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In this column,’ we
presenta survey of key
results and references to
papers on risk measures

he concepts of utility and risk attitude,

such as decreasing risk aversion, are

general and qualitative. But risk is basic

to decision-making models and requires

a precise definition. The essential char-
acteristics of risk are the chance of a potential loss and
the size of the potential loss. If financial decisions are
to be considered in the framework of risk manage-
ment, it is clear that a quantitative measure of risk,
which incorporates the essential characteristics, is
needed.

Originally, risk was associated with variance.
Markowitz (1952) provided a quantitative frame-
work for measuring portfolio risk and return using
mean and variance. At the same time, Roy (1952)
stated that an investor will prefer safety of principal
first and will set some minimum acceptable return
that will conserve the principal. This focused risk
on the lower partial moment (LPM). These initial
measures were intuitive, but they lacked a theoretical
foundation.

The returns on investment are uncertain, so the
financial status is given by a random variable X with a
distribution function F. A risk measure is a functional
p(X) which depends only on the distribution func-
tion F, so that two random variables with the same
distribution have the same risk value. This property
is called law invariance. Random variables can be
ordered with risk preferences. Typically risk prefer-
ences have been formulated through utility and,
equivalently, stochastic dominance. Risk aversion is
identified with concave utilities, and the stochastic
dominance defined by the family of concave utilities
is second-order stochastic dominance (SSD). It is
reasonable that the ordering of random variables with
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arisk measure should be consistent with the order-
ing from stochastic dominance. See Ogryczak and
Ruscynski (1999).

The financial position X depends on the uncertain
returns on assets and the investment decision which
determines the amount of capital allocated to various
assets. Assume that the unit returns on assets are func-
tions on a probability space (€, B, P), and that the set
of possible investment strategies determines a class of
financial positions y, with X € y. So the risk measure
isafunctional p: y — R.

From a financial perspective, it is natural to associ-
ate risk with losses (Kusy and Ziemba, 1986), and to
view the financial risk of X as the capital requirement
p(X) to make the position X acceptable (Artzner et al.,
1999; Follmer and Knispel, 2013). The acceptance set
of pis

A, (X E ylpX) <0} .

The risk measure can be defined from the
acceptance set

[ T 7=T==
PROPERTY OF LEpuman's BrovHERS -SSSH! [

p(X)=inf {(meERIX+meA,}.

Rockafellar and Ziemba (2000) established the fol-
lowing result.

Equivalence theorem
There is a one-to-one correspondence between accept-
ancesets A, and the risk measures p.

The concept of capital requirement to cover the
losses from investment captures the financial risk idea,
but the probability of loss is not taken into account.
Various measures, which use the distribution of the
financial status X, have been proposed and used in
risk management practice. Details on the measures are
provided by Krokhmal et al. (2011) and Féllmer and
Knispel (2013) (see also Follmer and Schied, 2004).

[1] Variance

Markowitz (1952, 1959, 1987) and Markowitz and
van Dijk (2006) used the variance of the position X to
measure risk:
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p(X0) =E(X—EX),

where E(X) is the mean of X. Variability or uncertainty
does capture aspects of risk, but the gains are treated
the same as losses. In addition, variance is not consist-
ent with SSD.

[2] Semi-variance

A useful estimate of risk exposure or downside risk

was proposed by Markowitz (1959), Porter (1974), and
Markowitz and van Dijk (2006), with the semi-variance:

p(X) = BX — EX)?,

where (.)_denotes negative part: y_=0ify>0,y_=y
ify<0.
[3] Deviation risk measures
Rockafellar et al. (2006) generalized the variance-type
measure for any square integrable deviation measure
D:y — R™. Then, the risk measure is:

p(X) = D(X) — EX.

There is a one-to-one relationship between averse
risk measures and deviation risk measures through
the relationship D (X) = p(X — EX). (see Krokhmal
etal., 2011). The aversion property follows from
p (X) > p (EX) for nonconstant X.

[4] VaR

The focus on downside risk measures started with the
development of the LPM risk measure by Bawa (1975)
and Fishburn (1977). This very popular risk measure
was further developed by Jorion (2006). It is defined
by the o quantile of the distribution F for the financial
position X:

p(X) = VaR, (X) = F'(a) = inf {x € R|F(x) > a} .

In terms of losses, VaR,, is the maximum possible
loss at the confidence level 1 - . This measure accounts
for losses and probabilities, in the sense that it has
acceptance sets

A, = {X € z|VaR,(X) < 0}

An interesting takeoff on VaR is its application
in governance for endowments, trusts, and pension
plans. Worldwide adoption of the Basel I Accord
established this measure as a standard.

[5] AVaR

The VaR measure does not account for the losses below
it, as all losses below the cutoff are considered the
same. A variation is to consider the average of the val-
ues at risk for A € (0, «]
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p(X) = AVaR, (X) = L / VaR,, (X) da.
« Jy
Follmer and Knispel (2013) showed how AVaR is a
building block for law-invariant risk measures.

[6] CVar

A related measure, proposed by Rockafellar and
Uryasev (2000) and others (e.g., Acerbi and Tasche,
(2002), is:

CVaR, (X) = EX|X < F~! (a)).

CVaR is the conditional expectation of losses
exceeding the VaR (X) level. Obviously, CVaR, (X) =
AVaR (X) when the distribution F for X is continuous.
However, for discontinuous distributions the measures
may differ.

As afunctional, there exist mathematical proper-
ties which may reasonably be expected to be satisfied
by risk measures p.Those properties can be considered
as properties of either the functional or the associated
acceptance set.

(A1) Law invariance: p(X) = p(Y) forall X, Y€y,

suchthatF, =F,

(A2) Monotonicity: Fy > Fy = p(X) > p(Y)

(A3) Translation invariance: p(X + m) = p(X) -

forallXey,meR
(A4) Subadditivity: p(X + 1) < p(X) + p(Y) for all
X, Yey

(A5) Positive homogeneity: p(AX) = Ap(X) for all
Xeyi>0

(A6) Consistency: X SSD Y = p(X) > p(Y)

(A7) Risk aversion: p(X) = ¢ for constant ¢, and p(X)
> —EX for nonconstant X.

The properties do not constitute a definition of a
risk measure, and they are not sufficient to build a risk
measure. For a proposed risk measure, these properties
can be verified. Law invariance is clear. Monotonicity
requires that the risk measure is ordered as implied by
the distribution (i.e., if one density is to the left of the
other, it implies greater risk). Translation invariance
states that adding cash to a financial position reduces
the risk by the same amount.

The subadditivity property is significant as it
implies that diversification typically reduces risk.
There are severe times when correlated assets X and
Yare such that the risk of (X + Y) is more than the
risk of X plus the risk of Y, because of price pressure.
The Long-Term Capital demise of 1998 was one such
example (see Ziemba and Ziemba, 2013).

Asaset of properties, A2-A5 have been used by
Artzner etal. (1999) to characterize the class of coherent
risk measures.

Positive homogeneity and subadditivity together
imply convexity:

PAX+ (1 =AY SApX) + (1= A)p(Y).

Convexity does not imply both positive homo-
geneity and subadditivity hold. As convexity is the
desired property, it can replace subadditivity and
homogeneity. The resulting class of convex risk meas-
ures is considered by Follmer and Knispel (2013),
following Rockafellar and Ziemba (2000) and Follmer
and Schied (2002, 2004, 2011). Convexity of the risk
measure p or the corresponding acceptance set A,
is important for decision problems where the risk
measure is used to formulate constraints. Averse risk
measures, which were introduced by Rockafellar et al.
(2006), satisfy A4, A5,and A7.

If the commonly used risk measures defined above
are checked against the properties, the following
results hold:

« Standard deviation: satisfies A1, A5, and A4 if
cov(X,Y)>0.

o VaR:satisfies A1, A2,and A3.

o AVaR:satisfies A1, A2, A3, A4, A5, A6,and A7.

So, AVaR (or CVaR, in the case of continuous dis-
tributions) has all the properties of a reasonable risk
measure.

A general framework for defining a risk measure,
based on the distribution function F for a financial
position X, is with a Choquet integral. A distortion
function gis defined such that g : [0, 1] — [0,1],
g0)=0g() =1

Then risk measures are of the form:

pg X) =/ g —F()dt
0

0
+/ [ —-F@®)-1]de

The elegance of this formulation is the association
of the risk measure with the distortion/weighting of
the probability distribution Fto capture risk percep-
tion. There is a family of risk measures defined by the
distortion functionals. Féllmer and Knispel (2013)
discuss various such risk measures. It is shown that
the risk measure is convex if, and only if, the distortion
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functional is concave. The distortion functional for
VaR is not concave, so it is neither convex nor consist-
ent with SSD.

The distortion functional operates on the dis-
tribution function F or, alternatively, on the fixed
measure P in the probability space (Q, B, P). There are
shortcomings of the distortion functional approach. In
particular, there is excessive reliance on a single proba-
bilistic measure P. More generally, it raises the issue of
model uncertainty or model ambiguity, often called
Knightian uncertainty. Follmer and Knispel (2013)
discuss a robustification where the probability meas-
ure Pisamember of a class #. The class could be the
set of probability measures within a specified distance
from the reference measure P. On the class, the risk
measure could be:

P (X)) t=suppy (X) 2
reg

This set-of-measures approach could deal with
the issue of estimation error. Calculations in MacLean
etal. (2007) show that the inflation of risk, as measured
by CVaR, can be increased as much as five times from
estimation error. That is, an investment strategy cho-
sen to have a CVaR requirement violated 5 percent of
the time, in practice can have a 25 percent violation.
As the known empirical distribution F is an estimate of
the true distribution F, the risk measure  from F is an
estimate. If F is parametric, then a confidence interval
of distributions could define the class over which a risk
measure is defined.

In the framework of financial decision making,
the management of risk can be viewed in the style of
Markowitz's mean-variance analysis. Krokhmal et al.
(2011) present the decision problem as a tradeoff
between risk and reward. Given a payoff (profit) func-
tion X = X(x, w) thatis dependent on the decision
vector x and random element ¢ € Q, the risk meas-
ureis p(X) = p(X (x, w)) and the reward function is
7 (X) =7 (X (x,)). The problem is to select the deci-
sion x that maximizes the reward =(X) while assuring
that the risk does not exceed p:

max {7r X) |pX) < po} .

Alternatively, a weighted combination of risk and
reward is optimized:
max {m(X) — Ap(X|A 2 0,} .

In this problem, 4 is a risk aversion parameter.
This penalty parameter may incorporate the potential
effects of both model uncertainty and estimation error.

An application with the use of the penalty param-
eter approach is provided by the financial planning
model InnoALM for the Austrian pension fund of the
electronics firm Siemens (Geyer and Ziemba, 2008).
The model uses a multiperiod stochastic linear pro-
gramming framework, where uncertainty is modeled
using multiperiod discrete probability scenarios for
random returns and other model parameters. The
concave risk-averse preference function is to maxi-
mize the expected present value of terminal wealth at
the specified horizon net of the expected discounted
convex (piecewise-linear) penalty costs for wealth
and benchmark targets shortfalls in each decision
period. Earlier applications of the convex penalty
approach are found in Kallberg et al. (1982), Kuzy
and Ziemba (1986), Carifio and Ziemba (1998), and
Cariflo et al. (1998). Ziemba (2013) presents the case
for the use of convex risk measures. See also MacLean
and Ziemba (2013).

The implementation of a scenario-based asset
allocation model leads to more flexible allocation
restraints, which allows for more risk tolerance and
ultimately results in better long-term investment per-
formance.
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ENDNOTE

1.This column has been modified from an introduction
in our Handbook of Financial Decision Making, Part Il
(World Scientific, 2013), where readers can find many
of the papers cited here, plus other papers and discus-
sion relevant to financial decision making.
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