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Chapter 1

Risk types and their measurement

There are various types of risk. A common classification of risks is based on the source of the
underlying uncertainty.

1.1 Market Risk

By market risk, we mean the potential for unexpected changes in value of a position resulting from
changes in market prices, which results in uncertainty of future earnings resulting from changes in
market conditions, (e.g., prices of assets, interest rates).

These pricing parameters include security prices, interest rates, volatility, and correlation and inter-
relationships.

Over the last few years measures of market risk have evolved to become synonymous with stress
testing, measurement of sensitivities, and VaR measurement.

1.2 Credit Risk

Credit risk is a significant element of the galaxy of risks facing the derivatives dealer and the derivatives
end-user. There are different grades of credit risk. The most obvious one is the risk of default. Default
means that the counterparty to which one is exposed will cease to make payments on obligations into
which it has entered because it is unable to make such payments.

This is the worst case credit event that can take place. From this point of view, credit risk has three
main components:

• Probability of default - probability that a counterparty will not be able to meet its contractual
obligations

• Recovery Rate - percentage of the claim we will recover if the counterparty defaults

• Credit Exposure - this related to the exposure we have if the counterparty defaults

But this view is very naive. An intermediate credit risk occurs when the counterparty’s creditworthi-
ness is downgraded by the credit agencies causing the value of obligations it has issued to decline in
value. One can see immediately that market risk and credit risk interact in that the contracts into
which we enter with counterparties will fluctuate in value with changes in market prices, thus affect-
ing the size of our credit exposure. Note also that we are only exposed to credit risk on contracts in
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Figure 1.1: Widening spreads in ytm for bonds of different creditworthiness

which we are owed some form of payment. If we owe the counterparty payment and the counterparty
defaults, we are not at risk of losing any future cash flows.

The effect of a change in credit quality can be very gradual. In the graph, we have the time series of
the difference of the ytm’s of the tk01 and e168 to the r153. These bonds have maturity 31 Mar 2008
and 1 Jun 2008 and 31 Aug 2010 respectively, with annual coupons of 10%, 11% and 13% respectively.
Thus, they are (or should be) very similar bonds. There are differences in creditworthiness however,
and this distinction has become more apparent with the ANC government and the stated intention
of the privatisation of the parastatals. Previously, NP government guarantees of the performance of
the parastatals was implicit.

Credit risk is one source of market risk, but is not always priced properly.

1.3 Market imperfections

Within credit markets, two important market imperfections, adverse selection and moral hazard,
imply that there are additional benefits from controlling counterparty credit risk, and from limiting
concentrations of credit risk by industry, geographic region, and so on. This piece is adapted from
(Duffie & Singleton 2000).

Adverse selection

Suppose, as is often the case with a simple loan, that a borrower knows more than its lender, say a
bank, about the borrower’s credit risk. Being at an informational disadvantage, the bank, in light
of the distribution of default risks across the population of borrowers, may find it profitable to limit
borrowers’ access to the bank’s credit, rather than allowing borrowers to select the sizes of their own
loans without restriction. An attempt to compensate for credit risk by specifying a higher average
interest rate, or by a schedule of interest rates that increases with the size of the loan, may have
unintended consequences. A disproportionate fraction of borrowers willing to pay a high interest
rate on a loan are privately aware that their own high credit risk makes even the high interest rate
attractive. An interest rate so high that it compensates for this adverse selection could mean that
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almost no borrower finds a loan attractive, and that the bank would do little or no business.

It usually is more effective to limit access to credit. Even though adverse selection can still occur to
some degree, the bank can earn profits on average, depending on the distribution of default risk in the
population of borrowers. When a bank does have some information on the credit quality of individual
borrowers (that it can legally use to set borrowing rates or access to credit) the bank can use both
price and quantity controls to enhance the profitability of its lending operations. For example, banks
typically set interest rates according to the credit ratings of borrowers, coupled with limited access to
credit.

In the case of an over-the-counter derivative, such as a swap, an analogous asymmetry of credit
information often exists. For example, counterparty A is typically better informed about its own
credit quality than about the credit quality of counterparty B. (Likewise B usually knows more
about its own default risk than about the default risk of A.) By the same adverse-selection reasoning
described above for loans, A may wish to limit the extent of its exposure to default by B. Likewise,
B does not wish its potential exposure to default by counterparty A to become large. Rather than
limiting access to credit in terms of the notional size of the swap, or its market value (which in any
case is typically zero at inception), it makes sense to measure credit risk in terms of the probability
distribution of the exposure to default by the other counterparty.

Moral hazard

Within banking circles, there is a well known saying: “If you owe your bank R100,000 that you don’t
have, your are in big trouble. If you owe your bank R100,000,000 that you don’t have, your bank is in
big trouble.” One of the reasons that large loans are more risky than small loans, other things being
equal, is that they provide incentives for borrowers to undertake riskier behaviour. If these big bets
turn out badly (as they ultimately did in many cases) the risk takers can walk away. If the big bets
pay off, there are large gains.

An obvious defence against the moral hazard induced by offering large loans to risky borrowers is to
limit access to credit. The same story applies, in effect, with over-the-counter derivatives. Indeed, it
makes sense, when examining the probability distribution of credit exposure on an OTC derivative,
to use measures that place special emphasis on the largest potential exposures.

1.4 Liquidity risk

Liquidity risk is reflected in the increased costs of adjusting financial positions. This may be evidenced
by bid-ask spreads widening; more dramatically arbitrage-free relationships fail or the market may
disappear altogether. In extreme conditions a firm may lose its access to credit, and have an inability
to fund its illiquid assets.

There are 2 types of liquidity risk:

• Normal or usual liquidity risk - this risk arises from dealing in markets that are less than fully
liquid in their standard day-to-day operation. This occurs in almost all financial markets but is
more severe in developing markets and. specialist OC instruments.

• Crises liquidity risk - liquidity arising because of market crises e.g. times of crisis such as 1987
crash, the ERM crisis of 1992, the Russian crisis in August 1998, and the SE Asian crisis of
1998, we find the market had lost its normal level of liquidity. One can only liquidate positions
by taking much larger losses.
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1.5 Operational risk

This includes the risk of a mistake or breakdown in the trading, settlement or risk-management
operation. These include

• trading errors

• not understanding the deal, deal mispricing

• parameter measurement errors

• back office oversight such as not exercising in the money options

• information systems failures

An important type of operational risk is management errors, neglect or incompetence which can be
evidenced by

• unmonitored trading, fraud, rogue trading

• insufficient attention to developing and then testing risk management systems

• breakdown of customer relations

• regulatory and legal problems

• the insidious failure to quantify the risk appetite.

1.6 Legal risk

Legal risk is the risk of loss arising from uncertainty about the enforceability of contracts.

Its includes risks from:

• Arguments over insufficient documentation

• Alleged breach of conditions

• Enforceability of contract provisions - regards netting, collateral or third-party guarantees in
default of bankruptcy

Legal risk has been a particular issue with derivative contracts. Many banks found their swaps
contracts with London Boroughs of Hammersmith and Fulham voided when the courts of England
upheld the argument that the borough management did not have the legal authority to deal in swaps.
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Chapter 2

Infamous risk management
disasters

In all the cases we discuss the institution was exposed to risks, supposedly without management
being aware of them. But in many cases senior management were aware of the weaknesses in their
risk-control systems, (or should have been) but failed to act. And very often the risks would have
been picked up even with the simplest VaR implementation.

2.1 Wall street crash of 1987

When the portfolio insurance policy comprises a protective put position, no adjustment is required
once the strategy is in place. However, when insurance is effected through equivalent dynamic hedging
in index futures and risk free bills, it destabilises markets by supporting downward trends. This is
because dynamic hedging involves selling index futures when stock prices fall. This causes the prices
of index futures to fall below their theoretical cost-of-carry value. Then index arbitrageurs step in
to close the gap between the futures and the underlying stock market by buying futures and selling
stocks through a sell program trade.

2.2 Metallgesellschaft

Metallgesellschaft is a huge German industrial conglomerate dealing in energy products. From 1990
to 1993 they sold long-term forward contracts supplying oil products (the equivalent of 180 million
barrels of oil) to their consumers. In order to hedge the position, they went long a like number of oil
futures.

However, futures are short term contracts. As each future expired, they rolled it over to the next
expiry. Of course, this exposed the company to basis risk.

The price of oil decreased. Thus they made a loss on the futures position and a profit on the OTC
forwards. The problem is that losses on futures lead to margin calls whereas the profits on the forwards
were still a long time from being realised. In fact, there were $1 billion margin calls on the futures
positions.

The management of Metallgesellschaft were unwilling to continue to fund the position. They fired
all the dealers, closed out all the futures positions, and allowed the counterparties to the forwards to
walk away.

A loss of $1.3 billion was incurred. The share price fell from 64DM to 24DM.
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Figure 2.1: The price of oil (Dubai)

2.3 Kidder Peabody

In April 1994, Kidder announced that losses at its government bond desk would lead to a $210
million charge against earnings, reversing what had been expected to be the firm’s largest quarterly
profit in its 129-year history. The company disclosed that Joseph Jett, the head of the government
bond desk, had manufactured $350 million in “phantom” trading profits, in what the Securities and
Exchange Commission later called a “merciless” exploitation of the firm’s computer system. Kidder’s
internal report on the incident concluded that the deception went unnoticed for two years due to “lax
supervision”. Mr. Jett, who denied that his actions were unknown to his superiors, was found guilty
of recordkeeping violations by an administrative judge.

2.4 Barings

This is probably the most famous banking disaster of all. Early in 1995, the futures desk of Baring’s
in Singapore was controlled by Nic Leeson, a 28 year old trader.

He had long and unauthorised speculative futures positions on the Nikkei.

However, the Nikkei fell significantly. This was in no small part due to the Kobe earthquake of 17
January. He was faced with huge margin calls, which for a while he funded by taking option premia.
However, eventually there was no more funds, and he absconded on 23 February 1995. The bank
officially failed 26 February 1995, with a loss of $1 billion.

Leeson was sentenced to 6 and a half years in prison. The bank was sold for 1 pound to ING.

The reasons for failure: outright operational failure, tardiness of exchanges, tardiness of the Bank of
England.

In a survey of 1997 (Paul-Choudhury 1997):

• 75% of risk managers believed that their organisation could not suffer a Barings-type disaster.
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Figure 2.2: The Nikkei index

• 75% of traders believed that their organisation could suffer a Barings-type disaster.

• 85% of traders believed that they could hide trades from their risk manager.

2.5 US S&L Industry

In the 1980s, Savings-and-Loan institutions were making long term loans in housing and property at a
fixed rate, and taking short term deposits such as mortgage payments. In the face of market volatility
and changes in the shape of the interest rate term struture, the US Congress made the mistake of
deregulating the industry. This allows moral hazard.

One consequence of this deregulation was that savings-and-loan institutions has access to extensive
credit through deposit insurance, while at the same time there was no real enforcement of limits on
the riskiness of savings-and-loans investments. This encouraged some savings-and-loans owners to
take on highly levered and risky portfolios of long-term loans, mortgage-backed securities, and other
risky assets. Many went insolvent.

2.6 Orange County

The investment pool was invested in highly leveraged investments. The dealer Bob Citron insisted
that MtM was irrelevant because a hold to maturity strategy was followed. This nonsense was believed
for some time, but the eventual outcome was bankruptcy.

2.7 LTCM

Long Term Capital Management failed spectacularly in 1998. This was a very exclusive hedge fund
whose partners included Myron Scholes, Robert Merton and John Meriwether. Their basic play, all
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over the world, was on credit spreads narrowing - thus, they were typically long credit risky bonds
and short credit-safe bonds.

What were the reasons?

• Widening credit spreads and liquidity squeeze after the Russian default of 1998 - subsequent
talk of a market in liquidity options by Scholes, amongst others.

• Very large leverage, which increased as the trouble increased, and as liquidity dried up. In other
words, not enough long term capital.

• Excessive reliance on VaR without performing stress testing. They were caught out as a new
paradigm was emerging: as VaR inputs are always historical, none of what was happening was
an ‘input’ to the VaR model.

• Model risk - too many complex plays. Infatuation with sexy deals, which were retained as the
portfolio was reduced. This reduced the liquidity even further.

LTCM was bailed out under rather suspicious circumstances by a consortium of creditors organised by
Alan Greenspan of the Federal Reserve Bank. The exact conditions and motives for this are still not
known - involvement by the legislators increases moral hazard going forward. It was argued that failure
of LTCM could destabilise international capital markets. See (Kolman April 1999), (The Financial
Economists Roundtable October 6, 1999), and the standard book on the subject, (Lowenstein 2000).

2.8 Allied Irish Bank

More recently, Allied Irish Banks PLC disclosed in February that a rogue trader accumulated almost
$700 million in losses over a five-year period. The losses, incurred at its U.S. foreign exchange
operation Allfirst, caused the company to reduce its 2001 net income by over $260 million (about
38%). The Wall Street Journal claimed that Allfirst had a 25-year-old junior employee monitoring
currency trading risk, an assertion that the bank denied. Bank officials believe that John Rusnak
avoided the company’s internal checks by contracting out administration to banks that were complicit
in the fraud.

2.9 National Australia Bank

The NAB options team made a loss in October 2003, right around the time they were expecting their
performance bonuses, and rather than jeopardise them they tried to push the loss forward and wait
for an opportunity to trade out of it - then decided to bet on the Australian dollar dropping. With
the Australian dollar charging ahead in late 2003, they were left with a $180m loss within weeks.

One of the dealers was open with the press. His most serious claim was that the bank’s risk-
management department had been signing off on the losses for months. “We were already over
the limits for a number of months and the bank knew about it... It has been going on and off for a
year and consistently every day since October. It was signed off every day by the risk-management
people.”

This is a direct contradiction of the bank’s claims that the $180 million loss was the result of unau-
thorised trades that had been hidden from senior management.

A former options trader wrote: “I can tell you that NAB have been doing dodgy trading stuff for
much longer than a few months. The global FX options market has been waiting for them to blow
up for years. No-one is surprised by this at all, except the fact that it took so long.”

The risk management situation at NAB seemed very poor. Chris Lewis was the senior KPMG auditor
who had headed a due diligence team to advice whether the bank should buy Homeside in Florida;
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this advise was in the affirmative. As auditor he also signed the 2000 accounts and claimed they were
“free of material mis-statement”, when in fact the bank was about to lose $3.6 billion from mortgage
servicing risk at Homeside, which wasn’t even mentioned in the annual report.

Lewis was hired as the head of risk soon afterwards! It is clearly a conflict to have auditors who spend
years convincing themselves everything is okay and then go and take over the reigns of internal audit
at the same client, as there is a lack of fresh perspective. Not to mention that his competency was in
question.
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Chapter 3

Value at Risk

We will focus for the remainder of this course on measuring market risks. It is only measurement
of this type of risk, that has evolved to a state of near-finality, from a quantitative point of view.
The standard ways of measuring market risks is via VaR or a relative thereof, stress testing, and
sensitivities.

VaR was the first risk management tool developed that took into account portfolio and diversification
effects.

VaR is the largest loss on a portfolio that will be experienced to a given high level of confidence, over
a specified holding period, based on a distribution of value changes.

So, if the 10 day 95% VaR is R10m then over the next 10 days, the portfolio will

• with 95% probability, either make a profit, or a loss less than R10m.

• with 95% probability, will have a p&l of more than -R10m.

• with 5% probability, will make a loss of more than R10m.

• with 5% probability, will have a p&l of less than -R10m.

This does not mean that the ‘risk’ is R10m - the whole porfolio could vapourise, and the loss will
presumably be more than R10m.

Figure 3.1: A typical p&l distribution with tail
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The term 10 days above is known as the ‘holding period’.

The term 95% is known as the ‘confidence level’.

Thus, a formal definition:

Definition 1 The N -day VaR is x at the α confidence level means that, according to a distribution
of value changes, with probability α, the total p&l over the next N days will be −x or more.

Are the following consistent?

• 1 day 95% VaR of R10m

• 1 day 99% VaR of R5m

Certainly not. As our confidence increases the VaR number must increase. So, we might have

• 1 day 95% VaR of R10m

• 1 day 99% VaR of R20m

Are the following consistent?

• 1 day 95% VaR of R10m

• 1 day 99% VaR of R20m

• 10 day 99% VaR of R20m

Certainly not. More likely we would have:

• 10 day 99% VaR of R40m, say.

So, the following may very well be consistent:

• 1 day 95% VaR of R10m

• 1 day 99% VaR of R20m

• 10 day 99% VaR of R40m

Changing the holding period or the confidence level changes the reported VaR, but not the reality.

What are the factors driving the VaR of a position?

• size of positions - should be linear in size. But in extreme cases the size of the position affects
the liquidity.

• direction of positions - not linear in direction eg. a call.

• riskiness of the positions - more speculative positions and/or more volatility should contribute
to an increase in VaR.

• the combination of positions - correlation between positions.

’Distribution of value changes’ - distribution needs to be determined, either explicitly or implicitly,
and sampled. Current VaR possibilities:
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• The Variance-Covariance approach, in other words the classic RiskMetrics© approach, or a
variation thereof.

• Various historical simulation approaches - ‘history repeats itself’.

• Monte Carlo simulation.

The choice of VaR method can be a function of the nature of the portfolio. For fixed income and equity,
a variance-covariance approach is probably adequate. For plain vanilla options a simple enhancement
of VCV such as the delta-gamma approach is often claimed to be suitable (the author disagrees), but
if there are more exotic options, a more advanced full revaluation method is required such as historical
or Monte Carlo.

The fundamental problem we are faced with is how to aggregate risks of various positions. They
cannot just be added, because of possible interactions (correlations) between the risks.

In making the decision of which method to use, there is a tradeoff between computational time spent
and the ‘accuracy’ of the model. It should be noted in this regard that traders will attempt to game
the model if their limits or remuneration is a function of the VaR number and there are perceived
or actual limitations to the VaR calculation. Thus (as already mentioned) limits on VaR need to be
supplemented by limits on notionals, on the sensitivities, and by stress and scenario testing.

3.1 RiskMetrics©

In the following examples we compute VaR using standard deviations and correlations of financial
returns, under the assumption that these returns are normally distributed. In most markets the
statistical information is provided by RiskMetrics, but in South Africa, for example, the data is
provided a day late. This is unsatisfactory for immediate risk management. Thus the institution
should have their own databases of RiskMetrics type data.

The RiskMetrics assumption is that standardised returns are normally distributed given the value of
this standard deviation. This is of course the fundamental Geometric Brownian Motion model.

α% VaR is derived via −zα times the standard deviation of returns, which is given by σ√
250

, where
σ is the annualised volatility of returns. Here z· is the inverse of the cumulative normal distribution,
so, for example, if α = 95% then −z0.95 = −1.645. Thus, a ‘bad’ outcome, for a portfolio which is
positive valued, would be a negative stock return of −zα

σ√
250

, and the VaR is

V

(
1− exp

(
−zα

σ√
250

))
(3.1)

If the portfolio is negative valued, the bad outcome would be a positive stock return of zα
σ√
250

, and
so the VaR is

V

(
1− exp

(
zα

σ√
250

))
(3.2)

Note here we have two negatives, giving us a positive VaR value.

We will call this approach the ‘RiskMetrics full precision’ method. For another possibility, note that
by Taylor series 1−ex ≈ −x ≈ e−x−1. Hence, for either a long or short position, VaR is approximately
given by

|V |zα
σ√
250

(3.3)

We will call this the ‘standard RiskMetrics simplification’. Indeed, when reading (J.P.Morgan &
Reuters December 18, 1996) it is very problematic to know at any stage which method is being referred
to. Unfortunately, the standard simplification method does not have much theoretical motivation:
prices are not normally distributed under any model - it is returns that are typically modelled as
being normal.

14



Example 1 You hold 2,000,000 shares of SAB. Currently the share is trading at 70.90 and the
volatility of the return of SAB, measured historically, is 24.31%.

What is your 95% VaR over a 1-day horizon on 23-Jan-04?

Your exposure is equal to the market value of the position in ZAR. The market value of the position
is 2, 000, 000 · 70.90 = 141, 800, 000.

The VaR of the position is 2, 000, 000 · 70.90 ·
(
1− exp

(
−z0.95

24.31%√
250

))
= 3, 540, 616.

Now suppose we have a portfolio. Here the covolatility matrix Σ is measured in returns. Then σ(R)
is the volatility of the return of the portfolio, and is found as σ(R) =

√
w′Σw as in classical portfolio

theory. Here wi are the proportional value weights, with
∑n

i=1 wi = 1. So VaR can be measured
directly. The assumption is again made that the return R is normally distributed, and the formulae
for VaR are as before.

Example 2 You hold 2,000,000 shares of SAB and 500000 shares of SOL. SOL is trading at 105.20
with a volatility of 32.10%. The correlation in returns is 4.14%. What is your 95% VaR over a 1-day
horizon on 23-Jan-04?

This time, the MtM is 2, 000, 000 · 70.90 + 500000 · 105.20 = 194, 400, 000.

The daily standard deviation in returns are σ1 = 1.54% and σ2 = 2.03%. The value weights are
w1 = 72.94% and w2 = 27.06%. The correlation in returns is ρ = 4.14%. Thus, using the portfolio
theory formula for the standard deviation of the returns of a portfolio,

σ(R) =
√

w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2 (3.4)

which is equal to 1.27% in this case. The VaR calculation proceeds as before, yielding a VaR of
4,015,381.

This is a good opportunity to introduce the concept of undiversified VaR. We calculate the VaR
for each instrument on a stand-alone basis: VaR1 = 3, 540, 616 and VaR2 = 1, 727, 495, for a total
undiversified VaR of 5,268,111. The fact that the VaR of the portfolio is actually 4,015,381 is an
illustration of portfolio benefits.

RiskMetrics provides users with 1.645σ1, 1.645σ2, and ρ. One has to take care of the factor 1.645:
whether to leave it in or divide it out, according to the required application. As has been indicated,
this information is certainly provided in the South African environment, but it is a day late. It is not
difficult to calculate these numbers oneself, using the prescribed methodology. The EWMA method
with λ = 0.94 is the method prescribed by RiskMetrics for the volatility and correlation calculations.

If we make the standard RiskMetrics simplification, a neat simplifying trick is possible. Suppose σ(R)
and Σ are daily measures. Then

VaR = |V |zασ(R) =
√

V 2zα

√
w′Σw = zα

√
W ′ΣW (3.5)

where Wi = wiV is the value of the ith component.

Calculating VaR on a portfolio of cash flows usually involves more steps than the basic ones outlined
in the examples above. Even before calculating VaR, you need to estimate to which risk factors a
particular portfolio is exposed. The RiskMetrics methodology for doing this is to decompose financial
instruments into their basic cash flow components. We use a simple example - a bond - to demonstrate
how to compute VaR. See (J.P.Morgan & Reuters December 18, 1996, §1.2.1).

Example 3 Suppose on 25-Jun-03 we are long a r150 bond. This expires 28-Feb-05, with a 12.00%
coupon paid, with coupon dates 28-Feb and 31-Aug. How do we calculate VaR using the standard
RiskMetrics simplification?
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The first step is to map the cash flows onto standardised time vertices, which are 1m, 3m, 6m, 1y,
2y, 3y, 4y, 5y, 7y, 9y, 10y, 15y, 20y and 30y (J.P.Morgan & Reuters December 18, 1996, §6.2). We
will suppose we have the volatilities and correlations of the return of the zero coupon bond for all of
these time vertices.

The actual cash flows are converted to RiskMetrics cash flows by mapping (redistributing) them onto
the RiskMetrics vertices. The purpose of the mapping is to standardize the cash flow intervals of the
instrument such that we can use the volatilities and correlations of the prices of zero coupon bonds
that are routinely computed for the given vertices in the RiskMetrics data sets. (It would be impossible
to provide volatility and correlation estimates on every possible maturity so RiskMetrics provides a
mapping methodology which distributes cash flows to a workable set of standard maturities).

The RiskMetrics methodology (J.P.Morgan & Reuters December 18, 1996, Chapter 6) for mapping
these cash flows is not completely trivial, but is completely consistent. We linearly interpolate the risk
free rates at the nodes to risk free rates at the actual cash flow dates. Likewise we linearly interpolate
the price volatilities at the nodes to price volatilities at the actual cash flow dates.

However, there is another method of calculating the price return volatility of the interpolated node. If
A and C are known, and B is interpolated between them,

σB =
√

w2σ2
A + 2w(1− w)ρA,CσAσC + (1− w)2σ2

C (3.6)

Here the unknown is w; the above can be reformulated as a quadratic, where w ∈ [0, 1] is the smaller
of the two roots of the quadratic αx2 + βx + γ with

1α = σ2
A + σ2

C − 2ρA,CσAσC

β = 2ρA,CσAσC − 2σ2
C

γ = σ2
C − σ2

B

Thus we have a portfolio of cash flows occurring at standardised vertices, for which we have the price
volatilities and correlations.

Using the formula VaR = z95%

√
W ′ΣW we get the VaR of the bond.

When the relationship between position value and market rates is nonlinear, then we cannot estimate
changes in value by multiplying ‘estimated changes in rates’ by ‘sensitivity of the position to changing
rates’; the latter is not constant (i.e., the definition of a nonlinear position).

Recall that for equity option positions

δV ≈ ∂V

∂S
δS + 1

2

∂2V

∂S2
(δS)2

= ∆ δS + 1
2Γ (δS)2.

The RiskMetrics analytical method approximates the nonlinear relationship via a Taylor series expan-
sion. This approach assumes that the change in value of the instrument is approximated by its delta
(the first derivative of the option’s value with respect to the underlying variable) and its gamma (the
second derivative of the option’s value with respect to the underlying price). In practice, other greeks
such as vega (volatility), rho (interest rate) and theta (time to maturity) can also be used to improve
the accuracy of the approximation. These methods calculate the risk for a single instrument purely
as a function of the current status of the instrument, in particular, its current value and sensitivities
(greeks).

We present two types of analytical methods for computing VaR - the delta and delta-gamma approxi-
mation. In either case, the valuation is a monotone function of the underlying variable, and so a level

1Don’t try to solve these quadratics in excel. Spurious answers are typical because these numbers are typically very
small. Precision in vba or better is fine though.
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Figure 3.2: The RiskMetrics method for cash flows (for example, coupon bonds)17



Figure 3.3: A comparison of value, the delta approximation, and the delta-gamma approximation

of confidence of that variable can be translated into the same level of confidence for the price. Note
the assumption that only the underlying variable can change; other variables such as volatility are
fixed.

Note from the diagram that if we are long the equity call option then the delta-gamma method gives

VaR(V ) = ∆(S − S−)− 1
2Γ(S − S−)2

and if we are short the equity option then

VaR(V ) = ∆(S+ − S) + 1
2Γ(S+ − S)2.

where S− is that down value of the stock which corresponds to the confidence level required, and S+

is that up value of the stock which corresponds to the confidence level required. The delta method
would be given by the first order terms only.

The role of gamma here is quite intuitive - long gamma ensures additional profit under any market
move, and so reduces the risk of the long position, conversely, it increases the risk of a short position.
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Because of the sign differences in whether we are long or short, care needs to be taken with aggregation
using this approach. Furthermore, this approach ignores the fact that there are other variables which
impact the value of the position, such as the volatility in the case of an equity option, which in reality
needs to be estimated and measured frequently. Since there is a correlation between price changes
and changes in volatility, this missing factor can be significant.

Furthermore, for these methods to have any meaning at all, the price of the derivative must be a
monotone function of the price of the underlying.2

Example 4 Let us consider an OTC European call option on the ALSI40, expiry 17-Mar-05, strike
10,000, with the current valuation date being 15-Jan-04. The RiskMetrics method will focus on price
risk exclusively and therefore ignore the risk associated with volatility (vega), interest rate (rho) and
time decay (theta risk).

The spot of the ALSI40 is 10,048, and the dividend yield for the term of the option is estimated
as 3.00%. The risk free rate for the term of the option is 8.40% and the SAFEX volatility for the
term is 20.50%. As mentioned, we will assume that these values do not change, and we will use the
SAFEX volatility without any considerations for the skew, and allowing for this blend of exchange
traded models and otc models.

The value of the position is 1,185.41, the delta is 0.638973, and the gamma 0.000158.

The daily volatility σ of the ALSI40 is 1.30%. Thus S− = Se−1.645σ = 9, 835.98, and S+ = Se1.645σ =
10, 264.59. Hence, with the delta method, if we are long then

VaR(V ) = ∆(S − S−) = 135.47

and if we are short then
VaR(V ) = ∆(S+ − S) = 138.39

and with the delta-gamma method, if we are long then

VaR(V ) = ∆(S − S−)− 1
2Γ(S − S−)2 = 131.91

and if we are short then

VaR(V ) = ∆(S+ − S) + 1
2Γ(S+ − S)2 = 142.11.

The delta approximation is reasonably accurate when the spot does not change significantly, but less
so in the more extreme cases. This is because the delta is a linear approximation of a non linear
relationship between the value of the spot and the price of the option. We may be able to improve
this approximation by including the gamma term, which accounts for nonlinear (i.e. squared returns)
effects of changes in the spot.

Note that in this example, how incorporating gamma changes VaR relative to the delta-only approx-
imation.

The main attraction of such a method is its simplicity, however, this is also the problem. This approach
ignores other effects such as interest rate and volatility exposure, and fits a normal distribution to
data which is known not to be normally distributed. As such it will underestimate the frequency
of large moves and should underestimate the ‘true VaR’. This method is really only suitable for the
simplest portfolios.

Despite the number of possibly tenuous assumptions, RiskMetrics performs satisfactorily well in back-
testing. (Pafka & Kondor 2001) claim that this is an artifact of the choice of the risk measure: firstly
that the forecasting horizon is one day, and secondly that the significance level is 95%. The first factor
allows even fairly crude volatility models to perform well, and secondly the fact that the significance
level is not too high means that the fat tail effect is not too severe.

2For example, how would one use methods like this to do calculations involving barrier options, which have traded
in the South African market?
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For more complicated portfolios - ones with several instruments, including options, the RiskMetric
approach involves moment matching. For this, see (Zangari 1996), (Mina & Ulmer April 1999),
(Pichler & Selitsch 2000) and (Hull 2002, Chapter 16).

3.2 Classical historical simulation

The historical method is a full revaluation method. The revaluation of the entire portfolio is calculated
for each of the last N days, as if the evolution in market variables that occurred on each of those days
was to reoccur now. Thus,

ln
xi

x(t)
= ln

x(i)
x(i− 1)

(3.7)

or

xi = x(t) · x(i)
x(i− 1)

(3.8)

would be the market factor update formula for the variable x. Here t denotes the current day, i one
of the past business days, t−N + 1 ≤ i ≤ t, and i− 1 the business day before that.

Example 5 Suppose on 22-Jan-04 we are long a r153 bond. We perform 400 historical simulations
on the ytm. We then apply the bond pricing formula ie. full revaluation to the ytms so obtained to
get the all in price of the bond on 28-Jan-04. This is FOUR business days after 22-Jan-04, which is
three days after the next business date.

We get from full revaluation 400 bond prices: a minimum of 1.2316, a 5th percentile of 1.2387, an
average of 1.2440, a 95th percentile of 1.2497, and a maximum of 1.2600. Thus if we are long the
bond then the 95% VaR is 0.0054 per unit, and if we are short then the 95% VaR is 0.0057 per unit.

We could also simply determine the appropriate percentile ytm and calculate the AIP there, to get the
same results. However, this does not help as soon as we start aggregation.

Example 6 Let us consider an OTC European call option on the ALSI40; expiry 20-Mar-03, strike
12000, with the current valuation date being 19-Jun-02. We perform 400 historical simulations on the
spot, on the risk free rate, and on the atm volatility, valuing on 20-Jun-02. We stress the dividend yield
in the reverse direction of the spot stress in such a manner that the monetary value of the dividends
is constant.

We get from full revaluation 400 option prices: a minimum of 294.59, a 5th percentile of 400.20, an
average of 468.22, a 95th percentile of 551.17, and a maximum of 754.32. Thus if we are long the
option then the 95% VaR is 68.02, and if we are short then the 95% VaR is 82.95.

3.3 Historical simulation with volatility adjusting

This method was first proposed in (Hull & White 1998), and has become quite prevalent academically.
It has not been widely implemented in the industry, although it is starting to gain some prominence
in South Africa. One of the main critisms of the historical method is that the returns of the past can
be inappropriate for current market conditions. For example, if our window of N days is an almost
entirely quiet period, and there is currently a very sudden spike in volatility, the historical method
would still be using the ’quiet data’, and the new volatility regime would only be factored in gradually,
one day at a time.

The Historical V@R method accurately reflects the historical probability distribution of the market
variables, which is an attractive feature especially in markets where the normality assumption is
far from reality. However, historical V@R’s main disadvantage is that it incorporates no volatility
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Figure 3.4: The bucketed values of the instrument in 400 experiments for historical V@R

updating, in that it assumes the distribution of returns is stationary. As we will see, the Hull-White
method is a modification of the historical method that overcomes this difficulty.

If the current volatility of a market variable is 30% per day and a month ago was 15%, the returns a
month ago understate the returns we expect to see now. The Hull-White method adjusts the historical
data on each market variable to reflect the difference between the old historical volatility of the market
variable and its current historical volatility, so in the above example, it doubles the return that was
observed.

The basic idea of the volatility adjusting is that we should only compare standardised variables, which
have been standardised by dividing by their volatility. Thus

1
σ(t)

ln
xi

x(t)
=

1
σ(i− 1)

ln
x(i)

x(i− 1)

or

xi = x(t) ·
(

x(i)
x(i− 1)

) σ(t)
σ(i−1)

would be the experimental values for the factor x, indexed by the value i where t − N + 1 ≤ i ≤ t.
The volatility is historical volatility, unless a reliable implied volatility is available, in which case it is
implied volatility.

An appropriate method for implied volatility updating is required. If exactly the same strategy is
to be used one will need to measure and adjust by the volatility of volatility. But mathematically
one cannot use any historical volatility calculation scheme - such as EWMA for example - as implied
volatility does not follow a (Geometric Brownian Motion) random walk, but is mean reverting. We
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prefer just to use straight historical for implied volatility. Thus, for implied volatility σI :

σi
I = σI(t)

σI(i)
σI(i− 1)

and we have three market factor update formulae:

xi = x(t) ·
(

x(i)
x(i− 1)

) σ(t)
σ(i−1)

(3.9)

xi = x(t) ·
(

x(i)
x(i− 1)

) σI (t)
σI (i−1)

(3.10)

σi
I = σI(t)

σI(i)
σI(i− 1)

(3.11)

where

• (3.9) is used where the variable x is available and implied volatility is not, so an historical
volatility is calculated;

• (3.10) is used where the variable x is available and a reliable estimate of implied volatility is too
(for example, a futures level);

• (3.11) is used on an implied volatility variable.

Very often implied volatilities are suspicious, due to being stale or illiquid, and in this case, the
historical volatility should be preferred i.e. (3.9) should be preferred to (3.10).

Example 7 Let us consider the same OTC European call option on the ALSI40 as before: expiry
20-Mar-03, strike 12,000, with the current valuation date being 19-Jun-02. We perform 400 historical
simulations with volatility adjusting on the spot, on the risk free rate, and simple historical simulations
on the atm volatility, valuing on 20-Jun-02. We stress the dividend yield as previously.

We get from full revaluation 400 option prices: a minimum of 316.66, a 5th percentile of 406.19, an
average of 466.72, a 95th percentile of 540.30, and a maximum of 717.58. Thus if we are long the
option then the 95% VaR is 60.53, and if we are short then the 95% VaR is 73.59.

In a personal communication, Alan White says “I always liked that [the Hull-White] scheme. My view
is that the various approaches form a continuum in which different methods are used to characterize
the distributions in question. The parametric approach tries to match moments. It can evolve quickly
but fails to capture many of the details of the distributions. The historical simulation assumes the
sample distribution is the population distribution. This captures the details of the distribution but
evolves too slowly if the distribution is not stationary. We attempted to marry these two approaches.”

An example of a time series of p&l’s and (minus) the VaRs under various methods is as in Figure
3.5. This shows, for example, how the historical method is completely inadequate: at the time of a
market crash, the VaR measure does not jump, as logically it should.

3.4 Monte Carlo method

The second alternative offered by RiskMetrics, structured Monte Carlo simulation, involves creating
a large number of possible rate scenarios and performing full revaluation of the portfolio under each
of these scenarios.

VaR is then defined as the appropriate percentile of the distribution of value changes. Due to the
required revaluations, this approach is computationally far more intensive than the analytic RiskMet-
rics approach. The two RiskMetrics methods - analytic and Monte Carlo - differ not in terms of how
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Figure 3.5: p&l’s and VaR for a long ALSI40 position

market movements are forecast (since both use the RiskMetrics volatility and correlation estimates)
but in how the value of portfolios changes as a result of market movements. The analytical approach
approximates changes in value, while the structured Monte Carlo approach fully revalues portfolios
under various scenarios.

The RiskMetrics Monte Carlo methodology consists of three major steps:

• Scenario generation, using the volatility and correlation estimates for the market factors which
drive our portfolio, we produce a large number of future price scenarios in accordance with the
lognormal models.

• For each scenario, we compute instrument (molecule) values and then portfolio values.

• We report the results of the simulation, either as a portfolio distribution or as a particular risk
measure.

Other Monte Carlo methods may vary the first step by creating returns by (possibly quite involved)
modelled distributions, using pseudo random numbers to draw a sample from the distribution. The
next two steps are as above. The calculation of VaR then proceeds as for the historical simula-
tion method. Indeed, this is very similar to the historical method except for the manner in which
experiments are created.

The advances in RiskMetrics Monte Carlo is that one overcomes the pathologies involved with ap-
proximations like the delta-gamma method.

The advances in other Monte Carlo methods over RiskMetrics Monte Carlo are in the creation of the
distributions. However, to create experiments using a Monte Carlo method is fraught with dangers.
Each market variable has to be modelled according to an estimated distribution and the relationships
between distributions (such as correlation or less obvious non-linear relationships, for which copulas
are becoming prominent). Using the Monte Carlo approach means one is committed to the use of such
distributions and the estimations one makes. These distributions can become inappropriate; possibly
in an insidious manner. To build and ‘keep current’ a Monte Carlo risk management system requires
continual re-estimation, a good reserve of analytic and statistical skills, and non-automatic decisions.
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Example 8 Suppose we hold an r153 bond on 22-Jan-04. What is the VaR?

The close was 9.10%. We estimate the annual volatility of the yield to be 12.25%. Using excel/vba, we
first create uniformly distributed random numbers U then transform them into normally distributed
random numbers Z by using the inverse of the cumulative normal distribution.3 We then determine
our new yields: y(T +1) = y(T ) exp

(
σ√
250

Z
)
. We then apply the bond pricing formula for 28-Jan-04

to get the new all in prices. We then work out the VaR, by examining averages and percentiles, in the
usual way. The 95% VaR is about 6,417 (long) and 6,473 (short) per unit.

Choleski decomposition

Suppose we are interested in a portfolio with more than one security, or more generally, more than
one source of random normal noise. Let us start with the case where we have two such random
variables. We cannot simply take two random number generators and paste them together, unless the
underlyings are independent. However, typically there will be a measured or estimated correlation
between the two random variables, and this needs to appear in the random numbers generated.

If the two stocks were uncorrelated, we could have

r1 = a1Z1, r2 = a2Z2

With the correlation, we want the Z1 to influence r2. Thus the appropriate setup is
[

r1

r2

]
=

[
a1,1 0
a2,1 a2,2

] [
Z1

Z2

]
. (3.12)

or r = AZ. Thus
rr′ = AZZ ′A′ (3.13)

and so
Σ = AA′ (3.14)

by taking expectations. Thus, A is found as a type of lower-triangular square root matrix of the
known variance-covariance matrix Σ. The most common solution (it is not unique) is known as the
Choleski decomposition. All that has been said is valid for any number of dimensions, and simple
algorithms for calculating the Choleski decomposition are available (Burden & Faires 1997, Algorithm
6.6).

In the case of two variables, it is convenient to explicitly note the solution. Here

Σ =
[

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
(3.15)

and

A = 4

[
σ1 0
σ2ρ σ2

√
1− ρ2

]
(3.16)

A theoretical requirement here is that the matrix Σ be positive semi-definite. The covariance matrix
is in theory positive definite as long as the variables are truly different ie. we do not have the situation
that one is a linear combination of the others (so that there is some combination which gives the 0
entry). If there are more assets in the matrix than number of historical data points the matrix will
be rank-deficient and so only positive semi-definite. Moreover, in practice because all parameters are
estimated, and in a large matrix there will be some assets which are nearly linear combinations of
others, and also taking into account numerical roundoff, the matrix may not be positive semi-definite
at all (Dowd 1998, §2.3.4). However, this problem has recently been completely solved (Higham 2002),
by mathematically finding the (semi-definite) correlation matrix which is closest (in an appropriate
norm) to a given matrix, in particular, to our mis-estimated matrix.

3In excel this is given by the function norminv.
4Note the error in (Dowd 1998, Chapter 5 §2.2).
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Example 9 We reconsider the example in Example 2. You hold 2,000,000 shares of SAB and 500000
shares of SOL. SOL is trading at 105.20 with a volatility of 32.10%. The correlation in returns is
4.14%. What is your 95% VaR over a 1-day horizon on 23-Jan-04?

Using excel/vba, we first extract pairs of uniformly distributed random numbers U1, U2, then transform
them into pairs of normally distributed random numbers Z1, Z2 by using the inverse of the cumulative
normal distribution. We then apply the Choleski decomposition:

r1 =
σ1√
250

Z1, r2 =
σ2√
250

(ρZ1 +
√

1− ρ2Z2) (3.17)

and determine our new prices: S1(T +1) = S1(T ) exp(r1), S2(T +1) = S2(T ) exp(r2). We then work
out the portfolio MtF’s, and then work out the VaR, by examining averages and percentiles, in the
usual way. The 95% VaRs are 3,979,192 and 4,058,332.

A possible example of the first few calculations is shown in Table 3.1. The calculation would typically
use 10,000 calculations or more.

Rnd(1) Rnd(2) Cumnorm
inverse(1)

Cumnorm
inverse(2)

Correlated
return(1)

Correlated
return(2)

MtF(1) MtF(2) New portfo-
lio MtM

0.7055 0.5334 0.5404 0.0839 0.0083 0.0022 71.49 105.43 195,696,457
0.5795 0.2896 0.2007 -0.555 0.0031 -0.011 71.12 104.04 194,258,373
0.3019 0.7747 -0.519 0.7545 -0.008 0.0149 70.34 106.78 194,061,564
0.014 0.7607 -2.197 0.7086 -0.034 0.0125 68.55 106.53 190,354,401
0.8145 0.709 0.8946 0.5506 0.0138 0.0119 71.88 106.46 196,994,225
0.0454 0.414 -1.692 -0.217 -0.026 -0.006 69.08 104.59 190,454,297
0.8626 0.7905 1.0922 0.8081 0.0168 0.0173 72.10 107.04 197,719,253

Table 3.1: The first few experiments under a bivariate Monte Carlo run

Example 10 Consider on 22-Jan-04 a portfolio which consists of long 110,000,000 r153 and short
175,000,000 tk01. The closes of these instruments are 9.10% and 9.41% respectively, with AIP for
27-Jan-04 being 1.2434199 and 1.0524115 respectively, and delta -5.464 and -3.433 respectively. Thus
this is an almost delta neutral portfolio; the risks associated should be quite small.

We have σ1 = 12.25%, σ2 = 15.18%, and ρ = 91.25%.

Using excel/vba, we first extract pairs of uniformly distributed random numbers U1, U2, then transform
them into pairs of normally distributed random numbers Z1, Z2 by using the inverse of the cumulative
normal distribution. We then apply the Choleski decomposition:

r1 =
σ1√
250

Z1, r2 =
σ2√
250

(ρZ1 +
√

1− ρ2Z2) (3.18)

and determine our new yields: y1(T + 1) = y1(T ) exp(r1), y2(T + 1) = y2(T ) exp(r2). We then apply
the bond pricing formula to get the new all in prices. We then work out the VaR, by examining
averages and percentiles, in the usual way. The 95% VaRs are 296,964 and 291,291.

Another very effective and computationally very efficient way around this problem is to reduce the
dimensions of the problem by using principal component analysis or factor analysis. Principal compo-
nent analysis is a topic on its own, and has become very prevalent in financial quantitative analysis.
See (Dowd 1998, Box 3.3).

3.5 Summary

Here we summarise the essential features of the competing methods.
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RiskMetrics Historical Hull-White Monte Carlo
Revaluation analytic full full full
Distributions normal actual quasi-actual created
Tails thin actual quasi-actual created
Intellectual effort moderate very low low very high
Model risk enormous moderate low high
Computation time low moderate moderate high
Communicability easy easy moderate very difficult

In the same correspondence as previously, Alan White says “In my experience in North America
the historical simulation approach has won the war. Some institutions use the parametric approach
(particularly those with large portfolios of exotics) but they appear to be in the minority. I don’t know
anyone who uses the approach we suggested despite its advantages. Perhaps the perception is that
the improvement in the measures does not compensate for the cost of implementing the procedure.
Just maintaining the historical data base seems to tax the capabilities of many institutions.

As for software vendors [implementing the Hull-White method], my sense is that this market segment
(VaR systems) is now a mature market with thin profits for the software companies. It seems unlikely
to me that they will be implementing many changes in this environment.”
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Chapter 4

Stress testing and Sensitivities

4.1 VaR can be an inadequate measure of risk

VaR is generally used as a quantitative measure for how severe losses could be. Yet, significant
catastrophes have been evident, even in instances where state-of-the-art VaR computations have been
deployed. For example, VaR calculations were conducted prior to the implosion in August 1998 by
Long-Term Capital Management (LTCM). What went wrong with LTCM risk-forecasts? They may
have placed too much faith on their exquisitely tuned computer models. Sources say LTCMs worst-
case scenario was only about 60% as bad as the one that actually occurred. In other words, stress
testing was inadequate. In fact, it seems that stress-testing was almost non-existent at LTCM; most
risk-measurement was done using VaR methods. The problem has, at its basis, LTCMs inability to
accurately measure, control and manage extreme risk. It is extreme risk that LTCMs VaR calculations
could not accurately estimate, and it is extreme risk that needs to be measured in stress testing.

Stress tests can provide useful information about a firm’s risk exposure that VaR methods can easily
miss, particularly if VaR models focus on “normal” market risks rather than the risks associated
with rare or extreme events. Such information can be fed into strategic planning, capital allocation,
hedging, and other major decisions.

Stress testing is essential for examining the vulnerability of the institution to unusual events that
plausibly could happen (but have not previously happened, so are not ‘inputs’ to our VaR model)
or happen so rarely that VaR ‘ignores’ them because they are in the tails. Thus, market crashes are
typically washed into the tails, so VaR does not alert us to their full impact. Thus stress testing is a
necessary safeguard again possible failures in the VaR methodology.

Scenarios should take into account the effects that large market moves will have on liquidity. Usually
a VaR system will assume perfect liquidity or at least that the existing liquidity regime will be
maintained.

The results of scenario analysis should be used to identify vulnerabilities that the institution is exposed
to. These should be actioned by management, retaining those risks that they see as tolerable. (It is
impossible to remove all risks because by doing so the rewards will also disappear.)

4.2 Stress Testing

There are various types of stress analysis (Wee & Lee 1999), (Fender, Gibson & Mosser November
2001):

• The first type uses scenarios from recent history, such as the 1987 equity crash. We can ask
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what the impact would be of some historical market event, such as a market crash, repeating
itself.

• Institution-specific scenario analysis. Identify scenarios based on the institution’s portfolio,
businesses, and structural risks. This seeks to identify the vulnerabilities and the worst-case
loss events specific to the firm.

• Extreme standard deviation scenarios. Identify extreme moves and construct the scenarios in
which such losses can occur. For example, what will be the losses in a 5 - 10 standard deviation
event?

• Predefined or set-piece scenarios that have proven to be useful in practice. The risk manager
should also be able to create plausible scenarios.

• Mechanical-search stress tests, also called sensitivity stress tests (Fender et al. November 2001),
(Hosoya & Shimizu December 2002). This can be performed fairly mechanically. Key variables
are moved one at a time and the portfolio is revalued under those moves. What results is a
vector or matrix of portfolio revaluations under the market moves.

Any market modelling required for these purposes is usually fairly routine. For example, when
stressing the ‘price level’ of the equity market, individual stocks may be stressed in a manner
consistent with the Capital Asset Pricing Model (Sharpe 1964) ie.

dS

S
= α + β

dI

I

where S denotes the stock and I the index, and the CAPM parameters α and β are of the stock
w.r.t. to index. This ensures that the volatility dispersion within the portfolio is modelled.
Furthermore, α can be eliminated from the above equation because it is usually insignificant
when compared with the size of stress that we are interested in.

• Quantitative evaluation of distributions of tail events and extreme value theory. Based on
observed historical market events, quantify the impact of a series of tail events to evaluate the
severity of the worst case losses. This approach also evaluates the distribution of tail events to
determine if there are any patterns that should be used for scenario analysis.

4.3 Other risk measures and their uses

• Stress testing.

• Greeks or sensitivities - the favourite of dealers, because it is on this basis that they will manage
the book.

– aggregate delta of an equity option portfolio,

– aggregate rho of a fixed income portfolio,

– gamma or convexity.

• key rate duration - shifting pieces of the yield curve, or even other term structures such as
volatility. This is therefore a type of scenario analysis.

• Cash ladders - asset liability management.

• Stop-loss limits.

Many of these measures are much ’lower-level’ than V@R. They provide information only about
a limited subset of a portfolios risk, and illuminate the specific contributors to risk. It gives the
directional impact of each risk - ‘the feel of the risks’.
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Figure 4.1: A price-volatility stress matrix

This will help a risk manager understand where the risks come from and what can be done to lower
it (if necessary). VaR can be (although it does not have to be) a type of ‘black box’. In this regard, it
should be noted that there is a definite distinction between risk measurement and risk management.
Risk measurement is a natural consequence of the ability to price instruments and manage the data
associated with that pricing, and is best performed with a blend of analytic and IT skills. Risk
management is the process of considering the business reasons and intuitions behind the risk measures
and then acting upon them. Here business skills and plain obstinacy are most appropriate.

All risk measures can be equally valid and can be aimed at different audiences, for example:

• Greeks are for the dealer,

• stress and VaR for management,

• VaR (supplemented by stress testing) are for the regulator.

The uses of these risk measures can be inferred in a logical manner in terms of the limit hierarchy
that is placed on the business.

• Individual dealers, following explicit strategies, should have their limits set via the Greeks,

• stress and VaR limits should be placed from the desk level, up to the level of the entire institution,

• the stress and VaR figures for the entire institution are provided to the regulator.
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4.4 Calculating analytic Greeks

4.4.1 Interest rate instruments

By this we mean instruments such as JIBAR instruments, bonds, FRAs and swaps, all of which do
not have a volatility input.

(1) Suppose we have any set of fixed cash flows, such as a JIBAR instrument or a bond. A FRA also
falls into this category, because of the way in which it can be mapped as a fixed long and a fixed
short cash flow. See (West 2006, §1.7). Thus, we have

Vflows =
n∑

i=1

cie
−riτi

for some cash flows c1, c2, . . . , cn and some terms τ1, τ2, . . . , τn. r1, r2, . . . , rn are the NACC
rates for the terms τ1, τ2, . . . , τn.

Let us now calculate
dV

dr
, the derivative w.r.t. parallel shifts in the yield curve. Clearly

dV

dr
=

n∑

i=1

−τicie
−riτi (4.1)

We will also be interested in the sensitivity of instruments to movements in particular parts of
the yield curve - we will want to bucket the ρ exposures. In this case it is straightforward: for
each bucket, we simply take the summation over the flows that occur in that particular bucket.

We can also calculate the decay in value due to time:

dV

dτ
=

n∑

i=1

−ricie
−riτi (4.2)

Note that in this derivative, τ is a variable which increases; in order to obtain the theta, we would
negate this quantity.

(2) Let us consider a just issued swap. The value of the fixed payments is

Vfix = R

n∑

i=1

αiZ(t, ti) (4.3)

where R is the agreed fixed rate (known as the swap rate), n is the number of payments out-
standing, and αi is the length of the ith 3 month period on an actual/365 basis. This valuation
formula holds whether or not today t is a reset date.

Although notionals are not exchanged at termination, let us imagine that they are. Then the
value of the fixed payments become

Vfix = R

n∑

i=1

αiZ(t, ti) + Z(t, tn) (4.4)

Given that the notional on the floating leg is now paid, the floating leg is just a floating rate note,
so it has a value of 1: it is not exposed to any interest rate risks.

Now let us suppose that the swap is under way. suppose the period under way is of length α1

and the rate has been fixed at time t0 < t to be rfix
1 . Effectively the floating leg is now a fixed

payment at t1 and the creation of a notional 1 floating rate note at that time. Hence it has value

Vfloat = Z(t, t1)
[
1 + α1r

fix
1

]
(4.5)
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Finally, suppose that the swap is forward starting; suppose the forward observation date is t0 > t,
payments will commence at t1. Then

Vfloat = Z(t, t0) (4.6)

as the floating payments are just the creation of a floating rate note at time t0.

Thus we have rewritten both the fixed and the floating legs of the swap as a portfolio of known
cash flows. Calculation of greeks and bucketing will be as before.

(3) For options, bucketing of the risks will need to be performed.

4.4.2 Equity Forwards

Possibly the only case where analytic Greeks for equity derivatives can be used is for forwards:

Vforward = S −Q− e−rτX

where Q is the present value of dividends. See (West 2006, §8.5). Then ∆ = 1 and ρ = τe−rτX.

4.5 Numeric greeks for equity instruments

4.5.1 What is a numeric sensitivity?

Where analytic formulae hold true these can be used for calculation of sensitivities. For the most part
however, analytic Greek formulae do not hold true. In this case, we need to estimate the sensitivities
numerically.

See Figure 4.2. The horizontal axis is spot, so the gradient of the curve is the delta curve. At a spot
value of 90, delta is the slope of the soft line, which is tangent to the graph at 90. Alternatively, we
could estimate the delta to be the gradient of the darker line. This is the line which goes through the

point (80, V (80)) and (100, V (100)). This line has a gradient of
V (100)− V (80)

100− 80
. Providing we have

a formula for the value function V (·) this is easily calculated, even if we do not have a formula for the
slope.

This numerical Greek has been calculated with what we will call a ‘twitch’ of 10 (Rands, or points).

The Greek is ∆ =
V (S + ε)− V (S − ε)

2ε
where here ε is 10. Typically we will make ε much smaller.

Also, we will make the changes relative, not absolute: a twitch of 10 doesn’t make much sense when
the spot is 5! So we calculate as follows:

∆ =
V (S + εS)− V (S − εS)

(S + εS)− (S − εS)

=
V (S + εS)− V (S − εS)

2εS

In this example, it seems that only S is moving. In reality, when S moves, other variables might move
too, and that needs to be taken into account in this calculation. Such numeric Greeks are sometimes
called ‘shadow’ Greeks e.g. shadow gamma (Taleb 1997).

Numeric Greeks are necessary when there is a skew

The skew can be summarised with the statement that, for otherwise identical options, at different
strikes there will be different volatilities in use, which are then plugged into the relevant Black (-
Scholes or SAFEX-) equation. Furthermore, when stock price moves there will be a simultaneous
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Figure 4.2: Numerical calculation of the delta of an option

Figure 4.3: The delta under a flat model and under a stochastic volatility model for different strikes

move in the skew. Thus it is erroneous to model volatility as constant. The extent to which volatility
moves as a consequence of spot/futures moving can be exactly modelled within a stochastic volatility
model, for example.

If the futures level moves, then the skew model predicts the skew volatility will also move. The skew
model will price the option taking into account the movement in the futures level AND the movement
in the skew volatility. This could have a dramatic effect on the delta.
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Numeric Greeks are necessary when there is a dividend yield

Another example where analytic Greeks fail is where an equity option price includes a dividend yield.
The typical calculation of Greeks such as Delta would proceed under the assumption that the dividend
yield remains constant, as we have seen in the Black-Scholes equation. However, in reality this is not
the case. All other things being equal, when the stock price moves up, the dividend yield will move
down. In fact, for moderate moves in stock (as is the case here) it would be better to model that
the present value of short term dividends (that means, perhaps, the dividends during the life of the
option) remains constant. The impact of making the erroneous assumption that the dividend yield is
a constant can be quite material.

For example, if we assume that the present value of dividends is the constant, then ∆ = ηN(ηd1)
(although now of course assuming that there is no skew)! Thus the error is of order e−qτ , which is
very material where the dividends are significant or the term is long.

4.5.2 Algorithms for calculating numeric sensitivities

(a) Delta, ∆ = ∂V
∂S , where S denotes the price of the underlying. Numerically, Delta is found using

central differences as

∆ =
V ((1 + ε)S)− V ((1− ε)S)

2εS
(4.7)

∆ gives the change in value of V for a one point (rand or index point) change in S.

Because ∆ cannot be aggregated across different underlyings, it is not as useful as ∆S. From the
above, ε∆S is to first order the profit on V for a change of εS to the value of S. Thus ±.01∆S
is the profit on a 1% move up/down in the underlying. ∆S is the rand equivalent delta, and can
be aggregated across different underlyings.

(b) Gamma, Γ = ∂2V
∂S2 . Numerically, Γ is found as

Γ =
V ((1 + ε)S)− 2V (S) + V ((1− ε)S)

ε2S2
(4.8)

εΓS is the approximate change in ∆ requirements for a change of εS to the value of S i.e. the
number of additional S needed for rebalancing the hedge.1 This rebalancing will cost about εΓS2.

ΓS2 is used for measuring the notional cost of rebalancing the hedge, and is the rand equivalent
Gamma. ±0.01ΓS2 is the notional cost of rebalancing the hedge under a 1% move up/down in S.

(c) Vega is defined to be ∂V
∂σatm

ie. the sensitivity to changes in the level of the SAFEX atm term
structure. This is found numerically using central differences as

V =
V (σatm + ε)− V (σatm − ε)

2ε
(4.9)

where σatm denotes the entire SAFEX atm volatility term structure of the index; the shift of ε is
made parallel to the entire term structure.

±0.01V gives the profit on a 100bp move up/down in the SAFEX atm term structure.

(d) Theta, Θ = ∂V
∂t , is an annual measure of the time decay of V . We calculate

Θ =
V (t + ε)− V (t)

ε
· 365 (4.10)

Whether we now multiply by 1
250 to get the time value gain on V per trading day, or by nbd(t)−t

365
to get the time value between date t and the next business day, or simply by 1

365 , is largely a
matter of choice.

1Since, by Taylor series, ∆(S + εS) = ∆(S) + ΓεS + · · · .
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Also, there are two different possible assumptions about what happens to S as time moves forward.
The one is that S remains constant, so θ is calculated without moving S. The other is that S
rolls up the forward curve, so in the shadow calculation we replace S with Serε, and also take
into account any dividend payments.

(e) Rho, ρ = ∂V
∂r , where r denotes the input risk free rate NACC. These are found from a standard

NACC yield curve. In the case of multiple input risk free rates, ρ is the sensitivity to a simulta-
neous (parallel) shift in the entire term structure. ρ is found numerically using central differences
as

ρ =
V (r + ε)− V (r − ε)

2ε
(4.11)

±0.01ρ gives the profit on a 100bp NACC parallel move up/down in the term structure.

4.5.3 Taylor series

Consider a first order (delta-gamma-rho-vega-theta) Taylor series expansion as follows:

dV ' ∆ δS + 1
2Γ (δS)2 + ρ δr + V δσatm + θ δt

This expansion allows us to attribution our p&l according to the sensitivities, and this enables us to
analyse what type of bets the dealer is making.

For a simple instrument, such as an equity derivative, we can attribute the p&l as

• ∆t−1 (St − St−1) is the p&l due to delta;

• 1
2Γt−1 (St − St−1)2 is the p&l due to gamma;

• ρt−1 (rt − rt−1) is the p&l due to rho;

• Vt−1 (σatm,t − σatm,t−1) is the p&l due to vega;

• θt−1 δt is the p&l due to theta;

• the remainder is the p&l due to error in the Taylor series expansion.

At regular intervals we should check that the error term is not material. Of course, we can attribute a
percentage to this error term, which should not be more than a couple of percent. After all, the error
term is a measure of how well the Taylor series expansion is fitting the actual p&l. As expected, for
more complicated products, these errors can be more material, and the method should not be used.
Alternatively, a higher order Taylor series expansion could be derived and the appropriate attribution
recalculated.

Another possible occasion when the attribution will be less satisfactory is during market turbulence,
when the moves δS, δr, etc. are large.
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Chapter 5

The regulatory environment

5.1 Backtesting

If the relevant regulatory body gives its approval, a bank can use its own internal VaR calculation as
a basis for capital adequacy, rather than another more punitive measure that must be used by banks
that do not have such approval.

The internal models approach is the most desirable method for determining capital adequacy.1 The
quantification of market risk for capital adequacy is determined by the bank’s own VaR model.
However, given a free hand, a bank could simply understate their VaR. Hence, there is a need to test
the model to see if the stated VaR is consistent with the p&l that actually occurs. This is the purpose
of backtesting, which applies statistical tests to see if the number of exceptions that have occurred is
consistent with the number of exceptions predicted by the model.

To find the market risk charge under VaR, we first determine the 10 trading day (or two week) VaR
at the 99% confidence level, call it VaR10. The Market Risk Charge at time t is

max
{
VaR10

t−1, k ·Ave
(
VaR10

t−1, VaR10
t−2, . . . , VaR10

t−60

)}
(5.1)

where k can be as low as 3 but may be increased to as much as 4 if backtesting proves unsatisfactory
ie. backtesting reveals that a bank is overly optimistic in the estimates of VaR. This provision is
clearly to prevent gaming by the bank - under-reporting VaR numbers (in the expectation that they
will not backtest) in order to lower capital requirements.

The factor k ≈ 3 comes from thin air - the so-called hysteria factor. Legend has it that it arose as a
compromise between the US regulatory authorities (who wanted k = 1) and the German authorities
(who wanted k = 5) (Dowd 1998).

In principle the correct approach would be to measure the VaR at the holding period and confidence
level that maps to the preferred probability of institutional survival (eg. 1 year and 99.75% for an A
rated bank) and then use k = 1 (Dowd 1998).

The 10-day VaR is actually calculated using a 1-day VaR and the square root of time rule. In this
case the Market Risk Charge at time t is

√
10max

{
VaR1

t−1, k ·Ave
(
VaR1

t−1, VaR1
t−2, . . . , VaR1

t−60

)}
(5.2)

where the VaR numbers are now with daily horizon.
1We are specifically referring here to market risk capital requirements. To obtain regulatory approval to use an

internal model, the institution also has to have in place tested measures for credit risk and operational risk. That is not
the subject of this document. For an overview of the entire regulatory process, known as Basel II, see (Basel Committee
on Banking Supervision 2003), (Basel Committee on Banking Supervision 2004b).
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The actual regulatory capital requirement will also include a Specific Risk Charge for issuer-specific
risks, such as credit risks. In Basle II operational risk charges are included.

In an interesting study done in 1996, at the time these proposals were being made into regulations,
(Dimson & Marsh 1996) found that the internal models approach was the only method that was
consistently sufficient to safeguard the capital of banks in times of stress. They also found that a
method they call net capital at risk, which can be viewed as a misapplication of a VaR-type approach,
was by far the worst of the several methods examined. This would be, for example, a pure net delta
approach to VaR - as would occur if a South African bank was to use a delta equivalent position
in the TOP40 for their entire set of domestic equity-based positions. Thus, they conclude that the
internal models approach only makes sense with stringent quality control.

An exception is a day on which the loss amount was greater than the VaR amount. If we are working
with a 95% confidence, and if the model is accurate, then on average we should have an exception on
1 day out of 20.

Even though Capital Adequacy is based on 99% VaR with a 10-day holding period, backtesting is
performed on VaR with a daily horizon, and can be performed at other confidence levels. There is
no theoretical problem with this, and the advantage of using daily VaR is that a larger sample is
available and so statistical tests have greater power. Of course the horizon cannot be less than the
frequency of p&l reporting, and this is almost always daily.

Backtesting is a logical manner of providing suitable incentives for use of internal models.

The question arises as to whether to use actual or theoretical p&l’s. It is often argued that VaR
measures cannot be compared against actual trading outcomes, since the actual outcomes are con-
taminated by changes in portfolio composition, and more specifically intra-day trading. This problem
becomes more severe the longer the holding period, and so the backtesting framework involves one-day
VaR.

To the extent that backtesting is purely an exercise in statistics, it is clear that the theoretical p&l’s
should be used for an uncontaminated test. However, what the regulator is really interested in is
the solvency of the institution in reality, not in a theoretical world! Thus there are arguments for
both approaches, and in fact backtesting has been a requirement for approved VaR models since the
beginning of 1999, on both an actual (traded) and theoretical (hypothetical) basis. This is to ensure
that the model is continually evaluated for reasonability. Backtesting for approved models occurs on
a quarterly basis with one year of historical data (250 trading days) as input.

Extensive backtesting guidelines are given in the January 1997 Basle accord (Basel Committee on
Banking Supervision 1996b).

Because of the statistical limitations of backtesting the Basle committee introduced a three zone
approach:

• Green zone: the test does not raise any concerns about the model. The test results are consistent
with an accurate model.

• Yellow zone: the test raises concerns about the model, but the evidence is not conclusive. The
test results could be consistent with either an accurate or inaccurate model.

The capital adequacy factor (k-factor) will be increased by the regulator. The placement in the
yellow zone (closer to green or red) should guide the increase in a firms capital requirement.
The following recommendations are made (Basel Committee on Banking Supervision 1996b):
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Number of exceptions Zone Scaling factor (k-factor)
0-4 Green 3
5 Yellow 3.4
6 Yellow 3.5
7 Yellow 3.65
8 Yellow 3.75
9 Yellow 3.85
10+ Red 4 (model withdrawn)

The basic idea is that the increase in the k-value should be at least sufficient to return the
model to the 99% standard in terms of capital requirements. Nevertheless, some game theory
is possible here, at least in principle. To obtain exact answers in this regard requires additional
distributional assumptions which may not hold in reality.

This is the most difficult case, but the burden of proof in these situations will be on the in-
stitution to demonstrate that their model is sound. This is achieved through decomposition
of exceptions, documentation of each exception, and provision of backtesting results at other
confidence intervals, for example.

• Red zone: the test almost certainly raises concerns about the model. The test results are almost
certainly inconsistent with an accurate model.2 The k-factor is increased to 4, and approval for
the existing model is almost certainly withdrawn.

Because we are taking a sample from a distribution, the sample is subject to error. Based on the
sample, we test if the model is valid using standard statistical hypothesis testing. Recall that there
are two types of errors associated with statistical tests:

• Type I error: rejecting a valid model,

• Type II error: accepting an invalid model.

As is well known in statistics, it is impossible to control the size of these errors simultaneously.

For each day in history we determine whether or not an exception occurred, so we have p1, p2, . . . , pN

being 0-1 Boolean variables, where the vector starts on the first day on which backtesting was per-
formed.

Under the null hypothesis, if the model is valid, the total
∑N

i=1 pi is distributed according to the
binominal distribution, with a total number of experiments being N and the failure probability p
being for example 0.05 ie. 1 minus the VaR confidence level. The failure probability has to be
reasonable, so that the model test can be significant. For example, if p = 0.0001, we probably won’t
have any exceptions, but we also won’t be able to accept the null hypothesis at any significance. Thus
it is typical to choose a confidence of 95% or 99%. For regulatory purposes the required probability
is 99%.

For a binomial distribution with sample size N and failure probability p, and X being the total
number of failures, we have

P [X = i] =
(

N

i

)
pi(1− p)N−i (5.3)

and so

P [X ≤ x] =
x∑

i=0

(
N

i

)
pi(1− p)N−i (5.4)

2One of the reasons that (Basel Committee on Banking Supervision 1996b) give for why this can occur is because
the volatility and correlation estimates of the model are old, and have been outdated by a major market regime shift,
thus causing a large number of exceptions. The requirements of models is that parameter estimates be not more than
three months old. This is almost laughable. An even half-decent model should have automated parameter updating on
a daily basis.
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Figure 5.1: Diagrammatic representation of the three zone approach for 95% VaR

We reject the null hypothesis if the number of exceptions is larger than the test level. There are two
test levels which correspond to the yellow and red zones. The yellow zone is determined by the Basle
Accord as having a 5% Type I error. Thus, if the VaR model is valid, there is only a 5% chance of it
being in the yellow zone - in other words, bad luck in terms of the number of exceptions. The red zone
is defined by the Basle Accord as having a 0.01% Type I error. Thus if the VaR model is valid, there
is only a 0.01% chance that it will have this number of exceptions. This is very generous, because one
concludes that once a possibly suspect (but not absurd) model has been approved, only a very poor
performance subsequently will lead to approval being withdrawn. The Basle regulations ensure that
Type I errors are almost impossible, but it allows for a significant proportion of Type II errors.

On a sample of N = 250 observations, with a failure probability of 0.01, the yellow zone starts with
5 exceptions and the red zone starts with 10 exceptions. Note that 2.5 exceptions are expected.

Presumably, in order to qualify as an approved model, it starts off life in the green zone. Thus, at
the time of inception, the daily VaR at the 99% confidence level had at most 4 exceptions. If, at any
quarter end, the previous 250 observations had from 5 to 9 exceptions, the model is reclassified into
the yellow zone. If it had 10 or more exceptions, it is reclassified into the red zone.

Warning: in many statistics textbooks normal distribution approximations are available for the bino-
mial distribution. These are not to be used here, because they only apply for binominals where the
failure probability is ‘not too extreme’, for example, (Underhill & Bradfield 1994) specifies that the
normal approximation is only valid if 0.1 < p < 0.9. We are interested in the case where p = 0.05,
p = 0.01 or perhaps p = 0.0001.

5.2 Other requirements for internal model approval

Banks that use the internal models approach for meeting market risk capital requirements must have
in place a rigorous and comprehensive stress testing program. The stress scenarios need to cover a
range of factors that can create extraordinary p&l’s in trading portfolios, or make the control of risk
in those portfolios very difficult. These factors include low-probability events in all major types of
risks, including the various components of market, liquidity, credit, and operational risks.
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Figure 5.2: The yellow zone starts with 5 exceptions and the red zone starts with 10 exceptions for
99% VaR.

The institution must be able to provide information as follows (Basel Committee on Banking Supervision
1996a):

• Information on the largest losses experienced during the reporting period.

• Stress testing the current portfolio against past periods of significant disturbance, incorporating
both the large price movements and the sharp reduction in liquidity associated with these events.

Stress testing the sensitivity of the bank’s exposure to changes in the assumptions about volatil-
ities and correlations. Due consideration should be given to the sharp variation that at times
has occurred in periods of significant market disturbance. The 1987 equity crash, for example,
involved correlations within risk factors approaching the extreme values of 1 or -1 for several
days at the height of the disturbance.

• Use of scenarios developed by the bank itself to capture the specific characteristics of its portfolio.
Banks should provide supervisory authorities with a description of the methodology used to
identify and carry out the scenarios as well as with a description of the results derived from
these scenarios.

If the testing reveals particular vulnerability to a given set of circumstances, the national authorities
would expect the bank to take prompt steps to manage those risks appropriately (eg. by hedging
against that outcome or reducing the size of its exposures).

5.3 Credit and operational risk measures

5.3.1 Basel I

(Basel Committee on Banking Supervision 1988). This was finalised in 1988, effective 1992.

We need to set a minimum level of risk capital, which is a percentage of the total risk weighted assets
(RWA).
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Capital adequacy is to have capital of at least 8% of the total risk weighted assets. Of this, at least
4% needs to be tier I capital (equity and disclosed reserves); and the rest tier II capital (undisclosed
reserves, revaluation reserves, provisions, etc.). Tier III capital (short term subordinated debt) can
be used as capital for market risk only.

For each counterparty, the approach to determining the RWAs is to perform a reduction algorithm to
the assets under consideration.

(1) We first consider the on-balance sheet assets. These are typically outright loans. For each loan,
we multiply the amount outstanding by the relevant risk capital weight in Figure 5.3. (This is
only some of the weights, see (Basel Committee on Banking Supervision 1988) for the full list.)
This gives the credit risk charge for that asset.

Product Weight
Cash 0%

Claim on central bank in domestic currency 0%
Claims on OECD3banks 20%

Loans guaranteed by OECD 20%
Mortgages 50%

Claims on private sector 100%
Claims on non-OECD banks longer than 1y 100%

Figure 5.3: Basel I risk capital weights

(2) Next we first consider the off-balance sheet assets. We want to define, for each asset, a equivalent
value that makes it ‘loan-like’, that is, we homogenise the assets.

Some off-balance sheet items are very much ‘loan-like’ already. For example, a guarantee is very
much like a loan, so it carries a risk capital weight of 100%. A performance bond carries a weight
of 50%.

(3) Finally, we come to derivatives. An important point to note about derivatives is that typically a
bank will have many derivatives with the same counterparty, and that the notional of a derivative
typically dwarfs its actual value. For any particular counterparty, we would like to take into
account possible netting of all the outstanding instruments we have with that counterparty. The
question of netting is whether or not the requisite “ISDA is in place”. If it is, we define the net
gross ratio, given by

NGR =
max(0,

∑
j MtMj)∑

j max (0, MtMj)
(5.5)

where the summation is taken across all instruments outstanding with that counterparty.

Now we define the exposure as

max(0, MtM) + [0.4 + 0.6NGR]Notional P

where P is the percentage seen in Figure 5.4.

(4) The above amounts are the ‘loan-like’ sizes of the off-balance sheet items. We then apply the
weights seen in Figure 5.3 to those figures. Since players in the derivatives market tend to be
higher credits, this figure is then again halved. This gives the credit risk charge for that asset.

(5) By addition across all counterparties we find the total risk weighted assets.

3Organisation for Economic Co-operation and Development. Currently Australia, Austria, Belgium, Canada, Czech
Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg,
Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey,
United Kingdom and United States.
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Residual maturity Interest rate Forex, gold Equity Other metal Commodities
m ≤ 1y 0% 1% 6% 7% 10%

1y < m ≤ 5y 0.5% 5% 8% 7% 12%
5y < m 1.5% 7.5% 10% 8% 15%

Figure 5.4: Multipliers

What are the weaknesses of this approach? There is inadequate differentiation between credit qualities
and credit maturities. There are inadequate risk mitigation / portfolio construction incentives.

5.3.2 Basel II

The Basel Committee’s goal was to finalise the New Accord by the fourth quarter of 2003 with
implementation to take effect in G-10 countries in 2006/2007, and later in other countries (at the
discretion of the Central Banks in those countries).

The (Basel Committee on Banking Supervision 2003) was a consultative document issued for comment.
The final version of Basel II appeared as (Basel Committee on Banking Supervision 2004b).

Basel II is based on the so-called three pillars (Basel Committee on Banking Supervision 2003):

I. Further developing of capital regulation that encompasses minimum capital requirements, by
increasing substantially the risk sensitivity of the minimum capital requirements.

The current Accord is based on the concept of a capital ratio where the numerator represents
the amount of capital a bank has available and the denominator is a measure of the risks faced
by the bank and is referred to as risk-weighted assets. The resulting capital ratio may be no
less than 8%. Under the proposed New Accord, the regulations that define the numerator of
the capital ratio (i.e. the definition of regulatory capital) remain unchanged. Similarly, the
minimum required ratio of 8% is not changing. The modifications, therefore, are occurring in
the definition of risk-weighted assets, that is, in the methods used to measure the risks faced by
banks.

(a) The treatment of market risk arising from trading activities was the subject of the Basel
Committee’s 1996 Amendment to the Capital Accord. The proposed New Accord envisions
this treatment remaining unchanged.

(b) Substantive changes to the treatment of credit risk relative to the current Accord; with
three options offered for the calculation thereof.

(c) The introduction of an explicit treatment of operational risk, that will result in a measure
of operational risk being included in the denominator of a bank’s capital ratio; with three
options offered for the calculation thereof. Operational risk is defined as the risk of losses
resulting from inadequate or failed internal processes, people and systems, or external
events.

II. Supervisory review of capital adequacy. Judgements of risk and capital adequacy must be based
on more than an assessment of whether a bank complies with minimum capital requirements.
This pillar seems to be a statement that empowers the supervisor in this respect. To quote (Basel
Committee on Banking Supervision 2003): ‘it is inevitable that a capital adequacy framework,
even the more forward looking New Accord, will lag to some extent behind the changing risk
profiles of complex banking organisations, particularly as they take advantage of newly available
business opportunities. Accordingly, this heightens the importance of, and attention supervisors
must pay to pillar two.’

Stress testing falls under this pillar.
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III. Public disclosure (market discipline). Again, from (Basel Committee on Banking Supervision
2003): ’The Committee has sought to encourage market discipline by developing a set of disclo-
sure requirements that allow stakeholders to assess key information about a bank’s risk profile
and level of capitalisation.’ For example, annual reports to shareholders will have to include
fairly solid evidence, adhering to some prescribed general formats, rather than qualitative me-
anderings, about the methods of risk control.

Public disclosure strengthens the incentives for a bank to behave prudently.

Just how much control the regulator will have over the nature of this information will depend
on the legal jurisdiction that applies to the particular regulator-bank relationship.

Countries not represented in the G-10 have more freedom in their implementation programme, and
many have been busy evaluating the suitability of the new Framework for their jurisdiction. In order
to further this process the committee convened a Working Group comprised of members from non-
G10 countries to assess the whether and when of Basel II, and to provide practical suggestions to
supervisors for the transition to the new Framework. This occurred in the first half of 2003 with
the report being (Basel Committee on Banking Supervision 2004a). The document is not intended
to be an interpretation of Basel II rules, but rather as practical advise for countries with differing
resources, particular concentration risks, etc. (Basel Committee on Banking Supervision 2003), (Basel
Committee on Banking Supervision 2004b). South Africa has an implementation target date of 1
January 2008.

The first pillar of Basel II deals with the new methods for calculation of exposures. For credit risk
there are broadly two approaches:

(a) Standardised Approach: similar to Basel I in that banks are required to slot their credit exposures
into supervisory categories. The categories can be determined as corresponding to the rating
categories published by a rating agency. For example, we see in Figure 5.3 that any claim with
a counterparty in the private sector has a risk weight of 100% under Basel I. In Basel II, if the
counterparty is rated anything from AAA to AA-, then the risk weight is 20%, A+ to A- is 50%,
etc. Below B- is 150%.4

Another source of relief is that the risk weight for mortgages has been reduced. Also, some
recognition for protection from bought credit derivatives is available.

However, this approach is now very punitive in terms of the amount of capital that needs to be
held. Moreover, in South Africa the lack of many internationally rated corporates makes this
method difficult to apply. Hence banks will be aiming for the internal ratings-based approach.

(b) The internal ratings-based approach.

(i) for corporate, bank and sovereign exposures. The bank will use a model where the risk
components are

• Probability of default (PD), a percentage
• Loss given default (LGD), a percentage
• Exposure at default (EAD), in currency units
• Maturity (M), in years

The capital required will be proportional to

EAD · LGD · [s− PD] · f(M) (5.6)

where s is a parameter which is intended to cover unexpected losses at the 99.9% confidence
level, and f a given increasing function with f(1) = 1.
For the foundational internal ratings-based approach the PD is provided by the bank, the
others are set by the supervisor. For the advanced internal ratings-based approach all inputs

4Lest this doesn’t make sense, remember that we are going to multiply by 8% later on.
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for an internal model are provided by the bank: these will be at least the factors listed above,
there may be others. The loss given default is especially difficult for a bank to quantify, given
again the small number of defaults historically, so banks here will typically pass this issue
back to the regulator, and stick to the foundational model. Moreover, some research has
shown that in emerging markets, banks tends to have far higher concentration risk levels,
and hence this method could be more punitive than would first appear! (Risk Magazine
June 2003). With the takeover of ABSA by Barclay’s, ABSA made a firm commitment
to implement the internal ratings-based approach, with the other big banks then making
commitments to do likewise (Risk Magazine November 2005).
Small/medium enterprise exposures with an exposure of more than €1m will be treated as
corporate exposures, with some firm-size adjustments.

(ii) for retail exposures. There is only one approach available. The bank provides all of PD,
LGD and EAD; on a pooled basis, rather than on a name by name basis. The exposures
are divided into three categories, which is broadly mortgages, credit cards, and other. The
formula for capital required is the same as (5.6) except the maturity factor disappears for
each of these categories; the s factor is calibrated differently for each of the three categories.5

The capital required is then aggregated.
Small/medium enterprise exposures with an exposure of less than €1m will be treated as
retail exposures.

(iii) for specialised lending. There are two options: this is treated as a corporate exposure.
Commercial retail estate has a special category. Alternatively, a scale of five quality grades
with risk weights for each grade is available.

(iv) equity exposures. There are two options: a corporate approach is taken, but LGD is man-
dated at 90%. Alternatively, a quarterly VaR type approach can be taken to model the
potential decrease in the value of equity holdings.

In the internal rating based approach, the bank needs to calculate the PD (under either of the
two variations). For this Basel II sets certain requirements in the calculation methodology and
testing for PD estimates.

The requirement is that obligors are classified into risk buckets, and each risk bucket is assigned a
PD. This PD must be a long-run average of the one-year realised default rates for that bucket. As
such, it could vary significantly from a case-by-case model of obligor’s PDs that will result from
(KMV 2006) for example. Basel also enunciates a preference for a through the cycle approach
i.e. the PD is based on long term statistics and is not overly dependent on where we are in the
economic cycle.

Although there is great freedom in the definition of the risk buckets, the benchmarking and
backtesting requirements of these buckets is quite stringent.

Calculation methods for operational risk:

1. Basic Indicator Approach: the measure is a bank’s average annual gross income over the previous
three years. This average, multiplied by a factor of 0.15 set by the Committee, produces the
capital requirement.

2. Standardised Approach: similar, but banks must calculate a capital requirement for each busi-
ness line. This is determined by multiplying gross income by specific supervisory factors deter-
mined by the Committee.

3. Advanced Measurement Approaches Fairly open ended specifications, stated as aimed to en-
courage the growth of the quantification of operational risk. Banks using such methods are
permitted to recognise the risk mitigating impact of insurance.

5Both here and above the s factor has a modelled correlation within the group as a significant input.
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The second two methods do not produce a significant saving over the first, so banks will typically opt
for the first approach.

Credit Risk Market Risk Operational Risk
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Chapter 6

Coherent risk measures

6.1 VaR cannot be used for calculating diversification

If f is a risk measure, the diversification benefit of aggregating portfolio’s A and B is defined to be

f(A) + f(B)− f(A + B) (6.1)

When using full revaluation VaR as the methodology for computing a risk measure, it’s quite possible
to get negative diversification. Pathological examples are possible, but the following example is not
absurd:

Suppose one has a portfolio that is made up by a Trader A and Trader B. Trader A has a portfolio
consisting of a sold put that is far out of the money, and has one day to expiry. Trader B has a
portfolio that consists of a sold call that is also far out of the money, and also has one day to expiry.
Using any historical VaR approach, say we find that each option has a probability of 4% of ending up
in the money.

Trader A and B each have a portfolio that has a 96% chance of not losing any money, so each has a
95% VaR of zero.1 However, the combined portfolio has only a 92% chance of not losing any money,
so its VaR is non-trivial. Therefore we have a case where the risk of the combined portfolio is greater
than the risks associated with the individual portfolios, i.e. negative diversification benefit if VaR
is used to measure the diversification benefit. This example appears in (Artzner, Delbaen, Eber &
Heath 1997).

What is so awkward about the lack of sub-additivity is the fact that this can give rise to regulatory
arbitrage or to the break-down of global risk management within one single firm. This is also a serious
concern for regulators. If regulation allows the capital requirement of a firm to be calculated as the
sum of the requirements of its subsidiaries and if the requirements are based on VaR, the firm could
create artificial subsidiaries in order to save regulatory capital.

6.2 Risk measures and coherence

This example introduces the concept of a “Coherent Risk Measure”. If f(A+B) ≤ f(A)+f(B), where
A and B denote portfolios, then f is said to be coherent (Artzner et al. 1997), (Artzner, Delbaen, Eber
& Heath 1999). In fact a coherent risk measure needs to satisfy five properties (Artzner et al. 1999),
as follows:

1To be precise, their VaR is actually a very small negative number! The average of their Vi’s is negative, the 5th%
is zero.
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• translation invariance: f(A + αr) = f(A) − r, where r is a reference risk free investment. (As
David Heath has explained to me, this condition is simply there to ensure that the risk measure
and the p&l measure is in the same numeraire, namely, currency.)

• Subadditivity: f(A + B) ≤ f(A) + f(B)

• Positive homogeneity: for all λ ≥ 0, f(λA) = λf(A).

• Monotoneity: if A ≤ B then f(A) ≤ f(B).

• Relevance: if A 6= 0 then f(A) > 0.

The property we have focused on means ‘a merger does not create extra risk’, and is a natural
requirement (Artzner et al. 1999).

In other words the risk measure f of a portfolio consisting of sub-portfolios A and B would always
be less than or equal to the sum of the risk measure of portfolio A with the risk measure of portfolio
B. The example above shows that full revaluation VaR is not coherent. It also means that as a
conservative measure of risk, one can simply add the risks calculated for the various sub-portfolios, if
the measure is coherent.

The earlier example is not a purely theoretical example. In practice, even on large and diverse
portfolios, using VaR to calculate the diversification benefit does indeed occasionally lead to the case
where this diversification is negative.

There is thus a need for practical and intuitive coherent risk measures. The basic example - originally
presented in this country in (Eber 29-30 June 1999) - is that in the place of a VaR calculation we use
a concept known as Expected Tail Loss (ETL) or Expected Shortfall (ES). It is easiest to understand
in the setting of a historical-type VaR calculation, let us say 95% VaR. It would entail instead of
taking the 5th percentile of the p&l’s to yield a VaR number, take the average of the p&l’s up to the
5th percentile to yield an ES number.

Looking at the 5th percentile we end up with a VaR number which basically represents the best
outcome of a set of bad outcomes on a bad day. Using ES we look at an average bad outcome on a
bad day. This ES number turns out to be a coherent risk measure (Artzner et al. 1997), (Eber 29-
30 June 1999), (Acerbi & Tasche 2001), and therefore guarantees that the diversification is always
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positive. As stated in the abstract of (Acerbi & Tasche 2001), “Expected Shortfall (ES) in several
variants has been proposed as remedy for the deficiencies of Value-at-Risk (VaR) which in general is
not a coherent risk measure”.

A readable account of these and related issues is (Acerbi, Nordio & Sirtori 2001).

One should report both VaR and ES, but use only ES to calculate and report diversification.

Note that because standard deviation is sub-additive the standard RiskMetrics simplification is co-
herent:

σ2(X + Y ) = σ2(X) + σ2(Y ) + 2σ(X)σ(Y )ρ
≤ σ2(X) + σ2(Y ) + 2σ(X)σ(Y )

= (σ(X) + σ(Y ))2

and so
σ(X + Y ) ≤ σ(X) + σ(Y )

and hence
VaR(X + Y ) ≤ VaR(X) + VaR(Y ),

which is the definition of subadditivity. The usual RiskMetrics VaR is also subadditive (and hence
coherent), but this is a mathematical exercise for masochists - it is not easy at all. According to
(Breuer, Krenn & Pistovc̃ák 2002) to guarantee sub-additivity of (presumably parametric) VaR,
the value of the portfolio has to be a linear function of risk factors whose changes are elliptically
distributed.

6.3 Measuring diversification

The diversification benefit of portfolio P0 is equal to

f

(
n∑

i=1

Pi

)
+ f(P0)− f

(
n∑

i=0

Pi

)

where f denotes ES and P1, P2, . . . , Pn are the (original) portfolios against which the diversification
is measured.

6.4 Coherent capital allocation

The intention is to allocate capital costs in a coherent manner. This sounds like quite an otherworldly
exercise, but one can make the task quite concrete and ask: of my risk number (such as ES), how
much (as a percentage, say) is due to each of my positions? Then, given my capital adequacy charges
(which may or may not be calculated via an approved internal model!) I can allocate as a cost the
charges in those proportions to each of those desks.

Each desk can break down their own charges amongst their dealers, and management can decide
where the greatest risk managment focus needs to lie.

(Denault 2001) has developed a method of allocating the risk capital costs to the various subportfolios
in a fair manner, yielding for each portfolio, a risk appraisal that takes diversification into account.
We wish to thank Freddie Delbaen, who contributed significantly to that paper, for clarifying certain
issues.

The approach of (Denault 2001) is axiomatic, starting from a risk measure which is coherent in the
above sense. We may specialise the results of (Denault 2001) to the case of the coherent Expected
Shortfall risk measure in which case his results become quite concrete.

An allocation method for risk capital is then said to be coherent if
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• The risk capital is fully allocated to the portfolios, in particular, each portfolio can be assigned
a percentage of the total risk capital.

• There is ‘no undercut’: no portfolio’s allocation is higher than if they stood alone. Similarly for
any coalition of portfolios and coalition of fractional portfolios.

• ‘Symmetry’: a portfolio’s allocation depends only on its contribution to risk within the firm,
and nothing else.

• ‘Riskless allocation’: a portfolio that increases its cash position will see its allocated capital
decrease by the same amount.

All of these requirements have precise mathematical formulations.

A coherent allocation is to be understood as one that is fair and credible.

One should not be surprised to be told that this is a game theoretic problem where the portfolios are
players, looking for their own optimal strategy. (Denault 2001) applies some results from game theory
to show that the so-called Aumann-Shapley value from game theory is an appropriate allocation (it is
a Nash equilibrium in the theory of cooperative games). Further, some results (fairly easy to derive
in this special case) from (Tasche July 1999) on the differentiability of Expected Shortfall show that
the Aumann-Shapley value is given by

Ki = −E[Xi|X ≤ qα] (6.2)

where Xi denotes the (random vector of) p&l’s of the ith portfolio, X =
∑

j Xj is the vector of p&l’s
of the company, and qα is the α percentile of X.

Figure 6.1: Coherent capital allocation using ETL

Hence, as a percentage of total capital, the capital cost for the ith portfolio is

E[Xi|X ≤ qα]
E[X|X ≤ qα]

(6.3)

In the context of any historical or Monte Carlo type VaR model, this fraction is easy to calculate:
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Figure 6.2: Capital allocation and cash allocation to a long and short equity portfolio. Note, for
example, how the shorts in RNG and SAP raise cash without material contribution to risk, while the
short in WAR appears to have no impact on risk.

• The denominator is the average of the 1− α% worst p&l’s of the entire bank,

• The numerator is the average of the p&l’s that correspond to the same experiments as in the
denominator.

An example of how this might transpire is in Figure 6.1 and Figure 6.2.

6.5 Greek Attribution

Consider a first order (delta-gamma-rho-vega-theta) Taylor series expansion as follows:

dV ' ∆ δS + 1
2Γ (δS)2 + ρ δr + V δσatm + θ δt

This expansion allows us to attribution our p&l according to the sensitivities, and this enables us to
analyse what type of bets the dealer is making.

For a simple instrument, such as an equity derivative, we can attribute the p&l as

• ∆t−1 (St − St−1) is the p&l due to delta;

• 1
2Γt−1 (St − St−1)2 is the p&l due to gamma;

• ρt−1 (rt − rt−1) is the p&l due to rho;

• Vt−1 (σatm,t − σatm,t−1) is the p&l due to vega;
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• θt−1 δt is the p&l due to theta;

• the remainder is the p&l due to error in the Taylor series expansion.

At regular intervals we should check that the error term is not material. Of course, we can attribute a
percentage to this error term, which should not be more than a couple of percent. After all, the error
term is a measure of how well the Taylor series expansion is fitting the actual p&l. As expected, for
more complicated products, these errors can be more material, and the method should not be used.
Alternatively, a higher order Taylor series expansion could be derived and the appropriate attribution
recalculated.

Another possible occasion when the attribution will be less satisfactory is during market turbulence,
when the moves δS, δr, etc. are large.

Now suppose that we wish to decompose a VaR or ES measure into exposures to the various Greeks.
Assume that we are using a historical-type or Monte Carlo method for calculating our VaR or ES.
Then we can consider the p&l’s generated by the various historical or Monte Carlo experiments, as
follows:

dVi = ∆(Si − S) + 1
2Γ(Si − S)2 + ρ(ri − r) + V(σatmi − σatm) + θδt + εi

where S is the original spot, Si is the ith spot experiment, etc. The p&l’s due to delta are the
∆(Si − S), etc.

Of course, our risk measure is calculated by looking at the tail of this distribution of p&l’s.

Figure 6.3: Coherent greek attribution using ES

Again we should check that the εi are not material. This time it is even easier than before: the capital
attribution method is attributing a percentage to this error term, which should not be more than a
couple of percent.
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