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During the last few years there have been many changes in the way that financial

institutions model risk. New risk capital regulations have motivated a need for

vertically integrated risk systems based on a unified framework throughout the whole

office. If the risk exposures in all locations of a large institution are to be aggregated,

the risk system must also be horizontally integrated. Internationally, regulators are

pushing towards an environment where traders, quants and risk managers from all

offices are referring to risk measures generated by the same models. This is a huge

task which remains a challenge for many financial institutions, but the result should

be useful to manage risks for allocation of capital between different areas of the firm,

and to set traders limits as well as levels of capital reserves.

Following the Basle Accord Amendment in 1996 for the calculation of market risk

capital using internal models, the Basle Committee on Banking Supervision (1995)

have recommended two methods for generating a unified set of risk measures on a

daily basis. These methods have become industry standards for measuring risk not

only for external regulatory purposes, but also for internal risk management. The first

approach is to calculate a Value-at-Risk (VaR) measure, which is a lower percentile

of an unrealized profit and loss distribution. This distribution is based on movements

of the market risk factors over a fixed risk horizon. The second approach is to

quantify the maximum loss over a large set of scenarios for movements in the risk

factors.

                                                       
1 Professor of Finance, Chair of the Risk Management Group, ISMA Centre, Reading University, UK
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Given the huge number of market risk factors affecting the positions of a large

financial institution, the VaR models and scenario-based loss models may become

very complex indeed. In fact their implementation becomes extraordinarily

cumbersome, if not impossible, without making assumptions that restrict the

possibilities for movements in the risk factors. For example, at the heart of most risk

models there is a covariance matrix that captures the volatilities and correlations

between the risk factors. Typically hundreds of risk factors, such as all yield curves,

interest rates, equity indices, foreign exchange rates and commodity prices, need to be

encompassed by a very large dimensional covariance matrix. It is not easy to generate

this matrix and so simplifying assumptions may be necessary. For example the

RiskMetrics methodologies designed by JP Morgan use either simple equally

weighted moving averages, or exponentially weighted moving averages with the same

smoothing constant for all volatilities and correlations of returns. There are substantial

limitations with both of these methods, described in Alexander (1996).

Another example of how the standard methods necessitate simplifying assumptions is

in maximum loss calculations. The applicability of maximum loss measures depends

on portfolio revaluation over all possible scenarios, including movements in both

prices and implied volatilities of all risk factors. In complex portfolios the

computational burden of full revaluation over thousands of scenarios would be

absolutely enormous, and certainly not possible to achieve within an acceptable time

frame unless analytic price approximations and advanced sampling techniques are

employed in conjunction with a restriction of the possibility set for scenarios.

The problems outlined in both of the above examples have a common root: the

computations, be they volatility and correlation calculations for a covariance matrix,

or portfolio revaluation for the calculation of maximum loss, are being applied to the

full set of risk factors. So the dimensions of the problem become too large to manage

and the problem is intractable. But there is an alternative: to apply computations to
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only a few key market risk factors that capture the most important independent

sources of information in the data. Such an approach is computationally efficient

because it allows an enormous reduction in the dimension of the problem whilst

retaining a very high degree of accuracy. Because the risk factors are independent it

does not significantly increase the computational complexity even if a large number

of key risk factors are employed. Normally a sufficient number of key risk factors will

be generated so that any movements that are not captured by these factors are deemed

to be insignificant 'noise' in the system, and by cutting out this noise the risk measures

will become more stable and robust over time. Also, being able to quantify how much

risk is associated with each key factor is an enormous advantage for risk managers,

because their attention is more easily directed towards the most important sources of

risk.

The method used here to identify key independent sources of risk within a large

system is principal component analysis. Jamshidian and Zhu (1996) have shown how

principal components may be used to improve computational efficiency for scenario

based risk measures in large multi-currency portfolios. This paper extends these ideas

to two other important areas: firstly the efficient computation of large positive semi-

definite covariance matrices, and secondly the modelling of multivariate scenarios for

the whole implied volatility smile surface as the underlying prices move. Both

problems have immediate applications to internal models for measuring market risk.

Identification of the Key Risk Factors

Suppose a set of data with T observations on k asset or risk factor returns is

summarized in a Txk matrix Y. Principal component analysis will give up to k

uncorrelated stationary variables, called the principal components of Y, each

component being a simple linear combination of the original returns as in (1) below.

At the same time it is stated exactly how much of the total variation in the original
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system of risk factors is explained by each principal component, and the components

are ordered according to the amount of variation they explain.

The first step in principal component analysis is to normalize the data in a Txk matrix

X that represents the same variables as Y, but in X each column is standardized to

have mean zero and variance 1. So if the ith risk factor or asset return in the system is

yi, then the normalized variables are xi = (yi -  µi)/σi where µi and σi are the mean

and standard deviation of yi for i = 1, … k. Now let W be the matrix of eigenvectors

of X'X, and ΛΛ be the associated diagonal matrix of eigenvalues, ordered according to

decreasing magnitude of eigenvalue.2  The principal components of Y are given by the

Txk matrix

P = XW (1)

Thus a linear transformation of the original risk factor returns has been made in such a

way that the transformed risk factors are orthogonal, that is, they have zero

correlation.3   

The new risk factors are ordered by the amount of the variation they explain.4 Hence

only the first few, the most important factors may be chosen to represent the system as

follows: Since W is orthogonal (1) is equivalent to X = PW', that is

xi  = wi1 p1 + wi2 p2 + ...... + wik pk (2)

so the matrix W is called the matrix of 'factor weights'. In terms of the original

variables Y the representation (2) is equivalent to

yi  =  µi + ω*
i1 p1 + ω*

i2 p2 + ...... + ω*
im pm   + εεi (3)

where ω*
ij = wijσi and the error term in (3) picks up the approximation from using

only the first m of the k principal components. These m principal components are the

'key' risk factors of the system, and the rest of the variation is ascribed to 'noise' in the

                                                       
2 Thus X'X W = W ΛΛ .
3 Note that P'P = W'X'XW = W'WΛΛ , but W is an orthogonal matrix so P'P = ΛΛ , a diagonal matrix.
4 The proportion of the total variation in X that is explained by the mth principal component is λm/k,
where the eigenvalue λm of X'X corresponds to the mth principal component and the column labeling
in W has been chosen so that λ1 > λ2 >  ..... >λk.
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error term. The representation (3) indicates how, when covariance or scenario

calculations are based only on the most important principal components, the effect

may be easily translated back to the original system through a simple linear

transformation.

Efficient Computation of Positive Semi-Definite Covariance Matrices

This section outlines the theory and methodology for using a few key market risk

factors that represent only the most important independent sources of information to

generate large covariance matrices. These matrices will be positive semi-definite,

relatively stable over time, and may be computed easily using sophisticated models

that have many advantages, but that are too complex for a direct application to large

systems.

Since principal components are orthogonal their covariance matrix is simply the

diagonal matrix of their variances. These variances can be quickly transformed into a

covariance matrix of the original system using the factor weights as follows: Taking

variances of (3) gives

V = ADA' + Vεε  (4)

where A = (ω*
ij) is the kxm matrix of normalized factor weights, D = diag(V(P1), ...

V(Pm)) is the diagonal matrix of variances of principal components and Vεε is the

covariance matrix of the errors. Ignoring Vεε gives the approximation

 V ≈ ADA' (5)

with an accuracy that is controlled by choosing more or less components to represent

the system. This shows how the full kxk covariance matrix of asset or risk factor

returns V is obtained from a just a few estimates of the variances of the principal

components.
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Note that V will be positive semi-definite, but it may not be strictly positive definite

unless m = k.5 Although D is positive definite because it is a diagonal matrix with

positive elements, there is nothing to guarantee that ADA' will be positive definite

when m < k. To see this write

x'ADA'x = y'Dy 

where A'x = y. Since y can be zero for some non-zero x , x'ADA'x  will not be

strictly positive for all non-zero x. It may be zero, and so ADA' is only positive semi-

definite. When covariance matrices are based on (5) with m < k, they should be run

through an eigenvalue check to ensure strict positive definiteness. However it is

reasonable to expect that the approximation (5) will give a strictly positive definite

covariance matrix if the representation (3) is made with a high degree of accuracy.

Advantages of the Orthogonal Method, Limitations of Direct Methods

The first advantage of using this type of orthogonal transformation to generate risk

factor covariance matrices is clear. There is a very high degree of computational

efficiency in calculating only m variances instead of the k(k+1)/2 variances and

covariances of the original system. For example in a single yield curve with, say, 15

maturities, only the variances of the first 2 or 3 principal components need to be

computed, instead of the 120 variances and covariances of the yields of 15 different

maturities.6

                                                       
5 A symmetric matrix A is positive definite if x'Ax > 0 for all non-zero x. If w is a vector of portfolio
weights and V is the covariance matrix of asset returns, then the portfolio variance is w'Vw. So
covariance matrices must always be positive definite, otherwise some portfolios may have non-positive
variance.
6 In highly correlated systems the first principal component, which represents a common trend in the
variables, will explain a large part of the variation. In term structures and other ordered systems the
second principal component represents a 'tilt' from shorter to longer maturities. Often the majority of
the variation in a term structure may be explained when the system is represented by these two
components alone. It is common for over 90% of the variation to be explained when a third component,
the 'curvature' is added, so the considerable dimension reduction achieved by using 2 or 3 principal
components results in little loss of accuracy. More details and examples may be found in Alexander
(2000).
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Exponentially weighted moving averages of the squares and cross products of returns

are a standard method for generating covariance matrices. But a limitation of this type

of direct application of exponentially weighted moving averages is that the covariance

matrix is only guaranteed to be positive semi-definite if the same smoothing constant

is used for all the data.7 That is, the reaction of volatility to market events and the

persistence in volatility must be assumed to be the same in all the assets or risk factors

that are represented in the covariance matrix. A major advantage of the orthogonal

factor method described here is that it allows exponentially weighted moving average

methods to be used without this unrealistic constraint. Each principal component

exponentially weighted moving average variance would normally be applied with a

different smoothing constant. So the degree of smoothing in the variance of any

particular asset or risk factor that is calculated by the orthogonal method will depend

on the factor weights in the principal component representation. Since the factor

weights of an asset are determined by its correlation with other variables in the

system, so also is the degree of smoothing. That is, the market reaction and volatility

persistence of a given asset will not be the same at the other assets in the system, but

instead it will be related to its correlation with the other assets.

The univariate generalised autoregressive conditional heteroscedasticity (GARCH)

models that were introduced by Engle (1982) and Bollerslev (1986) have been very

successful for short term volatility estimation and forecasting in financial markets.

The mathematical foundation of GARCH models compares favourably with some of

the alternatives used by financial practitioners, and this mathematical coherency

makes GARCH models easy to adapt to new financial applications. There is also

evidence that GARCH models generate more realistic long-term forecasts than

exponentially weighted moving averages. This is because the GARCH volatility and

correlation term structure forecasts will converge to the long-term average level,

which may be imposed on the model, whereas the exponentially weighted moving

average model forecasts average volatility to be same for all risk horizons (see

                                                       
7 See the RiskMetrics Technical Document, 3rd Edition, 1996 (www.riskmetrics.com)
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Alexander, 1998). As for short-term volatility forecasts, statistical results are mixed

(see for example Brailsford and Faff, 1996, Dimson and Marsh, 1990, Figlewski,

1994, Alexander and Leigh (1997)). This is not surprising since the whole area of

statistical evaluation of volatility forecasts is fraught with difficulty. Another test of

volatility forecasting models is in their hedging performance. There is much to be said

for using the GARCH volatility framework for pricing and hedging options (see Duan

1995, 1996). Engle and Rosenberg (1995) provide an operational evaluation of

GARCH models in option pricing and hedging, demonstrating a clear superiority to

the Black-Scholes methods with an extensive empirical study. The beauty of the

GARCH approach stems from the fact that a stochastic volatility is built into the

model, which is closer to the real world, yet it does not introduce an additional source

of uncertainty and therefore delta hedging is still sufficient.

Large covariance matrices that are based on GARCH models would, therefore, have

clear advantages over those generated by exponentially or equally weighted moving

averages. But previous research in this area has met with rather limited success. It is

straightforward to generalize the univariate GARCH models to multivariate

parameterizations, as in Engle and Kroner (1993). But the actual implementation of

these models is extremely difficult. With so many parameters, the likelihood function

becomes very flat, and so convergence problems are very common in the optimization

routine. If the modeler also needs to 'nurse' the model for systems with only a few

variables, there is little hope of a fully functional implementation of a direct

multivariate GARCH model to work on large risk systems.

The idea of using factor models with GARCH is not new. Engle, Ng and Rothschild

(1990) use the capital asset pricing model to show how the volatilities and

correlations between individual equities can be generated from the univariate GARCH

variance of the market risk factor. Their results have a straightforward extension to

multi-factor models, but unless the factors are orthogonal a multi-variate GARCH

model will be required, with all the associated problems.
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A principal component representation is a multi-factor model. In fact the orthogonal

GARCH model introduced in Alexander (2000) is a generalization of the factor

GARCH model introduced by Engle, Ng and Rothschild (1990) to a multi-factor

model with orthogonal factors. The orthogonal GARCH model allows kxk GARCH

covariance matrices to be generated from just m univariate GARCH models. It may

be that m, the number of principal components can be much less than k, the number of

variables in the system - and quite often one would wish m to be less than k so that

extraneous 'noise' is excluded from the data. But since only univariate GARCH

models are used it does not really matter: there no dimensional restrictions as there are

with the direct parameterizations of multivariate GARCH.

Of course, the principal components are only unconditionally uncorrelated, so a

GARCH covariance matrix of principal components is not necessarily diagonal.

However the assumption of zero conditional correlations has to be made, otherwise it

misses the whole point of the model, which is to generate large GARCH covariance

matrices from GARCH volatilities alone. The degree of accuracy that is lost by

making this assumption is investigated by a thorough calibration of the model,

comparing the variances and covariances produced with those from other models such

as exponentially weighted moving averages or, for small systems, with multivariate

GARCH. Care needs to be taken with the initial calibration, in terms of the number of

components used and the time period used to estimate them, but once calibrated the

orthogonal GARCH model may be run very quickly and efficiently on a daily basis.

Another advantage is that the orthogonal method, applied with either GARCH or

exponentially weighted moving average variances, allows one to generate estimates

for volatilities and correlations of variables in the system even when data are sparse

and unreliable, for example in illiquid markets. For example, the direct estimation of a

time-varying variance of a 12-year bond may be difficult, but the orthogonal method
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allows its variance to be calculated from the variances of the key risk factors used in

its representation.

Some Examples 8

The orthogonal method is ideally suited to highly correlated ordered systems such as a

term structure. The first example uses (a) exponentially weighted moving average

variances and (b) GARCH(1,1) variances of just two principal components for the

WTI crude oil futures from 1 month to 12 months, sampled daily between 4th

February 1993 and 24th March 1999. The 1, 2, 3, 6, 9 and 12-month maturity futures

prices are shown in figure 19 and the results of a principal component analysis on

daily returns are given in table 1.

Figure 1: NYMEX Sweet Crude Prices
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8 The results in this section are reported in more detail, along with several other examples, in Alexander
(2000).
9 See Alexander (1999) for a full discussion of these data and of correlations in energy markets in
general. Many thanks to Enron for providing these data.
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Of course the factor weights show that, as with any term structure, the interpretations

of the first three principal components are the trend, tilt and curvature components

respectively. In fact this particular system is so highly correlated that over 99% of its

variation may be explained by just two principal components and the first principal

component alone explains almost 96% of the variation over the period.

Table 1a: Eigenvalue Analysis

Component Eigenvalue  Cumulative  R2

P1 11.51 0.9592

P2 0.397 0.9923

P3 0.069 0.9981

Table 1b: Factor Weights

P1 P2 P3

1mth 0.89609  0.40495  0.18027

2mth 0.96522  0.24255 -0.063052

3mth 0.98275  0.15984 -0.085002

4mth 0.99252  0.087091 -0.080116

5mth 0.99676 0.026339 -0.065143

6mth 0.99783 -0.020895 -0.046369

7mth 0.99702 -0.062206 -0.023588

8mth 0.99451 -0.098582  0.000183

9mth 0.99061 -0.13183  0.020876

10mth 0.98567 -0.16123  0.040270

11mth 0.97699 -0.19269  0.064930

12mth 0.97241 -0.21399  0.075176

The GARCH(1,1) model defines the conditional variance at time t as

2
1

2
1

2
−− ++= ttt βσεαωσ (6)

where ω > 0, α, β ≥ 0. This simple GARCH model effectively captures volatility

clustering and provides convergent term structure forecasts to the long-term average
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level of volatility 100√250ω/(1−α−β).  The coefficient α measures the intensity of

reaction of volatility to yesterday's unexpected market return ε2
t-1, and the coefficient

β measures the persistence in volatility.10

Applying (6) to the first two principal components of these data gives the parameter

estimates reported in table 2. Note that the first component has low market reaction

but high persistence, and the opposite is true for the second component. This reflects

much of what is already known about the data from the principal component analysis:

the system is very highly correlated indeed, in fact price decoupling occurs for only

very short periods of time. Now in the orthogonal model all the variation in

correlations will come from the second or higher principal components because with

only one component all variables are assumed to be perfectly correlated. The second

component here has a 'spiky' volatility, and this gives rise to orthogonal GARCH

correlations that also have only temporary deviations from normal levels. Thus the

orthogonal GARCH model is capturing the true nature of crude oil futures markets.

Unfortunately the exponentially or equally weighted moving average correlations that

are in standard use have a substantial bias that arises from only very temporary price

decoupling.

Table 2: GARCH(1,1) models of the first two principal components

1st Principal Component 2nd Principal Component
Coefficient t-stat Coefficient t-stat

constant .650847E-02 .304468 .122938E-02 .066431
ω .644458E-02 3.16614 .110818 7.34255
α .037769 8.46392 .224810 9.64432
β .957769 169.198 .665654 21.5793

Figure 2 shows how closely the volatilities that are obtained using the orthogonal

method compare with those obtained by the direct application of (a) exponentially

                                                       
10 Note that these are determined independently in the GARCH(1,1) model, subject only to the
constraint that α+β<1. In the exponentially weighted moving average model these parameters are not
independent because they always sum to 1, and the constant is zero, so there is not long-term average
level in the model and volatility terms structures are constant.
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weighted moving averages and (b) GARCH(1,1) models.11 Of course there is no space

here to graph all 78 volatilities and correlations from the 12x12 covariance matrix.

But interested readers may use the programs provided with Alexander (2000) to verify

that all volatilities, not just those shown in figure 2, are very similar. But there is a

difference in correlations. Not depending on whether a direct or an orthogonal

approach is used, but depending on whether exponentially weighted moving averages

or GARCH(1,1) models are used. As mentioned above, the GARCH correlations

more accurately reflect the true nature of the data.

Figure 2: Direct and Orthogonal Volatilities
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The main disadvantage of the direct method is that it requires estimating 78

volatilities and correlations, using (a) the same value of the smoothing constant for the

exponentially weighted moving average model, or (b) a 12-dimensional multivariate

GARCH model. Both of these approaches have substantial limitations as described

above. However using the orthogonal method only two moving average variances, or

two univariate GARCH(1,1) variances, of the trend and tilt principal components

need to be generated. The entire 12x12 covariance matrix of the original system is

                                                       
11 There is no optimal method for choosing a value for the smoothing in these exponentially weighted
moving averages. A value of 0.95 has been used throughout, but the reader may experiment with
different values by adjusting the programs that are provided with Alexander (2000).
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simply a transformation of these two variances, as defined in (5) above, and it may be

recovered in this way with negligible loss of precision.

Several good reasons to prefer GARCH models to exponentially weighted moving

averages have already been mentioned, and one of the most attractive reasons is that

only the GARCH approach will give convergent term structure forecasts. In the

orthogonal GARCH model these forecasts, for volatilities and correlations of all

maturities, are obtained from the simple transformations (5) where the diagonal

matrix D contains the n-period GARCH(1,1) variance forecasts of the principal

components.12 Some of these are illustrated for volatilities of the 1-mth oil future in

figure 3.

Figure 3: Orthogonal GARCH Term Structure Volatility 
Forecasts for 1mth Crude Oil Futures
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The next example applies the orthogonal GARCH(1,1) model to another term

structure, but a rather difficult one. Daily zero coupon yield data in the UK with 11

different maturities between 1mth and 10 years from 1st Jan 1992 to 24th Mar 1995 are

                                                       
12 The n-period GARCH(1,1) variance forecast is the sum of n forward variances for j = 1, ….n:

2
1

2 ˆ)ˆˆ(ˆˆ −++ ++= jtjt σβαωσ
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shown in figure 4. It is not an easy task to estimate univariate GARCH models on

these data directly because the yields may remain relatively fixed for a number of

days. Particularly on the more illiquid maturities, there is insufficient conditional

heteroscedasticity for univariate GARCH models to converge well. So an 11-

dimensional multivariate GARCH model is completely out of the question.

Figure 4: UK Zero-Coupon Yields
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Again two principal components were used in the orthogonal GARCH, but the

principal component analysis reported in table 3 shows that these two components

only account for 72% of the total variation. Also the 10yr yield has a very low

correlation with the rest of the system, as reflected by its factor weight on the 1st

principal component, which is quite out of line with the rest of the factor weights on

this component. So the fit of the orthogonal model could be improved if the 10yr bond

were excluded from the system. Despite these difficulties the volatilities obtained

using the orthogonal GARCH model are very similar to those obtained by direct

estimation of exponentially weighted moving averages.13

                                                       
13  The smoothing constant for all exponentially weighted moving averages was again set at 0.95.
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Table 3a: Eigenvalue Analysis

Component Eigenvalue  Cumulative R2

P1 5.9284117 0.53894652

P2 1.9899323 0.71984946

P3 0.97903180 0.80885235

Table 3b: Factor Weights

P1 P2 P3

1mth 0.50916  0.60370  0.12757

2mth 0.63635  0.62136 -0.048183

3mth 0.68721  0.57266 -0.10112

6mth 0.67638  0.47617 -0.10112

12mth 0.83575  0.088099 -0.019350

2yr 0.88733 -0.21379  0.033486

3yr 0.87788 -0.30805 -0.033217

4yr 0.89648 -0.36430  0.054061

5yr 0.79420 -0.37981  0.14267

7yr 0.78346 -0.47448  0.069182

10yr 0.17250 -0.18508 -0.95497

The GARCH (1,1) parameter estimates of the principal components are given in table

4. This time both components have fairly persistent volatilities, and both are less

reactive than the volatility models reported in table 2. Combine this with the fact that

almost 28% of the variation has been ascribed to 'noise' by using only these first two

principal components, and it is not unsurprising that the orthogonal GARCH model

produces quite stable correlation estimates: more stable than those obtained by direct

application of exponentially weighted moving averages.
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Table 4: GARCH(1,1) models of the first two principal components

1st Principal Component 2nd Principal Component
Coefficient t-stat Coefficient t-stat

constant .769758E-02 .249734 .033682 1.09064
ω .024124 4.50366 .046368 6.46634
α .124735 6.46634 .061022 9.64432
β .866025 135.440 .895787 50.8779

Figure 5 shows some of the orthogonal GARCH correlations for the UK zero coupon

yields. So not only does the orthogonal method provide a way of estimating GARCH

volatilities and volatility term structures that may be difficult to obtain by direct

univariate GARCH estimation. They also give very sensible GARCH correlations,

which would be very difficult indeed to estimate using direct multivariate GARCH.

And all these are obtained from just two principal components, the key market risk

factors that are representing the most important sources of information - all the rest of

the variation is ascribed to 'noise' and is not included in the model.

Figure 5: Orthogonal GARCH Correlations 
UK Zero-Coupon Yields
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Generating a Large Covariance Matrix across All Risk Factor Categories

The risk factors - equity market indices, exchange rates, commodities, government

bond and money market rates and so on - are first divided into reasonably highly

correlated categories, according to geographic locations and instrument types.

Principal component analysis is then used to extract the key risk factors from each

sub-system and their diagonal covariance matrix is obtained using one of the methods

outlined above. Then the factor weights from the principal component analysis are

used to ‘splice’ together a large covariance matrix for the original system.

The method is explained for just two categories, then the generalization to any

number of categories is straightforward. Suppose there are n variables in the first

system, say it is European equity indices, and m variables in the second system,

European exchange rates say.  It is not the dimensions that matter. What does matter

is that each system of risk factors is suitably co-dependent, so that it justifies the

categorization as a separate and coherent sub-system. The first step is to find the

principal components of each system, P = (P1 , ... Pr ), and separately Q = (Q1 ,...Qs )

where r and s are number of principal components that are used in the representation

of each system. Denote by A (nxr) and B (mxs) the normalized factor weights

matrices obtained in the principal component analysis of the European equity and

exchange rate systems respectively. Then the 'within factor' covariances, i.e. the

covariance matrix for the equity system, and for the exchange rate system separately,

are given by AD1A' and B D2B' respectively. Here D1 and D2 are the diagonal

matrices of the variances of the principal components of each system. The cross factor

covariances are ACB' where C denotes the rxs matrix of covariances of principal

components across the two systems, that is

C = {COV(Pi, Qj)}

Then the full covariance matrix of the system of European equity and exchange rate

risk factors is:
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The within factor covariance matrices AD1A' and BD2B' will always be positive semi-

definite. But it is not always possible to guarantee positive semi-definiteness of the

full covariance matrix of the original system, unless the off diagonal blocks ACB' are

set to zero. This is not necessarily a silly thing to do; in fact it may be quite sensible in

the light of the huge instabilities often observed in cross-factor covariances.14

The method is illustrated using four European equity indices and their associated

sterling foreign exchange rates. The graphs in figure 6 are based on daily return data

from 1st April 1993 to 31st December 1996 on France (CAC40), Germany (DAX30),

Holland (AEX), and the UK (FTSE100). In this 7-dimensional system of equity

indices and foreign exchange rates there are 28 volatilities and correlations in total.

Figure 6 shows just two of the correlations from an orthogonal GARCH(1,1) model of

the system compared with those obtained from two different direct parameterizations

of a multivariate GARCH(1,1) model: (a) the Vech model, and (b) the BEKK model.

These multivariate GARCH models were only possible to estimate on each sub-

system separately. In fact convergence problems with the BEKK model for the

foreign exchange system were encountered, so only the Vech model correlations,

which have severe cross equation restrictions15 are shown in figure 6b. These two

graphs, which indicate a close similarity between the correlations, were chosen at

random from the correlations for which multivariate GARCH models also produce

results. Principal component analysis and orthogonal GARCH, Vech and BEKK

model parameter estimates are not reported here due to lack of space, but full details

of these models and the results are given in Alexander (2000).

                                                       
14 For non-zero cross-factor covariances it is possible to estimate the covariance between principal
components of different risk factor sub-systems using exponentially weighted moving averages or
bivariate GARCH, giving the required estimate for C.
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Figure 6a:  Equity Correlation Comparison (CAC-FTSE)
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Figure 6b: FX Correlation Comparison
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The example has been mentioned here to illustrate the scope and flexibility of the

approach to all types of asset class. It shows that it is possible to estimate these

covariance matrices when direct methods are not possible, or require unrealistic

                                                                                                                                                              
15 In the Vech model all variances and covariances depend only on their own lag, and not the lags of
other variances and covariances in the system.
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restrictions. Provided the assets are first divided into reasonably highly correlated

categories, principal component analysis provides a way to extract the important

independent sources of information in each category. The covariance matrices for

each category are generated from the variances of these key risk factors, and then a

large covariance matrix that encompasses all categories is spliced together.

Using Key Risk Factors of Volatility Skews to Identify Different

Market Regimes and the Price-Volatility Scenarios that Apply

Scenario based maximum loss calculations require at least the definition, if not the

joint distribution, of scenarios for implied volatilities and underlying asset prices. In

the absence of an effective model of how implied volatilities change with market

price, these scenarios may be rather simplistic. The base scenario that the smile

surface remains unchanged over all risk horizons is often augmented by a only a few

simple scenarios, such as parallel shifts in all volatilities that are assumed to be

independent of movements in underlying prices.

But for equity options there is often a negative correlation between at-the-money

volatility and the underlying price. This is clear from figure 7 which shows, for three

different two month periods during 1998, a scatter plot of the daily changes in 1mth

at-the-money volatility vs daily changes in index price for the FTSE100 European

option. The periods chosen were (a) May and June 1998; (b) February and March

1998; and (c) August and September 1998.16

                                                       
16 The fixed maturity implied volatility data used in this section have been obtained by linear
interpolation between the two adjacent maturity option implied volatilities. However this presents a
problem for the 1mth volatility series because often during the last few working days before expiry
data on the near maturity option volatilities are totally unreliable. So the 1mth series rolls over to the
next maturity, until the expiry date of the near-term option, and thereafter continues to be interpolated
linearly between the two option volatilities of less than and greater than 1 month.
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Figure 7a:  At- the-Money Volat i l i ty  vs  FTSE 100 
(Daily Changes)  M ay and June 1998
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Figure 7b:  At- the-Money Volat i l i ty  vs  FTSE 100 
(Daily Changes)  February and M arch 1998
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Figure  7c:  At- the-Money  Vola t i l i ty  vs  FTSE 100  
(Da i ly  Changes )  Augus t  and  Sep tember  1998
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Casual observation of these scatter plots indicates a significant negative correlation

between the 1mth implied volatility and the index price, but the strength of this

correlation depends on the data period. Period (b) when the UK equity market was

very stable and trending, shows less correlation than period (a), when daily

movements in the FTSE100 index were limited to a ‘normal’ range; but the negative

correlation is most obvious during the mini-crash period (c).  These observations are

not peculiar to the 1mth at-the-money FTSE100 volatilities, and not just during the

periods shown: negative correlations, of more or less strength depending on the data

period, are also evident in other fixed term at-the-money volatilities and in other

equity markets.

So realistic scenarios for at-the money volatility and index prices would be for

movements in at-the-money volatility to occur in the opposite direction to the index

price movements. But how large should these movements be in relation to each other?

Does the answer depend on current market conditions? If so, how can we model the

current market conditions to quantify the correlation effect? And what about the

fixed-strike volatilities? Since positions are likely to move in- or out-of-the-money

during the risk horizon, we need to know what scenarios are most probable for the

whole volatility skew.

Derman's Volatility Regimes

Figure 8a shows the 1mth implied volatilities for European options of all strikes on

the FTSE100 index for the period 4th January 1998 to 31st March 1999. The bold red

line indicates the at-the-money volatility and the bold black line the FTSE100 index

price (on the right-hand scale). Look at the movements in the index and the way that

at-the-money volatility is behaving in relation to the index during the three different

periods chosen in figure 7. Observation of data similar to these, but on the S&P500

index option 3mth volatilities, has motivated Derman (1999) to formulate three

different market regimes:
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(a) Range-bounded, where future price moves are likely to be constrained within a

certain range and there no significant change in realized volatility;

(b) Trending, where the level of the market is changing but in a stable manner so

there is again little change in realized volatility in the long run; and

(c) Jumpy, where the probability of jumps in the price level is particularly high so

realized volatility increases.

Figure 8a: Fixed-Strike Volatilities, At-the-Money Volatility 
and the Index Level
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Different linear parameterizations of the volatility skew for pricing and hedging

options apply in each regime. These are known as Derman's 'sticky' models, because

each parameterization implies a different type of 'stickiness' for the local volatility in a
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binomial tree.17 Denote by σK(t) the implied volatility of an option with maturity t and

strike K, σATM(t) the volatility of the t-maturity at-the-money option, S the current

value of the index and σ0 and S0 the initial implied volatility and price used to

calibrate the tree:

(a) In a range bounded market Derman proposes that skews are parameterized by the

'sticky strike' model:

σK(t) = σ0 - b(t) (K-S0) (7a)

So fixed strike volatility σK(t) is independent of the index level S.

Since σATM(t) = σ0 - b(t) (S-S0) this model implies that σATM decreases as index

increases.

(b) For a stable trending market skews are parameterized by the 'sticky delta' model:

σK(t) = σ0 - b(t) (K-S) (7b)

So fixed strike volatility σK(t) increases with the index level S.

Since σATM(t) = σ0 this model implies that σATM(t) is independent of the index.

(c) In jumpy markets skews are parameterized by the 'sticky tree' model:

σK(t) = σ0 - b(t) (K+S) (7c)

So fixed strike volatility σK(t) decreases as the index increases.

Since σATM(t) = σ0 - 2b(t)S, the at-the-money volatility σATM(t) also decreases as

index increases, and twice as fast as the fixed strike volatilities.

Fixed-Strike Volatility Deviations from At-the-Money Volatility

Time series data such as that shown in figure 8a should contain all the information

necessary to estimate the skew parameterization that is appropriate for the current

market regime. But there are around 60 different strikes represented there, and their

volatilities form a correlated, ordered system that is similar to a term structure. It is

therefore natural to consider using principal component analysis to identify the main

                                                       
17 The 'sticky strike' is so called because local volatilities are constant with respect to strike, changing
only with moneyness; the 'sticky delta' model has local volatilities that are not constant with strike, but
are constant with respect to moneyness or delta; and only in the 'sticky tree' model is there one, unique
tree for all strikes and moneyness.
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independent sources of information. Both analytic simplicity and computational

efficiency would result from a model that is based only on these key risk factors.

Principal component analysis of the volatility skew has been used before, by Derman

and Kamal (1997). However their work is based on quite different data to that shown

in figure 8a.18 Time series data on fixed strike or fixed delta volatilities often display

very much negative autocorrelation, possibly because markets over-react, so the

‘noise’ in daily changes of fixed strike volatilities is a problem. Therefore a principal

components analysis of daily changes in fixed-strike volatilities may not give very

good results.

But look at the deviations of fixed strike volatilities from at-the-money volatility,

shown in figure 8b. These display less negative autocorrelation, they are even more

highly correlated and ordered than the fixed strike volatilities themselves, and their

positive correlation with the index is very evident indeed during the whole period.

The reason for this becomes evident when (7a) – (7c) are rewritten in terms of fixed-

strike volatility deviations from at-the-money volatility σK(t) - σATM(t). Each of

Derman’s models yields the same relationship between fixed-strike volatility

deviations from at-the-money volatility and the current index price, viz.:

σK(t) - σATM(t) = -b(t) (K-S) (8)

So all three models imply the same, positive correlation between the index and the

skew deviations σK(t) - σATM(t).  In fact an alternative formulation of Derman’s sticky

models is (8) with a different specification for the behaviour of at-the-money

volatility in relation to the index in each regime, viz.

(a) Range-bounded: σATM(t) = σ0 – b(t) (S – S0)

(b) Stable trending: σATM(t) = σ0

(c) Jumpy: σATM(t) = σ0 - 2b(t)S.

                                                       
18 Dermand and Kamal use weekly mid-market volatility of S&P500 index options from May 1994 to
September 1997 where the surface is specified by 12 numbers corresponding to three different deltas
for 1mth, 3mth, 6mth and 12mth maturities; and daily Nikkei 225 index volatility from September
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Figure 8b: Deviations of Fixed-Strike Volatility from At-the-
Money Volatility (1mth)
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Effective Methods for Identification of the Current Market Regime

The above formulation of Derman's regime models suggests that one might perform

an empirical investigation into which regime currently prevails by estimating linear

regressions of the form:

∆σATM(t) = α(t) + β(t)∆S + ε(t) (9)

where ∆σATM(t)  denotes the daily change in at-the-money volatility of maturity t and

∆S is the daily change in the index. In general, due to the negative correlation, each

                                                                                                                                                              
1994 to May 1997 for 9 deltas and 5 different maturities. For each of these markets they analyze the
principal components of the changes in the whole implied volatility surface.
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β(t) will be negative. But if all the coefficients β(t) are insignificantly different from

zero the market is stable and trending, so the sticky delta model should be used. A

signal that the market has entered a different regime occurs when β(t) undergoes a

significant change in value. In a jumpy market that is characterized by the sticky tree

model, the value of β(t) will be approximately twice the value that it takes in a range-

bounded market where the sticky strike model is valid.

Figure 9a: At-the-Money Volatility Sensitivity to Change in the Index
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Figure 9a shows the values obtained for β(t) for t = 1mth, 2mths and 3mths. In order

to capture the current market conditions one month of daily data is used in each

regression. These regressions were rolled over the whole period from 4th January 1998

to 31st March 1999 and each time the coefficient and its t-statistic are recorded.

The response of at-the-money volatility to changes in the underlying index level

increases as options approach expiry, and this fact is reflected in figure 9a since at all

times

β(1mth) > β(2mth) > β(3mth).
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However no such order is apparent in the accompanying t-statistics, shown in figure

9b, so the negative correlation between at-the-money volatility and index price is not

a simple function of the maturity of volatility.

Figure 9b: Significance of At-the-Money Volatility Sensitivity
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Casual observation of figure 8a has indicated that February and March 1998 might be

characterized as a stable and trending market. Figure 9b provides quantifiable

evidence of this, because during February and March 1998 the t-statistics on the β

coefficients are less significant than at other times.19 Two other periods were picked

out in the earlier discussion: May and June 1998, when the market seemed to be

operating in a range-bounded regime, and the mini-crash period that began in August

1998 and initiated a very jumpy market until the November of that year. From figure

9a it is apparent that the values of the β coefficients during the mini-crash period,

although not exactly double their values during May and June 1998, were far greater

than at any other time. A rapid decline in β, for all maturity volatilities, occurred at

the end of July 1998. Thus the model is providing a signal of a change in market

regime before the mini-crash occurred.  It was not until November 1998 that the level

                                                       
19 The 99% significance level is approximately 2.5.



Key Market Risk factors: Identification and Applications

© C.O. Alexander, February 2000 30

of β returned to more normal levels, when the market appears to pass back into a

range-bounded regime.

Using Key Risk Factors to Formulate Appropriate Skew Scenarios

The simple regressions just described may be used to identify the current volatility

regime, and to forewarn risk managers of any change in market conditions. It is now

shown how such information may be put to practical advantage. The applicability of

maximum loss calculations will depend upon the construction of appropriate price-

volatility scenarios. So we now ask, which type of skew scenarios should accompany

the scenarios on movements in the underlying? Are simple static or parallel shift

scenarios for the volatility skew appropriate at the moment? If so, is it the volatility by

strike that should remain static, so the volatility by moneyness or delta has a parallel

shift? Or is it volatility by delta that is static, which is equivalent to a parallel shift in

volatility by strike? But perhaps one should be placing more importance on scenarios

that encompass changes in the tilt or curvature of the volatility skew? If so, at which

end: should in-the-money volatilities be changed as much as out-of-the-money

volatilities? The following discussion illustrates how all these questions can be

answered by an empirical model of the relationship between the index and the key

risk factors of the skew.

Derman's models are based a linear parameterization of the skew given by (8). For

any given maturity, the deviations of all fixed strike volatilities from at-the-money

volatility will change by the same amount b(t) as the index level changes, as shown in

figure 10a. Four strikes are marked on this figure: a low strike KL, the initial at-the-

money strike K1, the new at-the-money strike after the index level moves up K2, and a

high strike KH. The volatilities at each of these strikes are shown in figure 10b, before

and after an assumed unit rise in index level (∆S = 1). In each of the three market

regimes the range of the skew between KL and KH, that is σL - σH, will be the same
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after the rise in index level. Thus all of Derman's model's imply a parallel shift

scenario for the skew by strike.

σΚ(t) - σATM(t)

KL K1 K2 KH

dL

dH

Strike

Figure 10a: Parallel Shift in Skew Deviations as Price Moves Up
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Figure 10b: Parallel Shifts in Fixed-Strike Volatilities as Price Moves Up
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The extent of the parallel shift depends on the relationship between the original at-the-

money volatility σ1 and the new at-the-money volatility σ2, and this will be defined

by the current market regime. In a range bounded market σ2 = σ1 - b(t), but fixed-

strike volatilities have all increased by the same amount b(t), so a static scenario for

the skew by strike should be applied, as depicted in figure 10b. When the market is

stable and trending, σ2 = σ1 and there is an upwards shift of b(t) in all fixed-strike

volatilities. Finally, in a jumpy market σ2 = σ1 - 2b(t), so a parallel shift downwards

of the skew by strike should be applied.

Figure 11: R-Squared from Linear Skew Parameterization
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Whilst a linear parameterization of the skew may be good approximation for the 3mth

or longer maturities, empirical observations show that it may not be very realistic at

the shorter end. Figure 11 shows the correlations from simple regressions based on

(8). Daily changes of fixed-strike deviations from at-the-money volatility, ∆(σK -

σATM) are regressed on daily changes in the index price, using one month of data.

These regressions are then rolled over the entire data period. It is clear that whilst the
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skew is fairly linear at the 3mth maturity, it becomes quite non-linear at the 1mth

maturity, particularly during the summer of 1998.

So the parallel shift scenarios for volatility skews that are a consequence of Derman's

models may be reasonable for 3mth volatilities, but for shorter-term volatilities a

simple, effective non-linear model of the skew would be advantageous. Such a model

can be based on a principal component analysis of ∆(σK(t) - σATM(t)), the daily

changes in t-maturity fixed-strike volatility deviations from t-maturity at-the-money

volatility. In this way the key risk factors for the volatility skew will be identified and

consequently they will be used in an empirical justification for skew scenarios that

encompass more change at either or both of the wings. Whether one should change

volatilities at the out-of-the-money wing or at the in-the-money wing of the skew, or

both, will be shown to depend on the current market conditions.

Principal component analysis of ∆(σK(t) - σATM(t)) has given some excellent results.

For fixed maturity volatility skews in the FTSE100 index option market during most

of 1998, the parallel shift component accounted for around 65-80% of the variation,

the tilt component explained a further 5 to 15% of the variation, and the curvature

component another 5% or so of the variation. The precise figures depend on the

maturity of the volatility (1mth, 2mth or 3mth) and the exact period in time that the

principal components were measured. But generally speaking 80-90% of the total

variation in skew deviations can be explained by just three key risk factors: parallel

shifts, tilts and curvature changes.20

                                                       
20 For example, the principal component analysis for 3mth implied volatility skew deviations over the
whole data period gives the following output. Note that sparse trading in very out-of-the money options
implies that the extreme low strike volatilities show less correlation with the rest of the system, and this
is reflected by their lower factor weights on the first component.

Component Eigenvalue Cumulative
R2

P1 13.3574 0.742078

P2 2.257596 0.8675

P3 0.691317 0.905906



Key Market Risk factors: Identification and Applications

© C.O. Alexander, February 2000 34

This identification of the important risk factors allows one to quantify the expected

movements in the volatility skew as the index moves under different market

circumstances. The first stage is to represent fixed-strike skew deviations by three

principal components:

∆(σK(t) - σATM(t)) = ωK,1(t)  P1(t)  + ωK,2(t)  P2(t)  + ωK,3(t)  P3(t)    (10a)

The second part of the model employs simple linear regressions of each component Pi

(i = 1, 2, or 3) on the daily changes ∆S in the index, viz.:

Pi (t) = γ0,i (t) + γi (t) ∆S + ηi (t) (10b)

where t is the volatility maturity (1mth, 2mth or 3mth). Thus the movements a t-

maturity volatility at strike K consequent to a change in index level will be

determined by the factor weights ωK,i and the sensitivities of the key risk factors to

                                                                                                                                                              

Factor Weights

P1 P2 P3

4225 0.53906 0.74624 0.26712

4325 0.6436 0.7037 0.1862

4425 0.67858 0.58105 0.035155

4525 0.8194 0.48822 -0.03331

4625 0.84751 0.34675 -0.19671

4725 0.86724 0.1287 -0.41161

4825 0.86634 0.017412 -0.43254

4925 0.80957 -0.01649 -0.28777

5025 0.9408 -0.18548 0.068028

5125 0.92639 -0.22766 0.13049

5225 0.92764 -0.21065 0.12154

5325 0.93927 -0.22396 0.14343

5425 0.93046 -0.25167 0.16246

5525 0.90232 -0.20613 0.017523

5625 0.94478 -0.2214 0.073863

5725 0.94202 -0.22928 0.073997

5825 0.93583 -0.22818 0.074602

5925 0.90699 -0.22788 0.068758
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index movements, γi (t) for i = 1, 2, 3. Note that Derman's models are a special case of

this model, where there is just one principal component in the representation (10a)

and so perfect correlation is assumed between all fixed-strike volatility deviations

from at-the-money volatility.

In order to capture the current market conditions, the regressions (10b) have been

performed using just one month of the FTSE 100 index data. These regressions were

rolled over the whole period from 4th January 1998 to 31st March 1999, and each time

the coefficients γi(t) are recorded, for i = 1, 2, and 3 and t = 1mth, 2mths and 3mths.

The statistical significance of these coefficients is as interesting as their actual value.

In fact it is the significance levels that provide the important information for risk

managers when coming to a decision about which types of risk should be the current

focus.

Figure 12: Significance of the Key Risk Factors
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Figure 12 shows the t-statistics on γi(t) for i = 1, 2 and 3 and t = 1mth from one month

rolling regressions (10b). Clearly γ1, which captures a parallel shift in all fixed-strike

volatility deviations, is significant throughout the period, always positive and

particularly important during the mini-crash period and the consequent market
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recovery. But the tilt component γ2 is much less significant. It is only playing a really

important role during the spring of 1998 and again in the spring of 1999. At both

these times the tilt has a negative relationship with index moves, indicating that as the

index moves up the low strike deviations will decrease and the high strike deviations

will increase. It is interesting to see that γ3, which captures the curvature component

of the skew deviations, almost always has the opposite sign to the tilt coefficient. The

implication of these observations, for constructing scenarios to model the likely

behaviour of the volatility skew as the index moves will now be explained.

σΚ(t) - σATM(t)

KL K1 K2

KH
dL

dH

Strike

Figure 13a: Non-Parallel Shift in Skew Deviations as Price Moves Up

S  

γ1 > 0, γ 2 < 0, γ 3 > 0

eH

Figure 13a illustrates how the skew deviations move in response to an upward

movement in the index when γ1 > 0, γ2 < 0 and γ3 > 0. Note that the upward

movements in volatility deviations from at-the-money volatility are far greater at high

strikes than at low strikes. In fact a result of the upward movement in the index is that

one of the high strike deviations, at strike K2 say, will change from a negative value to

a value of zero because the at-the-money strike has moved from K1 to K2. Strikes

above K2 will still have volatilities that are lower than the at-the-money volatility,

strikes between K1 and K2 now have volatilities that are above at-the-money
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volatility, and strikes below K1 always have and remain to have volatilities above the

at-the-money volatility. For the lowest strikes there will be little change: their

volatility deviation from the new at-the-money volatility is about the same as it was

before the index move.

σL

σ1

σH

σ1 = σ2

σ2 = σ1 - b(t)

σ2 = σ1 - 2b(t)

σ2 + dL +/- ε

σL = σ1 + dL

σH = σ1 - dH

 dL

 dH

Figure 13b: Range Narrowing of Fixed-Strike Volatilities as Price Moves Up

Trending Range-bounded Jumpy

σ2 + dL +/- ε

σ2 + dL +/- ε

σH = σ2 - eH

σH = σ2 - eH

σH = σ2 - eH

Figure 13b translates the effect of index moves on fixed-strike volatility deviations

from at-the-money volatility, into movements in the actual fixed strike volatilities. It

is a generalization of figure 10b, using the non-linear model (10) of the skew, to

accommodate scenarios that are more general than simple parallel shifts. As before

the three volatility regimes are shown according as, after a unit rise in the index level,

the new at-the-money volatility σ2 equals the original at-the-money volatility σ1 (in a

stable trending market), or σ2 =  σ1 - b(t) (for a range-bounded market), or σ2 =  σ1 -

2b(t) (a jumpy market).
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The difference between this figure and figure 10b is that there is no longer a uniform

response b(t) for all fixed-strike volatility deviations when the index level changes. In

fact figure 13a shows that there will in fact be little change in low-strike volatility

deviations from at-the-money volatility, whereas high strike volatility deviations from

at-the-money volatility will change considerably. Therefore the range of the skew

between KL and KH, that is σL - σH, will become narrower after the rise in index level.

Figure 13b shows that it is the current volatility regime that determines whether the

movement should occur at the high in-the-money strikes, the low out-of-the-money

strikes, or both.

Similar remarks apply to the effect of a downward move in the index. It is left to the

reader to depict the effect of a unit decrease in the index level on (a) fixed-strike

deviations from at-the-money volatility, and (b) fixed-strike volatilities themselves,

again when γ1 > 0, γ2 < 0 and γ3 > 0. The net effect is the same as for an upward move

in the index: most of the movement in fixed-strike volatilities comes from the low

strikes and the high strike volatilities move very little. The range of the skew will

widen as the index moves down and the movement will occur at high strikes, low

strikes or both depending on the current market regime, just as it does in figure 13b.

From the above discussion it is clear that in a stable trending market regime the low

strike out-of-the-money volatilities tend to adjust very little to changes in the index

level and most of the movement will come from the higher strikes. But if one refers

back to figure 8a it is clear that much of the time the low strike volatilities are moving

down and up considerably as the index moves up and down. There is much less

movement in the high strike volatilities, except possibly during the mini-crash period

in the late summer of 1998. The model has shown that when γ1 > 0, γ2 < 0 and γ3 > 0

there will be less movement in high strike volatilities and more in the low strikes

when markets are either range-bounded or jumpy. Therefore these are the regimes that

have prevailed for most of the period.
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The widening and narrowing effects in the skew are also quite obvious in figure 8a,

particularly during the last few months of the data period. At times like this the simple

parallel shift scenarios for the skew, as implied by Derman's model, would not be

sufficiently general. Instead, the non-linear model (10) can be used to build non-

parallel shift skew scenarios as described above, that are more appropriate for these

market conditions.

Now consider what happens when the major risk factor is still the trend component,

but when the tilt and curvature components of the skew deviations have the opposite

influence to that just discussed. That is when γ1 > 0, γ2 > 0 and γ3 < 0. For example,

during the mini-crash period of the summer of 1998 it is evident from figure 10 that

parallel shifts in skew deviations were the dominant risk factor and the two other

types of movement, though much less significant, had both changed signs.

σΚ(t) - σATM(t)

KL K1

K2

KH

dL

dH

Strike

Figure 14a: Non-Parallel Shift in Skew Deviations as Price Moves Up

S  

eL

γ1 > 0, γ 2 > 0, γ 3 < 0
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σL

σ1

σH

σ1 = σ2

σ2 = σ1 - b(t)

σ2 = σ1 - 2b(t)

σL = σ1 + dL

σH = σ1 - dH

 dL

 dH

Figure 14b: Range Widening of Fixed-Strike Volatilities as Price Moves Up

Trending Range-bounded Jumpy

 σ2 - dH +/- ε
 σ2 - dH +/- ε

 σ2 - dH +/- ε

σL = σ2 + eL

σL = σ2 + eL

σL = σ2 + eL

Figure 14 shows the effect of a unit increase in the index level on (a) fixed-strike

volatility deviations from at-the-money volatility, and (b) fixed-strike volatilities

themselves, when γ1 > 0, γ2 > 0 and γ3 < 0. The net effect from all three principal

components is for high strike volatility deviations from at-the-money volatility to

change very little, whereas the low strike deviations will increase further. Thus the

range of the skew will widen as the index moves up and narrow as the index moves

down. The at-the-money volatility response, or equivalently the market regime, will

determine whether the movement occurs at low strikes, high strikes or both. In fact,

since we have already seen that the parameter values γ1 > 0, γ2 > 0 and γ3 < 0 only

occurred during the mini-crash period, it is safe to assume that the jumpy market

regime model holds. So when the index level increases high strike volatilities should

be adjusted down, about the same amount as the at-the-money volatility. But low

strike volatilities should be adjusted less far down, or even upwards.21 Similarly, if the

index level falls, high strike volatilities should be adjusted up, about the same amount

                                                       
21 From figure 14b, it is clear that low strike volatilities will move down as the index increases (and up
as the index decreases) if and only if dL < eL - 2b(t).
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as the at-the-money volatility, but low strike volatilities should be adjusted less, and

they may even move downwards.

To summarize the modelling procedure: First regression models that are based only

on recent market data are used to indicate which volatility regime is likely to prevail

in the near future, and the relevant sensitivity of at-the-money volatility to changes in

the index level. Then the key risk factors of a volatility skew are quantified by the

trend, tilt and curvature components of the deviations of fixed-strike volatilities from

at-the-money volatility. The response of fixed-strike volatilities to changes in the

index level depends on which of these key risk factors are important in the current

market conditions. Typically the trend component will always be the most significant

risk factor. If it is the only significant risk factor then the parallel shift scenarios that

are implied by Derman's models will apply. But when the tilt or curvature are also

significant risk factors, adjustments should be made for greater changes at out-of-the-

money volatilities and perhaps also at in-the-money volatilities in the skew. The

magnitude and direction of such changes are determined by the sensitivities of the

three key risk factors to changes in the index level. When measured, these sensitivities

are found to depend very much on the current market regime.

Application of this model to daily data on the FTSE 100 European index option has

produced some likely scenarios for FTSE 100 volatility skews and indicated the

circumstances in which they should be applied. Typically the range of volatility in the

skew with respect to strike will widen as the index level decreases and narrow as the

index level increases. When the market is in a range-bounded regime most of the

change should be coming from the low strike out-of-the money volatilities. But if a

market crash is feared, the high strike in-the-money volatilities will also move in the

opposite direction to the index, although not as much as the low strike volatilities.
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The general method used here may be applied to other equity index markets and to

other types of options, and this is the subject of ongoing research. It is possible that

these methods could be used to determine the swaption volatility skew as a function

of the key risk factors of cap volatility skews. And the use of three key risk factors in

a non-linear model of price-volatility scenarios should be particularly useful in

currency option markets, where smile models are unlikely to be based on a linear

parameterization.

Summary and Conclusions

It is a common problem in risk management today that risk measures and pricing

models are being applied to a very large set of scenarios based on movements in all

possible risk factors. The dimensions are so large that the computations become

extremely slow and cumbersome, so it is quite common that over-simplistic

assumptions will be made. This paper presents an alternative. Large covariance

matrices and price-volatility scenarios are generated from only a few key market risk

factors that capture the most important independent sources of information in the data.

The first part of this paper shows how orthogonal methods for generating covariance

matrices are applied to several different types of asset class: commodity futures

prices, yield curves, equity indices and foreign exchange rates. Large covariance

matrices that are based on the volatility of a few, independent key market risk factors

alone are calculated, and are shown to have many advantages over the other methods

in standard use:

Ø Positive semi-definiteness is assured, without severe constraints such as using the

same model parameters for all assets and all markets;

Ø Stochastic volatility and correlation models such as multivariate GARCH, that

have many advantages but that are usually difficult to apply in higher dimensions,

may be employed;
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Ø Correlations are more stable because the 'noise' in the system may be measured

and, if required, be ignored;

Ø The method should conform to the standard regulatory requirements on historic

data if at least one year of data is used in the principal component analysis;

Ø Periods of sparse trading on some (but not all) assets do not present a problem

because their current volatilities and correlations will be inferred from their

historic relationship with the other variables in the system.

The second part of this paper presents an empirical model of price-volatility scenarios

that is based on three key risk factors of the implied volatility skew. The analysis is

greatly simplified, because it is based on only a few risk factors. But these risk factors

are still capturing most of the risk, so there is little loss of accuracy. Non-linear skew

parameterizations and non-parallel shift scenarios for the volatility skew are

accommodated very easily in this framework. And the empirical nature of the model

allows the actual quantification of appropriate moves in the volatility skew as the

underlying price changes:

Ø The price-volatility scenarios that are most likely at any given time will depend

on the market regime that is expected to prevail during the risk horizon;

Ø The model first provides a leading indicator of the expected market regime;

Ø Then, given the expected regime, and for a given change in underlying price, the

model provides a numerical forecast of the most likely change in the at-the-money

volatility, and in all fixed-strike volatilities, of any maturity.

To conclude, the method outlined in this paper is computationally efficient because it

allows an enormous reduction in the dimension of the scenario set, whilst retaining a

very high degree of accuracy in the risk measures and prices obtained. Since the key

risk factors are independent, the method is computational efficient even when many

factors are used to represent the system. In most cases only a few key factors are

necessary, and any movements that are not captured by these factors are ascribed to

'noise' in the system. In fact, by cutting out this noise the model produces risk
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measures and prices that are more robust. Finally, it is quite straightforward to

quantify how much risk is associated with each key factor. So risk managers will be

able to focus their attention on the most important sources of risk.
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