
Electronic copy available at: http://ssrn.com/abstract=1768802

Calibration and Monte Carlo Pricing of the
SABR-Hull-White Model for Long-Maturity

Equity Derivatives

Bin Chen∗, Lech A. Grzelak† and Cornelis W. Oosterlee‡

this version: February 23, 2011

Abstract

We model the joint dynamics of stock and interest rate by a hybrid SABR-Hull-
White model, in which the asset price dynamics are modeled by the SABR model [16]
and the interest rate dynamics by the Hull-White short-rate model [17]. We pro-
pose a projection formula, mapping the SABR-HW model parameters onto the pa-
rameters of the nearest SABR model. A time-dependent parameter extension of
this SABR-HW model is adopted to make the calibration of the model consistent
across maturity times. The calibration procedure is then finalized by employing the
weighted Monte Carlo technique [4]. The Monte Carlo weights are not uniform and
chosen to replicate the calibration market instruments.
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dependent parameters; weighted Monte Carlo method; unbiased Monte Carlo simulation.

1 Introduction

Equity derivative models and yield curve models have been developed indepen-
dent of each other for a long time. Whereas the equity derivative models have been fo-
cused on the implied volatility skew/smile by local or stochastic volatility features [11],
short-rate models improved the accuracy of the yield curve dynamics. With an increas-
ing interest in long-maturity equity derivatives, as well as in equity-interest rate hybrid
products from retail and long term institutional investors (see [18]), the industrial prac-
tice also demands models that are capable of describing joint dynamics of interest rates
and equity. Indeed, one would intuitively assert that the interest rate is stochastic and
that there is non-zero correlation between the interest rate and the equity.

In the present paper, we propose a hybrid extension of the Stochastic Alpha Beta
Rho (SABR) model [16] to model the joint equity-interest rate dynamics. We construct
a hybrid model, called the SABR-Hull-White (SABR-HW) model, in which the equity
process is driven by the SABR model and the interest rate by the short-rate model of
Hull-White [17]. In this framework the equity process is assumed to be correlated with
the interest rate process.

The SABR model, which is not often used in the equity derivative literature, has
several attractive features for the modeling of long term equity-linked products. It gen-
eralizes stochastic volatility models such as Heston’s model by introducing an explicit
stock price dependence in a local volatility term [21]. Further, the SABR model admits
an accurate closed-form approximation formula (“Hagan’s formula”) for the Black im-
plied volatilities which greatly simplifies calibration. Thirdly, the SABR process is, for
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certain parameter values, an absorbing process at the zero asset price boundary [10],
which models the fact that companies may default in time ([21]). Last but not least, the
parameters in the SABR model have a direct connection to market instruments or mar-
ket price features, in contrast to, for example, the speed-of-mean-reversion parameter
in the Heston model.

One contribution in this paper is an invertible projection formula of the constant
parameter SABR-HW model onto the plain SABR model. This formula enables a highly
efficient calibration of the constant parameter SABR-HW model based on the estab-
lished calibration procedure for the SABR model. The resulting calibration parameters
remain however only valid for a single maturity time and cannot provide a consistent
dynamic description of the underlying asset prices across multiple maturity times. We
deal with this issue by adopting a dynamical SABR(-HW) extension in the spirit of
Rebonato [24].

Moreover, we will use the well-known weighted Monte Carlo (WMC) technique,
proposed by Avellaneda et al. [4], as another stage of calibration of the SABR-HW
model. By this we can deal with the inconsistency between the true model dynam-
ics and those implied by Hagan’s asymptotic approximation formula (by which the
calibration instruments are quoted).

For the Monte Carlo simulation, we adopt an unbiased discretization for the SABR-
HW dynamics, which has some advantages over a basic Euler scheme as it remains
unbiased (i.e. stable and accurate) when large time steps are used (say 4 time steps per
year), see [10].

This paper is organized as follows. In Section 2, we define the dynamical SABR-
HW model and discuss the building blocks. We show how to project the constant
parameter SABR-HW dynamics onto a plain SABR model in Section 3. In Section 4, we
utilize this projection formula to calibrate the constant parameter version of the model.
We also show how to determine the time-dependent functions in the dynamical SABR-
HW model and use the WMC technique [4]. In Section 5, the unbiased Monte Carlo
simulation for the dynamical SABR-HW model is presented. Numerical experiments
for validation and calibration are discussed throughout the paper.

2 The Dynamical SABR-HW Model

This section describes the construction of the dynamical Stochastic Alpha Beta Rho
Hull-White (SABR-HW) equity-interest rate model. We assume efficient markets and
the existence of an equivalent martingale measure (EMM) Q when appropriate nu-
meraires need to be chosen.

2.1 Model Definition

We define the dynamical SABR-HW model in a similar fashion as Rebonato’s SABR-
LMM model [24] for forward rates. The full-scale dynamical SABR-HW model for
equity-interest rate products, under the Q-measure associated with money-saving ac-
count, dB(t) = r(t)B(t)dt, is given by:

dS(t)/S(t) = r(t)dt + Σ(t)Sβ−1(t)dWx(t), S(0) > 0,
dr(t) = λ(θ(t)− r(t))dt + ηdWr(t), r(0) > 0,
Σ(t) = g(t) · k(t), (2.1)

dk(t) = h(t)k(t)dWΣ(t), k(0) = 1,
dWx(t)dWσ(t) = ρx,σdt, −1 ≤ ρx,σ ≤ 1,
dWx(t)dWr(t) = ρx,rdt, −1 ≤ ρx,r ≤ 1

with constant parameters β, λ, η, ρx,r and ρx,σ, and appropriately chosen time-dependent
functions θ(t), g(t) and h(t). For simplicity, we assume here that the interest rates are
independent of the stochastic volatility, dWr(t)dWσ(t) = 0.
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For some additional insight in the functions g(t) and h(t), we derive the dynamics
for dΣ(t), which, by Itô’s lemma, are given by:

dΣ(t) ≡ d(g(t)k(t)) = k(t)dg(t) + g(t)dk(t) + dk(t)dg(t)

=
(

1
g(t)

dg(t)
dt

)
Σ(t)dt + h(t)Σ(t)dWΣ(t)

=
d log g(t)

dt
Σ(t)dt + h(t)Σ(t)dWΣ(t).

Overall this implies that the dynamics for the volatility can be defined as:

dΣ(t) = ĝ(t)Σ(t)dt + h(t)Σ(t)dWΣ(t),

with

ĝ(t) =
d log g(t)

dt
,

which means that we deal with a lognormal process with time-dependent drift and
volatility terms. The time-dependent g(t)-function replaces the constant σ(0) in the
SABR model. The h(t)-function has a similar effect as a (time-dependent) volatility-of-
volatility parameter.

The parameters will be discussed in the subsections to follow, and details of the
functions g(t) and h(t) are given in Section 4.2.

2.1.1 The Hull-White Model

One of the building blocks of hybrid model (2.1) is the Hull-White, single-factor,
no-arbitrage yield curve model in which the short-term interest rate, r(t), is driven by
an Ornstein-Uhlenbeck (OU) mean reverting process, with θ(t) > 0, t ∈ R+ a time-
dependent drift term, to fit theoretical bond prices to the yield curve observed in the
market. Parameter η determines the overall level of volatility and the reversion rate
parameter, λ, determines the relative volatilities.

Under the Hull-White model the dynamics of the zero-coupon bond, paying e1 at
maturity T, are given by:

dP(t, T)
P(t, T)

= r(t)dt +
η

λ

(
e−λ(T−t) − 1

)
dWr(t). (2.2)

Since the Hull-White model belongs to the class of affine diffusion processes, the solu-
tion of (2.2) is known analytically and reads:

P(t, T) = exp (A(t, T) + Br(t, T)r(t)) , (2.3)

with

Br(t, T) = 1
λ

(
e−λ(T−t) − 1

)
, (2.4)

A(t, T) = exp
(

log
(

P(0,T)
P(0,t)

)
− Br(t, T) f (0, t)− η2

4λ

(
1− e−2λt) (Br(t, T))2

)
, (2.5)

where f (0, t) := −∂P(0, t)/∂t with P(0, t) the market discount factor for maturity t.
By the Radon-Nikodým derivative [12],

dQT

dQ
=

P(t, T)
P(0, T)B(t)

, (2.6)

we find the following change of measure: dWT
r (t) = dWr(t)− ηBr(t, T)dt.

Short rate, r(t), under the T-forward measure is governed by the following dynam-
ics:

dr(t) =
(

λ(θ(t)− r(t)) + η2Br(t, T)
)

dt + ηdWT
r (t),
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which can be written as:

dr(t) = λ
(
θ̂(t)− r(t)

)
dt + ηdWT

r (t), (2.7)

with θ̂(t) = θ(t) + η2

λ Br(t, T), and Br(t, T) in (2.4). Since the process under the T-
forward measure in (2.7) is of ‘Hull-White form’, it is normally distributed [5] with
expectation and variance given by:

ET(r(t)) = r0e−λt + λ
∫ t

0
θ̂(s)e−λ(t−s)ds, (2.8)

VarT(r(t)) =
η2

2λ

(
1− e−2λt

)
. (2.9)

2.1.2 Constant Parameter SABR-HW model

The second building block of Model (2.1) is the Stochastic Alpha Beta Rho (SABR)
stochastic volatility model by Hagan [16].

The SABR SDE system with constant parameters was originally defined under the
T-forward measure:

dS(t) = σ(t)S(t)βdWT
x (t),

dσ(t) = γσ(t)dWT
σ (t),

(2.10)

with dWT
x (t)dWT

σ (t) = ρx,σdt.
One of the reasons why the original SABR model is not applied to equity deriva-

tives is that a drift term is lacking. Risk-neutral equity price processes are defined
with a drift term, and are assumed to be arbitrage-free under the risk-neutral measure
associated with the money-savings account. However, for long-maturity equity op-
tions and equity interest rate hybrids, industrial practice is to treat the interest rate as
a stochastic process as well. As shown below, when combining the Hull-White interest
rate model with the SABR equity model the drift term appears naturally in the SABR
equity dynamics under the risk neutral Q-measure:

dS(t)/S(t) = r(t)dt + σ(t)Sβ−1(t)dWx(t), S(0) > 0,
dσ(t) = γσ(t)dWσ(t), σ(0) > 0,
dr(t) = λ(θ(t)− r(t))dt + ηdWr(t), r(0) > 0,

(2.11)

with constant model parameters 0 < β < 1, γ > 0, λ > 0 and η > 0. As in System (2.1),
we assume non-zero correlations dWx(t)dWσ(t) = ρx,σdt, dWx(t)dWr(t) = ρx,rdt and
dWr(t)dWσ(t) = 0.

Since the interest rate diffusion coefficient in (2.11) is not explicitly dependent on the
interest-rate, it is convenient to move from the spot measure, generated by the money-
savings account, B(t), to the forward measure for which the numéraire is the zero-coupon
bond, P(t, T):

F(t) :=
S(t)

P(t, T)
, (2.12)

with the zero-coupon bond P(t, T) (Details are given in (2.3)).
By Itô’s lemma the dynamics of forward price, F(t), in (2.12) are given by:

dF(t)/F(t) =
(

η2B2
r (t, T)− ρx,rηBr(t, T)σ(t)Sβ−1(t)

)
dt

+σ(t)Sβ−1(t)dWx(t)− ηBr(t, T)dWT
r (t),

combined with the volatility process for σ(t) in System (2.11). Since the forward, F(t), is
a martingale under the T-forward measure, the forward dynamics should not contain a
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drift term. This implies that ”dt”-terms will not appear in the (reformulated) dynamics
of dF(t), i.e.:

dF(t) = σ(t)Fβ(t)
(

Pβ−1(t, T)dWT
x (t)− ηBr(t, T)F(t)

σ(t)Fβ(t)
dWT

r (t)
)

,

dσ(t) = γσ(t)dWT
σ (t). (2.13)

We assume that the interest rate is independent of the volatility process, so that a
change of measure won’t affect the dynamics of the variance process, σ(t).

By factorization, Model (2.13) can be expressed as:

dF(t) = σ(t)v(t)Fβ(t)dWT
F (t),

dσ(t) = γσ(t)dWT
σ (t),

(2.14)

with

v2(t) := P2(β−1)(t, T) +
(

ηBr(t, T)
σ(t)Fβ−1(t)

)2

− 2ρx,r
ηBr(t, T)Pβ−1(t, T)

σ(t)Fβ−1(t)
. (2.15)

Now, the instantaneous correlation coefficient, ρF,σ, must be determined, which, by
definition, is defined as:

ρF,σ =
Cov(dF(t), dσ(t))√

Var(dF(t))Var(dσ(t))
= ρx,σΨ(t, σ(t), F(t), P(t, T)), (2.16)

with 1

Ψ(t, σ(t), F(t), P(t, T)) :=
FβPβ−1σ√

σ2F2βP2(β−1) + η2B2
r F2 − ρx,rσFβ+1Pβ−1ηBr

. (2.17)

Model (2.14) with (2.15) and (2.16) is not in the well-known plain SABR model form,
because the local volatility is not only expressed by σ(t)Fβ(t) but contains additional
terms, like v(t). Moreover, the instantaneous correlation between forward and volatil-
ity processes, ρF,σ, is a state-dependent function of time. In order to make use of Ha-
gan’s asymptotic formulas [16] for the plain SABR model in the current setting, we
propose a projection formula in the next section.

3 Projection Formula for the Constant Parameter SABR-
HW Model

In this section we describe the model approximations that bring the SABR-HW
model in the desired SABR model form. The approximations enable us to carry out effi-
cient calibration based on the analytic implied volatility formulas for the SABR model.

3.1 Projection Step for the Constant Parameter SABR-HW Model

In order to present Model (2.14) in SABR form, we need to approximate the additional
terms from the local volatility for the forward process, F(t), and simplify the associated
correlation structure. In a plain SABR model the volatility process, σ(t), is lognormal,
which suggests that a projection of the volatility term σ(t)v(t) in (2.14) on a lognormal
distribution may give the desired SABR form, which is:

dF(t) = σ̂(t)Fβ(t)dWT
F (t), F(0) > 0,

dσ̂(t) = γ̂σ̂(t)dWT
σ (t), σ̂(0) > 0,

(3.1)

1To simplify notation we suppress the arguments t and T here.
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with constant parameters σ̂(0) and γ̂, and constant correlation ρ̂F,σ.
The term v(t) in (2.15) depends on forward Fβ−1(t), volatility σ(t) and on zero-

coupon bond P(t, T). With a function v(t) which is independent of these state variables
the expression simplifies. This can be achieved by freezing the forward and variance,
F(t) and σ(t), at their initial values, i.e.: F(t) ≈ F(0), σ(t) ≈ σ(0), respectively, and by
projecting P(t, T), on its expectation, i.e.: P(t, T) ≈ ET [P(t, T)|Ft] =: ξ(t).

By this, function v2(t) is approximated by:

v2(t) ≈ ξ2(β−1)(t) +
(

ηBr(t, T)
σ(0)Fβ−1(0)

)2

− 2ρx,r
ηBr(t, T)ξβ−1(t)

σ(0)Fβ−1(0)
. (3.2)

With help of the well-known formulas (2.2) and (2.7), we obtain the following closed-
form solution for ξ(t) :

ξ(t) = exp
(

A(t, T) + Br(t, T)ET [r(t)] +
1
2

B2
r (t, T)VarT(r(t))

)
, (3.3)

with ET [r(t)] and VarT(r(t)) given by (2.8) and (2.9) and A(t, T) defined in (2.5).
Note that F(t) and σ(t) are both martingales, due to (2.14), which implies that the

values of their expectations oscillate around their initial values, Fβ−1(0) and σ(0). Func-
tion v(t) has become deterministic by the approximations made.

We then determine the dynamics for the linearized volatility structure, σ̄(t) := σ(t)v(t).
By applying the Itô product rule we find

dσ̄(t)/σ̄(t) = v′(t)dt + γv(t)dWT
σ (t).

The σ̄(t)-dynamics are thus governed by a state-dependent drift term. They are there-
fore not yet in standard SABR volatility form, which should not contain any drift term.

However, since v(t) is approximated by a deterministic time-dependent function,
the process σ̄(t) := v(t)σ(t) remains lognormal. The idea is now to determine the
first two moments of process σ̄(t) and to project them onto the moments of the SABR
volatility process in (3.1), defined as dσ̂(t) = γ̂σ̂(t)dWT

σ (t), σ̂(0) > 0, with parameters
γ̂ and σ̂(0).

The expectation and variance of process σ̂(t) in (3.1) are given by:

ET [σ̂(t)] = σ̂(0), VarT(σ̂(t)) = σ̂2(0)
(

eγ̂2t − 1
)

. (3.4)

On the other hand, the expectation and the variance of σ̄(t) = v(t)σ(t) are given by:

ET [σ̄(t)] = v(t)σ(0), VarT(σ̄(t)) = v2(t)σ2(0)
(

eγ2t − 1
)

. (3.5)

The main objective is to find the effective parameters σ̂(0) and γ̂, so that the expectations
and variances in (3.4) and (3.5) match.

By matching the expectations and variances, we arrive at the following optimization
problem:

argmin
γ̂,σ̂(0)


∫ T

0

(
ET [σ̂(t)]−ET [σ̄(t)]

)
dt,∫ T

0

(
VarT(σ̂(t))−VarT(σ̄(t))

)
dt.

(3.6)

Typically the optimization problem in (3.6) is easy since the expectations and vari-
ances are analytic deterministic functions. In Result 3.1 a straightforward approach for
parameter estimation is presented.

Result 3.1. A simple estimate for σ̂(0) is the averaged parameter estimate, given by:∫ T

0
ET [σ̂(t)]dt =

∫ T

0
ET [σ̄(t)]dt =⇒ σ̂(0) =

σ(0)
T

∫ T

0
v(s)ds. (3.7)
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By matching the variances we obtain:

∫ T

0
VarT(σ̂(t))dt =

∫ T

0
VarT(σ̄(t))dt =⇒ γ̂ =

1
T

∫ T

0

√
1
s

log
(

VarT(σ̄(s))
σ̂2(0)

+ 1
)

ds,

(3.8)
with VarT(σ̄(t)) given in (3.5).

In the search for the optimal parameters σ̂(0) and γ̂, so that the constant SABR-HW
model in (2.11) is connected to the SABR dynamics given by (3.1), the correlation ρF,σ
has not yet been included. This allows us to determine the effective correlation, ρ̂F,σ,
independent of the other estimates. Since the equation for correlation ρF,σ is involved
and state-dependent, we seek for a simplification also here. By freezing the volatility,
and forward to their initial values, and by projection of zero-coupon bonds on their
expectations, the correlation in Equation (2.16) can be approximated by:

ρF,σ ≈ ρx,σΨ(t, σ(0), F(0), ET [P(t, T)|Ft] =: ρx,σψ(t). (3.9)

In order to use Hagan’s implied volatility SABR formula, the correlation must be con-
stant, so we need to determine an averaged correlation, defined as:

ρ̂F,σ =
ρx,σ

T

∫ T

0
ψ(s)ds, (3.10)

with ψ(t) given by (3.9).
The estimates obtained for γ̂, σ̂(0) and ρ̂F,σ allow us to use the Hagan implied

volatility formula for the plain SABR model, as a first approximation in the calibra-
tion procedure.

Remark. Our approximations in (3.7) and (3.8) perform well for not-too long maturity
times, like T ≤ 10y. In the case of larger maturity times, (T ≥ 10y), we prefer to solve
Problem (3.6) by an optimization routine, for example, the Nelder-Mead Simplex algo-
rithm. Furthermore, the weighted Monte Carlo method, to be discussed in Section 4,
will be used to improve the calibration in those cases.

In the next subsection we check the accuracy of the approximations developed for
a few parameter sets. The SABR model in (3.1) to the parameters γ̂, σ̂(0) and ρ̂F,σ will
be called the SABR-HW1 model here.

3.2 Numerical Validation of the SABR-HW Projection Method

We check the performance of our approximation model, SABR-HW1, in comparison
with the constant parameter SABR-HW model.

The numerical experiment is set up as follows. We first prescribe a set of parame-
ters for the constant parameter SABR-HW model in (2.11) for which, by means of an
Euler-based Monte Carlo scheme, the European option prices are simulated. Secondly,
we compute the effective parameters γ̂, σ̂(0) and ρ̂F,σ by solving (3.6) and calculat-
ing (3.10). These parameters are inserted in the plain SABR model (3.1). For the re-
sulting SABR-HW1 model we then calculate the corresponding implied volatilities by
Hagan’s asymptotic formula. We compare these results and, in addition, we determine
the error when γ, σ(0) and ρx,σ are used instead of γ̂, σ̂(0), ρ̂x,σ.

The simulations have been performed with 100.000 paths and 20T steps. The initial
stock price is set to S(0) = 0.8, and the zero-coupon bonds, P(0, T), have been gener-
ated by the Hull-White model with constant long-term mean, θ = 0.03. We also define
the strikes, as in [22], with expiry times given by T ∈ {1, 5, 10, 15} years, the strikes are
computed by the formula:

Kn(T) = F(0) exp
(

0.1δn
√

T
)

, with (3.11)

δn = {−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5},
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par. β γ λ η σ(0) ρx,σ ρx,r

set 1 30% 30% 20% 1% 20% -30% 20%
set 2 50% 40% 1% 0.5% 20% -10% 40%
set 3 40% 10% 60% 0.1% 30% -30% -30%

Table 3.1: Sets of parameters used in the simulations.

and F(0) is as in (2.12). This formula for the strikes is convenient, since for n = 4, the
strikes K4(·) are equal to the forward FX rates.

In Table 3.1 we present three different sets of parameters. For those sets we deter-
mine the estimators γ̂, σ̂(0) and ρ̂F,σ. They are tabulated in Table 3.2.

estimators T=1y T=5y T=10y T=15y

set 1 γ̂ 29.76% 29.02% 28.34% 27.85%
σ̂(0) 20.30% 21.51% 23.01% 24.56%
ρ̂F,σ -30.08% -30.25% -30.30% -30.29%

set 2 γ̂ 39.75% 38.93% 38.16% 37.50%
σ̂(0) 20.24% 21.28% 22.73% 24.52%
ρ̂F,σ -10.00% -10.01% -9.97% -9.90%

set 3 γ̂ 9.97% 9.78% 9.56% 9.35%
σ̂(0) 30.26% 31.36% 32.83% 34.39%
ρ̂F,σ -30.01% -30.02% -30.02% -30.02%

Table 3.2: Effective constant parameters γ̂, σ̂(0) and ρ̂F,σ, defined in (3.6), and deter-
mined by solving the non-linear least squares problem (by Matlab function lsqcurvefit).

We measure the maximum absolute difference in the implied volatilities for Model (3.1)
with the estimates in (3.7), (3.8), and the constant parameter SABR-HW model (2.11).

Two errors are defined: error 1 is the error when the naive approach is used, i.e.
γ̂ = γ and σ̂(0) = σ(0); error 2 corresponds to the bias obtained using the adjusted
parameters γ̂ and σ̂(0) (the SABR-HW1 model). Table 3.3 presents these results.

Our approach for γ̂, σ̂(0) and ρ̂F,σ provides a significantly better fit to the constant
parameter SABR-HW model than the model with the naively chosen parameters. For
the maturity times of 1, 5, and 15 years, Figure 3.1 presents the corresponding implied
volatilities. The performance of the SABR-HW1 approximation is most accurate when

T=1y T=5y T=10y T=15y
error 1 error 2 error 1 error 2 error 1 error 2 error 1 error 2

set 1 0.36% 0.02% 1.63% 0.19% 2.93% 0.43% 3.94% 0.61%
set 2 0.27% 0.01% 1.38% 0.08% 2.65% 0.32% 3.74% 0.51%
set 3 0.31% 0.03% 1.63% 0.04% 3.12% 0.07% 4.31% 0.11%

Table 3.3: The absolute maximum percentage difference between implied volatilities
from two different models. Both errors relate to the constant parameter SABR-HW
model and respective approximations.

the volatility for the short rate, determined by η, is not too large, i.e. η < 1.5%. Fortu-
nately, this is very often the case in the calibration of the Hull-White model to market
data. In the experiments we have chosen parameter β ≤ 50% (as in the case β > 50% an
even better accuracy is expected, because the model behavior is closer to that of a log-
normal model then [9]). We also see that correlation estimate, ρ̂F,σ, is close to the initial
correlation ρF,σ. This is because the function Ψ(t, σ(t), F(t), P(t, T)) in (2.17) converges
to 1 as t→ T, implying that ρF,σ → ρ̂F,σ.
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Figure 3.1: Comparison of implied Black-Scholes volatilities for European equity op-
tions and parameter set 2 in Table 3.1; For the SABR-HW model, Euler Monte Carlo
was used with 100.000 paths and 20T intermediate steps.

4 The Calibration Procedure

Here, we present the calibration procedure for the SABR-HW model in three stages.
We start by applying the inverse projection formulas from the previous section to cali-
brate the constant parameter SABR-HW model for every single maturity. In the second
stage, we determine the parameters of the time-dependent functions in the dynamical
SABR model in order to produce coherent model dynamics across the different matu-
rities. In the last step, the calibration is refined by means of a weighted Monte Carlo
simulation. These stages are discussed in subsequent subsections.

4.1 Stage I: Parameter Projection for the SABR-HW Model

In the calibration of the SABR-HW model, the Hull-White part, which is connected
to the function θ(t), is calibrated to the yield curve, whereas the parameters λ and η
are calibrated to swaption prices separately. This is well-known and we refer to Brigo
& Mercurio [5] for further information on this topic. The asset-interest rate correlation
will be prescribed a priori based on historical data.

After the calibration of the HW model, we consider the determination of the param-
eters of the stochastic volatility SABR part.

One of the consequences of the projection of the constant parameter SABR-HW
model onto a plain SABR model is the rapid calibration by means of Hagan’s for-
mula [28]. The projection formula, described in Section 3, can also be inverted numeri-
cally to retain the constant parameter SABR-HW parameters, σ(0), γ, ρx,σ, ρx,r, λ, θ(t), η,
from those of a plain SABR model, σ̂(0), γ̂, ρ̂F,σ. Since two parameters, β and ρx,σ, con-
trol the skewness of the implied volatility curve, one of them, parameter β in our case,
is fixed a-priori, as in Rebonato [26].

We briefly recall the calibration of the plain SABR model, in which for β different
values are prescribed, like 0.25, 0.5, 0.75 and 1, see for example [28], [26].

Parameter σ̂(0) is determined with the help of the at-the money (ATM) implied
volatility. West [28] indicates that when the forward in the plain SABR model is equal
to the strike price, F = K, the ATM implied volatility in Hagan’s formula simplifies to:

σATM =

σ̂(0)

(
1 +

(
(1− β)2

24
σ̂(0)2

F2−2β + 1
4

ρ̂F,σβγ̂σ̂(0)
F1−β +

2− 3ρ̂2
F,σ

24 γ̂2

)
T

)
F1−β

.
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Table 4.1: Calibrated parameters for the SABR (parameters with hat) and SABR-HW
(without hat) models, to 5 and 15 years DAX options.

β σ̂(0) γ̂ ρ̂F,σ SSE σ(0) γ ρF,σ

T = 5 years
0.25 0.280 0.033 −1 3.82× 10−4 0.274 0.034 −0.964
0.5 0.276 0.113 −0.955 2.22× 10−6 0.269 0.117 −0.922

0.75 0.274 0.224 −0.824 9.94× 10−6 0.267 0.234 −0.800
1 0.279 0.319 −0.840 6.53× 10−5 0.272 0.333 −0.815

T = 15 years
0.25 0.402 10−7 −1 1.16× 10−4 0.369 1.0134× 10−7 −0.942
0.5 0.356 10−7 −1 1.75× 10−5 0.327 1.0134× 10−7 −0.937

0.75 0.328 10−7 −1 1.73× 10−6 0.301 1.0134× 10−7 −0.933
1 0.319 0.033 −0.758 3.89× 10−8 0.292 0.033 −0.722

SSE: squared sum errors

This equation is inverted, as in [28], to calculate σ̂(0) as a root of the cubic equation:

(1− β)2T
24F2−2β

σ̂(0)3 +
ρ̂F,σβγ̂T
4F1−β

σ̂(0)2 +

(
1 +

2− 3ρ̂2
F,σ

24
γ̂2T

)
σ̂(0)− σATMF1−β = 0.

Here, σ̂(0) is not an independent parameter as it depends on the parameters ρ̂F,σ, β
and γ̂. In the calibration procedure the minimization of a function of two variables,
ρ̂F,σ and γ̂, is required, which can be done efficiently. The specific β which gives the
best fit to the market prices will be used in further computations.

From Eq. (3.7), we know that σ̂(0) = σ(0)/T
∫ T

0 ν(s)ds, where

v(t) ≈

√
ξ2(β−1)(t) +

(
ηBr(t, T)

σ(0)Fβ−1(0)

)2

− 2ρx,r
ηBr(t, T)ξβ−1(t)

σ(0)Fβ−1(0)
.

So, σ̂(0) itself is a function of σ(0) (since the other parameters and functions in the
equation for v(t) have been determined in earlier steps). Applying a numerical root-
finding routine provides us with a value for σ(0). Similarly, we can find the solution
for γ via Eqs. (3.8) and (3.5). With Formula (2.16) we can rewrite the correlation ρ̂F,σ
as a function of ρx,σ. The numerical inversion of this expression gives us parameter
ρx,σ. After this, all parameters of the SABR-HW system, σ(0), γ, ρx,σ, ρx,r, λ, θ(t), η, have
been determined.

This stage of the calibration procedure is highly efficient as most of the evaluations
are based on analytic expressions. The numerical root-finding procedure is used four
times. The overall CPU time is less than a second.

We present an example of the calibration of the parameters ρ̂F,σ and γ̂ to the 5- and
15-years DAX options with equally spaced strike values from 40% to 220% with 10%
intervals (in total 19 strikes), from 27-09-2010, based on the procedure described. The
calibration has been performed with 4 sets of parameters with different a priori chosen
values for β. The whole procedure (for the four sets of parameters) takes approximately
0.3 seconds CPU time on a desktop computer. The resulting parameters and squared
sum errors (SSE) are presented in Table 4.1. Different values of β result in a qualitatively
similar fit to the market implied volatilities. The fit of the SABR-HW model (based on
Hagan’s formula) to the market implied volatilities is presented in Figure 4.1.

The last three columns in Table 4.1, the columns σ(0), γ and ρF,σ, present the con-
stant parameter SABR-HW model parameters obtained from the inversion of the pro-
jection formulas described above. We see that constant parameters produce a very
good fit for individual maturity times, but the resulting parameters differ for different
maturities.
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Figure 4.1: Calibration results for the SABR model with different a priori chosen β pa-
rameters to the implied volatilities of 5 and 15 years maturity.

4.2 Stage II: Calibration of the Dynamical SABR-HW Model

Calibration of the constant parameter SABR-HW model results in a series of inde-
pendent implied volatility smiles across several maturities, which do not show coher-
ent dynamics over a longer time period. We therefore describe the calibration of the
time-dependent functions in the dynamical SABR-HW system (2.1). We first determine
the parameters β and ρx,σ for this dynamical SDE system. The value for β which fits
optimally for all maturities (e.g. the optimal value from Table 4.1) is chosen, and simul-
taneously we average the calibrated correlation parameters, ρx,σ, for the corresponding
β-value, over the different maturity times.

Then, the time-dependent function h(t) in System (2.1) is parametrized in the form
proposed by Rebonato [24]:

h(t) =
(
a1 + b1t

)
exp(−c1t) + d1. (4.1)

The parameters a1, b1, c1 and d1 are determined, as in [25], by solving for the following
system of equations for all maturities Ti included in the calibration instruments:

γTi − 1
σTi (0)Ti

√
2
∫ T

0
g(t)2ĥ(t)2tdt = 0. (4.2)

Here superscript Ti denotes the maturity for which the parameter is determined, and
ĥ(t) denotes the mean value of h(·) up to time t, i.e.

ĥ(t) =

√
1
t

∫ t

0
(h(s))2ds.

It is important to note that Eq. (4.2) can be best dealt with by a numerical root finding
technique.

For the time-dependent function g(t), a common parametrization is:

g(t) =
(
a2 + b2t

)
exp(−c2t) + d2, (4.3)

which can also be found in Brigo & Mercurio [5] or Rebonato [23]. We obtain a2, b2, c2
and d2 by minimization of the sum of squared errors:

min
a2,b2,c2,d2

M

∑
i=1

[
σTi (0)− ĝ(t)

]2
, ĝ(t) =

√
1
Ti

∫ Ti

0
[(a2 + b2t) exp(−c2t) + d2]

2 dt,

with M the number of option maturity times.
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Table 4.2: Parameters a1, b1, c1 and d1 for calibrated function h(·) and a2, b2, c2 and d2
for function g(·) for DAX option implied volatilities on 27-09-2010.

Parameters a1(a2) b1(b2) c1(c2) d1(d2)
h(·) 0.5928 −0.1943 1.1936 0.1080
g(·) 0.0949 0.0673 0.1297 0.0858
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Figure 4.2: The calibrated g(·) and h(·) functions.

The time-dependent functions, g(t) (4.3) and h(t) (4.1), are then fitted for all matu-
rity times to the parameters σ(0) and γ obtained from the constant parameter calibra-
tion. The resulting parameters are presented in Table 4.2. The functions are illustrated
in Figure 4.2. We fix the parameter d1 in function h(t) to the value of the volatility-
of-volatility parameter of the longest maturity to prevent it from attaining negative
values.

Remark: The Hagan implied volatility function [16] is based on asymptotic expan-
sions that have a limited range of applicability. The formula is not exact, for example,
for deep out-of-the-money strikes, especially for strikes close to zero, and for long ma-
turities. Thus the Monte Carlo simulated model dynamics may not accurately reflect
the information embedded in the calibration instruments. In the next section, we will
propose a method in order to eliminate such approximation error induced calibration
error.

4.3 The Weighted Monte Carlo Technique

We present a non-parametric approach to further improve the SABR-HW model cal-
ibration. The general idea is to perturb the weights of the individual Monte Carlo paths
so that calibration instruments, like options, forwards and bonds, are priced as accurate
as possible compared to the corresponding market prices.

Most often, one deals with ordinary Monte Carlo methods, that are governed by
the fact that the same weight (i.e. 1/N, with N the total number of paths) is assigned to
each sampled path. For a claim with a payoff, φ, the derivative value, at t = 0, is then
determined as:

V =
1
N

N

∑
i=1

φ(ωi),

where ωi denotes the i-th Monte Carlo path.
In addition, weighted Monte Carlo methods have been developed by Avellaneda et

al. [2; 3; 4], in which different ‘probability’ weights, p1, p2, . . . , pN , are assigned to the
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individual Monte Carlo paths. The value of the claim then reads:

V =
N

∑
i=1

φ(ωi)pi.

The weights are determined so that the model values of the calibration instruments
match well with their market prices and these weights should be kept as close as possible
to the uniform weights (pi = 1

N ).
We denote the market prices of M calibration instruments by C1, . . . , CM and rep-

resent the present values of the derivative products of the j-th calibration instruments
along path ωi by φij, j = 1, 2, . . . , M. The first index represents the Monte Carlo path
number and the expression is short notation for φij ≡ φj(ωi).

The path weights, or probabilities p = (p1, p2, . . . , pN), have to be determined, so
that

N

∑
i=1

piφij = Cj, (4.4)

or so that the differences between the left- and right-hand side are minimized. A cri-
terion (which is adopted here) to find these weights is the minimization of the relative
entropy of a non-uniformly sampled probability with respect to a uniform distribution.

The concept of relative entropy is not new in computational finance. Buchen &
Kelly [8] proposed the use of the minimization of relative entropy to determine the
Arrow-Debreu probability in a single-period model. This method was generalized to
dynamical models by Avellaneda et al. [2; 3; 4].

Based on two sets of N discrete probabilities, p = (p1, p2, . . . , pN) and q = (q1, q2, . . . , qN),
the relative entropy of p, with respect to q, is defined as

D(p||q) :=
N

∑
i=1

pi log
(

pi
qi

)
.

In the case of a Monte Carlo simulation, in which qi = 1/N, ∀i, we have

D(p||q) =
N

∑
i=1

pi log(pi)−
N

∑
i=1

pi log
(

1
N

)
=

N

∑
i=1

pi log(pi) + log(N), (4.5)

where we used that ∑N
i=1 pi = 1. The objective is to minimize Eq. (4.5) under the lin-

ear constraints implied by Eq. (4.4). A true advantage of the relative entropy objective
function lies in the fact that Eq. (4.5) is convex in all pi-values 2. It is well-known in op-
timization theory that the above minimization problem has a unique global minimum
solution, if it exists [7].

In probability and in information theory, the relative entropy, or Kullback-Leibler
divergence, is a so-called non-symmetric measure of the difference between two prob-
ability distributions p and q. The relative entropy measures the expected additional in-
formation which is required to interpret samples, that were originally generated by q,
when using an alternative probability p. A weighted Monte Carlo simulation with a
small relative entropy measure is highly desirable.

4.3.1 Dual Formulation of the Calibration Problem

The mathematical problem is to minimize Eq. (4.5), a convex function in p, under
linear constraints. We follow here the min-max formulation by Avellaneda [4], using

2 It is straightforward to show that

∂D(p||q)
∂pi

= log(pi) + 1,
∂2D(p||q)

∂p2
i

=
1
pi

> 0.
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Lagrange multipliers (λ1, λ2, . . . , λM) to add the linear constraints (4.4) to the objective
function. Additionally, we incorporate the constraint, ∑N

i=1 pi = 1 by an additional
Lagrange multiplier, µ, and consider the augmented Lagrangian functional:

G1(p∗, λ∗, µ∗) = min
λ,µ

max
p

{
−D(p||u) +

M

∑
j=1

λj

(
N

∑
i=1

piφij − Cj

)
+ µ

(
N

∑
i=1

pi − 1

)}
.

(4.6)
The resulting objective function (4.6) represents an unconstrained dual formulation of
the originally constrained problem.

The first-order partial derivatives of Eq. (4.6), with respect to pi, give us the first-
order optimality conditions:

− log(pi)− 1 +
M

∑
j=1

λjφij + µ = 0.

Hence,

pi = exp (µ− 1) exp (
M

∑
j=1

λjφij).

Parameter µ∗ is determined by the requirement of conservation of probability. The
optimal pi-values for Eq. (4.6) are found to be:

pi =
1

Z(λ)
exp

(
M

∑
j=1

λjφij

)
, (4.7)

in which Z(λ) is a normalization factor,

Z(λ) =
N

∑
i=1

exp

(
M

∑
j=1

φijλj

)
.

We substitute the above expressions (4.5), (4.7) in Eq. (4.6) to obtain:

G1(p∗, λ, µ∗) =− log(N)− 1
Z(λ)

N

∑
i=1

{
exp

(
M

∑
j=1

φijλj

)(
M

∑
j=1

φijλj − log
(
Z(λ)

))}

+
M

∑
j=1

λj

Z(λ)

N

∑
i=1

exp

(
M

∑
j=1

φijλj

)
φij −

M

∑
j=1

λjCj

=− log(N)− 1
Z(λ)

N

∑
i=1

exp

(
M

∑
j=1

φijλj

)
M

∑
j=1

φijλj + log
(
Z(λ)

)
+

1
Z(λ)

N

∑
i=1

exp

(
M

∑
j=1

φijλj

)
M

∑
j=1

φijλj −
M

∑
j=1

λjCj

=− log(N) + log
(
Z(λ)

)
−

M

∑
j=1

λjCj. (4.8)

So, the min-max optimization problem (4.6) simplifies to a minimization problem
which contains only λ, i.e.

G(λ∗) ≡ G1(p∗, λ∗, µ∗) = min
λ

{
− log(N) + log

(
Z(λ)

)
−

M

∑
j=1

λjCj

}
. (4.9)

After λ has been computed, we can determine p via Eq. (4.7).

14



As a validation of the objective function G(λ), we can take first-order partial deriva-
tives with respect to λk:

∂G(λ)
∂λk

=
1

Z(λ)
∂Z
∂λk
− Ck =

1
Z(λ)

N

∑
i=1

φik exp

(
M

∑
j=1

φijλj

)
− Ck =

N

∑
i=1

φik pi − Ck = 0.

(4.10)

The term ∑N
i=1 φik pi in Eq. (4.10) equals the weighted Monte Carlo price of the k-th

calibration instrument, whereas Ck represents the market price of the same instrument.
Formula (4.10) provides us with the first-order partial derivative information for

objective function G(λ). M-dimensional convex minimization problems with gradient
information are well-studied and numerous optimization procedures exist for their ef-
ficient solution. We use the BFGS quasi-Newton optimization method with Hessian
update because of its efficiency and simplicity of implementation, as in [4].

In summary, the Weighted Monte Carlo calibration stage consists of the following:

1. Generate a set of sample paths of the SABR-HW model;

2. Compute the payoffs {φij, i = 1, 2, . . . , N, j = 1, 2, . . . , M} for the paths and for
the calibration products;

3. Use a quasi-Newton optimization method to find the minimum, λ∗, of G(λ) in
Eq. (4.9), making use of the gradient information in Eq. (4.10);

4. Compute the Monte Carlo path weights pi, i = 1, 2, . . . , N, for all paths by insert-
ing the optimal λ∗ in Eq. (4.7).

Remark: The relative entropy measure is an indication for the difference between
any two models. In our case, it quantifies the consistency, or inconsistency, between
the calibrated true SABR-HW model and the SABR-HW1 model obtained from the
first stage of the calibration. The relative entropy distance is defined as D(p||u) in
Eq. (4.5), in which u denotes a uniform probability of N Monte Carlo samples. Since the
term ∑N

i=1 pi log pi in Eq. (4.5) is negative (as pi ≤ 1), D(p||u) ∈ [0, log N]. The mini-
mum value, D(p||u) = 0, corresponds to pi = 1/N, i.e. the calibrated vector p equals
the prior u. The maximum value, D(p||u) = log N, is realized when the probability is
concentrated at a single path, i.e. pi = 1. Consider a probability distribution which is
uniformly distributed on a subset of paths of size Nα, with 0 < α < 1. Substitution of
the corresponding probabilities, gives [4]:

D(p||u) = log N + log
(

1
Nα

)
= (1− α) log N, (4.11)

using ∑Nα

i=1 N−α = 1.
The relative entropy distance can thus be connected to the effective number of paths,

Nα, supported by the prior probability measure. The effective number of paths can be
obtained, as α = 1−D(p||u)/log N, with D(p||u)/log N ∈ [0, 1]. If D(p||u)/log N <<
1 the number of significant paths is close to N, whereas D(p||u)/log N ≈ 1 is connected
to a measure with ‘thin support’ [4]. Thin support implies that in the calibration a large
number of paths is discarded, which is inefficient from a computational point of view.

4.4 Stage III: Calibration by Weighted Monte Carlo Method

Here, we use the DAX 1-, 5- and 10-years implied volatilities from 27-09-2010 with
equally spaced strike values from 40% to 220% with 10% intervals. After the compu-
tation of the WMC weights for these financial derivatives, the weighted Monte Carlo
method perfectly prices these calibration instruments (see Figure 4.3).

We plot the resulting WMC weights in log-scale at the left-hand graph of Figure 4.4.
The weights seem to be randomly distributed around their mean value of 10−5. Certain
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Figure 4.3: The 5 and 10 year option implied volatilities produced by WMC compared
against the input market implied volatilities.
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Figure 4.4: Left: a cloud plot of the 105 weights (in log-scale) of the WMC paths ob-
tained after the calibration. Right: histogram of the values of the calibrated weights in
log-scale.

paths are given a small weight, which means that these paths are effectively discarded.
The histogram of the weights at the right-hand side of Figure 4.4 indicates that only
a small fraction of the weights is in the left tail and most are distributed around the
mean. The resulting effective number of paths, obtained by Eq. (4.11), is 9.3517× 104,
so that 6.48% of the paths are discarded. This is efficient from a computational point of
view, given the excellent WMC calibration results.

Remark: The WMC calibration procedure is highly efficient, but it is non-parametric,
and this may hamper its practical application. If the model or the parameters would
not be carefully chosen, too many paths would be discarded and efficiency would be
lost. The WMC technique can however also be used as an a posteriori check of the quality
of parameters obtained from calibration to Hagan’s implied volatilities. If, after the first
stage of calibration, the Monte Carlo weights are equally distributed and very close to
pi = 1/N, this may give confidence in the quality of the first stage of calibration.

5 Pricing Options under the SABR-HW Model

On the basis of the calibrated SABR-HW model, we are now ready to apply a
(weighted) Monte Carlo simulation for the pricing and hedging of exotic derivatives.
We present an advanced time-stepping scheme for the Monte Carlo simulation, lead-
ing to the unbiased Monte Carlo simulation. This scheme is accurate also when only a few
time steps are employed. It has also been used within the WMC part of the calibration
procedure, described previously.

16



5.1 Unbiased Time Discrete Scheme

Applications of the SABR-HW model include the pricing of long-maturity equity
options, equity-linked structured notes, like cliquet options, and equity-linked hybrid
derivatives. Structured products usually have a long time horizon and a complicated
payoff. It is difficult to find analytic approximations for these product prices, and often
one has to rely on Monte Carlo methods to obtain prices and hedge ratios (e.g. price
sensitivities, the Greeks). If we apply an Euler discretization scheme to the SABR-HW
system, the discrete bias has to be treated with care. As an example, in Eq. (2.11) the
drift term is stochastic and driven by two stochastic factors. In this case, an Euler
approximation for the drift term,∫ ∆

0
r(s)S(s)ds ≈ r(0)S(0)∆,

is biased in general and a large number of time-steps is required to reach an acceptable
level of accuracy. An Euler scheme may therefore be inefficient for pricing long-term
equity-linked structured products.

Here we adapt the unbiased MC scheme proposed for the SABR model in Chen [10]
to discretize the SABR-HW model. The approach is to map the asset price process onto
a square root process by a series of spatial and time transformations. In the Monte Carlo
simulation we will draw samples from the analytic distribution function of the square
root process (i.e. the non-central chi square distribution), as described in Section 5.2,
and, in full detail, in [10].

The SABR model considered in Chen [10] was a system without drift. A stochastic
interest rate can be added by the technique in Goldenberg [14] (pp. 28), which was
introduced for a Constant Elasticity of Variance (CEV) process with drift term, rS(t)dt:

dS(r)(t) = rS(r)(t)dt + σS(r)(t)βdW(t). (5.1)

We use the superscript (r) to distinguish the process with drift from the process without
drift, which does not have a superscript. The distribution of the CEV process in (5.1)
can be obtained from its sister without drift via a time-change:

S(r)(t) = ertS
(
τ(t)

)
, τ(t) =

1
2r(β− 1)

(
e2r(β−1)t − 1

)
. (5.2)

The validity of this transformation can easily be explained as the limit r → 0 recovers
the original clock, i.e.,

lim
r→0

τ(t) = lim
r→0

1
2r(β− 1)

(
e2r(β−1)t − 1

)
= t.

This result is not restricted to the constant interest rate case. The time transformation
in (5.2) also applies to stochastic interest rates [14].

In an SDE system with a stochastic interest rate, the time transformation differs at
each path, due to the randomness of the rates:

τ(t, ω) =
∆

2(β− 1)
∫ ∆

0 r(s)ds

(
e2(β−1)

∫ ∆
0 r(s)ds − 1

)
, (5.3)

where ω ∈ Ω denotes a random scenario. Expression (5.3) suggests that the pathwise
time transformation, τ(t, ω), can be determined without all details of the interest rate
path, ω, as long as we have knowledge of

∫ ∆
0 r(s)ds at each path.

Following the arguments by Andersen [1], we focus on the evolution of the system
over a small time interval [0, ∆] and repeat the one-period ∆-scheme to produce a com-
plete time discrete path. Note that we consider the SDE system in the τ-time scale, so
that the time interval for the system equals [0, τ(∆, ω)].
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The CEV system in (5.2) would be simulated on a time scale τ(t, ω), induced by
a stochastic interest rate. Subsequently, the result is multiplied by an exponentially
integrated interest rate:

S
(
τ(∆, ω)

)
= S(0) +

∫ τ(∆,ω)

0
σ
(
τ(s, ω)

)
S
(
τ(s, ω)

)βdWx
(
τ(s, ω)

)
,

S(r)(∆) = exp (
∫ ∆

0
r(s)ds)S

(
τ(∆, ω)

)
.

Although a transformed model based on time-changes may not be intuitively clear, it is
easy to implement numerically. We just replace the uniform time interval ∆ by τ, based
on the computation on each interest rate path.

5.2 Discretization of the SDE System

Also for the SABR-HW system, we first consider the system without drift with time
scale τ(t, ω), by an unbiased Monte Carlo simulation scheme (Section 5.2, [10]). We
then multiply the result by the exponentially integrated interest rate.

In this subsection, we describe the unbiased time discretization scheme to simulate
the plain SABR system, in the interest rate-dependent time-scale τ(t, ω):

dS(τ) = σ(τ)S(τ)βdWx(τ),
dσ(τ) = γσ(τ)dWσ(τ),

where we denote τ(t, ω) simply by τ. Let us consider a system of three Brownian
motions correlated with the following correlation matrix: 1 ρx,σ ρx,r

ρx,σ 1 0
ρx,r 0 1

 .

Applying the Cholesky decomposition gives

dWx(τ) = ρx,σdW1(τ) + ρx,rdW2(τ) +
√

1− ρ2
x,σ − ρ2

x,rdU(τ), (5.4)

dWσ(τ) ≡ dW1(τ), (5.5)
dWr(τ) ≡ dW2(τ), (5.6)

where the Brownian motions W1(τ), W2(τ) and U(τ) are mutually independent.
Based on an argument by Schroder [27], we consider an invertible transformation

of variables, X(τ) = S(τ)1−β/(1− β), β 6= 1, so that

dX(τ) = σ(τ)dWx(τ)− βσ(τ)2

(2− 2β)X(τ)
dτ. (5.7)

We substitute Eqn. (5.4) into Eqn. (5.7) and integrate from 0 to τ(∆, ω),

X(τ(∆, ω)) =X(0, ω) + ρx,σ

∫ τ(∆,ω)

0
σ(s)dW1(s) + ρx,r

∫ τ(∆,ω)

0
σ(s)dW2(s)−∫ τ(∆,ω)

0

βσ(s)2

(2− 2β)X(s)
ds +

√
1− ρ2

x,σ − ρ2
x,r

∫ τ(∆,ω)

0
σ(s)dU(s).

In [10] it was shown that
∫ τ(∆,ω)

0 σ(s)dW1(s) = (σ
(
τ(∆, ω)

)
− σ(0))/γ. It is also not

difficult to show that
∫ τ(∆,ω)

0 σ(s)dW2(s) is a Gaussian integral with variance
∫ τ(∆,ω)

0 σ(s)2ds,
because of the independence of W1 and W2. Hence we can replace the Gaussian inte-
gral, as follows: ∫ τ(∆,ω)

0
σ(s)dW2(s) = ζ

(
τ(∆, ω)

)
W2
(
τ(∆, ω)

)
, (5.8)
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where we have defined ζ
(
τ(∆, ω)

)
:=
√∫ τ(∆,ω)

0 σ(s)2ds
/

τ(∆, ω). Based on these re-
sults, we can sample the SABR system without drift term by the conditional scheme
proposed in [10], conditional on the terminal volatility, the integrated volatility and the
realization of W2:

X(τ(∆, ω)) =X(0) +
ρx,σ

γ

{
σ
(
τ(∆, ω)

)
− σ(0)

}
+ ρx,rζ

(
τ(∆, ω)

)
W2
(
τ(∆, ω)

)
−∫ τ(∆,ω)

0

βσ(s)2

(2− 2β)X(s)
ds +

√
1− ρ2

x,σ − ρ2
x,r

∫ τ(∆,ω)

0
σ(s)dU(s).

Here we have used Relation (5.8).
Conditional on the volatility, the integrated variance and the Brownian motion driv-

ing the interest rate dynamics W2, process X is a shifted Bessel process, X̃, with dynamics:

dX̃(τ) :=
√

1− ρ2
x,σ − ρ2

x,rσ(τ)dU(τ)− βσ(τ)2

(2− 2β)X̃(τ)
dτ,

X̃(0) = X(0) +
ρx,σ

γ

{
σ
(
τ(∆)

)
− σ(0)

}
+ ρx,rζ

(
τ(∆)

)
W2
(
τ(∆)

)
.

We define another change of variables, Y(τ) := X̃(τ)2, and apply Itô’s lemma:

dY(τ) = 2X̃(τ)dX̃(τ) + dX̃(τ)2

= 2X̃(τ)
(√

1− ρ2
x,σ − ρ2

x,rσ(τ)dU(τ)− βσ(τ)2

(2− 2β)X̃(τ)
dτ

)
+
(

1− ρ2
x,σ − ρ2

x,r

)
σ(τ)2dτ

= 2
√

Y(τ)
√

1− ρ2
x,σ − ρ2

x,rσ(τ)dU(τ)+(
1− 2β− (ρ2

x,σ + ρ2
x,r)(1− β)

(1− β)(1− ρ2
x,σ − ρ2

x,r)

)(
1− ρ2

x,σ − ρ2
x,r

)
σ(τ)2dτ. (5.9)

Let us define the time-change, ν (τ(∆, ω)) = (1− ρ2
x,σ − ρ2

x,r)
∫ τ(∆,ω)

0 σ(s)2ds. Due to the
independence between the Brownian motion, U, and the volatility process, a Brownian

motion under clock ν(τ(·, ·)) has the same distribution as
√

1− ρ2
x,σ − ρ2

x,r
∫ τ(∆,ω)

0 σ(s)dU(s),
i.e.

U
(

ν
(
τ(∆, ω)

))
≡
∫ ν(τ(∆,ω))

0
dUs =

√
1− ρ2

x,σ − ρ2
x,r

∫ τ(∆,ω)

0
σ(s)dU(s).

We substitute this time-change into Eq. (5.9), and obtain:

dY(ν(τ)) = 2
√

Y(ν(τ))dU
(
ν(τ)

)
+

(
1− 2β− (ρ2

x,σ + ρ2
x,r)(1− β)

(1− β)(1− ρ2
x,σ − ρ2

x,r)

)
dν(τ), (5.10)

which gives us a time-changed squared Bessel process of dimension δ = 1−2β−(ρ2
x,σ+ρ2

x,r)(1−β)
(1−β)(1−ρ2

x,σ−ρ2
x,r)

with initial value Y(0) = X̃(0)2. The time-change depends on the interest rate path via
τ(·, ·) and depends on the volatility path as a result of the time-change function ν(·).
Each change of time is conditioned on specific path information of the volatility and
the interest rate paths.

The stochastic volatility induced time-change, ν(·), can be computed by an asymp-
totic expansion, see [10] (Sect. 3.4). In order to determine the change of time scale
τ(·, ·), we have to compute integral

∫ ∆
0 r(s)ds in Eq. (5.3). There are several ways to

approximate this integral. A straightforward approach is the following discrete ap-
proximation: ∫ ∆

0
r(s)ds ≈ ∆ [w1r(0) + w2r(∆)] ,
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with constants w1, w2. The constants can be chosen in different ways, for example,
in an Euler scheme w1 = 1, w2 = 0. A central discretization employs w1 = w2 =
1
2 . This scheme is computationally efficient and sufficiently accurate if the underlying
stochastic process is slowly varying, which is the case for these interest rate processes.
The calibrated interest rate process usually has a volatility parameter η < 1%.

The CDF of process Y can be obtained by properties of squared Bessel processes. By
a mapping:

h : s→ s2−2β

(1− β)2 , s ≥ 0,

with its inverse

h−1 : y→ y2−2β

(1− β)2 , y ≥ 0,

we can define S(τ(∆, ω)) = h(Y(ν(τ(∆, ω)))) and Y(0) = h−1(S(0)) = S(0)2(1−β)/(1− β)2.
So, we have the following proposition:

Proposition 5.1 (Cumulative distribution for the conditional SABR process). The cu-
mulative distribution for S(τ(∆, ω)) conditional on σ

(
τ(∆, ω)

)
and

∫ τ(∆,ω)
0 σ2

s ds with an
absorbing boundary at S = 0 reads

Pr
[
S
(
τ(∆, ω)

)
≤ x|S(0)

]
= 1− χ2(a; b, c), (5.11)

where

a = 1
ν
(
τ(∆, ω)

) [S(0)1−β

(1− β) + ρ
α
{

σ
(
τ(∆, ω)

)
− σ(0)

}
+ ρx,r · ζ

(
τ(∆, ω)

)
W2
(
τ(∆, ω)

)]2
,

b = 2− 1− 2β− (ρ2
x,σ + ρ2

x,r)(1− β)
(1− β)(1− ρ2

x,σ − ρ2
x,r)

,

c =
S
(
τ(∆, ω)

)2(1−β)

(1− β)2ν
(
τ(∆, ω)

) ,

ν
(
τ(∆, ω)

)
= (1− ρ2)

∫ τ(∆,ω)
0 σ(s)2ds.

(5.12)

and χ2(x; δ, λ) is the non-central chi square cumulative distribution function for random vari-
able x with non-centrality parameter λ and degree of freedom δ.

Proof: The proof goes along the lines of the work in Islah [19] and Chen [10].

Summary of the algorithm The algorithm to sample the SABR-HW system for a time
interval [0, ∆] consists of the following steps:

1. Draw samples of r(∆) from a normal distribution with mean and variance de-
fined by Eq. (2.8) and (2.9), respectively;

2. Apply a drift interpolation ∆
(

1
2 r(0) + 1

2 r(∆)
)

to approximate
∫ ∆

0 r(s)ds in For-
mula (5.3) for the pathwise (stochastic interest rate induced) rescaled time step
τ(∆, ω);

3. Conditional on σ
(
τ(∆, ω)

)
, draw samples of

∫ τ(∆,ω)
0 σ(s)2ds by the method pro-

posed in Section 3.4 of [10];

4. Conditional on σ
(
τ(∆, ω)

)
and

∫ τ(∆,ω)
0 σ(s)2ds, draw samples of the dynamics

without drift, S, in the time scale τ from the non-central chi square distribution,
described in Prop. 5.1;

5. Find the asset price process with drift, S(r)(τ(∆, ω)
)
, by multiplying the esti-

mated
∫ ∆

0 r(s)ds (Step 2) with S
(
τ(∆, ω)

)
.
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Figure 5.1: The MC error as a function of the number of time steps. Note the different
scaling of the three figures.

5.2.1 Numerical Experiment with European Options

We consider the pricing of European options in the SABR-HW model by the unbi-
ased Monte Carlo method. We focus on a call option, maturing at time T with strike
price K, and denote the exact option price at initial time by C(K, 0). It is approximated
by:

Ĉ(K, 0) = E
[(

S(T)− K
)+].

Ĉ(K, 0) is typically not equal to C(K, 0), and we define the bias, e, of the simulation as
a function of the time step, ∆, and analyze its behavior.

We will use the parameter sets I, II and III in Table 3.1 to carry out the numerical
experiments for the call options with T = 10 and ATM strikes. As the benchmark, we
apply a Monte Carlo simulation based on the Euler discretization with very many time
steps, 400 time steps per year, and report the average of three runs as the reference
prices. For Sets I, II and III, the option prices obtained by the unbiased Monte Carlo
method are listed in Table 5.1 for time steps ∆ ranging from 1 to 32 steps a year.

We plot the differences between the MC estimate and the reference values for dif-
ferent step sizes in Figure 5.1, from which we see that the unbiased scheme is advan-
tageous to the Euler scheme in terms of its low bias. By increasing the number of time
steps the unbiased scheme has smaller errors compared to the Euler scheme for all
parameter settings.

5.2.2 Time-Dependent Parameters

We can also discretize System (2.1) with the unbiased scheme by assuming that the
functions can be approximated by piecewise constant functions on [t, t + ∆] with their
value γ̄. According to the arguments by Andersen [1] and Glasserman [13] (pp. 130)
we then use γ̄ = (γ(t) + γ(t + ∆))/2, which leads to a modification of System (2.1) that
can easily be simulated by the unbiased scheme. More precisely, the volatility process
in the dynamical SABR-HW system is sampled by the following formula

Σ(t + ∆) = ḡ · k(t) · exp
(
−1

2
h̄2∆ + h̄Z

√
∆
)

, k(0) = 1, (5.13)
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Table 5.1: Estimated 10 year ATM call option prices for Cases I, II and III.

Case I Case II Case III
T = 10

∆ Unbiased Euler Unbiased Euler Unbiased Euler
1 0.4653 0.4699 0.4731 0.4771 0.5485 0.5374

1/2 0.4680 0.4697 0.4680 0.4703 0.5473 0.5382
1/4 0.4664 0.4662 0.4665 0.4691 0.5420 0.5479
1/8 0.4666 0.4664 0.4659 0.4681 0.5440 0.5451

1/16 0.4669 0.4675 0.4644 0.4676 0.5430 0.5449
1/32 0.4669 0.4673 0.4633 0.4667 0.5431 0.5432

Reference 0.4671 0.4634 0.5431

where

ḡ =
g(0, t) + g(0, t + ∆)

2
, h̄ =

h(0, t) + h(0, t + ∆)
2

.

As a result, the formula for the integrated variance has to be adapted as well: it has to
be multiplied by the factor of ḡ2.

6 Conclusion

In this article we have presented the dynamical SABR-HW model as an alternative
model for pricing long-maturity equity options and equity-interest rate hybrid prod-
ucts. We have defined the model, introduced its building blocks and described several
issues for the practical application of the SABR-HW model, like model calibration and
option pricing. At several places we have presented numerical techniques that are
not often used by the financial industry, like the unbiased discretization scheme and a
weighted Monte Carlo technique to enhance the calibration.

In particular we have also proposed an invertible projection formula for the con-
stant parameter SABR-HW model connecting it with the plain SABR model. The basis
for this projection was a change of measure, to the T-forward measure, and a lineariza-
tion. The projection formula greatly simplifies the calibration of the SABR-HW model.

The inversion of the projection formula serves as the first step in a calibration pro-
cedure, i.e. it gives a rapid and fairly accurate approximation of the constant SABR-
HW parameters at each maturity. Based on these parameters, we have defined time-
dependent functions in the dynamical SABR-HW model, that are consistent with the
market implied volatilities for all maturities.

In the final calibration step, non-uniform Monte Carlo weights have been deter-
mined in such a way that the implied volatilities from the market and true SABR-HW
model match. The overall calibration procedure is highly efficient and accurate.

Exotic contracts have then been priced using the weighted Monte Carlo paths gen-
erated by an unbiased time discretization scheme of the dynamical SABR-HW model.
An advantage of the unbiased scheme is that accurate Monte Carlo results are obtained
for large time-steps. This is particularly useful when long-maturity options are consid-
ered.
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