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Abstract. The problem of pricing, hedging and calibrating equity derivatives in a fast and consistent fashion is
considered when the underlying asset does not follow the standard Black- Scholes model but instead the CEV or
SABR models. The underlying process in the CEV model has volatility as a deterministic function of the asset price
while in the SABR model the volatility as a stochastic function of the asset price. In such situations, trading desks
often resort to numerical methods to solve the pricing and hedging problem. This can be problematic for complex
models if real-time valuations, hedging and calibration are required. A more efficient and practical alternative is to
use a formula even if it is only an approximation. A systematic approach is presented, based on the WKB or ray
method, to derive asymptotic approximations yielding simple formulas for the pricing problem. For these models,
default may be possible and the original ray approximation is not valid near the default boundary so a modified
asymptotic approximation or boundary layer correction is derived. New results are also derived for the standard CEV
model and the SABR results. The applicability of the results is illustrated by deriving new analytical approximations
for vanilla options based on the CEV and SABR models. The accuracy of the results is demonstrated numerically.
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1. Introduction. Vanilla exchange-traded and Over-the-Counter (OTC) European op-
tions or European futures options are often priced and hedged using the Black-Scholes or
Black’s model [5, 6], respectively. The derivation of the Black-Scholes or Black’s pricing
formulas assumes that the asset prices have lognormal distributions and that the volatility is
constant, i.e. a pricing formula under Geometric Brownian Motion (GBM). In these models
there is a one-to-one relationship between the option prices and the volatility. Thus given
option prices across the strikes K and the time to maturity τ = T − t, there is a unique value
of the volatility (implied volatility) that yields the prices when used in the pricing formulas.
However, this is rarely the case in practice since implied volatilities usually vary with K and
τ . In other words, the markets depart from the constant volatility assumption by exhibiting
significant downward sloping volatility curves and in some markets the in-the-money (ITM)
and out-of-the-money (OTM) options trade at higher implied volatilities than at-the-money
(ATM) options. This is referred to as the volatility smile or skew. Typically, although not
always, the word skew is reserved for the slope of the volatility/strike function, and smile for
its curvature.

To price and hedging, traders and portfolio managers have been trying to address issues
such as volatility smiles and skews. One would like to have a consistent estimate of volatility
risk, across all the different strikes and maturities for a given option portfolio (e.g. trader’s
book). The variation of volatility with the strike K essentially means that a different model
is being used for each strike. This presents several difficulties when managing large books of
options. It is not clear that the delta and vega risks1 calculated at a given strike are consistent
with the same risks across strikes. Also if volatility varies with K, it seems likely that volatil-
ity also varies systematically as the asset price changes [17, 18]. Any vega risk arising from
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1For example, the delta and vega of a call price c = c(F, t) are defined as ∂c/∂F and ∂c/∂σ, respectively.

They correspond to the sensitivity of the option price to the underlying asset price F and volatility σ.
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the systematic change of volatility with the asset price could be hedged more properly (and
inexpensively) as delta risk. Finally, it is difficult to know which volatility to use in pricing
more exotic options. as observed in [24].

Due to these widely accepted stylized facts regarding volatility as described in [10] (e.g.
volatility is not constant), the pricing and the robust calibration of a model requires relaxing
of the GBM assumption. One approach to account for the skew/smile is to use a single
local volatility model that correctly prices options at different strikes without adjustments.
Commonly these local volatility models involve a stochastic differential equation (SDE) of
the form [17, 18]

dF = σ(F, t)FdW,(1.1)

where F (t) is the forward price of the underlying, σ(F, t) is the local volatility that needs
to be determined and W (t) is standard Brownian motion. Local volatility models are self-
consistent, arbitrage free and can be calibrated to precisely match observed market smiles
and skews. They are used in pricing by implementing tree models [18, 16] and are often
preferred to the more complicated models for computational reasons. However, there are
practical problems with these models.

For example one needs to recover a smooth volatility surface σ(F, t) in the model from
market prices, i.e. the calibration problem. However, it is not easy to extract a continuous
local volatility surface from a few discrete option prices. One remarkable result, due to Dupire
[18], is that if call options prices corresponding to all possible strikes and maturities are
known in a consistent manner then the local volatility σ(F, t) is uniquely determined by the
relation

σ(K,T ) =

√
2
(

∂c/∂T

K2∂2c/∂K2

)
.(1.2)

Here c = c(F, t) represents the price of a European call at time t with strikeK and expiration
T . In practice this approach has shortcomings since ∂c/∂T and ∂2c/∂K2 must be computed
using only a finite set of option prices available in the market. Hence interpolation is needed
in order to use Dupire’s formula and it is by no means obvious how to interpolate the data set
in such a way that the radicand remains positive and finite [37]. Further, the result is overly
sensitive to the (arbitrary) choice of the interpolation, especially for short maturities (τ � 1).
This results in poor robustness of the method. Moreover, it has recently been observed [22]
that the dynamics of the behavior of smiles and skews predicted by local volatility models is
the exact opposite of the behavior observed in the marketplace, i.e. local volatility models
predict that the skew moves in the opposite direction to the market level while in reality it
moves in the same direction. This leads to extremely poor hedging results and the hedges are
often worse than the ones obtained using Black’s model. The reason is that these hedges are
in fact consistent with the smile moving in the same direction as the market.

Another approach is to specify the form of the local volatility σ(F, t). These models fall
in the category of level dependent volatility models [1, 2, 12], such as the Constant Elasticity
of Variance (CEV) model [12] or power law model [24] in which the volatility is a determin-
istic function of the underlying asset. Similarly, one can also introduce stochastic volatility
[20, 26, 28, 33, 34] such as the Stochastic Alpha Beta Rho (SABR) model [22] or stochastic
CEV model. These models can be viewed as extensions of Dupire’s local volatility model.
They are typically more robust about their set of assumptions, i.e. replacing the assumption
of constant volatility with deterministic or stochastic volatility.

The CEV process has the local volatility as a deterministic function of the underlying
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asset σ(F, t) = V F β and is described by the following risk-neutral SDE

dF = V F β+1dW(1.3)

where β is the elasticity of the local volatility and V is the scale parameter. The CEV process
was first introduced in [13] for −1 ≤ β < 0 and extended in [19] to the case β > 0. Note
that for β = 0 we recover the GBM case. It has received attention for several reasons. First,
the model is consistent with Black’s observation [5] that for β < 0 the volatility changes
are negatively correlated with stock returns often referred to as the leverage effect. Empirical
evidence supporting the inverse relationship between asset price and volatility is given in [8].
Second, the model is potentially consistent with capturing the observed implied volatility
skew within option data for both equity and index options [14]. Third, the model can be
calibrated to be consistent with market prices of European options prices using the known
analytic option formulas [24, 27, 29]. Thus the CEV process provides an improvement to the
traditional GBM model and is a viable model for consistent pricing and risk management of
options portfolios.

The SABR model is another interesting alternative model to GBM. It is an extension
of the CEV process but with stochastic volatility. It was developed in [22] to capture the
dynamics of smile in the interest rate derivatives markets. Here the dynamics of the price of a
single underlying F (t) as well as the volatility scale parameter V (t) are stochastic satisfying
an SDE of the form

dF = V F β+1dW̃1
(1.4)

dV = νV dW2

where W̃1(t) and W2(t) are correlated Brownian motions with E[dW̃1, dW2] = ρdt and
ρ ∈ [−1, 1]. The model is characterized by a local volatility function similar to the one from
the CEV, σ(F, t) = V F β , with stochastic scale parameter V , the parameter β restricted to
−1 ≤ β ≤ 1 [22], ν controls the level of the volatility of the scale parameter, and ρ governs
the correlation between the changes in the underlying asset and its scale V . This model
reduces to Black’s model with ν = 0, β = 0 and hence σ(F, t) = V . It also reduces to the
CEV model when ρ = q and ν = 0.

A key property of the CEV and SABR models, that is often viewed as either a strength
or weakness, is the potential absorption of the processes [13] at the lower boundary F = 0
(bankruptcy or default case). Although default case is possible for β < 0, it has undesir-
able economic implications, particularly for indices, since it is inconceivable that there is a
significant probability of default for indices. One can perhaps restrict β ≥ −1 for indices
to highlight the very unlikely probability of a highly liquid index to default. Another rem-
edy is to modify the underlying asset process such that default is no longer possible. An
example is the CEV by including a minimum asset price level below which the volatility be-
comes constant [3, 14]. However, for equities, the CEV becomes an attractive model where
bankruptcy is more often than not a recurrent event (e.g. financial services or airline indus-
tries), although in practice the asset price never reaches zero in case of default but rather a
very small value. From a practical point of view we regard the default case as a strength of
the models [7, 15, 33]. Also it can play a role in pricing of derivatives. Another possibility
is the shifted CEV [1] and SABR models with default occurring when the asset price reaches
a small positive value instead of zero. This has been shown [30] to overcome some of the
above difficulties and provide a practical alternative to the CEV when default is possible.

The popularity of a pricing model is often due to the existence of an exact or approxi-
mate pricing formula making it possible to calibrate efficiently and rapidly price and hedge
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financial derivatives in a real time environment, e.g. Black’s pricing formulas. The more
complex the model the harder it is to derive a practical closed form solution that can be easily
implemented for pricing and risk management. To implement such models often requires
a numerical solution such as lattice methods, numerical integration routines or numerical
methods for partial differential equations, e.g. finite difference or element methods. Another
robust alternative is a Monte-Carlo simulation for valuation, analysis and risk management.
This may be slower to give a price in an intra-day high frequency trading environment for
which real time valuation and hedging is required. Therefore without a useful formula, the
practical issues of implementation can become problematic for a trader or portfolio manager.
The model’s lack of practicability hinders its usefulness despite its modeling strengths ver-
sus the standard GBM. Analytic formulas would certainly be practical and advisable to look
for. Whether they are exact or approximate, they can provide a very fast way to perform real
time option hedges obtained by analytically differentiating the pricing formulas. Moreover
it makes it possible to calibrate efficiently in a real time environment [44]. The formulas
are an improvement over numerical methods such as lattice, numerical integration, PDE or
Monte-Carlo methods.

Progress has been made in developing approximate pricing formulas especially with the
SABR [22, 23] and CEV model extensions [4, 24]. The SABR model [22], despite its lack
of an explicit or quasi-closed form solution [23, 25, 32], is popular among practitioners due
to the existence of an approximate or asymptotic formula [22, 38] to price European style
calls and puts giving good agreement between the theoretical and observed smiles for τ � 1.
The model allows the market price and the market risks to be obtained immediately using
the asymptotic formula. It also provides good and sometimes spectacular fits to the implied
volatility curves observed in the marketplace. More importantly, the SABR model captures
the correct dynamics of the smile, and thus yields stable hedges. In [23] the authors refine
the results from [22] by using a more general asymptotic technique [43] as a method to price
derivatives using risk-neutral expectation.

The purpose of this paper is to present a general systematic approach to derive approxi-
mate analytic formulas for European type of derivatives based on the CEV and SABR models.
In particular, we use the ray method that was developed in the theory of wave propagation
[31]. It was applied to general diffusion equations in [9, 41]. The method consists of first con-
structing an asymptotic solution or ray solution for τ � 1 valid away from the boundaries.
If necessary a boundary layer solution is constructed in the neighborhood of the boundaries.
The ray and boundary layer solutions are then matched to determine any unknown quantities
in them. The present method has a number of virtues. First it is general and can be applied
to any diffusion equation in any domain. Thus it does not depend upon separability or any
other special property of the equation. Second, it provides very useful and accurate quanti-
tative approximations to the probability density function that can be used to price financial
derivatives.

The approach taken in this paper differs from that of [4, 22, 23, 24] in several important
ways. First we present the ray method as a systematic approach to derive the asymptotic
behavior of the density function for τ � 1 away from and near the boundaries. Next, we
present a general asymptotic method [39] to obtain a uniform approximation to the pricing
integral for call and put options and its corresponding deltas. This is illustrated using the CEV
and SABR model. Our approximations provide new analytic formulas for pricing European
derivative contracts. Finally, by introducing the ray method and the uniform expansion of in-
tegrals we present a practical recipe of three steps to derive approximate pricing formulas for
time to expiration τ small: (1): define an exact risk-neutral expectation integral; (2): derive
the asymptotic formula for the probability density function p for small τ ; (3): asymptotically
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expand the risk-neutral integral with the asymptotic formula for p. The recipe provides a prac-
tical set of tools needed for pricing and hedging of European contingent claims undertaken
with more sophisticated models in a high frequency trading environment.

This paper is organized as follows. In Section 2 we review the CEV process and derive
the ray and boundary layer solutions for the risk-neutral density function. We then derive
new uniform approximations for the prices of the European call and put options for β 6= 0.
In Section 3 we consider the SABR model and we derive and the ray solution and boundary
layer correction for the density function. Again we derive new uniform approximations for
the prices of the European call and put options for β 6= 0. In Section 4 we benchmark the
asymptotic formulas from Sections 2 and 3 to standard numerical methods as well to special
cases for which an exact solution is known. In addition, a simple calibration is performed
using the analytic formulas to illustrate their practicality and speed. Details of the derivations
are given in the Appendices and in [29].

2. The CEV Model. We assume that the dynamics of the forward price F (t) are de-
scribed by the CEV model [13] with the SDE

dF = V F β+1dW.(2.1)

The local volatility is a deterministic function of the underlying asset σ(F, t) = V F β where
V > 0 is the deterministic volatility scale parameter and −∞ < β < ∞ is the elasticity
of the local volatility [1, 14]. The risk-neutral density function is defined as p(F̂ , T, F, t) =
∂

∂F̂
Pr
[
F (T ) ≤ F̂ |F (t) = F

]
, where t ∈ [0, T ]. Here F = F (t) and F̂ = F (T ) are the

backward and forward variables, respectively. The density function p is needed in our pricing
scheme and is a solution of

∂p

∂T
=

1
2
V 2 ∂2

∂F̂ 2

[
F̂ 2β+2p

]
, T > t, lim

T→t
p(F̂ , T, F, t) = δ(F̂ − F ).(2.2)

The boundary conditions for (2.2) are not arbitrary since the equation is singular at both
F̂ = 0 and F̂ = ∞ [33, 34]. When β ≥ 0, the boundary at F̂ = 0 is a natural boundary
while F̂ =∞ is an entrance. When β ≤ 0, F̂ =∞ is a natural boundary. If −1/2 ≤ β < 0,
the boundary at F̂ = 0 is an exit and the process is absorbed, i.e. default is possible. On the
other hand when β < −1/2, the boundary at F̂ = 0 is regular and we impose an absorbing
boundary condition. Thus we use the following boundary conditions for (2.2) :

β < 0 : p(0, T, F, t) = 0 (absorbing boundary)

lim
F̂→∞

p(F̂ , T, F, t) = 0 (natural boundary)
(2.3)

β > 0 : p(0, T, F, t) = 0 (natural boundary)

lim
F̂→∞

[
F̂
∂p

∂F̂

]
= 0 (entrance boundary).

We find the solution of (2.2) for β 6= 0 with the appropriate boundary conditions in (2.3) to
be [1, 33]

p(F̂ , T, F, t) =
F̂−2β−3/2F 1/2

V 2|β|(T − t) exp

(
− F̂

−2β + F−2β

2V 2β2(T − t)

)

(2.4)

×I1/2|β|
(

[F̂F ]−β

V 2β2(T − t)

)
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where Iν(·) is the modified Bessel function. If β > 0, F̂ = 0 is a natural boundary and is not
accessible and F̂ =∞ is an entrance so that p(F̂ , T, F, t) is a proper density function, i.e.

∫ ∞

0

p(F̂ , T, F, t)dF̂ = 1.(2.5)

It is known that for β > 0 there is no equivalent martingale measure for F [14, 33]. If β < 0,
F̂ = 0 is accessible (exit or regular boundary) and F̂ = ∞ is natural so that p(F̂ , T, F, t)
does not integrate to one, i.e.

∫ ∞

0

p(F̂ , T, F, t)dF̂ = 1− P0(F, T, t).(2.6)

Here P0(F, T, t) = Pr [F (T ) = 0|F (t) = F ] is the absorption probability at F̂ = 0 which
we find to be [14, 33]

P0(F, T, t) =
1

Γ [1/(2|β|)]

∫ ∞

F−2β/2V 2β2(T−t)
s1/(2|β|)−1e−sds.(2.7)

For β < 0, F is a martingale.

Risk-Neutral Pricing. We assume that the price u(F, t) of a European derivative with
payoff function Λ(F ) is given by

u(F, t) = e−r(T−t)
∫ ∞

0

Λ(F̂ )p(F̂ , T, F, t)dF̂ .

Here F follows a CEV process so that p is given by (2.4) and r is the constant risk-free inter-
est rate. Unfortunately, computing the integral numerically often proves difficult and/or CPU
intensive especially in a trading environment requiring fast computations e.g. algorithmic
trading. The next step in our scheme is find an approximation to the density p. We could
asymptotically expand (2.4) directly for t near T [30]. Instead we will develop an approxi-
mation directly from (2.2) using a perturbation method and then use it in the integral. This
approach will be particularly useful when the exact form of p is not available and will moti-
vate our later results on the SABR model. Finally, we obtain our approximation to the price
by expanding the above integral asymptotically.

Asymptotic Analysis. We now present our scheme for obtaining approximations to the
prices of European derivatives.

We seek an asymptotic solution to the density function p in (2.2) with (2.3) but with
τ = T − t in the form [41, 42]

p(F, F̂ , τ) ∼ e−φ2/4τ
∞∑

n=0

Znτ
n−1/2, τ → 0.(2.8)

Here φ and Zn are unknown functions of F̂ and F . The initial condition in (2.2) implies that
φ = 0 as F̂ → F . We now substitute (2.8) into (2.2), collect powers of τ to find to leading
order

V 2

2
F̂ 2β+2φ2

F̂
= 1, φ→ 0 if F̂ → F(2.9)
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where φ
F̂

denotes partial differentiation with respect to F̂ . At the next order we obtain

2F̂ 2β+2φ
F̂
Z

0,F̂
+ Z0

[
F̂ 2β+2φ

F̂ F̂
+ 2

(
F̂ 2β+2

)
F̂
φ
F̂

]
= 0.(2.10)

The solutions of (2.9) and (2.10) are

φ =
√

2
V β

(
F−β − F̂−β

)
and Z0 = CF̂−3(β+1)/2(2.11)

where C is determined by normalization to be

C =
1

V F−(β+1)/2
√

2π
, β 6= 0.(2.12)

RESULT 1. For β 6= 0 the leading term in the asymptotic solution for p away from the
boundaries is given by

p(F̂ , T, F, t) ∼
(
F

F̂ 3

)(β+1)/2
e−(F−β−F̂−β)2/2V 2β2(T−t)

V
√

2π(T − t)
, T − t→ 0.(2.13)

To illustrate that the asymptotic solution (2.13) may not satisfy the boundary conditions,
which was not taken into account in [25], we set β = −1 in the exact solution (2.4) to find

p =
1

V
√

2π(T − t)

[
e
− (F̂−F )2

2V 2(T−t) − e−
(F̂+F )2

2V 2(T−t)

]
.(2.14)

On the other hand the asymptotic solution in (2.13) for this case is

p ∼ e
− (F̂−F )2

2V 2(T−t)

V
√

2π(T − t)
, T − t→ 0.(2.15)

Clearly the asymptotic solution does not satisfy the boundary condition in (2.3) for β = −1,
or in fact for other β < 0, and hence is not complete. The same conclusion applies for
the boundary condition in (2.3) for β > 0. This is characteristic of a singular perturbation
problem and a boundary layer solution is needed in order to satisfy the boundary conditions.

To construct the boundary layer solution, we introduce the change of variable x̂ =
F̂−2β/[V 2β2] into (2.2) leading to

∂p

∂τ
− ∂2

∂x̂2
[2x̂p] +

∂

∂x̂

[(
2 +

1
β

)
p

]
= 0(2.16)

where x = F−2β/[V 2β2]. We first construct a boundary layer solution pb for β < 0 near
x̂ = 0 (F̂ = 0) with boundary conditions (2.3) of the form [40]

p ∼ pb(x, x̂, τ) ≡ τ ceφ2
0/4τΨ

(
ξ̂
)
, ξ̂ = x̂/τ2.(2.17)

The variable ξ̂ is called the stretched variable and we define φ0 = φ
x̂=0

with φ =
√

2(
√
x−√

x̂). Substituting (2.17) into (2.16) we find the leading order boundary layer equation to be

[
2ξ̂Ψ

]′′
−
(

2 +
1
β

)
Ψ′ − x

2
Ψ = 0, Ψ(0) = 0(2.18)
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with solution that satisfies the appropriate boundary conditions to be

pb = C1τ
1/(2β)−1eφ

2
0/4τ ξ̂1/(4β)I1/(2|β|)

(√
xξ̂

)
.(2.19)

Here C1 is a constant to be determined by asymptotic matching, i.e. the boundary layer
solution must be consistent or match with the asymptotic solution valid away from 0. The
matching consists of comparing pb for ξ̂ → ∞ with (2.13), after the change of variable
leading to (2.16), as x̂ → 0 and choosing the unknown constants so that the two expressions
agree.

We use the fact that Iν(z) ∼ ez/
√

2πz (1 + . . .) for z � 1 which implies that as ξ̂ →∞
that

pb = C1τ
1/(2β)−1e−x/2τ

21/4

√
2π(2x)1/4

ξ̂1/(4β)−1/4e(xξ̂)1/2 (1 + . . .) .(2.20)

We re-write the boundary layer solution in terms of x̂ so that

pb = C1
21/4

√
πτ(2x)1/4

x̂1/(4β)−1/4e−x/2τ+
√
xx̂/τ (1 + . . .) .(2.21)

We then compare it with the leading term (2.13) written in terms of x̂ for x̂� 1 which is

p ∼ 1
2
√

2x̂πτ

(
x̂

x

)1/4+1/(4β)

e−φ
2/4τ with φ =

√
2
(√

x−
√
x̂
)
∼ 2x− 4

√
xx̂

yielding

C1 =
1

2x1/4β
.(2.22)

Since the change of variables leading to (2.16) maps F̂ = ∞ into x̂ = 0 for β > 0, the
construction of the boundary layer for β > 0 follows from the analysis for the case β < 0.
We summarize the results for the boundary layer solution using (2.21) and (2.22) in terms of
the original variables.

RESULT 2. For β 6= 0 the leading term in the boundary layer solution in terms of
original variables is given by

pb(F̂ , T, F, t) =
1

V 2|β|(T − t)

(
F 1/2

F̂−2β+3/2

)
e−F

−2β/2β2V 2(T−t)

(2.23)

×I1/2|β|
(

[F̂F ]−β

V 2β2(T − t)

)
, t→ T

valid for F̂ ≈ 0 for β < 0 and F̂ � 1 for β > 0.
The boundary layer solution (2.23) is illustrated in Figure 2.1. The two figures contain

the boundary layer solution (2.23) for the density function p, the exact solution (2.4) and the
ray solution (2.13), for β = −2, V = 0.4, T − t = 0.5 and β = 2, V = 0.4, T − t = 0.5.
Result 2 provides a more robust approximation than the ray solution near the boundaries by
first satisfying the boundary conditions and secondly by being more accurate.
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FIG. 2.1. Illustration of the boundary layer solution (2.23), the exact solution (2.4) and (2.13), for β = −2,
V = 0.4, T − t = 0.5 and β = 2, V = 0.4, T − t = 0.5.

Applications. The integral representation for the price u(F, t) of a European derivative
with payoff function Λ(F̂ ) where F follows a CEV process for β > 0 is given by

u(F, t) = e−r(T−t)
∫ ∞

0

Λ(F̂ )p(F̂ , T, F, t)dF̂(2.24)

and for β < 0 by [33]

u(F, t) = e−r(T−t)
∫ ∞

0

Λ(F̂ )p(F̂ , T, F, t)dF̂ + Λ(0)P0(t, F ).(2.25)

Here p is the density function defined in (2.4) and P0 is the absorption probability (2.7) at
F̂ = 0. For a specific payoff function, (2.24) and (2.25) are not straightforward to evaluate
and numerical methods are often required. But this does not lead to a simple analytic formula
which we would prefer. We obtain a useful approximation to u by replacing p in (2.24) and
(2.25) with the approximation (2.13) to obtain

u(F, t) ∼ e−r(T−t)
∫ ∞

0

Λ(F̂ )
(
F

F̂ 3

)(β+1)/2
e−(F−β−F̂−β)2/2V 2β2(T−t)

V
√

2π(T − t)
dF̂(2.26)

where the absorption probability P0 is omitted if β < 0 since it is exponentially small for
T − t� 1 [7].

The approximate price of a European call option c(F, t) for β 6= 0 is given by (2.26)
which becomes

c(F, t) ∼ e−r(T−t)
∫ ∞

K

(F̂ −K)
(
F

F̂ 3

)(β+1)/2
e−(F−β−F̂−β)2/2V 2β2(T−t)

V
√

2π(T − t)
dF̂(2.27)

where the payoff function is Λ(F ) = max(F −K, 0). We now look at the β < 0 case and
introduce the change of variables x = (F−β − F̂−β)/V |β| in (2.27) to obtain

c(F, t) ∼ 1√
2π(T − t)

∫ z

−∞
f(x)e−x

2/2(T−t)dx, z =
F−β −K−β

V |β| .(2.28)

Here

f(x) = e−r(T−t)
[(
F−β − xV |β|

)−1/β −K
]
F (β+1)/2

(2.29)
×
(
F−β − xV |β|

)(1+1/β)/2
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where f(0) = e−r(T−t)(F−K) and f(z) = 0. We now asymptotically expand the integral in
(2.28) for τ = T − t� 1 using integration by parts to obtain a uniform asymptotic expansion
as derived and proven in [39]. We write f(x) = 1 + [f(x)− 1] leading to

c(z, t) =
f(0)√

2π(T − t)

∫ z

−∞
e−x

2/2(T−t)dx

+

√
T − t

2π

[
f(0)− f(z)

z

]
e−z

2/2(T−t)(2.30)

+

√
T − t

2π

∫ z

−∞

d

dx

[
f(x)− 1

x

]
e−x

2/2(T−t)dx.

The leading term in the asymptotic approximation of the call option price for the CEV model
for β < 0 is

c(F, t) ∼ f(0)√
2π(T − t)

∫ z

−∞
e−x

2/[2(T−t)]dx+

√
T − t

2π

[
f(0)− f(z)

z

]
e−z

2/2(T−t)

where z and f(x) are defined in (2.28) and (2.29), respectively, leading to

c(F, t) ∼ e−r(T−t)
{

F −K√
2π(T − t)

∫ (F−β−K−β)/V |β|

−∞
e−x

2/2(T−t)dx+

(2.31)
(T − t)V |β|(F −K)

F−β −K−β
e−(F−β−K−β)2/2(T−t)V 2β2

√
2π(T − t)

}
.

Performing the same calculations for the put option with β > 0 leads to the asymptotic
pricing formula

p(F, t) ∼ e−r(T−t)
{

K − F√
2π(T − t)

[∫ (F−β−K−β)/V |β|

−∞
e−x

2/2(T−t)dx

]
+

(2.32)
(T − t)V |β|(K − F )

F−β −K−β
e−(F−β−K−β)2/2(T−t)V 2β2

√
2π(T − t)

}
.

We summarize the asymptotic pricing formulas for the call and put price for β 6= 0.
RESULT 3. For β < 0 and t → T the asymptotic approximation for the price of a

European call option using (2.31) is given by

c(F, t) ∼ e−r(T−t)
{

(F −K)N(d1,cev) +
[
F −K
d1,cev

]
n(d1,cev)

}
,(2.33)

where

d1,cev =
F−β −K−β
V |β|
√
T − t(2.34)

and similarly the leading asymptotic approximation for the price of a European put option is
given by

p(F, t) ∼e−r(T−t)
{

(K − F ) [N(d2,cev)−N(d1,cev)]

(2.35)

+(K − F )
[
n(d2,cev)
d2,cev

− n(d1,cev)
d1,cev

]}
.
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Here

d2,cev =
F−β

V |β|
√
T − t .(2.36)

N(x) =
∫ x
−∞

e−s
2/2

√
2π

ds is the cumulative normal distribution and n(x) = dN(x)
dx is the nor-

mal density function. The asymptotic approximations for the put and call options for β > 0
and t→ T can be obtained in a similar fashion by using (2.32) leading to,

p(F, t) ∼ e−r(T−t)
{

(K − F )N(d1,cev) +
[
K − F
d1,cev

]
n(d1,cev)

}
.(2.37)

and

c(F, t) ∼e−r(T−t)
{

(F −K) [N(d2,cev)−N(d1,cev)]

(2.38)

+(F −K)
[
n(d2,cev)
d2,cev

− n(d1,cev)
d1,cev

]}
.

We note that as d2,cev → ∞ or β → 0 (2.35) and (2.37) asymptotically satisfy the put-call
parity c(F, t)−p(F, t) ∼ (F−K)e−r(T−t). Figure 2.2 illustrates the convergence of the put-
call parity for β = −2, K = 100, V = 0.3, r = 0.02 and T − t = 0.25. The relative error,
defined as the absolute value of the difference between c(F, t)−p(F, t) and (F−K)e−r(T−t)

divided by (F −K)e−r(T−t), is less than 0.5%. The asymptotic approximation will become
even better for T − t� 1.
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FIG. 2.2. Illustration of the put-call parity applying equations (2.33) and (2.35) such that c(F, t)− p(F, t) ∼
(F −K)e−r(T−t), with parameters β = −2, K = 100, V = 0.3, r = 0.02 and T − t = 0.25.

We compute the results for the deltas of the call and put prices for β 6= 0, by differen-
tiating (2.33), (2.35), (2.37) and (2.38), in Result 3. Figure 2.3 illustrates the results for the
delta of the call and put price for β < 0 in equations (2.39) and (2.41). Result 4 below pro-
vides the formulas needed to determine the sensitivity of the option price with respect to the
underlying asset price F under the CEV model. The combination of Results 3 and 4 provide
a basic set of analytic formulas needed to quickly price and hedge option contracts under the
CEV model.

RESULT 4. For β < 0 and t → T , the asymptotic approximation for the delta of the
price of a European call option using (2.33) is given by

∂c

∂F
(F, t) ∼ e−r(T−t)

{
N(d1,cev) +

n(d1,cev)
d1,cev
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(2.39)

− (F −K)
d2

1,cev

∂d1,cev

∂F
n(d1,cev)

}

where

√
T − t∂d1,cev

∂F
=

1
V F

(F−β −K−β)− 1
V
F−β−1(2.40)

and the leading asymptotic approximation for the delta of a European put option using (2.35)
is given by

∂p

∂F
(F, t) ∼e−r(T−t)

{
N(d1,cev)−N(d2,cev) +

n(d1,cev)
d1,cev(2.41)

−n(d2,cev)
d2,cev

+
(K − F )
d2

1,cev

∂d1,cev

∂F
n(d1,cev)

}
.

The asymptotic approximations for the delta of the put and call options for β > 0 and t→ T
can be obtained in a similar fashion by using (2.37) leading to,

∂p

∂F
(F, t) ∼ e−r(T−t)

{
−N(d1,cev) +

n(d1,cev)
d1,cev(2.42)

− (K − F )
d2

1,cev

∂d1,cev

∂F
n(d1,cev)

}

and, using (2.38),

∂c

∂F
(F, t) ∼e−r(T−t)

{
−N(d1,cev) +N(d2,cev)−

n(d1,cev)
d1,cev(2.43)

+
n(d2,cev)
d2,cev

− (F −K)
d2

1,cev

∂d1,cev

∂F
n(d1,cev)

}
.
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FIG. 2.3. Illustration of the delta for the call and put price applying equations (2.39) and (2.41) with parame-
ters β = −2, K = 100, V = 0.3, r = 0.0 and T − t = 3/4 versus the delta under Black’s model.
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3. SABR Model. We now consider the stochastic CEV or SABR model [22, 25] in
which the forward price of the asset F = F (t) as well as the volatility scale parameter
V = V (t) are stochastic and follow (1.4) or equivalently

dF=
√

1− ρ2V F β+1dW1 + ρV F β+1dW2
(3.1)

dV= νV dW2

where W̃1(t) =
√

1− ρ2W1(t) + ρW2(t) and W1(t) and W2(t) are uncorrelated standard
Brownian motions. The local volatility function is σ(F, t) = V F β where β is not restricted
to −1 ≤ β ≤ 1 as in [22]. The parameter ν controls the level of the volatility of the scale
parameter V and ρ governs the correlation between the changes in the underlying asset and
V . We now use our three step pricing scheme, as applied to the CEV model above. We first
concentrate on the density function

p = p(F̂ , V̂ , T, F, V, t) =
∂

∂F̂
Pr[F (T ) ≤ F̂ , V (T ) ≤ V̂ |F (t) = F, V (t) = V ]

where F, V, t are the backward variables and F̂ = F (T ),V̂ = V (T ),T are the forward
variables, that satisfies the following forward equation

∂p

∂T
=

1
2
V̂ 2 ∂2

∂F̂ 2

[
F̂ 2β+2p

]
+

1
2
ν2 ∂2

∂V̂ 2

[
V̂ 2p

]
+ ρν

∂2

∂F̂∂V̂

[
V̂ 2F̂ β+1p

]
,(3.2)

with F̂ , V̂ > 0 and initial condition

lim
T−t→0

p(F̂ , V̂ , T, F, V, t) = δ(F̂ − F )δ(V̂ − V ).(3.3)

Again, the boundary conditions for (3.2) may not be arbitrary since the equation is singular at
both F̂ = 0, ∞ and V̂ = 0, ∞. We believe, based on the CEV model in (2.2), that F̂ = 0 is
absorbing and F̂ =∞ is natural if β < 0, while F̂ = 0 is natural and F̂ =∞ is an entrance
if β > 0. Also V̂ = 0, V̂ = ∞ are natural for all β. Thus we use the following boundary
conditions for (3.2) with (3.3) :

β < 0 : p(0, V̂ , T, F, V, t) = 0 (absorbing), lim
F̂→∞

p(F̂ , V̂ , T, F, V, t) = 0 (natural)

p = 0 (natural), V̂ = 0, ∞ (natural)
(3.4)

β > 0 : p(0, V̂ , T, F, V, t) = 0 (natural), lim
F̂→∞

[
F̂
∂p

∂F̂

]
= 0 (entrance)

p = 0 (natural), V̂ = 0, ∞ (natural).

For β = 0 all the boundaries are natural.

We now present some special cases of the SABR model for which exact solutions are
available.

McKean Problem. McKean [35] considered the problem of diffusion on the Poincaré
plane (surface of negative curvature) which is a special case of the SABR model (3.2) with
ρ = 0, β = −1 but in the right-half plane, i.e the domain of F̂ is extended to be −∞ < F̂ <
∞. If we define y = F ŷ = F̂ , x = V/ν, x̂ = V̂ /ν, τ = ν2(T − t)/2 in (3.2) then the
McKean density function, pmk = pmk(x̂, ŷ, x, y, τ) satisfies the problem in [35]

∂pmk
∂τ

=
∂2

∂ŷ2

[
x̂2pmk

]
+

∂2

∂x̂2

[
x̂2pmk

]
, lim

τ→0
pmk = δ(x̂− x)δ(ŷ − y).(3.5)
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McKean constructed the solution to (3.5) in the right half plane x̂ > 0 and −∞ < ŷ < ∞
with the boundary condition

pmk = 0 on all boundaries,(3.6)

as

pmk =
e−τ/4

√
2

(4πτ)3/2x̂2

∫ ∞

φ

ze−z
2/4τ

√
cosh(z)− cosh(φ)

dz,(3.7)

where

φ = cosh−1

(
1 +

(x− x̂)2 + (y − ŷ)2

2x̂x

)
.

The function φ represents the geodesic distance from (x̂, ŷ) to (x, y) on the Poincaré plane.
However, the density function pmk in (3.7) is not a solution of the SABR problem (3.2)-(3.4),
written in terms of x, x̂, y, ŷ and τ with ρ = 0, β = −1, since it is not on the proper domain
and does not satisfy the boundary condition for the SABR density p = 0 if ŷ = 0 (F̂ = ∞).
However, as noted in [23] one can construct p = p(x̂, ŷ, x, y, τ) using pmk with the proper
boundary condition by means of the method of images

p = pmk(x̂, ŷ, x, y, τ)− pmk(x̂, ŷ, x,−y, τ).(3.8)

Correlated McKean Problem. Another special case related to the McKean problem is
the SABR model with β = −1 and ρ 6= 0. Introducing the same change of variables to obtain
(3.5), (3.2) becomes

∂pcmk
∂τ

=
∂2

∂ŷ2

[
x̂2pcmk

]
+

∂2

∂x̂2

[
x̂2pcmk

]
+ 2ρ

∂2

∂x̂∂ŷ

[
x̂2pcmk

]
,

(3.9)
lim
τ→0

pcmk = δ(ŷ − y)δ(x̂− x)

where x, x̂, y, ŷ and τ are defined above. The density function pcmk in the right half plane
satisfying the boundary conditions (3.6) was given in [23] as

pcmk =
e−τ/4

√
2

(4πτ)3/2x̂2
√

1− ρ2

∫ ∞

φ

ze−z
2/4τ

√
cosh(z)− cosh(φ)

dz,(3.10)

with

φ = cosh−1

(
1 +

(x− x̂)2 + 2ρ(x− x̂)(y − ŷ) + (y − ŷ)2

2(1− ρ2)x̂x

)
.

Similarly, we construct the SABR density function p by the method of images in (3.8) after
restricting the domain to the first quadrant and then using the boundary condition at ŷ = 0. We
now summarize the results for the special SABR cases for which an exact integral solution is
known. These special cases will be used to illustrate the accuracy of our asymptotic solutions.

RESULT 5. The solution to the SABR model (3.2) with β = −1 and all ρ using (3.10)
and the method of images in (3.8), is

p =
e−ν

2(T−t)/8

2[π(T − t)]3/2ν2V̂ 2
√

1− ρ2

{∫ ∞

φ

ze−z
2/2ν2(T−t)

√
cosh(z)− cosh(φ)

dz−
(3.11) ∫ ∞

φi

ze−z
2/2ν2(T−t)

√
cosh(z)− cosh(φi)

dz

}
,
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with

φ= cosh−1

(
1 +

(V − V̂ )2 − 2ρV ν(V − V̂ )(F − F̂ ) + ν2(F − F̂ )2

2(1− ρ2)V̂ V

)
,

(3.12)

φi= cosh−1

(
1 +

(V − V̂ )2 − 2ρV ν(V − V̂ )(F + F̂ ) + ν2(F + F̂ )2

2(1− ρ2)V̂ V

)
.

Here φ and φi represent geodesic distances between (x̂, ŷ) and (x, y) in the Poincaré plane.
The absorbing boundary condition for the SABR model in (3.4) is related to the one in

the CEV model for β < 0 in (2.6). Therefore, having an absorbing boundary condition results
in the total mass of the density function being less than one

∫ ∞

0

∫ ∞

0

p(F̂ , V̂ , T, F, V, t)dV̂ dF̂ < 1, β < 0.

Similar to the CEV process in that we must define the absorption probability at F̂ = 0,
P0(F, T, V, t) = Pr[F (T ) = 0|F (t) = F ].

Despite the existence of an exact solution for the density function for these special cases,
the integral in (3.11) must still be evaluated numerically to price derivatives. The value of
European options based on the SABR model in Result 5 requires integration of the payoff
function times the density function (3.11). A different view that reduces the number of inte-

grations in the pricing integral is to use the marginal density pF =
∫ ∞

0

p dV̂ .

Finally, we observe that the SABR solution in (3.11) with β = −1, ρ = 0 and ν → 0 can
be simplified to the special case of the Bachelier model. Integrating (3.11) over V̂ , to derive
the marginal distribution pF = pF (F̂ , T, F, t), and taking the limit ν → 0, leads to

pF =
1

V
√

2π(T − t)
e−(F̂−F )2/2V 2(T−t).(3.13)

Risk-Neutral Pricing. We illustrate the pricing of European style derivatives by consid-
ering the price u(F, t) with payoff function Λ(F ) for β > 0 given by

u(F, t) = e−r(T−t)
∫ ∞

0

∫ ∞

0

Λ(F̂ )p dV̂ dF̂ = e−r(T−t)
∫ ∞

0

Λ(F̂ )pF dF̂(3.14)

and for β < 0 by

u(F, t) = e−r(T−t)
∫ ∞

0

Λ(F̂ )pF dF̂ + Λ(0)P0(t, F )(3.15)

where pF is the marginal density function and P0 is the absorption probability at F̂ = 0. The
formulas in (3.14) and (3.15) are an exact integral representation for a variety of European
style derivatives such as the call option if Λ(F ) = max(F − K, 0). For a specific payoff
function (3.14) and (3.15) may be difficult to evaluate and numerical methods are often re-
quired. But this does not lead to a simple analytic formula which we would prefer. As in
Section 2 we develop analytic approximations directly from (3.2) with (3.3) and boundary
conditions in (3.4). The results are derived using the same systematic approach but now no
exact solution is available for p.
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Asymptotic Analysis. For the uncorrelated SABR model with ρ = 0, β 6= 0, and the
correlated SABR model with ρ 6= 0, β 6= 0, the exact solution for the density function p
in (3.2) is not known so we will construct approximations. Following our approach for the
CEV model, we seek an asymptotic solution of (3.2) for small τ = T − t. The form of a ray
solution [41, 42] is

p ∼ pray ≡ e−φ
2/2ν2τ

∞∑

n=0

Znτ
n−1, τ � 1(3.16)

where φ and Zn are to be determined. The initial condition in (3.3) implies that the leading
term in the series is τ−1 and φ = 0, Z0 = 1 as F̂ → F and V̂ → V . We now substitute
(3.16) into (3.2), collect powers of τ and equate the coefficients of each power of τ to zero.
After introducing

x̂ =
V̂

ν
, and ŷ =

F−β

β
(3.17)

we obtain the following eikonal equation at O(τ−3)

x̂2
[
φ2

ŷ
+ φ2

x̂
− 2ρφ

x̂
φ
ŷ

]
= 1.(3.18)

From the coefficients of τ−2 together with (3.18), we obtain the transport equation

2x̂
[
φ
ŷ
Z

0,ŷ
+ φ

x̂
Z

0,x̂
− ρφ

x̂
Z

0,ŷ
− φ

ŷ
Z

0,x̂

]

+Z0

[
x̂2
(
φ
ŷŷ

+ φ
x̂x̂
− ρφ

x̂ŷ
− ρφ

ŷx̂

)
(3.19)

− x̂
2 (β + 1)
ŷβ

φ
ŷ
− 2x̂2 (β + 1)

ŷβ

(
φ
ŷ
− ρφ

x̂

)
+ 4x̂

(
φ
x̂
− ρφ

ŷ

)
− 1
φ

]
= 0.

We solve (3.18) and (3.19) by the method of characteristics, as sketched in Appendix A,
leading to the earlier result

φ = cosh−1

(
1 +

(x− x̂)2 + 2ρ(x− x̂)(y − ŷ) + (y − ŷ)2

2(1− ρ2)x̂x

)
.(3.20)

Given the solution to the eikonal equation, we now solve for the transport equation (3.19)
which can be written as a first order differential equation, along a ray or characteristic, as

dZ0

dφ
+ Z0

[
1
2
x̂2
(
φ
ŷŷ

+ φ
x̂x̂
− ρφ

x̂ŷ
− ρφ

ŷx̂

)

− x̂2 (β + 1)
2ŷβ

φ
ŷ
− x̂2 (β + 1)

ŷβ

(
φ
ŷ
− ρφ

x̂

)
+ 2x̂

(
φ
x̂
− ρφ

ŷ

)
− 1

2φ

]
= 0.

The steps for finding Z0 are sketched in Appendix B. The ray solution, after a tedious calcu-
lation in Appendix B, can be expressed as

pray = − e−φ
2/2ν2τ

2πτx̂2ν2
√

1− ρ2

√
φ

sinh(φ)

(
ŷ

y

)(β+1)/(2β)

(3.21)

× exp

[
−ρ(β + 1)

2β

∫ φ

0

H(z)dz

]
,
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where φ is defined in (3.20) and

H(z) ≡ x̂2(z)φ
x̂
(z)

ŷ(z)
.(3.22)

The negative sign in the ray solution in (3.21) arises from the change of variable ŷ = F̂−β/β

leading to dŷ = −F̂−β−1dF̂ . In addition, the solution to the integral
∫ φ

0
H(z)dz is sketched

in Appendix C. We now summarize the results.
RESULT 6. The leading term ray solution, for t → T , of the SABR model in its original

variables, based on (3.21) with (C.3), (C.6) and (C.7), is given by

pray(F̂ , V̂ , T, F, V, t) =
e−φ

2/2ν2(T−t)

2πν(T − t)V̂ 2F̂ β+1
√

1− ρ2

√
φ

sinh(φ)

(
F̂

F

)−(β+1)/2

(3.23)
× exp

[
−ρ(β + 1)

2β
Φ(F̂ , V̂ )

]
,

where

φ = cosh−1

(
1

(3.24)

+
β2(V − V̂ )2 + 2ρνβ(V − V̂ )(F−β − F̂−β) + ν2(F−β − F̂−β)2

2β2(1− ρ2)V̂ V

)
,

Φ(F̂ , V̂ ) =
2√

1− ρ2

{
tan−1

(
eΥ
)
− tan−1

(
e−φ+Υ

)}
+

2√
Ω2(1− ρ2)− 1

(3.25)

×



tan−1




(
Ω
√

1− ρ2 + ρ
)

tanh(Υ/2)−
√

1− ρ2

√
Ω2(1− ρ2)− 1




(3.26)

− tan−1




(
Ω
√

1− ρ2 + ρ
)

tanh([−φ+ Υ]/2)−
√

1− ρ2

√
Ω2(1− ρ2)− 1







and

Ω =
1

sinh(φ)

{
F−β

β

[
ρ

ν
(V − V̂ ) +

1
β

(F−β − F̂−β)
]
− V̂ ρ

νβ
(F−β − F̂−β)

(3.27)

−
[
β2(V 2 − V̂ 2)− ν2(F−β − F̂−β)2

2β2ν2

]}
,

Υ = sinh−1

(
1√

1− ρ2

(3.28)

×
[
β2(V 2 − V̂ 2)− ν2(F−β − F̂−β)2 − 2βνρ(F−β − F̂−β + βρ)(V − V̂ )

2βV [βρ(V − V̂ ) + ν(F−β − F̂−β)]

])
.
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We will now compare our result with the asymptotic approximation of the exact solution
to the McKean problem (3.10) away from the boundary. We follow [23] and use a change
of variables of the form w = [z2 − φ2]/[2ν2(T − t)] in (3.10) and expand the integrand in
powers of (T − t). Integrating over w leads to pray,cmk, the leading term ray solution of the
correlated McKean density function

pray,cmk(F̂ , V̂ , T, F, V, t) =
e−φ

2
cmk/2ν

2(T−t)

2πν(T − t)V̂ 2
√

1− ρ2

√
φcmk

sinh(φcmk)

with φcmk = φ|β=−1 defined in (3.24). Equation (3.29) corresponds to the ray solution (3.23)
by setting β = −1.

We note that the underlying asset in the SABR model follows a CEV type process where
the scale parameter V is stochastic and correlated with the asset price F . The scale parameter
goes from being deterministic in the CEV process to stochastic in the SABR model. In addi-
tion V is correlated with F with correlation ρ. From a modeling point of view the leverage
effect relates the negative correlation between the changes of the asset price to its volatility.
As noted in [38] the leverage effect is related to the steepening effect of the implied volatility
curve capture by the parameters β < 0 and/or ρ < 0, so β and ρ play against each other. The
market practice is to fix either of the two parameters and optimize on the other. The variable
V operates as the scale parameter of the local volatility, σ(F, t) = V F β , for β 6= 0. Thus
for ρ = 0 the change in the volatility scale parameter is uncorrelated to the change in the
underlying asset, however the local volatility σ(F, t) = V F β is not uncorrelated with the
underlying asset. Given that the forward price is governed by the CEV process, the leverage
effect can still be captured by β for T − t� 1.

In order to show qualitatively that the correlation between V and F for T − t� 1 does
not necessarily enhance the modeling of the leverage effect, we perform Monte Carlo (MC)
experiment for the following cases: (1) ρ = 0.0, β = −2, (2) ρ = −0.9, β = −2, with
T − t = 1/12. The first step of the MC experiment consists of simulating 10,000 correlated
and uncorrelated outcomes for F and V drawn from (3.1) with (1) ρ = 0.0 and (2) ρ = −0.9,
respectively. The first two plots in Figure 3.1 illustrate the first step of the MC simulation for
both cases assuming β = −2 and ν = 0.2. The next step consist of mapping the simulated
outcomes of F against σ = V F β . This is illustrated in the last two plots in Figure 3.1
(two right hand plots) for which the simulation in the 3rd and 4th plot provide a correlation
estimate of approximately −0.90 and −0.98 between F and V , respectively. It clearly shows
that the addition of the correlation ρ = −0.9 between V and F increases the leverage effect
which can also be achieved by making the β more negative, for T − t � 1. We will focus
our attention on the uncorrelated SABR model, i.e. the case ρ = 0, in what follows. For
the remaining of the paper we do not set β = −1/2 and optimize ρ, but rather set ρ = 0,
optimize β and relax the condition −1 < β < 1 for T − t� 1.

For completeness we also note that the asymptotic solution may not satisfy the boundary
conditions, which was not taken into account in [22, 23, 25]. If we set β = −1 in the leading
term ray solution (3.23) we find

pray =
e−φ

2/2ν2(T−t)

2πν(T − t)V̂ 2
√

1− ρ2

√
φ

sinh(φ)
.(3.29)

Taking the limit as F̂ → 0 yields

pray =
e−φ0

2/2ν2(T−t)

2πν(T − t)V̂ 2
√

1− ρ2

√
φ0

sinh(φ0)
, φ0 = φ|

F̂=0
.
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FIG. 3.1. Monte Carlo experiment for the SABR Model. Simulation of outcomes for F̂ and V̂ (two left hand
side plots) and corresponding outcomes of V̂ = V̂ Fβ (two right hand side plots) for ρ = 0 and ρ = −0.9 assuming
β = −2, F = 100, ν = 0.2 and V = 0.2.

Clearly the asymptotic solution does not satisfy the boundary condition in (3.4) for β = −1,
or in fact for other β < 0. Similarly, for β > 0 the boundary condition in (3.4) is not satisfied
for F̂ =∞.

To construct the boundary layer solution for the SABR model for the case β < 0 and
ρ = 0 we introduce

τ = T − t, ŷ =
F̂−2β

β2
(3.30)

into (3.2) then the density p = p(ŷ, V̂ , y, V, τ) satisfies

∂p

∂τ
− ∂2

∂ŷ2

[
2V̂ 2ŷp

]
+

∂

∂ŷ

[(
2 +

1
β

)
V̂ 2p

]
− ∂2

∂V̂ 2

[
ν2V̂ 2

2
p

]
= 0.(3.31)

The ray solution now becomes

pray =
e−φ

2/2ν2τ

4πτνV̂ 2
√
ŷ

√
φ

sinh(φ)

(
ŷ

y

)(β+1)/(4β)

.(3.32)

We introduce the stretched variable ξ̂ = ŷ/τ2 into (3.31) leading to

∂p

∂τ
− ∂2

∂ξ̂2

[
2V̂ 2 ξ̂

τ2
p

]
+

∂

∂ŷ

[(
2 +

1
β

)
V̂ 2

τ2
p

]
− ∂2

∂V̂ 2

[
ν2V̂ 2

2
p

]
= 0,(3.33)

along with the boundary condition (3.4) at ξ̂ = 0 and a matching condition described in
Appendix D. We assume a boundary layer solution of the form

p ∼ pb ≡ τ ce−θ(V̂ )/τΨ(ξ̂)(3.34)

where θ is a function of V̂ and Ψ is a function ξ̂. Substituting (3.34) into (3.31) we find the
leading order boundary layer equation is

[
ξ̂Ψ
]
ξ̂ξ̂
−
{[(

1 +
1

2β

)]
Ψ
}

ξ̂

+

[
ν2θ2

V̂

4
− θ

2V̂ 2

]
Ψ = 0, β < 0, ρ = 0,(3.35)
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with the condition Ψ(0) = 0. The solution to (3.35), sketched in Appendix D, leads to the
boundary layer solution

pb =
e−φ

2
0/2ν

2τ

2
√

2πτ3/2V̂ 2ν
√
V V̂

(
φ0

sinh(φ0)

)(
ŷ

y

)1/4β

(3.36)
×I1/2|β|

(
1

τV V̂

(
φ0

sinh(φ0)

)√
yŷ

)
.

We now summarize the results for the boundary layer solution term in the original variables
using (3.36). In the transformed problem for β > 0 F̂ = ∞ maps into ŷ = 0 and the
construction of the boundary layer for β > 0 follows from the analysis for the case β < 0.

RESULT 7. The boundary layer solution for the uncorrelated SABR model with ρ = 0
and β 6= 0 in terms the original variables is

p ∼ pb =
F̂−2β−1e−φ

2
0/[2ν

2(T−t)]

|β|ν
√

2π(T − t)3/2V̂ 2
√
V V̂

(
F̂

F

)−1/2(
φ0

sinh(φ0)

)

(3.37)

×I1/(2|β|)
(

(FF̂ )−β

(T − t)β2V V̂

(
φ0

sinh(φ0)

))

where

φ0 = cosh−1

(
1 +

(V − V̂ )2 + ν2F−2β/β2

2V V̂

)

for F̂ ≈ 0 for β < 0 and F̂ � 1 for β > 0 under the case T − t→ 0.
We demonstrate the accuracy of the boundary layer solution near F̂ = 0, for β = −1.

Using the identity I1/2(z) = sinh(z)
√

2/πz, we find

pb =
e−φ

2
0/[2ν

2(T−t)]

πν(T − t)V̂ 2

√
φ0

sinh(φ0)
sinh

(
(FF̂ )

(T − t)V V̂

(
φ0

sinh(φ0)

))
(3.38)

where

φ0 = cosh−1

(
1 +

(V − V̂ )2 + ν2F 2

2V V̂

)

for F̂ → 0 and T − t → 0. Figure 3.2 compars a slice of the bivariate density in (3.29)
near the boundary F̂ = 0, the boundary layer approximation in (3.38) and the numerical
approximation to the exact integral solution for β = −1 in (3.7) in the original variables. The
integral was computed numerically with MATLAB c© using the recursive adaptive Simpson
quadrature. The relative error uses the numerical approximation as the exact result. It is
important to note that the boundary layer solution will become even better for T − t � 1.
The figure also illustrates the smooth transition between the boundary layer solution and the
ray solution.

Recall that the pricing formulas in (3.14) or (3.15) are expressed in terms of the marginal
distribution pF = pF (F̂ , T, F, t). We now derive an asymptotic formula for the marginal
density function using

pF (F̂ , T, F, t)=
∫ ∞

0

p(F̂ , V̂ , T, F, V, t)dV̂ ,

∼
∫ ∞

0

pray(F̂ , V̂ , T, F, V, t)dV̂ .
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FIG. 3.2. Comparison between the boundary layer solution in (3.38), the ray solution in (3.23) and the numer-
ical approximation of the exact solution for β = −1 in (3.8) with σ(F, t) = 0.30 with F = 100 and T − t = 1.0.

where pray = pray(F̂ , V̂ , T, F, V, t) is the leading term in the ray solution (3.23) with ρ = 0
which is

pray =
1

2πν(T − t)V̂ 2F̂ β+1

√
φ

sinh(φ)

(
F̂

F

)−(β+1)/2

e−φ
2/2ν2(T−t).(3.39)

The derivation of the asymptotic marginal density function is sketched in Appendix E and is
given by

pF ∼ 1√
2π(T − t)V̂maxF̂ β+1

√
V

V̂max
(3.40)

×
(
F̂

F

)−(β+1)/2

e−φ
2
max/2ν

2(T−t), T − t→ 0

where

V̂max =

√
V 2 +

ν2

β2
(F−β − F̂−β)2, φmax = cosh−1

(
V̂max

V

)
.

The asymptotic approximation (3.40) of the marginal distribution function is illustrated in
Figure 3.3 with different values for β. We now summarize the results for the asymptotic
approximation to the marginal density function pF when β 6= 0 and ρ = 0.

RESULT 8. The asymptotic behavior of the marginal distribution for the SABR model
with ρ = 0 and β 6= 0 is

pF ∼ pFray =
1√

2π(T − t)V̂maxF̂ β+1

√
V

V̂max
(3.41) (

F̂

F

)−(β+1)/2

e−φ
2
max/2ν

2(T−t), T − t→ 0,

where

V̂max =

√
V 2 +

ν2

β2
(F−β − F̂−β)2, φmax = cosh−1

(
V̂max

V

)
.
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FIG. 3.3. The left plot illustrates the comparison between (3.40) with β = −2, σ(F, t) = 0.2 and ν = 1.0
and the following two limits: 1) ν = 0 (CEV model) and 2) ν = 0, β = 0 (Black’s model). The right plot illustrates
the asymptotic behavior of pF ∼ pFray in (3.40) for different values of β, for ν = 1.0, F = 100, T − t = 1.0 and
σ(F, t) = 0.2 in addition to lognormal case.

For the special case with β = −1 we find that

pFray =
1√

2π(T − t)V̂max

√
V

V̂max

e−φ
2
max/2ν

2(T−t), T − t→ 0,

with V̂max =
√
V 2 + ν2(F − F̂ )2. Computing the marginal density for this special case in

the limit ν → 0 agrees with the marginal density given in (3.13).
Applications. We now derive approximate pricing formulas for European call and put

option prices. The integral representation for the price of a European derivative with payoff
Λ(F̂ ) is given in (3.14) or (3.15) as

u(F, t) = e−r(T−t)
∫ ∞

0

Λ(F̂ )pF dF̂ .

Here we omitted the small default probability P0. We replace pF by its asymptotic approxi-
mation pFray to obtain

u(F, t) ∼ e−r(T−t)
∫ ∞

0

Λ(F̂ )pFraydF̂ , T − t� 1.

The prices of European call and put, c(F, t) and p(F, t) are then given by the asymptotic
pricing formulas,

c(F, t)∼ e−r(T−t)
∫ ∞

0

max(F̂ −K, 0)pFraydF̂
(3.42)

p(F, t)∼ e−r(T−t)
∫ ∞

0

max(K − F̂ , 0)pFraydF̂ .

Using the asymptotic marginal density function (3.41) in (3.42), we find the price of the
call option to be

c(F, t) ∼ e−r(T−t)
∫ ∞

K

(F̂ −K)
1√

2π(T − t)V̂maxF̂ β+1

√
V

V̂max

(
F̂

F

)−(β+1)/2

e−φ
2
max/2ν

2(T−t)dF̂ .



APPROXIMATIONS TO VOLATILITY MODELS 23

We now repeat the analysis in Section 2 to obtain an asymptotic expansion of the integral for
T − t� 1. We let ŷ = F̂−β/β to obtain

c(y, t) ∼ e−r(T−t)
∫ K−β/β

−∞
((ŷβ)−1/β −K)

1√
2π(T − t)V̂max

√
V

V̂max

(
ŷ

y

)(β+1)/2β

e−φ
2
max/2ν

2(T−t)dŷ

with ŷ = F̂−β/β, y = F−β/β, V̂max =
√
V 2 + ν2(y − ŷ)2 and φmax = cosh−1

(
V̂max/V

)
.

φmax ∈ [1,∞). φmax can be rewritten as

φmax = cosh−1

(√
1 +

ν2

V 2
(y − ŷ)2

)
= ln

(
V̂max

V
+
ν

V
(y − ŷ)

)
.

Now we define z = φmax/ν to get V̂max = V cosh(νz), ŷ = y − V
ν sinh(νz) and

dŷ = −
V̂max

√
V̂ 2

max − V 2

ν(y − ŷ)
dz = −

V cosh(νz)
√

cosh2(νz)− 1

sinh(νz)
dz = −V cosh(νz)dz

leading to the formula

c(z, t) ∼ e−r(T−t)
∫ z

−∞

((
β

[
y +

V

ν
sinh(νχ)

])−1/β

−K
)

× 1√
cosh(νχ)

(
1 +

V sinh(νχ)
νy

)(β+1)/2β
e−χ

2/2(T−t)
√

2π(T − t)
dχ

where

z = − cosh−1(
√

1 + ν2/V 2(y −K−β/β)2)/ν.(3.43)

The above integral is in the same form as (2.28)

c(z, t) ∼ 1√
2π(T − t)

∫ z

−∞
f(x)e−x

2/2(T−t)dx

but with

f(χ) = e−r(T−t)
((

β

[
y +

V

ν
sinh(νχ)

])−1/β

−K
)

(3.44)

× 1√
cosh(νχ)

(
1 +

V sinh(νχ)
νy

)(β+1)/2β

,

where f(0) = e−r(T−t)
(

(βy)−1/β −K
)

and f(z) = 0. As in Section 2, We use integration
by parts with f(x) = 1 + [f(x) − 1] to obtain a uniform asymptotic expansion, derived and
proven in [39], as

c(z, t) =
f(0)√

2π(T − t)

∫ z

−∞
e−x

2/[2(T−t)]dx
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+

√
T − t

2π

[
f(0)− f(z)

z

]
e−z

2/[2(T−t)](3.45)

+

√
T − t

2π

∫ z

−∞

d

dx

[
f(x)− 1

x

]
e−x

2/[2(T−t)]dx.

Retaining only the leading term we find an asymptotic formula for the call option price with
β < 0 to be

c(z, t) ∼ f(0)√
2π(T − t)

∫ z

−∞
e−x

2/[2(T−t)]dx

+

√
T − t

2π

[
f(0)− f(z)

z

]
e−z

2/[2(T−t)].

Here z and f(z) are defined in (3.43) and (3.44), respectively. In terms of the original vari-
ables, we find the formula to be

c(F, t) ∼ e−r(T−t)
{

(F −K)√
2π(T − t)

∫ z

−∞
e−x

2/[2(T−t)]dx

(3.46)

−
[

(T − t)(F −K)
z

]
e−z

2/[2(T−t)]
√

2π(T − t)

}
.

Repeating the same calculations for the put option with β > 0 leads to the asymptotic pricing
formula

p(F, t) ∼ e−r(T−t)
{

(K − F )√
2π(T − t)

∫ −z

−∞
e−x

2/[2(T−t)]dx

(3.47)

+
[

(T − t)(K − F )
z

]
e−z

2/[2(T−t)]
√

2π(T − t)

}
.

The asymptotic formulas for c with β > 0 and p with β < 0 are found in a similar fashion.
We summarize the asymptotic pricing formulas for the call and put price for β 6= 0 by using
(3.45), (3.46) and (3.47).

RESULT 9. For β < 0 and t → T , the leading term asymptotic formulas for the prices
of European call and put options using (3.46) are given by

c(F, t) ∼ e−r(T−t)
{

(F −K)N(d1,sabr) +
[
F −K
d1,sabr

]
n(d1,sabr)

}
(3.48)

where

d1,sabr =
sgn(β)
ν
√
T − t ln

(√
1 +

ν2

V 2β2
(F−β −K−β)2 +

ν

V β
(F−β −K−β)

)
,(3.49)

and

p(F, t) ∼ e−r(T−t)
{

(K − F ) [N(d2,sabr)−N(d1,sabr)]

(3.50)

+(K − F )
[
n(d2,sabr)
d2,sabr

− n(d1,sabr)
d1,sabr

]}
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where

d2,sabr =
sgn(β)
ν
√
T − t ln



√

1 +
ν2F−2β

V 2β2
+

ν

V β
F−β


 .

Here N(x) =
∫ x
−∞

e−s
2/2

√
2π

ds is the cumulative normal distribution and n(x) = dN(x)
dx is

normal density functions.
The asymptotic approximations for the put and call options for β > 0 and t→ T can be

obtained in a similar manner leading to

p(F, t) ∼ e−r(T−t)
{

(K − F )N(d1,sabr) +
[
K − F
d1,sabr

]
n(d1,sabr)

}
,(3.51)

and, using (3.45),

c(F, t) ∼ e−r(T−t)
{

(F −K) [N(d2,sabr)−N(d1,sabr)] +

(3.52) [
F −K
d2,sabr

]
n(d2,sabr)−

[
F −K
d1,sabr

]
n(d1,sabr)

}
,

where sgn(β) represents the sign of β, i.e. plus or minus sign.
We note that as d2,sabr → ∞ or β → 0 (3.48) and (3.50) asymptotically satisfy the

put-call parity c(F, t) − p(F, t) = (F −K)e−r(T−t). Also (3.48), (3.50), (3.51) and (3.52)
in Result 9 have the same explicit form as the formulas (2.33), (2.35), (2.37) and (2.38) in
Result 3 for the CEV process. The difference between the SABR and CEV equations arise
from the form of the variables d1,sabr, d2,sabr and d1,cev , d2,cev . Taking the limit of d1,sabr

in (3.49) for ν → 0 leads to d1,cev in (2.34) as follows

lim
ν→0

sgn(β)
ν
√
T − t ln

(√
1 +

ν2

V 2β2
(F−β −K−β)2 +

ν

V β
(F−β −K−β)

)
=

(3.53)
sgn(β)

F−β −K−β
V β
√
T − t .

Here sgn(β)β = |β| so that (3.53) is equal to (2.34). In addition, for β = −1, i.e. the
Bachelier model, we recover the exact solution by substituting β with negative one in (3.53)
for (3.48).

In Result 10 below, we find formulas for the deltas of the call and put prices for β 6= 0 by
differentiating (3.48), (3.50), (3.51) and (3.52). Figure 3.4 illustrates the results for the deltas
of the call and put price for β < 0 in equations (3.54) and (3.56). The combination of Results
9 and 10 provide a basic set of analytical formulas needed to quickly price and hedge option
contracts in a stochastic volatility framework for T − t� 1.

RESULT 10. For β < 0 and t → T , the asymptotic approximation for the delta of the
price of a European call option using (3.48) is given by

∂c

∂F
(F, t) ∼ e−r(T−t)

{
N(d1,sabr) +

n(d1,sabr)
d1,sabr(3.54)

− (F −K)
d2

1,sabr

∂d1,sabr

∂F
n(d1,sabr)

}
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where

∂d1,sabr

∂F
=

[
ν2(F−β −K−β)2 − ν2F−β(F−β −K−β)
V 2βF

√
1 + ν2(F−β −K−β)2/V 2β2

+
ν

V F
(F−β −K−β)− ν

V
F−β−1

]
(3.55)

/
sgn(β)ν

√
T − t

[√
1 +

ν2

V 2β2
(F−β −K−β)2 +

ν

V β
(F−β −K−β)

]

and the leading asymptotic approximation for the delta of a European put option using (3.50)
is given by

∂p

∂F
(F, t)∼ e−r(T−t)

{
N(d1,sabr)−N(d2,sabr)

(3.56)

+
n(d1,sabr)
d1,sabr

− n(d2,sabr)
d2,sabr

+
(K − F )
d2

1,sabr

∂d1,sabr

∂F
n(d1,sabr)

}
.

The asymptotic approximations for the delta of the put and call options for β > 0 and t→ T
can be obtained in a similar fashion by using (3.51) leading to,

∂p

∂F
(F, t) ∼ e−r(T−t)

{
−N(d1,sabr) +

n(d1,sabr)
d1,sabr(3.57)

− (K − F )
d2

1,sabr

∂d1,sabr

∂F
n(d1,sabr)

}

and, using (3.52),

∂c

∂F
(F, t)∼ e−r(T−t)

{
−N(d1,sabr) +N(d2,sabr)

(3.58)

−n(d1,sabr)
d1,sabr

+
n(d2,sabr)
d2,sabr

+
(F −K)
d2

1,sabr

∂d1,sabr

∂F
n(d1,sabr)

}
.

4. Numerical Comparisons and Calibration. We have derived approximate formulas
for the probability density function and for the prices of European call and put options under
the CEV and SABR models. When β < 0, our results for c(F, t) and p(F, t) are consistent
with the put-call parity as well as Black’s pricing formulas. For the CEV model, p(F̂ , T, F, t)
reduces to the result for the GBM if β → 0 and to the Bachelier model if β = −1. For
the SABR model, pF (F̂ , T, F, t) also exhibits the same limiting behavior for β in addition
to ν → 0 and ρ = 0. Results 1,3,8 and 9 for the CEV and SABR models provide analytic
approximations for the density function and pricing exhibiting deterministic and stochastic
volatility. This demonstrates that it is possible to derive analytic approximations that can
incorporate more stylized facts [10] about the behavior of the underlying asset, thus providing
a more realistic view of the price of a derivative.
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FIG. 3.4. Illustration of the delta for the call and put price using (3.54) and (3.56) with parameters β = −2,
K = 100, V = 0.3, ν = 1.0, r = 0.0 and T − t = 3/4 versus the delta under Black’s model.

The asymptotic formulas for the price of European options under the CEV and SABR
process, in Results 3 and 9, illustrate the strengths of the asymptotic method. As we demon-
strate below these asymptotic approximations are very accurate so they can be used instead
of the standard numerical methods. Such analytical approximations become quite useful in
the exchange traded options world since the highest liquidity resides in contracts near expira-
tion with a maturity of at most one year. Finally, we note that perturbation methods have be
applied directly on the pricing PDEs in (2.2) and (3.2) [20, 22] though in different asymptotic
limits.

To assess the usefulness of our formulas we will compare our results with available exact
solutions as well as to numerical approximations to the exact solutions. Therefore we also use
the numerical result as exact in determining the error. For the CEV model, the exact formula
in (2.4) provides the benchmark for comparing the accuracy of the asymptotic approximation
of the density in Result 1. The density function (2.13) is illustrated in Figure 4.1 where the
leading term asymptotic approximation (2.13) for the density function p is compared to the
exact solution in (2.4), for β = −2, V = 0.4, T − t = 0.5 and β = 2, V = 0.4, T − t = 0.5.
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FIG. 4.1. The two figures illustrate the leading term in (2.13) for the density function p and the exact solution
in (2.4), for β = −2, V = 0.4, T − t = 0.5 (left plot) and β = 2, V = 0.4, T − t = 0.5 (right plot).

We consider the ray solution (3.29) with β = −1 for the SABR model in Figure 4.2 in
which a slice of the density is compared with the integral form of the exact solution in (3.8)
in the original variables. The integral was performed numerically in MATLAB c© using the
recursive adaptive Simpson quadrature which tries to approximate the integral to within an
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error of 10−6. Even with a time to expiry of 1 year, with V = 0.33 and F̂ ∈ [10, 190] the
maximum relative error is about 2.1%.
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FIG. 4.2. Comparison between the leading term ray solution for β = −1 in (3.29) and the numerical approx-
imation of the exact solution of the McKean problem in (3.8) at σ(F, t) = 0.33 with F = 100 and T − t = 1.0.

Figure 4.3 illustrates the approximation of the marginal density pF for the SABR model
and the exact solution in (3.13) with parameters β = −1, ν = 0 and ρ = 0. Note that
marginal density consists of integrating the density with respect to the variable V̂ . One would
expect from a second approximation the introduction of more residual error. However, since
this is an asymptotic approximation, the error does not necessarily increase. In this case, the
relative error actually decreases. Even with a time to expiry of 1 year, with V = 0.33 and
F̂ ∈ [10, 190] the maximum relative error is less than 1%. The marginal density is used in
the derivation of the pricing formulas in (3.48), (3.50), (3.51) and (3.52) in Result 9.
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FIG. 4.3. Comparison between the leading term ray solution for β = −1, ρ = 0 and ν = 0 in (3.41) and the
exact solution (3.13) with σ(F, t) = 0.33, F = 100 and T − t = 1.0.

We illustrate the new pricing formulas for pricing European call options based on the
CEV model for β < 0. Figure 4.4 compares the asymptotic approximation (2.33) from
Result 3 to a numerical calculation of the exact integral representation in (2.26) as well as to
the Black’s pricing formula [5]. We selected the following parameters: β = −2, V = 0.3,
T − t = 0.5 and F = 100. For the numerical integration we use the adaptive Simpson
quadrature available in MATLAB c©. With a maturity of half a year and K ∈ [50, 150], the
maximum relative error is about 2.3%.

Similarly, we illustrate the pricing formulas for the SABR model in Result 9. Recall that
implied volatility are just “the wrong number to put in the wrong formula to get the right
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FIG. 4.4. Comparison between the asymptotic pricing formulas for call options in (2.33) to numerical estima-
tion of the exact integral representation in (2.25) and to Black’s pricing formula. The selected parameters for the
CEV model are β = −2, V = 0.3, T −t = 0.5 and F = 100. The relative error uses the numerical approximation
as exact.

price” [37], so there is no great meaning in obtaining implied volatilities rather than prices
except for illustrating that a model captures some of the the stylized facts pertaining to im-
plied volatility. However, the wrong number has become a common metric in some market
places, such as the OTC market, to communicate the prices of options. In Figure 4.5 we
illustrate that the asymptotic pricing formulas (3.48), (3.50), (3.51) and (3.52) capture the
implied volatility smile or skew. Figure 4.5 illustrates the comparison between Black’s, the
CEV and the SABR implied volatilities. The CEV and SABR implied volatilities correspond
to their respective asymptotic pricing formulas from Results 3 and 9. The deterministic and
stochastic volatility models depart from the concept of constant implied volatility by exhibit-
ing significant downward sloping volatility curves. Furthermore, depending on the model
parameters the ITM and OTM options exhibit higher implied volatilities than ATM options,
a common stylized fact in some markets.
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FIG. 4.5. The two figures show a comparison of the implied volatility curves of Black’s, (β = 0, ν = 0), the
CEV (ν = 0) and the uncorrelated SABR model. The implied volatility curves correspond to prices generated from
their respective models. The analytic pricing formulas in Result 3 and 9 were used for the CEV and SABR models,
respectively. The parameters used are as follows: β = −1 with V = 0.3, T − t = 1, ν = 0.5 (left plot) and
ν = 1.5 (right plot).

We now illustrate the use of the new asymptotic formulas for the CEV and SABR models
in calibrating to actual market data. In order to use Results 3 and 9 we demonstrate the ease
of performing a simple calibration to liquid European option prices. The calibration consists
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of identifying the parameters of the models from a set of observations of call and/or put
option prices. In other words, finding the minimum of a function of one or more independent
variables. In order to obtain a practical solution to the calibration problem, many practitioners
minimize the function that represents the in-sample quadratic pricing error

p̃ = min
p

N∑

i=1

|ci(F, t)− cmi (F, t)|2(4.1)

where N represents the in-sample size with the parameters are defined as p = (V ), p =
(V, β), and p = (V, β, ν) for the Black, CEV and SABR models, respectively. Note that
p̃ represents the estimation of p for the model under consideration. cmi (F, t) is the market
price of a call option observed at time t and ci(F, t) is the price of this option computed in
a Black, CEV or SABR model with parameters p for strike Ki and maturity τ = T − t, for
i = 1, . . . , N . The optimization problem (4.1) is usually solved numerically by a gradient-
based method. However the minimization function is non-convex so a gradient descent may
not succeed in locating the global minimum. In practice one needs to carefully take into
account the potential reduction of the quality of the calibration algorithm, see for example
[11].

In order to minimize the function (4.1) we use a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) gradient descent method (also referred to as a Quasi-Newton method)[36]. The
essential step, beyond the determination of the initial guess p0, is the computation of the
gradient of the function to be minimized with respect to the calibrated parameters using the
analytical approximations in Result 3 and 9. The algorithm was written in C++ and all the
calculations were performed on a Windows VistaTM operating system with 2.00 Ghz dual core
CPU with 3.00 GB of memory.

TABLE 4.1
Calibration results given the simulated Call option prices with maturity T − t = 0.25 and given market option

prices with maturity of 26 and 54 days. The true parameters used for the simulation are p = (0.4), p = (0.4,−2),
and p = (0.4,−2, 1.5) for the Black, CEV and SABR models, respectively.

Simulated Call Prices Market Call Prices

Calibrated Parameters T − t = 0.25 T − t = 26 days T − t = 54 days

BSM V 0.4000 0.1883 0.1847
BSM Minimization Score 0.0000 0.1514 0.3621

CEV V 0.4000 0.1914 0.1840
CEV β -2.0000 -4.3404 -4.5734

CEV Minimization Score 0.0000 0.0145 0.1340

SABR V 0.4000 0.1889 0.1795
SABR β -2.0000 -5.3446 -3.8098
SABR ν 1.5000 2.0972 1.5701

SABR Minimization Score 0.0000 0.0011 0.0836

To verify the accuracy and numerical stability of the our simple calibration, we tested
it on simulated data sets of option prices generated using a Black, CEV and SABR model.
We generated 21 call option prices with strikes ranging from 40 to 140 based on the Black,
CEV and SABR models with a quarter of year to maturity. The spot price is set at 108.85
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with risk free interest rate of 1%. The parameters used for the simulated prices are as follows:
p = (0.4), p = (0.4,−2), and p = (0.4,−2, 1.5) for the Black, CEV and SABR models,
respectively. We used the following initial guesses p0 = (0.1), p0 = (0.1, 0.1), and p0 =
(0.1, 0.1, 0.1). The calibration results from the simulation are available in Table 4.1. The
algorithm recovers the correct parameters of the model despite the bad initial guesses. Next,
we calibrated each of the models to one (26 days) and two (54 days) month European call
option mid prices of the mini S&P 500 index (XSP index) traded on the Chicago Board of
Option Exchange (CBOE). The result of the calibration are also available in Table 4.1. The
minimization score in Table 4.1 consists of the sum of the absolute squared deviations away
from the market prices, as suggested in equation (4.1). The closer the fit of the model to the
observed data, the lower the score. The score can only be compared within a given data set.
In other words, the minimization score for the shortest maturity cannot be compared to the
second set because the data set is different. However, the scores for each model given the
same data set are comparable. Note that all SABR calibrations are performed with elapsed
times of less than 0.1 seconds.
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FIG. 4.6. Implied volatility comparison using the leading term analytic pricing formula for the Black, CEV
and SABR models calibrated to option prices with 26 days (left) and 54 days (right) to maturity. The calibrated
parameters are available in Table 4.1.

The illustration of the calibration in Table 4.1 is shown in Figure 4.6. Table 4.1 and
Figure 4.6, show that the SABR model best fits the market prices compared to the Black and
CEV model. The calibration results suggest the superiority of the SABR analytic formulas
in capturing the smile or skew of the market implied volatility curve relative to the Black and
CEV model. As suggested by the minimization scores.

Appendix A. Solution to Eikonal Equation.
The eikonal equation is

x̂2
[
φ2

ŷ
+ φ2

x̂
− 2ρφ

x̂
φ
ŷ

]
= 1.

The characteristics, called rays, satisfy the differential equations

dŷ

dη
= x̂2

[
φ
ŷ
− ρφ

x̂

]
,

dx̂

dη
= x̂2

[
φ
x̂
− ρφ

ŷ

]
,

(A.1)
dφ

ŷ

dη
= 0,

dφ
x̂

dη
= − 1

x̂
,

dφ

dη
= 1

with initial conditions

ŷ(0) = y, x̂(0) = x, φ
ŷ
(0) = p, φ

x̂
(0) = q, φ(0) = 0.(A.2)
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Since the initial condition for the density is δ(x− x̂)δ(y− ŷ), we require the rays to emanate
from this point parameterized by p and q such that

p = θ sin(γ), q = θ cos(γ), θ =
1

x
√

1− 2ρ cos(γ) sin(γ)
.(A.3)

The value θ is chosen so that φwill be increasing with η and (3.18) holds at η = 0. Therefore,
for each angle γ we have a unique solution to (A.1) with (A.2) and (A.3), e.g. ŷ ≡ ŷ(η, γ).

From (A.1) and (A.2) we solve (3.18). Since x̂ > 0, we use (3.18) to express x̂ with
φ
ŷ

= p. Then we substitute x̂ into (A.1) and solve, in this order, for φ
x̂

, x̂, ŷ and η. From
the solution of x̂ we use (A.3) and a little algebra, to find the solution to the ray equations in
(A.1) with initial conditions in (A.2) are given by

x̂(η)=
1

p
√

1− ρ2 cosh(η −Ψ)
, ŷ(η) =

1
p

tanh(η −Ψ)− ρx̂+
q

p
x+ y

(A.4)
φ
x̂
(η)= p

[
ρ−

√
1− ρ2 sinh(η −Ψ)

]
, φ

ŷ
(η) = p, φ(η) = η,

with

Ψ = sinh

(
q − ρp

p
√

1− ρ2

)
, x̂ > 0, η > 0,

so that

φ ≡ η = cosh−1

(
1 +

(x− x̂)2 + 2ρ(x− x̂)(y − ŷ) + (y − ŷ)2

2(1− ρ2)x̂x

)
.(A.5)

One can easily check that φ satisfies (3.18) and a special case appears in (3.10).

Appendix B. Solution to Transport Equation.
The transport equation is

dZ0

dη
+Z0

[
1
2
x̂2
(
φ
ŷŷ

+ φ
x̂x̂
− ρφ

x̂ŷ
− ρφ

ŷx̂

)
−

x̂2 (β + 1)
2ŷβ

φ
ŷ
− x̂2 (β + 1)

ŷβ

(
φ
ŷ
− ρφ

x̂

)
+ 2x̂

(
φ
x̂
− ρφ

ŷ

)
− 1

2φ

]
= 0.

From (A.1) we use the following relationship

1
J

dJ

dη
=

[(
dx̂

dφ

)

x̂

+
(
dŷ

dφ

)

ŷ

]

where J is the Jacobian of the transformation from ray coordinates (η, γ) to space coordinates
(x, y). Let |a| represents the determinant of the infinitesimal covariance matrix a from the
system in (3.1) times a factor of 1/2 defined as

a =
1
2

[
V 2F 2β+2 ρνV 2F β+1

ρνV 2F β+1 ν2V 2

]
.

We also have the following relationship

1
|a|

d|a|
dη

=
4
x̂

dx̂

dη
− 2(β + 1)

ŷβ

dŷ

dη
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with respect to the transformed variables ŷ and x̂. Here the determinant |a| ≥ 0. Thus (3.19)
can be written is terms of the ray variables as

dZ0

dη(B.1)
+Z0

[
1

2J
dJ

dη
− 1
x̂

dx̂

dη
− (β + 1)

2ŷβ
dŷ

dη
+

1
2|a|

d|a|
dη
− 1

2η
− ρx̂2(β + 1)φ

x̂

2ŷβ

]
= 0.

After solving (B.1), the general solution of the ray solution can be expressed as

pray = Z0(0, γ)e−η
2/2ν2τ

√
η

|a|J

(
x̂

ŷ−(β+1)/(2β)

)

(B.2)
× exp

(
−ρ(β + 1)

2β

∫ η

0

x̂2(z)φ
x̂
(z)

ŷ(z)
dz

)

where

|a| = ν6x̂4(1− ρ2)
4(ŷβ)2(1+1/β)

and
x̂√
J

=

√
1− 2ρ sin(γ) cos(γ)

(1− ρ2) sinh(η)
.

We carefully determine Z0(0, γ) by normalizing pray such that the initial condition is satis-
fied, i.e. limτ→0 pray = δ(x̂− x)δ(ŷ − y). We find after a short calculation that

Z0(0, γ) = − ν

4π
√

1− 2ρ sin(γ) cos(γ)
,

using the Taylor expansion around the points ŷ = y and x̂ = x

η2 ≈ (x̂− x)2

(1− ρ2)2x2
+

2ρ(x̂− x)(ŷ − y)
(1− ρ2)2x2

+
(ŷ − y)2

(1− ρ2)2x2
and

sinh(η)
η

≈ 1.

Appendix C. Calculation of
∫ φ

0
H(z)dz.

The leading term of the ray solution is

pray = − e−φ
2/2ν2τ

2πτx̂2ν2
√

1− ρ2

√
φ

sinh(φ)

(
ŷ

y

)(β+1)/(2β)

exp

[
−ρ(β + 1)

2β

∫ φ

0

H(z)dz

]
,

where φ is defined in (A.4) and

H(z) ≡ x̂2(z)φ
x̂
(z)

ŷ(z)
.(C.1)

We find that H(z) can be decomposed into

H(z) =
1√

1− ρ2 cosh(z −Ψ)
+(C.2)

qx+ py

ρ− sinh(z −Ψ)− (qx+ py)
√

1− ρ2 cosh(z −Ψ)
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by using (A.4) in (C.2). Integrating (C.2) from zero to φ leads to

∫ φ

0

H(z)dz =
2√

1− ρ2

{
tan−1

(
eΨ
)
− tan−1

(
e−φ+Ψ

)}
+

2√
(qx+ py)2(1− ρ2)− 1

×



tan−1




(
(qx+ py)

√
1− ρ2 + ρ

)
tanh(Ψ/2)−

√
1− ρ2

√
(qx+ py)2(1− ρ2)− 1


(C.3)

tan−1




(
(qx+ py)

√
1− ρ2 + ρ

)
tanh([−φ+ Ψ]/2)−

√
1− ρ2

√
(qx+ py)2(1− ρ2)− 1





 .

(C.4)

Converting back to the (x, y) variables we use the identity

q

p
=
x2 − x̂2 − (y − ŷ)2 + 2x̂ρ(y − ŷ)

2x[ρ(x− x̂) + (y − ŷ)]
(C.5)

in combination with (A.4) and find

qx+ py =
1

sinh(φ)
{y[ρ(x− x̂) + (y − ŷ)]

(C.6)
−x̂ρ(y − ŷ)−

[
x2 − x̂2 − (y − ŷ)2

2

]}

and

Ψ= sinh−1

(
q − pρ√
1− ρ2

)

(C.7)

= sinh−1

(
1√

1− ρ2

[
x2 − x̂2 − (y − ŷ)2 − 2ρ(y − ŷ + ρ)(x− x̂)

2x[ρ(x− x̂) + (y − ŷ)]

])

with φ defined in (A.4) using (3.20).

Appendix D. Boundary Layer Solution.
Substituting (3.34) into (3.31) we find the leading order boundary layer equation to be

[
ξ̂Ψ
]
ξ̂ξ̂
−
{[(

1 +
1

2β

)]
Ψ
}

ξ̂

+

[
ν2θ2

V̂

4
− θ

2V̂ 2

]
Ψ = 0, β < 0, ρ = 0,(D.1)

with initial condition Ψ(0) = 0. The general solution is

Ψ(ξ̂) = C1ξ̂
(1−β)/4βM

(
0,

1
2|β| , 2

√
(2θ/V̂ 2 − ν2θ2

V̂
)
√
ξ̂

)
(D.2)

where M = M(·, ·, z) is the Whittaker hypergeometric function and C1 is a constant. The
leading term of the boundary layer solution is of the form

pb = C1τ
1/2β+1/2ξ̂(1−β)/[4β]e−θ/τM

(
0,

1
2|β| , 2

√
(2θ/V̂ 2 − ν2θ2

V̂
)
√
ξ̂

)
(D.3)
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where C1 is the normalization constant to be determined from matching. The matching con-
sists of comparing pb for ξ̂ →∞ with pray given ŷ → 0 and choosing the unknown constants
so that the two expressions are the same.

From [21], we know that M(ν, µ, z) ∼ Γ(2µ+ 1)z−νez/2/Γ(µ− ν + 1/2)(1 + . . .) for
z � 1 which implies that as ξ̂ →∞ that

pb= C1τ
1/2β+1/2

Γ
(

1
|β| + 1

)
ξ̂(1−β)/4β

Γ
(

1
2|β| + 1

2

)

× exp

(
− θ
τ

+
√
ξ̂

[√
2θ

V̂ 2
− ν2θ2

V̂

])
(1 + . . .), ξ̂ →∞.

We re-write the boundary layer solution in terms of ŷ

pb=
C1

τ

Γ
(

1
|β| + 1

)
ŷ(1−β)/4β

Γ
(

1
2|β| + 1

2

)

(D.4)

× exp

(
− θ
τ

+

√
ŷ

τ

[√
2θ

V̂ 2
− ν2θ2

V̂

])
(1 + . . .), τ → 0.

We then compare (D.4) to the leading term (3.32) for ŷ → 0

pray ∼
e
−φ2

0/2ν
2τ+

√
yŷ

V V̂ τ

(
φ0

sinh(φ0)

)

4πτνV̂ 2
√
ŷ

√
φ0

sinh(φ0)

(
ŷ

y

)(β+1)/(4β)

,(D.5)

for which we find, after matching

θ =
φ2

0

2ν2
, and θ

V̂
=
φ0φ0,V̂

ν2
,

where

φ = cosh−1

(
1 +

(V − V̂ )2 + ν2(y1/2 − ŷ1/2)2

2V V̂

)
(D.6)

and

φ0 = φ|
ξ̂=0

= cosh−1

(
1 +

(V − V̂ )2 + ν2y

2V V̂

)
.

In addition we have

φ2 ∼ φ2
0 − 2ν2τ2

√
ξξ̂

V V̂

(
φ0

sinh(φ0)

)

and

φ2
0

(
1

V̂ 2
− φ2

0,V̂

)
=

τ2ν2ξ

(V V̂ )2

(
φ0

sinh(φ0)

)2

.(D.7)
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This leads to solving for C1

C1 =
y−(β+1)/[4β]

4πνV̂ 2

(
Γ(1/2|β|+ 1/2)

Γ(1/|β|+ 1)

)√
φ0

sinh(φ0)
.

Substituting C1 back in (D.3) leads to

pb =
(ŷy)−1/4

4πτνV̂ 2

(
Γ(1/2|β|+ 1/2)

Γ(1/|β|+ 1)

)√
φ0

sinh(φ0)

(
ŷ

y

)1/4β

e−φ
2
0/2ν

2τ

(D.8)
×M

(
0,

1
2|β| ,

2

τV V̂

(
φ0

sinh(φ0)

)√
yŷ

)
.

We use the following relationship2 between the modified Bessel function Iν(z) and the spe-
cial Whittaker hypergeometric function M(0, ·, z)

M(0, µ, z) = 4µ
√
zΓ(µ+ 1)Iµ

(z
2

)
.

leading to

pb =
21/|β|e−φ

2
0/2ν

2τ

2
√

2πτ3/2V̂ 2ν
√
V V̂

(
Γ(1/2|β|+ 1)Γ(1/2|β|+ 1/2)

Γ(1/|β|+ 1)

)

(D.9)

×
(

φ0

sinh(φ0)

)(
ŷ

y

)1/4β

I1/2|β|

(
1

τV V̂

(
φ0

sinh(φ0)

)√
yŷ

)

and

Γ(1/2|β|+ 1)Γ(1/2|β|+ 1/2)
Γ(1/|β|+ 1)

=
√
π

21/|β|

where we used the identities Γ(x+ 1) = xΓ(x) and Legendre duplication formula3 Γ(2x) =
22x−1/2Γ(x)Γ(x+ 1/2)/

√
2π. As such (D.9) simplifies to

pb =
e−φ

2
0/2ν

2τ

2
√

2πτ3/2V̂ 2ν
√
V V̂

(
φ0

sinh(φ0)

)(
ŷ

y

)1/4β

I1/2|β|

(
1

τV V̂

(
φ0

sinh(φ0)

)√
yŷ

)
.

Appendix E. Marginal Density Function.
The asymptotic formula for the marginal density function pFray = pFray(F̂ , T, F, t) can

be represented as

pFray =
1

2πν(T − t)F̂ β+1

(
F̂

F

)−(β+1)/2 ∫ ∞

0

1

V̂ 2

√
φ

sinh(φ)
eg(V̂ )/(T−t)dV̂ ,

where g(V̂ ) = −φ2/2ν2 and φ defined in (3.24). The integral in pFray is a Laplace type
integral so we will expand it for T − t� 1. We find that g(V̂ ) has an interior maximum point
at

V̂max =

√
V 2 +

ν2

β2
(F−β − F̂−β)2

2http:\\functions.wolfram.com: 07.44.03.0010.01
3http:\\functions.wolfram.com: 06.05.16.0006.01
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for which
∂g

∂V̂
= 0,

∂2g

∂V̂ 2
< 0 and g(V̂ ) 6= 0. We can approximate pF in the neighborhood

of V̂max by the following leading term

pF ∼ 1

2πν(T − t)F̂ β+1

(
F̂

F

)−(β+1)/2 √
2πeg(x̂max)/(T−t)

√
−g′′(x̂max)/(T − t)

1

V̂ 2

√
φ

sinh(φ)
, T−t→ 0,

where

g(x̂max) = −φ
2
max

2ν2

with φmax = cosh−1
(
V̂max/V

)
. We also find that

g′′(V̂max) = − φmax

V̂max

√
V̂ 2

max − V 2

where sinh(cosh−1(x)) =
√
x2 − 1, leading to

pF ∼ e−φ
2
max/2ν

2(T−t)
√

2π(T − t)V̂maxF̂ β+1

√
V

V̂max

(
F̂

F

)−(β+1)/2

, T − t→ 0.
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