). We then take the maturity to be very
long (20 and 30 years) with low Volvol ν as usually expected in practice (figure 2.2). The resulting
plots show that the mapping starts breaking down as the shapes of two implied volatility curves
are not entirely in line with each other. The DD-SABR model produces progressively steeper skews
while the CEV-SABR’s curves tend to kick up at the right wing, i.e. leading to positive errors for
low strikes and negative errors for large strikes. This effect becomes much more significant when we
deal with strikes that are far from at the money. The rare cases of high Volvol and long maturity
are not presented here but one observes that similar effects hold throughout.
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Figure 2.1: Effects of maturity T and Volvol ν on the mapping when the ATM are matched.
Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-CEV: CEV-SABR MC solution, MC-DD:
DD-SABR MC solution, Errors: MC-DD minus MC-CEV.
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Figure 2.2: Effect of very long maturity T on the mapping when the ATM are matched. Parameters:
β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90.

We mentioned that both ρ and β affect the skew. In figure 2.3, it is seen that the correlation
parameter ρ does not really affect the mapping and the error curves look almost identical. On the
other hand, β as illustrated in figure 2.4 has a stronger influence and the mapping tends to be less
accurate for smaller β. This makes sense since perfect mapping is obtained as β approaches one.
For low value of β, the displaced diffusion coefficient θ is large enabling more probability mass to
be assigned to negative values of FT while the absorbing barrier of the CEV structure also plays a
more significant role.
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Figure 2.3: Effect of ρ on the mapping when the ATM are matched. Parameters: β = 0.5, T =
10, ν = 0.3, σ0 = 130%, F0 = 90.
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Figure 2.4: Effect of β on the mapping when the ATM are matched. Parameters: ρ = −0.2, T =
10, ν = 0.3, F0 = 90, σ0 is chosen for each case so that the ATM are comparable.

2.1.2 Implied volatilities in the wings

We have further investigated the behaviour in the wings. In the results presented here, the pa-
rameters are taken to represent typical market swaption smiles of different maturities (figure 2.5).
We chose to work with swaption data as strikes being far from at the money is observed more
often in the interest rate market. While high strikes are not really a problem, the gap between
two models gets bigger as the strike gets lower. When the strike is sufficiently low (ATM - 200
bp), the error can approach 3 to 4% which is quite significant in practice. For increasing maturity
(20 and 30 years), the mapping completely breaks down for “ATM - 200 bp” strike even with very
low ν. This fact was addressed in Svoboda-Greenwood (2009) in detail. The author argues that
even in the deterministic volatility setting, the mapping may work well given the assumption that
forward interest rates are “not too low” and their percentage volatilities are “reasonable”. When
such assumption fails, a greater portion of the probability density function is likely to fall in the
negative rates region for the DD process while a large part of the distribution is absorbed at zero for
the CEV process over intermediate maturities. These effects become more pronounced for longer
maturity. We report these results for the data used in figure 2.5 in table 2.1. For the 20 year
maturity case, it is seen that around a quarter of the mass is given to the absorbing barrier and a
fifth to the negative rates region. Therefore, the mapping can no longer be justified. We want to
stress that this is not really a problem as both models are not good enough in practice here.

In the next section, we derive an approximation for the models (excluding CEV-SABR). Note
that with these models practitioners are only interested in around the ATM region. From that
perspective, the approximation is useful for all different asset classes including interest rates.
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Figure 2.5: Implied volatilities under different models. Parameters: β = 0.5, ρ = −0.2, σ0 =
4.30%, 3.80%, 4.10%, 3.70% as maturity increases respectively.

T 5 Y 10 Y 20 Y 30 Y

CEV-SABR 5.18 % 9.77% 25.85% 30.15%
DD-SABR 4.03 % 7.67% 19.47% 22.60%

Table 2.1: Probability mass assigned to the absorbing barrier (CEV-SABR) and the negative rates
region (DD-SABR) for the four cases considered in figure 2.5 (computed by direct Monte Carlo
simulation).

3 A probabilistic approximation

3.1 Approximating the terminal distribution

By the fundamental pricing formula and tower property, today’s numeraire-rebased price of a
Vanilla call option struck at some strike K is given by

C0(K,F0) = E
[
(FT −K)+

]
= E

[
E{(FT −K)+|σT }

]
. (3.1.1)

Assuming that we have in mind some distribution for FT |σT : the conditional distribution of FT
given σT (see sections 3.2 and 3.3), then the conditional expectation above can be evaluated as a
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double integral. Recall that σT has a known Log-Normal distribution as the SDE it solves has an
explicit solution. To keep the notation simple and transparent, we introduce the process s that
represents the level of assets and function g(.) to transform it back to the underlying process F ,
i.e. Ft = g(st). As the first stepping stone, we will write down the exact solutions in distribution
to the SDE for our reference models (see Appendix A for details).

• Normal SABR:

sT , F0 +
ρ

ν
(σT − σ0) +

√
1− ρ2V

1
2
T G,

g(s) = s. (3.1.2)

• Log-Normal SABR:

sT , lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G,

g(s) = es. (3.1.3)

• DD-SABR:

sT , ln(F0 + θ) + βF β−1
0

ρ

ν
(σT − σ0)− 1

2
β2F 2β−2

0 VT + βF β−1
0

√
1− ρ2V

1
2
T G,

θ = F0
1− β
β

,

g(s) = es − θ. (3.1.4)

Here VT :=
∫ T

0 σ2
t dt is the realized variance and G is a standard Normal random variable indepen-

dent of σT and VT . We aim to approximate the conditional distribution of sT |σT by replacing it
with some suitable random variable with the same conditional mean and variance. In each case,
the realized variance VT plays a central role in our calculation and analysis so we will treat its
moments separately in the following proposition.

Proposition 1 Assume that the dynamics of the volatility is governed by a Log-Normal process
with Volvol ν > 0, i.e. dσt = νσtdZt where Z is a Brownian motion. The first two conditional
moments of the realized variance VT have the following analytical expressions:

E(VT |σT ) =
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) , (3.1.5)

E(V 2
T |σT ) = −σ

4
0

√
T

4ν3

(
1 + e2 ln(σT /σ0)

) [Φ( ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)

+
σ4

0

√
T

4ν3

[
Φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
) , (3.1.6)

where φ(.) and Φ(.) are the Normal density and cumulative distribution functions respectively.

Proof : Appendix B.
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3.2 Normal approximation

We first consider the Normal distribution for the approximation of sT |σT as it appears to be very
tractable and efficient to use in practice. Another motivation for choosing the Normal distribu-
tion comes from an earlier numerical investigation in Mitra (2010). In this work, the conditional
distribution of sT |σT was seen to be quite close to Normal through examination of the Q-Q plots
(see section 3.3 for further discussion). In order to implement this approximation, we first need to
calculate the exact conditional mean and variance of sT

µ(σT ) = E(sT |σT ),

η2(σT ) = Var(sT |σT ),

and then replace the conditional distribution of sT |σT by a Normal random variable with mean
µ(σT ) and variance η2(σT ). One will then be able to calculate the call option prices by (3.1.1) and
obtain the implied volatilities. The analytical formulae for µ(σT ) and η2(σT ) are quoted in the
following proposition.

Proposition 2 : The conditional mean and variance of sT for the reference models are given by
the following closed-form expressions:

• Normal SABR:

µ(σT ) = F0 +
ρ

ν
(σT − σ0),

η2(σT ) = (1− ρ2)
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) . (3.2.1)

• Log-Normal SABR and DD-SABR:

µ(σ̂T ) = ln(F0 + θ) +
ρ

ν
(σ̂T − σ̂0)− σ̂2

0

√
T

4ν

[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
) ,

η2(σ̂T ) =
σ̂2

0

√
T

2ν

(
(1− ρ2)−

(σ̂2
T + σ̂2

0)

8ν2

) [Φ( ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)

+
σ̂4

0

√
T

16ν3

[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ 2ν
√
T
)

− σ̂
4
0T

16ν2


[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)

2

, (3.2.2)

where

θ = F0
1− β
β

,

σ̂t = σtβF
β−1
0 .

Proof : By Proposition 1 and direct calculations (see Appendix C for more details). Clearly, the
formulae in (3.2.2) for the Log-Normal SABR model is obtained when β = 1.
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3.2.1 Implementation: advantages and disadvantages

We apply the formulae derived in the last section to the direct calculations of Vanilla call option
prices for all strikes. Since there is a one to one correspondence between the volatility process σ
and its driving Brownian motion Z (through the SDE of σ)

ZT =
ln(σT /σ0) + 1

2ν
2T

ν
,

ZT ∼ N (0, T ),

we can also express the conditional mean and variance in terms of ZT . Consequently, the inner
conditional expectation in (3.1.1) has the equivalent expression E

[
(FT −K)+|ZT

]
and (3.1.1) now

reads

C0(K,F0) =

∫ ∞
−∞

E[(g(sT )−K)+|ZT = x]fZT (x)dx,

where g(.) is the appropriate transformation for the chosen β and fZT (x) = e−
x2

2T /
√

2πT is the
probability density function of ZT . After some direct calculations we obtain:

1. Normal SABR:

C0(K,F0) =

∫ ∞
−∞

[√
η2(x)φ

(
K − µ(x)√

η2(x)

)
+ (µ(x)−K)

(
1− Φ

(
K − µ(x)√

η2(x)

))]
e
−x2
2T

√
2πT

dx.

(3.2.3)

2. Log-Normal SABR:

C0(K,F0) =

∫ ∞
−∞

[
eµ(x)+

η2(x)
2 Φ

(
µ(x) + η2(x)− lnK√

η2(x)

)
−KΦ

(
µ(x)− lnK√

η2(x)

)]
e
−x2
2T

√
2πT

dx.

(3.2.4)

Remark 1 : For the DD-SABR model, we have exactly the same formula as (3.2.4) with K replaced
by K + θ.

Both (3.2.3) and (3.2.4) are simple one-dimensional integrals and can therefore be evaluated easily
by some efficient numerical routine. We want to emphasize this point because we think it is crucial.
Although the Normal approximation, as we shall see later, does not appear to be the best choice
theoretically, it is the only one that could compete with other asymptotic approximations in terms
of computational time and this is an important consideration for any practical model. Consequently,
one should always look at the regimes when it works well and not so well. Despite its convenience
and simple form, the Normal approximation admits a potential numerical problem as described in
the following remark.

Remark 2 : For both the Log-Normal SABR and DD-SABR models, E(V 2
T |σT ) and hence η2(σT )

become very large when ν2T is large can be observed from equation (3.1.6). For certain parameter
choices, the growth rate of E[(g(sT )−K)+|ZT = x] in equation (3.2.4) is not balanced by the rate
of decay of fZT (x) and hence, leads to the numerical divergence of the integral. This problem can
be illustrated by the following figure

12



Figure 3.1: The integrand of (3.2.4) as a function of σT . Left plot: β = 1, ρ = −0.5, F0 = 90,K =
90, T = 10, ν = 0.3, σ0 = 15%, right plot: β = 1, ρ = −0.5, F0 = 90,K = 90, T = 15, ν = 0.6, σ0 =
15%.

As a result, prices can not be calculated correctly when the numerical convergence fails. In
principle, one can do the following

C0(K,F0) =

∫ ∞
−∞

E[(g(sT )−K)+|ZT = x]
e
−x2
2T

√
2πT

dx

≈
∫ z

z
E[(g(sT )−K)+|ZT = x]

e
−x2
2T

√
2πT

dx,

where z and z are the appropriate lower and upper limits for the numerical integration. For some
regimes of large ν2T , z cannot be chosen to give the numerical convergence. In practice, one can
truncate the integral at a much lower z to avoid this issue as the volatility process is unlikely to hit
a very high level at maturity. If the truncated value is too low, the density function will have to be
re-normalized, that is

C0(K,F0) =

∫ z

z
E[(g(sT )−K)+|ZT = x]f̃ZT (x)dx,

f̃ZT (x) =
e
−x2
2T∫ z

z e
−u2
2T du

.

3.2.2 A comparison with other approximations

We briefly review some attempts made by other authors to approximate the SABR model and
compare them with the Normal approximation in terms of implied volatility. We want to single
out those that have already been tested numerically. Table 3.1 gives a brief overview of various
approximations labeled by authors for all sub-models.
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Authors Normal SABR Log-Normal SABR CEV-SABR DD-SABR

Hagan et al. (2002) tested tested tested not tested
Obloj (2008) tested tested tested not available
Paulot (2009) not tested not tested tested not available

Johnson et al. (2009) not available tested not tested not available
Wu (2010) tested tested tested not available

Larsson (2010) tested tested not available tested

Table 3.1: Check list of the most current approximations for the SABR model.

The SABR formula in Hagan et al. (2002) is the original and, perhaps, the most popular
amongst the listed works in this table owing to its algebraic closed-form expression. Henceforth,
we take the SABR formula as the benchmark approximation for our comparison. In the SABR
formula, the Black implied volatility σB(K,S0) for a Vanilla call (or put) option written on the
forward price S struck at some strike K has the following form

σB(K,F0) =
σ0

(F0K)(1−β)/2
{

1 + (1−β)2

24 ln2 F0
K + (1−β)4

1920 ln4 F0
K + ...

} ( z

x(z)

)
{

1 +

[
(1− β)2

24

σ2
0

(F0K)1−β +
1

4

ρβσ0ν

(F0K)
1−β
2

+
2− 3ρ2

24
ν2

]
T + ...

}
, (3.2.5)

where

z =
ν

σ0
(F0K)(1−β)/2 ln

F0

K
,

x(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (3.2.6)

The ATM Black implied volatility reduces to

σB(F0, F0) = σ0F
β−1
0

{
1 +

[
(1− β)2

24

σ2
0

F 2−2β
0

+
1

4

ρβσ0ν

F 1−β
0

+
2− 3ρ2

24
ν2

]
T + ...

}
. (3.2.7)

We borrow the same technique † to derive an equivalent Black implied volatility formula for the
DD-SABR model (see Appendix D)

σB(K,F0) = σ̂0

√
(F0 + θ)(K + θ)√

F0K

(
1 + 1

24 ln2 F0+θ
K+θ + 1

1920 ln4 F0+θ
K+θ + . . .

1 + 1
24 ln2 F0

K + 1
1920 ln4 F0

K + . . .

)(
z

x(z)

)
{

1 +

[
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}
, (3.2.8)

†We take into account the main criticism of the SABR formula pointed out in Obloj (2008) whilst deriving this
formula.
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where

z =
ν

σ̂0
ln
F0 + θ

K + θ
,

θ = F0
1− β
β

,

σ̂0 = σ0βF
β−1
0 ,

and x(z) has the same form as (3.2.6). For the special case of the ATM option, the formula reduces
to

σB(F0, F0) = σ̂0
F0 + θ

F0

{
1 +

[
2θ/F0 + θ2/F 2

0

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}

= σ0F
β−1
0

1 +

21−β
β + (1−β)2

β2

24
σ2

0β
2F 2β−2

0 +
1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

T + . . .


= σ0F

β−1
0

{
1 +

[
1− β2

24

σ2
0

F 2−2β
0

+
1

4

ρβσ0ν

F 1−β
0

+
2− 3ρ2

24
ν2

]
T + . . .

}
. (3.2.9)

For the rest of the paper, we will refer to (3.2.8) and (3.2.9) as the DD-SABR formula. One can
immediately recognize a lot of similarities between this formula and the SABR formula given strikes
near the money and short maturity. A systematic comparison of the Normal approximation with
the SABR and DD-SABR formulae will be addressed in section 4. Meanwhile, we summarize the
results of other established approximations in conjunction with the SABR formula and emphasize
the Normal approximation’s superiority.

Most of the approximations listed in table 3.1 fail or lose their precision when T > 10 years even
with low ν, e.g. both Wu (2010) and Larsson (2010) focus on maturity less than 5 years or Paulot
(2009) completely breaks down for ν2T > 1.6. The reason is that most of the techniques (singular
perturbation or heat kernel expansion) are based on the assumption of small total volatility ν2T ‡

to allow for accurate asymptotic expansions up to the second order. As discussed in section 3.2.1,
the total volatility ν2T also affects the Normal approximation to some extent. An intuitive reason
for this adverse effect is that a larger value of ν2T will push the true conditional distribution
of sT |σT further away from Normal. However, in the results presented in section 4, the Normal
approximation is shown to perform quite well for the Normal SABR model up to 30 years maturity
or very large ν2T ≈ 10.8. For the other sub-models, it works well up to 15 years maturity or
ν2T ≈ 1.8. A further advantage of the Normal approximation over the current approaches is that
it always yields a proper density function for the underlying while the other techniques sometimes
result in negative density at the low strike region for long maturity, e.g. the SABR formula. This
issue is addressed in Obloj (2008) and Johnson et al. (2009) but the problem still remains.

3.3 Normal Inverse Gaussian approximation

As hinted previously, the true conditional distribution of sT |σT can be far from Normal for some
parameter sets. We track down this flaw by looking at the Q-Q plots of the standardized conditional

‡Other authors usually use ε = ν
√
T as the perturbation parameter. Theoretically, they require this parameter

to be much smaller than 1 to give precise results, e.g. Hagan et al. (2002), Hagan et al. (2005) and Wu (2010). In
practice, such requirement can only be satisfied for very short maturity (less than 10 years).
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sample of sT |σT against the standard Normal distribution. In figure 3.2, the results show that even
when the Normal approximation works, the true conditional distribution displays much heavier
tails than the Normal distribution. We even observe more left skewness as σT gets bigger.

Figure 3.2: Normal Q-Q plots: standardized conditional samples of sT |σT against the standard
Normal distribution. Common parameters: β = 1, ρ = −0.5, F0 = 90, σ0 = 5%. left plot: T =
15, ν = 0.3, σT = 5%, right plot: T = 15, ν = 0.3, σT = 50%.

The breakdown of the Normal approximation for certain parameter choices leads us to a further
investigation of a more flexible distribution which can capture the skewness and heavy tails. We
propose the Normal Inverse Gaussian (NIG) distribution for such purpose. NIG is quite popular in
finance, especially in the financial econometrics literature, for instance Barndorff-Nielsen (1997).

Under the NIG approximation, we assume

sT |σT ∼ NIG(α̂, β̂, µ̂, δ̂),

where the parameters are to be chosen. The NIG density function is defined as follows:

fNIG(s; α̂, β̂, µ̂, δ̂) =
α̂

δ̂
exp(δ̂

√
α̂2 − β̂2 − β̂µ̂)

K1

(
α̂δ̂
√

1 + ( s−µ̂
δ̂

)2
)

√
1 + ( s−µ̂

δ̂
)2

exp(β̂s), (3.3.1)

where s ∈ R and each parameter has a specific role: α̂ > 0 determines the tail heaviness of the
distribution, δ̂ > 0 is the scale parameter, µ̂ ∈ R is the location parameter, and |β̂| < α̂ controls
the asymmetry of the distribution. The function K1(.) is the modified Bessel function of the third
kind with index 1. The Gaussian distribution is obtained as α̂→∞. Despite the involvement of a
number of free parameters, the process of matching them to the intended distribution is actually
very straightforward as we shall see later.
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3.3.1 Matching Parameters

We now describe an efficient way to match the NIG parameters. We use the fact that a NIG random
variable X can be expressed as the Normal variance-mean mixture form:

X = µ̂+ β̂Y +
√
Y G, (3.3.2)

where the mixing random variable Y follows an Inverse Gaussian (IG) distribution (see Barndorff-
Nielsen (1997)) and G is a standard Normal random variable that is independent of Y . If

Y ∼ IG(δ̂,

√
α̂2 − β̂2),

E(Y ) =
δ̂√

α̂2 − β̂2

,

Var(Y ) =
δ̂(√

α̂2 − β̂2

)3 ,

then
X ∼ NIG(α̂, β̂, µ̂, δ̂).

Therefore, matching the mean and variance of the mixing random variable is adequate to capture
those of the corresponding NIG random variable. It is clear from (3.1.2) and (3.1.4) that conditioned
on σT , sT will have a similar form as (3.3.2). We will now express the NIG parameters in terms of
σT .

• For β = 0: the mixing random variable is (1 − ρ2)VT |σT . We first match the location and
asymmetry parameters

µ̂(σT ) = F0 +
ρ

ν
(σT − σ0),

β̂(σT ) = 0.

• For 0 < β ≤ 1: the mixing random variable is (1−ρ2)β2F 2β−2
0 VT |σT . Similarly, we have that

µ̂(σT ) = ln(F0 + θ) +
ρ

ν
βF β−1

0 (σT − σ0),

β̂(σT ) = − 1

2(1− ρ2)
.

It now remains to derive δ̂(σT ) and α̂(σT ) by matching the conditional mean and variance of the
mixing random variable, i.e.

• For β = 0

δ̂(σT )√
α̂2(σT )− β̂2(σT )

= (1− ρ2)E(VT |σT ),

δ̂(σT )(√
α̂2(σT )− β̂2(σT )

)3 = (1− ρ2)2Var(VT |σT ).
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• For 0 < β ≤ 1

δ̂(σT )√
α̂2(σT )− β̂2(σT )

= (1− ρ2)β2F 2β−2
0 E(VT |σT ),

δ̂(σT )(√
α̂2(σT )− β̂2(σT )

)3 = (1− ρ2)2β4F 4β−4
0 Var(VT |σT ).

As there are only two unknowns, solving the above simultaneous equations is a straightforward
task.

3.3.2 Implementation: two-dimensional integration

Unlike the Normal approximation, we have to perform a two-dimensional integration in order to
compute the Vanilla call prices using the NIG approximation. Note that as the NIG parameters
can be expressed in terms of ZT , we have that

C0(K,F0) =

∫ ∞
−∞

∫ ∞
−∞

(g(s)−K)+fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds
e−

x2

2T

√
2πT

dx

=

∫ ∞
−∞

∫ ∞
g−1(K)

(g(s)−K)fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds
e−

x2

2T

√
2πT

dx, (3.3.3)

where g(.) (specified in (3.1.2), (3.1.3) and (3.1.4)) is the appropriate transformation and g−1(.)
denotes its inverse. Although the above double integral could be a bottleneck in computation and
numerically more expensive than the Normal approximation, the implementation scheme is actually
quite straightforward. We apply the Simpson’s rule, which is found sufficient to give the numerical
convergence, to evaluate both the inner and outer integrals. When numerically integrating the
outer integral, the upper limit z (discussed in the implementation for the Normal approximation)
can be taken to be quite comfortably large and we do not have the same problem as the Normal
approximation. This is because the growth rate of the inner integral is much slower than the rate
of decay of fZT (·). Consequently, their product always tends to zero in the tails of distribution of
ZT . The lower limit z, on the other hand, has to be chosen with more care. For short maturity, if
too low a value of z is taken, the NIG parameters can be undefined. This is not really a problem
as very small probability mass is assigned to those small values. However, for longer maturity z
has to be sufficiently small to preserve the probability mass.

Efficiency: One can improve the efficiency of the NIG implementation by the following scheme.
Recall that the inner integral of (3.3.3) has the following form

I(x,K) =

∫ ∞
g−1(K)

(g(s)−K)fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds

where fNIG is given by (3.3.1). For ease of exposition, we write fNIG(s; α̂, β̂, µ̂, δ̂) instead of
fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x)) but implicitly mean the dependence of the NIG parameters on x.
By change of variable, we set

y := α̂δ̂

√
1 +

(
s− µ̂
δ̂

)2

.
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Hence

I(x,K) =

∫ ∞
l̃(x,K)

H(y,K; α̂, β̂, µ̂, δ̂)K1(y)dy,

where

l̃(x,K) = α̂δ̂

√
1 +

(
g−1(K)− µ̂

δ̂

)2

,

H(y,K; α̂, β̂, µ̂, δ̂) = h̃(y,K) exp

(
δ̂

√
α̂2 − β̂2

)
exp(β̂(s− µ̂))

δ̂2

√(
y

α̂δ̂

)2
− 1

h̃(y,K) = g

µ̂+ δ̂

√(
y

α̂δ̂

)2

− 1

−K,
s− µ̂ = δ̂

√(
y

α̂δ̂

)2

− 1.

It can be easily checked that H(.) is a smooth function in y for each fixed set of the NIG parameters
and strike K. Therefore, one can approximate H(.) by a piecewise polynomial of the form

H(y,K) =

m∑
n=0

[an(x)−Kbn(x)]yn

⇒ I(x,K) ≈
m∑
n=0

[an(x)−Kbn(x)]

∫ ∞
l̃(x,K)

ynK1(y)dy

where the coefficients {an(x), bn(x)}mn=0 depend on the NIG parameters. Thus, one can implement
the NIG approximation as follows

• For a grid of x values, store the coefficients {an(x), bn(x)}mn=0.

• For a grid of l∗ values, store the values of the integral
∫∞
l∗ y

nK1(y)dy.

• For a given strike K, calculate I(x,K) by using li which is the nearest value of l∗ to l̃(x,K),
i.e. li−1 ≤ l̃(x,K) < li∫ ∞

l̃(x,K)
ynK1(y)dy =

∫ li

l̃(x,K)
ynK1(y)dy +

∫ ∞
li

ynK1(y)dy,

where
∫ li
l̃(x,K)

ynK1(y)dy can be evaluated by polynomial interpolation between the grid values

li−1 and li.

With the above numerical scheme, one can improve the computational efficiency of the two-
dimensional integration. Note that this method can also be applied to other European payoff
structures.
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4 Numerical study

In this section, we investigate the quality of the approximations developed in this paper. It is
known that both the Normal and Log-Normal SABR models can be implemented quite well with
the SABR formula so we will compare the Normal and NIG approximations with this formula.
Similarly for the DD-SABR model, we will test them against the DD-SABR formula.

We take the Monte Carlo solutions (denoted MC for both the Normal and Log-Normal SABR
models, and MC-DD for the DD-SABR model) of the SDEs as a natural benchmark to compare
all the approximations against. In our numerical study, the initial volatility σ0 is first chosen to
represent the level of the true ATM implied volatility (≈ σ0F

β−1
0 ). We force all the ATM implied

volatilities produced by the approximations to be the same as the Monte Carlo ATM by adjusting
σ0 and compare errors along the wings as practitioners do in practice.

4.1 Normal SABR

We consider the typical parameter values: β = 0, ρ = −0.1, F0 = 90, σ0 = 9 for varying maturities
T . Since the Normal and NIG approximations work very well for the Normal SABR model, as
we shall see in the coming plots, we present our results for the large Volvol cases only and better
results are expected to hold for typical market volatility regimes.

The effect on the near the money implied volatility region as maturity increases is illustrated
by figure 4.1

20



-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 10

SABR

MC

Normal

NIG

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 15

SABR

MC

Normal

NIG

-3.00%

-1.00%

1.00%

3.00%

5.00%

7.00%

9.00%

11.00%

13.00%

15.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 20

SABR

MC

Normal

NIG

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 30

SABR

MC

Normal

NIG

Figure 4.1: Effects of maturity within a high Volvol regime on the Normal and NIG approximations.
Other parameters: β = 0, ρ = −0.1, F0 = 90, ν = 0.6, σ0 = 9. The dashed curve of the same colour
indicates the errors of the corresponding approximation.
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Strike
Maturity 30 60 70 80 90 100 110 120 150

10Y SABR 4.81 2.43 1.44 0.54 0.00 0.19 0.76 1.34 2.64
Normal -2.40 -1.00 -0.63 -0.25 0.00 -0.12 -0.39 -0.62 -0.97

NIG 1.66 0.79 0.54 0.26 0.00 0.15 0.36 0.49 0.67

15Y SABR 6.97 3.48 2.06 0.77 0.00 0.29 1.13 1.98 3.91
Normal -2.87 -1.08 -0.66 -0.26 0.00 -0.10 -0.36 -0.60 -0.99

NIG 2.85 1.21 0.83 0.40 0.00 0.14 0.41 0.59 0.85

20Y SABR 8.30 4.36 2.59 0.96 0.00 0.39 1.48 2.57 5.09
Normal -3.61 -1.19 -0.71 -0.27 0.00 -0.09 -0.34 -0.58 -1.03

NIG 3.33 1.37 0.99 0.54 0.00 0.02 0.27 0.43 0.67

30Y SABR 9.19 6.05 3.62 1.35 0.00 0.62 2.22 3.81 7.47
Normal -5.03 -1.20 -0.69 -0.27 0.00 -0.05 -0.26 -0.48 -0.93

NIG 8.67 2.30 1.62 0.92 0.00 -0.96 -1.15 -1.15 -1.11

Table 4.1: Fitting errors, in percentages, against strike and maturity for β = 0, ν = 0.6, ρ =
−0.1, F0 = 90, σ0 = 9 (approximation implied volatility minus MC volatilities).

Comments on the accuracy of approximations: for β = 0,

• The SABR formula starts losing precision for T ≥ 10 years while the Normal and NIG
approximations still perform quite well and remain relatively close up to 30 years maturity.
All the approximations perform worse on the left wing of the implied volatility curves but
the errors are still acceptably small for the Normal and NIG approximations (table 4.1). The
errors only become substantial when we consider 30 years maturity and low strike (30). Note
that in this case, ν = 0.6 represents a highly stress market condition for T = 10, 15, 20 and
30 years.

• The Normal approximation does not display enough curvature while the SABR formula shows
the opposite. The plots show that it is always a lot closer to the MC solution than the SABR
formula on both wings. Furthermore, the errors of the Normal approximation are recorded
to be very stable across maturities.

• Similar to the Normal approximation, the NIG approximation works well up to very long
maturity even within a high volatility regime, i.e. very high ν2T ≈ 10. As maturity increases
from 20 years to 30 years, the implied volatility curve produced by the NIG approximation
becomes progressively steeper. It is observed in this case that the Normal approximation is
a better choice than the NIG approximation.

4.2 Log-Normal SABR and DD-SABR

Since the Log-Normal SABR and DD-SABR models yield a lot of similarities in structure, we
present their numerical results together and single out the volatility regimes when each individual
approximation performs well. We consider the typical parameter values:

• β = 1, F0 = 90, ρ = −0.5, σ0 = 15%.
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• β = 0.5, F0 = 90, ρ = −0.2, σ0 = 130%.

Figure 4.2 displays the moderate maturity cases where the Normal approximation still performs
quite well.
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Figure 4.2: Effects of moderate maturity within a low Volvol regime on the Normal and NIG
approxmations. Common parameters: ν = 0.3, F0 = 90, top: β = 1, σ0 = 15%, ρ = −0.5, bottom
β = 0.5, σ0 = 130%, ρ = −0.2. The dashed curve of the same colour indicates the errors of the
corresponding approximation.

When we consider very long maturity or higher Volvol regime with moderate maturity cases
(ν2T > 1.8), the Normal approximation breaks down due to the reason in remark 2. Although
we apply the truncation method mentioned in remark 2, the “Normal” curves are still well above
the others. Since the approximation is too far from the true solution, matching the ATM for these
cases is a very difficult task. The NIG approximation, on the other hand, still gives very good fits
for these cases as illustrated by figures 4.3 and 4.4.
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Figure 4.3: Effects of very long maturity within a low Volvol regime on the NIG approximation.
Common parameters: ν = 0.3, F0 = 90, top: β = 1, σ0 = 15%, ρ = −0.5, bottom: β = 0.5, σ0 =
130%, ρ = −0.2. The dashed curve of the same colour indicates the errors of the corresponding
approximation.

24



-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 15,  = 0.6

DD-SABR

MC-DD

NIG

Figure 4.4: Effect of high ν2T (stress volatility regime) on the NIG approximation. Parameters:
β = 0.5, ν = 0.6, S0 = 90, σ0 = 130%, ρ = −0.2. The dashed curve of the same colour indicates the
errors of the corresponding approximation.

Comments on the accuracy of approximations: for 0 < β ≤ 1

• As β varies from 1 to 0, the Normal and NIG approximations perform better.

• The SABR formula starts breaking down when T ≥ 10 years or ν2T ≥ 0.9 as the left and
right wings of implied volatility curves are not in line with the MC solutions. On the contrary,
the Normal approximation maintains similar shape and therefore fits the MC curves much
better than the SABR formula for these cases. It works well up to 15 years and only breaks
down for very long maturity or ν2T > 1.8.

• The NIG approximation seems to work well up to ν2T ≈ 3.6 and 5.4 for β = 1 and 0.5
respectively with the error plots having the lowest magnitude compared with the others.
These upper bounds for ν2T are obtained from the following case analysis:

– Low Volvol (ν ≈ 0.3): the NIG approximation performs well up to 30 years maturity
for β = 0.5 and slightly away from the MC solution for β = 1. Note that in this case,
ν ≈ 0.3 is the typical market volatility regime for T ≥ 20 years.

– High Volvol (ν ≈ 0.6): it starts breaking down when T > 15 years for β = 0.5 and
T > 10 years for β = 1. The plots show that the errors are reasonably small with
slightly wrong curvature. In this case, ν ≈ 0.6 represents the stress volatility regime for
moderate maturity.

Remark 3 In the interest rate area, it is essential to question how the model and the approxi-
mations behave for very low rates. As one can expect, the Normal and NIG approximations also
assign some positive probability mass to the negative rates region for the DD-SABR model. In ta-
ble 4.2, we display the mass assigned to negative rates for both approximations and compare with
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exact (MC-DD) results for the cases considered in section 2.1.2. It is seen from this table that the
mass given by the NIG approximation and the MC-DD solution are very close while that given by
the Normal approximation is a bit higher. This supports our findings in this section that the NIG
approximation is closer in distribution to the MC-DD solution than the Normal approximation.

T 5 Y 10 Y 20 Y 30 Y

MC-DD 4.03 % 7.67% 19.47% 22.60%
Normal 4.37% 8.22% 22.06% 24.91%

NIG 4.29% 7.49% 18.36% 21.73%

Table 4.2: Probability mass assigned to the negative rates region for the four cases considered in
figure 2.5.

5 Conclusions

Using an entirely probabilistic framework, we have derived a new approximation for the terminal
distribution of the underlying asset. In our method, the main objective is to model the asset’s
distribution at the maturity date rather than the implied volatilities themselves. This is necessary
if we want to extend the approximation to the pricing of more exotic derivatives. The results show
that simple approximations which allow for ease of computation are rich enough to capture the
model’s terminal distribution. The benchmark models we considered in this paper are the SABR
model and the DD-SABR model. In section 2, we find that the CEV-SABR and the DD-SABR
model with chosen matching parameters produce very similar implied volatility curves provided
that maturity is not too long. Although they are not as close for other cases, we still can work with
both models to achieve similar objectives.

In our numerical study, we compare the Normal and NIG approximations with the SABR
formula for β = 0, 1 and the DD-SABR formula for β = 0.5. When β = 0, both the Normal and
NIG approximations work very well up to 30 years maturity. In the considered stress cases, the
Normal approximation is always better than the SABR formula and remains relatively close to the
NIG approximation. Due to its more efficient implementation, the Normal approximation proves
to be a very good choice for the Normal SABR model. For β > 0, the Normal approximation starts
losing its precision (slightly away from the true solution) and fails for long maturities (after 20 years)
or stress cases (high ν2T ). However, within its working regimes the Normal approximation still
remains better than the SABR formula. We, therefore, conclude that the Normal approximation
offers a competitive choice of fitting smiles/skews for short to medium long maturities and normal
market condition. The NIG approximation proves to be the best choice here since it outperforms
the (DD-)SABR formula and the Normal approximation under all different market scenarios, e.g.
normal market condition up to 30 years maturity and stress condition up to 15 years maturity.
It also appears to be more theoretically appealing than the Normal approximation although the
implementation is slightly trickier to handle. In conclusion, the method addressed in this paper
offers a potentially good approach to other SDE formulations which are more capable of exploring
to the whole term structure of smiles.
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A Distribution of FT under the Log-Normal SABR model

The SDE of the Log-Normal SABR model is

dFt = σtFtdWt,

dσT = νσtdZt,

dWt = ρdZt +
√

1− ρ2dŴt,

where Z and Ŵ are independent Brownian motions. By Itô’s lemma, we have that

lnFT = lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2

∫ T

0
σtdŴt, (A.0.1)

where VT :=
∫ T

0 σ2
t dt. Let Mt :=

∫ t
0 σudŴu and FT = σ(Zu : 0 ≤ u ≤ T ) be the σ-algebra generated

by the Brownian motion Z over the time horizon of the option. It is clear that MT |FT ∼ N (0, VT ).
By considering the conditional moment generating function (m.g.f) of MT , we have that

E
(
eaMT

∣∣FT ) = e
1
2
a2VT

= E
(
eaV

1
2
T G
∣∣FT) ,

where G ∼ N (0, 1) and G is independent of FT . Consider the m.g.f of lnFT

E(ea lnFT ) = E
[
E
{

exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2MT

)) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT

))
E
{

exp
(
a
√

1− ρ2MT

) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT

))
E
{

exp

(
a
√

1− ρ2V
1
2
T G

) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G

))]
,

by using the tower and “taking out what is known” properties. Hence

lnFT , lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G.

The same steps follow in both the Normal SABR and DD-SABR models to obtain (3.1.2) and
(3.1.4) respectively.

B Proof of Proposition 1: conditional moments of the realized
variance VT

To calculate E(VT | σT ) and E(V 2
T | σT ) we use the concept of a Brownian Bridge. By Itô’s lemma,

we have that:

ZT =
ln(σT /σ0) + 1

2ν
2T

ν
. (B.0.2)
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Hence, if σT is known, the value of the end point ZT is immediate.
Conditional on ZT , we have a Brownian bridge whose values at time zero and T are known.

Define

Zt|ZT , ZT
t

T
+ (Bt −

t

T
BT ); 0 ≤ t ≤ T (B.0.3)

where Bt is a standard one-dimensional Brownian motion then Zt|ZT is a Brownian bridge from 0
to ZT on [0, T ] (Karatzas & Shreve (1991)). It then follows from equation (B.0.3) that

Zt|σT = Zt|ZT ∼ N
(
t

T
ZT , t−

t2

T

)
, (B.0.4)

and it has the following covariance function for 0 ≤ t, s ≤ T

Cov(Zt, Zs|σT ) = t ∧ s− ts

T
. (B.0.5)

B.1 First conditional moment of VT

The conditional expectation of the realized variance can now be written in the following form:

E(VT | σT ) = E
[∫ T

0
exp

(
2 lnσ0 − ν2t+ 2νZt

)
dt | σT

]

= σ2
0 exp


[
ν
√
T

2 + ZT√
T

]2

2

√πT

2
ν−1

×

[
Φ

(
3ν
√
T

2
− ZT√

T

)
− Φ

(
−ν
√
T

2
− ZT√

T

)]
, (B.1.1)

where Φ is the cumulative normal distribution function. Plugging back (B.0.2) to (B.1.1), we obtain

E(VT | σT ) =
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) , (B.1.2)

where φ(y) = e
−y2
2√
2π

.

B.2 Second conditional moment of VT

We now evaluate the second conditional moment of the realized variance.

E(V 2
T | σT ) = E

[
2

∫ T

0

∫ t

0
σ2
t σ

2
sdsdt | σT

]
= 2σ4

0

∫ T

0

∫ t

0
exp

(
−ν2(t+ s) + 2ν

t+ s

T
ZT + 2ν2

(
t− t2

T
+ s− s2

T
+ 2s− 2
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T

))
dsdt

= 2σ4
0
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0
exp(−4ν2t)

∫ t

0
exp

−4ν2 (t+s)2

T − 22ν(t+s)√
T

(
5ν
√
T

2 + ZT√
T

)
2

 dsdt. (B.2.1)
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By completing the square and change of variable u = 2ν(t+s)√
T
−
(

5ν
√
T

2 + ZT√
T

)
in the inner integral

of (B.2.1), we have that
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The above integral can be evaluated by integration by parts∫ T

0
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T
− 3ν

2

√
T
)2

2

 dt. (B.2.2)

By change of variable v = 4νt−ZT√
T
− 3ν

2

√
T in (B.2.2), we find that∫ T

0
exp(−4ν2t)Φ(g1(t))dt =

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T

+
3ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

4ν2
exp


(

3ν
√
T

2 + ZT√
T

)2

2
−

(
5ν
√
T

2 + ZT√
T

)2

2


×
[
Φ

(
−ZT√
T

+
5ν

2

√
T

)
− Φ

(
−ZT√
T
− 3ν

2

√
T

)]
.

Similarly,∫ T

0
exp(−4ν2t)Φ(g2(t))dt =

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T
− ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

4ν2
exp
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ν
√
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2 + ZT√
T

)2

2
−

(
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√
T

2 + ZT√
T

)2

2


×
[
Φ

(
−ZT√
T

+
3ν

2

√
T

)
− Φ

(
−ZT√
T
− ν

2

√
T

)]
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Putting all the pieces together we obtain

E(V 2
T | σT ) = −σ

4
0

√
T

4ν3

(
1 + e2 ln(σT /σ0)

) [Φ( ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)

+
σ4

0

√
T

4ν3

[
Φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
) . (B.2.3)

C Proof of proposition 2: conditional mean and variance of sT

We prove the Log-Normal SABR case only as similar calculations apply to other models. The
conditional mean of sT is

µ(σT ) = E(sT |σT )

= lnF0 +
ρ

ν
(σT − σ0)− 1

2
E(VT |σT ) +

√
1− ρ2E(V

1
2
T G|σT ). (C.0.4)

Recall that FT = σ(Zu : 0 ≤ u ≤ T ). It follows that

E(V
1
2
T G|σT ) = E(E(V

1
2
T G|FT )|σT )

= E(V
1
2
T E(G|FT ) | σT )

= E(V
1
2
T E(G) | σT )

= 0.

Hence

µ(σT ) = lnF0 +
ρ

ν
(σT − σ0)− 1

2
E(VT |σT ). (C.0.5)

The conditional variance of sT :

η2(σT ) = Var(sT |σT )

=
1

4
Var(VT |σT )−

√
1− ρ2Cov(VT , V

1
2
T G|σT ) + (1− ρ2)Var(V

1
2
T G|σT ). (C.0.6)

Similarly, the covariance term in (C.0.6) can be expressed as

Cov(VT , V
1
2
T G|σT ) = E(V

3
2
T G|σT )− E(VT |σT )E(V

1
2
T G|σT )

= E(V
3
2
T G|σT )

= 0,

and the last term in (C.0.6) is

Var(V
1
2
T G|σT ) = E(VTG

2|σT )− [E(V
1
2
T G|σT )]2

= E(VTG
2|σT )− 0

= E(VT |σT ),
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again using the tower property and noting that E(G2) = 1. Hence

η2(σT ) =
1

4
E(V 2

T |σT )− 1

4
[E(VT |σT )]2 + (1− ρ2)E(VT |σT ). (C.0.7)

Given the formulae from the previous appendix, the results follow immediately.

D DD-SABR equivalent Black implied volatility

In this appendix, we derive an equivalent Black implied volatility formula for the DD-SABR model
using the techniques developed in Hagan et al. (2002) but with a few modifications from later
literature, e.g. Hagan et al. (2005), Obloj (2008). We start with a more general form of the SABR
model:

dFt = σ̂tC(Ft)dWt,

dσ̂t = νσ̂tdZt,

dZtdWt = ρdt,

where the function C(u) is is assumed to be positive, smooth and integrable around 0:∫ x

0

du

C(u)
<∞, x > 0.

Equation (B.65) in appendix B of Hagan et al. (2002) yields the equivalent Black implied volatility
for the above model:

σB(K,F0) =
σ̂0 lnF0/K∫ F0

K
du
C(u)

(
z

x(z)

)
× (D.0.8)

{
1 +

[
2γ2 − γ2

1 + 1
F 2
av

24
σ̂2

0C
2(Fav) +

1

4
ρνσ̂0γ1C(Fav) +

2− 3ρ2

24
ν2

]
T + . . .

}
.

Here

Fav =
√
F0K, (D.0.9)

γ1 =
C
′
(Fav)

C(Fav)
, (D.0.10)

γ2 =
C
′′
(Fav)

C(Fav)
, (D.0.11)

and

z =
ν

σ̂0

F0 −K
C(Fav)

,

x(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
,

where z
x(z) basically represents the main effect of the stochastic volatility. The fraction z

x(z) is taken
to be 1 for the ATM case in the limit sense for proper ATM calibration. There are quite a few
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criticisms of this function z, e.g. Obloj (2008). We use a more general form of z as proposed in
Hagan et al. (2005).

z =
ν

σ̂0

∫ F0

K

du

C(u)
. (D.0.12)

Note that for this choice of z, implied volatilities obtained by this approximation coincide with
Berestycki et al. (2004) and Obloj (2008) for the CEV-SABR model. We now turn our attention
to the DD-SABR model as introduced in the main paper. The model is the special case:

C(Ft) = Ft + θ,

θ = F0
1− β
β

,

σ̂0 = σ0βF
β−1
0 .

Making this substitution in (D.0.10), (D.0.11) and (D.0.12) we obtain:

γ1 =
1√

F0K + θ
,

γ2 = 0,

z =
ν

σ̂0
ln
F0 + θ

K + θ
.

Substituting further in (D.0.8), we get:

σB(K,F0) =
σ̂0 lnF0/K

ln(F0 + θ)/(K + θ)

(
z

x(z)

)
{1 +M · T + . . . },

M =
−1/(

√
F0K + θ)2 + 1/(F0K)

24
σ̂2

0(
√
F0K + θ)2 +

1

4
ρνσ̂0

1√
F0K + θ

(
√
F0K + θ)

+
2− 3ρ2

24
ν2

=
−1 + (

√
F0K + θ)2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

=
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

We can simplify this formula by expanding§

(F0 + θ)− (K + θ) =
√

(F0 + θ)(K + θ) ln
F0 + θ

K + θ

{
1 +

1

24
ln2 F0 + θ

K + θ
+

1

1920
ln4 F0 + θ

K + θ
+ . . .

}
,

F0 −K =
√
F0K ln

F0

K

{
1 +

1

24
ln2 F0

K
+

1

1920
ln4 F0

K
+ . . .

}
.

Hence, the implied volatility formula now reads

σB(K,F0) = σ̂0

√
(F0 + θ)(K + θ)√

F0K

(
1 + 1

24 ln2 F0+θ
K+θ + 1

1920 ln4 F0+θ
K+θ + . . .

1 + 1
24 ln2 F0

K + 1
1920 ln4 F0

K + . . .

)(
z

x(z)

)
{1 +

[
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . . }.

§We use Hagan’s technique with the assumption that the strike K is not so far away from F0
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For the special case of ATM options, we first take the limit

lim
K→F0

lnF0/K

ln(F0 + θ)/(K + θ)
=
F0 + θ

F0
, (D.0.13)

and hence the formula reduces to

σB(F0, F0) = σ̂0
F0 + θ

F0

{
1 +

[
2θ/F0 + θ2/F 2

0

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}

= σ0F
β−1
0

1 +

21−β
β + (1−β)2

β2

24
σ2

0β
2F 2β−2

0 +
1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

T + . . .


= σ0F

β−1
0

{
1 +

[
1− β2

24
σ2

0F
2β−2
0 +

1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

]
T + . . .

}
.
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