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Thick Points for Spatial Brownian Motion:

Multifractal Analysis of Occupation Measure
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Let T (x; r) denote the total occupation measure of the ball of

radius r centered at x for Brownian motion in IR
3. We prove that

supjxj�1 T (x; r)=(r
2j log rj) ! 16=�2 a.s. as r ! 0, thus solving a

problem posed by Taylor in 1974. Furthermore, for any a 2 (0;16=�2),

the Hausdor� dimension of the set of \thick points" x for which

limsup
r!0 T (x; r)=(r

2j log rj) = a, is almost surely 2 � a�
2
=8; this is

the correct scaling to obtain a nondegenerate \multifractal spectrum"

for Brownian occupation measure. Analogous results hold for Brownian

motion in any dimension d > 3. These results are related to the LIL of

Ciesielski and Taylor (1962) for the Brownian occupation measure of

small balls, in the same way that L�evy's uniform modulus of continuity,
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and the formula of Orey and Taylor (1974) for the dimension of \fast

points", are related to the usual LIL. We also show that the lim inf

scaling of T (x; r) is quite di�erent: we exhibit non-random c1 ; c2 > 0,

such that c1 < sup
x
lim infr!0 T (x; r)=r

2
< c2 a.s. In the course of

our work we provide a general framework for obtaining lower bounds

on the Hausdor� dimension of random fractals of `limsup type'.

1. Introduction. For any Borel measurable function f from 0 � t � T to

IRd we denote by �
f
T its occupation measure:

�
f
T (A) =

Z T

0

1A(ft) dt

for all Borel sets A � IRd. Throughout, B(x; r) denotes the ball in IRd of radius

r centered at x, and fWtgt�0 denotes Brownian motion in IRd; d � 3.

In the last decade, much insight into the structure of various measures has been

gained from their multifractal analysis. A general introduction to this analysis

can be found in Olsen [12], Riedi [21] and Falconer [8]; certain important ran-

dom measures were analyzed by Hu-Taylor [9], Taylor [28], Perkins-Taylor [20],

Lawler [11] and Shieh-Taylor [24].

Consider Brownian occupation measure �WT in IRd, d � 3. It is well known

that for almost all Brownian paths W , the pointwise H�older exponent

H�older(�WT ; x) := lim
�!0

log�WT (B(x; �))

log �
(1.1)

takes the value 2 for all points x in the range fWt

��� 0 � t � Tg. In particular, the

usual multifractal spectrum a 7! dimfx 2 IRd : H�older(�WT ; x) = ag vanishes

for all a 6= 2, a > 0. Indeed, this fact was crucial in Kaufman's work [10], written

long before the term \multifractal" was invented.

Rather than being the end of the story, this means that standard multifractal
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analysis must be re�ned to capture the delicate 
uctuations of occupation mea-

sure under scaling; the problem of obtaining such a re�ned analysis was posed

by Hu and Taylor [9, Pg. 287] in 1997, but it is closely linked to problems posed

by Taylor [26] in 1974. Our main results, Theorems 1.1 and 1.3 below, resolve

these problems.

The correct scaling for studying the 
uctuations of occupation measure was

already indicated by Taylor [26]; more details were given by Perkins-Taylor [18,

Lemmas 2.3 and 2.5], who showed that there exist absolute constants 0 < c1 <

c2 < 1, such that almost surely for all points x 2 fWtj 0 � t � Tg and all

positive � � �0(!),

c1�
2=j log�j � �WT (B(x; �)) � c2�

2j log �j :(1.2)

(As they point out, the lower bound is immediate from L�evy's uniform modulus

of continuity.)

Our main result describes the multifractal nature, in a �ne scale, of \thick

points" for the occupation measure of Brownian motion in IRd, d � 3. (We call

a point x 2 IRd on the Brownian path a thick point if x is in the set considered

in (1.3) for some a > 0; similiarly, t > 0 is called a thick time if it is in the set

Thicka considered in (1.4) for some a > 0 and T > 0.)

Theorem 1.1. With d � 3, let qd denote the �rst positive zero of the Bessel

function Jd=2�2(x). (See [31] for information on qd; in particular, q3 = �=2.)

Then, for any T 2 (0;1] and all 0 < a � 4=q2d,

dimfx 2 IRd
��� lim sup

�!0

�WT (B(x; �))

�2j log �j = ag = 2� aq2d=2 a:s:(1.3)
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Equivalently, for any T 2 (0;1] and all 0 < a � 4=q2d ,

dimf0 � t < T
��� lim sup

�!0

�WT (B(Wt; �))

�2j log �j = ag = 1� aq2d=4 a:s:(1.4)

Denote the set in (1.4) by Thicka. Then Thicka 6= ? at the critical value a = 4=q2d.

For comparison purposes, recall three fundamental results on Brownian incre-

ments:

(i) The large increments at a �xed time t, are governed by Khinchin's classical

LIL:

lim sup
�!0

Wt+� �Wt

(2� log j log �j)1=2 = 1 a:s:

(ii) The dimension of certain exceptional fast points was determined by Orey-

Taylor [13]:

8a 2 [0; 1]; dim
n
0 � t < T

��� lim sup
�!0

Wt+� �Wt

(2�j log�j)1=2 = a
o
= 1� a2 a:s:

(This can be viewed as a multifractal decomposition of white noise.)

(iii) L�evy's uniform modulus of continuity governs the largest increments over-

all:

lim
�!0

sup
0�t�T

Wt+� �Wt

(2�j log �j)1=2 = 1 a:s:

The three statements above hold in any dimension d � 1. Next, we indicate their

analogues for Brownian occupation measure in dimension d � 3; only the �rst of

these was previously known.

(i') The limsup asymptotic behavior of Brownian occupation measure around

a �xed time t, is governed by the LIL of Ciesielski-Taylor [3, Theorem 3]:
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for any T 2 (0;1] and t � T ,

lim sup
�!0

�WT (B(Wt; �))

�2 log j log �j =
2

q2d
a:s:(1.5)

(ii') The dimension of exceptional thick times is given by (1.4) above.

(iii') Our results (1.7) and (1.9) give the largest occupation measure possible

for a small ball.

Further remarks on Theorem 1.1.

� Perhaps more signi�cant than the numerical values obtained in (1.3) and

(1.4) is the insight gained, while proving these results, about the manner

by which the \thick points" on the Brownian path arise. The key to our

proof of Theorem 1.1 is a localization phenomenon for transient Brow-

nian motion: the balls of radius � that have the largest occupation measure

(of order �2j log �j), accumulate most of this measure in a surprisingly short

time interval (of length at most �2j log �jb for some b, e.g. b = 6 works);

see Section 3 where this localization is established. The localization phe-

nomenon breaks down in dimension d = 2, where the correct scaling of

occupation measure, and the techniques needed to establish it, are quite

di�erent. In [6] we have obtained the corresponding results for the planar

case; we emphasize that the current paper concerns only d � 3.

� Given the localization phenomenon, there are several possible approaches

to the proof of the lower bound in (1.4). Our proof relies on a general

lower bound on Hausdor� measure of random fractals \of limsup type",

Theorem 2.1. This general bound sharpens similar estimates obtained by
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Orey-Taylor [13], Hu-Taylor [9], Deheuvels-Mason [4] and Shieh-Taylor [24];

of course, our work owes a substantial debt to these earlier papers.

� For any x =2 fWt

��� 0 � t � Tg and � small enough, �WT (B(x; �)) = 0. Hence,

the equivalence of (1.3) and (1.4) is a direct consequence of the uniform

dimension doubling property of Brownian motion, due to Kaufman [10] (see

also, [18, Eqn. (0.1)]).

� Let vd�2 denote the �rst eigenvalue of (1=2)� in the unit ball of IRd�2 with

Dirichlet boundary conditions. As the spherically symmetric fundamental

solution for the Laplacian eigenvalue problem in B(0; 1) is Jd=2�2(
p
�jxj),

the required Dirichlet boundary conditions imply that vd�2 = q2d=2 (see for

example [3, (2.15)]). The appearance of (d�2) in our result for d dimensions

is due to the celebrated identity of Ciesielski-Taylor [3, Theorem 2].

To indicate the qualitative di�erence between the sets of thick points and the

most familiar random fractals associated with Brownian motion (the range, the

graph, and the level sets) we present the following proposition; for the de�nition

and properties of packing dimension dim
P
, see [29] or [8].

Proposition 1.2. Let the notation of Theorem 1.1 be in force. For all

0 < a � 4=q2d, the union Thick�a := [b�aThickb has the same Hausdor� dimen-

sion as Thicka a.s., but its packing dimension a.s. satis�es dim
P
(Thick�a) = 1.

Equivalently,

dim
P
fx 2 IRd

��� lim sup
�!0

�WT (B(x; �))

�2j log �j � ag = 2 a:s:(1.6)

Remark. The importance of comparing the Hausdor� and packing dimen-

sions of a set was stressed in the survey Taylor [27]. By a more involved argument,
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it can be shown that Thicka itself also has packing dimension 1 for 0 < a � 4=q2d.

(For a = 4=q2d, this statement follows from Proposition 1.2.)

The next theorem solves two problems posed by Taylor in 1974 (see [26, Pg.

201]).

Theorem 1.3. Let fWtg be a Brownian motion in IRd, d � 3. Then, for

any R 2 (0;1) and any T 2 (0;1],

lim
�!0

sup
jxj�R

�WT (B(x; �))

�2j log �j = 4q�2
d a:s:(1.7)

Furthermore, for any k 2 (0;1) and any T 2 [k;1],

lim
�!0

inf
t2[0;k]

�WT (B(Wt; �))

�2=j log �j = 1 a:s:(1.8)

Remarks:

� Our proof shows that for any T 2 (0;1],

lim
�!0

sup
0�t�T

�WT (B(Wt; �))

�2j log �j = 4q�2
d a:s:(1.9)

� Combining (1.3) and (1.7) we see that

sup
x2IRd

lim sup
�!0

�W1(B(x; �))

�2j log �j = 4q�2
d a:s:

In particular, the sets in (1.3) and (1.4) are a.s. empty for any a > 4q�2
d ,

T 2 (0;1].

� A detailed multifractal analysis of thin times for Brownian motion, that is

t 2 [0; T ] satisfying

lim inf
�!0

�WT (B(Wt; �))

�2=j log�j = a

for some a � 1, can be found in [7]. The relation between thin times and

(1.8) is the same as the relation between thick times and (1.7).
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Computation of Laplace transforms is an important component of a complete

multifractal analysis, and it was also the starting point of our investigation. Pe-

mantle, Peres and Shapiro [15] showed that
R 1

0
�W1 (B(Wt; �))=�

2 dt, the pathwise

�rst moment of the ratio �W1 (B(Wt; �)) =�
2, remains bounded almost surely as

� ! 0. The following theorem provides a pathwise asymptotic formula for the

moment generating function of that ratio. In one sense, it is �ner than Theo-

rem 1.1, since it yields a precise estimate of the total duration in [0; 1] that the

Brownian particle spends in balls of radius � that have unusually high occupation

measure (see Corollary 1.5 below). Such an estimate (which is an analogue in our

setting of the \coarse multifractal spectrum", cf. Riedi [21]), cannot be inferred

from Theorem 1.1.

Theorem 1.4. Denote by ��
�W
1 the total occupation measure for a two-sided

Brownian motion f �Wtg1�1 in IRd, d � 3. Then for each � < q2d=2,

lim
�!0

Z 1

0

e��
W
1 (B(Wt;�))=�

2

dt = IE
�
e���

�W
1 (B(0;1))

�
a:s:(1.10)

Remarks:

� We note by [3] that

IE
�
e���

�W
1 (B(0;1))

�
=
�
IE
�
e��

W
1 (B(0;1))

��2
=

1Q1
j=1

�
1� 2�

q2
d;j

�2(1.11)

for each � < q2d=2, where fqd;jgj�1 are the positive zeros of the Bessel

function Jd=2�2(x), enumerated in increasing order. It is clear that the

right hand side diverges as � " q2d=2 = q2d;1=2. The case d = 3 is particularly

explicit because then q3 = �=2 and the right hand side of (1.11) simpli�es

to cos�2(
p
2�) (c.f. [3]).
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� Let � denote a random variable uniform on [0; 1], which is independent of

the Brownian path W . Then, (1.10) implies in particular that for almost

every Brownian path W , the ratio �W1 (B(W� ; �))=�
2, a random variable

in � , converges in law as � ! 0 to the total occupation time ��
�W
1 (B(0; 1))

of the unit ball by a two-sided Brownian motion �W .

Next, we state the promised corollary of Theorem 1.4, which is analogous to

the coarse multifractal spectrum.

Corollary 1.5. Let fWtg be a Brownian motion in IRd, d � 3, and denote

Lebesgue measure on IR1 by Leb. Then, for any a 2 (0; 4=q2d),

lim
�!0

log Leb
n
0 � t � 1

����W1 (B(Wt; �)) � a�2j log �j
o

log �
= aq2d=2 a:s:

The thick points considered in Theorem 1.1 are centers of balls B(x; �) with

unusually large occupation measure for in�nitely many radii, but these radii

might be quite rare. The next theorem shows that for the balls B(x; �) to have

unusually large occupation measure for all small radii � and the same center x,

what constitutes \unusually large" must be interpreted more modestly. De�ne

Id(a) :=
a

4
(maxf0; d� 2� 2

a
g)2 ;(1.12)

and let

Cd := inffa : Id(a) = 2g = 2

d� 2
p
d� 1

:(1.13)

(The equality on the right is easily veri�ed.)

Then

Theorem 1.6. For fWtg a Brownian motion in IRd; d � 3, and a 2 (0; Cd],

dimfx 2 IRd
��� lim inf

�!0

�W1 (B(x; �))

�2
� ag � 2� Id(a) a:s:(1.14)
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and this can be strengthened to

dim
P
fx 2 IRd

��� lim inf
�!0

�W1(B(x; �))

�2
� ag � 2� Id(a) a:s:(1.15)

where dim
P
denotes packing dimension. Moreover,

1

d
� sup

x2IRd

lim inf
�!0

�W1 (B(x; �))

�2
� Cd a:s:(1.16)

Remarks:

� In particular, replacing the lim sup by lim inf in (1.3) and (1.4) yields an

a.s. empty set for any a > 0.

� The new assertion in (1.16) is the right hand inequality; the inequality on

the left is an immediate consequence of Theorem 9 of Perkins [17] concern-

ing \Brownian slow points".

� It is an open problem to determine exactly the dimension appearing in

(1.14) and the precise asymptotics in (1.16).

� That the upper bound (1.14) on Hausdor� dimension applies to packing

dimension as well is in sharp contrast with Theorem 1.1 and Proposition

1.2. Intuitively, the reason for this contrast is that for a point to be in

the set considered in (1.3), it only needs to satisfy a certain condition at

in�nitely many scales, so that set can appear large at other scales; these

scales can be used to pack many disjoint balls with centers in the set. Points

considered in (1.14), however, must satisfy a (less stringent) condition at

all scales.

The next section contains a discussion of fractals \of limsup type" and a gen-

eral lower bound (Theorem 2.1) for their Hausdor� measure. In Section 3 we
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prove the crucial Localization Lemma 3.1. The results of those two sections are

applied in Section 4 to establish the lower bounds on Hausdor� dimension in

Theorem 1.1 and Proposition 1.2. The complementary upper bounds in Theo-

rem 1.1 are proved in Section 5. Combining these bounds with the Localization

Lemma 3.1, we prove Theorem 1.3 in Section 6. Section 7 is devoted to the proof

of Theorem 1.4, with Corollary 1.5 proved in Section 8. Theorem 1.6 is proved

in Section 9. At the end of the paper we present some open problems.

Analogous results for transient symmetric stable processes are contained in [5].

2. Random fractals of limsup type. Suppose that for each n � 1, a �nite

union A(n) of intervals of length �n is given. Assume that �n ! 0 as n ! 1,

and that the number of intervals comprising A(n) grows like a negative power of

�n. We callA := lim supA(n) =
T1
n=1

S1
k=nA(k) a fractal of limsup type. We will

be interested in situations in which the A(n) are random, and in hypotheses on

their distribution which will allow us to obtain dimension bounds on A. The main

result of this section, Theorem 2.1, provides a general framework for obtaining

lower bounds on the Hausdor� measure of random fractals of limsup type.

Random sets that are (well approximated by) random fractals of limsup type

include:

� The fast points of Orey-Taylor [13];

� The initial points of exceptional Brownian excursions considered by

Barlow-Perkins [1];

� The close approaches on the Brownian path measured by Perkins-

Taylor [19];
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� The paths in a family tree where a tree-indexed random walk has positive

burst speed, see Benjamini-Peres [2];

� Times where the Strassen functional LIL fails, see Deheuvels-Mason [4];

� Sets arising in multifractal analysis of stable subordinators (studied by

Hu-Taylor [9] and by Shieh-Taylor [24]).

� The sets Thicka in Theorem 1.1 .

Such random sets di�er qualitatively from the random fractals most frequently

encountered (e.g. ranges, graphs, levels sets and slow points of Brownian motion).

For instance, the packing dimension of sets of limsup type is typically full, hence

larger than their Hausdor� dimension; see Corollary 2.4. In particular, that corol-

lary implies that the sets of fast points of [13] have packing dimension 1 (The

assertion to the contrary in [27, Pg. 401] is wrong).

Three general methods have been employed to establish lower bounds for

Hausdor� dimension of random fractals of limsup type. (These methods were

used earlier for other sets).

� Orey-Taylor [13] constructed a Frostman measure directly, using estimates

on binomial probabilities. Their method is expounded by Deheuvels-

Mason [4]. This elegant method requires strong independence assumptions

\within levels", and it is di�cult to re�ne it to handle sets de�ned by an

equality, like Thicka, rather than an inequality. Orey-Taylor [13, Pg. 185]

state that this can be done for the random fractals of limsup type which

they consider, the Brownian fast points, by \tightening their argument",

but extending this to more general situations seems quite hard.
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� Intersection properties with an independent random set (the range of a sta-

ble subordinator) were used by Barlow-Perkins [1] and Perkins-Taylor [19];

random Cantor sets arising from fractal percolation as in [16] could also

be used. Here independence assumptions can be replaced by correlation

bounds, but, as above, handling sets like Thicka is unwieldy.

� A powerful method based on estimation of energy integrals was used by

Hu-Taylor [9] and Shieh-Taylor [24]. Below we sharpen and extend this

method, and show that it yields good estimates of Hausdor� measure,

while requiring only mild correlation hypothesis.

Let Dn denote the collection of dyadic intervals f[(i � 1)2�n; i2�n]g2ni=1. For

any increasing function ' : [0; 1]! [0;1) with '(0) = 0, let H'(A) denote the

Hausdor� measure of a set A in the gauge ' (see, e.g., [27] for the de�nition).

Theorem 2.1. Suppose that for every n � 1, a collection of f0; 1g valued

random variables fZIgI2Dn
is given, so that pn := P(ZI = 1) is the same for all

I 2 Dn. Let

A(n) = [fI 2 Dn

���ZI = 1g and A := lim supA(n) =

1\
n=1

1[
k=n

A(k) :

For I 2 Dm, with m < n, de�ne

Mn(I) =
X

J2Dn;J�I

ZJ :

Choose �(n) � 1 such that

Var(Mn(I)) � �(n)IE(Mn(I)) = �(n)pn2
n�m :(2.1)

Let '(r) be a gauge function which is regularly varying of index � 2 (0; 1) as
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r # 0. (I.e., '(r) = r�L(r) where L(cr)=L(r)! 1 as r # 0 for any c > 0). If

2�n�(n)

'(2�n)pn
! 0(2.2)

then H'(A) > 0 a.s.

Remarks:

� We emphasize that no independence or correlation assumptions are made

relating ZI and ZJ for I and J of di�erent lengths.

� H'(A) > 0 immediately implies that dim(A) � �.

� Theorem 2.1 can be applied to the \fast points" and \thick points" of

a variety of processes; the only essential requirements are stationarity of

increments, suitable decay of correlations and (for discontinuous processes)

bounds on the jump probabilities. The non-vanishing of Hausdor� measure

is proved in Theorem 2.1, rather than merely a bound on dimension, in

order to handle the sets Thicka, rather than just their unions Thick�a =

[b�aThickb, in (1.4). (See the remark following the statement of Corollary

4.1).

� Let 'n := 1='(2�n). Beyond the obvious fact of some exponential growth of

'n, our proof uses only the following simple consequence of the assumption

that '(r) is regularly varying of index � 2 (0; 1) as r # 0: for some C <1

that does not depend on n,

nX
m=1

'm � C'n and

1X
m=n

2�m'm � C2�n'n:(2.3)

� Wewill apply Theorem 2.1 below to prove Theorem 1.1. In that application,

we will take '(r) = r1�
 j log2(r)j13 with pn � 2�n
 for some 0 < 
 < 1
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and �(n) = n12, where throughout this paper, log2 stands for the logarithm

to the base 2.

� Theorem 2.1, which is formulated for random fractals of limsup type

in [0; 1], has an obvious generalization to random `fractals of limsup

type' in [0; 1]d. In this setup we can take '(r) to be any gauge function

which is regularly varying of index � 2 (0; d) as r # 0, and replace

(2.1) and (2.2) by Var(Mn(I)) � �(n)IE(Mn(I)) = �(n)pn2
d(n�m) and

2�dn�(n)=('(2�n)pn)! 0 respectively. The proof of such a generalization

is basically identical to the proof of Theorem 2.1.

To establish Theorem 2.1 we need two lemmas. The �rst one is a version of the

well-known connection between energy and Hausdor� measure. For the reader's

convenience, we include the brief proof.

Lemma 2.2. Fix an increasing gauge function ' such that '(0) = 0. Suppose

that B is a Borel set in [0; 1], and � is a probability measure on B. If the dyadic

energy

E'(�) :=
1X

m=1

X
J2Dm

�(J)2

'(2�m)

of � is �nite, then H'(B) > 0.

(In fact H'(B) =1, but that is unimportant for our purpose). See [14] for the

connection of E'(�) to more traditional expressions for energy.

Proof: Let

	(x) :=

1X
m=1

X
J2Dm

�(J)

'(2�m)
1J (x) :
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Since
R
B
	(x) d� = E'(�), taking C = 2E'(�), the set BC := fx 2 B

���	(x) � Cg

has �(BC) � 1=2. The restriction �C of � to BC satis�es �C(J) � C'(2�m) for

every J 2 Dm for all m. Since any interval I � [0; 1] can be covered by three

shorter dyadic intervals, it follows that �C(I) � 3C'(jIj) for any interval I.

Hence, if A is any countable collection of intervals with BC � [AI, then

1

2
� �(BC) �

X
A

�C(I) � 3C
X
A

'(jIj)

which implies that 1=(6C) � H'(BC).

Alternatively, the a.s. �niteness of 	, in conjunction with [23], imply that

H'(B) =1. 2

The following lemma, which, roughly speaking, controls the \quadratic vari-

ation" of the random sets A(n), is the key to the proof of Theorem 2.1. Recall

that 'n = 1='(2�n), and note that by (2.2), for any ` we can choose an integer

n(`) > ` such that

'n(`)�(n(`))

2n(`)pn(`)
� 2�3`:(2.4)

Lemma 2.3. Let the assumptions of Theorem 2.1 be in force. There exist an

a.s. �nite random variable `0(!) and a constant C3, such that if ` � `0(!) and

n = n(`), then for all D 2 D`, we have

jMn(D) � IEMn(D)j < 1

2
IEMn(D) ;(2.5)

and

n(`)X
m=`

'm
X

J2Dm; J�D

Mn(J)
2

(2n�`pn)2
� C3'` :(2.6)

Proof: For m � n and J 2 Dm, denote

�n(J) := Mn(J) � IEMn(J) :
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Also, for ` � n and D 2 D`, set

�n(D) :=

nX
m=`

'm
X

J2Dm ; J�D

�n(J)
2 :

For J 2 Dm, the assumption (2.1) gives IE[�n(J)
2] � �(n)pn2

n�m. Therefore,

8D 2 D`; IE�n(D) =

nX
m=`

'm2
m�`�(n)pn2

n�m = 2n�`�(n)pn

nX
m=`

'm :

By (2.3), we then have

IE�n(D) � C2n�`p2n'n�(n)=pn :

Thus, by (2.4), since n = n(`),

IE
X
D2D`

�n(D)

(2n�`pn)2
� C2�` :

Since the right-hand side is summable in `, we conclude that the summands

inside the last expectation tend to 0 a.s. as ` ! 1. In particular, there exists

`0(!) <1 such that for all ` � `0(!) and D 2 D`, we have

�n(D) �
�
2n�`pn

�2
= [IEMn(D)]2 :(2.7)

To deduce (2.5), observe that

�n(D)2 � '�1
` �n(D) � '�1

` [IEMn(D)]2 <
1

4
[IEMn(D)]2 :

Next, we calculate

X
J2Dm ; J�D

[IEMn(J)]
2

(2n�`pn)2
=

X
J2Dm; J�D

22(`�m) = 2`�m :

Therefore, by (2.3),

nX
m=`

'm
X

J2Dm; J�D

[IEMn(J)]
2

(2n�`pn)2
= 2`

nX
m=`

2�m'm � C'` :(2.8)
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Rewrite (2.7) in the form

nX
m=`

'm
X

J2Dm; J�D

�n(J)
2

(2n�`pn)2
(2.9)

=
1

(2n�`pn)2

nX
m=`

'm
X

J2Dm; J�D

�n(J)
2 � 1 :

Since

Mn(J)
2 = [IEMn(J) + �n(J)]

2 � 2[IEMn(J)]
2 + 2�n(J)

2 ;

adding the inequalities (2.8) and (2.9) yields (2.6), for some constant C3. 2

Proof of Theorem 2.1: We use freely the terminology introduced in the state-

ment of Lemma 2.3. With `0 = `0(!) as in the lemma, de�ne inductively

`k+1 := n(`k) for k � 0. For D 2 D`k�1 with k � 1, write

Qk := IEM`k(D) = 2`k�`k�1p`k ;

and note that by (2.5),

8k � 1 8D 2 D`k�1 ;
1

2
Qk �M`k(D) � 2Qk :(2.10)

Summing this over D 2 D`k�1 gives

8k � 1 M`k ([0; 1]) � 2`k�1+1Qk :(2.11)

To establish the theorem, we will construct a (random) probability measure �,

supported on \k�1A(`k) � A, such that E'(�) <1 a.s. To specify �, it su�ces to

de�ne �(J) consistently for all binary intervals J . Start by assigning the leftmost

interval in D`0 full measure, i.e., set �[0; 2�`0] := 1. Continue inductively:

If J 2 Dm with `k�1 < m � `k, and J � D with D 2 D`k�1 , de�ne

�(J) :=
M`k(J)�(D)

M`k (D)
:(2.12)
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It is straightforward to verify that this assignment is consistent and that � is

supported on \k�1A(`k). For k � 2 and J as in (2.12), two applications of (2.10)

and the bound

�(D) � ZD

min~D2D`k�2
M`k�1 (

~D)
;

give

�(J) � 2M`k(J)�(D)

Qk

� 4M`k (J)ZD

QkQk�1

:(2.13)

Now we apply Lemma 2.3. For k � 2 and D 2 D`k�1 ,

`kX
m=`k�1

'm
X

J2Dm; J�D

�(J)2(2.14)

� 16ZD

Q2
k�1

`kX
m=`k�1

'm
X

J2Dm; J�D

M`k(J)
2

Q2
k

� 16C3ZD

Q2
k�1

'`k�1 ;

by the de�nition of Qk and (2.6). Summing this over all D 2 D`k�1 , and then

using (2.11) with k � 1 in place of k, we obtain

`kX
m=`k�1

'm
X
J2Dm

�(J)2 � 16C3M`k�1 ([0; 1])

Q2
k�1

'`k�1 � C42
`k�2

Qk�1

'`k�1

� C42
2`k�2

2`k�1p`k�1
'`k�1 � C42

�`k�2 ;(2.15)

where the last step used (2.4) and the fact that � � 1. As the right-hand side of

(2.15) is summable in k, we conclude that

E'(�) =
1X

m=0

'm
X

J2Dm

�(J)2 <1 a.s.

By Lemma 2.2 , this completes the proof. 2

The next corollary will be used to prove Proposition 1.2 in Section 4. For

K � [0; 1], let Nm(K) denote the number of intervals in Dm that intersect K.
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Denote by

dim
M
(K) := lim sup

m!1

log2Nm(K)

m
:(2.16)

the upper Minkowski dimension of K, also known as the upper box dimen-

sion.

The only property of packing dimension dim
P
that we need, is its relation to

Minkowski dimension: For any Borel set E,

dimP(E) = inf
E�[jEj

sup
j

dimM(Ej) ;(2.17)

where the in�mum is over all countable covers fEjg of E by closed sets. See

Tricot [30] or Falconer [8, Prop. 3.8].

Corollary 2.4. (i) If for each n � 1 the set Vn is relatively open and dense

in [0; 1]d, then dim
P
(\nVn) = d.

(ii) In the setting of Theorem 2.1, the random set A = lim supA(n) satis�es

dimP(A) = 1 a.s.

Proof: (i) Let fEjg be a countable collection of closed sets that cover \nVn.

Then the union fEjgj�1 [ fV c
ngn�1 is a countable cover of [0; 1]d consisting

of closed sets. By Baire's theorem, at least one of these closed sets must have

nonempty interior in [0; 1]d; since each Vn is dense, some Ej must have interior.

From (2.17), we conclude that dimP(\nVn) = d.

(ii) Denote by A(n)� the interior of A(n), so that Vn := [1k=nA(k)� is certainly

open in [0; 1]. Fixing a dyadic interval I in [0; 1] it is easy to check that Theorem

2.1 applies also when Dn are the dyadic subintervals of I. Hence, a.s., for each

dyadic I, the set A \ I, of positive Hausdor� dimension, is uncountable. inter-

section Since A n Vn is countable, each Vn is a.s. dense in [0; 1], so the assertion
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follows from (i). 2

3. Localization. Throughout this section, c, c0 denote positive, �nite con-

stants, independent of �, the values of which may change from line to line, using

the notation a � b if lim�!0 a=b = 1.

To derive lower bounds on the Hausdor� dimension of the sets appearing in

Theorem 1.1, as well as for proving (1.7), it is crucial to be able to consider the

occupation measure of a ball of radius � over a small time interval (of length ��

which tends to zero with �), rather than over an interval of constant length.

Surprisingly, it turns out that with only a small loss in probability, we can

work with rather short time intervals; the following lemma makes this precise.

Lemma 3.1 (The Localization Lemma). Let fWtg be a Brownian motion

in IRd, d � 3. Write h(r) := r2j log rj, and �� := ��1
d = q2d=2. Finally, denote

�� := �2j log �j6 and �� := 1� 2j log �j�2. Then for some 0 < c <1, we have

p� := P(�W�� (B(0; ���)) � ah(�)) � c�a�
�

:

We did not attempt to optimize the powers of j log �j appearing in the de�ni-

tions of �� and ��. Nevertheless, to appreciate the sharpness of this lemma, recall

that by [3], c.f. (3.4) below,

P

�
�W1 (B(0; �)) � ah(�)

�
� c0�a�

�

:

Proof: De�ne

T = T (�) := inffs � 0 : jWsj = �j log �j2g :

By Brownian scaling, we deduce the existence of positive constants c1; c2 such
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that

P(T > ��) = P

�
sup

t2[0;j log �j2]

jWtj � 1
�
� c1 exp(�c2j log �j2) :(3.1)

Therefore,

p� � P(��2

Z T

0

1fjWsj<���gds � aj log �j; T � ��)

� P

�
��2

Z T

0

1fjWsj<���gds � aj log �j
�
� P(T > ��)(3.2)

By (3.1) and (3.2), the lemma will be proved once we establish that

P

�
��2

Z T

0

1fjWsj<���gds � aj log �j
�
� c�a�

�

:(3.3)

To see (3.3), denote by �d�2 the hitting time of the unit sphere in IRd�2 by

Brownian motion, and de�ne

I = ��2

Z 1

0

1fjWsj<���gds ;

IT = ��2

Z T

0

1fjWsj<���gds :

Recall that, using [3] for the �rst equality,

P(
R1
0
1fjWsj<1gds � x)

e�x�
� =

P(�d�2 � x)

e�x�
� !x!1 c :(3.4)

Therefore, using Brownian scaling and (3.4),

P(I � aj log �j) = P

�
(���)

�2

Z 1

0

1fjWsj<���gds � ��2
� aj log �j

�

= P(�d�2 � ��2
� aj log �j)

� c exp
�
� ��aj log �j=(1� 2j log�j�2)2

�
� c�a�

�

:(3.5)

Let now T 0 := infft > T : jWtj < �g, and de�ne

IT 0 = ��2

Z 1

T 0
1fjWsj<���gds :
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Then, I = IT 1fT 0=1g + (IT + IT 0)1fT 0<1g so that

P(IT � z; T 0 =1) = P(I � z) �P(IT + IT 0 � z; T 0 <1) :(3.6)

Let ~I be an independent copy of I for a Brownian motion whose expectation

when starting at v we denote by ~IE
v
. Using symmetry and the strong Markov

property we have

P(IT + IT 0 � z; T 0 <1) = IE
�
~IE
WT 0

n
~I � z � IT

o
; T 0 <1

�

� IE
�
~IE
n
~I � z � IT

o
; T 0 <1

�

= ~IE
n
IE
�
IT � z � ~I ; T 0 <1

�o

= ~IE
n
IE
�
IEWT (TB(0;�) <1); IT � z � ~I

�o

= j log �j�2(d�2)
P(IT + ~I � z)

� j log �j�2(d�2)
P(I + ~I � z)(3.7)

where TB(0;�) = infft � 0 : Wt 2 B(0; �)g denotes the �rst hitting time of B(0; �).

Let ~�d�2 denote an independent copy of �d�2, and let q� denote their common

law. Then, for some constant C independent of z, which may change from line

to line,

P(�d�2 + ~�d�2 > z) = P(�d�2 > z) +

Z z

0

P(~�d�2 > z � y)q� (dy)

� C
h
exp(�z��) +

Z z

0

exp(�(z � y)��)q� (dy)
i

� C exp(�z��) +C

Z z

0

exp(�z��)dy

= C(1 + z) exp(�z��) ;(3.8)

where the third line came from integration by parts. Hence, by the same argument
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as in (3.5), for some c > 0 and any � > 0 small enough,

P(I + ~I � aj log �j) � caj log �j�a�� :

Since 2(d � 2) > 1, the inequality (3.3) follows from (3.5), (3.6), (3.7) and the

above. 2

4. Proof of the lower bound and critical case in Theorem 1.1. The

following corollary of Theorem 2.1 and the Localization Lemma will yield the

desired lower bound.

Recall that �� = ��1
d = q2d=2 denotes the �rst eigenvalue of the Dirichlet

half-Laplacian in the unit ball of IRd�2.

Corollary 4.1. Let T 2 (0;1] and a 2 (0; 2�d). Denote h(�) = �2j log �j,

and consider the set of \thick times"

Thick�a = f0 � t < T
��� lim sup

�!0

�WT (B(Wt; �))

h(�)
� ag :

Let 
 = a��=2 2 (0; 1) and '(r) = r1�
 j log2 rj13. Then H'(Thick�a) > 0 a.s.

Derivation of the lower bound in Theorem 1.1: Assuming for the mo-

ment the upper bounds on dimension obtained in Section 5, we may infer that

dim(Thicka) = 1 � 
 as follows (cf. the argument in [13, Pg. 185]). The in-

equality dim(Thick�(a+1=n)) � 1 � (a + 1=n)��=2 of Section 5 implies that

H'(Thick�(a+1=n)) = 0, and since Thicka = Thick�a�[1n=1Thick�(a+1=n), Corol-

lary 4.1 shows that H'(Thicka) > 0 which in turn implies that dim(Thicka) �

1 � 
 : Using once again the upper bound from Section 5 then completes the

proof that dim(Thicka) = 1� 
 : 2
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Derivation of the critical case in Theorem 1.1: We now show that

Thick4=q2
d
6= ?; perhaps surprisingly, this can be done by a \soft" argument. For

h > 0 and a < 4=q2d, consider the set of approximate thick times

Thick(a; h) :=
[

�2(0;h)

n
0 < t < T

��� �WT (B(Wt; �))

�2j log �j > a
o
:

For any a < 4=q2d and h > 0, it follows from (1.4) and the Markov property of

Brownian motion, that Thick(a; h) is a.s. dense in [0; T ], and it is easy to check

that Thick(a; h) is an open set. Thus �xing sequences an " 4=q2d and hn # 0,

Baire's category theorem implies that

\nThick(an; hn) 6= ? :

Finally, inspection shows that this intersection coincides with Thick�4=q2
d
, which

in turn coincides with Thick4=q2
d
by the remark following Theorem 1.3. 2

Proof of Corollary 4.1: Since we are proving a lower bound, we may assume

that T is �nite; by Brownian scaling, it is enough to consider T = 2. Take

�n = n32�n=2; n = 1; 2; : : : and ��n = 1 � 2j log �nj�2 as in the Localization

Lemma. With I = [t; t+ 2�n] 2 Dn, de�ne ~I = [t; t+ n122�n], and let

ZI = 1 i�

Z
~I

1fjWs�Wtj<�n��ng
ds � ah(�n) :

By L�evy's uniform modulus of continuity, there exists an a.s. �nite random vari-

able n0(!), such that for all n � n0(!),

supfjWt �Wt0 j : t; t0 2 [0; 1]; jt� t0j � 2�ng � 2
p
2�n log(2n) :

Therefore, for all n > n0(!), if I 2 Dn and ZI = 1, then

Z
~I

1fjWs�Wt0 j<�ng
ds � ah(�n)
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for every t0 2 I. The set A de�ned in Theorem 2.1 satis�es A � Thick�a a.s.

(we have taken T = 2 rather than T = 1 to avoid boundary e�ects here). The

Localization Lemma, Lemma 3.1, shows that for I 2 Dn, and all n large enough,

pn = P(ZI = 1) � 2�a�
�n=2. Thus, Corollary 4.1 will be established once we

verify the variance condition (2.1). For intervals I; J 2 Dn the variables ZI and

ZJ always satisfy Cov(ZI ; ZJ ) � IE(ZI ) = pn, and if dist(I; J) > n122�n, then

ZI and ZJ are independent. Therefore, �xing m < n and D 2 Dm, each I 2 Dn

satis�es Cov(ZI ;Mn(D)) � n12pn. Consequently

Var(Mn(D)) =
X

I2Dn; I�D

Cov(ZI ;Mn(D)) � 2n�mn12pn :

Hence, Theorem 2.1 may be applied (with pn � 2�
n and �(n) = n12) to yield

the conclusion. 2

Proof of Proposition 1.2: In the course of the proof of Corollary 4.1, we

showed that for a 2 (0; 2�d), the set Thick�a contains a set of the form A =

lim supA(n) that satis�es the hypotheses of Theorem 2.1. Thus, the assertion

dimP(Thick�a) = 1 follows immediately from Corollary 2.4(ii). To handle the

critical case a = 4=q2d = 2�d, observe that in the analysis of that case earlier in

this section, we expressed Thick�a as a countable intersection of dense open sets,

so dimP(Thick�a) = 1 by Corollary 2.4(i). (This method also applies to smaller

a). Finally, we may deduce (1.6) from the uniform doubling of packing dimension

by spatial Brownian motion, established by Perkins-Taylor [18, Cor. 5.8]. 2

5. The upper bound in Theorem 1.1. In this section we establish the

upper bound for (1.3), thus completing the proof of Theorem 1.1. Let fWtgt�0

be a Brownian motion in IRd, d � 3, and h(�) = �2j log �j. Set

zT (x; �) := �WT (B(x; �))=h(�);
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with z(x; �) = z1(x; �). In this section we show that

dimfx 2 B(0; k)
��� lim sup

�!0

z(x; �) � ag � 2� a��1
d(5.1)

a.s. for all a � 2�d, k 2 [1;1). Using z(x; �) � zT (x; �), and considering the

countable union over k = 1; 2; : : :, will then complete the proof of the upper

bound on the dimension of sets in (1.3).

Fix k 2 [1;1) and � 2 (0; 1=5). Choose a sequence �n # 0 as n ! 1 in such

a way that �1 < e�2 and

h(�n+1) = (1� �)h(�n):(5.2)

For any a > 0 let

Da := fx 2 B(0; k)
��� lim sup

n!1
z(x; �n) � (1� �)ag:

Since, for �n+1 � � � �n we have

z(x; �n) =
h(�n+1)

h(�n)

�W1 (B(x; �n))

h(�n+1)
� (1� �)z(x; �)(5.3)

it is easy to see that

fx 2 B(0; k)
��� lim sup

�!0

z(x; �) � ag � Da :

Let fxj : j = 0; 1; : : : ;Kng, with x0 = 0, denote a maximal collection of points

in B(0; k) such that inf 6̀=j jx` � xjj � ��n. Let An be the set of j ; 0 � j � Kn,

such that

�W1 (B(xj ; (1 + �)�n)) � (1� 2�)ah(�n):

We will shortly prove that for any a > 0,

IEjAnj � c0�(1�4�)a���2
n :(5.4)
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Assuming this for the moment, �x a � 2=�� and let Vn;j = B(xj ; ��n). For

any x 2 B(0; k) there exists j 2 f0; : : : ;Kng such that x 2 Vn;j and B(x; �n) �

B(xj; (1 + �)�n). Consequently, [n�m [j2An
Vn;j forms a cover of Da by sets

of maximal diameter 2��m. Since Vn;j have diameter 2��n, it follows from (5.4)

that for 
 = 2� (1� 5�)a�� > 0,

IE

1X
n=m

X
j2An

jVn;jj
 � c0(2�)

1X

n=m

��a�
�

n <1 :

Thus,
P1

n=m

P
j2An

jVn;jj
 is �nite a.s. implying that dim(Da) � 
 a.s. Taking

� # 0 completes the proof of the upper bound (5.1), subject only to (5.4) which

we now prove.

Let �j = infft � 0 : Wt 2 B(xj ; (1 + �)�n)g. By the strong Markov property,

and [3] (c.f. (3.4)), for some c = c(�; a; d) <1 and all n

P(�W1(B(xj ; (1 + �)�n)) � (1� 2�)ah(�n))

= P(IEW�j
�xj

�
�W1(B(0; (1 + �)�n)) � (1� 2�)ah(�n)

�
;�j <1)

� P(IE
�
�W1(B(0; (1 + �)�n)) � (1� 2�)ah(�n)

�
;�j <1)

� c�(1�4�)a��

n P(�j <1)

where the �rst inequality is due to symmetry. Recall that

P(�j <1) = (
(1 + �)�n

jxjj
)d�2 ^ 1:

Hence, for some c1 = c1(�; a; d), c
0 = c0(�; a; d; k) <1 and every n,

IEjAnj =
KnX
j=0

P(�W1(B(xj ; (1 + �)�n)) � (1� 2�)ah(�n))(5.5)

� c1�
(1�4�)a���2
n (1 +

Z
jxj�k

1

jxjd�2
dx) � c0�(1�4�)a���2

n

which completes the proof of (5.4) and consequently that of Theorem 1.1. 2



Thick Points for Spatial Brownian Motion 29

6. Proof of Theorem 1.3. We begin by proving (1.7). To this end, �x

T 2 (0;1), � 2 (0; 1=4) and a < 2�d = 2=�� such that � = 2 � (1 + �)a�� > 0.

Choose a sequence �n # 0 as in (5.2), noting that for �n � � � �n�1 and any

x 2 IRd,

(1� �)zT (x; �n) � zT (x; �) � (1� �)�1zT (x; �n�1) :(6.1)

Let �� = �2j log �j6, Nn = [T=��n ], and ti;n = i��n for i = 0; : : : ; Nn � 1. Writing

W t
s =Ws+t �Wt it follows that

inf
�2[�n;�n�1]

sup
t2[0;T ]

zT (Wt; �) � (1� �)
Nn�1
max
i=0

Z
(n)
i ;

where Z
(n)
i = �W

ti;n

��n
(B(0; �n))=h(�n) are i.i.d. and by Lemma 3.1, for some

c = c(T ) > 0 and all n large enough,

P(
Nn�1
max
i=0

Z
(n)

i � a) � (1� p�n)
Nn � e�c�

��
n :

Since ��n is summable, applying Borel-Cantelli, then taking � # 0 and a " 2�d,

we see that a.s.

lim inf
�!0

sup
t2[0;T ]

zT (Wt; �) � 2�d = 4q�2
d

With Sk(!) = infft : jWtj � kg ^ T 2 (0;1) a.s. and T 7! zT (x; r) monotone

non-decreasing, it follows that a.s.

lim inf
�!0

sup
jxj�k

zT (x; �) � lim inf
�!0

sup
t2[0;Sk(!)]

zSk(!)(Wt; �) � 4q�2
d :

Turning to the proof of the corresponding upper bound, �x k 2 (0;1), � 2

(0; 1=5) and let a = (2 + �)=((1� 4�)��) > 2=��. Considering the sequence �n of

(5.2) and the sets An as in Section 5, it follows from (5.4) that

1X
n=1

P(jAnj � 1) �
1X
n=1

IEjAnj � c0
1X
n=1

��n <1
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By Borel-Cantelli, it thus follows that a.s. An is empty for all n � n0(!). By the

construction of Section 5 the latter event implies that

lim sup
�!0

sup
jxj�k

z1(x; �) � a :

Taking � # 0 for which a # 2=�� = 4q�2
d , we conclude that a.s.

lim sup
�!0

sup
jxj�k

z1(x; �) � 4q�2
d ;

as needed to complete the proof of (1.7).

The left side of (1.8) is monotone in T and by Brownian scaling its law depends

only on T=k. Therefore, it su�ces to consider k = 1 and the extreme values T = 1

and T = 1. Fix � > 0 and �n = (1 � �)n. (Note, this is di�erent from the �n

used above!). Using the notation

ẑT (x; �) :=
�WT (B(x; �))

(�2=j log �j) ;

it follows that for any � 2 [�n; �n�1] and x 2 IRd

n� 1

n
(1� �)2ẑT (x; �n) � ẑT (x; �) �

n

n� 1
(1� �)�2ẑT (x; �n�1) :

Thus, it su�ces for (1.8) to show that for any �xed � 2 (0; 1=5) both the lower

bound

lim inf
n!1

inf
t2[0;1]

ẑ1(Wt; �n) � (1� �)5(6.2)

and the upper bound

lim sup
n!1

inf
t2[0;1]

ẑ1(Wt; �n) � (1 + �)5 ;(6.3)

hold a.s.

Our �rst task in proving (6.2) is to get a good upper bound on the probability

of small occupation measure. If �
�W
[�a;b](B(0; �n)) denotes the occupation measure

of a two-sided IRd-valued Brownian motion �W inB(0; �n) during the time interval
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[�a; b] with a; b � 0, then �
�W
[�a;b](B(0; �n)) � 
 implies that ��d(�n)^ a+ �d(�n)^

b � 
, where

��d(�) = infft � 0 : j �W�tj � �g ; �d(�) = infft � 0 : j �Wtj � �g:

Taking 
 = (1 � �)2�2n=j log �nj, then a ^ b � (1 � �)2�2n=j log�nj together with

Brownian scaling shows that

P

�
�

�W
[�a;b](B(0; �n)) � (1� �)2�2n=j log �nj

�
(6.4)

� P

�
��d(1) + �d(1) � (1� �)2=j log �nj

�
:

Since P(�d(1) � x) = P(sup0�t�x jWtj � 1), it is well known, see [29, Lemma

6.4], that for 0 < x < 1

c1x
1�d=2e�:5=x � P(�d(1) � x) � c2x

1�d=2e�:5=x:(6.5)

This estimate leads, as in the proof of [29, Lemma 6.5], to

P (��d(1) + �d(1) � x) � e�2(1��)=x(6.6)

for any � > 0 and x � x(�). Hence, whenever a ^ b � (1� �)2�2n=j log �nj,

P

�
�

�W
[�a;b](B(0; �n)) � (1� �)2�2n=j log �nj

�
� �2=(1��)n(6.7)

for all n � n0(�), which is the good upper bound we need. In particular, using

�W t
s =

�Wt+s � �Wt for the time-shifted path, this shows that for all n � n0(�),

P(ẑ1(Wt; �n) � (1� �)2)(6.8)

= P

�
�

�W t

[�t;1�t](B(0; �n)) � (1� �)2�2n=j log �nj
�
� �2=(1��)n

provided that

(1� �)2�2n=j log�nj � t � 1� (1 � �)2�2n=j log �nj(6.9)
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On the other hand, if 0 � t � 1 but condition (6.9) does not hold, (i.e. for t close

to 0 or 1), we can no longer use the good upper bound (6.8), but must work with

the following bound which comes from (6.5):

P(ẑ1(Wt; �n) � (1� �)2) � P

�
�d(1) � (1� �)2=j log�nj

�
� �:5=(1��)

2

n(6.10)

for all n � n1(�), some n1(�) <1.

To apply these estimates for proving (6.2) take k = k(�) = 20(1� �)2=�2 to

be an integer, �n = (1� �)2�2n=(j log �njk(�)) = �2�2n�1=(20j log �nj), Nn = b��1
n c

and ti;n = i�n, i = 1; : : : ; Nn. On the one hand, by L�evy's uniform modulus of

continuity, we have that a.s. for some �nite n0 = n0(!) � ��1 and all n � n0,

Nn
max
i=1

sup
jsj<�n

jWti;n+s �Wti;nj < ��n�1 ;

which implies that

inf
t2[0;1]

ẑ1(Wt; �n�1) � (1� �)3
Nn

min
i=1

ẑ1(Wti;n ; �n) :(6.11)

On the other hand, we see that condition (6.9) is satis�ed by all but the �rst and

last k points of the form t = ti;n, i = 1; : : : ; Nn. Hence, using the good upper

bound (6.8) for those ti;n, and the bound (6.10) for the remaining 2k ti;n's we

have

P(
Nn

min
i=1

ẑ1(Wti;n ; �n) � (1� �)2) �
NnX
i=1

P(ẑ1(Wti;n; �n) � (1� �)2)

� 2k�:5=(1��)
2

n +Nn�
2=(1��)
n � �2�n :(6.12)

Since �2�n is summable, combining (6.11) and (6.12) yields (6.2) by an application

of the Borel-Cantelli Lemma.

Turning to prove (6.3), let now 
n = (1 + �)5�2n=(2j log �nj), �n = �2�5:6�
n and

n large enough for �n � 
n. (Our choice of the constant 5:6 will become clear at



Thick Points for Spatial Brownian Motion 33

the end of the proof). Let �0n = (1 + �)�n and consider the event A = A+ \A�,

where

A+ = f�d(�0n) � 
n; inf
s2[0;�n ]

jW�d(�0n)+s
j � �n; jW�d(�0n)+�n

j � �1��n g

and

A� = f��d(�0n) � 
n; inf
s2[0;�n ]

j �W���d(�0n)�s
j � �n; j �W���d(�0n)��n

j � �1��n g:

By the strong Markov property and symmetry,

P(A+) = P

�
P
W�d(�

0
n)

�
jW�n j � �1��n ; inf

s2[0;�n ]
jWsj � �n

�
; �d(�

0
n) � 
n

�

= P(�d(�
0
n) � 
n)P

x0

�
jW�n j � �1��n ; inf

s2[0;�n ]
jWsj � �n

�
;

for any x0 with jx0j = �0n.

By Brownian scaling, P(�d(�
0
n) � 
n) = P(�d(1) � (1 + �)3=(2j log�nj), so

that using (6.5) and (1 + �)�3 = 1� 3� +O(�2) we get

c3�
1�2:9�
n � P(�d(�

0
n) � 
n) � c4�

1�3:1�
n

for some c3; c4 > 0, � small and all n large enough. Since

P
x

�
inf
s�0

jWsj < �

�
=

�
�

jxj

�d�2

;(6.13)

whenever jxj > �, we have, with jx0j = �0n = (1 + �)�n,

P
x0

�
inf
s�0

jWsj � �n

�
= 1� (1 + �)�(d�2)(6.14)

hence

1� (1 + �)�(d�2) � P
x0

�
inf

s2[0;�n ]
jWsj � �n

�
� 1;(6.15)

while

P
x0
�jW�n j � �1��n

�
= P

�jx0 + �1�2:8�
n W1j � �1��n

�
= P

�
j�2:8�n (x0=�n) +W1j � �1:8�n

�
! 0
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since jx0=�nj = 1+ �, independent of n. Putting this all together and noting that

P(A) = P(A+)P(A�) = P(A+)2 shows that

c�2�5:8�
n � P(A) � c0�2�6:2�

n(6.16)

for c; c0 > 0 independent of n.

With ti;n = 4i�n and Nn = [(4�n)
�1] = [0:25��2+5:6�

n ], set Ai = A � �ti;n ,

that is, the event A for the shifted path W ti;n ( �W ti;n). By the strong Markov

property, for any i = 1; : : : ; Nn,

P(ẑ1(Wti;n; �n) � (1 + �)5jAi) � 2 max
jx0j��

1��
n

P
x0(inf

t�0
jWtj < �n) � 2�(d�2)�

n ;

where (6.13) was used in the second inequality. Hence, by the independence of

the events fAigNn

i=1,

P(
Nn

min
i=1

ẑ1(Wti;n ; �n) � (1 + �)5)

� (1� P(A))Nn +

NnX
i=1

P(ẑ1(Wti;n ; �n) � (1 + �)5;Ai)

� e�P(A)Nn +

NnX
i=1

P(ẑ1(Wti;n ; �n) � (1 + �)5 j Ai)P(Ai)

� e�c�
�:2�
n + c0��:6�n �(d�2)�

n

� e�c�
�:2�
n + c0�:4�n

and (6.3) follows by an application of the Borel-Cantelli Lemma. (One can see

now the reason for choosing 5.6 above. With more care, we could have chosen

�n = �2�q�n with 5 < q < 6). This completes the proof of Theorem 1.3. 2

7. Proof of Theorem 1.4. For any Borel function f : [a; b]! IRd, we use

�fa;b to denote its occupation measure:

�fa;b(A) =

Z b

a

1A(ft) dt
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for all Borel sets A � IRd. We use the abbreviations �
f
T = �

f
0;T and ��

f
T = �

f
�T;T .

As a �rst step in proving Theorem 1.4, we rewrite things so that we deal

only with occupation measures of B(0; 1). Writing W �
t = ��1W�2t and W �;t

s =

W �
t+s �W �

t with similar notation for �W we have

�W1 (B(W�2t; �)) =

Z 1

0

1fjWs�W�2t
j��g ds = �2

Z 1=�2

0

1fjW
�2s

�W
�2t
j��g ds

= �2
Z 1=�2

0

1fjW �
s�W

�
t
j�1g ds = �2

Z 1=�2

0

1B(0;1)(W
�
s �W �

t ) ds

and consequently

Z 1

0

e��
W
1 (B(Wt;�))=�

2

dt = �2
Z 1=�2

0

e��
W
1 (B(W�2t;�))=�

2

dt

= �2
Z 1=�2

0

exp

 
�

Z 1=�2

0

1B(0;1)(W
�
s �W �

t ) ds

!
dt(7.1)

� �2
Z 1=�2

0

exp

�
�

Z 1

�1

1B(0;1)( �W
�
s � �W �

t ) ds

�
dt

= �2
Z 1=�2

0

exp

�
�

Z 1

�1

1B(0;1)( �W
�;t
s ) ds

�
dt

= �2
Z 1=�2

0

e���
�W�;t

1 (B(0;1)) dt:

Hence for each � < q2d=2 and any subsequence �m ! 0, in order to show that

lim sup
m!1

Z 1

0

e��
W
1 (B(Wt;�m))=�2m dt � IE

�
e���

�W
1

(B(0;1))
�

a:s:(7.2)

it su�ces to show that

lim
m!1

�2m

Z 1=�2m

0

e���
�W�m;t

1
(B(0;1)) dt = IE

�
e���

�W
1

(B(0;1))
�

a:s:(7.3)

For any 1 < p < 2 such that p� < q2d=2, (7.3) will follow with �m = m�2=(p�1)

from the Borel-Cantelli lemma,Chebyche�'s inequality and the following lemma.

For notational convienience be shall sometimes write �W (n�1; t) for �Wn�1;t.
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Lemma 7.1. For � < q2d=2, there exists c = cd;� �nite, such that for all n,

k 1

n2

Z n2

0

e���
�W(n�1;t)
1

(B(0;1)) dt� 1

n2

Z n2

0

e���
�W(n�1 ;t)
n (B(0;1)) dtk1 � cn�(d=2�1);

(7.4)

and for any 1 < p < 2 such that p� < q2d=2, there exists c = cp;d;� �nite, such that

for all n,

k 1

n2

Z n2

0

e���
�W (n�1 ;t)
n (B(0;1)) dt� IE

�
e���

�W
1

(B(0;1))
�
kp � cn�(1�1=p):(7.5)

Before proving this lemma we �rst use it to show that for any 1 < p < 2 such

that p� < q2d=2, and with �m = m�2=(p�1),

lim inf
m!1

Z 1

0

e��
W
1 (B(Wt;�m))=�2m dt � IE

�
e���

�W
1 (B(0;1))

�
a:s:(7.6)

Note that for any n � t � n2 � n

Z n2

0

1B(0;1)(W
n�1

s �Wn�1

t ) ds =

Z n2�t

�t

1B(0;1)( �W
n�1;t
s ) ds

�
Z n

�n

1B(0;1)( �W
n�1;t
s ) ds = ��

�W (n�1;t)
n (B(0; 1)) :

Hence from (7.1),

Z 1

0

e��
W
1 (B(Wt;n

�1))=n�2 dt

=
1

n2

Z n2

0

exp

 
�

Z n2

0

1B(0;1)(W
n�1

s �Wn�1

t ) ds

!
dt

� 1

n2

Z n2�n

n

e���
�W (n�1 ;t)
n (B(0;1)) dt :

(7.6) then follows by using Lemma 7.1 as before and noting that

k 1

n2

Z n2

0

e���
�W(n�1;t)
n (B(0;1)) dt� 1

n2

Z n2�n

n

e���
�W(n�1 ;t)
n (B(0;1)) dtk1

� k 1

n2

Z n

0

e���
�W (n�1;t)
n (B(0;1)) dtk1 + k 1

n2

Z n2

n2�n

e���
�W(n�1 ;t)
n (B(0;1)) dtk1
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� 1

n2

Z n

0

ke���
�W(n�1;t)
n (B(0;1))k1 dt+

1

n2

Z n2

n2�n

ke���
�W(n�1 ;t)
n (B(0;1))k1 dt

� 2n�1ke���
�W
1 (B(0;1))k1 :

Since �W1 (B(Wt; �)) is monotone in � and limm!1 �m+1=�m = 1, the proof of

Theorem 1.4 now follows from (7.2), (7.6) and a simple interpolation argument.

Proof of Lemma 7.1: (7.4) will follow from

k 1

n2

Z n2

0

e���
�W(n�1;t)
1

(B(0;1)) dt� 1

n2

Z n2

0

e���
�W(n�1 ;t)
n (B(0;1)) dtk1

� 1

n2

Z n2

0

ke���
�W(n�1;t)
1

(B(0;1)) � e���
�W(n�1;t)
n (B(0;1))k1 dt

and the following lemma.

Lemma 7.2. For any � < q2d=2, there exists c = cd;� �nite such that for any

� > 0,

ke���
�W
1 (B(0;1)) � e���

�W
1=�(B(0;1))k1 � c�d=2�1:

As for (7.5), we �rst rewrite

1

n2

Z n2

0

e���
�W (n�1;t)
n (B(0;1)) dt =

1

n

n�1X
k=0

1

n

Z (k+1)n

kn

e���
�W(n�1;t)
n (B(0;1)) dt

=
1

n

n�1X
k=0

In;k

where

In;k =
1

n

Z (k+1)n

kn

e���
�W(n�1;t)
n (B(0;1)) dt:

Unraveling the de�nitions we see that for each �xed n, the In;k ; 0 � k � n

are identically distributed, and In;k is measurable with respect to the �-algebra

generated by f �Wn�1

t+s � �Wn�1

t ; kn � t � (k+1)n ; �n � s � ng. Hence In;k; In;k0
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are independent as soon as jk � k0j � 3. Thus we can write

1

n

nX
k=0

In;k =
1

n

n=3X
k=0

In;3k +
1

n

n=3X
k=0

In;1+3k +
1

n

n=3X
k=0

In;2+3k

where each of the three sums on the right hand side is now a sum of i.i.d. random

variables. Furthermore

IE (In;k) =
1

n

Z (k+1)n

kn

IE

�
e���

�W (n�1;t)
n (B(0;1))

�
dt = IE

�
e���

�W
n (B(0;1))

�
:

Using Lemma 7.2, to complete the proof of Lemma 7.1 it now su�ces to note

that for any 1 < p < 2 such that p� < q2d=2 we have the following bounds, where

the �rst inequality comes from the Marcinkiewicz-Zygmund inequality (see for

example [25, Pg. 341], where our condition p� < q2d=2 guarantees that In;k 2 Lp),

and the second inequality comes from the fact that ja + bjp=2 � jajp=2 + jbjp=2

(since p < 2):

IE

0
@j 1

n=3

n=3X
k=0

(In;i+3k � IE (In;i+3k)) jp
1
A

� c

np
IE

0
@j n=3X

k=0

(In;i+3k � IE (In;i+3k))
2 jp=2

1
A � cn�(p�1)

for i = 0; 1; 2.

Proof of Lemma 7.2: Let pr(x) = (2�r)�d=2 exp(�jxj2=2r) and u0(x) =R1
0

pr(x)dr =
cd

jxjd�2
denote the zero-potential of Wt. Let �d denote the norm of

Kf(x) =

Z
B(0;1)

u0(x� y)f(y) dy

considered as an operator from L2 (B(0; 1); dx) to itself, recalling from [3] that

��1
d = q2d=2 is the �rst eigenvalue of (1=2)� in the unit ball of IRd�2 (not IRd!)

with Dirichlet boundary conditions. We claim that Kiu0 2 L2(B(0; 1); dx) for

su�ciently large i, (i = [d=2] will do). To see this, note that u0 2 L2(B(0; 1); d3x)

for d = 3, while for d = 4, by scaling, Ku0(x) � c
R
jx � yj�2jyj�2 d4y �
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c log(1=jxj) 2 L2(B(0; 1); d4x). When d > 4 we �rst note, again by scaling,

that
R
jx� yj�(d�2)jyj�k ddy � cjxj�(k�2) for any k > 2, and we can repeat this

argument until we �nd that Kju0(x) � cjyj�k with 1 � k � 2 for some j. Noting

that for such k we have jyj�k 2 L2(B(0; 1); ddx) completes the veri�cation of

our claim. It follows from this in particular, for some �d <1 and all i

Z
B(0;1)

Kiu0(x)dx � �d(�d)
i :(7.7)

Setting t0 = 0, x0 = 0, we �rst bound the following moments for m = 1; 2; : : :

1

m!
IE

 Z 1

1=�

1B(0;1)(Wr) drf
Z 1

0

1B(0;1)(Ws) dsgm�1

!

=
1

m

mX
i=1

Z
B(0;1)m

Z
0�t1�:::�tm<1

��1�ti

mY
j=1

ptj�tj�1 (xj � xj�1) dt1 � � � dtm dx1 � � � dxm

=
1

m

mX
i=1

Z
B(0;1)m

Z
��1�

P
i

j=1
rj

mY
j=1

prj (xj � xj�1) dr1 � � � drm dx1 � � � dxm

�
mX
i=1

Z
B(0;1)m

Z
(m�)�1�ri

mY
j=1

prj (xj � xj�1) dr1 � � � drm dx1 � � � dxm

=

mX
i=1

Z
B(0;1)m

mY
j=1

j 6=i

u0(xj � xj�1)

Z 1

(m�)�1
pri(xi � xi�1) dri dx1 � � � dxm

�
 Z 1

(m�)�1
pr(0) dr

!
mX
i=1

Z
B(0;1)m

mY
j=1

j 6=i

u0(xj � xj�1) dx1 � � � dxm

= kd(m�)d=2�1
h
(1;Km�11)B(0;1)

+

mX
i=2

� Z
B(0;1)

Ki�2u0(xi�1)dxi�1

�
(1;Km�i1)B(0;1)

i

� cd�
d=2�1md=2�m�1

d ;

where (�; �)B(0;1) denotes the inner product in L
2(B(0; 1); dx) and (7.7) was used

in the last inequality. With cd independent of m and gd;� = IE(e��
W
1 (B(0;1)))
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�nite, it follows that

ke���
�W
1

(B(0;1)) � e
���

�W
1=�

(B(0;1))k1

= IE
�
e���

�W
1

(B(0;1))
�
� IE

�
e���

�W
1=�

(B(0;1))
�

= fIE
�
e��

W
1 (B(0;1))

�
g2 � fIE

�
e
��W

1=�
(B(0;1))

�
g2

� 2gd;� jIE
�
e��

W
1 (B(0;1))

�
� IE

�
e��

W
1=�(B(0;1))

�
j

� 2gd;�� IE
�
j�W1 (B(0; 1))� �W1=� (B(0; 1)) je��

W
1 (B(0;1))

�

= 2gd;�

1X
m=0

�m+1

m!
IE

 Z 1

1=�

1B(0;1)(Wr) drf
Z 1

0

1B(0;1)(Ws) dsgm
!

� 2�gd;�cd�
d=2�1

1X
m=0

(m + 1)d=2+1(��d)
m � cd;��

d=2�1

for any � < ��1
d , as needed to complete the proof of Lemma 7.2 and hence of

Theorem 1.4. 2

8. Proof of Corollary 1.5. The lower bound in Corollary 1.5 is an im-

mediate consequence of (1.10) and Chebyche�'s inequality. Turning to the cor-

responding upper bound, �x a 2 (0; 2=��). Choosing � 2 (0; 1=4) such that

� = 2� a��(1 + 3�) > 0 and �n as in (5.2), leads (see (6.1)) to

lim sup
�!0

log Leb
n
0 � t � 1

��� z1(Wt; �) � a
o

log �
(8.1)

� lim sup
n!1

log Leb
n
0 � t � 1

��� z1(Wt; �n) � a
1��

o
log �n�1

:

Let W t
s = Wt+s � Wt, �n = �2nj log �nj6 and �n = 1 � 2j log �nj�2. The ran-

dom variables Y
(n)
i = �W

i�n

�n
(B(0; �n�n))=h(�n), i = 1; : : : ; ��1

n � 1 are i.i.d. The

Localization Lemma implies that for some c > 0 and all n large enough,

p�n := P(Y (n) � a=(1� �)) � c�a�
�(1+2�)

n :
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Thus, by standard tail estimates for the Binomial(��1
n � 1; p�n), for all n large

enough,

P(jfi : Y (n)
i � a=(1� �)gj � ���n ) � exp(����n ) ;

since (1� �)�1 � 1 + 2�. It follows that a.s., for all n � n0(!; �; a),

jfi : Y (n)

i � a=(1� �)gj � ���n :(8.2)

Taking �n = �2n=j log �nj6, by L�evy's uniform modulus of continuity, we have that

a.s. for some n1 = n1(!) <1 and all n � n1,

��1n �1
max
i=1

sup
jsj<�n

jWi�n+s �Wi�n j < (1� �n)�n ;

which together with (8.2) implies that a.s. for any n � n2(!; �; a),

Leb
n
0 � t � 1

��� z1(Wt; �n) � a=(1� �)
o
� �njfi : Y (n)

i � a=(1� �)gj � �2��+�n :

In view of (8.1), we have a.s.

lim sup
�!0

logLeb
n
0 � t � 1

��� z1(Wt; �) � a
o

log �
� (1� 2�)�1=2(2� � � �) :

To complete the proof consider � # 0, for which 2� � � � ! a��. 2

9. Large occupation measure at all scales.

Proof of Theorem 1.6: For k 2 (1;1); T < 1, let �k = fx : jxj 2 [1=k; k]g

and

Da := fx 2 �k

��� lim inf
�!0

�WT (B(x; �))

�2
� ag :

(We work with the annulus �k rather than the ball B(0; k) because the basic

bound we will use, Lemma 9.2, blows up at the origin).

Fix � > 0 and let b = 1+� > 1. Set �n = 2�n and �n = �1�b
�1

n for n = 1; 2; : : :.

Let fxj : j = 1; : : : ;Kng, Kn � c(�; k; d)��dn , denote a maximal collection of
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points in �k such that inf` 6=j jx`� xj j � ��n. Let Hn = Hn(a; �; T ) be the set of

j ; 1 � j � Kn, such that

inf
�2[�n ;�n]

�WT (B(xj ; b�))

�2
� a

b
:(9.1)

We will shortly prove that for any 
 > 0 we can �nd � > 0 such that for some

c = c(a; �; T ) <1 and all n,

IEjHnj � c�Id(a)�2�

n(9.2)

where Id(v) is de�ned in (1.12). Assuming this for the moment, let Un;j =

B(xj; ��n). Then, for any x 2 �k there exists j 2 f1; : : : ;Kng such that x 2 Un;j

and B(x; �) � B(xj ; �+ ��n) � B(xj ; b�) for all � � �n. If x 2 Da then a.s. for

some m1(!; x; b) <1 and all n � m1,

inf
�2[�n;�n ]

�WT (B(x; �))

�2
� a

b
:

Therefore, [n�m[j2Hn
Un;j forms a 2��m-cover of Da for any m � 1. Since Un;j

has diameter 2��n, it follows from (9.2) that

IE

1X
n=m

X
j2Hn

jUn;jj2�Id(a)+2
(9.3)

=

1X
n=m

IEjHnj(2��n)2�Id(a)+2
 � c2

1X
n=m

�
n <1:

Thus,
P1

n=m

P
j2Hn

jUn;jj2�Id(a)+2
 is �nite a.s. implying that dim(Da) � 2 �

Id(a) + 2
 a.s. for any T < 1, 
 > 0. Since a.s. there exists Tk = Tk(!) �nite,

such that jWtj � (k + 1) for any t � Tk, obviously a.s. also

dim(fx 2 �k

��� lim inf
�!0

�W1 (B(x; �))

�2
� ag) � 2� Id(a) + 2
 :

Taking 
 # 0 and considering the countable union over k = 1; 2 : : : completes the

proof of (1.14).
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To get our upper bound on packing dimension, denote by Dm(a=b) the set of

points x 2 IRd such that for all n � m, we have

inf
�2[�n;�n ]

�WT (B(x; �))

�2
� a

b
:

Clearly, [j2Hn
Un;j forms a 2��n-cover of D

m(a=b) for any n � m. Thus, from

(9.3)

lim
n!1

X
j2Hn

jUn;jj2�Id(a)+2
 = 0 a:s:(9.4)

Denote by N (A; �) the minimal cardinality of a collection of balls of radius

� that covers A. Recall that dimM(A), the upper Minkowski dimension of a

set A (also known as the upper box-counting dimension), may be de�ned by

dim
M
(A) = lim sup

�!0

logN (A; �)

j log �j ;(9.5)

see [8, (3.5)]. From (9.4) we may deduce that dim
M
(Dm(a=b)) � 2� Id(a) + 2
.

Since b > 1, necessarily

Da � [m�1D
m(a=b) ;(9.6)

and the upper bound dimP(Da) � 2 � Id(a) + 2
 a.s. follows by [8, Prop. 3.8].

This completes the proof of (1.15).

We next recall that Id(v) of (1.12) is strictly increasing in v � 2=(d � 2),

whereas Id(Cd) = 2. Hence, �xing a > Cd, we may and shall �x 
 > 0 such that

Id(a) � 2� 
 > 0. Then, by (9.2), for any � > 0 su�ciently small

1X
n=1

P(jHnj � 1) �
1X
n=1

IEjHnj � c1

1X
n=1

�Id(a)�2�

n <1:

Thus, by Borel-Cantelli, it follows that a.s. Hn is empty for all n � m2(!),

implying that the sets Da are a.s. empty for all T <1. Since a.s.

lim inf
�!0

�W1 (B(0; �))

�2
= 0
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(see [29, Theorem 6.8]), taking k " 1 and a # Cd completes the proof of (1.16)

and hence of Theorem 1.6, subject only to (9.2).

The �rst step in the proof of (9.2) is the following simple lemma (see [22] for

the de�nition and properties of Bessel processes).

Lemma 9.1. Let Z =
R T
0
U�2
s ds with fUs : s 2 [0; T ]g the Bessel process of

index d0 = d=2 � 1 > 0, starting at U0 = u 2 (0; k]. Then, for any � 2 (0; d0],

b > 1, there exist c = c(b; T; d0; k) <1 such that

IEu(d0)(e
(d02=2��2=2)Z

1infs2[0;T ] Us�v) � cv2�=bu�(d0��)�2�=b :(9.7)

Proof: Let P u
(�)

(�) denote the law of the Bessel process fUs : s 2 [0; T ]g of index

� > 0 starting at U0 = u. Recall that for any index � > 0,

dUs = (� + 1=2)
ds

Us
+ dBs ; U0 = u > 0 ;

where Bs is a one dimensional Brownian motion. In particular, dPu
(d0)=dP

u
(�)

exists for any d0 � � > 0 and is given by the Girsanov transformation as (see

[22, Pg. 419]),

dPu
(d0)

dPu
(�)

= (
UT

u
)d
0��e

�(d02=2��2=2)
R
T

0
U�2s ds

:

In particular, by H�older's inequality, for q = b=(b� 1),

IEu(d0)(e
(d02=2��2=2)Z

1infs2[0;T ] Us�v) = u��d
0

IEu(�)(U
d0��
T 1infs2[0;T ] Us�v)

� u��d
0

Pu
(�)(inf

s�0
Us � v)1=bIEu(�)(U

q(d0��)
T )1=q

� u��d
0

(
v

u
)2�=bIEk(�)(U

q(d0��)
T )1=q

where the last inequality follows using the fact that the Bessel process of index

� has scale function �x�2� [22, Pg. 415], and for the right-most expectation we
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used a simple comparison argument. A further comparison argument shows that

we can take c = IEk(d0)((1 _ UT )
qd0 )1=q <1. 2

The next step in proving (9.2) is to establish the following consequence of

Lemma 9.1.

Lemma 9.2. For any T <1, b > 1, k > 1, there exists c <1 such that for

any a > 0, � 2 (0; d0], � > 0, � = �1�b
�1

, jxj 2 (0; k],

P( inf
�2[�;�]

�WT (B(x; b�))

�2
� a

b
) � c�ab

�4(d02��2)+2�=bjxj�(d0��)�2�=b :(9.8)

Proof: Fix T; a; b; k; �; �; � and x as in the statement of the lemma. Observe

that Us = jWs � xj is a Bessel process of index d0, starting at U0 = jxj 2 (0; k].

Clearly

f�WT (B(x; v)) > 0g = f inf
s2[0;T ]

Us < vg(9.9)

Setting Z =
R T
0
U�2
s ds, also

b2Z =

Z T

0

Z 1

b�1Us

2d�

�3
ds =

Z T

0

Z 1

0

1fjWs�xj�b�g
2d�

�3
ds

=

Z 1

0

2d�

�3
�WT (B(x; b�)) �

Z �

�

2d�

�3
�WT (B(x; b�)) :(9.10)

If

inf
�2[�;�]

��2�WT (B(x; b�)) � a

b

then �WT (B(x; b�)) > 0 andZ �

�

2d�

�3
�WT (B(x; b�)) � a

b

Z �

�

2d�

�
= �2ab�2 log� :

Thus, for v = b� and � = (d02 � �2)=2 � 0, by (9.9), (9.10) and Chebyche�'s

inequality,

P( inf
�2[�;�]

�WT (B(x; b�))

�2
� a

b
) � P

jxj
(d0)

(Z � �2ab�4 log �; inf
s2[0;T ]

Us � v)
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� �2�ab
�4

IE
jxj

(d0)
[e�Z1infs2[0;T ] Us�v]

We thus obtain (9.8) by applying Lemma 9.1. 2

We now return to complete the proof of (9.2). For b > 1 and � 2 (0; d0] let

fa(b; �) = ab�4(d02 � �2) � d+ 2�=b :

By Lemma 9.2, for some c; c1; c2 <1 independent of n,

IEjHnj =
KnX
j=1

P( inf
�2[�n;�n]

�WT (B(xj ; b�))

�2
� a

b
)

� c�ab
�4(d02��2)+2�=b

n

KnX
j=1

jxjj�(d0��)�2�=b

� c1�
ab�4(d02��2)+2�=b�d
n (1 +

Z
fjxj�kg

jxj�(d0��)�2�=b dx)

� c2�
fa(b;�)
n ;(9.11)

using (d0 � �) + 2�=b < d0 + � � d� 1. inequality).

Setting � = d0� � for � 2 [0; d0), in which case d02��2 = �(d� 2� �), we see

that

fa(b; �) = ab�4�(d� 2� �) � d(1� b�1) � (2� + 2)=b:(9.12)

Observe that Id(a), de�ned in (1.12), can also be written as

(maxf0; a(d� 2)� 2g)2=4a ;

whence

Id(a) = sup
0��<(d�2)=2

fa�(d� 2� �) � 2�g ;(9.13)

and the supremum in (9.13) is attained at � = maxf0; (d�2)=2�a�1g. Comparing

this with (9.12) we see that

lim
b#1

sup
�2(0;d0]

fa(b; �) = Id(a) � 2(9.14)



Thick Points for Spatial Brownian Motion 47

which completes the proof of (9.2) and hence of Theorem 1.6. 2

Some unsolved problems:

1. Determine exactly the dimension appearing in (1.14) and the precise

asymptotics in (1.16).

2. Does the set considered in (1.14) have equal Hausdor� and packing dimen-

sions?

3. By arguments similar to those in the proof of (1.16), we can show that

there exist non-random constants ~cd > 0, ~Cd <1 such that

~cd � inf
t2[0;1]

lim sup
�!0

�W1 (B(Wt; �))

�2
� ~Cd a:s:(9.15)

More precisely, the upper bound here is proved just like the lower bound

in (1.16), while the lower bound can be inferred from Perkins [17] or from

a branching process argument. As in (1.16), it is an open problem to de-

termine the optimal constants in (9.15).
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