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Abstract:

The identi�cation of scenarios which have a particularly low or high P&L helps to
get a better understanding of the portfolio's risk exposure. Therefore, the notions of
safe (resp. dangerous) regions are introduced, which represent sets where the P&L
is greater (resp. less) than a given critical level. In order to describe such sets in
an easily interpretable way, one{dimensional intervals are used. Such intervals can be
determined by solving a sequence of restricted maximum loss problems.
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1 Introduction

Maximum Loss (ML) was introduced as a method for measuring market risks of
nonlinear portfolios (cf. [Studer]). The basic idea of ML is to determine the worst
case out of a speci�c set A of scenarios, called \trust region". Maximum Loss is
a coherent risk measure (cf. [Artzner et al.]) and it is always more conservative
than the corresponding VAR (for a more detailed discussion of VAR refer to
[Beckstr�om and Campbell] and [RiskMetrics]).
Mathematically, the ML problem can be formulated as follows: the risk factors
! = (!1; : : : ; !M) represent shifted market rates (e.g. commodity prices, foreign
exchange rates, equity indices, interest rates), such that !i = 0 corresponds to
the actual value of market rate i. The pro�t and loss (P&L) function v : IRM !
IR;! 7! v(!) gives the change in portfolio value (satisfying v(0) = 0). If A � IRM

denotes the trust region, then ML is de�ned as:

ML = min v(!)

s.t. ! 2 A: (1)



To get a univocal de�nition of ML, the trust region A has to be de�ned more
precisely. If the risk factors ! are multinormally distributed (i.e., ! � N (0;�t),
where �t is the covariance matrix for a holding period of length t), then our
standard choice will be

A = f! j !T��1t ! � c�g; (2)

where c� is the �{quantile of a chi{square distribution withM degrees of freedom.
This choice assures that exactly � percent of all possible outcomes are covered
by the set A. For quadratic P&L functions v(!) = 1

2
!TG! + gT!, where G is a

symmetric M�M matrix and g an M{dimensional vector, the resulting problem

ML = min
1

2
!TG! + gT!

s.t. !T��1t ! � c�; (3)

can be solved e�ciently (i.e., in polynomial time up to d digits). Solving this
problem repetitively for an increasing sequence of con�dence levels 0% = �(0) <

�(1) < : : : < �(N) � 100% leads to the path of ML scenarios (for a detailed dis-
cussion see [Studer and L�uthi]). At this point, the question arises how to extend
the analysis in order to pass from one{dimensional ML paths to multidimensional
regions.

2 De�nition of Safe and Dangerous Regions

For investigating higher dimensional objects, the notions of safe and dangerous

scenarios will be used in the sequel. The set S(c) of safe scenarios for a critical
level c is de�ned as

S(c) =
n
! 2 IRM : v(!) > c

o
: (4)

Then, a given subset S � IRM is said to be a safe region with respect to the trust
region A and for the level c if

S \ A � S(c) \ A; (5)

which claims that the P&L of all scenarios lying inside the intersection of S and
the trust region A exceeds the level c:

v(!) > c; ! 2 A \ S: (6)

Similarly, the set of dangerous scenarios for a critical level c is

T (c) =
n
! 2 IRM : v(!) < c

o
; (7)
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and T � IRM is a dangerous region with respect to the trust region A and for the
level c if

T \ A � T (c) \ A; (8)

which means that the P&L of all scenarios lying inside the intersection of T and
the trust region A has to be less than c:

v(!) < c; ! 2 A \ T: (9)

Since S \ T = ;, an arbitrary set U � IRM may be characterized as being either
safe, dangerous or none of both, but never simultaneously safe and dangerous.
For quadratic P&L functions v(!) = 1

2
!TG! + gT!, the level set

L(c) = f! :
1

2
!TG! + gT! = cg; (10)

is a second order surface (e.g. ellipsoid, cylinder, paraboloids, hyperboloids,
cones, planes) and can be described parametrically. In principle, it would be pos-
sible to use such equations to characterize safe and dangerous regions completely.
In practice, however, this approach is not promising since such equations are very
di�cult to explicate and handle in higher dimensional spaces.

3 Calculation of Safe and Dangerous Intervals

A practicable way to describe safe and dangerous regions is to use a set of one{
dimensional intervals Ij having the form

Ij = f! j a � !j � bg; a < b 2 IR; (11)

for each risk factor !j; j = 1; : : : ;M . By equation (6), Ij is safe if and only if

v(!) > c; ! 2 A \ Ij: (12)

Hence, a one point interval Ij = fyg is safe if and only if

v(!) > c; ! 2 A;!j = y: (13)

To decide whether Ij = fyg is safe, it is possible to refer to the restricted maxi-
mum loss problem

MLj(y) = min v(!)

s.t. !T��1t ! � c�

!j = y: (14)
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Obviously, Ij = fyg is safe if and only if

MLj(y) > c: (15)

This way, the decision problem (13) has been transformed to the maximum loss
computation MLj(y). Correspondingly, Ij = fyg is dangerous if and only if

MPj(y) < c; (16)

where

MPj(y) = max v(!)

s.t. !T��1t ! � c�

!j = y: (17)

To calculate MLj(y) and MPj(y) for quadratic P&L functions v(!) = 1
2
!TG! +

gT!, these problems are converted into the standard form of (3); this process is
described in appendix A. Then, the determination of the maximal set of safe
intervals (in the sense of inclusion) for risk factor !j requires a discretization of
axis j. Considering the trust region A = f! j !T��1t ! � c�g, lower and upper
bounds of !j can be obtained by solving the problem

min �!j
s.t. !T��1t ! � c�; (18)

and the results are (cf. [Studer]):

!l
j = �pc�

q
[�t]j;j

!u
j =

p
c�
q
[�t]j;j; (19)

which means that !T��1t ! > c� if ! 62 [!l
j; !

u
j ]. Then, (n + 1) equally spaced

points

!
(i)
j = !l

j +
i

n
(!u

j � !l
j); i = 0; : : : ; n; (20)

are chosen and MLj(!
(i)
j ) and MPj(!

(i)
j ) for i = 0; : : : ; n are calculated. Once

these calculations have been performed, safe and dangerous intervals for various
levels of c can be determined immediately by formulas (15) and (16).
The dashed lines in �gure 1 represent the functions MLj(!j) and MPj(!j) of a
quadratic portfolio. The safe intervals for level c1 are the segments lying below
the ML curve, whereas the dangerous intervals for c2 correspond to the segments
lying above the MP curve.
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Figure 1: Determining safe and dangerous intervals of risk factor !j

4 Interpretations

By formula (13) a scenario is safe as soon as one of its components lies inside a
safe interval (cf. �gure 2).

I1
1

I2
2

I2
1

A

Figure 2: Additivity of safe intervals

However, this statement applies only to those scenarios which lie inside the trust
region A with con�dence level �. Therefore, it is possible to assign an error
probability of (1��) to each set of intervals. Since higher con�dence levels enlarge
the feasible domain in problem (14) it follows that lower error probabilities result
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in smaller intervals (i.e., there is a tradeo� between accuracy and the size of
identi�able intervals).
Moreover, the graphs of MLj(y) and MPj(y) reect information about the risk
sensitivity of the individual factors (cf. �gure 3). The value !ML

j where MLj(y)
attains its minimum represents the jth component of the global worst case sce-
nario (i.e., the solution to (1)). On the other hand, MLj(0) is equivalent to the
maximum loss of a portfolio where all open positions in risk factor j have been
closed. Thus, the di�erence

�MLj = MLj(!
ML
j )�MLj(0); (21)

is the amount by which ML is reduced if there are no longer positions in risk
factor j. Similarly, this analysis can also be applied to the maximum pro�t:

�MPj = MPj(!
MP
j )�MPj(0): (22)

Appendix B explains how to calculate the expected P&L of the scenarios which
lie inside the trust region. This way, closing all positions in risk factor j results
in a reduction of

�EVj = E(v(!) j ! 2 A)� E(v(!) j ! 2 A; !j = 0): (23)

Contrasting the values of �MLj, �MPj and �EVj for all risk factors j =
1; : : : ;M helps to decide which positions should be closed in order to reduce
the total risk of a portfolio.
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Figure 3: E�ect of closing all positions in risk factor !j
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5 Conclusion

The identi�cation of safe and dangerous regions helps to get a better feel of
the portfolio's risk exposure. One way to describe such regions in an easily
interpretable manner is by one{dimensional intervals: a scenario is safe as soon
as one component belongs to a safe interval. However, the fact of working with
simple representations carries the cost of incomplete information: there may exist
other scenarios whose P&L is above (resp. below) the critical level c, but which
cannot be described by means of one{dimensional intervals. Nevertheless, the
spread of P&L among all scenarios with !j = y can be obtained easily: it is the
di�erence MPj(y)�MLj(y).
Furthermore, a comparison of the global maximum loss and MLj(0) (resp. the
global MP and MPj(0)) for all risk factors j = 1; : : : ;M , gives insight into which
positions should be closed in order to reduce the total risk of a portfolio.

7



A Transformation of Restricted ML Problem

into Standard Form

This chapter shows how to convert the restricted problem (14) with quadratic
P&L function v(!) = 1

2
!TG! + gT! into the standard form (3). For ease of

notation, the procedure for risk factor j = 1 is presented. In this case, the input
parameters can be rewritten as

G =

"
G1;1 GT

1

G1
~G

#
; ��1t =

"
��11;1 ��T1

��11
~��1

#
; g =

"
g1
ĝ

#
; ! =

"
!1

!̂

#
; (24)

which represents a partition into the �rst column/row and the remaining (M�1)
ones. Then, new variables are de�ned as follows:

~! = !̂ + !1
~���11

~g = ĝ + !1

h
G1 � ~G~�(��11 )

i
~k = !1

h
g1 � ĝT ~�(��11 )

i
+

1

2
!2
1

h
G1;1 + (��11 )T ~� ~G~�(��11 )

i
~c� = c� + !2

1

h
(��11 )T ~�(��11 )� ��11;1

i
; (25)

where ~� is the inverse of ~��1. This way, the variable !j is eliminated and a new,
(M � 1){dimensional problem is obtained:

MLj(y) = min
1

2
~!T ~G~! + ~gT ~! + ~k

s.t. ~!T ~��1t ~! � ~c�: (26)

The geometric meaning of this procedure is shown in �gure 4: theM{dimensional
trust region A is cut by a plane, which lies orthogonal to !1. The result is an
(M � 1){dimensional ellipsoid. To solve the minimization problem, this new
ellipsoid has to be recentered at the origin; the transformation (25) keeps the
objectif function quadratic (introducing a supplementary constant ~k).

B Conditional Expectation of Pro�t and Loss

Inside an Ellipsoid

According to [Studer and L�uthi] the conditional expectation of the pro�t and loss
function v(!) on the surface of an ellipsoid is

E(v(!) j !T��1t ! = c�) =
c�

2

Tr(Ĝ)

M
; (27)
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Figure 4: Transformation of trust region

where Ĝ = UGUT is the transformed matrix of the quadratic function v(!) =
1
2
!TG! + gT!, where U is the Cholesky decomposition of the covariance matrix

�t = UTU: (28)

Since c� is the � quantile of a chi{square distribution (cf. [Studer]), c� can be seen

as random variate with density f(x) = x
M

2
�1

�(M
2
)2
M

2

exp(�x
2
). Thus, the conditional

expectation of v(!) in the interior of the trust region is:

E(v(!) j !T��1t ! � c�) =
Z c�

0

x

2

Tr(Ĝ)

M

1

�

x
M

2
�1

�(M
2
)2

M

2

exp(�x

2
)dx

=
Tr(Ĝ)

2�M

1

�(M
2
)

Z c�

0

x
M

2

2
M

2

exp(�x

2
)dx

=
Tr(Ĝ)

�M

1

�(M
2
)

Z c�

2

0
y
M

2 exp(�y)dy

=
Tr(Ĝ)

�M

� c�

2

(M
2
+ 1)

�(M
2
)

; (29)

where �t(x) denotes the incomplete Gamma function �t(x) =
R t
0 y

x�1 exp(�y)dy.
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