
��

�� Geometry of Regular Finitely Rami�ed Fractals�

In Section � I introduced the Sierpinski gasket� and gave a direct �hands on�
construction of a di�usion on it� Two properties of the SG played a crucial role	
its symmetry and scale invariance� and the fact that it is 
nitely rami
ed� In this
section we will introduce some classes of sets which preserve some of these properties�
and such that a similar construction has a chance of working� �It will not always do
so� as we will see��

There are two approaches to the construction of a family of well behaved regular

nitely rami
ed fractals� The 
rst� adopted by Lindstr
m �L��� and most of the
mathematical physics literature� is to look at fractal subsets of Rd obtained by
generalizations of the construction of the Cantor set� However when we come to
study processes on F the particular embedding of F in Rd plays only a small role�
and some quite natural sets �such as the �cut square� described below� have no
simple embedding� So one may also choose to adapt an abstract approach� de
ning
a collection of well behaved fractal metric spaces� This is the approach of Kigami
�Ki��� and is followed in much of the subsequent mathematical literature on general
fractal spaces� ��Abstract� fractals may also be de
ned as quotient spaces of product
spaces � see �Kus����

The question of embedding has lead to confusion between mathematicians and
physicists on at least one �celebrated� occasion� If G is a graph then the natural
metric on G for a mathematician is the standard graph distance d�x� y�� which gives
the length of the shortest path in G between x and y� Physicists call this the
chemical distance� However� physicists� thinking in terms of the graph G being a
model of a polymer� in which the individual strands are tangled up� are interested
in the Euclidean distance between x and y in some embedding of G in Rd� Since
they regard each path in G as being a random walk path in Zd� they generally use
the metric d��x� y� � d�x� y�����

In this section� after some initial remarks on self�similar sets in Rd� I will intro�
duce the largest class of regular 
nitely rami
ed fractals which have been studied in
detail� These are the pc�f�s�s� sets of Kigami �Ki��� and in what follows I will follow
the approach of �Ki�� quite closely�

De�nition ���� A map � 	 Rd � Rd is a similitude if there exists � � ��� �� such
that j��x� � ��y�j � �jx � yj for all x� y � Rd� We call � the contraction factor of
��

Let M � �� and let ��� � � � � �M be similitudes with contraction factors �i� For
A � Rd set

����� ��A� �
M�
i��

�i�A��

Let ��n� denote the n�fold composition of ��

De�nition ���� Let K be the set of non�empty compact subsets of Rd� For A � Rd

set ���A� � fx 	 jx � aj � � for some a � Ag� The Hausdor� metric d on K is
de
ned by

d�A�B� � inf f� � � 	 A � ���B� and B � ���A�g �



��

Lemma ���� �See �Fe� ��������	� �a	 d is a metric on K�
�b	 �K� d� is complete�
�c	 If KN � fK � K 	 K � B��� N�g then KN is compact in K�

Theorem ���� Let ���� � � � � �M � be as above� with �i � ��� �� for each � � i �M �
Then there exists a unique F � K such that F � ��F �� Further� if G � K then
�n�G� � F in d� If G � K satis
es ��G� � G then F � ��n����n��G��

Proof� Note that � 	 K � K� Set � � maxi �i � �� If Ai� Bi � K� � � i �M note
that

d��Mi��Ai��
M
i��Bi� � max

i
d�Ai� Bi��

�This is clear since if � � � and Bi � ���Ai� for each i� then �Bi � ����Ai��� Thus

d
�
��A����B�

�
� max

i
d
�
�i�A�� �i�B�

�
� max

i
�i d�A�B� � �d�A�B��

So � is a contraction on K� and therefore has a unique 
xed point� For the 
nal
assertion� note that if ��G� � G� then ��n��G� is decreasing� So �n��n��G� is
non�empty� and must equal F � �

Examples ���� The fractal sets described in Section � can all be de
ned as the

xed point of a map � of this kind�

�� The Sierpinski gasket� Let fa�� a�� a�g be the � corners of the unit triangle� and
set

����� �i�x� � ai � �
� �x� ai�� x � R�� � � i � ��

�� The Vicsek Set� Let fa�� � � � � a�g be the � corners of the unit square� let M � ��
let a	 � � �� �

�
� �� and let

����� �i�x� � ai � �
� �x� ai�� � � i � ��

It is possible to calculate the dimension of the limiting set F from ���� � � � � �M ��
However an �non�overlap� condition is necessary�

De�nition ���� ���� � � � � �M � satis
es the open set condition if there exists an open
set U such that �i�U�� � � i � M � are disjoint� and ��U� � U � Note that� since
��U� � U � then the 
xed point F of � satis
es F � ���n��U ��

For the Sierpinski gasket� if H is the convex hull of fa�� a�� a�g� then one can
take U � int�H��

Theorem ��	� Let ���� � � � � �M � satisfy the open set condition� and let F be the

xed point of �� Let 	 be the unique real such that

�����
MX
i��

��i � ��

Then dimH�F � � 	� and � � H��F � �	�

Proof� See �Fa�� p� �����
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Remark� If �i � �� � � i �M � then ����� simpli
es to M�� � �� so that

����� 	 �
logM

log���
�

We now wish to set up an abstract version of this� so that we can treat fractals
without necessarily needing to consider their embeddings in Rd� Let �F� d� be a
compact metric space� let I � IM � f�� � � � �Mg� and let

�i 	 F � F� � � i �M

be continuous injections� We wish the copies �i�F � to be strictly smaller than F �
and we therefore assume that there exists � � � such that

����� d
�
�i�x�� �i�y�

�
� ��� ��d�x� y�� x� y � F� i � IM �

De�nition ��
� �F��i� � � i �M� is a self�similar structure if �F� d� is a compact
metric space� �i are continuous injections satisfying ����� and

����� F �
M�
i��

�i�F ��

Let �F��i� � � i �M� be a self�similar structure� We can use iterations of the
maps �i to give the �address� of a point in F � Introduce the word spaces

W n � In� W � IN �

We endow W with the usual product topology� For w � W n � v in W n or W � let
w 
 v � �w�� � � � � wn� v�� � � ��� and de
ne the left shift 
 on W �or W n� by


w � �w�� � � ���

For w � �w�� ���� wn� � W n de
ne

����� �w � �w� � �w� � � � � � �wn �

It is clear from ����� that for each n � ��

F �
�

w�W n

�w�F ��

If a � �a�� � � � � aM � is a vector indexed by I� we write

����� aw �
nY
i��

awi � w � W n �

Write Aw � �w�A� for w � �nW n � A � F � If n � �� and w � W �or Wm with
m � n� write

������ wjn � �w�� � � � � wn� � W n �
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Lemma ���� For each w � W � there exists a xw � F such that

������
��
n��

�wjn�F � � fxwg�

Proof� Since �wj�n
���F � � �wjn
�
�wn���F �

�
� �wjn�F �� the sequence of sets in

������ is decreasing� As �i are continuous� �wjn�F � are compact� and therefore A �
�nFwjn is non�empty� But as diam�Fwjn� � �����ndiam�F �� we have diam�A� � ��
so that A consists of a single point� �

Lemma ����� There exists a unique map � 	 W � F such that

������ ��i 
 w� � �i
�
��w�

�
� w � W � i � I�

� is continuous and surjective�

Proof� De
ne ��w� � xw� where xw is de
ned by ������� Let w � W � Then for any
n�

��i 
 w� � F�i�w�jn � Fi��wjn��� � �i�Fwjn����

So ��i 
 w� � �m�i�Fm� � f�i�xw�g� proving ������� If �� also satis
es ������ then
���v 
w� � �v

�
���w�

�
for v � W n � w � W � n � �� Then ���w� � Fwjn for any n � ��

so �� � ��
To prove that � is surjective� let x � F � By ����� there exists w� � IM such

that x � Fw� � �w��F � � �Mw���Fw�w� � So there exists w� such that x � Fw�w� �
and continuing in this way we obtain a sequence w � �w�� w�� � � �� � W such that
x � Fwjn for each n� It follows that x � ��w��

Let U be open in F � and w � ����U�� Then Fwjn�U
c is a decreasing sequence

of compact sets with empty intersection� so there exists m with Fwjm � U � Hence
V � fv � W 	 vjm � wjmg � ����U�� and since V is open in W � ����U� is open�
Thus � is continuous� �

Remark ����� It is easy to see that ������ implies that

������ ��v 
 w� � �v
�
��w�

�
� v � W n � w � W �

Lemma ����� For x � F � n � � set

Nn�x� �
�
fFw 	 w � W n � x � Fwg�

Then fNn�x�� n � �g form a base of neighbourhoods of x�

Proof� Fix x and n� If v � W n and x �� Fv then� since Fv is compact� d�x� Fv� �
inffd�x� y� 	 y � Fvg � �� So� as W n is 
nite� d�x�Nn�x�c� � minfd�x� Fv� 	 x ��
Fv� v � W ng � �� So x � int�Nn�x��� Since diamFw � �����n diam�F � for w � W n

we have diamNn�x� � ��� � ��n diam�F �� So if U 
 x is open� Nn�x� � U for all
su�ciently large n� �

The de
nition of a self�similar structure does not contain any condition to
prevent overlaps between the sets �i�F �� i � IM � �One could even have �� � ��
for example�� For sets in Rd the open set condition prevents overlaps� but relies on
the existence of a space in which the fractal F is embedded� A general� abstract�
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non�overlap condition� in terms of dimension� is given in �KZ��� However� for 
nitely
rami
ed sets the situation is somewhat simpler�

For a self�similar structure S � �F��i� i � IM � set

B � B�S� �
�

i�j�i��j

Fi � Fj �

As one might expect� we will require B�S� to be 
nite� However� this on its own is
not su�cient	 we will require a stronger condition� in terms of the word space W �
Set

� � ���
�
B�S�

�
�

P �
��
n��


n����

De�nition ����� A self�similar structure �F��� is post critically �nite� or p�c�f�� if
P is 
nite� A metric space �F� d� is a p�c�f�s�s� set if there exists a p�c�f� self�similar
structure ��i� � � i �M� on F �

Remarks ����� �� As this de
nition is a little impenetrable� we will give several
examples below� The de
nition is due to Kigami �Ki��� who called � the critical set
of S� and P the post critical set�
�� The de
nition of a self�similar structure given here is slightly less general than
that given in �Ki��� Kigami did not impose the constraint ����� on the maps �i� but
made the existence and continuity of � an axiom�
�� The initial metric d on F does not play a major role� On the whole� we will work
with the natural structure of neighbourhoods of points provided by the self�similar
structure and the sets Fw� w � W n � n � ��

Examples ����� �� The Sierpinski gasket� Let a�� a�� a� be the corners of the unit
triangle in Rd� and let

�i�x� � ai � �
� �x� ai�� x � R�� � � i � ��

Write G for the Sierpinski gasket it is clear that �G���� ��� ��� is a self�similar
structure� Writing !s � �s� s� � � ��� we have

�� !s� � as� � � s � ��

So

B�S� �
�
�
� �a� � a��� �

� �a� � a��� �
� �a� � a��

�
�

� �
�

��!��� ��!��� ��!��� ��!��� ��!��� ��!��
�
�

and

P � 
��� �
�

� !��� � !��� � !��
�
�

�� The cut square� This is an example of a p�c�f�s�s� set which has no convenient
embedding in Euclidean space� �Though of course such an embedding can certainly
be found��

Start with the unit square C� � ��� ��� � Now make �cuts� along the line L� �
f� �� � y� 	 � � y � �

�g� and the � similar lines �L�� L�� L� say� obtained from L�
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by rotation� So the set C� consists of C�� but with the points in the line segment
� �� � y��� � �� � y��� viewed as distinct� for � � y � �

� � �And similarly for the � similar
sets obtained by rotation�� Alternatively� C� is the closure of A � C� � ��i��Li in
the geodesic metric dA de
ned in Section �� One now repeats this construction on
each of the � squares of side �

� which make up C� to obtain successively C�� C�� � � � 
the cut square C is the limit�

This is a p�c�f�s�s� set one has M � �� and if a�� � � � � a� are the � corners of
��� ��� � then the maps �i agree at all points with irrational coordinates with the
maps 
i�x� � ai � �

� �x� ai�� We have

B �
�

��� �� �� � �� �
�
� �� ��� �� �� � �� � ��� � �� � ��

�
� �

�
��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��

�
�

so that
P �

�
� !��� � !��� � !��� � !��

�
�

Note also that ���!�� � ���!��� and ���!�� � ���!�� � ���!�� � ���!�� � z� the centre
of the square�

In both the examples above we had P � f� !s�� s � IMg� and P � 
nP for
all n � �� However P can take a more complicated form if the sets �i�F �� �j�F �
overlap at points which are sited at di�erent relative positions in the two sets�

�� Sierpinski gasket with added triangle� �See �Kum���� We describe this set as
a subset of R�� Let fa�� a�� a�g be the corners of the unit triangle in R�� and let
�i�x� � �

� �x � ai� � ai� � � i � �� Let a� � �
� �a� � a� � a�� be the centre

of the triangle� and let ���x� � a� � �
� �x � a��� Of course ���� ��� ��� gives the

Sierpinski gasket� but � � ���� ��� ��� ��� still satis
es the open set condition� and
if F � F ��� is the 
xed point of � then �F���� � � � � ��� is a self�similar structure�
Writing b�� b�� b� for the mid�points of �a�� a��� �a�� a��� �a�� a�� respectively� and
ci � �

� �ai � bi�� � � i � �� we have

B � fb�� b�� b�� c�� c�� c�g�

����b�� � f��!��� ��!��g� while ����c�� � f���!��� ���!��� ��!��g� with similar expres�
sions for ����bj�� �

���cj�� j � �� �� So "��� � ��� and


��� �
�

� !��� � !��� � !��� ��!��� ��!��� ��!��� ��!��� ��!��� ��!��
�
�


���� � f� !��� � !��� � !��g�

Then P � 
��� consists of � points in W � and "���P �� � ��



��

Fig� ��� 	 Sierpinski gasket with added triangle�

�� �Rotated triangle�� Let ai� bi� �i� � � i � �� be as above� Let � � ��� ��� and
let p� � �b� � �� � ��b�� with p�� p� de
ned similarly� Evidently fp�� p�� p�g is an
equilateral triangle let �� be the similitude such that ���ai� � pi� Let F � F ���
be the 
xed point of �� If H is the convex hull of fa�� a�� a�g� then ��H� � H� so
clearly F is 
nitely rami
ed� and

B � fb�� b�� b�� p�� p�� p�g�

Fig� ��� 	 Rotated triangle with � � ����

As before� ����b�� � f��!��� ��!��g� Let y� � ���� �p�� then y� lies on the line
segment connecting a� and a�� If A � ����y�� then A consists of one or two points�
according to whether � is a dyadic rational or not� Let A � fv� wg� where v � w if
� �� D � Note that for each element u � A� we have� writing u � �u�� u�� � � ��� that
uk � f�� �g� k � �� Then ����p�� � f��!��� �� 
 v�� �� 
 w�g� If � 	 W � W is de
ned
by ��w� � w�� where w�i � wi � � �mod ��� and

An � f� !��� 
nv� 
nwg�

then 
n��� � An � ��An� � ���An��

�a� � � �
� gives Example � above�
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�b� If � is irrational� then P � �n��
n��� is in
nite� This example therefore shows
that the �p�c�f�� condition in De
nition ���� is strictly stronger than the requirement
that the set F be 
nitely rami
ed and self�similar�
�c� Let � � �

� � Then v � w � �!�!��� Therefore B consists of p� and b�� with their

rotations� and 
�L� consists of ��!��� �� !��� �� !��� ����!� !�� and their �rotations� by ��
Hence

P �
�

� !��� � !��� � !��� � !� !��� � !� !��� � !� !��� � !� !��� � !� !��� � !� !��
�
�

So � � �
� does give a p�c�f�s�s� set�

�d� In general� as is clear from the examples above� while F is 
nitely rami
ed for
any � � ��� ��� F is a p�c�f�s�s� set if and only if � � Q � ��� ���

Fig� ��� 	 Rotated triangle with � � ������

We now introduce some more notation�

De�nition ����� Let �F���� � � � � �M � be a p�c�f�s�s� set� Set for n � ��

P �n� � fw � W 	 
nw � Pg �

V �n� � ��P �n���

Any set of the form Fw� w � W n � we call an n�complex� and any set of the form

�w�V ���� � V
���
w we call a n�cell�

Lemma ���	� �a	 Let x � V �n�� Then x � �w�y�� where y � V ��� and w � W n �

�b	 V �n� � �w�W n
V
���
w �

Proof� �a� From the de
nition� x � ��w 
 v�� for w � W n � v � W � Then if y � ��v��
y � V ���� and by ������� x � ��w 
 v� � �w�y��

�b� Let x � V
���
w � Then x � �w

�
��v�

�
� where v � P � Hence x � ��w 
 v�� and since

w 
 v � P �n�� x � V �n�� The other inclusion follows from �a�� �



��

We think of V ��� as being the �boundary� of the set F � The set F consists of
the union of Mn n�complexes Fw �where w � W n�� which intersect only at their
boundary points�

Lemma ���
� �a	 If w� v � W n � w �� v� then Fw � Fv � V
���
w � V

���
v �

�b	 If n � �� ���
�
��P �n��

�
� ����V �n�� � P �n��

Proof� �a� Let n � �� v� w � W n � and x � Fw � Fv� So x � ��w 
 u� �� ��v 
 u�� for
u� u� � W � Suppose 
rst that w� �� v�� Then as Fw � Fw�

� we have x � Fw�
�Fv� �

B� So w 
 u� v 
 u� � �� and thus u � 
n��
�w 
 u� � P � Therefore ��u� � V ����

and x � �w
�
��u�

�
� V

���
w � If w� � v� then let k be the largest integer such that

wjk � vjk� Applying ���wjk we can then use the argument above�

�b� It is elementary that P �n� � ���
�
��P �n��

�
� Let n � � and w � ���

�
��P �

�
�

Then there exists v � P such that ��w� � ��v�� As v � P � v � 
m��� for some
m � �� Hence there exists u � Wm such that u 
 v � ����B�� However ��u 
 w� �
�u
�
��w�

�
� ��u 
 v� � B� and thus u 
 v � 
� Hence v � P �

If n � �� and ��w� � ��P �n�
�

� V �n�� then ��w� � V
���
v for some v � W n �

So ��w� � V
���
v � Fwjn � V

���
v � V

���
wjn by �a�� Therefore ��w� � V

���
wjn� and thus

��w� � �wjn
�
��v�

�
� where v � P � So ��w� � ��wjn 
 v�� and thus ��
nw� � ��v��

By the case n � � above 
nw � P � and hence w � P �n�� �

Remark ����� Note we used the fact that ��v 
w� � ��v 
w�� implies ��w� � ��w���
which follows from the fact that �v is injective�

Lemma ����� Let s � f�� � � � �Mg� Then �� !s� is in exactly one n�complex� for each
n � ��

Proof� Let n � �� and write xs � �� !s�� Plainly xs � Fs suppose xs � Fi where
i �� s� Then xs � �i

�
��w�

�
for some w � W � Since xs � �ks �xs� for any k � ��

xs � �ks
�
��i
w�

�
� ��sk 
i
w�� where sk � �s� s� � � � � s� � W k � Since xs � Fi�Fs � B�

����xs� � C� But therefore sk 
 i 
 w � C for each k � �� and since i �� s� C is
in
nite� a contradiction�

Now let n � �� and suppose xs � �� !s� � Fw� where w � W n and w �� sn� Let
� � k � n� � be such that w � sk 
 
kw� and wk
� �� s� Then applying ��ks to Fsk
we have that xs � F�kw � Fsn�k � which contradicts the case n � � above� �

Let �F���� � � � � �M � �� be a p�c�f�s�s� set� For x � F � let

mn�x� � " fw � W n 	 x � Fwg

be the n�multiplicity of x� that is the number of distinct n�complexes containing x�
Plainly� if x �� �nV

�n�� then mn�x� � � for all n� Note also that m��x� is increasing�

Proposition ����� For all x � F � n � ��

mn�x� �M"�P ��

Proof� Suppose x � Fw� � � � � � Fwk � where wi� � � i � k are distinct elements of
W n � Suppose 
rst that wi

� �� wj
� for some i �� j� Then x � B� and therefore there

exist v�� � � � � vk � W such that ��wl 
 vl� � x� � � l � k� Hence wl 
 vl � � for each
l� and so "��� � k� But "�P � �M��"���� and thus k �M"�P ��



��

If all the wl contain a common initial string v� then applying ���v we can use
the argument above� �

Nested Fractals and A�ne Nested fractals�

Nested fractals were introduced by Lindstr
m �L��� and a�ne nested fractals
�ANF� by �FHK�� These are of p�c�f�s�s� sets� but have two signi
cant additional
properties	

��� They are embedded in Euclidean space�
��� They have a large symmetry group�

I will 
rst present the de
nition of an ANF� and then relate it to that for
p�c�f�s�s� sets� Let ��� � � � � �M be similitudes in Rd� and let F be the associated
compact set� Writing �i also for the restrictions of �i to F � �F���� � � � � �M � is a self
similar structure� LetW � �� V ���� etc� be as above� For x� y � V ��� let gxy 	 Rd � Rd

be re#ection in the hyperplane which bisects the line segment connecting x and y�
As each �i is a contraction� it has a unique 
xed point� zi say� Let V � fz�� ���� zM g
be the set of 
xed points� Call x � V an essential �xed point if there exists y � V �

and i �� j such that �i�x� � �j�y�� Write V
���

for the set of essential 
xed points�
Set also

V
�n�

�
�

w�W n

V
���
�

De�nition ����� �F���� � � � � �M � is an a�ne nested fractal if ��� � � � � �M satisfy

the open set condition� "�V
���

� � �� and

�A�� �Connectivity� For any i� j there exists a sequence of ��cells V
���
i�

� � � � � V
���
ik

such that i� � i� ik � j and V
���
ir�� � V

���
ir �� � for � � r � k�

�A�� �Symmetry� For each x� y � V
���

� n � �� gxy maps n cells to n cells�
�A�� �Nesting� If w� v � W n and w �� v then

Fw � Fv � V
���

w � V
���

v �

In addition �F���� � � � � �M � is a nested fractal if the �i all have the same contraction
factor�

If �i has contraction factor �i� then by ����� dimH �F � � 	� where 	 solves

������
MX
i��

��i � ��

If �i � �� so that F is a nested fractal� then

������ dimH �F � �
logM

log�����
�

Following Lindstr
m we will call M the mass scale factor� and ��� the length scale
factor� of the nested fractal F �



��

Lemma ����� Let �F���� � � � � �M � be an a�ne nested fractal� Write zi for the

xed point of �i� Then zi �� Fj for any j �� i�

Proof� Suppose that z� � F�� Then by De
nition �����A�� F� � F� � V
���

� � V
���

� �

so z� � V
���

� � and z� � ���zi�� for some zi � V
���

� We cannot have i � �� as
���z�� � z� �� z�� Also� if i � � then �� would 
x both z� and z�� so could not be
a contraction� So let i � �� Therefore for any k � �� i � ��

z� � �k� � �� � �
i
��z�� � F�k ����i �

Write Dn � fw � W n 	 z� � Fwg	 by the above "�Dn� � n� Let U be the open set
given by the open set condition� Since F � U we have zi � U for each i� So z� � Uw

for each w � Dn� while the open set condition implies that the sets fUw� w � Dng
are disjoint� So z� is on the boundary of at least n disjoint open sets� If �as is
true for nested fractals� all these sets are congruent then a contradiction is almost
immediate�

For the general case of a�ne nested fractals we need to work a little harder to
obtain the same conclusion� Let a � � be such that

jB�zi� �� � U j � a for each i�

Let �i� � � i � M be the contraction factors of the �i� Recall the notation
�w � $n

i���wi � w � W n � Set � � minw�Dn
�w � and let 	 � mini �i� For each

w � Dn let w� � w 
 ����� be chosen so that 	� � �w� � �� Then z� � Fw� � Uw� �
for each w � Dn� and the sets fUw� � w � Dng are still disjoint� �Since ��U� � U we
have Uw� � Uw for each w � Dn��

Now if w � Dn then if j is such that z� � �w��zj�

jB�z�� �� � Uw� j � �dw� jB�zj � ���w�� � U j � �	��djB�zj � �� � U j � a�	��d�

So
cd�

d � jB�z�� ��j �
X
w�Dn

jB�z�� �� � Uw� j � na�	��d�

Choosing n large enough this gives a contradiction� �

Proposition ����� Let �F���� � � � � �M � be an a�ne nested fractal� Write zi for
the 
xed point of �i� Then �F���� � � � � �M � is a p�c�f�s�s� set� and

�a	 V
���

� V ����

�b	 P �
n

� !s� 	 zs � V
���
o
�

�c	 If z � V ��� then z is in exactly one n�complex for each n � ��
�d	 Each ��complex contains at most one element of V ����

Proof� It is clear that �F���� � � � � �M � is a self�similar structure� Relabelling the �i�

we can assume V
���

� fz�� � � � � zkg where � � k � M � We begin by calculating B�
� and P � It is clear from �A�� that

B �
�
s��t

�V
���

s � V
����

t �



��

Let w � �� Then ��w� � B� so �as ��w� � Fw�
� ��w� � V

���

w�
� and therefore

��
w� � V
���

� Say ��
w� � zs� where s � f�� ��� kg� Then since zs � Fw�
� by Lemma

���� we must have w� � s� So �s
�
��
�w�

�
� ��s 

�w� � ��
w� � zs� and therefore

��
�w� � zs� So w� � s� and repeating we deduce that 
w � � !s�� Therefore
f
w�w � �g � f� !s�� � � s � kg� This proves �b� as P is 
nite �F���� � � � � �M � is a

p�c�f�s�s� set� �a� is immediate� since ��P � � V ��� � f�� !s�g � V
���

�
�c� This is now immediate from �a�� �b� and Lemma �����
�d� Suppose Fi contains zs and zt� where s �� t� Then one of s� t is distinct from i �
suppose it is s� Then zs � Fs � Fi� which contradicts �c�� �

Remarks ����� �� Of the examples considered above� the SG is a nested fractal
and the SG with added triangle is an ANF� The cut square is not an ANF� since if it
were� the maps �i 	 Rd � Rd would preserve the plane containing its � corners� and
then the nesting axiom fails� The rotated triangle fails the symmetry axiom unless
� � ���� The Vicsek set de
ned in Section � is a nested fractal� but the Sierpinski
carpet fails the nesting axiom�

�� The simplest examples of p�c�f�s�s� sets� and nested fractals can be a little mis�
leading� Note the following points	
�a� Proposition �����c� fails for p�c�f�s�s� sets� See for example the SG with added
triangle� where V ��� contains the points fb�� b�� b�g as well as the corners fa�� a�� a�g�
and each of the points bi lies in � distinct ��cells�
�b� This example also shows that for a general p�c�f�s�s� set it is possible to have
F � V ��� disconnected even if F is connected�
�c� Let V

���
i and V

���
j be two distinct ��cells in a p�c�f�s�s� set� Then one can have

"
�
V
���
i � V

���
j

�
� �� �The cut square is an example of this�� For nested fractals� I

do not know whether it is true that

������ "�V
���
i � V

���
j � � � if i �� j�

In �FHK� Prop� ������� it is asserted that ������ holds for a�ne nested fractals�
quoting a result of J� Murai	 however� the result of Murai was proved under stronger
hypotheses� While much of the work on nested fractals has assumed that ������
holds� this di�culty is not a serious one� since only minor modi
cations to the
de
nitions and proofs in the literature are needed to handle the general case�

�� The symmetry hypothesis �A�� is very strong� We have

������ gxy 	 V ��� � V ��� for all x �� y� x� y � V ����

The question of which sets V ��� satisfy ������ leads one into questions concerning
re#ection groups in Rd� It is easy to see that V ��� satis
es ������ if V ��� is a regular
planar polygon� a d�dimensional tetrahedron or a d�dimensional simplex� �That is�
the set V ��� � fei��ei� � � i � dg � Rd� where ei � ���i� � � � � �di�� I have been
assured by two experts in this area that these are the only possibilities� and my web
page see �http���www�math�ubc�ca�� contains a letter from G� Maxwell with a
sketch of a proof of this fact�

Note that the cube in R� fails to satisfy �������



��

�� Note also that if F is a nested fractal in Rd� and V ��� � H where H is a k�
dimensional subspace� one does not necessarily have F � H� This is the case of the
Koch curve� for example� �See �L�� p� �����

Example ����� �Lindstr
m snow#ake�� This nested fractal is the �classical ex�
ample�� used in �L�� as an illustration of the axioms� It may be de
ned brie#y
as follows� Let zi� � � i � � be the vertices of a regular hexagon in R�� and let
z� � �

� �z� � � � � z�� be the centre� Set

�i�x� � zi � �
� �x� zi�� � � i � ��

It is easy to verify that this set satis
es the axioms �A����A�� above�

Fig� ���� Lindstr
m snow#ake�

Measures on p�c�f�s�s� sets�

The structure of these sets makes it easy to de
ne measures which have good
properties relative to the maps �i� We begin by considering measures on W � Let
� � ���� � � � � �M � satisfy

MX
i��

�i � �� � � �i � � for each i � IM �

Recall the notation �w �
Qn

i�� �wi for w � W n � We de
ne the measure %�� on W

to be the natural product measure associated with the vector �� More precisely� let
�n 	 W � IM be de
ned by �n�w� � wn then %�� is the measure which makes ��n�
i�i�d� random variables with distribution given by P��n � r� � �r� Note that for
any n � �� w � W n �

������ %�� �fv � W 	 vjn � wg� �
nY
i��

�wi �

De�nition ���	� Let B�F � be the 
�
eld of subsets of F generated by the sets
fFw� w � W n � n � �g� �By Lemma ���� this is the Borel 
�
eld�� For A � B�F �� set

��A� � %�
�
����A�

�
�



��

Then for w � W n

������ ���Fw� � %��
�
����Fw�

�
� %�� �fv 	 vjn � wg� � �w �

nY
i��

�wi �

In contexts when � is 
xed we will write � for ���

Remark� If �F���� � � � � �M � is a nested fractal� then the sets �i�F �� � � i � M
are congruent� and it is natural to take �i � M��� More generally� for an ANF� the
�natural� � is given by

�i � ��i �

where 	 is de
ned by ������

The following Lemma summarizes the self�similarity of � in terms of the space
L��F� ���

Lemma ���
� Let f � L��F� ��� Then for n � �

������

Z
F

f d� �
X
w�W n

�w

Z
�f � �w� d�� n � ��

Proof� It is su�cient to prove ������ in the case n � �	 the general case then follows
by iteration� Write G � F � V ���� Note that Gv �Gw � � if v� w � W n and v �� w�
As � is non�atomic we have ��Fw� � ��Gw� for any w � W n � Let f � �Gw for some
w � W n � Then f � �i � � if i �� w�� and f � �w� � �G�w � ThusZ

�f � �i� d� � ��G�w� � ���w�
��Gw� � ���w�

Z
fd��

proving ������ for this particular f � The equality then extends to L� by a standard
argument� �

We will also need related measures on the sets V �n�� Let N� � "V ���� Fix �
and set

������ �n�x� � N��
�

X
w�W n

�w�
V
���
w

�x�� x � V �n��

Lemma ����� �n is a probability measure on V �n� and

wlimn���n � ���

Proof� Since "V
���
w � N� we have

�n�V �n�� �
X

x�V �n�

N��
�

X
w�W n

�w�
V
���
w

�x� �
X
w�W n

�w � ��

proving the 
rst assertion�
We may regard �n as being derived from � by shifting the mass on each n�

complex Fw to the boundary V
���
w � with an equal amount of mass being moved to



��

each point� �So a point x � V
���
w obtains a contribution of �w from each n�complex

it belongs to�� So if f 	 F � R then

������

����Z
F

fd��

Z
F

fd�n

���� � max
w�W n

sup
x�y�Fw

jf�x�� f�y�j

It follows that �n
w
���� �

Symmetries of p�c�f�s�s� sets�

De�nition ����� Let G be a group of continuous bijections from F to F � We call
G a symmetry group of F if
��� g 	 V ��� � V ��� for all g � G�
��� For each i � I� g � G there exists j � I� g� � G such that

������ g � �i � �j � g
��

Note that if g� h satisfy ������ then

�g � h� � �i � g � �h � �i� � g � ��j � h
�� � �g � �j� � h

�

� ��k � g
�� � h� � �k � g

���

for some j� k � I� g�� h�� g�� � G� The calculation above also shows that if G� and
G� are symmetry groups then the group generated by G� and G� is also a symmetry
group� Write G�F � for the largest symmetry group of F � If G is a symmetry group�
and g � G write %g�i� for the unique element j � I such that ������ holds�

Lemma ����� Let g � G� Then for each n � �� w � W n � there exist v � W n �
g� � G such that g � �w � �v � g�� In particular g 	 V �n� � V �n��

Proof� The 
rst assertion is just ������ if n � �� If n � �� and the assertion holds
for all v � W n then if w � i 
 v � W n
� then

g � �w � g � �i � �v � �j � g
� � �v � �j � �v� � g

���

for j � I� g�� g�� � G� �

Proposition ����� Let �F���� � � � � �M � be an ANF� Let G� be the set of isometries
of Rd generated by re
ections in the hyperplanes bisecting the line segments �zi� zj ��
i �� j� zi� zj � V ���� Let G� be the group generated by G�� Then GR � fgjF 	 g � G�g
is a symmetry group of F �

Proof� If g � G� then g 	 V �n� � V �n� for each n and hence also g 	 F � F � Let

i � I	 by the symmetry axiom �A�� g�V
���
i � � V

���
j for some j � I� For each of

the possible forms of V ��� given in Remark �������� the symmetry group of V ��� is
generated by the re#ections in G�� So� there exists g� � G� such that g ��i � �j � g��
Thus ������ is veri
ed for each g � G�� and hence ������ holds for all g � G�� �

Remark ����� In �BK� the collection of �p�c�f� morphisms� of a p�c�f�s�s� set was
introduced� These are rather di�erent from the symmetries de
ned here since the
de
nition in �BK� involved �analytic� as well as �geometric� conditions�
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Connectivity Properties�

De�nition ����� Let F be a p�c�f�s�s� set� For n � �� de
ne a graph structure on

V �n� by taking fx� yg � En if x �� y� and x� y � V
���
w for some w � W n �

Proposition ����� Suppose that �V ����E�� is connected� Then �V �n��En� is con�
nected for each n � �� and F is pathwise connected�

Proof� Suppose that �V �n��En� is connected� where n � �� Let x� y � V �n
��� If

x� y � V
���
w for some w � W n � then� since �V ����E�� is connected� there exists a path

���w �x� � z�� z�� � � � � zk � ���w �y� in
�
V ����E�

�
connecting ���w �x� and ���w �y�� We

have zi��� zi � V
���
wi for some wi � W � � for each � � i � k� Then if z�i � �w�zi��

z�i��� z
�
i � Fwi�w and so fz�i��� zig � En
�� Thus x� y are connected by a path in

�V �n
���En
���
For general x� y � V �n
��� as �V �n��En� is connected there exists a path

y�� � � � � ym in �V �n��En� such that fyi��� yig � En and x� y�� and y� ym� lie in the
same n� ��cell� Then� by the above� the points x� y�� y�� � � � � ym� y can be connected
by chains of edges in En
��

To show that F is path�connected we actually construct a continuous path
� 	 ��� �� � F such that F � f��t�� t � ��� ��g� Let x�� � � � � xN be a path in �V ����E��
which is �space�
lling�� that is such that V ��� � fx�� � � � � xNg� De
ne ��i�N� � xi�

A� � fi�N� � � i � Ng� Now x�� x� � V
���
w � for some w � W � � Let x� �

y�� y�� � � � � ym � x� be in a space�
lling path in
�
V
���
w �E�

�
� De
ne ��k�Nm� � yk�

� � k � m� Continuing in this way we 
ll each of the sets V
���
w � w � W � � and so

can de
ne A� � ��� �� such that A� � A�� and ��t�� t � A� is a space 
lling path in
the graph �V ����E��� Repeating this construction we obtain an increasing sequence
�An� of 
nite sets such that ��t�� t � An is a space 
lling path in �V �n��En�� and
�nAn is dense in ��� ��� If t � An� and t� � t � t�� are such that �t�� t��� � An � ftg�
then ��s� is in the same n�complex as ��t� for s � �t�� t���� So� if t � ��� �� �A� and
sn� tn � An are chosen so that sn � t � tn� �sn� tn� �An � �� then the points ��u��
u � A � �s� t� all lie in the same n�complex� So de
ning ��t� � limn ��tn�� we have
that the limit exists� and � is continuous� The construction of � also gives that � is
space 
lling if w � W then for any n � � a section of the path� ��s�� an � s � bn�

s � An� 
lls V
���
wjn�

It follows immediately from the existence of � that F is pathwise connected� �

Remark� This proof returns to the roots of the subject � the original papers
of Sierpinski �Sie�� Sie�� regarded the Sierpinski gasket and Sierpinski carpet as
�curves��

Corollary ����� Any ANF is pathwise connected�

Remark ���	� If F is a p�c�f�s�s� set� and the graph �V ����E�� is not connected�
then it is easy to see that F is not connected�

For the case of ANFs� we wish to examine the structure of the graphs �V �n��En�
a little more closely� Let �F���� � � � � �M � be an ANF� Then let

a � min
n
jx� yj 	 x� y � V ���� x �� y

o
�



��

and set
E�� �

�
fx� yg � V ��� 	 jx� yj � a

�
�

E�n �
n
fx� yg � En 	 x � �w�x��� y � �w�y�� for some

w � W n � fx
�� y�g � E��

o
� n � ��

Proposition ���
� Let F be an ANF�
�a	 Let x� y�z � V ��� be distinct points� Then there exists a path in �V ����E���
connecting x and y and not containing z�
�b	 Let x� y � V ���� There exists a path in �V ����E��� connecting x� y which does
not contain any point in V ��� � fx� yg�
�c	 Let x� y� x�� y� � V ��� with jx� yj � jx�� y�j� Then there exists g � GR such that
g�x�� � x� g�y�� � y�

Proof� If "
�
V ���

�
� � then E� � E��� so �a� is vacuous and �b� is immediate from

Corollary ����� So suppose "
�
V ���

�
� ��

�a� Since �see Remark �������� V ��� is either a d�dimensional tetrahedron� or a d�
dimensional simplex� or a regular polygon� this is evident� �For a proof which does
not use this fact� see �L�� p� ��������
�b� This now follows from �a� by the same kind of argument as that given in Propo�
sition �����
�c� Write g�x� y� for the re#ection in the hyperplane bisecting the line segment �x� y��
Let g� � g�y� y��� and z � g��x��� Then if z � x we are done� Otherwise note that
jx� yj � jx�� y�j � jz� yj� so if g� � g�x� z� then g��y� � y� Hence g� � g� works� �

Metrics on Nested Fractals�

Nested fractals� and ANFs� are subsets of Rd� and so of course are metric spaces
with respect to the Euclidean metric� Also� p�c�f�s�s� sets have been assumed to be
metric spaces� However� these metrics do not necessarily have all properties we
would wish for� such as the mid�point property that was used in Section �� We saw
in Section � that the geodesic metric on the Sierpinski gasket was equivalent to the
Euclidean metric� but for a general nested fractal there may be no path of 
nite
length between distinct points� �It is easy to construct examples�� It is however�
still possible to construct a geodesic metric on a ANF�

For simplicity� we will just treat the case of nested fractals� Let �F� ��i�
M
i��� be

a nested fractal� with length scale factor L� Write dn�x� y� for the natural graph
distance in the graph �V �n��En�� Fix x�� y� � V ��� such that fx�� y�g � E��� and let
an � dn�x�� y��� and b� be the maximum distance between points in �V ����E����

Lemma ����� If x� y � V ��� then an � dn�x� y� � b�an�

Proof� Since x� y are connected by a path of length at most b� in �V ����E���� the
upper bound is evident� Fix x� y� and let k � dn�x� y�� If fx� yg � E�� then dn�x� y� �
dn�x�� y�� � an� so suppose fx� yg �� E��� Choose y� � V ��� such that fx� y�g � E���
let H be the hyperplane bisecting �y� y�� and let g be re#ection in H� Write A� A�

for the components of Rd � H containing y� y� respectively� As jx � y�j � jx � yj
we have x � A�� Let x � z�� z�� � � � � zk � y be the shortest path in �V �n��En�
connecting x and y� Let j � minfi 	 zi � Ag� and write z�i � zi if i � j� z�i � g�zi�
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if i � j� Then z�i� � � i � k is a path in �V �n��En� connecting x and y�� and so
dn�x� y� � k � dn�x� y�� � an� �

Lemma ����� Let x� y � V �n�� Then for m � �

������ amdn�x� y� � dn
m�x� y� � b�amdn�x� y��

In particular

������ anam � an
m � b�anam� n � �� m � ��

Proof� Let k � dn�x� y�� and let x � z�� z�� � � � � zk � y be a shortest path connecting
x and y in �V �n��En� � Then since by Lemma ���� dm�zi��� zi� � b�am� the upper
bound in ������ is clear�

For the lower bound� let r � dn
m�x� y�� and let �zi�
r
i�� be a shortest path in

�V �n
m��En
m� connecting x� y� Let � � i�� i�� � � � � is � r be successive disjoint hits
by this path on V �n�� �Recall the de
nition from Section �	 of course it makes sense
for a deterministic path as well as a process�� We have s � dn�x� y� � an� Then
since zij��� zij lie in the same n�cell� ij � ij�� � dm�zij��� zij � � am� by Lemma
����� So r �

Ps
j���ij � ij��� � anam� �

Corollary ����� There exists � � �L� b�a�� such that

������ b��� �n � an � �n�

Proof� Note that log�b�an� is a subadditive sequence� and that log an is superaddi�
tive� So by the general theory of these sequences there exist ��� �� such that

�� � lim
n��

n�� log�b�an� � inf
n��

n�� log�b�an��

�� � lim
n��

n�� log�an� � sup
n��

n�� log�an��

So �� � ��� and setting � � e�� � ������ follows�
To obtain bounds on � note 
rst that as an � b�a�an�� we have � � b�a��

Also�
jx� � y�j � anL

�njx� � y�j�

so � � L� �

De�nition ����� We call dc � log �� logL the chemical exponent of the fractal F �
and � the shortest path scaling factor�

Theorem ����� There exists a metric dF on F with the following properties�
�a	 There exists c� �	 such that for each n � �� w � W n �

������ dF �x� y� � c��
�n for x� y � Fw�

and

������ dF �x� y� � c��
�n for x � V �n�� y � Nn�x�c�

�b	 dF induces the same topology on F as the Euclidean metric�
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�c	 dF has the midpoint property�
�d	 The Hausdor� dimension of F with respect to the metric dF is

������ df �F � �
logM

log �
�

Proof� Write V � �nV
�n�� By Lemma ���� for x� y � V we have

������ b��� �mdn�x� y� � dn
m�x� y� � b��
mdn�x� y��

So ���mdn
m�x� y��m � �� is bounded above and below� By a diagonalization
argument we can therefore 
nd a subsequence nk �	 such that

dF �x� y� � lim
k��

��nkdnk�x� y� exists for each x� y � V�

So� if x� y � V
���
w where w � W n then

������ c��� ��n � dF �x� y� � c��
�n�

It is clear that dF is a metric on V �
Let n � � and y � V �n�� For m � n � �� n � �� � � � � � choose inductively

ym � V �m� such that ym is in the same m�cell as ym
�� ���� yn� Then

dm
��ym� ym
�� � maxfd��x�� y�� 	 x�� y� � V ���g � c �	�

So by ������ dn�ym� ym
�� � b��
n��m
��c� and therefore

d�yk� y� � c
�X
i�k

��i�� � c���k�

So if x� y � V are in the same k�cell� choosing xk in the same way we have

������ dF �x� y� � dF �x� xk� � dF �xk� yk� � dF �yk� y� � c��
k�

since dk�xk� yk� � b�� Thus dF is uniformly continuous on V � V � and so extends
by continuity to a metric dF on F � �a� is immediate from �������

If x� y � V �n� and x �� y then dF �x� y� � b��� ��n� This� together with �������
implies �b��

If x� y � V �n� then there exists z � V �n� such that

jdn�u� z�� �
�dn�x� y�j � �� u � x� y�

So the metrics dn have an approximate midpoint property	 �c� follows by an easy
limiting argument�

Let � be the measure on F associated with the vector � � �M��� ����M����
Thus ��Fw� � M�jwj for each w � W n � Since we have diamdF �Fw� � ��jwj� it
follows that� writing df � logM� log ��

c	r
df � ��BdF �x� r�� � c�r

df � x � F

and the conclusion then follows from Corollary ���� �
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Remark ����� The results here on the metric dF are not the best possible� The
construction here used a subsequence� and did not give a procedure for 
nding the
scale factor �� See �BS�� �Kum��� �FHK�� �Ki�� for more precise results�

�� Renormalization on Finitely Rami�ed Fractals�

Let �F���� � � � � �M � be a p�c�f�s�s� set� We wish to construct a sequence Y �n� of
random walks on the sets V �n�� nested in a similar fashion to the random walks on
the Sierpinski gasket considered in Section �� The example of the Vicsek set shows
that� in general� some calculation is necessary to 
nd such a sequence of walks� As
the random walks we treat will be symmetric� we will 
nd it convenient to use the
theory of Dirichlet forms� and ideas from electrical networks� in our proofs�

Fix a p�c�f�s�s� set
�
F� ��i�

M
i��

�
� and a Bernouilli measure � � �� on F � where

each �i � �� We also choose a vector r � �r�� � � � � rM � of positive �weights�	 loosely
speaking ri is the size of the set �i�F � � Fi� for � � i �M � We call r a resistance
vector�

De�nition ���� Let D be the set of Dirichlet forms E de
ned on C
�
V ���

�
� From Sec�

tion � we have that each element E � D is of the form EA� where A is a conductance
matrix� Let also D � be the set of Dirichlet forms on C

�
V ���

�
�

We consider two operations on D 	

��� Replication � i�e� extension of E � D to a Dirichlet form ER � D � �

��� Decimation&Restriction&Trace� Reduction of a form E � D � to a form eE � D �

Note� In Section �� we de
ned a Dirichlet form �E �D� with domain D � L��F� ���
But for a 
nite set F � as long as � charges every point in the set it plays no role
in the de
nition of E � We therefore will 
nd it more convenient to de
ne E on
C�F � � ff 	 F � Rg�

De�nition ���� Given E � D � de
ne for f� g � C
�
V ���

�
�

����� ER�f� g� �
MX
i��

r��i E�f � �i� g � �i��

�Note that as �i 	 V ��� � V ���� f � �i � C
�
V ���

�
�� De
ne R 	 D � D � by

R�E� � ER�

Lemma ���� Let E � EA� and let

����� aRxy �
MX
i��

��
x�V

���
i

���
y�V

���
i

�r��i a���
i

�x�����
i

�y��

Then

����� ER�f� g� � �
�

P
x�y

aRxy
�
f�x�� f�y�

��
g�x�� g�y�

�
�
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AR � �aRxy� is a conductance matrix� and ER is the associated Dirichlet form�

Proof� As the maps �i are injective� it is clear that aRxy � � if x �� y� and aRxx � ��

Also aRxy � aRyx is immediate from the symmetry of A� Writing xi � ���i �x� we haveX
y�V ���

aRxy �
X
i

r��i �
V
���
i

�x�
X

y�V ���

�
V
���
i

�y�a���
i

�x�����
i

�y�

�
X
i

r��i �
V
���
i

�x�
X

y�V
���
i

ax�y � ��

so AR is a conductance matrix�
To verify ������ it is su�cient by linearity to consider the case f � g � �z�

z � V ���� Let B � fi � W � 	 z � V
���
i g� If i �� B� then f � �i�x� � �� since �i�x�

cannot equal z� If i � B� then f � �i�x� � �zi�x�� where zi � ���i �z�� So�

E�f � �i� f � �i� � E��zi � �zi� � �azizi �

Thus

ER�f� f� � �
X
i�B

r��i azizi � �
MX
i��

r��i �
V
���
i

�z�a���
i

�z�����
i

�z� � �aRzz�

while
�
�

P
x�y

aRxy
�
f�x�� f�y�

��
� �fTARf � �aRzz�

So ����� is veri
ed� �

The most intuitive explanation of the replication operation is in terms of elec�
trical networks� Think of V ��� as an electric network� Take M copies of V ���� and
rescale the ith one by multiplying the conductance of each wire by r��i � �This ex�
plains why we called r a resistance vector�� Now assemble these to form a network

with nodes V ���� using the ith network to connect the nodes in V
���
i � Then ER is

the Dirichlet form corresponding to the network V ����
As we saw in the previous section� for x� y � V ��� there may in general be

more than one ��cell which contains both x and y	 this is why the sum in ����� is
necessary� If x and y are connected by k wires� with conductivities c�� � � � � ck then
this is equivalent to connection by one wire of conductance c� � � � � � ck�

Remark ���� The replication of conductivities de
ned here is not the same as the
replication of transition probabilities discussed in Section �� To see the di�erence�
consider again the Sierpinski gasket� Let V ��� � fz�� z�� z�g� and y� be the mid�
point of �z�� z��� and de
ne y�� y� similarly� Let A be a conductance matrix on
V ���� and write aij � azizj � Take r� � r� � r� � �� While the continuous time

Markov Chains X���� X��� associated with EA and ERA will depend on the choice of
a measure on V ��� and V ���� their discrete time skeletons that is� the processes X�i�
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sampled at their successive jump times do not � see Example ����� Write Y �i� for
these processes� We have

Py�
�
Y
���
� � fz�� y�g

	
�

a�� � a��
�a�� � a�� � a��

�

On the other hand� if we replicate probabilities as in Section ��

Py�
�
Y
���
� � fz�� y�g

	
� Py�

�
Y
���
� � fz�� y�g

	
� �

�  

in general these expressions are di�erent� So� even when we con
ne ourselves to
symmetric Markov Chains� replication of conductivities and transition probabilities
give rise to di�erent processes�

Since the two replication operations are distinct� it is not surprising that the
dynamical systems associated with the two operations should have di�erent be�
haviours� In fact� the simple symmetric random walk on V ��� is stable 
xed point
if we replicate conductivities� but an unstable one if we replicate transition proba�
bilities�

The second operation on Dirichlet forms� that of restriction or trace� has already
been discussed in Section ��

De�nition ���� For E � D � let

����� T �E� � Tr�EjV �����

De
ne ' 	 D � D by '�E� � T
�
R�E�

�
� Note that ' is homogeneous in the sense

that if � � ��
'��E� � �'�E��

Example ���� �The Sierpinski gasket�� Let A be the conductance matrix corre�
sponding to the simple random walk on V ���� so that

axy � �� x �� y� axx � ���

Then AR is the network obtained by joining together � symmetric triangular net�
works� If '�EA� � EB � then B is the conductance matrix such that the networks
�V ���� AR� and �V ���� B� are electrically equivalent on V ���� The simplest way to
calculate B is by the (�Y transform� Replacing each of the triangles by an �upside
down� Y � we see from Example ���� that the branches in the Y each have conduc�
tance �� Thus �V ���� AR� is equivalent to a network consisting of a central triangle of
wires of conductance ���� and branches of conductance �� Applying the transform
again� the central triangle is equivalent to a Y with branches of conductance ����
Thus the whole network is equivalent to a Y with branches of conductance ���� or
a triangle with sides of conductance ����

Thus we deduce

'�EA� � EB � where B � �
	A�
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The example above suggests that to 
nd a decimation invariant random walk
we need to 
nd a Dirichlet form E � D such that for some � � �

����� '�E� � �E �

Thus we wish to 
nd an eigenvector for the map ' on D � Since however �as we will
see shortly� ' is non�linear� this 
nal formulation is not particularly useful� Two
questions immediately arise	 does there always exist a non�zero �E � �� satisfying
����� and if so� is this solution �up to constant multiples� unique) We will abuse
terminology slightly� and refer to an E � D such that ����� holds as a �xed point of
'� �In fact it is a 
xed point of ' de
ned on a quotient space of D��

Example ��	� ��abc gaskets� � see �HHW����

Let m�� m�� m� be integers with mi � �� Let z�� z�� z� be the corners of the unit
triangle in R�� H be the closed convex hull of fz�� z�� z�g� Let M � m� �m� �m��
and let �i� � � i �M be similitudes such that �writing for convenience �M
j � �j �
� � j � M� Hi � �i�H� � H� and the M triangles Hi are arranged round the
edge of H� such that each triangle Hi touches only Hi�� and Hi
�� �H� touches
HM and H� only�� In addition� let z� � H�� z� � Hm�
�� z� � Hm�
m�
�� So there
are m� � � triangles along the edge �z�� z��� and m� � �� m� � � respectively along
�z�� z��� �z�� z��� We assume that �i are rotation�free� Note that the triangles H�

and HM do not touch� unless m� � m� � m� � ��
Let F be the fractal obtained by Theorem ��� from ���� � � � � �M �� To avoid

unnecessarily complicated notation we write �i for both �i and �ijF �

Figure ���	 abc gasket with m� � �� m� � �� m� � ��

It is easy to check that �F���� � � � � �M � is a p�c�f�s�s� set� Write r � �� s � m����
t � m� � m� � �� We have ��i !s� � �

�
�i � �� !r

�
for � � i � m�� ��i !t� � �

�
�i � �� !s

�
for m� � � � i � m� � m�� ��i !r� � �

�
�i � �� !t

�
for m� � m� � � � i �M � �� and

��M !r� � ��� !t�� The set B � ��Hi �Hj� consists of these points� Hence

P � f� !r�� � !s�� � !t�g� V ��� � fz�� z�� z�g�
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While it is easier to de
ne F in R�� rather than abstractly� doing so has the
misleading consequence that it forces the triangles Hi to be of di�erent sizes� How�
ever� we will view F as an abstract metric space in which all the triangles Hi are of
equal size� and so we will take ri � � for � � i �M �

We now study the renormalization map '� If E � EA � D � then A is speci
ed
by the conductivities

�� � az��z� � �� � az��z� � �� � az��z� �

Let f 	 R� � R� be the renormalization map acting on ���� ��� ���� �So if A � A���
then '�E� � E

A
�
f���

���
It is easier to compute the action of the renormalization map on the variables 	i

given by the ��Y � transform� So let 
 	 ���	�� � ���	�� be the ��Y map given
in Example ����� Note that 
 is bijective� Let 	 � 
��� be the Y�conductivities�

and write e	 � �e	�� e	�� e	�� for the renormalized Y�conductivities	 then e	 � 
�f�����
Applying the � � Y transform on each of the small triangles� we obtain a

network with nodes z�� z�� z�� y�� y�� y�� where fzi� yig has conductivity 	i� and if
i �� j fyi� yjg has conductivity 	i� and if i �� j� fyi� yig has conductivity

�k �
	i	j

�	i � 	j�mk
�

where k � k�i� j� is such that k � f�� �� �g � fi� jg�
Apply the �� Y transform again to fy�� y�� y�g� to obtain a Y � with conduc�

tivities ��� ��� ��� in the branches where

�i�i � S � �� �� � �� �� � ����� � � i � ��

Then

����� e	��� � 	��� � ���� � 	��� � �� ��
���
���m� S

�

Suppose that � � ���	�� is such that 
��� � �� for some � � �� Then since


���� � � 
��� for any � � �� we deduce that e	 � 
�f���� � �	� So� from ������

���	��� � 	��� � �� ��
���
���m�S

�

which implies that ��� � �� Writing T � 	�	�	��S� and � � T��� � ����� we
therefore have

m��	� � 	�� � ��

and �as S� T are symmetric in the 	i� we also obtain two similar equations� Hence

����� 	� � 	� � ��m�� 	� � 	� � ��m�� 	� � 	� � ��m��

which has solution

����� �	� � ��m��
� �m��

� �m��
� �� etc�
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Since� however we need the 	i � �� we deduce that a solution to the conductivity
renormalization problem exists only if m��

i satisfy the triangle condition� that is
that

������ m��
� �m��

� � m��
� � m��

� � m��
� � m��

� � m��
� �m��

� � m��
� �

If ������ is satis
ed� then ����� gives 	i such that the associated � � 
���	� does
satisfy the eigenvalue problem�

In the discussion above we looked for strictly positive � such that 
��� � ���
Now suppose that just one of the �i� �� say� equals �� Then while z� and z� are only
connected via z� in the network V ��� they are connected via an additional path in
the network V ���� So� 
���� � �� and � cannot be a 
xed point� If now �� � �� and
�� � �� � � then we obtain 
���� � 
���� � �� So � � ��� �� �� satis
es 
��� � ��
for some � � �� Similarly ��� �� �� and ��� �� �� are also 
xed points� Note that in
these cases the network �V ���� A���� is not connected�

The example of the abc gaskets shows that� even if 
xed points exist� they
may correspond to a reducible �ie non�irreducible� E � D � The random walks �and
limiting di�usion� corresponding to such a 
xed point will be restricted to part of
the fractal F � We therefore wish to 
nd a non�degenerate �xed point of ������ that
is an EA � D such that the network �V ���� A� is connected�

De�nition ��
� Let D i be the set of E � D � such that E is irreducible � that is
the network �V ���� A� is connected� Call E � D strongly irreducible if E � EA and
axy � � for all x �� y� Write D si for the set of strongly irreducible Dirichlet forms
on V ����

The existence problem therefore takes the form	

Problem ���� �Existence�� Let �F���� ���� �M � be a p�c�f�s�s� set and let ri � ��
Does there exist E � D i � � � �� such that

����� '�E� � �E)

Before we pose the uniqueness question� we need to consider the role of symmetry�
Let �F� ��i�� be a p�c�f�s�s� set� and let H be a symmetry group of F �

De�nition ����� E � D is H�invariant if for each h � H

E�f � h� g � h� � E�f� g�� f� g � C�V �����

r is H�invariant if r
h�i� � ri for all h � H� �Here %h is the bijection on I associated

with h��

Lemma ����� �a	 Let E � EA� Then E is H�invariant if and only if�

������ ah�x�h�y� � axy for all x� y � V ���� h � H�

�b	 Let E and r be H�invariant� Then 'E is H�invariant�

Proof� �a� This is evident from the equation E��x� �y� � �axy�
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�b� Let f � C�V ����� Then if h � H�

ER�f � h� f � h� �
X
i

r��i E�f � h � �i� f � h � �i�

�
X

r��i E�f � �
h�i� � h� f � �
h�i� � h� �

�
X

r��
h�i�
E�f � �
h�i�� f � �
h�i�� � ER�f� f��

If g � C�V ���� then writing eE � '�E�� if f jV ��� � g then as f � hjV ��� � g � h�

eE�g � h� g � h� � ER�f � h� f � h� � ER�f� f��

and taking the in
mum over f � we deduce that for any h � H� eE�g�h� g�h� � eE�g� g��
Replacing g by g � h and h by h�� we see that equality must hold� �

If the fractal F has a non�trivial symmetry group G�F � then it is natural to
restrict our attention to G�F ��symmetric di�usions� We can now pose the uniqueness
problem�

Problem ����� �Uniqueness�� Let �F� ��i�� be a p�c�f�s�s� set� let H be a symmetry
group of F � and let r be H�invariant� Is there at most one H�invariant E � D i such
that '�E� � �E)

�Unless otherwise indicated� when I refer to 
xed points for nested fractals�
I will assume they are invariant under the symmetry group GR generated by the
re#ections in hyperplanes bisecting the lines �x� y�� x� y � V �����

The following example shows that uniqueness does not hold in general�

Example ����� �Vicsek sets � see �Me���� Let �F��i� � � i � �� be the Vicsek set
� see Section �� Write fz�� z�� z�� z��g for the � corners of the unit square in R�� For
�� 	� � � � let A��� 	� �� be the conductance matrix given by

a�� � a�� � a�� � a�� � �� ��� � 	� a�� � ��

where aij � azi zj � If H is the group on F generated by re#ections in the lines �z�� z��

and �z�� z�� then A is clearly H�invariant� De
ne %�� %	� %� by

'�EA� � E
A�e�� e�� e	��

Then several minutes calculation with equivalent networks shows that

e� �
��� � 	���� ��

��� � ��	 � ��� � 	�
�������

e	 � �
� �� � 	�� e��e� � �
� �� � ��� e��

If ��� 	� �� is a 
xed point then �e�� e	� e�� � ��� �	� ��� for some � � �� so thate	 � e�	� e� � e��� So e� � �
� � and this implies that 	� � �� We therefore have that

��� 	� 	��� is a 
xed point �with � � �
� � for any 	 � ���	� Thus for the group H

uniqueness does not hold�
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However if we replace H by the group GR � G�F �� generated by all the sym�
metries of the square then for EA to be GR�invariant we have to have 	 � �� So in
this case we obtain

e���� 	� �
��� � 	��

��� � ��	 � 	�
�������

e	��� 	� � �
� �� � 	�� e��

This has 
xed points ��� 	�� 	 � �� and ��� ��� � � �� The 
rst are degenerate� the
second not� so in this case� as we already saw in Section �� uniqueness does hold for
Problem �����

This example also shows that ' is in general non�linear�

As these examples suggest� the general problem of existence and uniqueness is
quite hard� For all but the simplest fractals� explicit calculation of the renormaliza�
tion map ' is too lengthy to be possible without computer assistance � at least for
��th century mathematicians� Lindstr
m �L�� proved the existence of a 
xed point
E � D si for nested fractals� but did not treat the question of uniqueness� After
the appearance of �L��� the uniqueness of a 
xed point for Lindstr
m�s canonical
example� the snow#ake �Example ����� remained open for a few years� until Green
�Gre� and Yokai �Yo� proved uniqueness by computer calculations�

The following analytic approach to the uniqueness problem� using the theory
of quadratic forms� has been developed by Metz and Sabot � see �Me��Me�� Sab��
Sab��� Let M 
 be set of symmetric bilinear forms Q�f� g� on C�V ���� which satisfy

Q��� �� � ��

Q�f� f� � � for all f � C�V �����

For Q�� Q� � M 
 we write Q� � Q�� if Q� � Q� � M 
 or equivalently if
Q��f� f� � Q��f� f� for all f � C�V ����� Then D � M 
  it turns out that we need
to consider the action of ' on M 
 � and not just on D � For Q � M 
 � the replication
operation is de
ned exactly as in �����

������ QR�f� g� �
MX
i��

r��i Q�f � �i� g � �i�� f� g � C�V �����

The decimation operation is also easy to extend to M 
 	

T �QR��g� g� � inffQR�f� f� 	 f � C�V ����� f jV ��� � gg 

we can write T �QR� in matrix terms as in ������� We set '�Q� � T �QR��

Lemma ����� The map ' on M 
 satis
es�
�a	 ' 	 M 
 � M 
 � and is continuous on int�M 
��
�b	 '�Q� �Q�� � '�Q�� � '�Q���
�c	 '��Q� � �'�Q�

Proof� �a� is clear from the formulation of the trace operation in matrix terms�
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Since the replication operation is linear� we clearly have QR � QR
� � QR

� �
��Q�R � �QR� �c� is therefore evident� while for �b�� if g � C�V �����

T �QR��g� g� � inffQR
� �f� f� � QR

� �f� f� 	 f jV ��� � gg

� inf fQR
� �f� f� 	 f jV ��� � gg� inf fQR

� �f� f� 	 f jV ��� � gg

� T �QR
� ��g� g� � T �QR

� ��g� g�� �

Note that for E � D i � we have E�f� f� � � if only if f is constant�

De�nition ����� For E�� E� � D i set

m�E��E�� � sup f� � � E� � �E� � M 
g�

� inff
E��f� f�

E��f� f�
	 f non constantg�

Similarly let

M�E��E�� � sup f
E��f� f�

E��f� f�
	 f non constantg�

Note that

������ M�E��E�� � m�E��E�����

Lemma ����� �a	 For E�� E� � D i � � � m�E�� E�� �	 �
�b	 If E�� E� � D i i then m�E��E�� � M�E��E�� if and only if E� � �E� for some
� � ��
�c	 If E�� E�� E� � D

i then

m�E��E�� � m�E��E��m�E��E���

M�E��E�� �M�E��E��M�E��E���

Proof� �a� This follows from the fact that Ei are irreducible� and so vanish only on
the subspace of constant functions�
�b� is immediate from the de
nition of m and M �
�c� We have

m�E��E�� � inf
f

E��f� f�

E��f� f�

E��f� f�

E��f� f�
� m�E��E��m�E��E�� 

while the second assertion is immediate from ������� �

De�nition ���	� De
ne

dH�E�� E�� � log
M�E�E��

m�E� E��
� E�� E� � D

i �

Let p D i be the projective space D i� �� where E� � E� if E� � �E�� dH is called
Hilbert�s projective metric � see �Nus�� �Me���
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Proposition ���
� �a	 dH�E�� E�� � � if and only if E� � �E� for some � � ��
�b	 dH is a pseudo�metric on D i � and a metric on p D i �
�c	 If E � E�� E� � D i then for ��� �� � ��

dH�E � �� E� � ��E�� � max�dH�E � E��� dH�E � E����

In particular open balls in dH are convex�
�d	 �p D i � dH � is complete�

Proof� �a� is evident from Lemma �����b�� To prove �b� note that dH�E�� E�� � ��
and that dH�E�� E�� � dH�E�� E�� from ������� The triangle inequality is immediate
from Lemma �����c�� So dH is a pseudo metric on D i �

To see that dH is a metric on p D i � note that

m��E��E�� � �m�E��E��� � � ��

from which it follows that dH��E�� E�� � dH�E�� E�� and thus dH is well de
ned on
p D i � The remaining properties are now immediate from those of dH on D i �
�c� Replacing E� by

�
m�E��E���m�E�E��

�
E� we can suppose that

m�E�E�� � m�E �E�� � m�

Write Mi � M�E�Ei�� Then if F � �� E� � ��E��

M�E�F� � inf
f

��E��f� f� � ��E��f� f�

E�f� f�

� ��m�E�E�� � ��m�E�E�� � �� � �� �

Similarly M�E�F� � ��M� � ��M�� Therefore

expdH�E �F� � ������� � �����M��m� � ������� � �����M��m�

� max �M��m�M��m��

It is immediate that if Ei � B�E � r� then dH�E � �E� � �� � ��E�� � r� so that
B�E � r� is convex� For �d� see �Nus� Thm� ����� �

Theorem ����� Let E�� E� � D
i � Then

������ m�'�E���'�E��� � m�E�� E���

������ M�'�E���'�E��� �M�E�� E���

In particular ' is non�expansive in dH 	

������ dH�'�E���'�E��� � dH�E�� E���

Proof� Suppose � � m�E�� E��� Then Q � E� � � E� � M 
 � and Q�f� f� � �� for all
non�constant f � C�V ����� So by Lemma ����

'�E�� � '�Q� �E�� � '�Q� � �'�E���
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and since '�Q� � �� this implies that '�E����'�E�� � �� So � � m�'�E���'�E����
and thus m�E�� E�� � m�'�E���'�E���� proving ������� ������ and ������ then follow
immediately from ������� and the de
nition of dH � �

A strict inequality in ������ would imply the uniqueness of 
xed points� Thus
the example of the Vicsek set above shows that strict inequality cannot hold in
general� So this Theorem gives us much less than we might hope� Nevertheless� we
can obtain some useful information�

Corollary ����� �See �HHW�� Cor� ����	 Suppose E�� E� are 
xed points satisfying
'�Ei� � �iEi� i � �� �� Then �� � ���

Proof� From ������

m�E��E�� � m
�
'�E���'�E��

�
� �������m�E��E���

so that �� � ��� Interchanging E� and E� we obtain �� � ��� �

We can also deduce the existence of H�invariant 
xed points�

Proposition ����� Let H be a symmetry group of F � If ' has a 
xed point E� in
D i then ' has an H�invariant 
xed point in D i �

Proof� Let A � fE � D i 	 E is H�invariant�g� �It is clear from Lemma ���� that
A is non�empty�� Then by Lemma �����b� ' 	 A � A� Let E� � A� and write
r � dH�E�� E��� B � BdH �E�� �r�� By Theorem ���� ' 	 B � B� So ' 	 A � B �
A � B� Each of A�B is convex �A is convex as the sum of two H�invariant forms
is H�invariant� B by Proposition �����c��� and so A � B is convex� Since ' is a
continuous function on a convex space� by the Brouwer 
xed point theorem ' has
a 
xed point E � � A �B� and E � is H�invariant� �

We will not make use of the following result� but is useful for understanding
the general situation�

Corollary ����� Suppose ' has two distinct 
xed points E� and E� �with E� �� �E�
for any �	� Then ' has uncountably many 
xed points�

Proof� �Note that the example of the Vicsek set shows that �
� �E� � E�� is not

necessarily a 
xed point�� Let F � D i be the set of 
xed points� Let E�� E� � F 
multiplying E� by a scalar we can take m�E�� E�� � �� Write R � dH�E�� E��� If
E
 � �E� � ��� ��E� then as in Proposition �����c�

expdH�E
� E�� � ��� �� � �M�E�� E��

and so
dH�E���� E�� � log��� � eR�����

Thus there exists �� depending only on R� such that

A � fE � D i 	 E � B�E�� ��� ��R�
�

B�E�� ��� ��R�g

is non�empty� Since ' preserves A� ' has a 
xed point in A� F thus has the property	

if E�� E� are distinct elements of F then there exists E� � F

such that � � dH�E�� E�� � dH�E�� E���
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As F is closed �since ' is continuous� we deduce that F is perfect� and therefore
uncountable� �

This if as far as we will go in general� For nested fractals the added structure
� symmetry and the embedding in Rd� enables us to obtain stronger results� If
�F� ��i�� is a nested fractal� or an ANF� we only consider the set D i � fE 	 E is
GR�invariantg� so that in discussing the existence and uniqueness of 
xed points we
will be considering only GR�invariant ones�

Let �F� ��i�� be a nested fractal� write G � GR and let EA be a �G�invariant�
Dirichlet form on C�V ����� EA is determined by the conductances on the equivalence
classes of edges in �V ���� E�� under the action of G� By Proposition �����c� if jx�yj �
jx� � y�j then the edges fx� yg and fx�� y�g are equivalent� so that Axy � Ax�y� �

List the equivalence classes in order of increasing Euclidean distance� and write
��� ������ �k for the common conductances of the edges� Since eA � '�A� is also
G�invariant� ' induces a map '� 	 Rk
 � Rk
 such that� using obvious notation�
'�A���� � A�'������

Set D 	 � f� 	 �� � �� � ��� � �k � �g� Clearly we have D 	 � D si � We have
the following existence theorem for nested fractals�

Theorem ����� �See �L�� p� ���	� Let �F� ��i�� be a nested fractal �or an ANF	�
Then ' has a 
xed point in D 	 �

Proof� Let EA � D
	 � and let ��� ����k be the associated conductivities� Let �Yt� t �

�� Qx � x � V ���� be the continuous time Markov chain associated with EA� and let

�bYn� n � �� Qx � x � V ���� be the discrete time skeleton of Y �

Let E
���
� � ���� E

�k�
� be the equivalence classes of edges in �V ���� E��� so that Axy �

�j if fx� yg � E
�j�
� � Then if fx� yg � E

�j�
� �

Qx �bY� � y� �
�jP

y ��xAxy
�

As c� �
P
y ��x

Axy does not depend on x �by the symmetry of V ���� the transition

probabilities of bY are proportional to the �j �
Now let R�A� be the conductivity matrix on V ��� attained by replication of

A� Let �Xt� t � �� Px� x � V ���� and � bXn� n � �� Px� x � V ���� be the associated
Markov Chains� Let T�� T�� ��� be successive disjoint hits �see De
nition ����� on

V ��� by bXn�
Write eA � '�A�� and e� for the edge conductivities given by A� Using the trace

theorem�

Px� bXT� � y� � e�j�c� if fx� yg � E
�j�
� �

Now let x�� y�� y� � V ���� with jx� y�j � jx� y�j� We will prove that

������ Px�� bXT� � y�� � Px�� bXT� � y���

Let H be the hyperplane bisecting �y�� y��� let g be re#ection in H� and x� �
g�x��� Let

T � minfn � � 	 bXn � V ��� � fx�gg�



��

so that T� � T Px��almost surely� Set

fn�x� � Ex ��T 
n���y� � bXT �� �y� � bXT ���

Let p�x� y�� x� y � V ��� be the transition probabilities of bX� Then

����� fn
��x� � �A�x� f��x� � �Ac�x�
X
y

p�x� y�fn�y��

Let J�� � fx � V ��� 	 jx � y�j � jx � y�jg� and de
ne J�� analogously� We
prove by induction that fn satis
es

fn�x� � �� x � J��������a�

fn�x� � fn�g�x�� � �� x � J��������b�

Since f� � �y� � �y� � and y� � J��� f� satis
es ������� Let x � Ac � J�� and
suppose fn satis
es ������� If p�x� y� � �� and y � Jc��� then x� y are in the same
��cell so if y� � g�y�� y� is also in the same ��cell as x� and jx � y�j � jx � yj� So
�since EA � D 	 �� p�x� y�� � p�x� y� and using �����b�� as fn�y�� � ��

p�x� y�fn�y� � p�x� y��fn�y�� � p�x� y��fn�y� � fn�g�y�� � ��

Then by ������� fn
��x� � �� A similar argument implies that fn
� satis
es �����b��
So �fn� satis
es ������ for all n� and hence its limit f� does� Thus f��x�� �

Px� bXT � y��� bP� bXT � y�� � �� proving �������
From ������ we deduce that e�� � e�� � ��� � e�k� so that ' 	 D 	 � D 	 � As

'����� � �'����� we can restrict the action of '� to the set

f��Rk
 	 �� � ��� � �k � ��
X

�i � �g�

This is a closed convex set� so by the Brouwer 
xed point theorem� '� has a 
xed
point in D 	 � �

Remark ����� The proof here is essentially the same as that in Lindstr
m �L��� The
essential idea is a kind of re#ection argument� to show that transitions along shorter
edges are more probable� This probabilistic argument yields �so far� a stronger
existence theorem for nested fractals than the analytic arguments used by Sabot
�Sab�� and Metz �Me��� However� the latter methods are more widely applicable�

It does not seem easy to relax any of the conditions on ANFs without losing
some link in the proof of Theorem ����� This proof used in an essential fashion not
only the fact that V ��� has a very large symmetry group� but also the Euclidean
embedding of V ��� and V ����

The following uniqueness theorem for nested fractals was proved by Sabot
�Sab��� It is a corollary of a more general theorem which gives� for p�c�f�s�s� sets�
su�cient conditions for existence and uniqueness of 
xed points� A simpler proof
of this result has also recently been obtained by Peirone �Pe��
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Theorem ����� Let �F� ��i�� be a nested fractal� Then ' has a unique GR�invariant
non�degenerate 
xed point�

De�nition ����� Let E be a 
xed point of '� The resistance scaling factor of E is
the unique � � � such that

'�E� � ��� E �

Very often we will also call � the resistance scaling factor of F 	 in view of Corollary
����� � will have the same value for any two non�degenerate 
xed points�

Proposition ���	� Let �F� ��i�� be a p�c�f�s�s� set� let �ri� be a resistance vector�
and let EA be a non�degenerate 
xed point of '� Then for each s � f�� ���Mg such
that �� !s� � V ����

������ rs �
�� � ��

Proof� Fix � � s �M � letx � �� !s�� and let f � �x � C�V ����� Then

EA�f� f� �
X

y�V ���� y ��x

Axy � jAxxj�

Let g � �x � C�V ����� As '�EA� � ���EA�

������ ���jAxxj � '�EA��f� f� � ERA �g� g� 	

since g is not harmonic with respect to ERA � strict inequality holds in ������� By
Proposition �����c�� x is in exactly one ��complex� So

ERA �g� g� �
X
i

r��i EA�g � �i� g � �i� � r��s jAxxj�

and combining this with ������ gives ������� �

Since rs � � for nested fractals� we deduce

Corollary ���
� Let �F� ��i�� be a nested fractal� Then � � ��

For nested fractals� many properties of the process can be summarized in terms
of certain scaling factors�

De�nition ����� Let �F� ��i�� be a nested fractal� and E be the �unique� non�
degenerate 
xed point� See De
nition ���� for the length and mass scale factors L
and M � The resistance scale factor � of F is the resistance scaling factor of E � Let

����� � � M�  

we call � the time scaling factor� �In view of the connection between resistances
and crossing times given in Theorem ����� it is not surprising that � should have a
connection with the space�time scaling of processes on F ��

It may be helpful at this point to draw a rough distinction between two kinds
of structure associated with the nested fractal �F���� The quantities introduced
in Section �� such as L� M � the geodesic metric dF � the chemical exponent � and
the dimension dw�F � are all geometric � that is� they can be determined entirely
by a geometric inspection of F � On the other hand� the resistance and time scaling
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factors � and � are analytic or physical � they appear in some sense to lie deeper than
the geometric quantities� and arise from the solution to some kind of equation on
the space� On the Sierpinski gasket� for example� while one obtains L � � � �� and
M � � almost immediately� a brief calculation �Lemma ����� is needed to obtain
�� For more complicated sets� such as some of the examples given in Section �� the
calculation of � would be very lengthy�

Unfortunately� while the distinction between these two kinds of constant arises
clearly in practice� it does not seem easy to make it precise� Indeed� Corollary ����
shows that the geometry does in fact determine �	 it is not possible to have one
nested fractal �a geometric object� with two distinct analytic structures which both
satisfy the symmetry and scale invariance conditions�

We have the following general inequalities for the scaling factors�

Proposition ����� Let �F� ��i��� be a nested fractal with scaling factors L�M� �� � �
Then

������ L � �� M � �� M � L� � � M� � L��

Proof� L � �� M � � follow from the de
nition of nested fractals� If � � diam�V �����
then� as V ��� consists of M copies of V ��� each of diameter L���� by the connectivity
axiom we deduce ML��� � �� Thus M � L�

To prove the 
nal inequality in ������ we use the same strategy as in Proposition
����� but with a better choice of minimizing function�

Let H be the set of functions f of the form f�x� � Ox�a� where x � Rd and O
is an orthogonal matrix� Set Hn � ff jV �n� � f � Hg� Let � � supfE�f� f� 	 f � H�g	
clearly � � 	� Choose f to attain the supremum� and let g � H be such that
f � gjV ��� � Then if f� � gjV ���

��� � � ���E�f� f� � '�E��f� f� � ER�g�� g�� �
MX
i��

E�g� � �i� g� � �i��

However� g� ��i is the restriction to V ��� of a function of the form L��Ox�ai� and
so E�g � �i� g � �i� � L���� Hence ���� �ML���� proving ������� �

The following comparison theorem provides a technique for bounding � in cer�
tain situations�

Proposition ����� Let �F�� f�i� � � i � M�g� be a p�c�f�s�s� set� Let F� � F��
M� � M�� and suppose that �F�� f�i� � � i � M�g� is also a p�c�f�s�s� set� and

that V
���
F�

� V
���
F�

� Let �r
�k�
i � � � i � Mk� be resistance vectors for k � �� �� and

suppose that r
���
i � r

���
i for � � i � M�� Let 'k be the renormalization map for

�Fk� ��i�
Mk

i��� �r
�k�
i �Mk

i���� If Ek are non�degenerate Dirichlet forms satisfying 'k�Ek� �
���k Ek� k � �� �� then �� � ���

Proof� Since V
���
F�

� V
���
F�

� we have� writing Ri for the replication maps associated
with Fi�

R�E�f� f� � R�E�f� f�� f �C�V
���
F�

��



��

So '��E� � '��E� for any E � D � If m � m�E��E��� then

���� E� � '��E�� � '��m E�� � '��m E�� � m���� E� � ���� E� �

which implies that �� � ��� �

	� Di
usions on p�c�f�s�s� sets�

Let
�
F� ��i�

�
be a p�c�f�s�s� set� and ri be a resistance vector� We assume that

the graph �V ����E�� is connected� Suppose that the renormalization map ' has a
non�degenerate 
xed point E��� � EA� so that '�E���� � ���E���� Fixing F � r� and
EA� in this section we will construct a di�usion X on F � as a limit of processes on
the graphical approximations V �n�� In Section � this was done probabilistically for
the Sierpinski gasket� but here we will use Dirichlet form methods� following �Kus��
Fu�� Ki���

De�nition 	��� For f � C�V �n��� set

����� E�n��f� f� � �n
X
w�W n

r��w E����f � �w� f � �w��

This is the Dirichlet form on V �n� obtained by replication of scaled copies of E����
where the scaling associated with the map �w is �nr��w �

These Dirichlet forms have the following nesting property�

Proposition 	��� �a	 For n � �� Tr�E�n�jV �n��� � E�n����
�b	 If f � C�V �n��� and g � f jV �n��� then E�n��f� f� � E�n����g� g��
�c	 E�n� is non�degenerate�

Proof� �a� Let f � C�V �n��� Then decomposing w � W n into v 
 i� v � W n�� �

E�n��f� f� � �n
X

v�W n��

r��v
X
i

r��i E����f � �v � �i� f � �v � �i������

� �n��
X

v�W n��

r��v E����fv� fv��

where fv � f � �v � C�V ����� Now let g � C�V �n����� If f jV �n��� � g then
fvjV ��� � g � �v � gv� As E��� is a 
xed point of '�

inf
n
E����h� h� 	 hjV ��� � gv

o
� � inf

n
RE����h� h� 	 hjV ��� � gv

o
�����

� �'�E�����gv� gv� � E����gv� gv��

Summing over v � W n�� we deduce therefore

inf
n
E�n��f� f� 	 f jV �n��� � g

o
� �n��

X
v

r��v E����g� g� � E�n����g� g��



��

For each v � W n�� � let hv � C�V ���� be chosen to attain the in
mum in ������ We
wish to de
ne f � C�V �n�� such that

����� f � �v � hv� v � W n�� �

Let v � W n�� � We de
ne

f
�
�v�y�

�
� hv�y�� y � V ����

We need to check f is well�de
ned but if v� u are distinct elements of W n�� and
x � �v�y� � �u�z�� then x � V �n��� by Lemma ����� and so y� z � V ���� Therefore

f
�
�v�y�

�
� hv�y� � gv�y� � g�x� � f

�
�u�z�

�
�

so the de
nitions of f at x agree� �This is where we use the fact that F is 
nitely

rami
ed	 it allows us to minimize separately over each set of the form V
���
v ��

So
E�n��f� f� � E�n����g� g��

and therefore Tr
�
E�n�jV �n���

�
� E�n����

�b� is evident from �a��
�c� We prove this by induction� E��� is non�degenerate by hypothesis� Suppose
E�n��� is non�degenerate� and that E�n��f� f� � �� From ����� we have

E�n��f� f� � �
X
v�W �

r��v E�n����f � �v� f � �v��

and so f � �v is constant for each v � W � � Thus f is constant on each ��complex�
and as �V ����E�� is connected this implies that f is constant� �

To avoid clumsy notation we will identify functions with their restrictions�
so� for example� if f � C�V �n��� and m � n� we will write E�m��f� f� instead of
E�m� �f jV �m� � f jV �m���

De�nition 	��� Set V ��� � ��n��V
�n�� Let U � ff 	 V ��� � Rg� Note that the

sequence
�
E�n��f� f�

��
n��

is non�decreasing� De
ne

D� � ff � U 	 sup
n
E�n��f� f� �	g�

E ��f� g� � sup
n
E�n��f� g� f� g � D��

E � is the initial version of the Dirichlet form we are constructing�

Lemma 	��� E � is a symmetric Markov form on D��

Proof� E � clearly inherits the properties of symmetry� bilinearity� and positivity from
the E�n�� If f � D�� and g � �� � f� � � then E�n��g� g� � E�n��f� f�� as the E�n� are
Markov� So E ��g� g� � E ��f� f�� �

What we have done here seems very easy� However� more work is needed to
obtain a �good� Dirichlet form E which can be associated with a di�usion on F �
Note the following scaling result for E ��



��

Lemma 	��� For n � �� f � D��

����� E ��f� f� �
X
w�W n

�nr��w E ��f � �w � f � �w��

Proof� We have� for m � n� f � D��

E�m��f� f� �
X
w�W n

�nr��w E�m�n��f � �w� f � �w��

Letting m�	 it follows� 
rst that f � �w � D�� and then that ����� holds� �

If H is a set� and f 	 H � R� we write

����� Osc�f�B� � sup
x�y�B

jf�x�� f�y�j� B � H�

Lemma 	��� There exists a constant c�� depending only on E � such that

Osc�f� V ���� � c�E
����f� f�� f � C�V �����

Proof� Let eE� �
�
fx� yg 	 Axy � �

�
� As E��� is non�degenerate� �V ���� eE�� is

connected let N be the maximum distance between points in this graph� Set � �
minfAxy� fx� yg � eE�g� If x� y � V ���� there exists a chain x � x�� x�� � � � � xn � y
connecting x� y with n � N � and therefore�

jf�x�� f�y�j� �



nX
i��

jf�xi�� f�xi���j

��

� n
nX
i��

jf�xi�� f�xi���j
�

� n���
nX
i��

Axi���xi jf�xi�� f�xi���j
�

� N���E����f� f�� �

Since V ��� consists of M copies of V ��� we deduce a similar result for V ����

Corollary 	�	� There exists a constant c� � c��F� r�A� such that

����� Osc�f� V ���� � c�E
����f� f�� f � D��

Proof� For i � W � � f � C�V �����

Osc�f� V
���
i � � Osc�f � �i� V

���� � c�E
����f � �i� f � �i��

So� as V ��� is connected�

Osc�f� V ���� �
X
i

Osc�f� V
���
i �

�
X
i

c�E
��� �f � �i� f � �i� � c�E

����f� f��



��

where c� is chosen so that c� � c��r
��
i for each i � W � � �

Corollary 	�
� Let w � W n � and x� y � V
���
w � Then

Osc�f� V ���
w � � c�rw�

�nE ��f� f�� f � D��

Proof� We have Osc�f� V
���
w � � Osc�f � �w� V ���� � c�E����f � �w � f � �w�� Since

E��� � E �� and by �����

E ��f � �w � f � �w� � rw�
�nE ��f� f��

the result is immediate� �

De�nition 	��� We will call the 
xed point E��� a regular �xed point if

����� ri � � for � � i �M�

Proposition ���� implies that ����� holds for any s � f�� � � � �Mg such that
�� !s� � V ���� In particular therefore� for nested fractals� where every point in V ���

is of this form and r is constant� any 
xed point is regular�

It is not hard to produce examples of non�regular 
xed points� Consider the
Lindstr
m snow#ake� but with ri � �� � � i � �� r� � r � �� Writing ��r� for the
resistance scale factor� we have �by Proposition ����� that ��r� is increasing in r�
However� also by Proposition ����� ��r� � ��� where �� is the resistance scale factor
of the nested fractal obtained just from �i� � � i � �� So if we choose r� � ��� then
as r� � �� � ��r��� we have an example of an a�ne nested fractal with a non�regular

xed point�

From now on we take E��� to be a regular 
xed point� �See �Kum�� for the
general situation�� Write � � maxi ri�� � �� For x� y � F � set w�x� y� to be the
longest word w such that x� y � Fw�

Proposition 	���� �Sobolev inequality	� Let f � D�� Then if E��� is a regular

xed point

����� jf�x�� f�y�j� � c�rw�x�y��
�jw�x�y�jE ��f� f�� x� y � V ����

Proof� Let x� y � V �n�� let w � w�x� y� and let jwj � m� We prove ����� by a
standard kind of chaining argument� similar to those used in continuity results such
as Kolmogorov�s lemma� �But this argument is deterministic and easier�� We may
assume n � m�

Let u � W n be an extension of w� such that x � V
���
u 	 such a u certainly

exists� as x � V
���
n � Fw� Write uk � ujk for m � k � n� Now choose a sequence

zk� m � k � n such that zn � x� and zk � V
���
uk for k � m � n � �� For each

k � fm� � � � � n � �g we have zk� zk
� � V
���
uk � So

jf�zn�� f�zm�j �
n��X
k�m

jf�zk
��� f�zk�j�����

�
n��X
k�m

�
c�ruk�

�kE�f� f�
����



��

�
�
c�rw�

�mE�f� f�
�����n��X

k�m

ruk
rw

��k
m
	���

�

As E is a regular 
xed point� � � maxi ri�� � �� so the 
nal sum in ����� is bounded
by �

P�
k�m �k�m���� � c� �	� Thus we have

jf�x�� f�zm�j� � c�c�rw�
�nE ��f� f��

and as a similar bound holds for jf�y�� f�zm�j�� this proves ������ �

We have not so far needed a measure on F � However� to de
ne a Dirichlet form
we need some L� space in which the domain of E is closed� Let � be a probability
measure on �F�B�F �� which charges every set of the form Fw� w � W n � Later
we will take � to be the Bernouilli measure �� associated with a vector of weights
� � ���	�M � but for now any measure satisfying the condition above will su�ce�

As ��F � � �� C�F � � L��F� ��� Set

D � ff � C�F � 	 f jV ��� � D�g

E�f� f� � E � �f jV ��� � f jV ���� � f � D�

Proposition 	���� �E �D� is a closed symmetric form on L��F� ���

Proof� Note 
rst that the condition on � implies that if f� g � D then jjf � gjj� � �
implies that f � g� We need to prove that D is complete in the norm kfk�E� �
E�f� f� � kfk��� So suppose �fn� is Cauchy in k 
 kE� � Since �fn� is Cauchy in k 
 k��

passing to a subsequence there exists ef � L��F� �� such that fn � ef ��a�e� Fix

x� � F such that fn�x�� � ef�x�� Then since fn � fm is continuous� ����� extends
to an estimate on the whole of F and so

jfn�x�� fm�x�j � j�fn � fm��x�� �fn � fm��x��j� j�fn � fm��x��j

� c
���
� E�fn � fm� fn � fm���� � jfn�x��� fm�x��j�

So �fn� is Cauchy in the uniform norm� and thus there exists f � C�F � such that
fn � f uniformly�

Let n � �� Then as E�n��g� g� is a 
nite sum�

E�n��f� f� � lim
m��

E�n��fm� fm� � lim sup
m��

E�fm� fm�

� sup
m
kfmkE� �	�

Hence E�n��f� f� is bounded� so f � D� Finally� by a similar calculation� for any
N � ��

E�N��fn � f� fn � f� � lim
m��

E�fn � fm� fn � fm��

So E�fn � f� fn � f� � � as n�	� and thus kf � fnk
�
E�
� �� �

To show that �E �D� is a Dirichlet form� it remains to show that D is dense in
L��F� ��� We do this by studying the harmonic extension of a function�



��

De�nition 	���� Let f � C�V �n��� Recall that E�n��f� f� � inf
�
E�n
���g� g� 	

gjV �n� � f
�

� Let eHn
�f � C�V �n
��� be the �unique� as E�n
��� is non�degenerate�
function which attains the in
mum�

For x � V ��� set bHnf�x� � lim
m��

eHm
eHm�� � � � eHn
�f�x� 

note that �as eHn
�f � f on V �n�� this limit is ultimately constant�

Proposition 	���� Let E be a regular 
xed point�
�a	 bHnf has a continuous extension to a function Hnf � D � C�F �� which satis
es

E�Hnf�Hnf� � E�n��f� f��

�b	 If f � g � C�F �

������ E�Hnf� g� � E�n��f� g��

Proof� From the de
nition of eHn
�� E�n
��� eHn
�f� eHn
�f� � E�n��f� f�� Thus

E�m�� bHnf� bHnf� � E�n��f� f� for any m� so that bHnf � D
� and

E� bHnf� bHnf� � E�n��f� f�� f � C�V �n���

If w � Wm � and x� y � V ��� � Fw then by Proposition ����

������ j bHnf�x�� bHnf�y�j� � c�rw�
�mE�n��f� f��

Since rw�
�m � �m� ������ implies that Osc� bHnf� V

��� � Fw� converges to � as

jwj � m � 	� Thus bHnf has a continuous extension Hnf � and Hnf � D sincebHnf � D��
�b� Note that� by polarization� we have

E�n
��� eHn
�f� eHn
�g� � E�n��f� g��

Since E�n
��� eHn
�f� h� � � for any h such that hjV �n� � �� it follows that

E�n
��� eHn
�f� g� � E�n��f� g��

Iterating� we obtain ������� �

Theorem 	���� �E �D� is an irreducible� regular� local Dirichlet form on L��F� ���

Proof� Let f � C�F �� Since for any n � �� w � W n we have

inf
Fw

f � Hnf�x� � sup
Fw

f� x � Fw

it follows that Hnf � f uniformly� As Hnf � D� we deduce that D is dense in C�F �
in the uniform norm� Hence also D is dense in L��F� ��� As ����� is immediate� we
deduce that D is a regular Dirichlet form� If E�f� f� � � then E�n��f� f� � � for
each n� Since E�n� is irreducible� f jV �n� is constant for each n� As f is continuous�
f is therefore constant� Thus E is irreducible�



���

To prove that E is local� let f � g be functions in D with disjoint closed supports�
Sf � Sg say� If E�n��f� g� �� � then one of the terms in the sum ����� must be non�zero�

so there exists wn � W n � and points xn � Sf � V
���
wn � yn � Sg � V

���
wn � Passing to a

subsequence� there exists z such that xn � z� yn � z� and as therefore z � Sf �Sg�
this is a contradiction� �

By Theorem ��� there exists a continuous ��symmetric Hunt process �Xt� t �
��Px� x � F � associated with �E �D� and L��F� ���

Remark 	���� Note that we have constructed a process X � X��� for each Radon
measure � on F � So� at 
rst sight� the construction given here has built much more
than the probabilistic construction outlined in Section �� But this added generality
is to a large extent an illusion	 Theorem ���� implies that these processes can all
be obtained from each other by time�change�

On the other hand the regularity of �E �D� was established without much pain�
and here the advantage of the Dirichlet form approach can be seen	 all the proba�
bilistic approaches to the Markov property are quite cumbersome�

The general probabilistic construction� such as given in �L�� for example� en�
counters another obstacle which the Dirichlet form construction avoids� As well as

nding a decimation invariant set of transition probabilities� it also appears neces�
sary �see e�g� �L�� Chapter VI �� to 
nd associated transition times� It is not clear
to me why these estimates appear essential in probabilistic approaches� while they
do not seem to be needed at all in the construction above�

We collect together a number of properties of �E �D��

Proposition 	���� �a	 For each n � �

������ E�f� g� �
X
w�W n

�nr��w E�f � �w� g � �w��

�b	 For f � D�

������ jf�x�� f�y�j� � c�rw�
�nE�f� f� if x� y � Fw� w � W n

������

Z
f�d� � c�E�f� f� �

�Z
fd�

��
�

������ f�x�� � �

Z
f�d� � �c�E�f� f�� x � F�

Proof� �a� is immediate from Lemma ���� while �b� follows from Proposition ����
and the continuity of f � Taking n � � in ������ we deduce that�

f�x�� f�y�
��
� c�E�f� f�� f � D�



���

So as ��F � � ��Z Z
c�E�f� f���dx���dy� � c�E�f� f�

�

Z Z �
f�x�� f�y�

��
��dx���dy�

� �

Z
f� d�� �

�Z
f d�


�

�

proving �������
Since f�x�� � �f�y�� � �jf�x�� f�y�j� we have from ������ that

f�x�� �

Z
f�x����dy�

� �

Z
f�y����dy� � �c�

Z
E�f� f���dy��

which proves ������� �

We need to examine further the resistance metric introduced in Section ��

De�nition 	��	� Let R�x� x� � �� and for x �� y set

R�x� y��� � inf fE�f� f� 	 f�x� � �� f�y� � �� f � Dg �

Note that

������ R�x� y� � sup
n jf�x�� f�y�j�

E�f� f�
	 f � D� f non constant

o
�

Proposition 	��
� �a	 If x �� y then � � R�x� y� � c� �	�
�b	 If w � W n then

������ R�x� y� � c�rw�
�n� x� y � Fw�

�c	 For f � D

������ jf�x�� f�y�j
�
� R�x� y�E�f� f��

�d	 R is a metric on F � and the topology induced by R is equal to the original
topology on F �

Proof� Let x� y be distinct points in F � As D is dense in C�F �� there exists f � D
with f�x� � �� f�y� � �� Since E is irreducible� E�f� f� � �� and so by ������
R�x� y� � �� ������ is immediate from Proposition ����� proving �b�� Taking n � ��
and w to be the empty word in ������ we deduce R�x� y� � c� for any x� y � F �
completing the proof of �a��
�c� is immediate from �������
�d� R is clearly symmetric� The triangle inequality for R is proved exactly as in
Proposition ����� by considering the trace of E on the set fx� y� zg�



���

It remains to show that the topologies induced by R and d �the original metric
on F � are the same� Let R�xn� x� � �� If � � �� there exists f � D with f�x� � �
and supp�f� � Bd�x� ��� By ������ R�x� y� � E�f� f��� � � for any y � Bd�x� ��c�
So xn � Bd�x� �� for all su�ciently large n� and hence d�xn� x� � ��

If d�xn� x� � � then writing

Nm�x� �
�
fFw 	 w � Wm � x � Fwg

we have by Lemma ���� that xn � Nm�x� for all su�ciently large n� However
if � � maxi ri�� � � we have by� ������� R�x� y� � c��

m for y � Nm�x�� Thus
R�xn� x� � �� �

Remark 	���� The resistance metric R on F is quite well adapted to the study
of the di�usion X on F � Note however that R�x� y� is obtained by summing �in a
certain sense� the resistance of all paths from x to y� So it is not surprising that R
is not a geodesic metric� �Unless F is a tree��

Also� R is not a geometrically natural metric on F � For example� on the Sier�
pinski gasket� since ri � �� and � � ���� we have that if x� y are neighbours in
�V �n��En� then

R�x� y� � �����n�

However� for general p�c�f�s�s� sets it is not easy to de
ne a metric which is
well�adapted to the self�similar structure� �And� if one imposes strict conditions of
exact self�similarity� it is not possible in general � see the examples in �Ki���� So�
for these general sets the resistance metric plays an extremely useful role� The next
section contains some additional results on R�

It is also worth remarking that the ballsBR�x� r� � fy 	 R�x� y� � rg need not in
general be connected� For example� consider the wire network corresponding to the
graph consisting of two points x� y� connected by n wires each of conductivity �� Let
z be the midpoint of one of the wires� Then R�x� y� � ��n� while the conductivities
in the network fx� y� zg are given by C�x� z� � C�z� y� � �� C�x� y� � n � �� So�
after some easy calculations�

R�x� z� �
n � �

�n� �
� �

� �

So if n � �� R�x� y� � �
� while R�x� z� � �

� � Hence if �
� � r � �

� the ball BR�x� r�

is not connected� �In fact� y is an isolated point of BR�x� �� � � fx� 	 d�x� x�� � �
�g��

�Are the balls BR�x� r� in the Sierpinski gasket connected) I do not know��

Recall the notation E��f� g� � E�f� g����f� g�� Let �U�� � � �� be the resolvent
of X� Since by ����� we have

E��U�f� g� � �f� g��

if U� has a density u��x� y� with respect to �� then a formal calculation suggests
that

E�
�
u��x� 
�� g

�
� E��U��x� g� � ��x� g� � g�x��

We can use this to obtain the existence and continuity of the resolvent density u��
�See �FOT� p� �����



���

Theorem 	���� �a	 For each x � F there exists ux� � D such that

������ E��ux�� f� � f�x� for all f � D�

�b	 Writing u��x� y� � ux��y�� we have

u��x� y� � u��y� x� for all x� y � F�

�c	 u��
� 
� is continuous on F � F and in particular

������ ju��x� y�� u��x� y��j� � R�y� y��u��x� x��

�d	 u��x� y� is the resolvent density for X� for f � C�F ��

Ex

Z �

�

e��tf�Xt�dt � U�f�x� �

Z
u��x� y�f�y���dy��

�e	 There exists c���� such that

������ u��x� y� � c����� x� y � F�

Proof� �a� The existence of ux� is given by a standard argument with reproducing
kernel Hilbert spaces� Let x � F � and for f � D let ��f� � f�x�� Then by ������

j��f�j� � jf�x�j� � �kfk�� � �c�E�f� f� � c�E��f� f��

where c� � � max�c�� �
���� Thus � is a bounded linear functional on the Hilbert

space �D� k kE��� and so there exists a ux� � D such that

��f� � E��ux�� f� � f�x�� f � D�

�b� This is immediate from �a� and the symmetry of E 	

uy��x� � E��ux�� u
y
�� � E��uy�� u

x
�� � ux��y��

�c� As ux� � D� u��x� x� �	� Since E�ux�� u
x
�� � u��x� x� �	� the estimate ������

follows from ������� It follows immediately that u is jointly continuous on F � F �
�d� This follows from ������ and linearity� For a measure � on F set

V�f�x� �

Z
u��x� y�f�y���dy�� f � C�F ��

As u� is uniformly continuous on F �F � we can choose �n
w
��� so that V�nf � V f

uniformly� and �n are atomic with a 
nite number of atoms� Write Vn � V�n �
V � V�� Since by ������

E��Vnf� g� �
X
x

�n�fxg�f�x�E��uxa� g�

�
X
x

f�x�g�x��n�fxg� �

Z
fg d�n�



���

we have
E��Vnf � Vmf� Vnf � Vmf� �Z

f�Vnf � Vmf� d�n �

Z
f�Vnf � Vmf� d�m�

Thus E��Vnf � Vmf� Vnf � Vmf� � � as m� n � 	� and so� as E is closed� we

deduce that V f � D and E��V f� g� � lim
n
E��Vnf� g� � lim

n

Z
fg d�n �

Z
fg d�� So

E��V f� g� � E��U�f� g� for all g� and hence V f � U�f �
�e� As R�y� y�� � c� for y� y� � F � we have from ������ that

������ u��x� y� � u��x� x��
�
c�u��x� x�

����
�

Since

Z
u��x� y���dy� � ���� integrating ������ we obtain

u��x� x� �
�
c�u��x� x�

����
� ����

and this implies that u��x� x� � c����� where c��� depends only on � and c�� Using
������ again we obtain ������� �

Theorem 	���� �a	 For each x � F � x is regular for fxg�
�b	 X has a jointly continuous local time �Lxt � x � F� t � �� such that for all bounded
measurable f Z t

�

f�Xs� ds �

Z
f�a�Lat��da�� a�s�

Proof� These follow from the estimates on the resolvent density u�� As u� is
bounded and continuous� we have that x is regular for fxg� Thus X has jointly
measurable local times �Lxt � x � F� t � ���

Since X is a symmetric Markov process� by Theorem ��� of �MR�� Lxt is jointly
continuous in �x� t� if and only if the Gaussian process Yx� x � F with covariance
function given by

EYaYb � u��a� b�� a� b � F

is continuous� Necessary and su�cient conditions for continuity of Gaussian pro�
cesses are known �see �Tal��� but here a simple su�cient condition in terms of metric
entropy is enough� We have

E�Ya � Yb�
� � u��a� a� � �u��a� b� � u��b� b� � c�R�a� b�����

Set r�a� b� � R�a� b���� 	 r is a metric on F � Write Nr��� for the smallest number of
sets of r�diameter � needed to cover F � By ������ we have R�a� b� � c�n if a� b � Fw
and w � W n � So Nr�c

��n��� � "W n � Mn� and it follows that

Nr��� � c��
���

where 	 � � logM� log ���� SoZ
�


�
logNr���

����
d� �	�



���

and thus by �Du� Thm� ���� Y is continuous� �

We can use the continuity of the local time of X to give a simple proof that X
is the limit of a natural sequence of approximating continuous time Markov chains�
For simplicity we take � to be a Bernouilli measure of the form � � ��� where
�i � �� Let �n be the measure on V �n� given in ������� Set

An
t �

Z
F

Lxt �n�dx��

�nt � inf
�
s 	 An

s � t
�
�

Xn
t � X
n

t
�

Theorem 	���� �a	
�
Xn
t � t � ��Px� x � V �n�

�
is the symmetric Markov process

associated with E�n� and L��V �n�� �n��
�b	 Xn

t � Xt a�s� and uniformly on compacts�

Proof� �a� By Theorem �����a� points are non�polar for X� So by the trace the�
orem �Theorem ����� Xn is the Markov process associated with the trace of E on
L��V �n�� �n�� But for f � D� by the de
nition of E �

Tr
�
EjV �n�

�
�f� f� � E�n�

�
f jV �n� � f jV �n�

�
�

�b� As F is compact� for each T � �� �Lxt � � � t � T� x � F � is uniformly continuous�
So� using ������� if T� � T� � T then An

t � t uniformly in ��� T��� and so �nt � t
uniformly on ��� T��� As X is continuous� Xn

t � X uniformly in ��� T��� �

Remark 	���� As in Example ����� it is easy to describe the generator Ln of Xn�
Let a�n��x� y�� x� y � V �n� be the conductivity matrix such that

E�n��f� f� � �
�

P
x�y

a�n��x� y�
�
f�x�� f�y�

��
�

Then by ����� we have

������ a�n��x� y� �
X
w�W n

�
�x�y�V

���
w �

�nr��w A
�
���w �x�� ���w �y�

�
�

where A is such that E��� � EA� and A�x� y� � Axy� Then for f � L��V �n�� �n��

������ Lnf�x� � �n�fxg���
X

y�V �n�

a�n��x� y�
�
f�y�� f�x�

�
�

Of course Theorem ���� implies that if �Y n� is a sequence of continuous time

Markov chains� with generators given by ������� then Y n w
��X in D����	�� F ��



���


� Transition Density Estimates�

In this section we 
x a connected p�c�f�s�s� set
�
F� ��i�

�
� a resistance vector ri�

and a non�degenerate regular 
xed point EA of the renormalization map '� Let
� � �� be a measure on F � and let X � �Xt� t � ��Px� x � F � be the di�usion
process constructed in Section �� We investigate the transition densities of the
process X	 initially in fairly great generality� but as the section proceeds� I will
restrict the class of fractals�

We begin by 
xing the vector � which assigns mass to the ��complexes �i�F ��
in a fashion which relates ��

�
�i�F �

�
with ri� Let 	i � ri�

��	 by ����� we have

����� 	i � �� � � i �M�

Let � � � be the unique positive real such that

�����
MX
i��

	�i � ��

Set

����� �i � 	�i � � � i �M�

and let � � �� be the associated Bernouilli type measure on F � Write 	
 � maxi 	i�
	� � mini 	i	 we have � � 	� � 	i � 	
 � ��

We wish to split the set F up into regions which are� �from the point of view
of the process X�� all roughly the same size� The approximation Theorem ����
suggests that if w � W n then the �crossing time� of the region Fw is of the order of
��nrw�

��
w � 	w�

��
w � 	���w � �See Proposition ���� below for a more precise state�

ment of this fact�� So if r� is non�constant the decomposition F � �fFw� w � W ng
of F into n complexes is unsuitable instead we need to use words w of di�erent
lengths� �This idea is due to Hambly � see �Ham����

Let W� � ��n��W n be the space of all words of 
nite length� W� has a natural
tree structure	 if w � W n then the parent of w is wjn� �� while the o�spring of w
are the words w 
 i� � � i � M � �We de
ne the truncation operator � on W� by
�w � wj

�
jwj � �

�
�� Write also for w � W�

w 
W � fw 
 v� v � W g � fv � W 	 vi � wi� � � i � jwjg �

Lemma 
��� �a	 For � � � let

W 
 � fw � W� 	 	w � �� 	
w � �g �

Then the sets fw 
W � w � W 
g are disjoint� and�
w�W �

w 
 W � W �



���

�b	 For f � L��F� ��� Z
f d� �

X
w�W �

�w

Z
fw d�

E�f� f� �
X
w�W �

	��w E�fw� fw��

Proof� �a� Suppose w� w� � W 
 and v � �w 
 W � � �w� 
 W �� Then there exist u�
u� � W such that v � w 
 u � w� 
 u�� So one of w� w� �say w� is an ancestor of the
other� But if 	w � �� 	
w � � then as 	i � � we can only have 	
w� � � if w� � w�
So if w �� w�� w 
W and w� 
 W are disjoint�

Let v � W � Then 	vjn �
Qn

i�� 	vi � � as n�	� So there exists m such that
vjm � W 
 � and then v � �vjm� 
W � completing the proof of �a��
�b� This follows in a straightforward fashion from the decompositions given in ������
and Lemma ����� �

Note that 	� � � and that

����� 	� � 	w � �� �	����� � �w � ��� w � W 
 �

De�nition 
��� The spectral dimension of F is de
ned by

ds � ds�F� EA� � ����� � ���

Theorem 
��� For f � D�

����� kfk�
��ds
� � c�

�
E�f� f� � kfk��

	
kfk��ds� �

Proof� It is su�cient to consider the case f non�negative� so let f � D with f � ��
Let � � � � �	 by Lemma ���� ������ and ����� we have

kfk�� �
X
w�W �

�w

Z
f�w d������

�
X
w

�w



c�E�fw� fw� �

�Z
fw d�


�
�

� c�
X
w

��E�fw� fw� � c�
X
w

��
�Z

fw d�


�

� c��
�
�

X
w

	��w E�fw� fw� � c��
�


X
w

Z
fw d�

��

� c��
�
�E�f� f� � c��

��


X
w

�w

Z
fw d�

��

� c��
�
�E�f� f� � c��

��kfk���



���

The 
nal line of ����� is minimized if we take ���
� � c	kfk���E�f� f�� If E�f� f� �
c	kfk�� then � � � and so we obtain from ����� that

����� kfk�� � cE�f� f������
��
�
kfk��

���
������
��
�

which implies that that

����� kfk
�
��ds
� � cE�f� f�kfk

��ds
� if E�f� f� � c	kfk

�
��

If E�f� f� � c	kfk
�
� then by ������

kfk�� � c�

�
E�f� f� � kfk��

	
� ckfk���

and so

����� kfk�
��ds
� � ckfk��kfk

��ds
� if E�f� f� � c	kfk

�
��

Combining ����� and ����� we obtain ������ �

From the results in Section � we then deduce

Theorem 
��� X has a transition density p�t� x� y� which satis
es

������ p�t� x� y� � c�t
�ds��� � � t � �� x� y � F�

������
��p�t� x� y�� p�t� x� y��

��� � c�t
���ds��R�y� y��� � � t � �� x� y� y� � F�

Proof� By Proposition ���� X has a jointly measurable transition density� and by
Corollary ���� we have for x� y � F � � � t � ��

p�t� x� y� � ct�ds��ect � c�t�ds���

By ������ the function qt�x � p�t� x� 
� satis
es E�qt�x� qt�x� � ct���ds��� and so
qt�x � D and is continuous� Further� by Proposition ����

jp�t� x� y� � p�t� x� y��j
�
� cR�y� y��t�ds����� x� y� y� � F�

Thus p�t� 
� 
� is jointly H*older continuous in the metric R on F � �

Remarks 
��� �� As � � �� we have � � ds � ���� � ���� � ��
�� The estimate ������ is good if t � ��� �� and x close to y� It is poor if t is small
compared with R�x� y�� and in this case we can obtain a better estimate by chaining�
as was done for fractional di�usions in Section �� For this we need some additional
properties of the resistance metric�

Lemma 
��� If v� w � W 
 and v �� w then Fv � Fw � V
���
v � V

���
w �

Proof� This follows easily from the corresponding property for W n � Let v� w � W 
 �
with jvj � m � jwj � n� v �� w� Let x � Fv � Fw� Set w� � wjm then as Fw � Fw� �

x � Fv � Fw� and so by Lemma �����a� x � V
���
v � V

���
w� � Further� as x � Fv there

exists v� � W n such that v�jm � v� and x � Fv�� Then x � Fv� � Fw � V
���
v� � V ���

w �

So x � V
���
v � V

���
w � �



���

De�nition 
�	� Set
V
���

 �

�
w�W �

V ���
w �

Let G
 �
�
V
���

 �E


�
be the graph with vertex set V

���

 � and edge set E
 such that

fx� yg is an edge if and only if x� y � V
���
w for some w � W 
 � For A � F set

N
�A� �
�
fFw 	 w � W 
 � Fw �A �� �g �eN
�x� � N
 �N
�fxg�� �

As we will see� eN
�x� is a neighbourhood of x with a structure which is well adapted
to the geometry of F in the metric R� We write N
�y� � N
 �fyg��

Lemma 
�
� �a	 If x� y � V
���

 and x �� y then

R�x� y� � c���

�b	 If fx� yg � E
 then R�x� y� � c���

Proof� �b� is immediate from the de
nition of W 
 and Proposition �����b�� For
�a�� note 
rst that if x � F then by Proposition ���� x can belong to at most
M� � M"�P � n�complexes� for any n� So there are at most M� distinct elements
w � W 
 such that x � Fw�

As V ��� is a 
nite set� and E���A is non�degenerate� there exists c�� c� � � such
that�

������ c� � R�x� V ��� � fxg� � c�� x � V ����

�Recall that this resistance is� by the construction of E � the same in �F� E� as in

�V ���� E���A ��� Now 
x x � V
���

 � If w � W 
 � and x � V

���
w � let x� � ���w �x�� and gw

be the function on F such that gw�x�� � �� gw�y� � �� g � V ��� � fx�g� and

E�gw� gw�
��

� R
�
x�� V ��� � fx�g

	
� c��

De
ne g�w on Fw by g�w � gw ����w � and extend g�w to F by setting g�w � � on F�Fw�

Now let g�v � � if x �� V
���
v � V � W 
 � and set

g �
X
v�W �

g�v�

Then g�x� � �� g�y� � � if y � V
���

 � y �� x� and

E�g� g� �
X
w�W �

	��w E�g � �w � g � �w�

�
X
w

	��w ��x�Fw�E�gw� gw� � c	�
��M��



���

Hence if y �� x� y � V
���

 � we have

R�x� y��� � E�g� g� � ���M�c
��
	 �

so that R�x� y� � c��� �

Remark� For x � V
���

 the function g constructed above is zero outside N


�
fxg

�
�

So we also have

������ R�x� y� � c��� x � V
���

 � y � N


�
fxg

�c
�

Proposition 
��� There exist constants ci such that for x � F � � � ��

BR�x�c��� � eN
�x� � BR�x� c����������

c��
� � �

�
BR�x� ��

�
� c��

�������

c	� � R
�
x� eN
�x�c

�
� c���������

c�� � R
�
x�BR�x� ��c

�
� c���������

Proof� Let x � F � If y � N


�
fxg

�
then by ������� R�x� y� � c�� So if z � eN
�x��

since there exists y � N


�
fxg

�
with z � N


�
fyg

�
� R�x� z� � c��� proving the right

hand inclusion in �������

If x � V
���

 then by ������� if c� � c������

BR�x� c��� � N
�x��

Now let x �� V
���

 � so that there exists a unique w � W 
 with x � Fw� For each y �

V
���
w let fy�
� be the function constructed in Lemma ���� which satis
es fy�y� � ��

fy � � outside N
�y�� fy�z� � � for each z � V
���

 � fyg� and E�fy� fy� � c���

���

Let f �
P

y fy	 then f�y� � � for each y � V
���
w � So if

g � �Fw � �F cwf�

E�g� g� � E�f� f� � "�V
���
w �c���

�� � c���
��� As g�x� � �� and g�z� � � for z ��eN
�x�� we have for z �� eN
�x� that R�x� z��� � E�g� g� � c���

��� So BR�x� c���� �

N
�x�� This proves ������� and also that R
�
x� eN
�x�c

�
� c���� ��

The remaining assertions now follow fairly easily� For w � W 
 we have c���
� �

��Fw� � c���
�� As eN
�x� contains at least one ��complex� and at most M�"�P ��

��complexes� we have
�
� eN
�x�

�
� ���

and using ������ this implies �������
If A � B then it is clear that R�x�A� � R�x�B�� So �provided � is small

enough� if x � F we can 
nd a chain x� y�� y�� y� where yi � V
���

 � fyi� yi
�g

is an edge in E
� y� �� eN
�x�� and x and y are in the same ��complex� Then
R�x� y�� � c� by ������� and so� using Lemma ����b� we have R�x� y�� � c��� Thus

R
�
x� eN
�x�c

�
� R�x� y�� � c�� proving the right hand side of ������	 the left hand

side was proved above�
������ follows easily from ������ and ������� �



���

Corollary 
���� In the metric R� the Hausdor� dimension of F is �� and further

� � H�
R�F � �	�

Proof� This is immediate from Corollary ��� and ������� �

Proposition 
���� For x � F � r � � set � �x� r� � TBR�x�r�c � Then

������ c�r
�
� � Ex� �x� r� � c�r

�
�� x � F� r � ��

Proof� Let B � BR�x� r�� Then by Theorem ���� and the estimates ������ and
������

Ex� �x� r� � ��B�R�x�Bc� � c�r
�
��

which proves the upper bound in �������
Let �XB

t � t � �� be the process X killed at � � TBc � and let g�x� y� be the
Greens� function for XB � In view of Theorem ����� we can write

g�x� y� � ExLy
 � x� y � F�

Then if f�y� � g�x� y��g�x� x�� f � D and by the reproducing kernel property of g
we have

E�f� f� � g�x� x���E
�
g�x� 
�� g�x� 
�

�
� g�x� x����

and as in Theorem ���� g�x� x� � R�x�Bc� � c�r� By ������

jf�x�� f�y�j� � R�x� y�E�f� f� � R�x� y��c�r�
�� � �

�

if R�x� y� � �
� c�r� Thus f�y� � �

� on BR�x� �� c�r�� and hence

Ex� �

Z
B

g�x� y���dy�

� �
�g�x� x��

�
BR

�
x� �� c�r

��
� c	r

�
��

proving ������� �

We have a spectral decomposition of p�t� x� y�� Write �f� g� �
R
F fgd��

Theorem 
���� There exist functions 
i � D� �i � �� i � �� such that �
i� 
i� � ��
� � �� � �� � 
 
 
� and

E�
i� f� � �i�
i� f�� f � D�

The transition density p�t� x� y� of X satis
es

������ p�t� x� y� �
�X
i��

e�
it
i�x�
i�y��

where the sum in �����	 converges uniformly and absolutely� So p is jointly contin�
uous in �t� x� y��

Proof� This follows from Mercer�s Theorem� as in �DaS�� Note that 
� � � as E is
irreducible and ��F � � �� �

The following is an immediate consequence of ������



���

Corollary 
���� �a	 For x� y � F � t � ��

p�t� x� y�� � p�t� x� x�p�t� y� y��

�b	 For each x� y � F
lim
t��

p�t� x� y� � ��

Lemma 
����

������ p�t� x� y� � c�t
�ds��� � � t � �� R�x� y� � c�t

����
���

Proof� We begin with the case x � y� From Proposition ���� and Lemma ���� we
deduce that there exists c� � � such that

Px
�
� �x� r� � t

�
� ��� �c�� � c�tr

�����

Choose c� � � such that c�tr
����
� � c� if r� � c�t

����
��� Then

Px
�
Xt � BR�x� r��

�
� Px

�
� �x� r�� � t

�
� c��

So using Cauchy�Schwarz and the symmetry of p� and writing B � BR�x� r���

� � c�� �
�Z

B

p�t� x� y���dy��
	

�

Z
B�x�r��

��dy�

Z
B

p�t� x� y�p�t� y� x���dy�

� �
�
B�
�
p��t� x� x�

� c	t
����
��p��t� x� x��

Replacing t by t�� we have

p�t� x� x� � c�t
�ds���

Fix t� x� and write q�y� � p�t� x� y�� By ������ and ����� E�q� q� � c�t
���ds�� for

t � �� so using ������� if R�x� y� � c�t
����
�� then� as � � ds�� � �� � ������ � ���

q�y� � q�x�� jq�x�� q�y�j

� c�t
�����
�� �

�
R�x� y�E�q� q�

����
� c�t

�����
�� �
�
c�c�t

������
��
	���

� t�����
���c� � �c�c�������

Choosing c� suitably gives ������� �

We can at this point employ the chaining arguments used in Theorem ���� to
extend these bounds to give upper and lower bounds on p�t� x� y�� However� as R
is not in general a geodesic metric� the bounds will not be of the form given in
Theorem ����� The general case is given in a paper of Hambly and Kumagai �HK���
but since the proof of Theorem ���� does not use the geodesic property for the upper
bound we do obtain	



���

Theorem 
���� The transition density p�t� x� y� satis
es

������ p�t� x� y� � c�t
�����
�� exp

�
�c�

�
R�x� y��
��t

����	
�

Note� The power ��� in the exponent is not in general best possible�

Theorem 
���� Suppose that there exists a metric � on F with the midpoint
property such that for some � � �

������ c���x� y�� � R�x� y� � c���x� y�� x� y � F�

Then if dw � ��� � ��� df � ��� �F� �� �� is a fractional metric space of dimension
df � and X is a fractional di�usion with indices df � dw�

Proof� Since B��x� �r�c���� � BR�x� r� � B��x� �r�c��
��� it is immediate from ������

that �F� �� is a FMS�df �� Write ���x� r� � inf ft 	 Xt �� B��x� r�g� Then from ������
and ������

cr���
�� � Ex���x� r� � c�r
���
���

So� by ������ and ������� X satis
es the hypotheses of Theorem ����� and so X is a
FD�df � dw�� �

Remark� Note that in this case the estimate ������ on the H*older continuity of
u
�x� y� implies that

������ ju
�x� y�� u
�x�� y�j � cR�x� x��
�
� � c���x� x������

while by Theorem ���� we have

������ ju
�x� y�� u
�x�� y�j � c��x� x����

The di�erence is that ������ used only the fact that u
��� y� � D� while the proof of
������ used the fact that it is the ��potential density�

Di�usions on nested fractals�

We conclude by treating brie#y the case of nested fractals� Most of the necessary
work has already been done� Let �F� ��i�� be a nested fractal� with length� mass�
resistance and shortest path scaling factors L� M � �� �� Recall that in this context
we take ri � �� �i � ��M � � � i �M � and � � �� for the measure associated with
�� Write d � dF for the geodesic metric on F de
ned in Section ��

Lemma 
��	� Set � � log �� log �� Then

������ c�d�x� y�� � R�x� y� � c�d�x� y��� x� y � F�

Proof� Let � � ��� ��� Since all the ri are equal� eN
�x� is a union of n�complexes�
where ��n � � � ��n
�� So by Theorem ���� and Proposition ���� since ��n �
���n���

������ y � eN
�x� implies that R�x� y� � c��� and d�x� y� � c��
��



���

������ y �� eN
�x� implies that R�x� y� � c��� and d�x� y� � c��
��

The result is immediate from ������ and ������� �

Applying Lemma ���� and Theorem ���� we deduce	

Theorem 
��
� Let F be a nested fractal� with scaling factors L� M � �� �� Set

df � logM� log �� dw � logM�� log ��

Then �F� dF � �� is a fractional metric space of dimension df � and X is a FD�df � dw��
In particular� the transition density p�t� x� y� of X is jointly continuous in �t� x� y�
and satis
es

c�t
�df�dw exp

�
�c�

�
d�x� y�dw�t

����dw���	
������

� p�t� x� y� � c�t
�df�dw exp

�
�c�

�
d�x� y�dw�t

����dw���	
�
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