

Quantifying credit risk in a corporate bond

Srichander Ramaswamy Head of Investment Analysis

Beatenberg, 1 September 2003

Summary of presentation

- What is credit risk?
- Probability of default
- Recovery rate statistics
- Rating migrations
- Expected loss under default mode
- Unexpected loss under default mode
- Expected loss under migration mode
- Unexpected loss under migration mode
- Numerical example

What is credit risk?

- A bond with credit rating single A at a price of \$100 is bought
- Assume that some time during the next one year the issuer files for bankruptcy, and you are paid \$40 back
- The \$60 loss incurred on the bond is a loss resulting from taking credit risk
- Imagine a second scenario where the bond issuer's rating is downgraded to BB, and consequently, the bond trades at \$80
- The mark to market loss of \$20 incurred is the consequence of a credit event occurring
- The risk of such a loss is also classified under credit risk
- Credit risk has two components: default risk and migration risk

Probability of default

- In the simplest scenario, we saw that the issuer either repays the debt or defaults on the debt repayment
- What is the chance that the issuer will file for bankruptcy?
- Issuer's probability of default is the measure used to quantify this
- Probability of default (PD) is the probability that the issuer will default on its contractual obligations to repay debt (measured over a 1-year horizon)
- PD can be determined either using an empirical approach or using Merton's structural approach

Probability of default

- Empirical approach makes use of a historical data base of corporate bond defaults
- Idea is to form a static pool of companies having a particular credit rating for a given year
- Annual default rates are calculated for each static pool, which are then aggregated to compute PD for each credit rating
- Merton's approach is based on an option pricing approach
- This makes use of the current estimates of the firm's assets, liabilities and asset volatility, and hence, is related to the underlying dynamics of the structure of the firm
- KMV approach to determine PD is similar to Merton's approach

Recovery rate

- When an issuer files for bankruptcy, some fraction of the face value of the debt is recovered
- One could sell the debt to vulture funds when default occurs
- Moody's proxy the recovery rate using secondary market price of the defaulted debt 1-month after default
- If for \$100 face value the secondary market trading price is \$40, then recovery rate is 40%
- Empirical results suggest that industrial sector, seniority of debt, state of the economy and credit rating of the issuer 1-year prior to default are important determinants of recovery rates

Recovery rate

- In order to incorporate the variations in recovery rates, recovery rate is treated as a random variable
- Observed recovery rates have a multi-modal distribution
- No consensus on the choice the the right distribution function
- Many existing credit risk models in the market use beta distribution for modelling recovery rates
- Choosing a different distribution function other than beta (say, uniform) will have an impact on the tail part of the loss distribution
- Empirical study on recovery rate statistics has been carried out by Edward Altman and co-workers

Recovery rate statistics

Recovery rate statistics on defaulted securities (1978-2001)					
Bond seniority	Number of issuers	Median	Mean	Standard deviation	
Senior secured	134	57.42%	52.97%	23.05%	
Senior unsecured	475	42.27%	41.71%	26.62%	
Senior subordinated	340	31.90%	29.68%	24.97%	
Subordinated	247	31.96%	31.03%	22.53%	

Source: E. Altman, A. Resti and A. Sironi, "Analyzing and Explaining Default Recovery Rates", *A report submitted to The International Swaps & Derivatives Association*, December 2001.

Rating migrations

- Probability of default considers only two possible states for bond issuer: issuer either defaults on debt payments or is solvent
- In practice, actions of rating agencies can result in either the issuer being downgraded or upgraded to a different credit rating
- Associated with each credit rating is a different PD
- One could also estimate the probability of transitioning from one credit rating to another using historical rating migration statistics
- Rating agencies (Moody's and S&P) estimate the migration probabilities for different ratings
- This data is represented in a matrix form, and the matrix is called rating transition (or migration) matrix, which is a Markov matrix

Rating migration matrix

			Rating at y	ear end				
Initial rating	AAA	AA	Α	BBB	BB	В	CCC	Default
AAA	93.66%	5.83%	0.40%	0.08%	0.03%	0.00%	0.00%	0.00%
AA	0.66%	91.72%	6.94%	0.49%	0.06%	0.09%	0.02%	0.01%
A	0.07%	2.25%	91.75%	5.19%	0.49%	0.20%	0.01%	0.04%
BBB	0.03%	0.25%	4.83%	89.25%	4.44%	0.80%	0.16%	0.23%
BB	0.03%	0.07%	0.44%	6.66%	83.22%	7.46%	1.05%	1.07%
В	0.00%	0.10%	0.32%	0.46%	5.73%	83.61%	3.84%	5.94%
CCC	0.15%	0.00%	0.30%	0.89%	1.91%	10.28%	61.22%	25.25%
Default	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

Quantifying credit risk

- We are familiar with the return distribution for a stock
- One approximates this return distribution to be normal
- When holding a corporate bond, credit events trigger price changes, which will result in a loss or a profit
- To quantify credit risk, we will focus only on returns that are driven by credit events
- We will refer to the returns that can be related to a credit event generically as a loss
- A rating upgrade will then generate a negative loss
- The credit-related losses will have a distribution, commonly referred to as the credit loss distribution

Expected loss under default mode

- Under the default mode, the issuer either repays debt or defaults
- If the issuer defaults, the bondholder recovers a fraction of the face value outstanding
- One can model the default process δ as a Bernoulli random variable that takes the value of 0 or 1 (1 signals default)

Deriving expected loss (default mode)

 In the default mode framework, the price of the risky debt can be written as follows

$$\tilde{P} = P_{dirty} \times I_{[\delta=0]} + \psi \times I_{[\delta=1]}$$

ullet Let us denote the credit loss variable as $ilde\ell$

$$\tilde{\ell} = P_{dirty} - \tilde{P} = P_{dirty} - P_{dirty} \times I_{\lceil \delta = 0 \rceil} - \psi \times I_{\lceil \delta = 1 \rceil}$$

ullet Expected loss is the expected value of the random variable $ilde{\ell}$

$$EL = E(\tilde{\ell}) = P_{dirty} - P_{dirty} \times (1 - PD) - E(\psi \times I_{[\delta=1]})$$

Deriving expected loss (default mode)

- Computing expected loss requires taking the expectation of two random variables, the recovery rate and the default process
- If we assume they are independent, then we have

$$EL = P_{dirty} \times PD - RR \times PD$$
$$= PD \times (P_{dirty} - RR)$$

 Introducing the term loss on default LD=P_{dirty}-RR, we have the expected loss for a nominal exposure of NE

$$EL = NE \times PD \times LD$$

Unexpected loss under default mode

- By definition, unexpected loss is the standard deviation of the random variable $\tilde{\ell}$
- Once again, we will make the assumption that the default and recovery process are independent
- After some mathematical manipulations, it can be shown that the unexpected loss for a nominal exposure NE is given by

$$UL = NE \times \sqrt{PD \times \sigma_{RR}^2 + LD^2 \times \sigma_{PD}^2}$$

• Here, $\sigma_{\it PD}^{\it 2}$ is the variance of the Bernoulli random variable δ

$$\sigma_{PD}^2 = PD \times (1 - PD)$$

On the independence assumption

- Is it reasonable to make the assumption that default and recovery processes are independent?
- In Merton's structural model, default and recovery rate processes can be shown to be inversely related to each other
- In reduced-form credit risk models, default and recovery rate processes are modelled to be independent
- Empirical results suggest that these two random variables are negatively correlated
- Recent results suggest that a simple microeconomic interpretation based on supply and demand tend to explain the relationship

Expected loss under migration mode

- Under migration mode, the changes in credit rating of the issuer will have to taken into account besides default
- To estimate the profit or loss that results from rating migrations, we need to estimate price changes due to rating changes
- We can estimate these price changes if we know the yield spread differences between different credit ratings
- If Δy is the yield spread between two credit ratings, the corresponding price change can be approximated by,

$$Price\ change = -P_{dirty} \times D \times \Delta y + 0.5 \times P_{dirty} \times C \times \Delta y^{2}$$

Expected loss under migration mode

 Since we are interested in the credit loss distribution, the loss resulting from a credit rating change will be given by,

$$Loss \equiv \Delta P = P_{dirty} \times D \times \Delta y - 0.5 \times P_{dirty} \times C \times \Delta y^{2}$$

• The expected value of the credit loss for a rating change from the *i*th grade to the *k*th grade is given by,

$$\Delta P_{ik} = P_{dirty} \times D \times \Delta y_{ik} - 0.5 \times P_{dirty} \times C \times \Delta y_{ik}^2$$

 If we model 18 rating grades including the default state, the expected loss under rating migration is given by

$$EL = NE \times \sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}$$

Unexpected loss under migration mode

- By definition, unexpected loss under migration mode is the standard deviation of the credit loss variable
- The loss variable under migration mode for a \$1 exposure is

$$\tilde{\ell} = \sum_{k=1}^{18} p_{ik} \times \Delta \tilde{P}_{ik}$$

- Here, $\Delta \tilde{P}_{ik}$ is the random credit loss when issuer rating changes from grate i to grade k
- The expected value of $\Delta \tilde{P}_{ik}$ is ΔP_{ik} and variance σ_{ik}^2
- When k is equal to the default state, σ_{ik} is equal to σ_{RR}

Unexpected loss under migration mode

• The variance of the loss variable for \$1 exposure is given by,

$$Var(\tilde{\ell}) = E\left(\sum_{k=1}^{18} p_{ik} \times \Delta \tilde{P}_{ik}^{2}\right) - \left[E\left(\sum_{k=1}^{18} p_{ik} \times \Delta \tilde{P}_{ik}\right)\right]^{2}$$

 Taking expectations and assuming the recovery rate process and default process are independent, we get the following relation:

$$Var(\tilde{\ell}) = \sum_{k=1}^{18} p_{ik} \times (\Delta P_{ik}^2 + \sigma_{ik}^2) - \left[\sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}\right]^2$$

• For nominal exposure NE, it can be shown that UL is given by,

$$UL = NE \times \sqrt{PD \times \sigma_{RR}^2 + \sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}^2 - \left[\sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}\right]^2}$$

Computing yield spreads

- Yield spreads between different rating grades can be derived from current market prices
- One could have the yield spreads across different rating grades by maturity
- A simpler approach, through less precise, would be to use yield spreads across rating grades without taking into account maturity of the instrument
- The table on next page shows static yield spreads that have been used in numerical examples

Rating grade	Rating description	Spread vs Govt
1	Aaa / AAA	15 bp
2	Aa1 / AA+	30 bp
3	Aa2 / AA	45 bp
4	Aa3 / AA-	60 bp
5	A1 / A+	75 bp
6	A2 / A	90 bp
7	A3 / A-	105 bp
8	Baa1 / BBB+	130 bp
9	Baa2 / BBB	155 bp
10	Baa3 / BBB-	180 bp
11	Ba1 / BB+	230 bp
12	Ba2 / BB	280 bp
13	Ba3 / BB-	330 bp
14	B1 / B+	430 bp
15	B2 / B	530 bp
16	B3 / B-	630 bp
17	Caa-C / CCC	780 bp

Numerical example

Security level details of example considered				
Description	Value			
Issuer rating grade	A3			
Settlement date	24 Apr 2002			
Bond maturity date	15 Feb 2007			
Coupon rate	6.91%			
Dirty price for \$1 nominal	1.0533			
Nominal exposure	\$1,000,000			
Modified duration	4.021			
Convexity	19.75			
Mean recovery rate	47%			
Volatility of RR	25%			

• Under default mode,

$$EL = NE \times PD \times LD$$

$$= 1000000 \times 0.001 \times 0.5833 = \$583.3$$

$$UL = NE \times \sqrt{PD \times \sigma_{RR}^2 + LD^2 \times \sigma_{PD}^2}$$

$$= 1000000 \times \sqrt{0.001 \times 0.25^2 + 0.5833^2 \times 0.001 \times (1 - 0.001)} = \$20,059.88$$

• Under migration mode,

$$EL = NE \times \sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}$$
$$= 1000000 \times 0.003012 = \$3012$$

$$UL = NE \times \sqrt{PD \times \sigma_{RR}^2 + \sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}^2 - \left[\sum_{k=1}^{18} p_{ik} \times \Delta P_{ik}\right]^2}$$
$$= 1000000 \times \sqrt{0.001 \times 0.25^2 + 5.259 \times 10^{-4} - 0.003012^2} = \$ 24,069.2$$