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Abstract

The Stochastic Alpha Beta Rho (SABR) model by Hagan et al. (2002) is currently one
of the most popular models in the interest rate derivative markets. In this paper, based
on Henry-Labordere’s (2008) previous work, we derive a new exact analytical solution
for the normal SABR model and verify its correctness by numerical examples.
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Introduction

Due to the closed formula of Hagan et al. (2002), building and calculating option
prices for the SABR model is valid and comprehensive. But this formula is only
approximately and its quality deteriorates for long maturity and high volatility of
volatility. In the general case of the SABR model, there is no exact analytical solution.
However in the special case of the normal SABR model, Henry-Labordere (2005) &
(2008) finds an exact solution for European options. Unfortunately, our numerical
experiments show this formula is wrong. After checking each step within the hyper-
bolic geometry framework proposed by Henry-Labordere, we have been able to
localize the mistake. After correcting it, we succeed in obtaining a new formula.

SABR model and Hagan et al.sformula

The SABR model is a stochastic volatility model for a forward LIBOR rate, a for-
ward swap rate or any other forward rate. The SABR model attempts to capture the
dynamics of the volatility smile in the interest rate derivative markets which are
dominated by caps, floors and swaptions. It is described by the following equations
under the T-forward measure:

df, = a,ff dw} )
da, = va dW? @
E [dWldWw?] = pdt 3)

with initial values: current forward rate f, and current volatility ;. In these equa-
tions, f, is the forward rate process, ¢, is the volatility process, W, and W} are two
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correlated Brownian motions with correlation p. The model has three constant
parameters: the exponent of the forward rate 0< #< 1, the correlation parameter -1
< p< 1 and the volatility of volatility (vol of vol) ¥ < 0.

Consider a European call option on the forward rate f, with the strike price K
and the maturity T years. The value of this option is equal to the discounted expected
value of the payoff max(f, - K,0). It is convenient to express the solution in terms of
the implied Black volatility of the option. Namely, we force the SABR model price
of the option into the valuation formula of the Black (lognormal) model. Then the
implied Black volatility, which is the value of the volatility parameter in the Black
model such that the Black price matches the SABR price, is approximately given by
Hagan et al’s formula (2002):

SABR Hagan _ 4. z .
Toppiack | (KoJo) = A < 7@ > B (4)
where z, y(z), A and B are given as follows:
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For the special case of at-the-money options, this formula reduces to:

SABR Hagan SABR Hagan
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Normal SABR model and Henry-Labordere’s
formula
If =0, the SABR model (1) - (3) specializes to the normal SABR case:

df, = a,dw} )
da, = va, dW? ©
E [dw]!dW?] = pdt @

We should always remember that the analytical solution for the European option
price we derive in the following, is based on the assumption that the boundary at
zero is neither an absorbing boundary, nor a reflecting boundary. In contrast, in each
simulated path of the forward rate, f, < 0 is allowed, which is also the assumption of
the Bachelier (normal) model.

In fact, many traders are in the habit of using the normal SABR model, as it seems
to capture the rates dynamcics better than other variations of the SABR model.

The value of a European call option for the normal SABR model as claimed by
Henry-Labordere (2008) is:

European Call
VP -

O
s[5
Labord o —K1 A= o A (®)

'min

¢ -2
e b T (D) = )

(47rt/)% y/coshb — cosh by,

where b__ is given as follows:
min

_ L
bin = coshi™! <m> ©

L= —p((K = fy)v + agp) +1/al + 20K —f;) + V2K = [
where (__(b) - e (b)) is given as follows:

‘max ‘min

(@nax(D) — ain(0) = V/4(1 — pH)M (10)

M= —(K =)'V — aglag +2vp(K —fy) + agf") +agcosh b 2p((K —f,)v + agp)
+ay(1 —p?)coshb)

where Hyperbolic cosine and its inverse function are respectively defined as:

e +e ™
2

cosh™ x= In(x + V2 — 1);

coshx =
x> 1

New formula for the normal SABR model
Below, we derive a new formula of the value of a European call option for the normal
SABR model:

N
EuropeanCall = [f, — K|* 4+ ———— / () - h(b)ldb
View o = K1 W7 hm[g an
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where b is given by the formula (9) and g(b) is given as:

b
e 2[-1—e' + E+F]

g(b) =" 87

where Eand Fare given as:

Here ®(x) is defined as the cumulative distribution function of the standard normal
variable x~N(0,1).
In the formula (11), h(b) is given as follows:

e b) 1

—_da

amn()  A/cOshb — cosh d(a)

(b)and & _ (b) are defined as:

h(b) =

Here d(@) and o,

‘min

— -1 N
d(a) = cosh <1 + a _pz)%a>

1
ia(0) = P~ VQ .

1
==
U (b) = S(P + VaQ (13)

where N, P, Q are respectively given as follows:
N = (=vm—pa+ pag)® + (1 = 7)o — )
P = —2mvp+ 2a,5° + 2a,coshb —2a,p* coshb
Q= 4(—0!3 — m*V? 4 2magvp) +(=2mvp + 2a4p” + 2ay cosh b —2ayp” cosh by
m=fy —K

Now we give a first example to reveal that our new formula is correct while the one in
Henry-Labordere (2008) is flawed. The details about how we derive this formula will
be given in the next section. More numerical tests will be given in the last section.

Category European Call Implied Black Volatility
Monte Carlo 0.009471 17.48%(Benchmark)
Hagan 0.009516 17.56%(Approximate)
Labordere 0.005766 10.56%(Wrong)
New Formula 0.009476 17.49%(Right)

Input parameters:

B =0, ay = 0.68%, T =10, v = 0.3691, p = —0.0286

fo = K= 435%

Monte Carlo Setting:

1.000.000 paths x 1.000 time steps.
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Hyperbolicgeometry framework
To derive the correct formula, we perform the following steps:

1. Rewrite the option pricing formula by means of the transition probability
density.

2. Derive the corresponding Kolmogorov backward Equation (PDE) for this
transition probability density.

3. Solve this PDE in the normal SABR case within the framework of hyperbolic
geometry.

4. Putthe solution of the PDE back into the option pricing formula and obtain
the analytical formula.

5. Simplify this formula by reducing a 3-dimensional integral to a 2-dimen-
sional integral.

Our analysis shows that Henry-Labordere only made a mistake in the last step
and our main contribution is also in the last step.

1.Step

Let V be the value of a European call option at time 0. Omitting the discount factor,
which factors out exactly, the value is:

+0oo 00
V£t -kl = [ | [0 - opr] o
0 K
where p(t) is defined as the transition probability density:
p(t) = plt. fi-0,10,fy, &) = prob{f, <f <f, +df, a, < & < a,+dal0,f;,ay}

p(T) is thus the transition probability density at maturity T.
Viaa direct integration Hagan et al. (2002) obtain the following formula:

T +co
v=[f0—1<]*+%(1<’*)2/0 [/0 a’p(t, f, = K, a0, fy, ag)da | dt

Notice that in the formula above f, is set to be equal to K due to Hagan’s integration
trick. It remains to calculate the transition probability density function p(t).

2.Step

The Kolmogorov backward equation (KBE) and its adjoint Kolmogorov forward
equation (KFE) are partial differential equations characterizing the dynamics of the
distribution of the diffusion process (see Bjoerk (2003)). KBE addresses the follow-
ing question: if we know at a future time s, the state of the system will be given in the
target set, what is the probability for each state of the system at time t (t<s) to end up
in the target setat time s. Our transition probability p(t) satisfies the KBE:

1 1
o= py + v (Opy, + 3D,

where in this equation we write p, f aznd instead of p(1), f,and ¢. And wealo define
- %) .0 - 90 - for simplicity.

PE S b= S e = P Pon = 5o ey

ot ofof ofda dada

3.Step
Now we solve this PDE for the transition probability density within the Hyperbolic

eometry framework. Define a new variable ¢/ = vt o vr ,aste [0, T]. Then
8 y 2 10, 2 ]

we obtain:

- 9 dt _ 2 a?
pu= S0 =Py = 5Pe= 53 (e + 20V b +Vpac)
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In the normal SABR case, 5= 0, f#= 1, the above equation reduces to:
= "’—Z( +2 + Vo)
pu = 2 Pyt 2VPPpy + VPuy (14)
Introduce the new coordinates:

x(f, ) =v(f — f) — pa
y(f,a) =41-pa

Att' =0, we define a fixed complex point z, = x, + iy, with x, = x (f,, &), y,=», (f;, &)
given by:

Xo=—ptty yo=V1-p%

2T
Att € (0,21, we define another complex pointz, = x, + iy, with x, = x,. (f., @),
Ye= Y, (> @) givenby:

Yu =V1-pa,

The geodesic distance d(z,, 7)) between these two complex points on the Poincare

X =V = fo) — pay

plane s defined as:

=zl C= x4 G — Yo
d(z,, z,) = cosh™! <1 —+ —th 1 >: cosh™? <1 —+ —(xt o) ¥ 0 =)o) > (15)
2yuyo 2y

The first derivatives of p are respectively:

. dp dx dy _ _
P/:¥:Px¥+‘gy§ =pv+0=vp,

. dp dx dy
= L, 22 2 -2
PuZ 5o =pStpyse = —op+ VI- 2,

The second derivatives of p are respectively:

) 9p.ox  9pIy\_ »
w3 = (3555 - 09
L) op, ox  9p. Oy Ny
= — —y== = Lx s A = — + 1-— 17
Pa da v da v < dx da + dy Ba) VPP TV ﬂszy {7)
20 ot VIZR) _ 0p g
" da da da da
= =P Xs + PV +V1 = P2 %, + Py y)
= =20V 1= Ppy + (L= Py, (18)

We put equations (16) - (18) into the formula (14) and obtain:

P = S [Vip+ 2o (~vip + VT,

+v? <ﬂszx —2py1- pszj, +(1 - ﬂz)Pyy>] = )’Z(Pxx +py) 19)

PDE (19) is known as a Heat equation problem on the Poincare plane, for which
there is an analytical solution found by McKean (1970). Thus the transition

WILMOTT magazine



probability density p(#') based on the hyperbolic distance d(z,, z) (15) in terms of the
new coordinates [x,y] is solved as:

fd 2
2e v dxd s e
P(t)dxdy = \/—e—zy be
(rt)2yt Sz /co shb — coshd(z, z)
Dueto
o Iy |
g —p
dedy = |3 7| dfda = ‘ ‘dfda =vy/1 - p2dfda
‘3 = 0 1-p2

V= ((1 - ﬂz);'%/)Z =1 -7y

we obtain the transition probability density p(¢') based on the hyperbolic distance in
terms of the old coordinates [f,&]:

bei™

v V2 Tdfda /m W
a1 -2 (4xt)s d(zt.20) 4/ cosh b — coshd(z,, zp)

(" )dfda = (20)

2
Atmaturityt=T,iet' =T = —1/7]:, the cumulative distribution function for the for-

ward frr < F € (=00, +00) is:
F o
prob(fy; < F) = / / p(t' = T'dardf
—o0 JO

We check the correctness of this analytical formula in Figure 1 by comparing its val-
ues with Monte Carlo simulation with the same input parameters as before.

4.Step

V2 v? 2 r 2 (7

From¢ = Z—tandT’ = —T,wegetdt = —dt' and thus dt = = d¢'. Then
2 2 v . A

we put the formula of the transition probability density (20) into the option valua-

tion formula in the first step and set = 0 for the normal SABR case. After suitable
arrangement we derive the analytical pricing formula containing a 3-dimensional
(3D) integral:

=t

\/5 VZTT SO e eA/
e

vWi=gZJdo Jo Jieo @ar)t

-

be's

y/coshb — cosh d(a,)

where z,=x, +iy,=x,(K,e,) + iy (K,e,) and z,=x,+1y,= xu(f,au) + iyo(f,au)‘
d(z,,z,) as the geodesic distance between z, and z; is actually a function of ¢, sincef,
issetto be equal to K. We denote d(,) =d(z,, z):

— 2 _ 2
d(Zt/,Zo)(g) cosh™! <1 + —(xt/ ) ¥ 0w = Yo >
2yuyo

_ N
h' (1l + ———
o’ < taac pz)aoa,,>

dbda, df
(21)

d(a,)

(22)
where Nis:
N = (—vm— pa, + pag)® +(1 — p )@, — o)
m=fy—K

WILMOTT magazine

Figure 1: Exact cumulative distribution function for the forward ratef . at
maturity compared with Monte Carlo simulation.
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Figure 2: Geodestic distance d(c) between zand z , (see formula (22)).
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We also checked the correctness of this 3D formula (21) in the following with same
input parameters as before. Hence, Henry-Labordere must make a mistake in the last
step, which we will show later.

3D formula Monte Carlo 95%-confidence interval
0.009475 0.009471 [0.009432, 0.009509]
5.Step

Notice in the formula (21), at certain time ¢', in order to integrate over ¢, from
0to =, we interchange the order of integration over b and ¢; where from now
on the subscript ¢’ of ¢, is omitted for simplicity. We also draw the picture of the
geodesic distance d(e) of formula (22) in Figure 2. The half space b = d( ) with o
20 arbitrary is then mapped to the interval [ (b), & (b)], where b is chosen
arbitrarily withb2b . = mind(0) (see formula (9)). And & (b), & (b) are
obtained by solving d( &) Lp (see formulae (10), (12) and (13)), which are actually
functions of b.

Then, Henry-Labordere simplified the 3D formula (21) by changing the integra-
tion order over b and &rof d( @) and obtained his final 2D formula (8):
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) = KI* + / / /mx(h) T
vyl —/’2 omad)  (4rt)}

2

e adbar

4/cosh b — coshd(«) (23)

‘
=

L.
o V2 X/ : / e
vWI=2 Joo o @rt):

be“ (U ax(D) — Ui (b)) dbdt’

y/coshb — cosh by, (24)

We notice that the formula (24) is the same as Henry-Labordere’s formula (8). But
in the second equation, we denote “wrong” over “=", as that is where the mistake is
made. It is not allowed to perform the integration over ¢, because the function d(a)
is a function of ¢ varies for different zand thus is not equal to the constant b,
which is the minimum of d( ).

In the following, we show how to simplify the 3D formula (23) to get our final 2D
formula (11). Note that when we integrate over b from b_ toeo,b_ . doesnot depend
on ', thus we can change the integration order of b and ' and obtain:

tnl) A
@3 e
\/1 - Tu®) (4ot )2

)

wrong

‘min’

xhe—“dadt’dh
Veoshb — coshd(a) (25)
A / ==
vyl-— (4t
@inax(b)
o db
nin(b) \/cosh b— coshd(a 26)

V2 / ”
=fh-K'+ —— [g(®) - h(b)ldb
U v/l — g% b

(27)
where h(b) and g(b) are defined as:

e b)

nin(b) \/cosh b —cosh d(a

h(b) =

_b2 b
. T “i-1—eb
g(h):/ " be” be T 4y El-l-e+E+F]
o (at)i 8z

where E and Fare:

_ T
E_2®<b T>—1

Vor
’a

F=é (20 22 )
V2T
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The argument that we can simplify formula (25) to formula (26) is that for certain b,
o (b), &, (b)and d(0) areall functions of band do not depend on ¢, when we inte-
grate over afrom ¢ (b)to e (D).
Note that the last formula (27) is indeed our new formula (11). h(b) and g(b) are
also defined as before. In this way, we derive our new formula which contains a 2D

integral.

Numerical Results

In this section, we illustrate the correctness of our new formula (11) by a series of
numerical experiments. The differences to the formula (4) and (8) are in particular
highlighted in test case IT.

Testcasel: p#0

Input parameters: 5= 0, a,=0.68%, T=10, v=0.3691, p=-0.0286, f = 4.35%.
Monte Carlo Setting: 1.000.000 paths x 1.000 time steps.
See: Table 1, Table 2 and Figure 3.

Table 1: Test case I: European Call Option Price

Strike MonteCarlo New Hagan Labordere
0.0400 0.011408 0.011392 0.011444 0.008267
0.0405 0.011117 0.011100 0.011150 0.007898
0.0415 0.010551 0.010535 0.010580 0.007171
0.0425 0.010009 0.009994 0.010035 0.006460
0.0435 0.009471 0.009476 0.009516 0.005766
0.0445 0.008998 0.008983 0.009023 0.005452
0.0455 0.008529 0.008513 0.008555 0.005156
0.0465 0.008083 0.008068 0.008113 0.004876
0.0475 0.007661 0.007646 0.007696 0.004613
0.0485 0.007262 0.007247 0.007303 0.004365
0.0495 0.006885 0.006870 0.006934 0.004132
0.0500 0.006705 0.006690 0.006759 0.004021
Table 2: Test case I: Implied Black Volatility

Strike MonteCarlo New Hagan Labordere
0.0400 18.41% 18.38% 18.48% 12.17%
0.0405 18.27% 18.23% 18.33% 11.94%
0.0415 18.00% 17.96% 18.05% 11.48%
0.0425 17.75% 17.72% 17.80% 11.02%
0.0435 17.48% 17.49% 17.56% 10.56%
0.0445 17.31% 17.28% 17.36% 10.75%
0.0455 17.12% 17.09% 17.17% 10.93%
0.0465 16.96% 16.93% 17.01% 11.09%
0.0475 16.80% 16.78% 16.87% 11.24%
0.0485 16.67% 16.64% 16.75% 11.38%
0.0495 16.55% 16.53% 16.64% 11.52%
0.0500 16.50% 16.47% 16.60% 11.58%
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Figure 3: Test Case I: Volatility Smile
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Testcasell: p=0
Input parameters: =0, ¢ = 1%, T=30, v=0.5, p=0, f, = 3.5%.
Monte Carlo Setting: 1.000.000 paths X 1.000 time steps.
See: Table 3, Table 4 and Figure 4.
Table 3: Test case II: European Call Option Price
Strike MonteCarlo New Hagan Labordere
0.030 0.034760 0.034919 0.030569 0.021470
0.031 0.034187 0.034346 0.030209 0.020730
0.032 0.033630 0.033789 0.029851 0.020003
0.033 0.033089 0.033248 0.029499 0.019289
0.034 0.032565 0.032724 0.029155 0.018587
0.035 0.032057 0.032216 0.028819 0.017899
0.036 0.031565 0.031724 0.028495 0.017587
0.037 0.031089 0.031248 0.028182 0.017289
0.038 0.030630 0.030789 0.027883 0.017003
0.039 0.030187 0.030346 0.027597 0.016730
0.040 0.029760 0.029919 0.027325 0.016470
Table 4: Test case lI: Implied Black Volatility
Strike MonteCarlo New Hagan Labordere
0.030 97,78% 110,40% 54,32% 29,55%
0.031 82,02% 85,04% 53,15% 28,58%
0.032 74,64% 76,49% 52,07% 27,68%
0.033 69,71% 71,09% 51,08% 26,83%
0.034 66,02% 67,13% 50,17% 26,04%
0.035 63,08% 64,02% 49,34% 25,29%
0.036 60,64% 61,47% 48,59% 25,17%
0.037 58,58% 59,32% 47,91% 25,07%
0.038 56,80% 57,47% 47,30% 24,98%
0.039 55,24% 55,87% 46,75% 24,91%
0.040 53,87% 54,45% 46,25% 24,85%
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Figure 4: Test Case lI: Volatility Smile
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Conclusion

In this paper we make use of the hyperbolic geometry framework to solve the option
pricing problem in the normal SABR model and thereby correct the European call
formula (8) by Henry-Labordere (2008). The new formula (11) is very practical
when using it for calibration. Derivation of the explicit analytical formula for the log-
normal SABR case along similar lines is a challenging topic for future investigation.
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