
Electronic copy available at: http://ssrn.com/abstract=2026350

Advanced analytics for the SABR model∗

A. Antonov and M. Spector

Numerix Quantitative Research†

March 23, 2012

Abstract

In this paper, we present advanced analytical formulas for SABR model option pricing. The first
technical result consists of a new exact formula for the zero correlation case. This closed form is a simple
2D integration of elementary functions, particularly attractive for numerical implementation. The second
result is an effective approximation of the general correlation case. We use a map to the zero correlation
case having a nice behavior on strike edges. The map formulas are easily implemented and do not
contain any numerical integration. These formulas are important in volatility surface construction and
CMS product replication because they provide correct behavior for far strikes and reduced approximation
error. The latter is also helpful for dynamic SABR models.

1 Introduction

The SABR model introduced in Hagan et al. (2002) is widely used by practitioners to capture skew and
smile effects of interest rate swaptions. The underlying process Ft represents the Constant Elasticity of
Variance (CEV) evolution with log-normal stochastic volatility vt

dFt = F βt vt dW1

dvt = γ vt dW2

with some correlation E[dW1 dW2] = ρdt, power β, 0 < β < 1, and absorbing boundary conditions.
The primary usage of the SABR model is volatility surface interpolation. For example, a swaption

1Y10Y with 1Y exercise and 10Y length has several quotes corresponding to different strikes. The SABR
model attached to this swaption is calibrated in order to fit existing prices or implied volatilities. The
calibrated model is used as an interpolation tool for other strikes.

∗This is version 2 of the paper (July 23, 2011). Here we have updated the numerical experiment tables addressing MC
convergence for small strikes and corrected a typo in the important formula (2.28) (we thank Abdelkader Ratnani for pointing it
out). We have also added numerical experiments for the hybrid SABR ZC map. We have explicitly address the approximation
procedure at the end of Section 2.2. Other changes are minor.
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Another important application of the SABR model consists of the calculation of European CMS
products associated with the swap rate in hand. The CMS price is calculated via integrals of European
swaption prices using a static replication formula (Hagan (2003)). The integration is done over swaption
strikes from zero to infinity. This means that the SABR swaption pricer should be robust and coherent
for all the strikes.

Finally, there is the SABR process application as a term structure model; see, for example, Rebonato
et al. (2009) for the SABR/LIBOR Market Model or Mercurio and Morini (2009) for inflation models.

In the original article, Hagan et al. (2002) came up with an approximation formula for European
option prices. The logic was based on a small time expansion which was refined later by many other
authors, for example, Beresticky et al. (2004), Henry-Labordere (2008), Paulot (2009), Obloj (2008),
and others. However, the approximation quality rapidly degrades with time, for example, for maturities
larger than 10Y the error in implied volatility can be 1% or more even for ATM values. Moreover, one
can easily observe bad approximation behavior for extreme strikes which sometimes prevents obtaining a
valid probability density function. These undesired properties on the edges are especially dangerous for
CMS calculations by static replication.

The initial Hagan et al. (2002) approximation formula is used as a standard tool for volatility surface
interpolation, which has led somehow to the approximation rather than the model itself becoming an
industry standard. However, the model price is more coherent and attractive.

A different approach to SABR option pricing was undertaken in Islah (2009) where the author con-
tributed an exact formula in terms of a multi-dimensional integration for the zero correlation case and a
conditional Bessel process approximation for non-zero correlation. Nevertheless, a practical implementa-
tion of Islah’s exact result for calibration is hardly possible: The final formula consists of three-dimensional
integration of special functions and appears to be slow numerically.

Finally, Andreasen and Huge (2011) proposed an approximation-based one-step PDE solver. The
procedure was proven to be arbitrage-free (i.e., with valid probability density function), but still delivers
an approximation for the SABR model.

In the present article1, we improve the approximate results for SABR option pricing. Namely, our first
technical contribution consists of an exact formula for the zero correlation case in terms of a simple 2D
integration of elementary functions, or one-dimensional integral of a special function known as McKean
kernel. The corresponding integrands have plausible asymptotics which permits an efficient numerical
implementation suitable for tight time constraints for calibration.

The second technical result covers a general correlation case where we propose a very accurate approx-
imation based on a model map procedure. Namely, we calculate effective coefficients of a zero correlation
SABR model, the map proxy, such that its small time asymptotics coincide with the initial non-zero
correlation case. Note that the efficient coefficient expressions involve simple algebra without numerical
integration. Then, we calculate the option price using the effective zero correlation SABR model2; see
Antonov-Misirpashaev (2009) for maps to other models.

Our new results provide strongly reduced approximation error and correct behavior on the edges of the
distribution for most of model parameters. Note that for very rare situations (large correlations in absolute
value and small power parameter) the option price can be occasionally non-convex for small strikes.
However, this undesired effect is much less pronounced than that for previous approximations. Moreover,

1The results were first announced in Antonov-Spector (2011).
2Hagan at al. used the Black-Scholes model as the map proxy which has, of course, very different properties than the initial

SABR model.
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due to its small amplitude and localization it does not influence CMS pricing by static replication.
The high accuracy of our approximation is very important for dynamic SABR models where calibration

procedures naturally require a close fit of analytics and real, for example, simulated result. Let us stress
that, throughout the paper, we consider the classical SABR model with the stochastic volatility without

mean-reversion. This property, however, does not seem to be very intuitive, especially for large time-
horizons. Hopefully, our analytical results can be adapted to mean-reverting volatility setups.

The paper is organized as follows. In Section 2, we present the main results. In Section 3, we
introduce the SABR Forward-Kolmogorov equation and discuss boundary conditions. Section 4 contains a
derivation of the zero-correlation exact results while Sections 5 and 6 are devoted to the general correlation
approximation. Finally, we provide numerical results in Section 7 and conclude in Section 8.

2 Main results

Consider the SABR process (Hagan et al. (2002)) for some rate Ft

dFt = F βt vt dW1 (2.1)

dvt = γ vt dW2 (2.2)

with some correlation E[dW1 dW2] = ρ and power β, 0 < β < 1. The log-normal process vt plays a role
of stochastic volatility. Thus, we have the famous set of five parameters: {F0, v0, β, γ, ρ}. In general, the
initial rate F0 is fixed and the parameters {v0, β, γ, ρ} are used for calibration.

A natural choice of boundary conditions at the zero rate is an absorbing boundary which guarantees
the martingale property of the rate. A probability of the rate being at zero is finite: The probability
density function (PDF) has a delta-function located at zero.

Below we present advanced analytics for a call option price,

C(T,K) = E[(FT −K)+] (2.3)

or the option time-value
O(T,K) = E[(FT −K)+]− (F0 −K)+. (2.4)

It is useful to transform the SABR rate process Ft to a stochastic volatility Bessel process Qt defined
as

Qt =
F 1−β
t

1− β
. (2.5)

The process Qt satisfies

dQt =

(

ν +
1

2

)

Q−1
t v2t dt+ vt dW1 (2.6)

dvt = γ vt dW2 (2.7)

with the Bessel index

ν = − 1

2(1− β)
. (2.8)
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2.1 Zero correlation case

In this subsection, we will present results of the zero correlation case. By a change of variables

V =
v

γ
, V0 =

v0
γ
, t→ γ2t (2.9)

we can set γ = 1 to obtain the normalized form of the SABR evolution

dFt = F βt Vt dW1 (2.10)

dVt = Vt dW2 (2.11)

with zero correlation E[dW1 dW2] = 0.
An option price for zero correlation3 can be presented in terms of a simple two-dimensional integral

as

C(t,K, F0)− (F0 −K)+ =
√

KF0
e−t/8
√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2

{

1

π

∫ π

0

dφ
sinφ sin(|ν|φ)
b− cosφ

e−
ξ0(w)2

2t +
sin(|ν|π)

π

∫ ∞

0

dψ
sinhψ

b + coshψ
e−|ν|ψe−

ξ0(w)2

2t

}

(2.12)

where we have denoted coefficient

b =
q2K + q20
2 qK q0

depending on the transformed values of the spot and strike

qK =
K1−β

1− β
and q0 =

F 1−β
0

1− β
. (2.13)

The function ξ0(w) in the exponent

ξ0(w) = arcosh

{

q2K + q20 + V 2 + V 2
0

2V V0
− qK q0

V V0
coshw

}

has an argument w defined differently for the two integrals

coshw = cosφ for φ-integral,
coshw = − coshψ for ψ-integral.

The integration can be performed numerically in an efficient manner—the integrands are smooth functions
of the parameters. Note that the above formula is exact.

We can further simplify the option price formula by introducing the heat kernel G(t, s)

G(t, s) = 2
√
2
e−t/8

t
√
2πt

∫ ∞

s

du
√
coshu− cosh s u e−

u2

2t (2.14)

3We consider the general case below.
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which is closely related to the McKean (1970) kernel GMK(t, s), namely ∂G
sinh s∂s = −2πGMK . The result

is given in the following compact form

C(t,K, F0)− (F0 −K)+ =
2

π

√

KF0

{

∫ s+

s−

ds
sin(|ν|φ(s))

sinh s
G(t, s) + sin(|ν|π)

∫ ∞

s+

ds
e−|ν|ψ(s)

sinh s
G(t, s)

}

(2.15)
with the following underlying functions

φ(s) = 2 arctan

√

sinh2 s− sinh2 s−

sinh2 s+ − sinh2 s
(2.16)

ψ(s) = 2 arctanh

√

sinh2 s− sinh2 s+

sinh2 s− sinh2 s−
(2.17)

and the integration limits

s− = arcsinh

( |qK − q0|
V0

)

(2.18)

s+ = arcsinh

(

qK + q0
V0

)

. (2.19)

Note that the option price depends4 on the parameters q0, qK and V0 through dimensionless s− and s+.
Derivation details can be found in Section 4.

2.2 Non-zero correlation general case

In this subsection, we will announce results for an option price approximation for a general correlation.
We will use mathematical results from the heat-kernel theory and will explain it in details later.

For a general correlation, we will use a small-time expansion giving the following formula for the option
time-value

O(T,K) =
T

3
2

2
√
2π

exp

{

−1

2

s2min

Tγ2
− ln

s2min

2γ2
+ ln

(

Kβ√v0vmin

)

−Amin

}

. (2.20)

Here optimal geodesic distance smin is a function of the initial value of the rate, F0, the initial stochastic
volatility value v0, and the strike K, defined as follows

smin =

∣

∣

∣

∣

ln
vmin + ρv0 + γδq

(1 + ρ)v0

∣

∣

∣

∣

(2.21)

for

δq =
K1−β − F 1−β

0

1− β
(2.22)

and
v2min = γ2δq2 + 2ργδq v0 + v20 . (2.23)

4Except the square root
√
KF0
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The function Amin is the so-called optimal parallel transport

Amin =
1

2
ln(K/F0)

β + Bmin (2.24)

where contribution Bmin has a simple form

Bmin = − 1
2

β

1− β

ρ
√

1− ρ2
(π − ϕ0 − arccosρ− I) (2.25)

with coefficients

L =
vmin

q γ
√

1− ρ2
and ϕ0 = arccos

(

−δq γ + v0 ρ

vmin

)

and integral

I =















2√
1−L2

(

arctan u0+L√
1−L2 − arctan L√

1−L2

)

for L < 1

1√
L2−1

ln
u0(L+

√
L2−1)+1

u0(L−
√
L2−1)+1

for L > 1

(2.26)

where

q =
K1−β

1− β

and

u0 =
δq γρ+ v0 − vmin

δq γ
√

1− ρ2
.

See also Henry-Labordere (2008) and Paulot (2009).
The small time expansion works fine for small times, but for moderate and large ones ones it needs

to be imroved. We can use the mapping technique (see Antonov-Misirpashaev (2009)) which works as
follows. We come up with another model having the same small time expansion for the option (mimicking
model) and calculate the final result using the mimicking model. For example, Hagan used the Black-
Scholes model or normal one for this. Paulot has proposed the CEV model as the mimicking model. We
will go further and use the SABR model with zero correlation (SABR ZC) having similar characteristics
and asymptotics to the initial SABR model.

Denote the SABR ZC parameters with tilde and set its skew and vol-of-vol in a strike-independent
manner

β̃ = β (2.27)

γ̃2 = γ2 − 3

2

{

γ2ρ2 + v0γρ (1− β)F β−1
0

}

(2.28)

and define as usual

δq̃ =
K1−β̃ − F 1−β̃

0

1− β̃
. (2.29)

The initial stochastic volatility value ṽ0 can be calculated as expansion

ṽ0 = ṽ
(0)
0 + T ṽ

(1)
0 + · · · (2.30)
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The leading term can be expressed as

ṽ
(0)
0 =

2Φ δq̃ γ̃

Φ2 − 1
(2.31)

where

Φ =

(

vmin + ρv0 + γ δq

(1 + ρ)v0

)

γ̃
γ

.

The (first) correction to the initial stochastic volatility of the mimicking model can be expressed in an

algebraic form of the initial model parameters, the strike, and the leading order value ṽ
(0)
0

ṽ
(1)
0

ṽ
(0)
0

= γ̃2

1
2 (β − β̃) ln(K F0) +

1
2 ln (v0vmin)− 1

2 ln

(

ṽ
(0)
0

√

δq̃2 γ̃2 + ṽ
(0)
0

2
)

− Bmin

Φ2−1
Φ2+1 lnΦ

. (2.32)

Thus, given option strike K, the coefficients of the initial SABR model, and the postulated free SABR
ZC parameters (2.27-2.28), we calculate the effective initial value value of the stochastic volatility as
the first order expansion (2.30) with the leading term (2.31) and its correction (2.32). This defines all
parameters of the mimicking SABR ZC model. A call option price for the strike K is thus approximated
by the constructed mimicking model—a zero correlation SABR model—for which the analytical option
price is available and given by (2.12).

The ATM case is a cumbersome but straightforward limit K → F0. The leading order ATM value
reads5

ṽ
(0)
0

∣

∣

∣

K=F0

= v0. (2.33)

The first ATM correction can be also expressed in simple terms

ṽ
(1)
0

ṽ
(0)
0

∣

∣

∣

∣

∣

K=F0

=
1

12

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2 +
1

4
β ρ v0γ F

β−1
0 . (2.34)

Note that its last term comes from the second derivative of the integral B. It can be also found in the
formula of Hagan et al. (2002).

We can construct a “hybrid” solution for effective volatilities. Namely, for a general, not necessarily
ATM strike, use the optimal strike-dependent leading order initial volatility (2.31) and the ATM correction

(2.34). We address property of this simple solution in the Section 7.
The general case β 6= β̃ is slightly more complicated resulting in the following leading order effective

volatility

ṽ
(0)
0

∣

∣

∣

K=F0

= v0 F
β−β̃
0 (2.35)

and its correction

ṽ
(1)
0

ṽ
(0)
0

∣

∣

∣

∣

∣

K=F0

=
1

12

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2 +
1

4
β ρ v0γ F

β−1
0 +

1

24
v20F

2β−2
0

(

(β − 1)2 − (β̃ − 1)2
)

. (2.36)

5Here, we explicitly set β̃ = β as prescribed by (2.27).
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Finally, we summarize the approximation procedure. Given the SABR model with non-zero correlation
(2.1-2.2), strike K and maturity T , we come up with (strike dependent) mimicking process F̃t and ṽt

dF̃t = F̃ β̃t ṽt dW̃1 (2.37)

dṽt = γ̃ ṽt dW̃2 (2.38)

with zero correlation between the driving Brownian motions E[dW̃1 dW̃2] = 0. The efficient parameters
are calculated as follows: the skew β̃ = β, the vol-of-vol γ̃ as (2.28) and the initial (strike dependent)

effective volatility ṽ0 = ṽ
(0)
0 + T ṽ

(1)
0 as (2.31-2.32). The approximate call option price

C(T,K) ≃ E[(F̃T −K)+]

is finally computed by the numerical integration (2.15) or other equivalent formula.

2.3 Asymptotics

In this section, we consider the vol-of-vol γ as not being unity and operate with process vt (2.7) instead
of Vt (2.11) and corresponding stretched time tγ2.

Being equipped with an exact solution for the zero correlation case, we can obtain asymptotics for
small and large strikes. Below we present the results in terms of the Bessel form of the SABR process

(2.6) where we have replaced the SABR process Ft by Qt =
F 1−β

t

1−β . Obviously, the initial SABR density

function P (t, F ) = E[δ(Ft − F )] can be related with the Bessel process PDF P (t, q) = E[δ(Qt − q)] by
dFP (t, F ) = dqP (t, q).

At the end of section 4.1, we have derived small strike behavior, which we present here for γ 6= 1

p (t, q | q0) = 4q
(|ν| + 1) v20(γ q0)

2|ν|+2e−tγ
2/8

−2πi
√

2πtγ2

∫ ∞

0

dv

v0

(v0
v

)1/2
∫ ∞

−∞

dξ sinh ξ e
− (ξ+iπ)2

2tγ2

(γ2 q20 + v2 + v20 + 2vv0 cosh ξ)
|ν|+2

.

The asymptotic is linear in q. However, we did not manage to simplify the coefficient which is, of course,
positive and real in spite of a presence of the imaginary unit.

Section 4.3 gives a leading order of large strike asymptotics

p(t, q) ∼ e
− 1

2tγ2 ln2 2q γ
v0 (2.39)

which coincides with that given by the heat-kernel small time expansion (2.20) where the geodesic distance
smin ∼ ln(2 q γv0 ). One can also “quantify” the notion of the large q and the strike

q ∼ v0
γ
e3γ

√
t (2.40)

or, in terms of the strikes

K ∼
(

(1− β) v0
γ

)
1

1−β

e
3γ

√
t

1−β . (2.41)

See Section 4.3 for details. A log-volatility of a rate is of order of 20%, thus v0 ∼ 0.2F 1−β
0 . The vol-of-vol

can have also the same order of 20%− 40%. Thus, a large strike is approximately

K ∼ F0 (1− β)
1

1−β e
√

t
1−β . (2.42)
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Accordingly, for small β (corresponding to the “normal” case) the distribution is quite narrow even for
moderate maturities. On the other hand, a log-normal case β → 1 gives very fat wings and a “large
strike” can exceed the initial rate value by multiple orders.

For the general correlation case, one can show that the PDF will retain linear asymptotics in q for
small strikes

p(t, q) ∼ q. (2.43)

See Section 3. For large strikes, the leading asymptotics correspond to its small-time counterpart obtained
by the heat-kernel small time-expansion

p(t, q) ∼ e
− 1

2tγ2 ln2 2q γ
(1+ρ)v0 . (2.44)

This is an intuitive result without a strict proof, however.
The approximation gives a close fit for the distribution for a wide range of strikes. However, very

rarely, the approximate PDF can have small negative values for small strikes (for small β and large ρ).
Of course, these negative values are tiny w.r.t. huge negative probabilities for existing approximationa
based on the effective implied volatility. For large strikes, our approximation numerically appears to be
close to the heat-kernel small time expansion (2.44); we will address it rigorously elsewhere.

3 SABR density PDE: absorbing and reflecting solutions

In this section, we study the SABR density general properties. Starting with the SDE for the Bessel
process with stochastic volatility (BES SV) (2.6), we address boundary conditions in terms of the PDF
behavior at zero, identify them with absorbtion and reflection, and comment on the norm and moment
conservation.

The BES SV process gives rise to the Forward Kolmogorov equation

pt = −
(

ν +
1

2

)

v2
(

q−1 p
)

q
+

1

2
v2pqq + ργ

(

v2 p
)

qv
+

1

2
γ2
(

v2 p
)

vv
(3.1)

which delivers a solution for the density p(t, q, v) = E[δ(qt − q) δ(vt − v)] with the initial condition
p(0, q, v) = δ(q0 − q) δ(v0 − v). The solution is unique provided that certain boundary conditions are
imposed at q = 0.

As in the pure Bessel case, see, for example, Jeanblanc et al. (2009), we look for a solution at small q
in the form

p(t, q, v) = qκ φ(t, q, v)

where function φ(t, q, f) is regular at q = 0. A balance of leading terms (of the order of qκ−2) determines
two possible characteristic exponents, κ1 = 1 and κ2 = 2ν+1, and thus gives rise to the following solutions

p(1) = q
(

C0 + C1q + O(q2)
)

, (3.2)

p(2) = q2ν+1
(

B0 + B1q +O(q2)
)

. (3.3)

Note that the second one may be realized only for ν > −1 as follows from the integrability condition,
2ν + 1 > −1. Considering the next order leads to

v2C1 = − 2ρ

1− 2ν

(

v2C0

)

v

v2B1 = −2ρ
(

v2B0

)

v
. (3.4)
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For the zero correlation the first order coefficients cancel out.
Let us examine these asymptotics of being absorbing or reflecting. We notice that the marginal

distribution of the stochastic volatility vt is log-normal

p(t, v) =

∫

dq p(t, q, v) =
1

√

2πtγ2
v−1 e

− 1
2

(ln v+1
2
tγ2)2

tγ2 . (3.5)

This means that for any fixed q the PDF p(t, q, v) goes to zero for v → 0 with all its derivatives over v.
This property permits us to understand the asymptotic behavior of the marginal distribution of qt

p(t, q) =

∫

dv p(t, q, v). (3.6)

Indeed, integrating the Forward Kolmogorov equation over v, we obtain6

∂t p(t, q) =

∫

dv v2
(

−
(

ν +
1

2

)

(

q−1 p
)

q
+

1

2
pqq

)

. (3.7)

A time dependence of the norm

n(t) =

∫

dq dv p(t, q, v)

is established by the integration of the equation (3.7) over q and occurs to be dependent on the PDF
behavior at the q = 0 boundary,

∂t n(t) =

∫

dv v2
((

ν +
1

2

)

q−1 p− 1

2
pq

)

q→0

. (3.8)

For the solution (3.2), we get

∂t n
(1)(t) = ν

∫

dv v2C0(t, v)

while for the solution (3.3) the factor to be integrated becomes

((

ν +
1

2

)

q−1 p− 1

2
pq

)

q→0

= −1

2
q2ν+1 (B1 +O(q))

and does not necessarily turn into zero at q → 0. Indeed, we have −1 < 2ν + 1 < 0 in the interval
0 < β < 1

2 . However, integrating over v cancels the potentially singular term due to (3.4)

∫

dv v2B1(t, v) = −2ρ

∫

dv
(

v2B0

)

v
= 0

and results in the norm conservation
∂t n

(2)(t) = 0.

Thus, the norm-conserving solution p(2) (3.3) is naturally identified as reflecting, and the solution p(1)

(3.2) which reveals the norm defect (at negative ν) is identified as absorbing.

6We used the boundary properties of the density for v → 0 to zero the two last terms.
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Though interested mainly in negative index ν (β < 1), we comment briefly on the case ν > 0. Imagine
that the total PDF is presented by some combination of the solutions p(1) and p(2). For small q, the
leading term of p(1) ∼ q dominates the leading term of p(2) ∼ q2ν+1 implying that

p = p(1) + p(2) ≃ C0(t, v)q

∂t n(t) = ∂t n
(1)(t) + ∂t n

(2)(t) = ν

∫

dv v2C0(t, v).

These relations, however, are in conflict. On the one hand, C0 must be positive to define positive PDF p.
Both ν and C0 being positive, the time derivative of the norm must also be positive, ∂t n(t) > 0, which
is probabilistically impossible. Indeed, if the initial distribution is normalized to one, n(0) = 1, the norm
n(t) has no room to grow farther. Thus, the absorbing solution p(1) may be realized only at ν < 0 (β < 1).
In this case, the norm defect, ∂t n(t) < 0, merely indicates that there is a finite probability for process qt
to be at zero which is natural for the absorbing solution, P (qt = 0) = 1− n(t).

We conclude that for a positive index ν > 0 (β > 1) there exists only reflecting solution p(2) while for
ν < −1 (12 < β < 1) the only possible solution is the absorbing one p(1). In these intervals of the index
ν the PDF p is completely determined by the inner dynamics of the random processes qt and vt with no
freedom for an outside boundary condition at q = 0. In the interval −1 < ν < 0 (β < 1

2 ) both solutions
are legitimate, and we have to impose a boundary condition at q = 0 to select the proper unique solution.
As we have seen, a selection of the reflecting solution is associated with the requirement of the norm
conservation. Below we prove that a selection of the absorbing solution (and ignoring the reflecting one)
is related with the martingale property of the SABR process Ft. Indeed, in terms of the BES SV process
we need to calculate the (−2ν)-th moment m−2ν(t) as far as the rate process reads Ft = q−2ν

t (−2ν)2ν .
Multiplying the Forward Kolmogorov equation (3.1) by q−2ν and rearranging terms we obtain

q−2ν pt =
1

2
v2
(

q−2ν+1 (p q−1)q
)

q
+

[

ργ q−2ν
(

v2 p
)

q
+

1

2
γ2 q−2ν

(

v2 p
)

v

]

v

. (3.9)

Thus, the moment time-derivative

∂tm−2ν(t) =

∫

dq dv q−2ν pt(t, q, v) = −1

2

∫

dv v2
(

q−2ν+1 (p q−1)q
)

q=0
(3.10)

has the following form for each of the solutions p(1) and p(2)

∂tm
(1)
−2ν(t) = 0

∂tm
(2)
−2ν(t) = −ν

∫

dv v2 B0(t, v).

This indicates that the SABR process is a global martingale for the absorbing solution and a strict local
one for the reflecting solution.

Below we will consider the SABR model with absorbing boundary as the most coherent and standard
one.

4 Zero-correlation formulas

This section is devoted to the derivation of the option price formula for the zero correlation SABR model.
Here, for simplicity, we consider the vol-of-vol γ equal to one using the transform (2.9).
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Before starting our analysis, transform (2.5) the rate process Ft into the Bessel process Qt, which
satisfies

dQt =

(

ν +
1

2

)

Q−1
t V 2

t dt+ Vt dW1 (4.1)

dVt = Vt dW2. (4.2)

The zero correlation permits “absorbing” the stochastic volatility Vt into the new stochastic time τ

τt =

∫ t

0

V 2
t′dt

′. (4.3)

Indeed, the new process
dB1τ = VtdW1t

is a Brownian motion in time τ

〈(dB1τ )
2〉 = V 2

t 〈(dW1t)
2〉 = V 2

t dt = dτ.

Process B1τ also remains uncorrelated with W2. Denote the process Qt measured in the new time τ by
Rτ ≡ Qt. Its governing SDE looks like

dR = (ν + 1
2 )
dτ

R
+ dB1τ .

In other words, the process Rτ is a Bessel process with index ν.

4.1 The marginal PDF

In this subsection, we address the marginal distribution of the BES SV process Qt defined as

p (t, q | q0, V0) = E{W2}E{W1} {δ(Qt − q)|q0, V0} = E{W2t}
{[

E{B1τ} {δ(Rτ − q)|q0}
]

|V0
}

. (4.4)

We concentrate on the PDF for q > 0 because the call option price does not depend on the (finite)
probability of Qt = 0.7

Since B1τ remains uncorrelated with W2t, the inner average is the single point PDF of Bessel process
BES(ν) with negative index ν and absorbing boundary condition (see, for example, Jeanblanc et al.
(2009))

p(ν)(τ, q|q0) = 2q
e−

q2+q20
2τ

2τ

(

q

q0

)ν

I−ν
(qq0
τ

)

(4.5)

for q > 0.
The marginal PDF can be expressed in terms of the stochastic time τt density p(t, τ) = E[δ(τt − τ)]

p (t, q | q0, V0) = E{W2t}
{

p
(ν)
BES(τt, q|q0)

}

=

∫ ∞

0

dτ p
(ν)
BES(τ, q | q0) p(t, τ). (4.6)

7The finite probability P[Qt = 0] for our absorbing boundary condition can be computed requiring the unit norm, i.e.
P[Qt = 0] = 1−

∫∞

+0
dq p (t, q | q0, V0).
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One can calculate the density p(t, τ) from the joint distribution function of τt and Vt, p (t, τ, V | V0) =
E [δ(τt − τ) δ(Vt − V )], obtained by Yor (1992). Thus, to calculate the marginal PDF p (t, q | q0) we can
proceed as follows

p (t, q | q0) =
∫

dτ p(ν)(τ, q | q0)
∫

dV p (t, τ, V | V0) .

We recall here the Yor result8

p(t, V 2, τ |V 2
0 ) =

e−t/8

V 2

(

V 2

V 2
0

)−1/4
e−

V 2+V 2
0

2τ

2τ
ϑ

(

V V0
τ

, t

)

(4.7)

where function ϑ(r, t) is defined as

ϑ(r, t) =
re

π2

2t

π
√
2πt

∫ +∞

0

e−r cosh ξ−
ξ2

2t sinh ξ sin
πξ

t
dξ (4.8)

=
r

(−2πi)
√
2πt

∫ +∞

−∞
e−r cosh ξ−

(ξ+iπ)2

2t sinh ξ dξ. (4.9)

Despite looking different, two last expressions are equal, as readily seen by developing the exponent

exp
(

− (ξ+iπ)2

2t

)

and keeping only the even part of the integrand in (4.9). The more compact form (4.9)

may be preferable when making various transforms and trying to use analytical properties of functions
after moving into complex plane ξ.

In Appendix A, we describe a simple derivation of the joint PDF of V 2
t and τt based on arguments

close to Yor’s. The key elements include the Laplace transform (LT) in time which represents, in essence,
passing to a random exponential time. Then, we make use of the Lamperti property of a geometric
Brownian motion, which states that a geometrical Brownian motion

X
(ν)
t = exp(2νt+ 2Wt)

measured in the stochastic time τt =
∫ t

0 Xt′dt
′, becomes a Squared Bessel process X

(ν)
t ≡ ρ

(ν)
τt with index

ν (not to be confused with ν used earlier for process Qt). Next, we apply the Girshanov theorem which
allows us by change of measure to eliminate “path-dependent” factors. As a result, the LT of the joint

PDF (4.7) proves to be proportional to the distribution of a Bessel process ρ
(µ)
τ with index µ = (ν2+2λ)1/2

depending on the Laplace parameter λ and the original index ν. Finally, the inverse Laplace transform
leads to the expressions (4.7-4.8).

Thus, we come up with the following expression for the joint PDF of Qt and Vt

p (t, q, V | q0, V0) = 2V
e−t/8

V 2

(

V

V0

)−1/2 ∫ ∞

0

dτ p(ν)(τ, q|q0)
e−

V 2+V 2
0

2τ

2τ
ϑ

(

V V0
τ

, t

)

. (4.10)

Note inter alia that it is possible to present the LT of the joint density of Qt and Vt in a compact and
nice convolution form

p̂ (λ, q, V | q0, V0) =
1

V 2

(

V

V0

)−(µ+1/2) ∫ ∞

0

dτ p
(ν)
BES(τ, q|q0) p

(µ)
BES(τ, V |V0) (4.11)

8We have denoted the PDF of the stochastic time τ and the square V 2
t as p(t, V 2, τ |V 2

0 ) = E
[

δ(V 2
t − V 2) δ(τt − τ )

]

.

Obviously, p(t, τ, V | V0) = 2V p(t, V 2, τ |V 2
0 ).
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for µ = (14 + 2λ)1/2. To our knowledge, this formula is new but we will not use it in our option price
derivation.

Integrating the joint density (4.10) over volatility V , we obtain a marginal distribution of Qt

p (t, q | q0) = e−t/8
∫ ∞

0

2dV

V

(

V

V0

)−1/2 ∫ ∞

0

dτ p(ν)(τ, q|q0)
e−

V 2+V 2
0

2τ

2τ
ϑ

(

V V0
τ

, t

)

. (4.12)

At the end of this subsection, we address the small q (or small F ) expansion. Indeed, we obtain the
leading term of p(ν)(τ, q|q0) for q → 0, the PDF of the Bessel process (4.5), taking into account the small
argument asymptotics of the Bessel function I−ν(x)

p(ν)(τ, q|q0) ≃
1

Γ(|ν|+ 1)

q

τ

(

q20
2τ

)|ν|
e−

q20
2τ .

Then, substitute it into the formula (4.12)

p (t, q | q0) ≃
2q

Γ(|ν|+ 1)
e−t/8

∫ ∞

0

2dV

V

(

V

V0

)−1/2 ∫ ∞

0

dτ

(2τ)2

(

q20
2τ

)|ν|
e−

q20+V 2+V 2
0

2τ ϑ

(

V V0
τ

, t

)

.

Next, using expression (4.9) for the function ϑ, we can integrate over τ

∫ ∞

0

dτ

τ

(

1

2τ

)|ν|+2

e−
A
2τ =

Γ(|ν|+ 2)

A|ν|+2

resulting in a linear asymptotic in q

p (t, q | q0) ≃ 4q(|ν|+ 1)
V 2
0

q20

∫ ∞

0

dV

V0

(

V

V0

)−1/2

∫ ∞

−∞

dξ sinh ξ

−2πi

(

q20
q20 + V 2 + V 2

0 + 2V V0 cosh ξ

)|ν|+2
e−

(ξ+iπ)2

2t −t/8
√
2πt

,

confirming our general result derived for any correlation. Unfortunately, the integral coefficient can hardly
be simplified.

4.2 Option pricing

Integrating the marginal q distribution with a given payoff generates the option price in the form

Csabr(t,K, F0) = e−t/8
∫ ∞

0

2dV

V

(

V

V0

)−1/2 ∫ ∞

0

dτ Ccev(τ,K, F0)
e−

V 2+V 2
0

2τ

2τ
ϑ

(

V V0
τ

, t

)

(4.13)

where Ccev(τ,K, F0) is the τ -time value of the corresponding option in the CEV model.
An analogous formula served as a basis for the approach used by Islah (2009). CEV option values

were expressed through χ2 probability distributions, each presented as the integral of the corresponding
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probability density. (Note that, in the case of β < 1/2 with reflection, his formulas are incorrect.)
Altogether, it included four integrations, of which one, over stretched time (our τ), was taken analytically.
Final results of Islah contain triple integrals to be computed numerically: integration with respect to F
which originates from integrating χ2 probability density, integration with respect to volatility V and
integration with respect to parameter ξ according to the definition of the Yor function ϑ.

Drawbacks of this approach include complicated integrands, too many (three) numerical integrations,
and general convergence problems with integration over ξ at small times t. Regarding the latter, we notice
that explicitly real integral form for function ϑ(r, t) (4.8) contains two problematic factors, especially, for

small maturities. One factor is sin πξ
t which may oscillate very fast and another one, e

π2

2t , may take huge
values. This requires an extreme accuracy in numerical computation as discussed by Carr and Schroder [6]
in the context of Asian options.

We have found ways to significantly simplify expressions for option values, coming up with a double
integral of elementary functions. (It may even be considered as a single integral if we accept the heat
kernel function involved,G(t, s), as given – see below.) The basic idea is to transform expression (4.12)
for the marginal distribution of q before integrating it with the payoff. Namely, we integrate (4.12) by
parts with respect to τ , in order to get τ -time derivative ∂τp(τ, q), then express ∂τp through the proper
evolution operator using the forward Kolmogorov equation. After that, integration with payoff over F
becomes trivial. Subsequent integration over stretched time τ leaves only a double integral to be computed
numerically. Another essential attainment is related to integration with respect to ξ by making use of the
complex (rather than real) integral form of the Yor function ϑ (4.8). Continuing the function involved
into the complex plane ξ, we have managed to shift the path of integration over ξ downward from the
real axis onto the horizontal line ξ = u − iπ with real u, thus converting the ‘trouble making’ function

exp{− (ξ+iπ)2

2t } into the pure real and decaying exponent exp{−u2

2t }.
Leaving the derivation details to Appendix B, we present some equivalent expressions for the call

option value

C(t,K, F0)− (F0 −K)+ =
√

KF0
e−t/8
√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2

{

1

π

∫ π

0

dφ
sinφ sin(|ν|φ)
b− cosφ

e−
ξ0(w,V )2

2t +
sin(|ν|π)

π

∫ ∞

0

dψ
sinhψ

b + coshψ
e−|ν|ψe−

ξ0(w,V )2

2t

}

(4.14)

with coefficient b =
q2K+q20
2qKq0

and function

ξ0(w, V ) = arccosh

{

q2K + q20 + V 2 + V 2
0

2V V0
− qKq0
V V0

coshw

}

(4.15)

defined in the following way for two integrals

coshw = cosh iφ = cosφ for φ-integral,
coshw = cosh(±iπ + ψ) = − coshψ for ψ-integral.

One can get an alternative expression for the option price changing the order of integration in (4.14).
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An integration over V gives rise to a heat-kernel looking function

G(t, s) = 2
√
2
e−t/8√
2πt

∫ ∞

s

d(
√
coshu− cosh s)e−

u2

2t =
e−t/8√
πt

∫ ∞

s

du
sinhu√

coshu− cosh s
e−

u2

2t . (4.16)

Note that its derivative, − 1
2π

∂G(t,s)
sinh s∂s = GMK(t, s), coincides with the McKean heat kernel GMK(t, s) on

the Poincare hyperbolic plane H2. Note also that the following alternative form of the function G(t, s)
obtained from (4.16) by integration by parts

G(t, s) = 2
√
2
e−t/8

t
√
2πt

∫ ∞

s

du
√
coshu− cosh s u e−

u2

2t (4.17)

is convenient for numerical computations.
Thus, the option price looks like

C(t,K, F0)− (F0 −K)+ =
1

π

√

KF0

{
∫ π

0

dφ
sinφ sin(|ν|φ)
b− cosφ

G(t, s(w)

D(w)
(4.18)

+ sin(|ν|π)
∫ ∞

0

dψ
sinhψ

b + coshψ
e−|ν|ψG(t, s(w)

D(w)

}

.

Other parameters and functions involved are defined as follows:

D2(w) =
2qKq0
V 2
0

(b − coshw) + 1

s(w) =arccoshD(w). (4.19)

Finally, we can simplify the option price formula using a new integration variable s

C(t,K, F0)− (F0 −K)+ =
2

π

√

KF0

{

∫ s+

s−

ds
sin(|ν|φ(s))

sinh s
G(t, s) + sin(|ν|π)

∫ ∞

s+

ds
e−|ν|ψ(s)

sinh s
G(t, s)

}

(4.20)
with the following underlying functions

φ(s) = 2 arctan

√

sinh2 s− sinh2 s−

sinh2 s+ − sinh2 s
(4.21)

ψ(s) = 2 arctanh

√

sinh2 s− sinh2 s+

sinh2 s− sinh2 s−
(4.22)

the integration limits

s− = arcsinh

( |qK − q0|
V0

)

(4.23)

s+ = arcsinh

(

qK + q0
V0

)

(4.24)

and the Kernel function G(t, s) given by (4.16).
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4.3 Asymptotics at large strikes

Full calculation of asymptotics for large strikes turned out to be complicated and will be addressed
elsewhere; here we give its leading term.

The dominating term in the option price integrand (4.20) is the kernel G(t, s) with strongly decreasing
Gaussian asymptotics. Indeed, make in (4.16) a substitution

u =
√

s2 + w2 ≃ s

(

1 +
w2

2s2

)

= s+
w2

2s
.

Then

coshu ≃ cosh s+
w2

2s
sinh s

√
coshu− cosh s ≃

√

sinh s

2s
w
(

1 +O(s−1)
)

and the asymptotic of G(t, s) looks like

G(t, s) = 2
√
2

√

sinh s

2s

e−t/8√
2πt

∫ ∞

0

dw e−
s2+w2

2t

(

1 +O(s−1)
)

=

√

sinh s

s
e−

s2

2t − t
8

(

1 +O(s−1)
)

. (4.25)

The leading asymptotics of the option price comes from the term G(t, s) corresponding to large s ∼ s− ∼
s+ which, for simplicity, we define as

s0 = ln
2 qK
V0

. (4.26)

We see that the resulting leading asymptotics

C(t,K, F0) ∼ G(t, s0) ∼ e−
s20
2t for K → ∞ (4.27)

coincide with that given by the Heat-Kernel small time expansion (2.20) where, for large strikes, smin ∼ s0.
We doubt, however, that the pre-exponential factors of these two different limits, K → ∞ and t→ 0, will
also coincide.

Given the Gaussian nature of the decay we can quantify large s0 as being

s0 ∼ 3
√
t (4.28)

or, in terms of the qK ,

qK ∼ V0e
3
√
t (4.29)

or, in terms of the strikes,

K ∼ ((1− β)V0)
1

1−β e
3
√

t
1−β . (4.30)
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5 Heat-kernel expansion for SABR density

The heat-kernel expansion (DeWitt (1965)) is a small-time approximation for the probability density
function (PDF). This is a regular recipe for general stochastic systems (see the review of Avramidi [4]).
The PDF expansion for the SABR model was calculated in Henry-Labordere (2008) and Paulot (2009).
It can be written in our (q, V ) variables (2.5) as9

p(q, v) =
1

γv2
√

1− ρ2
1

2πt

√

s(q, v)

sinh s(q, v)
P(q, v) e

− s2(q,v)

2γ2t (1 +O(t)) (5.1)

where geodesic distance s(q, v) from the leading term depends on the volatility of the processes Qt and
vt, and parallel transport P(q, v) depends on the drifts.

Before proceeding with details, we notice that the distance and the parallel transport do not depend on
time. It is also worth mentioning that the heat kernel does not take into account the boundary conditions:
for small time, the rate “cannot” approach the boundary.

In principal, it is possible to obtain the higher orders in time10, however, the formulas are very
complicated (see Paulot (2009)).

To define the distance and the parallel transport, we introduce new variables (on the so-called hyper-
bolic plane)

x =
q − v

γ cosα

sinα
(5.2)

y =
v

γ
(5.3)

with
ρ = cosα. (5.4)

The distance s is defined in terms of the variables (x, y) as

cosh s =
(x− x0)

2 + (y − y0)
2

2yy0
+ 1

or in terms of (q, v)

cosh s =
[γδq − ρ(v − v0)]

2

2(1− ρ2)v v0
+

(v − v0)
2

2vv0
+ 1. (5.5)

Proceed now to the parallel transport, also defined by its logarithm A

P = e−A.

Loosely speaking, the term A is an integral of the system drift over the most probable path connecting
initial point (q0, v0) and final point (q, v). Detailed consideration permits one to express the parallel
transport as

A = −(ν + 1/2) ln

(

q

q0

)

+ B =
1

2
ln

(

F

F0

)β

+ B (5.6)

9The element of probability is defined as dP = p(q, v) dq dv.
10Presented here as O(t)
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where B is the following integral

B =− 1
2

β

1− β

ρ

(1 − ρ2)

∫

C

−ρdq′ + dV ′

q′
(5.7)

along the geodesic line C from original to current point, i.e., the most probable path.
It occurs that the geodesic line is a semi-circle in coordinates (x, y) with center (xc, 0)

xc =
x+ x0

2
+

y2 − y20
2(x− x0)

(5.8)

and radius R

R2 =

[

(x− x0)
2 + y2 + y20

]2 − 4y2y20
4(x− x0)2

. (5.9)

The curve C is parameterized via the angle on the circle, i.e. a point (x′, y′) lying on the geodesic line is
expressed via the angle ϕ′

x′ = xc +R cosϕ′

y′ = R sinϕ′.

The angles corresponding to the initial (x0, y0) and final points (x, y) are

ϕ = arccos
x− xc
R

ϕ0 = arccos
x0 − xc
R

and satisfy
0 ≤ ϕ0 ≤ ϕ′ ≤ ϕ ≤ π. (5.10)

The integral B (5.7) can be transformed to

B = 1
2

β

1− β
cotα

∫

C

− cosα dx′ + sinα dy′

q0 + (x′ − x0) sinα+ (y′ − y0) cosα
(5.11)

= − 1
2

β

1− β
cotα

∫ ϕ

ϕ0

R sin(ϕ′ + α) dϕ′

q0 −R sin(ϕ0 + α) +R sin(ϕ′ + α)
. (5.12)

Finally, denoting

L−1 =
q0
R

− sin(ϕ0 + α) =
xc sinα

R
, (5.13)

we conclude that

B = − 1
2

β

1− β
cotα

(

ϕ− ϕ0 −
∫ ϕ+α

ϕ0+α

dϕ′

1 + L sinϕ′

)

. (5.14)

Note that this integral can be easily taken analytically as explained in the next section.
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6 General correlation approximation formulas

In this Section we will apply the mapping technique (see Antonov-Misirpashaev (2009)) which works as
follows. To approximate an option price C(T,K) = E[(FT − K)+] we come up with another mimicking

model or proxy F̃t, having the same small time expansion for the option. The mimicking model is supposed
to have an exact expression for its option price. The final result is calculated using the mimicking model

C(T,K) ≃ E[(F̃T −K)+].

For example, Hagan used the Black-Scholes model or normal one for this. Paulot has proposed the CEV
model as the mimicking model. We will go further and use the SABR model with zero correlation (SABR
ZC) having similar characteristics and asymptotics to the initial SABR model.

First, we represent the SABR rate PDF using the BES SV PDF (5.1)

P (t; F, v) ≃ 1

2πtγ

1

v2F β
√

1− ρ2

√

s

sinh s
P e

− s2

2tγ2 . (6.1)

Then, we apply Ito’s lemma to a process (Ft −K)+ which gives, after averaging,

E[(FT −K)+] = (F0 −K)+ +
1

2

∫ T

0

dtE[δ(Ft −K)F 2β
t v2t ]. (6.2)

The average under the integral can be rewritten as

E[δ(Ft −K)F 2β
t v2t ] = K2β

∫

dv P (t; K, v) v2 (6.3)

and taken using the saddle point for small times

∫

dv f(v) e
− s2(F0,v0;K,v)

2tγ2 ≃ γ
√

2πt(1− ρ2)v0vmin

√

sinh smin

smin
e
− s2min

2tγ2 f(vmin) (6.4)

where
v2min = δq2 γ2 + 2ρδq γ v0 + v20 (6.5)

and

smin =

∣

∣

∣

∣

ln
vmin + ρv0 + δq γ

(1 + ρ)v0

∣

∣

∣

∣

(6.6)

for

δq =
1

1− β

(

K1−β − F 1−β
0

)

. (6.7)

Thus,

E[δ(Ft −K)F 2β
t v2t ] =

1√
2πt

Kβ√v0vmin e
− s2min

2tγ2 Pmin (6.8)

where
Pmin = Pmin(F0, v0;K, vmin). (6.9)
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The integration over time (6.2) can be done analytically. Indeed, for small T ,

∫ T

0

dt
e
− 1

2
s2

tγ2

√
t

= 2 s γ−1

∫ ∞

s

γ
√

T

dx

x2
e−

1
2x

2 ≃ γ2
T

3
2

s2

2

e
− 1

2
s2

Tγ2 . (6.10)

Thus, the option time-value

O(T,K) =
T

3
2

2
√
2π

exp

{

−1

2

s2min

Tγ2
− ln

s2min

2γ2
+ ln

(

Kβ√v0vmin

)

−Amin

}

. (6.11)

The integral term Bmin in the parallel transport (5.6)

Amin =
1

2
ln

(

K

F0

)β

+ Bmin (6.12)

simplifies when v = vmin. Indeed,
φ+ α = π (6.13)

which is equivalent to
q = xc sinα (6.14)

or
y = R sinα. (6.15)

The parameter L can be also simplified:

L =
y

q sinα
=

vmin

q γ sinα
. (6.16)

Then the parallel transport integral (5.14) transforms to

Bmin =

∫

Bidx
i = − 1

2

β

1− β
cotα

(

π − ϕ0 − α−
∫ π

ϕ0+α

dϕ′

1 + L sinϕ′

)

. (6.17)

The underlying integral can be easily taken analytically. Indeed, after variable change u = cot ϕ
′

2 , we have

I ≡
∫ π

ϕ0+α

dϕ′

1 + L sinϕ′ =

∫ u0

0

du

1 + u2 + 2Lu
(6.18)

where we used relations sinϕ′ = 2u/(1 + u2) and dϕ′ = −2du/(1 + u2) and denoted

u0 = cot ϕ0+α
2 .

The latter integral reads

I =







2√
1−L2

(

arctan u0+L√
1−L2

− arctan L√
1−L2

)

for L < 1,

1√
L2−1

ln
u0(L+

√
L2−1)+1

u0(L−
√
L2−1)+1

for L > 1.
(6.19)
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Note that we can express the underlying parameter u0 in simple terms

u0 = cot ϕ0+α
2 =

δq γρ+ v0 − vmin

δq γ
√

1− ρ2

using

sin(ϕ0 + α) = −δq
R

and cos(ϕ0 + α) = −δq cosα+ v0
R sinα

. (6.20)

6.1 Map to the CEV model

We describe here how to do the map to the CEV model (see also Paulot (2009)). First, calculate the
time-value expansion of the CEV mimicking model,

dF̃ = F̃ β
′

σdW̃ , (6.21)

with possibly different power β′ with respect to the SABR power. The CEV PDF expansion reads (see,
for example, Jeanblanc et al. (2009))

pCEV (t, F ) ≡ E[(F̃t − F )] =
1√

2π t σ2
F−β′

e
−

(

F1−β′
−F

1−β′

0

)2

2 t σ2(1−β′)2

(

F

F0

)− β′

2

. (6.22)

The integrand underlying the option price

E[(F̃T −K)+] = (F0 −K)+ +
1

2

∫ T

0

dtE[δ(F̃t −K) F̃ 2β′

t σ2] (6.23)

is simply

E[δ(F̃t −K)F 2β′

t σ2] ≃ σ2

√
2π t σ2

e
−

(

K1−β′
−F

1−β′

0

)2

2 t σ2(1−β′)2 (K F0)
β′

2 (6.24)

where CEV geodesic distance is

sCEV =
K1−β′ − F 1−β′

0

1− β′ . (6.25)

The option time-value can be calculated as follows

Õ(T,K) ≡ 1

2

∫ T

0

dtE[δ(F̃t −K)F 2β′

t σ2] ≃ 1

2
σ2 (K F0)

β′

2

∫ T

0

dt
1√

2π t σ2
e−

s2CEV
2 t σ2 (6.26)

=
1

2
σ2 (K F0)

β′

2

∫ T

0

dt
1√

2π t σ2
e−

s2CEV
2 t σ2 (6.27)

≃ T
3
2

2
√
2π

exp

{

−1

2

s2CEV
T σ2

+ lnσ − ln
s2CEV
2 σ2

+
β′

2
ln (K F0)

}

. (6.28)

To make a fit with SABR, we should equate

1

2

s2CEV
T σ2

− lnσ + ln
s2CEV
2 σ2

− β′

2
ln (K F0) =

1

2

s2min

Tγ2
+ ln

s2min

2γ2
− ln

(

Kβ√v0vmin

)

+Amin. (6.29)
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Consider now expansion of the CEV volatility

σ = σ0 + Tσ1 + · · ·

We obtain the following condition, zeroing T−1 coefficients

s2CEV
T σ2

=
s2min

Tγ2
⇒ σ = γ

sCEV
smin

. (6.30)

Expanding σ in
s2CEV

T σ2 , we get a condition for free terms equal to zero

−s
2
CEV

σ2
0

σ1
σ0

− ln σ0 −
β′

2
ln (K F0) = − ln

(

Kβ√v0vmin

)

+Amin (6.31)

giving the CEV volatility correction

σ1
σ0

=
ln
(

Kβ√v0vmin

)

−Amin − lnσ0 − β′

2 ln (K F0)
s2CEV

σ2
0

. (6.32)

To obtain the effective BS volatility expansion, we should calculate the limit β′ → 1. The BS geodesic
distance reads

sBS = sCEV |β′=1 =

∣

∣

∣

∣

ln
K

F0

∣

∣

∣

∣

giving the leading volatility term

σ0 = γ

∣

∣

∣
ln K

F0

∣

∣

∣

smin

and the first volatility correction

σ1
σ0

=
ln
(

Kβ√v0vmin

)

−Amin − lnσ0 − 1
2 ln (K F0)

s2min

γ2

.

In the ATM limit the effective BS volatility expansion terms read

σ0|K=F0
= v0 F

β−1
0

and
σ1
σ0

∣

∣

∣

∣

K=F0

=
1

24
v20(1− β)2 F 2β−2

0 +
1

4
v0 ρ γ β F

β−1
0 +

1

12
γ2 − 1

8
ρ2γ2

Note that Hagan et al. (2002) has calculated the BS volatility expansion using heuristic methods
effectively assuming close to the ATM strikes (see Paulot (2009)).
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6.2 Map to the zero correlation SABR model

Zero correlation SABR process represents a better choice of the mimicking model (proxy). Indeed, it has
close properties with a general correlation SABR and possesses an analytical solution for option price.
Denote the mimicking model parameters with a tilde (2.37-2.38). To find them, we should match the
option price expansion (6.11) between the initial SABR and its zero correlation proxy

1

2

s̃2min

T γ̃2
+ ln

s̃2min

2γ̃2
− ln

(

K β̃
√

ṽ0ṽmin

)

+ Ãmin =
1

2

s2min

Tγ2
+ ln

s2min

2γ2
− ln

(

Kβ√v0vmin

)

+Amin. (6.33)

We fix the vol-of-vol γ̃ and the power β̃ in the mimicking model and look for time-expansion of the initial
volatility

ṽ0 = ṽ
(0)
0 + T ṽ

(1)
0 + · · · (6.34)

Denote the function appearing in the argument of the logarithm of the optimal geodesic distance (6.6) as

φ =
vmin + ρv0 + γδq

(1 + ρ)v0
, (6.35)

i.e., smin = |lnφ|. Similarly, for the zero correlation, s̃min(ṽ0) = | ln φ̃(ṽ0)|, we have

φ̃(ṽ0) =

√

1 +

(

δq̃ γ̃

ṽ0

)2

+
δq̃ γ̃

ṽ0
(6.36)

where

δq̃ =
K1−β̃ − F 1−β̃

0

1− β̃
.

To organize the fit (6.33) in the main order, we should find the leading order of the mimicking-model
initial volatility (6.34) such that the equation

1

2

s̃2min

(

ṽ
(0)
0

)

T γ̃2
=

1

2

s2min

Tγ2
(6.37)

is satisfied. A solution of this equation follows from the fit condition φ̃
(

ṽ
(0)
0

)

= φ
γ̃
γ

ṽ
(0)
0 =

2Φ δq̃ γ̃

Φ2 − 1
(6.38)

where we have denoted Φ = φ
γ̃
γ . To calculate its first correction, we notice that the mimicking-model

parallel transport does not depend on the initial volatility (2.24-2.25) due to zero correlation

Ãmin =
1

2
ln(K/F0)

β̃ . (6.39)

Then, expand in time the square of the optimal distance of the mimicking model

1

2
s̃2min

(

ṽ
(0)
0 + T ṽ

(1)
0

)

=
1

2
s̃2min

(

ṽ
(0)
0

)

− Ω T
ṽ
(1)
0

ṽ
(0)
0

+ · · · (6.40)
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where the derivative coefficient reads

Ω =
Φ2 − 1

Φ2 + 1
lnΦ. (6.41)

Substituting this into (6.33), we obtain a fit equation for the free terms in time

−Ω ṽ
(1)
0

γ̃2 ṽ
(0)
0

− ln

(

K β̃

√

ṽ
(0)
0 ṽ

(0)
min

)

+ Ãmin = − ln
(

Kβ√v0vmin

)

+Amin (6.42)

where the optimal point volatility can be further simplified

ṽ
(0)
min =

√

δq̃2 γ̃2 + ṽ
(0)
0

2
= ṽ

(0)
0

Φ2 + 1

2Φ
. (6.43)

This immediately gives us the correction to the initial volatility

ṽ
(1)
0

ṽ
(0)
0

= γ̃2
ln
(

Kβ√v0vmin

)

− ln

(

K β̃

√

ṽ
(0)
0 ṽ

(0)
min

)

+ Ãmin −Amin

Ω
(6.44)

which reduces to (2.32) after substitution (6.12).
The effective zero correlation initial volatility depends on a choice of the fixed parameters β̃ and γ̃. A

good choice based primarily on our numerical experiments reduces to

β̃ = β, (6.45)

γ̃2 = γ2 − 3

2

{

γ2ρ2 + σBS(F0) γρ (1− β)
}

, (6.46)

where effective BS ATM implied volatility σBS(F0) = v0 F
β−1
0 . The intuition behind our choice is the

following: The same power β helps with asymptotics for small strikes. The vol-of-vol γ̃ choice is inspired
by a fit of the ATM implied volatility curvature.

An ATM case of the effective volatility (6.38) and its correction (6.44) corresponding to a limitK → F0.
is described in Appendix C.

7 Numerical experiments

In this section, we demonstrate the efficiency of our approach. We analyze a wide variety of model
coefficients for large maturities. The data are summarized in the table below

Rate Initial Value F0 1
SV Initial Value v0 0.25

Vol-of-Vol γ 0.3
Correlations ρ −0.8, −0.5, −0.2

Skews β 0.3, 0.6, 0.9
Maturities T 10Y and 20Y

25



We present the Black-Scholes implied volatility for European call options C(T,K) = E[(FT −K)+] for
a large range of strikes K and as well as second-moment underlying CMS calculations.

CMS convexity adjustments depend on the second moment of the rate process, which can be evaluated
by the usual static replication formula (Hagan (2003))

E
[

F 2
T

]

= 2

∫ ∞

0

dKE[(FT −K)+]. (7.1)

For the SABR ZC Map option approximation, one can use this formula directly for the second moment
calculations without any heuristic tricks (e.g., strike domain limitations, tail replacements, etc.). The tiny
negativity of certain density approximations for the SABR ZC Map does not influence the quality of the
CMS calculations. Note that, for close-to-zero correlations and large skews, the big-strike tail is very fat,
which produces a very slow convergence of the static replication integral.
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In our numerical experiments, we compare the following methods:

• Monte Carlo simulation (MC)

• The Henry-Labordere (2008) and Paulot (2009) (HL-P) form of the implied volatility expansion
(regular leading order and the first correction)

• The Hagan et al. (2002) form of the implied volatility expansion (Hagan)

• Map to the zero correlation SABR model (ZC Map) (regular leading order (2.31) and the first
correction (2.32))

• Hybrid map to the zero correlation SABR model (Hyb ZC Map) (regular leading order (2.31) and
the ATM first correction (2.34))
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 57.15 78.98 71.76 57.44 59.78 2183 1461 29 263
0.2 48.18 59.92 57.25 48.43 50.18 1174 907 25 200
0.3 42.45 49.99 48.86 42.66 44.03 754 641 21 158
0.4 38.14 43.39 42.93 38.33 39.39 525 479 19 125
0.5 34.65 38.49 38.35 34.83 35.65 384 370 18 100
0.6 31.7 34.61 34.62 31.89 32.49 291 292 19 79
0.7 29.15 31.41 31.48 29.34 29.77 226 233 19 62
0.8 26.89 28.69 28.76 27.09 27.36 180 187 20 47
0.9 24.87 26.34 26.38 25.09 25.22 147 151 22 35
1 23.04 24.27 24.27 23.29 23.29 123 123 25 25

1.1 21.39 22.44 22.38 21.66 21.54 105 99 27 15
1.2 19.89 20.8 20.68 20.19 19.97 91 79 30 8
1.3 18.54 19.36 19.16 18.87 18.55 82 62 33 1
1.4 17.32 18.08 17.81 17.69 17.29 76 49 37 -3
1.5 16.25 16.97 16.63 16.66 16.18 72 38 41 -7
1.6 15.33 16.02 15.62 15.77 15.23 69 29 44 -10
1.7 14.55 15.23 14.78 15.04 14.44 68 23 49 -11
1.8 13.91 14.6 14.12 14.44 13.81 69 21 53 -10
1.9 13.4 14.11 13.6 13.98 13.32 71 20 58 -8
2 13.01 13.73 13.22 13.62 12.96 72 21 61 -5

Table 1: Implied vol and its error for different methods, 10Y maturity, β = 0.3, ρ = −0.8.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 51.23 56.44 55.18 51.14 54.91 521 395 -9 368
0.2 43.22 46.25 46.15 43.25 45.83 303 293 3 261
0.3 38.27 40.37 40.59 38.35 40.24 210 232 8 197
0.4 34.63 36.22 36.52 34.74 36.14 159 189 11 151
0.5 31.73 33 33.3 31.87 32.89 127 157 14 116
0.6 29.3 30.36 30.62 29.46 30.2 106 132 16 90
0.7 27.22 28.12 28.32 27.39 27.89 90 110 17 67
0.8 25.39 26.17 26.31 25.58 25.88 78 92 19 49
0.9 23.76 24.46 24.53 23.97 24.11 70 77 21 35
1 22.29 22.93 22.93 22.52 22.52 64 64 23 23

1.1 20.96 21.56 21.49 21.21 21.09 60 53 25 13
1.2 19.76 20.33 20.18 20.03 19.82 57 42 27 6
1.3 18.67 19.22 19.01 18.97 18.67 55 34 30 0
1.4 17.7 18.24 17.96 18.02 17.66 54 26 32 -4
1.5 16.83 17.37 17.03 17.19 16.77 54 20 36 -6
1.6 16.07 16.62 16.22 16.46 16 55 15 39 -7
1.7 15.42 15.98 15.54 15.84 15.36 56 12 42 -6
1.8 14.87 15.45 14.98 15.32 14.84 58 11 45 -3
1.9 14.43 15.01 14.54 14.9 14.42 58 11 47 -1
2 14.07 14.66 14.19 14.56 14.11 59 12 49 4

Table 2: Implied vol and its error for different methods, 10Y maturity, β = 0.6, ρ = −0.8.

28



Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 43.43 43.21 45.3 42.69 46.1 -22 187 -74 267
0.2 37.42 37.29 38.73 36.92 39.16 -13 131 -50 174
0.3 33.72 33.63 34.71 33.35 34.94 -9 99 -37 122
0.4 30.98 30.93 31.75 30.7 31.87 -5 77 -28 89
0.5 28.79 28.77 29.39 28.58 29.43 -2 60 -21 64
0.6 26.95 26.96 27.42 26.79 27.41 1 47 -16 46
0.7 25.37 25.4 25.72 25.26 25.67 3 35 -11 30
0.8 23.97 24.03 24.23 23.9 24.16 6 26 -7 19
0.9 22.72 22.81 22.9 22.69 22.81 9 18 -3 9
1 21.6 21.71 21.71 21.61 21.61 11 11 1 1

1.1 20.58 20.72 20.63 20.63 20.53 14 5 5 -5
1.2 19.66 19.82 19.66 19.74 19.55 16 0 8 -11
1.3 18.83 19.02 18.78 18.95 18.69 19 -5 12 -14
1.4 18.09 18.3 18 18.24 17.91 21 -9 15 -18
1.5 17.43 17.66 17.3 17.61 17.23 23 -13 18 -20
1.6 16.84 17.11 16.7 17.06 16.65 27 -14 22 -19
1.7 16.34 16.63 16.18 16.58 16.15 29 -16 24 -19
1.8 15.91 16.22 15.75 16.18 15.73 31 -16 27 -18
1.9 15.55 15.88 15.4 15.84 15.4 33 -15 29 -15
2 15.26 15.6 15.12 15.56 15.14 34 -14 30 -12

Table 3: Implied vol and its error for different methods, 10Y maturity, β = 0.9, ρ = −0.8.

Value (%) Difference (bps)
K MC Pauloty Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 55.93 76.42 72.71 55.01 56.81 2049 1678 -92 88
0.2 47.12 58.49 57.68 46.39 47.82 1137 1056 -73 70
0.3 41.58 49.13 49.17 41 42.15 755 759 -58 57
0.4 37.48 42.93 43.27 37.02 37.96 545 579 -46 48
0.5 34.22 38.37 38.78 33.86 34.62 415 456 -36 40
0.6 31.52 34.81 35.19 31.25 31.84 329 367 -27 32
0.7 29.24 31.92 32.22 29.05 29.48 268 298 -19 24
0.8 27.27 29.52 29.72 27.17 27.45 225 245 -10 18
0.9 25.56 27.5 27.6 25.54 25.68 194 204 -2 12
1 24.08 25.79 25.79 24.14 24.14 171 171 6 6

1.1 22.8 24.34 24.24 22.93 22.8 154 144 13 0
1.2 21.7 23.11 22.93 21.9 21.65 141 123 20 -5
1.3 20.77 22.08 21.84 21.04 20.67 131 107 27 -10
1.4 19.98 21.23 20.93 20.31 19.86 125 95 33 -12
1.5 19.33 20.53 20.2 19.72 19.18 120 87 39 -15
1.6 18.8 19.96 19.62 19.24 18.64 116 82 44 -16
1.7 18.37 19.51 19.16 18.86 18.21 114 79 49 -16
1.8 18.04 19.16 18.82 18.57 17.88 112 78 53 -16
1.9 17.77 18.88 18.56 18.34 17.63 111 79 57 -14
2 17.57 18.67 18.37 18.16 17.44 110 80 59 -13

Table 4: Implied vol and its error for different methods, 10Y maturity, β = 0.3, ρ = −0.5.

29



Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 50.05 56.54 57.09 48.98 51.85 649 704 -107 180
0.2 42.32 46.41 47.43 41.65 43.75 409 511 -67 143
0.3 37.63 40.66 41.65 37.18 38.8 303 402 -45 117
0.4 34.24 36.66 37.52 33.94 35.2 242 328 -30 96
0.5 31.59 33.62 34.32 31.4 32.38 203 273 -19 79
0.6 29.42 31.18 31.73 29.33 30.06 176 231 -9 64
0.7 27.61 29.18 29.57 27.6 28.11 157 196 -1 50
0.8 26.07 27.5 27.75 26.13 26.46 143 168 6 39
0.9 24.75 26.08 26.19 24.88 25.03 133 144 13 28
1 23.61 24.87 24.87 23.82 23.82 126 126 21 21

1.1 22.65 23.85 23.75 22.91 22.78 120 110 26 13
1.2 21.83 22.99 22.8 22.15 21.91 116 97 32 8
1.3 21.14 22.28 22.02 21.52 21.18 114 88 38 4
1.4 20.57 21.69 21.38 21 20.58 112 81 43 1
1.5 20.11 21.21 20.87 20.57 20.11 110 76 46 0
1.6 19.73 20.83 20.48 20.24 19.73 110 75 51 0
1.7 19.44 20.53 20.18 19.98 19.45 109 74 54 1
1.8 19.21 20.3 19.95 19.78 19.23 109 74 57 2
1.9 19.04 20.13 19.8 19.63 19.08 109 76 59 4
2 18.91 20 19.69 19.52 18.98 109 78 61 7

Table 5: Implied vol and its error for different methods, 10Y maturity, β = 0.6, ρ = −0.5.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 42.56 44.16 47.08 41.52 44.84 160 452 -104 228
0.2 36.81 38.1 40.19 36.18 38.54 129 338 -63 173
0.3 33.32 34.47 36.05 32.91 34.7 115 273 -41 138
0.4 30.81 31.87 33.09 30.55 31.92 106 228 -26 111
0.5 28.85 29.86 30.78 28.71 29.75 101 193 -14 90
0.6 27.27 28.24 28.91 27.22 27.98 97 164 -5 71
0.7 25.95 26.9 27.37 25.99 26.51 95 142 4 56
0.8 24.84 25.78 26.07 24.96 25.28 94 123 12 44
0.9 23.91 24.85 24.98 24.1 24.24 94 107 19 33
1 23.13 24.07 24.07 23.38 23.38 94 94 25 25

1.1 22.48 23.42 23.31 22.78 22.66 94 83 30 18
1.2 21.94 22.9 22.69 22.3 22.08 96 75 36 14
1.3 21.5 22.47 22.2 21.91 21.62 97 70 41 12
1.4 21.16 22.14 21.81 21.6 21.26 98 65 44 10
1.5 20.89 21.88 21.51 21.37 20.99 99 62 48 10
1.6 20.68 21.68 21.3 21.19 20.8 100 62 51 12
1.7 20.54 21.55 21.15 21.07 20.68 101 61 53 14
1.8 20.44 21.45 21.07 20.99 20.6 101 63 55 16
1.9 20.37 21.4 21.02 20.94 20.57 103 65 57 20
2 20.35 21.37 21.02 20.93 20.58 102 67 58 23

Table 6: Implied vol and its error for different methods, 10Y maturity, β = 0.9, ρ = −0.5.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 54.36 72.53 70.92 53.65 54.42 1817 1656 -71 6
0.2 45.77 56 56.02 45.21 45.83 1023 1025 -56 6
0.3 40.47 47.36 47.78 40.01 40.53 689 731 -46 6
0.4 36.62 41.67 42.17 36.24 36.68 505 555 -38 6
0.5 33.62 37.54 37.98 33.32 33.67 392 436 -30 5
0.6 31.2 34.36 34.71 30.96 31.24 316 351 -24 4
0.7 29.21 31.84 32.09 29.02 29.23 263 288 -19 2
0.8 27.55 29.81 29.96 27.41 27.55 226 241 -14 0
0.9 26.17 28.15 28.22 26.08 26.15 198 205 -9 -2
1 25.02 26.8 26.8 24.98 24.98 178 178 -4 -4

1.1 24.08 25.7 25.66 24.07 24.01 162 158 -1 -7
1.2 23.31 24.81 24.74 23.34 23.22 150 143 3 -9
1.3 22.69 24.1 24.03 22.76 22.58 141 134 7 -11
1.4 22.19 23.53 23.47 22.29 22.07 134 128 10 -12
1.5 21.8 23.08 23.05 21.93 21.67 128 125 13 -13
1.6 21.49 22.73 22.73 21.65 21.36 124 124 16 -13
1.7 21.26 22.47 22.49 21.44 21.13 121 123 18 -13
1.8 21.08 22.26 22.32 21.28 20.95 118 124 20 -13
1.9 20.94 22.11 22.21 21.16 20.82 117 127 22 -12
2 20.85 22 22.13 21.08 20.73 115 128 23 -12

Table 7: Implied vol and its error for different methods, 10Y maturity, β = 0.3, ρ = −0.2.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 48.5 55.39 56.52 47.84 49.03 689 802 -66 53
0.2 41.12 45.53 46.74 40.67 41.57 441 562 -45 45
0.3 36.72 40.03 41.06 36.39 37.11 331 434 -33 39
0.4 33.6 36.28 37.1 33.36 33.94 268 350 -24 34
0.5 31.23 33.5 34.13 31.06 31.51 227 290 -17 28
0.6 29.36 31.35 31.79 29.24 29.58 199 243 -12 22
0.7 27.85 29.64 29.94 27.78 28.03 179 209 -7 18
0.8 26.62 28.27 28.44 26.6 26.76 165 182 -2 14
0.9 25.64 27.18 27.25 25.66 25.73 154 161 2 9
1 24.84 26.3 26.3 24.9 24.9 146 146 6 6

1.1 24.22 25.61 25.57 24.31 24.25 139 135 9 3
1.2 23.73 25.08 25.01 23.85 23.73 135 128 12 0
1.3 23.35 24.67 24.59 23.51 23.34 132 124 16 -1
1.4 23.07 24.36 24.29 23.25 23.05 129 122 18 -2
1.5 22.87 24.13 24.09 23.07 22.85 126 122 20 -2
1.6 22.73 23.98 23.97 22.95 22.71 125 124 22 -2
1.7 22.64 23.87 23.9 22.88 22.62 123 126 24 -2
1.8 22.59 23.81 23.88 22.84 22.57 122 129 25 -2
1.9 22.57 23.79 23.9 22.83 22.56 122 133 26 -1
2 22.57 23.79 23.94 22.85 22.57 122 137 28 0

Table 8: Implied vol and its error for different methods, 10Y maturity, β = 0.6, ρ = −0.2.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 41.37 44.09 46.77 40.83 42.26 272 540 -54 89
0.2 35.89 37.99 39.87 35.54 36.61 210 398 -35 72
0.3 32.65 34.45 35.84 32.42 33.25 180 319 -23 60
0.4 30.39 32.02 33.04 30.24 30.9 163 265 -15 51
0.5 28.71 30.22 30.96 28.62 29.13 151 225 -9 42
0.6 27.42 28.84 29.36 27.38 27.76 142 194 -4 34
0.7 26.41 27.79 28.12 26.43 26.69 138 171 2 28
0.8 25.64 26.98 27.17 25.7 25.86 134 153 6 22
0.9 25.06 26.37 26.45 25.15 25.22 131 139 9 16
1 24.63 25.93 25.93 24.76 24.76 130 130 13 13

1.1 24.32 25.61 25.56 24.49 24.43 129 124 17 11
1.2 24.12 25.41 25.33 24.31 24.21 129 121 19 9
1.3 24.01 25.29 25.21 24.22 24.09 128 120 21 8
1.4 23.96 25.25 25.17 24.19 24.03 129 121 23 7
1.5 23.96 25.25 25.2 24.21 24.04 129 124 25 8
1.6 24.01 25.3 25.27 24.27 24.09 129 126 26 8
1.7 24.08 25.37 25.38 24.35 24.17 129 130 27 9
1.8 24.18 25.48 25.52 24.46 24.28 130 134 28 10
1.9 24.29 25.6 25.69 24.58 24.4 131 140 29 11
2 24.41 25.73 25.86 24.71 24.54 132 145 30 13

Table 9: Implied vol and its error for different methods, 10Y maturity, β = 0.9, ρ = −0.2.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 46.06 81.19 69.25 43.45 47.05 3513 2319 -261 99
0.2 39.55 59.5 55.07 37.41 40.16 1995 1552 -214 61
0.3 35.34 48.9 47.04 33.52 35.69 1356 1170 -182 35
0.4 32.13 42.12 41.38 30.57 32.28 999 925 -156 15
0.5 29.49 37.21 37.02 28.16 29.5 772 753 -133 1
0.6 27.23 33.4 33.46 26.12 27.13 617 623 -111 -10
0.7 25.24 30.3 30.45 24.34 25.05 506 521 -90 -19
0.8 23.46 27.7 27.85 22.75 23.21 424 439 -71 -25
0.9 21.85 25.48 25.57 21.34 21.56 363 372 -51 -29
1 20.37 23.54 23.54 20.06 20.06 317 317 -31 -31

1.1 19.02 21.84 21.72 18.9 18.7 282 270 -12 -32
1.2 17.79 20.34 20.08 17.86 17.47 255 229 7 -32
1.3 16.66 19.01 18.62 16.93 16.36 235 196 27 -30
1.4 15.63 17.86 17.32 16.1 15.37 223 169 47 -26
1.5 14.72 16.86 16.18 15.38 14.5 214 146 66 -22
1.6 13.92 16.02 15.2 14.76 13.75 210 128 84 -17
1.7 13.24 15.31 14.4 14.24 13.13 207 116 100 -11
1.8 12.67 14.74 13.75 13.82 12.63 207 108 115 -4
1.9 12.21 14.28 13.26 13.48 12.24 207 105 127 3
2 11.84 13.92 12.89 13.21 11.96 208 105 137 12

Table 10: Implied vol and its error for different methods, 20Y maturity, β = 0.3, ρ = −0.8.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 42.37 48.69 47 38.43 44.66 632 463 -394 229
0.2 36.28 40.15 40.26 33.48 37.84 387 398 -280 156
0.3 32.44 35.28 35.84 30.3 33.55 284 340 -214 111
0.4 29.58 31.85 32.51 27.89 30.34 227 293 -169 76
0.5 27.27 29.18 29.81 25.94 27.77 191 254 -133 50
0.6 25.32 27 27.53 24.28 25.61 168 221 -104 29
0.7 23.64 25.15 25.56 22.84 23.75 151 192 -80 11
0.8 22.14 23.54 23.82 21.56 22.12 140 168 -58 -2
0.9 20.8 22.12 22.26 20.41 20.67 132 146 -39 -13
1 19.58 20.86 20.86 19.38 19.38 128 128 -20 -20

1.1 18.48 19.73 19.58 18.45 18.22 125 110 -3 -26
1.2 17.47 18.72 18.43 17.6 17.19 125 96 13 -28
1.3 16.56 17.81 17.38 16.84 16.27 125 82 28 -29
1.4 15.73 17.01 16.45 16.16 15.45 128 72 43 -28
1.5 14.99 16.31 15.62 15.56 14.75 132 63 57 -24
1.6 14.33 15.69 14.9 15.03 14.15 136 57 70 -18
1.7 13.77 15.17 14.29 14.58 13.65 140 52 81 -12
1.8 13.29 14.72 13.79 14.19 13.24 143 50 90 -5
1.9 12.89 14.35 13.39 13.87 12.93 146 50 98 4
2 12.56 14.04 13.09 13.59 12.7 148 53 103 14

Table 11: Implied vol and its error for different methods, 20Y maturity, β = 0.6, ρ = −0.8.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 36.7 33.2 37.42 32.2 38.62 -350 72 -450 192
0.2 31.85 29.36 32.27 28.56 32.83 -249 42 -329 98
0.3 28.84 26.89 29.05 26.21 29.29 -195 21 -263 45
0.4 26.59 25.03 26.66 24.42 26.7 -156 7 -217 11
0.5 24.79 23.51 24.75 22.97 24.65 -128 -4 -182 -14
0.6 23.27 22.22 23.13 21.74 22.95 -105 -14 -153 -32
0.7 21.95 21.1 21.74 20.67 21.49 -85 -21 -128 -46
0.8 20.78 20.1 20.51 19.71 20.22 -68 -27 -107 -56
0.9 19.74 19.21 19.4 18.86 19.1 -53 -34 -88 -64
1 18.8 18.41 18.41 18.1 18.1 -39 -39 -70 -70

1.1 17.94 17.69 17.52 17.4 17.2 -25 -42 -54 -74
1.2 17.17 17.04 16.7 16.78 16.41 -13 -47 -39 -76
1.3 16.46 16.45 15.97 16.22 15.7 -1 -49 -24 -76
1.4 15.83 15.93 15.32 15.72 15.07 10 -51 -11 -76
1.5 15.26 15.46 14.74 15.27 14.53 20 -52 1 -73
1.6 14.77 15.05 14.24 14.88 14.06 28 -53 11 -71
1.7 14.33 14.7 13.8 14.54 13.67 37 -53 21 -66
1.8 13.95 14.38 13.44 14.24 13.35 43 -51 29 -60
1.9 13.64 14.11 13.15 13.98 13.1 47 -49 34 -54
2 13.38 13.88 12.92 13.75 12.91 50 -46 37 -47

Table 12: Implied vol and its error for different methods, 20Y maturity, β = 0.9, ρ = −0.8. The worst case
for our approximation accuracy.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 45.51 81.23 76.03 42.66 45.32 3572 3052 -285 -19
0.2 39.09 60.57 59.73 36.67 38.81 2148 2064 -242 -28
0.3 34.99 50.35 50.78 32.9 34.66 1536 1579 -209 -33
0.4 31.92 43.8 44.63 30.1 31.56 1188 1271 -182 -36
0.5 29.45 39.09 39.97 27.88 29.07 964 1052 -157 -38
0.6 27.37 35.48 36.26 26.04 26.98 811 889 -133 -39
0.7 25.6 32.59 33.2 24.49 25.18 699 760 -111 -42
0.8 24.05 30.21 30.63 23.17 23.63 616 658 -88 -42
0.9 22.7 28.24 28.44 22.04 22.27 554 574 -66 -43
1 21.52 26.58 26.58 21.08 21.08 506 506 -44 -44

1.1 20.48 25.17 24.98 20.26 20.05 469 450 -22 -43
1.2 19.58 23.99 23.64 19.58 19.16 441 406 0 -42
1.3 18.81 23 22.51 19.01 18.4 419 370 20 -41
1.4 18.15 22.17 21.58 18.55 17.77 402 343 40 -38
1.5 17.6 21.49 20.83 18.17 17.25 389 323 57 -35
1.6 17.15 20.92 20.23 17.87 16.83 377 308 72 -32
1.7 16.78 20.46 19.76 17.63 16.5 368 298 85 -28
1.8 16.48 20.09 19.41 17.44 16.25 361 293 96 -23
1.9 16.24 19.78 19.14 17.29 16.06 354 290 105 -18
2 16.04 19.54 18.95 17.17 15.92 350 291 113 -12

Table 13: Implied vol and its error for different methods, 20Y maturity, β = 0.3, ρ = −0.5.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 41.89 53.36 55.22 38.24 42.7 1147 1333 -365 81
0.2 36.01 44.01 46.33 33.27 36.61 800 1032 -274 60
0.3 32.38 38.78 40.89 30.2 32.82 640 851 -218 44
0.4 29.72 35.18 36.97 27.96 30.03 546 725 -176 31
0.5 27.61 32.46 33.9 26.2 27.81 485 629 -141 20
0.6 25.88 30.29 31.4 24.76 25.98 441 552 -112 10
0.7 24.41 28.52 29.31 23.57 24.44 411 490 -84 3
0.8 23.16 27.04 27.54 22.57 23.11 388 438 -59 -5
0.9 22.08 25.79 26.03 21.72 21.98 371 395 -36 -10
1 21.15 24.74 24.74 21.01 21.01 359 359 -14 -14

1.1 20.35 23.85 23.64 20.42 20.19 350 329 7 -16
1.2 19.67 23.1 22.72 19.92 19.5 343 305 25 -17
1.3 19.09 22.47 21.96 19.52 18.93 338 287 43 -16
1.4 18.61 21.95 21.34 19.19 18.47 334 273 58 -14
1.5 18.21 21.52 20.84 18.92 18.1 331 263 71 -11
1.6 17.88 21.17 20.46 18.71 17.82 329 258 83 -6
1.7 17.62 20.88 20.17 18.55 17.61 326 255 93 -1
1.8 17.42 20.65 19.96 18.42 17.46 323 254 100 4
1.9 17.25 20.47 19.81 18.32 17.35 322 256 107 10
2 17.13 20.32 19.72 18.25 17.29 319 259 112 16

Table 14: Implied vol and its error for different methods, 20Y maturity, β = 0.6, ρ = −0.5.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 36.57 38.84 44.74 32.82 38.36 227 817 -375 179
0.2 31.92 34.13 38.33 29.25 33.26 221 641 -267 134
0.3 29.09 31.28 34.46 27.04 30.1 219 537 -205 101
0.4 27.04 29.23 31.67 25.43 27.8 219 463 -161 76
0.5 25.43 27.65 29.49 24.18 25.99 222 406 -125 56
0.6 24.12 26.37 27.73 23.18 24.51 225 361 -94 39
0.7 23.03 25.33 26.26 22.36 23.28 230 323 -67 25
0.8 22.1 24.46 25.04 21.68 22.25 236 294 -42 15
0.9 21.33 23.74 24 21.13 21.39 241 267 -20 6
1 20.67 23.14 23.14 20.68 20.68 247 247 1 1

1.1 20.12 22.64 22.42 20.32 20.1 252 230 20 -2
1.2 19.67 22.24 21.83 20.03 19.64 257 216 36 -3
1.3 19.3 21.91 21.36 19.8 19.27 261 206 50 -3
1.4 19 21.65 21 19.62 19 265 200 62 0
1.5 18.76 21.45 20.72 19.49 18.81 269 196 73 5
1.6 18.58 21.29 20.52 19.39 18.68 271 194 81 10
1.7 18.45 21.17 20.39 19.32 18.6 272 194 87 15
1.8 18.35 21.08 20.31 19.28 18.57 273 196 93 22
1.9 18.28 21.02 20.27 19.25 18.57 274 199 97 29
2 18.25 20.98 20.27 19.24 18.6 273 202 99 35

Table 15: Implied vol and its error for different methods, 20Y maturity, β = 0.9, ρ = −0.5.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 44.79 79.19 77.91 43.3 44.4 3440 3312 -149 -39
0.2 38.5 59.94 60.65 37.22 38.13 2144 2215 -128 -37
0.3 34.57 50.32 51.44 33.44 34.21 1575 1687 -113 -36
0.4 31.68 44.16 45.26 30.68 31.34 1248 1358 -100 -34
0.5 29.4 39.76 40.7 28.53 29.07 1036 1130 -87 -33
0.6 27.54 36.43 37.14 26.79 27.22 889 960 -75 -32
0.7 25.99 33.81 34.3 25.35 25.68 782 831 -64 -31
0.8 24.69 31.71 32 24.17 24.39 702 731 -52 -30
0.9 23.6 30 30.13 23.19 23.29 640 653 -41 -31
1 22.68 28.6 28.6 22.38 22.38 592 592 -30 -30

1.1 21.93 27.46 27.37 21.72 21.62 553 544 -21 -31
1.2 21.3 26.52 26.39 21.2 21 522 509 -10 -30
1.3 20.79 25.76 25.62 20.78 20.49 497 483 -1 -30
1.4 20.37 25.14 25.02 20.45 20.09 477 465 8 -28
1.5 20.04 24.63 24.56 20.19 19.77 459 452 15 -27
1.6 19.78 24.22 24.22 19.99 19.52 444 444 21 -26
1.7 19.58 23.9 23.96 19.84 19.33 432 438 26 -25
1.8 19.42 23.64 23.78 19.73 19.19 422 436 31 -23
1.9 19.3 23.43 23.65 19.65 19.08 413 435 35 -22
2 19.2 23.26 23.57 19.6 19.01 406 437 40 -19

Table 16: Implied vol and its error for different methods, 20Y maturity, β = 0.3, ρ = −0.2.
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Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 41.26 56.03 58.97 39.55 41.35 1477 1771 -171 9
0.2 35.62 46.2 48.86 34.29 35.68 1058 1324 -133 6
0.3 32.21 40.81 42.96 31.11 32.24 860 1075 -110 3
0.4 29.76 37.17 38.85 28.85 29.77 741 909 -91 1
0.5 27.88 34.49 35.75 27.13 27.86 661 787 -75 -2
0.6 26.39 32.43 33.33 25.78 26.34 604 694 -61 -5
0.7 25.17 30.8 31.39 24.69 25.1 563 622 -48 -7
0.8 24.19 29.5 29.84 23.83 24.08 531 565 -36 -11
0.9 23.38 28.45 28.59 23.13 23.26 507 521 -25 -12
1 22.74 27.61 27.61 22.59 22.59 487 487 -15 -15

1.1 22.22 26.93 26.84 22.17 22.06 471 462 -5 -16
1.2 21.81 26.4 26.26 21.85 21.65 459 445 4 -16
1.3 21.5 25.98 25.83 21.61 21.34 448 433 11 -16
1.4 21.26 25.65 25.52 21.44 21.11 439 426 18 -15
1.5 21.08 25.39 25.31 21.32 20.94 431 423 24 -14
1.6 20.96 25.2 25.18 21.24 20.83 424 422 28 -13
1.7 20.87 25.06 25.12 21.2 20.77 419 425 33 -10
1.8 20.82 24.96 25.1 21.18 20.73 414 428 36 -9
1.9 20.79 24.89 25.12 21.19 20.73 410 433 40 -6
2 20.79 24.85 25.17 21.21 20.74 406 438 42 -5

Table 17: Implied vol and its error for different methods, 20Y maturity, β = 0.6, ρ = −0.2.

Value (%) Difference (bps)
K MC HL-P Hagan ZC Map Hyb ZC Map HL-P Hagan ZC Map Hyb ZC Map

0.1 36.27 42.87 48.26 34.62 36.9 660 1199 -165 63
0.2 31.85 37.41 41.19 30.62 32.35 556 934 -123 50
0.3 29.23 34.27 37.05 28.25 29.62 504 782 -98 39
0.4 27.39 32.12 34.18 26.61 27.69 473 679 -78 30
0.5 26.01 30.54 32.03 25.39 26.23 453 602 -62 22
0.6 24.95 29.35 30.38 24.47 25.1 440 543 -48 15
0.7 24.13 28.44 29.11 23.78 24.22 431 498 -35 9
0.8 23.5 27.75 28.13 23.26 23.53 425 463 -24 3
0.9 23.02 27.23 27.39 22.88 23.01 421 437 -14 -1
1 22.66 26.85 26.85 22.62 22.62 419 419 -4 -4

1.1 22.41 26.58 26.48 22.45 22.35 417 407 4 -6
1.2 22.24 26.4 26.25 22.35 22.18 416 401 11 -6
1.3 22.14 26.29 26.12 22.31 22.08 415 398 17 -6
1.4 22.09 26.23 26.08 22.32 22.04 414 399 23 -5
1.5 22.09 26.22 26.11 22.35 22.06 413 402 26 -3
1.6 22.12 26.24 26.19 22.41 22.1 412 407 29 -2
1.7 22.17 26.29 26.31 22.49 22.18 412 414 32 1
1.8 22.24 26.36 26.46 22.59 22.28 412 422 35 4
1.9 22.33 26.45 26.63 22.69 22.39 412 430 36 6
2 22.42 26.55 26.81 22.81 22.51 413 439 39 9

Table 18: Implied vol and its error for different methods, 20Y maturity, β = 0.9, ρ = −0.2.
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For better visualization, we present two graphs for correlations ρ = −0.5 and skew β = 0.6.
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Figure 1: Implied volatilities: maturity 20Y.
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Figure 2: Implied volatility errors w.r.t. MC: maturity 20Y.

37



Given presented results, we observe an excellent approximation quality for small and moderate
correlation for the Maps to the SABR ZC, their slight degeneration for large correlation, and
insufficient approximation accuracy for Hagan or Henry-Labordere&Paulot methods for large
maturities >10Y. We see that Hybrid ZC Map can deliver slightly better overall fit for large
maturities that the regular ZC Map.

In the table below, we summarize results for the centered second moment E[(FT − F0)
2]

calculated for correlations ρ = −0.5 and skew β = 0.6.

Values Errors w.r.t. MC
Maturity 10Y 20Y 10Y 20Y

MC 0.7639 1.025
HL-P 0.8162 1.255 0.0523 0.23
Hagan 0.8263 1.733 0.0624 0.708

ZC Map 0.7817 1.065 0.0178 0.04
Hyb ZC Map 0.7826 1.194 0.0187 0.169

Table 19: Centered second moment and its errors for different methods.

The second-moment table demonstrates an excellent approximation quality for the regular
SABR ZC Map and insufficient accuracy for the Hagan method, Henry-Labordere&Paulot one
as well as the Hybrid ZC Map for large maturities. To understand a reason for this non-accurate
behavior of the Hybrid ZC Map we recall that its first order correction corresponds to the ATM
strike. For large maturities the second moment integration (7.1) can go quite far in strikes11

which leads to significant error accumulation for this non-optimal first order correction. The
same picture can be observed for the Hagan method compared with Henry-Labordere&Paulot
one where the Hagan first order and corrections are sub-optimal for extreme strikes.

Thus, we can recommend the Hybrid ZC Map for close to ATM option pricing for large
maturities due to its simplicity. However, more complicated regular SABR ZC Map can be used
for both option pricing and second moment replication for any maturities.

8 Conclusion

We presented an exact formula for option prices for the zero correlation SABR model which
involves a 2D integration over an elementary function permitting an efficient numerical imple-
mentation. We applied an efficient expansion map for option prices for non-zero correlation
SABR, delivering excellent approximation quality for small/moderate correlations. Approxima-
tion simplicity permits a straightforward implementation.

11For example, in the setup above the option price reaches 10−6 for strikes around 35.
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We have checked the accuracy for the option pricing itself and the second moment underlying
the CMS payment pricing.

The authors are indebted to Serguei Mechkov for discussions and numerical implementation
help as well as to their colleagues at Numerix, especially to Gregory Whitten and Serguei Issakov
for supporting this work and Patti Harris for the excellent editing. We are grateful to Michael
Konikov and Alexander Lipton for stimulating discussions.
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A Joint distribution of a geometric Brownian motion and its

integral

Let process

X
(ν)
t = x0e

2νt+2Wt

be exponential of Brownian motion with drift 2ν driven by the SDE

dXt = 2(ν + 1)Xt dt+ 2Xt dWt, (A.1)

and let

A
(ν)
t =

∫ t

0
X

(ν)
t′ dt′ (A.2)

be its integral accumulated up to moment t. The joint distribution of X
(ν)
t and A

(ν)
t is defined

as
p(t, τ, x | x0) = E{W}

{

δ
(

X
(ν)
t − x

)

δ
(

A
(ν)
t − τ

)

| x0)
}

and the main difficulty in finding it is the path dependence of integral A
(ν)
t . However, the

following key steps allow us to resolve the problem.
First, we apply the Laplace transform (LT) in time t by changing of the order of integration

and averaging. Then, we switch to the stochastic time τ = A
(ν)
t and make use of the Lamperti
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property of a Geometric Brownian motion (GBM). Recall that it states that a GBM X
(ν)
t is a

time-changed (squared) Bessel process Y
(ν)
τ with index ν in a new stochastic time τ = A

(ν)
t

X
(ν)
t = Y

(ν)
At

.

Effective path dependence in the desired PDF is bypassed onto Laplacian factor exp{−λt0} with
original time becoming a non-local functional, t0 =

∫ τ
0 dτ

′/Yτ ′ . Remarkably, the non-locality
can be eliminated by the simple drift shift with changes of the Brownian measure according to
Girsanov theorem. As a result, the LT of the joint PDF is proved to be proportional to the
probability density of the squared Bessel process with shifted index µ = (ν2 + 2λ)1/2 depending
on the Laplace parameter λ. Finally, the inverse LT restores dependence on the original time t.

Now we pass to the detailed derivation. First, we describe the Lamperti property of a GBM

X
(ν)
t . Denote by Y

(ν)
τ the process X

(ν)
t measured in stretched time τ = A

(ν)
t ,

Y
(ν)
At

≡ X
(ν)
t

dτ = X
(ν)
t dt

and let an SDE for Y
(ν)
τ be

dY (ν)
τ = a dτ + b dBτ .

Comparing it with the SDE (A.1), we get the drift coefficient

a = 2(ν + 1)

equating the drift terms. Next, from the stochastic terms equality, b dBτ = 2X
(ν)
t dWt, we

obtain

b2dτ = 4X
(ν)
t

2
dt

or

b = 2

√

X
(ν)
t = 2

√

Y
(ν)
τ .

Thus, the resulting SDE for the process Y
(ν)
τ

dYτ = 2(ν + 1)dτ + 2
√

Yτ dBτ

proves that Y
(ν)
τ coincides with a squared Bessel process with index µ.

The Brownian motion Bτ adapted to the new time τ is defined in terms of original processes
as

dBτ =
2X

(ν)
t dWt

b
=

√

X
(ν)
t dWt.
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The new Brownian measure coincides with the original one because

−1

2

(dB1τ )
2

dτ
= −1

2

(

dW1t

dt

)2

dt.

Next, we apply the Laplace transform (LT) and place the expectation operator outside the
integral over time

p̂(λ, τ, x | x0) =
∫ ∞

0
dt e−λt p(t, τ, x | x0 )

= E{W}

{
∫ ∞

0
dt e−λt δ(Xt − x) δ(At − τ)

}

. (A.3)

The integral over t is calculated with the help of τ - delta function. For a given τ , let t0 be a
moment such that At0 = τ . Then

δ(At − τ) =
1

A′
t0

δ(t− t0) =
1

X
(ν)
t0

δ(t − t0),

and the LT becomes

p̂(λ, τ, x | x0) =
1

x
E{W}

{

e−λt0 δ(X(ν)
t0 − x)

}

(A.4)

where t0 = A−1(τ) is a stochastic path dependent process.
Next, it proves technically simpler to change measures for the original Brownian motion Wt,

introducing a new Brownian motion W̃t

Wt = W̃t + κt

for some shift κ which will be defined later. The process X
(ν)
t in the new measure has a changed

drift, ν̃ = ν + κ,

X
(ν+κ)
t = x0e

2(ν+κ)t+2W̃t . (A.5)

The original and new Brownian measures are related as follows (Girsanov)

P{W} = P{W̃}e
−κW̃t−κ2t

2 .

For the GBM (A.5), the factor exp(−κW̃t) can be expressed through the new GBM and the time

e−κW̃t =

(

X
(ν+κ)
t

X0

)−κ/2

eκ(κ+ν)t
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and the Girsanov relation can be rewritten as

P{W} = P{W̃}

(

X
(ν+κ)
t

x0

)−κ/2

e
1
2
κ(κ+2ν)t.

Applying this change of measure to the LT (A.4) at t = t0, we get

p̂(λ, τ, x | x0) =
1

x

(

x

x0

)−κ/2
E{W̃}

{

e
1
2
(κ2+2κν−2λ)t0 δ(X

(ν+κ)
t0 − x)

}

.

Now choose κ to be a root of the quadratic polynomial κ2 +2κν − 2λ in the exponent above,

κ = −ν +
√

ν2 + 2λ,

thus eliminating the non-local exponential altogether. Denote

µ =
(

ν2 + 2λ
)1/2

(A.6)

and define µ as the branch of the square root with positive real part, Reµ > 0 at Reλ > 0. Note
also that the changed drift becomes ν̃ = ν + κ = µ, and the LT of the joint PDF simplifies to

p̂(λ, τ, x | x0) =
1

x

(

x

x0

)−µ−ν
2

E{W̃}

{

δ(X
(µ)
t0 − x)

}

.

Now we switch to the time τ and, using the Lamperti property E{W̃t} = E{Bτ} and X
(µ)
t0 ≡

Y
(µ)
At0

= Y
(µ)
τ , obtain

p̂(λ, τ, x | x0) =
1

x

(

x

x0

)−µ−ν
2

E{B}
{

δ(Y (µ)
τ − x)

}

.

The expectation is nothing but the PDF of the squared Bessel process Y
(µ)
τ

E{B}
{

δ(Y (µ)
τ − x)

}

= 1
2τ

(

x

x0

)
µ
2

e−
x+x0
2τ Iµ(

√
xx0
τ )

resulting in

p̂(λ, τ, x | x0) = 1
2τx

(

x

x0

)
ν
2

e−
x+x0
2τ Iµ(

√
xx0
τ ). (A.7)

Notice that dependence on the Laplace parameter λ is solely through index µ of the Bessel
function.
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Finally, we take the inverse Laplace transform

p(t, τ, x | x0) =
1

2πi

∫

CB

p̂(λ, τ, x | x0)eλtdλ

where contour CB is a standard Bromwich contour in the complex plane λ, i.e., a vertical line
Reλ = const > 0. We take parameter µ defined by (A.6) as a new variable, then expressing
λ = 1

2 (µ
2 − ν2) and using expression (A.7) for p̂, we come up with

p(t, τ, x | x0) =
(

x

x0

)
ν
2

e−
1
2
ν2t 1

2τxe
−x+x0

2τ ϑ
(√

xx0
τ , t

)

(A.8)

where ϑ (r, t) is the Yor function defined as

ϑ (r, t) = 1
2πi

∫

Cµ

Iµ(r) e
1
2
µ2t µdµ. (A.9)

Contour Cµ in the complex plane µ is the image of a vertical line Reλ = const > 0 and represents

the right branch (Reµ > |ν|) of a hyperbola with asymptotic directions Imµ
Reµ = ±1, indeed

(Reµ)2 − (Imµ)2 = Re(µ2) = ν2 + 2Reλ = const > ν2.

Use now an integral representation for the modified Bessel function Iµ(r)

Iµ(r) =

∫

Cw

er coshw−µw dw
2πi (A.10)

where contour Cw consists of three legs: the first one running horizontally to the left from
(+∞− iπ) to (0− iπ), the second one running vertically from (0− iπ) to (0+ iπ), and the third
leg running horizontally to the right from (0 + iπ) to (+∞+ iπ).

Then, we change the order of integration and represent function ϑ (r, t) as a double integral

ϑ (r, t) =

∫

Cw

er coshw dw
2πi

∫

Cµ

e
1
2
µ2t−µw µdµ

2πi .

We manipulate it slightly representing µe−µw = − ∂
∂we

−µw and integrating by parts over w,

ϑ(r, t) = r

∫

Cw

er coshw sinhw dw
2πi

∫

Cµ

e
1
2
µ2t−µw dµ

2πi .

Without changing the value of µ-integral, we can straighten hyperbola Cµ to convert it into
a vertical line. Indeed, the integrand is an analytical function and the crucial exponent decays:
exp(µ2t/2) at µ = R eiϕ with large R and π/4 < |ϕ| < π/2 so that Re(µ2) = R2 cos 2ϕ < 0.
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The integral over µ becomes Gaussian after completing the square 1
2µ

2t−µw = t
2(µ−w/t)2−

w2

2t and shifting µ = w/t+ iη with real η, thus resulting in

ϑ(r, t) =
r

2πi
√
2πt

∫

Cw

er coshw−
w2

2t sinhw dw.

Now consider the three legs of contour Cw. On the first leg, w = Rew− iπ, and we make the
substitution w = −ξ− iπ with (real) ξ running from (−∞) to 0. On the third leg, w = Rew+ iπ,
and we make substitution w = ξ + iπ with ξ running now from 0 to (+∞). In both cases, w2 =
(ξ + iπ)2, coshw = − cosh ξ, and sinhw dw = d(coshw) = −d(cosh ξ) = − sinh ξ dξ. Integrands
are the same, and limits complement one another to the full real axis. The contribution from the
second leg (w = iϕ) is zero because the integrand is an odd function of ϕ (due to sinhw = i sinϕ)
while the limits of integration (±π) are symmetrical. As a result, we find a considerably compact
form for ϑ(r, t),

ϑ(r, t) =
r

−2πi
√
2πt

∫ +∞

−∞
e−r cosh ξ−

(ξ+iπ)2

2t sinh ξdξ. (A.11)

The result of the integration is real due to the even-odd properties of the integrand. Indeed,
rewriting the exponent,

e−
(ξ+iπ)2

2t = e−
ξ2−π2

2t

(

cos
πξ

t
− i sin

πξ

t

)

,

we see that only the term with the odd factor sin πξ
t contributes due to presence of another odd

function sinh ξ. This permits us to recast the function ϑ(r, t) into its usual form (Yor (1992))

ϑ(r, t) =
re

π2

2t

π
√
2πt

∫ +∞

0
e−r cosh ξ−

ξ2

2t sinh ξ sin
πξ

t
dξ. (A.12)

B Details of option pricing derivation for zero correlation

B.1 Integrating with payoff

Following the plan sketched in Section 4.2, we rewrite probability density (4.12) as the PDF for
the rate F ,

p (t, F | F0) =

∫ ∞

0
dV p (t, F, V | F0, V0)

= e−t/8
∫ ∞

0

2dV

V

(

V

V0

)−1/2 ∫ ∞

0
dτ p(ν)(τ, F | F0)

e−
V 2+V 2

0
2τ

2τ
ϑ

(

V V0
τ
, t

)

. (B.1)
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Recall here our PDF notation convention. The PDF of the SABR rate Ft is denoted using
argument F , that is, p(ν)(t, F | F0) = E[δ(Ft−F )], while we write the PDF of the corresponding

Bessel process Qt =
F 1−β
t
1−β using semantically the same function p(ν)(t, q | q0) = E[δ(Qt− q)], but

with the argument q.
Now, we collect factors depending on τ and integrate by parts to generate the τ derivative of

p(ν)(τ, F ) (additional factor 1/τ in the first line below originates from r = V V0
τ in ϑ (r, t) (A.12))

∫ ∞

0
p(ν)(τ, F | F0) e

− A
2τ
dτ

2τ2
= − 1

A

∫ ∞

0
p(ν)(τ, F | F0) dτ

(

1− e−
A
2τ

)

=
1

A
p(ν)(0, F | F0) +

1

A

∫ ∞

0
dτ
[

∂τp
(ν)(τ, F | F0)

] (

1− e−
A
2τ

)

where
A = V 2 + V 2

0 + 2V V0 cosh ξ .

Then, we substitute the result into (B.1). The first part of the expression containing p(ν)(0, F | F0),
can be simplified to δ(F − F0) = p(ν)(0, F | F0). Indeed, the integral (B.1) with the PDF
p(ν)(τ, F | F0) replaced by one will be equal to one as far as it will represent integrated density
of the joint distribution function of the stochastic time and the stochastic volatility. Thus,

p (t, F | F0)− δ(F − F0) =
e−t/8

−2πi
√
2πt

∫ ∞

0
dτ
[

1
2∂

2
FFF

2βp(ν)(τ, F | F0)
]

∫ ∞

0

2dV

V

(

V

V0

)−1/2 ∫ ∞

−∞
dξ sinh ξ

V V0
A

(

1− e−
A
2τ

)

e−
(ξ+iπ)2

2t . (B.2)

Now we can easily integrate this expression with the call option payoff (F −K)+ to get the
option value, i.e.,

∫ ∞

0
dF (F −K)+

1

2
∂2F

(

F 2βp(τ, F | F0)
)

=
1

2
K2β p(ν) (τ,K | F0)) . (B.3)

It is further convenient to pass to the PDF of the associated BESQ process Xt =
F

2(1−β)
t
(1−β)2 , which

we denote as p(−|ν|)(τ, x | x0) according to our argument conventions,

1

2
K2βp(ν) (τ,K | F0)) = 2|ν|K p(−|ν|)(τ, xK | x0) (B.4)

with xK and x0 defined as

xK =
K2(1−β)

(1− β)2
and x0 =

F
2(1−β)
0

(1− β)2
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and

p(−|ν|)(τ, x | x0) =
e−

x+x0
2τ

2τ

(

x

x0

)−|ν|/2
I|ν|

(√
xx0
τ

)

.

Using these results, we obtain the option time value as a three dimensional integral

C(t,K, F0)− (F0 −K)+ = 2|ν|K e−t/8

(−2πi)
√
2πt

∫ ∞

0
dτ p(−|ν|)(τ, xK | x0)

∫ ∞

0

dV

V

(

V

V0

)−1/2 ∫ ∞

−∞
sinh ξ dξ

2V V0
A

(

1− e−
A
2τ

)

e−
(ξ+iπ)2

2t . (B.5)

B.2 Integrating stretched time out

Collect τ -dependent factors in the option price integral (B.5)

J(τ) =

∫ ∞

0
dτ p(−|ν|)(τ, xK | x0)

(

1− e−
A
2τ

)

=

(

xK
x0

)−|ν|/2 ∫ ∞

0

dτ
2τ e

−xK+x0
2τ I|ν|(

√
xKx0
τ )

(

1− e−
A
2τ

)

.

Throughout the appendix, we will refer to certain integrals as we do above for J(τ), using the
subscript to denote the integration variable.

Now set s =
√
xKx0
τ as the integration variable and adopt the following notations

b = xK+x0
2
√
xKx0

> 1, (B.6)

a = b+ A
2
√
xKx0

≡ b+
V 2 + V 2

0 + 2V V0 cosh ξ

2
√
xKx0

> b. (B.7)

Then the above integral can be rewritten as

J(τ) =

(

xK
x0

)−|ν|/2 ∫ ∞

0

ds

2s
I|ν|(s)

(

e−bs − e−as
)

= 1
2

(

xK
x0

)−|ν|/2
[

J(s)(b)− J(s)(a)
]

(B.8)

where J(s)(b) is the Lipschitz-Hankel integral

J(s)(b) =

∫ ∞

0

ds

s
e−bsI|ν|(s) =

e−|ν| arccosh b

|ν| .

We give the derivation of this formula since we need an intermediate result. Regarding conver-
gence of the integral, we notice that at large s function I|ν|(s) ∼ es, and convergence is guaranteed

by b > 1. At small s, the Bessel function I|ν|(s) behaves like I|ν|(s) ∼ s|ν|, which is sufficient for

47



convergence at zero. However, this behavior is hidden when we use an integral representation
for I|ν|(s). Therefore, we strengthen convergence by inserting factor sε, and take in the end limit
of ε→ +0

J(s,ε)(b) =

∫ ∞

0
ds sε−1e−bs 1

2πi

∫

Cw

es coshw−|ν|wdw

= 1
2πi

∫

Cw

e−|ν|wdw
∫ ∞

0
ds sε−1e−b̃s (B.9)

where Cw is the contour used in the integral representation of the modified Bessel function (A.10)
and parameter b̃ = b− coshw is real and positive everywhere on contour Cw. Indeed, b > 1 and
coshw < 1 on contour Cw (on horizontal legs w = Rew± iπ so that coshw = − cosh(Rew) < 0,
and on vertical leg w = iϕ, so that coshw = cosϕ < 1). With those provisions made, we
integrate over s in (B.9) and manipulate the result as follows:

∫ ∞

0
ds sε−1e−b̃s = Γ(ε)b̃−ε

= Γ(ε)
(

1− ε ln b̃+ o(ε)
)

= Γ(ε)− Γ(1 + ε) ln b̃+O(ε)

= Γ(ε)− ln b̃+O(ε).

The first term, Γ(ε), does not depend on w and is integrated to zero after the last expression is
substituted into (B.9), because

∫

Cw
e−|ν|wdw = 0. Dropping Γ(ε) and putting ε→ 0, we get

J(s)(b) = − 1
2πi

∫

Cw

ln(b− coshw) e−|ν|wdw = − 1

|ν|
1

2πi

∫

Cw

e−|ν|w sinhw

coshw − b
dw (B.10)

where the last equality is obtained through integration by parts. The integrand is an analytical
function of complex variable w and has one single pole at

w(b) = arccosh b = ln
(

b+
√

b2 − 1
)

inside the rectangle surrounded by contour Cw (one side of this rectangle represents vertical
interval (+∞± iπ) located at infinity). Integral (B.10) is readily evaluated with the help of the
Cauchy theorem,

J(s)(b) =
1
|ν|e

−|ν|w(b). (B.11)

Finally, substituting the integral (B.8)

J(τ) =
1

2|ν|

(

xK
x0

)−|ν|/2
[

e−|ν|w(b) − e−|ν|w(a)
]
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into the option expression (B.5), and taking into account that
(

xK
x0

)−|ν|/2
=
√

F0
K , we get a

rather simple integral formula for the call option containing only elementary functions

C(t,K, F0)− (F0 −K)+ =
√

KF0

∫ ∞

0

dV

V

(

V

V0

)−1/2

∫ ∞

−∞
dξ

−2πi sinh ξ
e−|ν|w(b) − e−|ν|w(a)

cosh ξ + cosh y
e−

(ξ+iπ)2

2t − t
8√

2πt
(B.12)

where

w(u) = arccosh u = ln(u+
√

u2 − 1)

A = V 2 + V 2
0 + 2V V0 cosh ξ

b = xK+x0
2
√
xKx0

> 1

a = b+ A
2
√
xKx0

y = ln
V

V0

and the denominator in the integrand arises from

A
2V V0

= cosh ξ + 1
2

(

V
V0

+ V0
V

)

= cosh ξ + cosh y. (B.13)

B.3 Improving integration with respect to ξ

A direct numerical computation of the option integral (B.12) or Yor’s function ϑ (A.11) faces con-

siderable difficulties. Namely, the main exponent imaginary odd part Im e−
(ξ+iπ)2

2t = e
π2

2t
− ξ2

2t sin πξ
t

contains two problematic factors for implementation. As noted by Carr and Schröder (2004) in

a context of Asian options, the factor e
π2

2t may be huge, especially for short maturities. This
implies that the accompanying integral value containing highly oscillating factor sin πξ

t is very
small and must be computed with extreme accuracy.

For efficient numerical implementation, it is convenient to deform the integration contour to

horizontal line Im ξ = −π, where ξ = u− iπ with real u, thus turning complex exponent e−
(ξ+iπ)2

2t

into real Gaussian e−
u2

2t .
So far as the Yor function (A.11) is concerned, it is impossible to shift the path of integration

far enough down because factor exp{−r cosh ξ} does not decrease with growing R = |Re ξ|
on far vertical wings ξ = ±R − iv for v > π/2. However, the integration with respect to
τ , being completed first, changes the behavior of the integrand in (B.12). With cosh ξ in the

denominator, the decaying quadratic exponential e−
(ξ+iπ)2

2t becomes solely responsible for the
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integrand decrease at |Re ξ| → ∞. Thus, we are allowed to shift the path of integration down,
since the integrand can be continued analytically into the whole horizontal strip (−π < Im ξ < 0)
and falls fast enough at |Re ξ| → ∞. Placing ξ = u− iπ, with real u , we get

C(t,K, F0)− (F0 −K)+ =
√

KF0

∫ ∞

0

dV

V

(

V

V0

)−1/2

∫ ∞

−∞

du(− sinhu)
−2πi

e−|ν|w(b) − e−|ν|w(a)

− coshu+ cosh y
e−

u2

2t − t
8√

2πt
. (B.14)

The denominator turns into zero in two points, u1,2 = ±y. However, exactly in these points
A = 0, so that the numerator in (B.14) also turns into zero. The function as a whole being
regular, an integration across these points u = ±y may be understood in the sense of Cauchy
principal value

1

coshu− cosh y
→ V.P.

1

cosh u− cosh y
.

After that, two parts of integral (B.14), associated with terms e−|ν|w(b) and e−|ν|w(a), may be
considered separately. Since w(b) does not depend on u, the corresponding integral part repre-
sents the integral of the odd function and gives zero. As a result, the option time value coincides
with the second part

C(t,K, F0)− (F0 −K)+

=
√

KF0
e−

t
8√

2πt

∫ ∞

0
dy e−y/2 V.P.

∫ ∞

−∞
du
2πi

sinhu
coshu−cosh y e

−|ν|w(a)−u 2

2t .

Despite the presence of imaginary unit i in the integral above, it can be shown that the price
is real. Indeed, for ξ = u − iπ, the corresponding cosh ξ = − coshu < 0. The definition (B.7)
suggests that at negative cosh ξ the real parameter a may be smaller than one or even negative.
Since coshw(a) = a, this means that the exponential

e−w(a) = a−
√

a2 − 1 = 2
(

(a+ 1)1/2 − (a− 1)1/2
)2

may be purely imaginary or complex for different intervals of u. It turns out, however, that the
integral as a whole, generates a real value. As follows from the last formula, e−w(a) as a function
of u has branch points corresponding to a = ±1. There are four such points on the real axis
u, and a thorough analysis is required to determine correct signs of square roots (a± 1)1/2 in
corresponding intervals. It is too involved (though possible) so we have found a better way to
obtain a compact form of the option value.
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B.4 Derivation of the alternative expression for option price

The idea is to postpone the integration over w in (B.8) using integral representation (B.10)

J(τ) =
1
2

(

xK
x0

)−|ν|/2
[Js(b)− Js(a)]

=
1

2|ν|

√

F0

K

1

2πi

∫

Cw

dw e−|ν|w
(

sinhw

b− coshw
− sinhw

a− coshw

)

=
1

2|ν|

√

F0

K

1

2πi

∫

Cw

dw e−|ν|w sinhw

[b− coshw] [a− coshw]

A

2
√
xKx0

where, by definition, a − b = A
2
√
xKx0

. We substitute the last expression into (B.5) and get the

option value in the form

C(t,K, F0)− (F0 −K)+ =
√

KF0
e−t/8√
2πt

∫

Cw

dw
2πi e

−|ν|w sinhw

b− coshw
∫ ∞

0

dV

V

(

V

V0

)−1/2 V V0√
xKx0

∫ ∞

−∞
dξ

−2πi

sinh ξ

a− coshw
e−

(ξ+iπ)2

2t . (B.15)

Looking for ways to simplify this triple integral with respect to w, V and ξ, we have found
that any one of three integrations can be performed explicitly, the other two to be completed
numerically. One way is to integrate first over w as we have done in the previous subsection.
Another way is to integrate with respect to ξ (again with the help of the residue theory). Then
the three legs on contour Cw result in a pure real answer in terms of a double integral over V and
w. The third way is to start with integrating over volatility V , which proves to be elementary.

We show the second way starting with integration with respect to the variable ξ. Notice that
the denominator a− coshw is given by

a− coshw =
q2K + q20
2qKq0

+
V 2 + V 2

0 + 2V V0 cosh ξ

2qKq0
− coshw

=
V V0
qKq0

(cosh ξ + cosh ξ0(w)) (B.16)

where cosh ξ0(w) is defined as

cosh ξ0(w) =
q2K + q20 + V 2 + V 2

0

2V V0
− qKq0
V V0

coshw (B.17)

where we switched to an equivalent representation in terms of the Bessel variable q = x1/2 rather
than the Squared Bessel variable x, i.e.,

qK =
K1−β

1− β
and q0 =

F 1−β
0

1− β
. (B.18)
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Notice that on the contour Cw the hyperbolic cosine cosh ξ0 as defined by (B.17) takes positive
values larger than one. To see it, we rewrite cosh ξ0 in the form

cosh ξ0(w) =
V 2 + V 2

0

2V V0
+
qKq0
V V0

(

q2K + q20
2qKq0

− coshw

)

≥ V 2 + V 2
0

2V V0
≥ 1

and notice that the second term in the last equality is always positive on the contour Cw. Indeed,
on the horizontal legs, w = ±iπ + Rew so that coshw = − cosh(Rew) < 0 and, on the vertical

leg, w = iφ so that coshw = cosφ < 1 while
q2K+q20
2qKq0

> 1. Thus, the function ξ0(w) takes pure
real values on the contour Cw.

Below we will prove that the integration with respect to ξ in (B.15) reduces to

J(ξ) =
V V0√
xKx0

∫ ∞

−∞
dξ

−2πi

sinh ξ

a− coshw
e−

(ξ+iπ)2

2t (B.19)

=

∫ ∞

−∞
dξ

−2πi

sinh ξ

cosh ξ + cosh ξ0
e−

(ξ+iπ)2

2t = e−
ξ20
2t . (B.20)

Indeed, the integrand is an analytical function of ξ on the whole strip (−2π < Im ξ < 0) except
for two single poles at points ξ1,2 = −iπ ± ξ0 with equal residues

Res F (ξ1,2) =
1

−2πie
− ξ20

2t .

We close the contour of integration by adding two vertical intervals |Re ξ| = R → ∞ (their
contribution is zero) and the horizontal ‘return’ line Im ξ = −2π. Making parametrization
ξ = −ξ′ − 2πi (with real ξ′) in the return integral shows that it coincides with the original
one. Thus, the total integral along the closed contour is a doubled original integral. Finally, the

residue Cauchy theorem 2J = −2πi
∑

i=1,2Res F (ξi) = 2e−
ξ20
2t leads to the desired form (B.20).

In the resulting simplified expression for the option value

C(t,K, F0)− (F0 −K)+ =
√

KF0
e−t/8√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2 ∫

Cw

dw
2πi

sinhw

b− coshw
e−|ν|we−

ξ20
2t (B.21)

concentrate on the complex w-integral along contour the contour Cw. We will reduce it to
elementary real integrations suitable for efficient implementation.

The contour Cw consists of three legs. Consider first the vertical leg w = iφ. Since limits
of integration are symmetric, (−π < φ < π), only the even part of the integrand as a whole
contributes to the answer, resulting in the following w-integral along the vertical line

1

π

∫ π

0
dφ

sinφ sin(|ν|φ)
b− cosφ

e−
ξ20
2t .
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Next, on the two horizontal legs, we parameterize w = ±iπ+ψ with real positive ψ. Integrands
for the upper and lower legs differ only by factors e∓i|ν|π. As a result, the contribution to the
w-integral from two horizontal legs of the contour Cw reads as

sin(|ν|π)
π

∫ ∞

0
dψ

sinψ

b+ coshψ
e−|ν|ψe−

ξ20
2t .

Summarizing, we come up with the following expression for the option value

C(t,K, F0)− (F0 −K)+ =
√

KF0
e−t/8√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2

{

1

π

∫ π

0
dφ

sinφ sin(|ν|φ)
b− cosφ

e−
ξ0(w,V )2

2t +
sin(|ν|π)

π

∫ ∞

0
dψ

sinhψ

b+ coshψ
e−|ν|ψe−

ξ0(w,V )2

2t

}

(B.22)

where

b =
q2K + q20
2qKq0

ξ0(w, V ) = arccosh

{

q2K + q20 + V 2 + V 2
0

2V V0
− qKq0
V V0

coshw

}

(B.23)

and
coshw = cosh iφ = cosφ for φ-integral,

coshw = cosh(±iπ + ψ) = − coshψ for ψ-integral.

One can find appearance similarities of the option price (B.22) with the Heat-Kernel in polar
coordinates on the two-dimensional plane, see Lipton-Sepp (2011).

B.5 Another form of solution

In this subsection, we will recast the expression (B.22) into a more compact form.
In the double integral (B.22), change the order of integration, starting with V

J(V ) =
e−t/8√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2

e−
ξ0(w,V )2

2t .

Denoting

D(w)2 =
q2K + q20 − 2qKq0 coshw + V 2

0

V 2
0

, (B.24)

we can rewrite cosh ξ0 (B.23) as

cosh ξ0(w, V ) = D

(

DV0
2V

+
V

2DV0

)

= D(w) cosh ȳ (B.25)
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with parametrization
V

DV0
= eȳ.

Note that this parametrization differs from the usual one, V
V0

= ey. Accepting ȳ as an integration
variable, we recast the V -integral into

J(V ) =
e−t/8√
2πt

D−1/2

∫ ∞

−∞
dȳ e−

ȳ
2 e−

ξ0
2

2t = 4 e−t/8√
2πt

D−1/2

∫ ∞

0
d(sinh ȳ

2 )e
− ξ0

2

2t .

Now taking ξ0 itself as an integration variable, u = ξ0, expressing sinh ȳ
2 through u using (B.25),

sinh ȳ
2 =

√

cosh ȳ − 1

2
=

√

coshu−D

2D

and denoting D = cosh s for s > 0, we can further simplify the integral

J(V ) =
e−t/8√
2πt

∫ ∞

0

dV

V

(

V

V0

)−1/2

e−
ξ0(w,V )2

2t

=
2
√
2

cosh s

e−t/8√
2πt

∫ ∞

s
d(
√
coshu− cosh s)e−

u2

2t =
1

cosh s
G(t, s). (B.26)

The function G(t, s) can be represented in various forms

G(t, s) = 2
√
2
e−t/8√
2πt

∫ ∞

s
d(
√
cosh u− cosh s)e−

u2

2t (B.27)

=
√
2
e−t/8√
2πt

∫ ∞

s
du

sinhu√
cosh u− cosh s

e−
u2

2t

= 2
√
2
e−t/8

t
√
2πt

∫ ∞

s
du

√
coshu− cosh s u e−

u2

2t . (B.28)

The last form is convenient for numerical computation. It is worth noticing also that the deriva-
tive of function G is equal to

− 1

sinh s

∂G

∂s
=

√
2
e−t/8

t
√
2πt

∫ ∞

s

duu e−
u2

2t√
coshu− cosh s

= 2πG(2)(t, s)

where G(2)(t, s) is exactly the McKean heat kernel for the H2 Poincare hyperbolic plane.
Using expression (B.26) for the V -integral, we get the following option value (B.22)

C(t,K, F0)− (F0 −K)+ =
1

π

√

KF0

{
∫ π

0
dφ

sinφ sin(|ν|φ)
b− cosφ

G(t, s)

cosh s

+sin(|ν|π)
∫ ∞

0
dψ

sinhψ

b+ coshψ
e−|ν|ψG(t, s)

cosh s

}

. (B.29)
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It may be convenient to pass to s as a integration variable. From the definition cosh s = D,
it follows that

cosh2 s = D2 =
q2K + q20 − 2qKq0 coshw

V 2
0

+ 1

and

sinh2 s =
q2K + q20 − 2qKq0 coshw

V 2
0

=
2qKq0
V 2
0

(b− coshw). (B.30)

Consider the simplified option expression (B.29) where coshw = cosφ in the first integral
and coshw = − coshψ in the second one. Limits of integration over s are {s− < s < s+} for
φ-integral and {s+ < s} for ψ-integral. Here s− > 0 is defined at φ = 0 (w = 0) and s+ > 0 is
defined at φ = π, or ψ = 0 (w = iπ),

sinh2 s− =
2qKq0
V 2
0

(b− 1) =
(qK − q0)

2

V 2
0

(B.31)

sinh2 s+ =
2qKq0
V 2
0

(b+ 1) =
(qK + q0)

2

V 2
0

. (B.32)

Differentials and functions involved are expressed through s as follows

1

cosh s
dφ

sinφ

b− cosφ
=

1

cosh s
d [ln(b− cosφ)]

=
1

cosh s
d
[

ln sinh2 s
]

= 2
ds

sinh s
.

The same is valid for ψ
1

cosh s
dψ

sinhψ

b+ coshψ
= 2

ds

sinh s
.

Now, we express φ and ψ through the integration parameter s using the above definitions
(B.30, B.31, B.32)

tan2
φ

2
=

1− cosφ

1 + cosφ
=

sinh2 s− sinh2 s−
sinh2 s+ − sinh2 s

(B.33)

tanh2
ψ

2
=

coshψ − 1

coshψ + 1
=

sinh2 s− sinh2 s+

sinh2 s− sinh2 s−
. (B.34)

Finally, the call option value reads as

C(t,K, F0)−(F0 −K)+ =

2

π

√

KF0

{

∫ s+

s−

ds
sin(|ν|φ(s))

sinh s
G(t, s) + sin(|ν|π)

∫ ∞

s+

ds
e−|ν|ψ(s)

sinh s
G(t, s)

}

(B.35)
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with the explicitly defined underlying functions

φ(s) = 2 arctan

√

sinh2 s− sinh2 s−
sinh2 s+ − sinh2 s

(B.36)

ψ(s) = 2 arctanh

√

sinh2 s− sinh2 s+

sinh2 s− sinh2 s−
(B.37)

the integration limits

s− = arcsinh

( |qK − q0|
V0

)

(B.38)

s+ = arcsinh

(

qK + q0
V0

)

(B.39)

and the Kernel function G(t, s) given by (B.27).

C Effective zero correlation SABR: ATM parameters

In this section, we take an ATM limit for the effective volatility (6.38) and its correction (6.44).
This corresponds to a case when the strike K = F0 + δK approaches the forward value K → F0

and naturally implies that δq → 0 and δq̃ → 0 where as usual

δq =
K1−β − F 1−β

0

1− β
and δq̃ =

K1−β̃ − F 1−β̃
0

1− β̃
. (C.1)

Adopting notations δz = γ δqv0 , we calculate small δz expansion of the following

vmin =
√

γ2δq2 + 2ργδqv0 + v20 = v0

(

1 + ρ δz +
1

2
(1− ρ2) δz2 − 1

2
ρ (1− ρ2) δz3 +O(δz4)

)

φ =
vmin + ρv0 + γδq

(1 + ρ)v0
= 1 + δz +

1

2
(1− ρ) δz2 − 1

2
ρ (1− ρ) δz3 +O(δz4)

Φ = φ
γ̃
γ = 1 + aδz +

1

2
a(a− ρ) δz2 +

1

6
a
(

3ρ2 − 1− 3aρ+ a2
)

δz3 +O(δz4)

where a = γ̃
γ . This gives the first terms of the Taylor expansion in small δq of the effective

volatility (6.38)

ṽ
(0)
0 =

2Φ δq̃ γ̃

Φ2 − 1
= v0

δq̃

δq

(

1 +
1

2
ρ γ

δq

v0
+

1

6

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2
δq2

v20
+O(δq3)

)

, (C.2)

leading to the desired limits (2.33) and (2.35).
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The volatility correction (6.44) ATM limit is more complicated because the first non-vanishing
order of both numerator and denominator is of O(δK2). We first concentrate on the parallel
transport expansion (6.12), where the integral Bmin in (6.17) has the second order in δK. The
angle ϕ0 + α is close to π, thus we can expand the denominator in the integrand for small sinϕ′

to obtain

Bmin ≃ −1

2

β

1− β
cotα L

∫ π

ϕ0+α
sinϕ′ dϕ′ =

1

2

β

1− β
cotα L (cos π − cos(ϕ0 + α)) .

Taking into account

sin(ϕ0 + α) = −δq
R

= −δqγ sinα
vmin

= −δqγ sinα
v0

(1 +O(δq)) ,

we obtain

Bmin = −1

4

β

1− β
ρ
δq2 γ

q0v0
+O(δq3)

where we have used the leading value L ≃ V0
q0 sinα . Thus, the parallel transport expands as follows

Amin =
1

2
β ln(K/F0) + Bmin =

1

2
β ln(1 + δK/F0)−

1

4

β

1− β
ρ
δq2 γ

q0v0
+O(δq3). (C.3)

Note that the zero correlation of the parallel transport is simply potential

Ãmin =
1

2
β̃ ln(1 + δK/F0).

Now we expand the expression ln
(√
v0vmin

)

and ln
(

ṽ
(0)
0 ṽ

(0)
min

)

up to the second order in the

volatility correction (6.44)

ln (v0vmin) = 2 ln v0 + ρ γ
δq

v0
+

1

2
(1− 2ρ2) γ2

δq2

v20
+O(δq3)

ln
(

ṽ
(0)
0 ṽ

(0)
min

)

= 2 ln ṽ
(0)
0 +

1

2
γ̃2

δq̃2
(

ṽ
(0)
0

)2 +O(δq3).

Consider a special case of β = β̃ resulting in δq = δq̃. Then, the main order ATM volatility

ṽ
(0)
0 expansion reads

ṽ
(0)
0 = v0

(

1 +
1

2
ρ γ

δq

v0
+

1

6

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2
δq2

v20
+O(δq3)

)

. (C.4)

This leads to the desired ATM value

ṽ
(0)
0

∣

∣

∣

K=F0

= v0. (C.5)
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Next, we have

ln (ṽ0 ṽmin) = 2 ln v0 + ρ γ
δq

v0
+

1

3

(

1 +
1

2

γ̃2

γ2
− 9

4
ρ2
)

γ2
δq2

v20
+O(δq3)

and

ln (v0vmin)− ln (ṽ0 ṽmin) =
1

6

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2
δq2

v20
+O(δq3).

Then, we obtain the numerator (6.44) expansion

ln
(

Kβ√v0vmin

)

− ln
(

K β̃
√

ṽ0ṽmin

)

+ Ãmin −Amin

=
1

12

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2
δq2

v20
+

1

4

β

1− β
ρ
δq2 γ

q0v0
+O(δq3)

and this of the denominator

Ω =
δq2γ̃2

v20
+O(δq3).

This leads to the desired result of the ATM value of the effective volatility correction (2.34) for
β = β̃

ṽ
(1)
0

ṽ
(0)
0

∣

∣

∣

∣

∣

K=F0

=
1

12

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2 +
1

4

β

1− β
ρ
v0γ

q0
(C.6)

=
1

12

(

1− γ̃2

γ2
− 3

2
ρ2
)

γ2 +
1

4
β ρ v0γ F

β−1
0 . (C.7)

The general case β 6= β̃ correction (2.36) derivation can be done similarly.
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