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Abstract:

The identification of scenarios which have a particularly low or high P&L helps to
get a better understanding of the portfolio’s risk exposure. Therefore, the notions of
safe (resp. dangerous) regions are introduced, which represent sets where the P&L
is greater (resp. less) than a given critical level. In order to describe such sets in
an easily interpretable way, one-dimensional intervals are used. Such intervals can be
determined by solving a sequence of restricted maximum loss problems.
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1 Introduction

Maximum Loss (ML) was introduced as a method for measuring market risks of
nonlinear portfolios (cf. [Studer]). The basic idea of ML is to determine the worst
case out of a specific set A of scenarios, called “trust region”. Maximum Loss is
a coherent risk measure (cf. [Artzner et al.]) and it is always more conservative
than the corresponding VAR (for a more detailed discussion of VAR refer to
[Beckstrom and Campbell] and [RiskMetrics]).

Mathematically, the ML problem can be formulated as follows: the risk factors
w = (w1, ...,wy) represent shifted market rates (e.g. commodity prices, foreign
exchange rates, equity indices, interest rates), such that w; = 0 corresponds to
the actual value of market rate i. The profit and loss (P&L) function v : RY —
R; w + v(w) gives the change in portfolio value (satisfying v(0) = 0). If A ¢ R
denotes the trust region, then ML is defined as:

ML = min v(w)
st. weA. (1)



To get a univocal definition of ML, the trust region A has to be defined more
precisely. If the risk factors w are multinormally distributed (i.e., w ~ N (0, %),
where ¥, is the covariance matrix for a holding period of length t), then our
standard choice will be

A={w|w'S 1w < e}, (2)

where ¢, is the a—quantile of a chi—square distribution with M degrees of freedom.
This choice assures that exactly a percent of all possible outcomes are covered
by the set A. For quadratic P&L functions v(w) = 3w’ Gw + g"w, where G is a
symmetric M x M matrix and g an M—dimensional vector, the resulting problem

1
ML = min §wTGw +gTw
st W'Y W < e, (3)

can be solved efficiently (i.e., in polynomial time up to d digits). Solving this
problem repetitively for an increasing sequence of confidence levels 0% = (9 <
aM < ... < a™ < 100% leads to the path of ML scenarios (for a detailed dis-
cussion see [Studer and Liithi]). At this point, the question arises how to extend
the analysis in order to pass from one—dimensional ML paths to multidimensional
regions.

2 Definition of Safe and Dangerous Regions

For investigating higher dimensional objects, the notions of safe and dangerous
scenarios will be used in the sequel. The set S(c¢) of safe scenarios for a critical
level c is defined as

S(e) = {w c RM : v(w) > c}. (4)

Then, a given subset S C IRM is said to be a safe region with respect to the trust
region A and for the level ¢ if

SNACS()NA, (5)

which claims that the P&L of all scenarios lying inside the intersection of S and
the trust region A exceeds the level c:

vw)>c weANS. (6)

Similarly, the set of dangerous scenarios for a critical level ¢ is
T(c) = {weRM :v(w) <}, (7)
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and T'C RM is a dangerous region with respect to the trust region A and for the
level ¢ if
TNACT(c)NA, (8)
which means that the P&L of all scenarios lying inside the intersection of 7" and
the trust region A has to be less than c:
vw)<e weANT. 9)

Since SNT = 0, an arbitrary set U C IR™ may be characterized as being either

safe, dangerous or none of both, but never simultaneously safe and dangerous.

For quadratic P&L functions v(w) = 3w’ Gw + g"w, the level set

L(c) = {w - %wTGw +gTw=c), (10)

is a second order surface (e.g. ellipsoid, cylinder, paraboloids, hyperboloids,
cones, planes) and can be described parametrically. In principle, it would be pos-
sible to use such equations to characterize safe and dangerous regions completely.
In practice, however, this approach is not promising since such equations are very
difficult to explicate and handle in higher dimensional spaces.

3 Calculation of Safe and Dangerous Intervals

A practicable way to describe safe and dangerous regions is to use a set of one—
dimensional intervals I; having the form

L={w|a<w; <b}; a<beR, (11)
for each risk factor wj;j =1,..., M. By equation (6), I; is safe if and only if
v(w) > we ANl (12)
Hence, a one point interval I; = {y} is safe if and only if

v(w) > we Aw;=y. (13)

To decide whether I; = {y} is safe, it is possible to refer to the restricted maxi-
mum loss problem

w; =Y. (14)



Obviously, I; = {y} is safe if and only if

ML;(y) > c. (15)

This way, the decision problem (13) has been transformed to the maximum loss
computation ML;(y). Correspondingly, I; = {y} is dangerous if and only if

MP;(y) < ¢, (16)

where

MP;(y) = max v(w)
st w'Stw <e,

wj =Y. (17)

To calculate ML;(y) and MP;(y) for quadratic P&L functions v(w) = tw’ Gw +
g"w, these problems are converted into the standard form of (3); this process is
described in appendix A. Then, the determination of the maximal set of safe
intervals (in the sense of inclusion) for risk factor w; requires a discretization of
axis j. Considering the trust region A = {w | WS 'w < ¢4}, lower and upper
bounds of w; can be obtained by solving the problem

min  dw;
st W'Y W < e, (18)

and the results are (cf. [Studer]):

wh = - Car/[X4];
w;” = \/a\/[Et]j,]W (19)

which means that W' 'w > ¢, if w ¢ [, w?]. Then, (n + 1) equally spaced

@il
points
w!? :wl-—l—i(w’-‘—wl-)' i=0,....n (20)
] Vi n Vi Vi Y Y Y Y
are chosen and MLj(w](i)) and MPj(w](i)) for i = 0,...,n are calculated. Once

these calculations have been performed, safe and dangerous intervals for various
levels of ¢ can be determined immediately by formulas (15) and (16).

The dashed lines in figure 1 represent the functions ML;(w;) and MP;(w;) of a
quadratic portfolio. The safe intervals for level ¢; are the segments lying below
the ML curve, whereas the dangerous intervals for ¢, correspond to the segments
lying above the MP curve.
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Figure 1: Determining safe and dangerous intervals of risk factor w;

4 Interpretations

By formula (13) a scenario is safe as soon as one of its components lies inside a
safe interval (cf. figure 2).

Fal

Figure 2: Additivity of safe intervals

However, this statement applies only to those scenarios which lie inside the trust
region A with confidence level a. Therefore, it is possible to assign an error
probability of (1—«) to each set of intervals. Since higher confidence levels enlarge
the feasible domain in problem (14) it follows that lower error probabilities result



in smaller intervals (i.e., there is a tradeoff between accuracy and the size of
identifiable intervals).

Moreover, the graphs of ML;(y) and MP;(y) reflect information about the risk
sensitivity of the individual factors (cf. figure 3). The value w}'* where ML;(y)
attains its minimum represents the j* component of the global worst case sce-
nario (i.e., the solution to (1)). On the other hand, ML;(0) is equivalent to the
maximum loss of a portfolio where all open positions in risk factor j have been
closed. Thus, the difference

AML; = ML;(w}™*) — ML;(0), (21)
is the amount by which ML is reduced if there are no longer positions in risk
factor 7. Similarly, this analysis can also be applied to the maximum profit:

AMP; = MP;(w;'") — MP;(0). (22)

Appendix B explains how to calculate the expected P&L of the scenarios which
lie inside the trust region. This way, closing all positions in risk factor j results
in a reduction of

AEV; =E(v(w) |we A) —E(v(w) |w € A,w; =0). (23)

Contrasting the values of AML;, AMP; and AEV; for all risk factors j =
1,..., M helps to decide which positions should be closed in order to reduce
the total risk of a portfolio.
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Figure 3: Effect of closing all positions in risk factor w;



5 Conclusion

The identification of safe and dangerous regions helps to get a better feel of
the portfolio’s risk exposure. One way to describe such regions in an easily
interpretable manner is by one—dimensional intervals: a scenario is safe as soon
as one component belongs to a safe interval. However, the fact of working with
simple representations carries the cost of incomplete information: there may exist
other scenarios whose P&L is above (resp. below) the critical level ¢, but which
cannot be described by means of one-dimensional intervals. Nevertheless, the
spread of P&L among all scenarios with w; = y can be obtained easily: it is the
difference MP;(y) — ML;(y).

Furthermore, a comparison of the global maximum loss and ML;(0) (resp. the
global MP and MP;(0)) for all risk factors j = 1,..., M, gives insight into which
positions should be closed in order to reduce the total risk of a portfolio.



A Transformation of Restricted ML Problem
into Standard Form

This chapter shows how to convert the restricted problem (14) with quadratic
P&L function v(w) = sw”Gw + g'w into the standard form (3). For ease of
notation, the procedure for risk factor 7 = 1 is presented. In this case, the input
parameters can be rewritten as

_ |G GY N P iyl _ % _|wr
G = [Gl é ) Et — Efl i—l ) g = g ) w = ol (24)
which represents a partition into the first column/row and the remaining (M —1)
ones. Then, new variables are defined as follows:

w = w + (,()1221_1

g = g+uw [Gl - éi(zfl)]

- e 1 LT A e

Eo= oo =98] 4+ 5t (Gl + (57 EES(E)
Ca = Co-t w% [(E;I)TE(EI_I) - Z1_,%] ) (25)

where ¥ is the inverse of X, This way, the variable w; is eliminated and a new,
(M — 1)—dimensional problem is obtained:

1 .- _
ML;(y) = min §~TGJJ+§TJ)+I€

st. 0TS0 < é,. (26)
The geometric meaning of this procedure is shown in figure 4: the M—dimensional
trust region A is cut by a plane, which lies orthogonal to w;. The result is an
(M — 1)-dimensional ellipsoid. To solve the minimization problem, this new

ellipsoid has to be recentered at the origin; the transformation (25) keeps the
objectif function quadratic (introducing a supplementary constant k).

B Conditional Expectation of Profit and Loss
Inside an Ellipsoid

According to [Studer and Liithi] the conditional expectation of the profit and loss
function v(w) on the surface of an ellipsoid is

B(o(w) | @75 w = c) = %‘Tr]\(f), (27)




Figure 4: Transformation of trust region

where G = UGUT is the transformed matrix of the quadratic function v(w) =
%wTGw + gTw, where U is the Cholesky decomposition of the covariance matrix

¥, =U"U. (28)
Since ¢, is the a quantile of a chi-square distribution (cf. [Studer]), ¢, can be seen
M
as random variate with density f(z) = Ffﬂj)le exp(—%). Thus, the conditional
My
2

expectation of v(w) in the interior of the trust region is:

- e 2 Te(G)1 x5!
Bo(w) [o'S <) = [ 3 exp(- 3o
(5)2°
Tr(G) 1 ca g x
= [T exp(=2)d
20 M r(%)/o S exp(=5)de
Tr(G) 1 S M
= 2 — d
TG T (Y1) )
aM ré&)

where T'y(z) denotes the incomplete Gamma function T;(x) = fJ y*~ ! exp(—y)dy.
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