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ABSTRACT Recently the SABR model has been developed to manage the option smile which is
observed in derivatives markets. Typically, calibration of such models is straightforward as there
is adequate data available for robust extraction of the parameters required asinputs to the model.
The paper considers calibration of the model in situations where input data is very sparse.
Although this will require some creative decision making, the algorithms developed here are
remarkably robust and can be used confidently for mark to market and hedging of option
portfolios.
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Why another Skew Model?

Vanilla OTC European options or European futures options are priced and often

hedged using respectively the Black–Scholes or Black model. In these models there is

a one-to-one relation between the price of the option and the volatility parameter s,

and option prices are often quoted by stating the implied volatility simp, the unique

value of the volatility which yields the option price when used in the formula. In the

classical Black–Scholes–Merton world, volatility is a constant. But in reality, options

with different strikes require different volatilities to match their market prices. This is

the market skew or smile. Typically, although not always, the word skew is reserved

for the slope of the volatility/strike function, and smile for its curvature.

Handling these market skews and smiles correctly is critical for hedging. One

would like to have a coherent estimate of volatility risk, across all the different

strikes and maturities of the positions in the book.

The development of local volatility models in Dupire (1994, 1997), Derman &

Kani (1994), Derman et al. (1996) and Derman & Kani (1998) was a major advance

in handling smiles and skews. Another crucial thread of development is the
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stochastic volatility approach, for which the reader is referred to Hull & White

(1987), Heston (1993), Lewis (2000), Fouque et al. (2000), Lipton (2003), and finally

Hagan et al. (2002), which is the model we will consider here.

Local volatility models are self-consistent, arbitrage-free, and can be calibrated to

precisely match observed market smiles and skews. Currently these models are the

most popular way of managing smile and skew risk. Possibly they are often preferred

to stochastic volatility models for computational reasons: the local volatility models

are tree models; to price with stochastic volatility models typically means Monte

Carlo. However, it has recently been observed (Hagan et al., 2002) that the dynamic

behaviour of smiles and skews predicted by local volatility models is exactly opposite

the behaviour observed in the marketplace: local volatility models predict that the

skew moves in the opposite direction to the market level, in reality, it moves in the

same direction. This leads to extremely poor hedging results within these models, and

the hedges are often worse than the naive Black model hedges, because these naive

hedges are in fact consistent with the smile moving in the same direction as the

market.

To resolve this problem, Hagan et al. (2002) derived the SABR model. The model

allows the market price and the market risks, including vanna and volga risks, to be

obtained immediately from Black’s formula. It also provides good, and sometimes

spectacular, fits to the implied volatility curves observed in the marketplace. More

importantly, the SABR model captures the correct dynamics of the smile, and thus

yields stable hedges.

The Model

Stochastic volatility models are in general characterized by the use of two driving

correlated Brownian motions, one which determines the increments to the

underlying process and the other determines the increments to the volatility process.

For example, the model of Hull & White (1987) can be summarized as follows:

dF~wF dtzsF dW1 ð1Þ

ds2~ms2 dtzjs2 dW2 ð2Þ

dW1 dW2~r dt ð3Þ

where w, m and j are time and state dependent functions, and dW1 and dW2 are

correlated Brownian motions.

Similarly, the model of Heston (1993) proceeds with the pair of driving equations

dF~mF dtzsF dW1 ð4Þ

ds~{bs dtzd dW2 ð5Þ

dW1 dW2~r dt ð6Þ

where this time, m, b and d are constants.
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As another example, the models of Fouque et al. (2000) are variations on the

following initial set-up:

dF~mF dtzsF dW1 ð7Þ

dy~a m{yð Þdtzb dW2 ð8Þ

dW1 dW2~r dt ð9Þ

where this time a, m and b are constants, and for example y5lns. Here, the process

for y is a mean reverting Ornstein–Uhlenbeck process.

The model we consider here is known as the stochastic abr model, or SABR

model. Here

dF~aF b dW1 ð10Þ

da~va dW2 ð11Þ

dW1 dW2~r dt ð12Þ

where the factors F and a are stochastic, and the parameters b, r and v are not.

a is a ‘volatility-like’ parameter: not equal to the volatility, but there will be

a functional relationship between this parameter and the at the money

volatility, as we shall see in due course. The constant v is to be thought of

as the volatility of volatility, a model feature which acknowledges that

volatility obeys well-known clustering in time. The parameter b g [0, 1] determines

the relationship between futures spot and at the money volatility: b<1 indicates

that the user believes that if the market were to move up or down in an

orderly fashion, the at the money volatility level would not be significantly

affected. b%1 indicates that if the market were to move then at the money

volatility would move in the opposite direction. The closer to 0 the more pro-

nounced would be this phenomenon. Furthermore, the closer b is to 1

(respectively, 0) the more lognormal- (respectively, normal-) like is the stochastic

model.

The Option Pricing Formula

A desirable feature of any local or stochastic volatility model is that the model will

reproduce the prices of the vanilla instruments that were used as inputs to the

calibration of the model. Material failure to do so will make the model not arbitrage

free and render it almost useless.

A significant feature of the SABR model is that the prices of vanilla instruments

can be recovered from the model in closed form (up to the accuracy of a series

expansion). This is dealt with in detail in Hagan et al. (2002, Appendix B).

Essentially it is shown there that the price of a vanilla option under the SABR model
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is given by the appropriate Black formula, provided the correct implied volatility is

used. For given a, b, r, v and t, this volatility is given by:

s X , Fð Þ~
a 1z
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Although the formula appears fearsome, it is closed form, so practically

instantaneous. This formula of course can be viewed as a functional form for the

volatility skew, and so, when this volatility skew is observable, we have some sort of

error minimisation problem, which, subject to the caveats raised in Hagan et al.

(2002), is quite elementary. The thesis of this article is the same calibration problem

in the absence of an observable skew, in which case, we need a model to infer the

parametric form of the skew given a history of traded data.

Note as in Hagan et al. (2002) that if F5X then the z and x(z) terms are removed

from the equation, as then z
x zð Þ~1 in the sense of a limit1, and so

s F , Fð Þ~
a 1z
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The Market we Consider for this Analysis

We consider the equity futures market traded at the South African Futures

Exchange. For details of the operation of this market the reader is referred to

SAFEX (2004), West (2005, Chapter 10).

This market is characterized by an illiquidity that is gross compared to other

markets. We will focus on the TOP40 (the index of the biggest shares, as determined

by free float market capitalisation and liquidity) futures options contracts. Contracts

exist for expiry in March, June, September and December of each year. Among

these, the following March contract is the most liquid, along with the nearest

contract. Nevertheless, the March contract only becomes liquid in anything like a

meaningful manner about two years before expiry. Packages of options on the

March 2004 contract traded a total of perhaps 800 times, for which there were about
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double that number of different strikes. (By a package, we mean not only a single

trade, but a collar, butterfly, condor, etc.) The full set of strike and volatility history

is not published. Nevertheless, we sourced, via one of the largest brokers, a

significant portion of the history (possibly 70% or more), which we have taken as a

representative sample for the purposes of building our model.

Despite this, there is a significant derivatives market, chiefly comprising over the

counter structures sold by the merchant banks to asset and other wealth managers.

The banks need to hedge their exposures, and they do a significant amount of this in

the exchange market. Furthermore, as is usual, the relevant models of the skew,

which will be applied equally to over-the-counter products as well as exchange

traded products, will be parameterized via exchange traded information. Thus it is

necessary to have a robust model of the derivative skew for mark to market and

hedging of positions.

Until April 2001 SAFEX calculated margin requirements on a flat volatility. At

that time a skew was introduced into the mark to market and margining of exchange

positions, although most players were aware of the skew and had (and have) models

of the skew since significantly before that time.2 The construction of the skew was

initially supposed to be via an auction system, but has become merely a monthly

poll, of moneyedness and corresponding addition or subtraction of volatility basis

points, from the quoted at the money volatility. So here we note explicitly that bids

and offers for the usual set of at and away from the money strikes simply do not exist

in this market. Being merely a poll, the derivatives desks do not have to ‘put their

money where their mouth is’ concerning their contribution to the poll, and so,

although not grossly inaccurate, it is common knowledge that the exchange quoted

skew cannot be used for trading, and by preference should not be used for mark to

market (although many risk/back office/audit functions, in order to satisfy the

requirement of sufficient independence from the front office, might do so). It is the

scenario described here that led to the requirement from some major players in the

South African market for an ‘accurate’ and ‘objective’ skew construction

methodology, which the model described here is aimed at providing.

One point that needs to be noted here is that futures options are American and

fully margined, that is, the buyer of options does not pay an outright premium for

the option, but is subject to margin flow, being the difference in the mark to market

values on a daily basis. It can be shown (see West, 2005, Chapter 10) that the

appropriate option pricing formula in this setting is

VC~FN d1ð Þ{XN d2ð Þ ð17Þ

VP~XN {d2ð Þ{FN {d1ð Þ ð18Þ

d1,2~
ln F

X
+ 1

2
s2t

s
ffiffiffi
t
p ð19Þ

t~T{t ð20Þ
It can be shown that it is sub-optimal to exercise either calls or puts early, and so

one should not be surprised that the option pricing formula are ‘Black like’ even
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though the option is American. Furthermore, the fact that the options are fully

margined has the attractive consequence that the risk-free rate does not appear in the

pricing formulae. This is indeed fortunate as the South African yield curve itself is

subject to a paucity of data compared to many markets, and hence may require some

art in construction, which will typically be proprietary.

The Interpretation of Parameters

The b Parameter

As in Hagan et al. (2002), (16) shows that

ln s F , Fð Þ~ln a{ 1{bð Þln Fz � � � ð21Þ

and so the value of b is estimated from a log-log plot of s(F, F) and F. Some

empirical analysis suggests that the value of b depends on time regimes: whether the

contract is far, middle, or near to expiry. (We use these terms informally. By far, we

mean about two years to expiry, near is perhaps six months or less, middle is in

between.) The contract does not trade meaningfully until at least two years to expiry;

although the underlying futures may trade, there will be little or no option activity.

See Figure 1 where we see that the quality of a fitted regression line as in (21) would

very much depend on a data selection criterion. This naturally suggests a time

weighted regression, very much as for exponentially weighted moving average

volatility calculations.3 In Figure 2 we show the resultant evolution of the b value

and the evolution of the correlation coefficient, which is also calculated using time

weighting.

One feature we can note is that the value of b deteriorates towards 0 as the

contract draws to expiry. This was a feature found to be common to all expiries.

Figure 1. A log–log plot for the March 04 contract.
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An analysis of the March 05 contract will be included later, in a further analysis,

where we will see that there is an argument – as in Hagan et al. (2002) – to simply

choose a value of b, and stick with it for the entire life of the contract.

The a Parameter

This parameter is calibrated to the level of at-the-money volatility. There is perhaps a

common perception amongst some market participants that it is the at-the-money

volatility. However, what one rather does is retool the SABR model to have the

at-the-money volatility as an input and that the correct value of a be calculated

internally. Thus, as the at-the-money volatility has a term structure and changes

frequently, so too does the value of a, albeit ‘invisibly’.

To obtain a from satm, we invert (16). Doing so, we easily see that a is a root of the cubic

1{bð Þ2t

24F2{2b
a3z

rbvt

4F 1{b
a2z 1z

2{3r2

24
v2t

� �
a{satmF1{b~0 ð22Þ

where we are assuming that we have already solved for r and v. For typical

parameter inputs, this cubic has only one real root, but it is perfectly possible for it to

have three real roots, in which case we seek the smallest positive root.4 One wants a

rapid algorithm to find a to double precision, as then when in code finding the skew

volatility for an option which is in fact at-the-money, one recovers the at-the-money

volatility exactly. We use the Tartaglia method (as published by Cardano in the 16th

century!) to find the desired real root. For this, we use the implementation and code

in Press et al. (1992, Section 5.6). See Weisstein (1999–2004) for a synopsis of the

history of these root-finding methods.

Having now reformulated the option skew with satm and not a as input (in other

words, a is not a constant), the skew volatility is in fact invariant under X
F

, in other

Figure 2. The evolution of the estimate of b for the March 04 contract.
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words s(X, F)5s(X/F, 1). Thus we can perform calibration on relative strikes rather

than absolute strikes. This is very convenient, as the trader should think in terms of

relative strikes.

It should be remarked that in an illiquid market such as the one we are

considering, even the at-the-money volatility can be a tenuous input. This is because

of the mark-to-market mechanism employed by the exchange. Even if new options
trade, if they are not near the money, the mark-to-market at-the-money volatility

will not be altered. Therefore, the sophisticated model user may, on a day by day

basis, wish to modify the at-the-money volatility input to this model, in order to

attempt to infer – from the away from the money options traded – at what level at-

the-money options would have traded if they had indeed done so. Of course, even

this is subject to error, not only because it is outright speculative, but because the

volatilities that were indeed dealt could be parts of packages, as we will see later.

Calibration to Existing Market Data

The calibration procedure is as follows: we fit b using the log–log plot. According to

Hagan et al. (2002), it may be appropriate to fit this parameter in advance, and never

change it. We will return to this point later.

The values of r and v need to be fitted. As already discussed, the value of F and the

value of satm are inputs, and given these and the values of r and v, a is no longer a

required input parameter.
It is possible to simply specify a discrete skew (input by the dealer) and find the

SABR model which best fits it. But we can be more ambitious, and ask ourselves to

find the SABR model which best fits given traded data, independently of any dealer

input as to the skew. Thus, we will not a priori have a discrete skew to which we

calibrate the SABR model; rather, we seek that SABR model which provides a best

fit to the traded data.

As already discussed, we fix in advance the value of b. Then, for any input pair (r,

v), we determine an error expression errr,v, which is a measure of the distance from
(optimally re-mapped) traded volatilities to the skew implied by these parameters.

The trades that have been observed in the market may be weighted for age, for

example, by using an exponential decay factor: the further in the past the trade is, the

less contribution it makes to the optimisation.

Then, we seek the minimum of these error expressions errr,v among all pairs (r, v),

for which we use the Nelder–Mead simplex search. See Press et al. (1992, Section

10,4). Also see Spradlin (2003) which we have used as a guide for implementing this

algorithm in two dimensions. The Nelder–Mead algorithm is a non-analytic search
method that is very robust. Note that the error expression is essentially non-

differentiable because it implicitly involves the root of a cubic (in other words, the

differentiation involved would be horrendous). Thus for the second procedure we

use a non-differentiable approach, for the first, all analytic procedures are available.

In this application both optimisation procedures are extremely rapid.

The Nelder–Mead method needs to have error traps built in: that 21(r(1 and

v.0. The method might ‘stray’ out of these bounds in the initial stages (of expansion,

for example). The first condition is achieved by collaring r within [21, 1] while the
second condition is ensured by bounding v below by 0.01, which suffices.
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For any input pair (r, v), the mapping procedure for historical trades will be as

follows.

Single Trades

A single trade for Q-many options made at date t1 trades at str : ~str F t1ð Þ, X , t1ð Þ.
If the trade had been done on the skew, it would have been done at a volatility of

smod : ~s F t1ð Þ, X , t1, satm t1ð Þ, r, vð Þ ð23Þ

The contribution to the error term errr,v (modulo weighting for age) will be

deemed to be

f ~ Qj jV smod
� �

str{smod½ �2 ð24Þ

where the symbol V refers to the vega of the option with that strike.5 This is a

sensible modelling method as the importance of the volatility parameter fit is

proportional to the vega of the option. Naturally, then, greater weight is given to

near the money options. This is most suitable in markets where options, when dealt,

are typically near the money.

Trade Sets

An issue which often arises, is that certain strategies (e.g. bull or bear spreads, butter-

flies, condors) trade for a pair, triple or quadruple of volatilities which may

appear off market. In reality it is the price of the strategy that is trading and so a

relevant set of volatilities may be found which is closer to the market than may at first

appear.

To achieve this, we first determine the price of the strategy, implemented at time t.

This is given by

P~
Xn

i~1

Qigi F tð ÞN gid
i
1

� �
{XiN gid

i
2

� �� �
ð25Þ

di
1,2~

ln
F tð Þ
Xi

+ 1
2

s t, Xið Þ2t

s t, Xið Þ
ffiffiffi
t
p ð26Þ

t~T{t ð27Þ

where T is the expiry date of the options and time is measured in years, gi5¡1 for a

call/put, Qi is the number of options traded at the ith strike as part of the strategy,

and s(t, Xi) is the quoted volatility for the ith strike.

We would like to re-map this to the identical strategy, with the same price, but

booked at different volatilities. These volatilities are found to be as close as possible

to the volatilities on the skew curve. Thus, we would like to minimize

f sfit
1 , sfit

2 , . . . , sfit
n

� �
~
Xn

i~1

Qij jV smod
i

� �
sfit

i {smod
i

� �2 ð28Þ
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where ‘fit’ denotes fitted volatilities and ‘mod’ denotes volatilities from the SABR
model, subject to

P~g sfit
1 , sfit

2 , . . . , sfit
n

� �
: ~

Xn

i~1

Qigi F tð ÞN gid
i
1

� �
{XN gid

i
2
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ð29Þ

di
1,2~

ln
F tð Þ
Xi

+ 1
2

sfit
i 2t

sfit
i

ffiffiffi
t
p ð30Þ

t~T{t ð31Þ

Once done, the value of f will contribute to errr,v. This minimization is done using

the method of Lagrange multipliers. In order to minimize

f sfit
1 , sfit

2 , . . . , sfit
n

� �
subject to

g sfit
1 , sfit

2 , . . . , sfit
n

� �
~P,

we solve the simultaneous set of equations

+f ~l+g ð32Þ

g sfit
1 , sfit

2 , . . . , sfit
n

� �
~P ð33Þ

which easily simplifies to

2 Qij jV smod
i

� �
sfit

i {smod
i

� �
{lQiV sfit

i

� �
~0 1ƒiƒnð Þ ð34Þ

g sfit
1 , sfit

2 , . . . , sfit
n

� �
{P~0 ð35Þ

Let V2 sið Þ~ L2Vi

Ls2
i

be the volga of the ith option. Note that

V sið Þ~F
ffiffiffi
t
p

N 0 di
1

� �
ð36Þ

V2 sið Þ~F
ffiffiffi
t
p

N 0 di
1

� � di
1di

2

si
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For convenience, put

Li~2 Qij jV smod
i

� �
ð38Þ

Ki~Lis
mod
i ð39Þ
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We have a system of n+1 non-linear equations in (sfit
1 , sfit

2 , . . . , sfit
n , and l) and

so we use the multi-dimensional Newton–Raphson method for this part of the

problem. (See, for example, Press et al., 1992, Section 9.6.) By the ‘economic’ nature

of the problem it is fairly clear that the zero is unique and that pathology will not

arise in the use of the Newton–Raphson method. Let x5(s1, s2, …, si, l) be the

unknown and required vector, where we have dropped the superscript ‘fit’. The

iteration is

x0~

smod
1

smod
1

..

.

smod
n

0

2
66666664

3
77777775

ð40Þ

xmz1~xm{J{1F ð41Þ

F~

L1s1{K1{lQ1V s1ð Þ
L2s2{K2{lQ2V s2ð Þ

..

.

Lnsn{Kn{lQnV snð Þ
g s1, s2, . . . , snð Þ{P

2
66666664

3
77777775

ð42Þ

J½ �ij~

Li{lQiV2 sið Þ
0

{QiV sið Þ
QjV sj

� �
0

if

if

if

if

if

i~jƒn

i=jƒn

iƒn, j~nz1

i~nz1, jƒn

i~j~nz1

8>>>>>><
>>>>>>:

ð43Þ

Here J is the Jacobean, the matrix of partial derivatives: J½ �ij~ LFi

Lxj
. The inverse of J

is found via the LU decomposition (Press et al., 1992, Section 2.3). Convergence is

very rapid.6 Thus, for any strategy booked, equivalent volatilities can be found

which are most compatible with the SABR model selected.

The error for the input pair (r, v) is the sum errr,v of the above errors, possibly

weighted for age. We then seek, amongst all r and v, the minimum of these

expressions, using the two-dimensional Nelder–Mead algorithm.

As one can see in Figure 3 – this result is typical – the choice of parameters is fairly

robust, with the minimum found at the bottom of a shallow valley. The skew one

obtains is in Figure 4.

As pointed out in Hagan et al. (2002), the idea is that the parameter selection

change infrequently (perhaps only once or twice a month) whereas the input values

of F and satm change as frequently as they are observed. This is in order to ensure

hedge efficiency.
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Figure 3. The error quantities for r and v.

Figure 4. The SABR model for March 2005 expiry, with traded (quoted) volatilities (##), and
with strategies recalibrated to a fitted skew (mmm), and the fitted skew itself (——). Historical
trades have simply been shifted by the difference in the then and current at-the-money volatility;
this is simply for graphical purposes. No ‘sticky’ rules are assumed in this analysis.
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We now consider the evolution of parameters for the Mar 05 contract. Once again,

the features that occur are typical. As has been mentioned, it can be argued that the use

of these algorithms to find the best parameters should not be undertaken too frequently.

We performed two analyses: in the first instance, the finding of the b parameter

every day, using the exponentially weighted regression methodology mentioned, and

then finding the consequential r and v. The evolution is shown in Figure 5. In the

second instance, we fixed by economic considerations a value of b570% throughout,

and again found the consequential r and v. The evolution is shown in Figure 6.

Interestingly, in the second instance, the parameters r and v only change

infrequently.7 This again may be a feature that favours the choice of a single b which,

Figure 6. The SABR model for March 2005 expiry, with constant b, and the estimated r and v.

Figure 5. The SABR model for March 2005 expiry, with estimated b, and the estimated r and v.
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in the absence of extraordinary events, remains constant throughout the life of the

contract: parameters remaining unchanged implies, as seen in Hagan et al. (2002),

lower hedging costs.
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Notes

1 Some care needs to be taken with machine precision issues here. One can have that z<0 and x(z)50 to

double precision. This needs to be trapped, and the limit result invoked, again putting z
x zð Þ~1.

2 Although significantly, not all. Real Africa Durolink, a smaller bank, but major player in the equity

derivatives market, failed within days of the introduction of the skew, as they were completely

unprepared for the dramatic impact the new methodology would have on their margin requirements. See

West (2005, Section 13.4).
3 The only difference here is that we do not make the assumption of zero means, which we do when using

returns to calculate volatilities. The implementation is elementary.
4 When there are three real roots, they are of the order of 21000, 1 and +1000. So we take the root of order

1.
5 Of course, some experimentation with the choice of the weight determined by the quantum is necessary.

One could choose Q2 for example, or indeed any positive weight. There will be no requirement for any

smoothness of the weight in what follows.
6 Note that the matrix will almost certainly not be of size greater than 565.
7 Of course, to very high precision they are always changing. Here we mean that they are unchanged up to

the (fairly high) precision that we chose in the Nelder–Mead algorithm.
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Appendix: Another Calibration Method

Here is an alternative calibration method: for every single trade or strategy, calculate

the premium that the trade or strategy was done at, as before. Now, for any given

input pair (r, v), the contribution of that trade or strategy to errr,v, is simply the

absolute value of the difference between this true premium and the premium at

which the trade or strategy would have been done if it had been done on the SABR

skew with that r and v, possibly weighted for age.

The best choice (r, v) is found using the Nelder–Mead algorithm, as before.
The Newton–Raphson algorithm does not feature here per se. The only place that

it will enter the analysis is if we wish to perform an analysis of the type as in

Figure 4: all strategies are ‘rebooked’ at the equivalent volatilities which are closest

to the model which has already been derived.
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