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5. Geometry of Regular Finitely Ramified Fractals.

In Section 2 I introduced the Sierpinski gasket, and gave a direct “hands on”
construction of a diffusion on it. Two properties of the SG played a crucial role:
its symmetry and scale invariance, and the fact that it is finitely ramified. In this
section we will introduce some classes of sets which preserve some of these properties,
and such that a similar construction has a chance of working. (It will not always do
so, as we will see).

There are two approaches to the construction of a family of well behaved regular
finitely ramified fractals. The first, adopted by Lindstrgm [L1]|, and most of the
mathematical physics literature, is to look at fractal subsets of R? obtained by
generalizations of the construction of the Cantor set. However when we come to
study processes on F the particular embedding of F' in R? plays only a small role,
and some quite natural sets (such as the “cut square” described below) have no
simple embedding. So one may also choose to adapt an abstract approach, defining
a collection of well behaved fractal metric spaces. This is the approach of Kigami
[Ki2|, and is followed in much of the subsequent mathematical literature on general
fractal spaces. (“Abstract” fractals may also be defined as quotient spaces of product
spaces — see [Kus2]).

The question of embedding has lead to confusion between mathematicians and
physicists on at least one (celebrated) occasion. If G is a graph then the natural
metric on G for a mathematician is the standard graph distance d(z,y), which gives
the length of the shortest path in G between z and y. Physicists call this the
chemzcal distance. However, physicists, thinking in terms of the graph G being a
model of a polymer, in which the individual strands are tangled up, are interested
in the Euclidean distance between z and y in some embedding of G in R?. Since
they regard each path in G as being a random walk path in Z, they generally use
the metric d'(z,y) = d(z,y)'/?.

In this section, after some initial remarks on self-similar sets in R?, I will intro-
duce the largest class of regular finitely ramified fractals which have been studied in
detail. These are the pc.f.s.s. sets of Kigami [Ki2], and in what follows I will follow
the approach of [Ki2| quite closely.

Definition 5.1. A map ¢ : R? — R? is a similitude if there exists o € (0,1) such
that |¢(z) — ¥(y)| = a|z — y| for all z, y € R%. We call « the contraction factor of

b.

Let M > 1, and let 9q,...,% be similitudes with contraction factors «;. For
A C R? set
M
(5.1) w(4) = | wi(4).
=1

Let ¥(") denote the n-fold composition of ¥.

Definition 5.2. Let K be the set of non-empty compact subsets of R?. For A ¢ R¢
set 6.(A) = {z : |z — a|] < ¢ for some a € A}. The Hausdorff metric d on K is
defined by

d(A,B) =inf{e >0: A C §.(B) and B C 6.(A4)}.



61

Lemma 5.3. (See [Fe, 2.10.21]). (a) d is a metric on K.

(b) (K,d) is complete. B

(c)If Ky ={K € K: K C B(0,N)} then Ky is compact in K.

Theorem 5.4. Let (¢1,...,%n) be as above, with a; € (0,1) for each 1 <i < M.

Then there exists a unique F € K such that F = ¥(F). Further, if G € K then
¥"(G) — F in d. If G € K satisfies ¥(G) C G then F = N2, ¥(™)(G).

Proof. Note that ¥ : K — K. Set a = max; a; < 1. If A4;, B; € K, 1 <1 < M note
that
d(UiﬂiIAi,UiﬂilBi) S max d(A,,B,)

(This is clear since if ¢ > 0 and B; C 6.(A4;) for each ¢, then UB; C §.(UA;)). Thus
A((4), 1(B)) < max d(4(4), b:(B))
= max «; d(A4, B) = ad(4, B).
So ¥ is a contraction on X, and therefore has a unique fixed point. For the final

assertion, note that if ¥(G) C G, then ¥(M(Q) is decreasing. So N, ¥(M(G) is
non-empty, and must equal F. O

Examples 5.5. The fractal sets described in Section 2 can all be defined as the
fixed point of a map ¥ of this kind.

1. The Sierpinski gasket. Let {a1,az,a3} be the 3 corners of the unit triangle, and
set

(5-2) bi(z) = ai +

2. The Vicsek Set. Let {ai,...,as} be the 4 corners of the unit square, let M =5,
let a5 = (3,3), and let

(z—a;), zeR? 1<i<3.

DO =

(5.3) Yi(z) = a; + 3(z —a;), 1<i<B5.
It is possible to calculate the dimension of the limiting set F' from (¢1,...,%).
However an “non-overlap” condition is necessary.

Definition 5.6. (11, ...,% ) satisfies the open set condition if there exists an open
set U such that ¢;(U), 1 < i < M, are disjoint, and ¥(U) C U. Note that, since
¥(U) C U, then the fixed point F of ¥ satisfies F = N¥(™)(T).

For the Sierpinski gasket, if H is the convex hull of {a;,a3,a3}, then one can
take U = int(H).

Theorem 5.7. Let (¢1,...,9%) satisfy the open set condition, and let F be the
fixed point of V. Let 3 be the unique real such that

(5.4) > o =

Then dimg(F) = 8, and 0 < HP(F) < oo.
Proof. See [Fa2, p. 119].
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Remark. If a; = a, 1 <4 < M, then (5.4) simplifies to Ma?® = 1, so that

(5.5) g losM

" loga~l’

We now wish to set up an abstract version of this, so that we can treat fractals
without necessarily needing to consider their embeddings in R%. Let (F,d) be a
compact metric space, let I = Ipy = {1,..., M}, and let

v;:F—>F, 1<i<M

be continuous injections. We wish the copies ¢;(F) to be strictly smaller than F,
and we therefore assume that there exists 6 > 0 such that

(5.6) d(%(w),%(y)) <(1-6)d(z,y), =x,y€F, 1€ Iy

Definition 5.8. (F,v;,1 <i < M) is a self-similar structure if (F,d) is a compact
metric space, v; are continuous injections satisfying (5.6) and

(5.7) F = U i(F).

Let (F,v;,1 <i < M) be a self-similar structure. We can use iterations of the
maps ; to give the ‘address’ of a point in F. Introduce the word spaces

W, =I", W=1IN

We endow W with the usual product topology. For w € W,,, v in W,, or W, let
w-v = (w1,...,Wy,v1,...), and define the left shift o on W (or W,,) by

ow = (wa,...).
For w = (wy,...,w,) € W,, define
(5.8) Yo = Yoy O Yapy 0o 0Py .

It is clear from (5.7) that for each n > 1,

F=|J vu(F).

weWw,,
If a = (a1,...,ap) is a vector indexed by I, we write
n
(5.9) Ay = Hawn weW,.
1=1

Write A, = 9,(A) for w € U,W,,;, AC F. If n > 1, and w € W (or W,, with
m > n) write

(5.10) wln = (wy,...,w,) € W,.
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Lemma 5.9. For each w € W, there exists a x,, € F such that
n=1

Proof. Since Yu|(nt1)(F) = Yuwpn (Ywnyi (F)) C Puwn(F), the sequence of sets in
(5.11) is decreasing. As v; are continuous, |, (F) are compact, and therefore 4 =

NnFy|n is non-empty. But as diam(F,,,,) < (1 —¢§)"diam(F), we have diam(A4) = 0,
so that A consists of a single point. d

Lemma 5.10. There exists a unique map m : W — F such that
(5.12) (i -w) = ; (71'(11))), weW, el
7 is continuous and surjective.

Proof. Define w(w) = x,,, where z,, is defined by (5.11). Let w € W. Then for any
n’
71'(2 w) € F(l aw)|ln — Li(wn-1) — ¢’L( w|n— 1)

So 7(i - w) € Np¥i(Fm) = {¢i(zw)}, proving (5.12). If 7’ also satisfies (5.12) then
T (v-w) = P, (7' (w)) for v € W,,, w € W, n > 1. Then 7'(w) € F,, for any n > 1,
so ' = .

To prove that 7 is surjective, let © € F. By (5.7) there exists wy € Ips such
that € Fyy, = ¥y, (F) = Uﬁi—lmez So there exists wy such that € Fy 4,,
and continuing in this way we obtain a sequence w = (wy,ws,...) € W such that
z € Fy, for each n. It follows that z = 7(w).

Let U be open in F, and w € 7~ 1(U). Then Fy)n MU is a decreasing sequence
of compact sets with empty intersection, so there exists m with F,,, C U. Hence
V={veW:vm=wm} Cn }(U), and since V is open in W, 7~}(U) is open.
Thus 7 is continuous. d

Remark 5.11. It is easy to see that (5.12) implies that
(5.13) (v - w) = 9, (7(w)), veW,, weW.
Lemma 5.12. Forz € F, n > 0 set

No(z) = | J{Fuw:w e W,,z € F,}.

Then {N,(z),n > 1} form a base of neighbourhoods of x.

Proof. Fix z and n. If v € W,, and = ¢ F, then, since F, is compact, d(z, F,) =
inf{d(z,y) : y € F,} > 0. So, as W, is finite, d(z, N,,()°) = min{d(z, F,) : = ¢
Fy,v € W, } > 0. So z € int(N,(z)). Since diam F,, < (1—6)" diam(F) for w € W,
we have diam N, (z) < 2(1 — §)*diam(F). So if U 5 z is open, N,(z) C U for all
sufficiently large n. O

The definition of a self-similar structure does not contain any condition to
prevent overlaps between the sets ¢;(F), i € Ip. (One could even have 1 = 1
for example). For sets in R? the open set condition prevents overlaps, but relies on
the existence of a space in which the fractal F is embedded. A general, abstract,
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non-overlap condition, in terms of dimension, is given in [KZ1]. However, for finitely
ramified sets the situation is somewhat simpler.
For a self-similar structure S = (F,v;,i € Ip) set

As one might expect, we will require B(S) to be finite. However, this on its own is
not sufficient: we will require a stronger condition, in terms of the word space W.

Set
r =" (B(S)).

P=|]Jo"(D).

Definition 5.13. A self-similar structure (F, ) is post critically finite, or p.c.f., if
P is finite. A metric space (F,d) is a p.c.f.s.s. set if there exists a p.c.f. self-similar
structure (¢;,1 <i < M) on F.

Remarks 5.14. 1. As this definition is a little impenetrable, we will give several
examples below. The definition is due to Kigami [Ki2|, who called T the critical set
of §, and P the post critical set.

2. The definition of a self-similar structure given here is slightly less general than
that given in [Ki2]. Kigami did not impose the constraint (5.6) on the maps 1;, but
made the existence and continuity of 7 an axiom.

3. The initial metric d on F' does not play a major role. On the whole, we will work
with the natural structure of neighbourhoods of points provided by the self-similar
structure and the sets F,,w € W,,, n > 0.

Examples 5.15. 1. The Sierpinski gasket. Let ay, as, ag be the corners of the unit
triangle in R?, and let

wi(m):ai—l—%(m—ai), .’IZERz, 1 <:<3.

Write G for the Sierpinski gasket; it is clear that (G,1,%s,1%3) is a self-similar
structure. Writing $ = (s, s,...), we have

m(§) =as, 1<s<3.
So

l(613 +a1), %(al + as), %(az + G3)},

(13),(31),(12),(21),(23),(32)},
and

2. The cut square. This is an example of a p.c.f.s.s. set which has no convenient
embedding in Euclidean space. (Though of course such an embedding can certainly
be found).

Start with the unit square Cy = [0,1]2. Now make ‘cuts’ along the line L; =
{(%,y) 0 <y < %}, and the 3 similar lines (Ly, L3, L4 say) obtained from L
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by rotation. So the set C; consists of Cy, but with the points in the line segment
(%,y—), (%, y+), viewed as distinct, for 0 < y < % (And similarly for the 3 similar
sets obtained by rotation). Alternatively, C; is the closure of A = Cy — U%_|L; in
the geodesic metric d4 defined in Section 2. One now repeats this construction on
each of the 4 squares of side % which make up C; to obtain successively Cs, Cs,...;
the cut square C' is the limit.

This is a p.c.f.s.s. set; one has M = 4, and if aq,...,a4 are the 4 corners of
[0,1]%, then the maps ; agree at all points with irrational coordinates with the

1

maps ¢;(z) = a; + 5(z — a;). We have

so that Sl Ay ey
P = {(1)?(2)7(3)7(4)} :

Note also that m(12) = m(21), and 7(13) = n(31) = n(24) = 7(42) = z, the centre
of the square.

In both the examples above we had P = {(3),s € Iy}, and P = ¢™P for
all n > 1. However P can take a more complicated form if the sets ¢;(F), ¢;(F)
overlap at points which are sited at different relative positions in the two sets.

3. Sierpinski gasket with added triangle. (See [Kum2]). We describe this set as
a subset of R?. Let {a1,a3,a3} be the corners of the unit triangle in R?, and let
Yi(z) = %(m —a;)+ta;, 1 <i <3 Letag = %(al + az + a3) be the centre
of the triangle, and let ¥4(z) = a4 + %(:p — aq). Of course (91,%9,1%3) gives the
Sierpinski gasket, but ¥ = (1,3, 13, 14) still satisfies the open set condition, and
if F = F(%) is the fixed point of ¥ then (F,q,...,%4) is a self-similar structure.
Writing by, b, bs for the mid-points of (as,as3), (a3,a1), (a1,as2) respectively, and
c; = %(ai +b;), 1 <1i <3, we have

B = {bl,b2,b3,61,62,C3}7

7= 1(by) = {(23),(32)}, while 7~ 1(¢c;) = {(123),(132),(41)}, with similar expres-
sions for 771(b;), 77 1(¢;), 5 = 2,3. So #(T') = 15, and

o(T) = {(_i), (?), (_3), (23),(32), (31),(13), (12),(21)} ,

o*(T) = {(1),(2), (3)}-
Then P = o(T') consists of 9 points in W, and #(n(P)) = 6.
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A
AA
ALA
AANA

Fig. 5.1 : Sierpinski gasket with added triangle.

4. (Rotated triangle). Let a;, b;, ¥;, 1 < i < 3, be as above. Let A € (0,1), and
let p; = Aby + (1 — A\)bs, with pa, ps defined similarly. Evidently {p;,p2,ps3} is an
equilateral triangle; let 14 be the similitude such that t4(a;) = p;. Let F = F(¥)
be the fixed point of ¥. If H is the convex hull of {a1,as,a3}, then ¥(H) C H, so
clearly F' is finitely ramified, and

B = {b15b25b3aplap23p3}'

o B

Fig. 5.2 : Rotated triangle with A = 2/3.

As before, 771(by) = {(23),(32)}. Let y; = ¢7"(p1); then y; lies on the line
segment connecting as and a3. If A = 7~!(y;) then A consists of one or two points,
according to whether A is a dyadic rational or not. Let A = {v,w}, where v = w if
A ¢ D. Note that for each element v € A, we have, writing v = (u1,ua,...), that
ur € {2,3}, k> 1. Then 7~ 1(p1) = {(41),(1-v),(1-w)}. If 6 : W — W is defined
by 8(w) = w’, where w} = w; +1 (mod 3), and

A, ={({1), 0", 0w},
then o™(T') = 4, U8(4,) UH*(4,).

(a) A = 3 gives Example 3 above.



67

(b) If A is irrational, then P = U,>10"(I') is infinite. This example therefore shows
that the “p.c.f.” condition in Definition 5.13 is strictly stronger than the requirement
that the set F' be finitely ramified and self-similar.

(c) Let A = 2. Then v = w = (23). Therefore B consists of p; and by, with their

rotations, and (L) consists of (23), (32), (41), (12323) and their “rotations” by 6.

Hence
P = {(1),(3),(3),(23), (32), (31), (13), (13), (31)} .

So A = % does give a p.c.f.s.s. set.
(d) In general, as is clear from the examples above, while F is finitely ramified for
any A € (0,1), F is a p.c.f.s.s. set if and only if A € QN (0,1).

ARA YA
%
»4 \éqq ‘?1\ »4 ;\4 Y

Fig. 5.3 : Rotated triangle with A = 0.721.

We now introduce some more notation.

Definition 5.16. Let (F,1,...,%a) be a p.c.f.s.s. set. Set for n > 0,

P™ ={weW:os"we P},

vin) — 7T(p(n))_
Any set of the form F,,, w € W,,, we call an n-complez, and any set of the form
Pu(V(0)) = Vi we call a n-cell.
Lemma 5.17. (a) Let x € V(™). Then z = 1,,(y), where y € V() and w € W,,.
(b) VI = Uyem, V.
Proof. (a) From the definition, z = 7(w - v), for w € W,,, v € W. Then if y = 7(v),
y € VO and by (5.13), z = m(w - v) = 9y (y).
(b) Let z € Vi), Then z = v, (m(v)), where v € P. Hence z = m(w - v), and since
w-v € PM™  z € V™, The other inclusion follows from (a). O
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We think of V(9 as being the “boundary” of the set F. The set F consists of
the union of M™ n-complexes F,, (where w € W, ), which intersect only at their
boundary points.

Lemma 5.18. (a) If w,v € W,,, w # v, then F, N F, = v v,
(b) Ifn > 0, 7~ (x(PM)) = 7=1(V(M)) = p(n),

Proof. (a) Let n > 1, v, w e W,,and z € F, N F,. So z = 7(w - u) # n(v - u') for
u,u’ € W. Suppose first that w; # v;. Then as F,, C F,,,, we have ¢ € F,,, N F,, C
B. Sow-u,v-u €T, and thus u = c" lo(w-u) € P. Therefore n(u) € V{0,
and x = 9, (7r(u)) € V,f,o). If wy = v; then let k& be the largest integer such that
wlk = v|k. Applying 1/};|1k we can then use the argument above.
(b) It is elementary that P(") C 7= (x(P(™)). Let n = 0 and w € 7! (n(P)).
Then there exists v € P such that 7(w) = n(v). As v € P, v € ¢™(T) for some
m > 1. Hence there exists u € W, such that u-v € 771(B). However 7(u - w) =
Yu(m(w)) = m(u-v) € B, and thus u-v € 0. Hence v € P.

If n > 1, and m(w) € n(P™) = V(" then m(w) € V% for some v € W,.
So m(w) € v n Foypn = Vi n VJ)TT)L by (a). Therefore w(w) € Vu(7(|J7)L’ and thus
T(w) = Yyin (7(v)), where v € P. So m(w) = m(w|n - v), and thus w(c"w) = w(v).
By the case n = 0 above ¢"w € P, and hence w € P("), O

Remark 5.19. Note we used the fact that 7(v-w) = 7(v-w') implies 7(w) = 7(w'),
which follows from the fact that 1), is injective.

Lemma 5.20. Lets € {1,...,M}. Then w($) is in exactly one n-complex, for each
n > 1.

Proof. Let n = 1, and write z, = 7($). Plainly z, € F,; suppose z, € F; where
i # 8. Then z, = 1; (ﬂ(w)) for some w € W. Since z, = ¥¥(z,) for any k& > 1,
zy = P¥(m(i-w)) = 7(s*-i-w), where s* = (s,s,...,s) € Wy. Sincez, € F,NF, C B,
n~1(z,) € C. But therefore s*-i-w € C for each k > 1, and since i # s, C is
infinite, a contradiction.

Now let n > 2, and suppose z; = n($) € F,,, where w € W,, and w # s™. Let
0 < k <n—1besuch that w = s* - *w, and wi41 # s. Then applying ¥, * to Fy«
we have that x, € F x,, N Fyn—i, which contradicts the case n = 1 above. O

Let (F,¢1,...,%up,7) be a p.cfs.s. set. For z € F, let
mp(z) = #{we W, : z € F,}

be the n-multiplicity of z, that is the number of distinct n-complexes containing x.
Plainly, if z ¢ U,V (™), then m,(z) = 1 for all n. Note also that m.(z) is increasing.

Proposition 5.21. Forallz € F, n > 1,
mn(z) < M#(P).

Proof. Suppose © € Fy1 N...N F,k, where w?, 1 < i < k are distinct elements of
W,,. Suppose first that wi # w] for some i # j. Then = € B, and therefore there
exist v!,...,v* € W such that m(w'-v') =z, 1 <1 < k. Hence w'-v' € T for each
[, and so #(T') > k. But #(P) > M~1#(T), and thus k < M#(P).
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If all the w' contain a common initial string v, then applying ;! we can use
the argument above. d

Nested Fractals and Affine Nested fractals.

Nested fractals were introduced by Lindstrpm [L1], and affine nested fractals
(ANF) by [FHK]. These are of p.c.f.s.s. sets, but have two significant additional
properties:

(1) They are embedded in Euclidean space,
(2) They have a large symmetry group.

I will first present the definition of an ANF, and then relate it to that for
p.cfs.s. sets. Let 1q,...,%a be similitudes in R?, and let F be the associated
compact set. Writing 1; also for the restrictions of ¢; to F, (F,v1,...,%n) is a self
similar structure. Let W, , V(%) etc. be as above. For z, y € V(0 let Jzy R¢ — R4
be reflection in the hyperplane which bisects the line segment connecting = and y.
As each 1); is a contraction, it has a unique fixed point, z; say. Let V = {z1, ..., 221}
be the set of fixed points. Call z € V an essential fized point if there exists y € V,

and ¢ # j such that ¢;(z) = ¢;(y). Write V' for the set of essential fixed points.
Set also —(n) —)
vi=|J V.
weWw,,
Definition 5.22. (F,1,...,%) is an affine nested fractal if 11, ... ¢y satisfy

the open set condition, #(V(O)) > 2, and

(Al) (Connectivity) For any ¢, j there exists a sequence of 1-cells ViEJO), - ,Viio)
such that iy =, i, = j and Vﬁ?il mVﬁf) £ for 1 <r<k.

(A2) (Symmetry) For each z, y € V(O), n > 0, gy maps n cells to n cells.

(A3) (Nesting) If w, v € W,, and w # v then

F,NF, = fo) me,O).

In addition (F,q,...,%u) is a nested fractal if the v; all have the same contraction
factor.

If ¢); has contraction factor «;, then by (5.4) dimg(F) = 3, where 3 solves

M
(5.14) » o =1
=1

If a; = a, so that F is a nested fractal, then
_ logM
- log(1/)’

Following Lindstrgm we will call M the mass scale factor, and 1/« the length scale
factor, of the nested fractal F'.

(5.15) dimpg (F)
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Lemma 5.23. Let (F,v1,...,%) be an affine nested fractal. Write z; for the
fixed point of v;. Then z; ¢ F; for any j # i.

Proof. Suppose that z; € F». Then by Definition 5.22(A3) F; N Fy = Vﬁo) N V;O),

so z1 € V;O), and z; = v2(z;), for some z; € V(O). We cannot have 1 = 2, as
Pa(2z2) = 22 # z1. Also, if i = 1 then 9, would fix both z; and 22, so could not be
a contraction. So let + = 3. Therefore for any £ > 0, 2 > 0,

z1 = 'g[}f 0 ’QZJQ 0 ’g[)é(Zg) € Flk.z.gi.

Write D,, = {w € W,, : 21 € F,,}: by the above #(D,) > n. Let U be the open set
given by the open set condition. Since F C U we have z; € U for each i. So 23 € Uy,
for each w € D,,, while the open set condition implies that the sets {U,,w € D,}
are disjoint. So z; is on the boundary of at least n disjoint open sets. If (as is
true for nested fractals) all these sets are congruent then a contradiction is almost
immediate.

For the general case of affine nested fractals we need to work a little harder to
obtain the same conclusion. Let a > 0 be such that

|B(2i,1)NU| >a for each i.

Let a;, 1 < 72 < M be the contraction factors of the ;. Recall the notation
oy = Y qou,,, w € W,. Set 6 = min,ep, oy, and let 8 = min,; o;. For each
w € D, let w' = w-1...1 be chosen so that 36 < a, < 6. Then z; € Fyy C Uy,
for each w € D, and the sets {U,,,w € D,} are still disjoint. (Since ¥(U) C U we
have U,y C U, for each w € D,,).

Now if w € D,, then if j is such that z; = ¥, (2;)

|B(21,8) N Uy | = a2, |B(2;,8 /) N U| > (B8)%|B(2;,1) NU| > a(B6)°.

So
cab? = |B(21,8)| > Y |B(21,6) N Uwr| > na(B6)*.
weD,
Choosing n large enough this gives a contradiction. d

Proposition 5.24. Let (F,41,...,%¥) be an affine nested fractal. Write z; for
the fixed point of ;. Then (F,1,...,¢n) is a p.c.f.s.s. set, and

() VIV =y,

(wp:{@:%evw}

(c) If z € V(O then z is in exactly one n-complex for each n > 1.
ach 1-complex contains at most one element o .

(d) Each 1-compl i 1 f V()

Proof. Tt is clear that (F,1q,...,%a) is a self-similar structure. Relabelling the ;,

we can assume V(O) = {z1,...,2} where 2 < k < M. We begin by calculating B,
I and P. It is clear from (A3) that

B=7 7.
sF£t
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531) , and therefore

Let w € T. Then m(w) € B, so (as m(w) € Fy,) n(w) € V.

m(ow) € v Say m(ow) = z,, where s € {1,..,k}. Then since z, € F,,,, by Lemma

5.23 we must have wy = s. So 9, (m(c?w)) = 7(s-0?w) = w(ow) = 2, and therefore

m(c?w) = z,. So w3 = s, and repeating we deduce that cw = (§). Therefore

{ow,w € T} ={(8), 1 < s < k}. This proves (b); as P is finite (F,¢1,...,9¥p) is a
p.c.f.s.s. set. (a) is immediate, since 7(P) = V(0 = {x(s)} = v

(c¢) This is now immediate from (a), (b) and Lemma 5.23.

(d) Suppose F; contains z, and z;, where s # ¢t. Then one of s, is distinct from i —
suppose it is s. Then z, € F; N F;, which contradicts (c). O

Remarks 5.25. 1. Of the examples considered above, the SG is a nested fractal
and the SG with added triangle is an ANF. The cut square is not an ANF, since if it
were, the maps 1; : R — R? would preserve the plane containing its 4 corners, and
then the nesting axiom fails. The rotated triangle fails the symmetry axiom unless
A = 1/2. The Vicsek set defined in Section 2 is a nested fractal, but the Sierpinski
carpet fails the nesting axiom.

2. The simplest examples of p.c.f.s.s. sets, and nested fractals can be a little mis-
leading. Note the following points:

(a) Proposition 5.24(c) fails for p.c.f.s.s. sets. See for example the SG with added
triangle, where V(°) contains the points {b;, by, b3 } as well as the corners {a1, as,as},
and each of the points b; lies in 2 distinct 1-cells.

(b) This example also shows that for a general p.c.f.s.s. set it is possible to have
F — V() disconnected even if F is connected.

(c) Let Vi(o) and Vj(o) be two distinct 1-cells in a p.c.f.s.s. set. Then one can have

#(Vi(o) N Vj(o)) > 2. (The cut square is an example of this). For nested fractals, I
do not know whether it is true that

©0) ~ 1,(0) e,
(5.16) #V, NV <1 ifi £

In [FHK, Prop. 2.2(4)] it is asserted that (5.16) holds for affine nested fractals,
quoting a result of J. Murai: however, the result of Murai was proved under stronger
hypotheses. While much of the work on nested fractals has assumed that (5.16)
holds, this difficulty is not a serious one, since only minor modifications to the
definitions and proofs in the literature are needed to handle the general case.

3. The symmetry hypothesis (A2) is very strong. We have
(5.17) 9oy : VO VO forall z+#y, z,y e VO,

The question of which sets V(9 satisfy (5.17) leads one into questions concerning
reflection groups in R%. It is easy to see that V() satisfies (5.17) if V() is a regular
planar polygon, a d-dimensional tetrahedron or a d-dimensional simplex. (That is,
the set V(0 = {e;,—e;,1 < i < d} C RY, where e; = (615,...,64;). I have been
assured by two experts in this area that these are the only possibilities, and my web
page see (http://www.math.ubc.ca/) contains a letter from G. Maxwell with a
sketch of a proof of this fact.
Note that the cube in R? fails to satisfy (5.17).
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4. Note also that if F is a nested fractal in R?, and V(®) c H where H is a k-
dimensional subspace, one does not necessarily have FF C H. This is the case of the
Koch curve, for example. (See [L1, p. 39]).

Example 5.26. (Lindstrpm snowflake). This nested fractal is the “classical ex-
ample”, used in [L1] as an illustration of the axioms. It may be defined briefly
as follows. Let z;, 1 < i < 6 be the vertices of a regular hexagon in R?, and let

27 = %(zl +...2) be the centre. Set

Yi(z) = zi+ Mo —z), 1<i<T.

It is easy to verify that this set satisfies the axioms (A1)-(A3) above.

Fig. 5.4. Lindstrgm snowflake.

Measures on p.c.f.s.s. sets.

The structure of these sets makes it easy to define measures which have good
properties relative to the maps ;. We begin by considering measures on W. Let
6 = (61,...,0) satisfy

M
Zﬂizl, 0<6; <1 foreach i€ Iy.
=1

n

Recall the notation 6,, = Hi:l 0, for w € W,,. We define the measure iy on W
to be the natural product measure associated with the vector . More precisely, let
€n : W — I be defined by &,(w) = w,; then fig is the measure which makes (,,)
ii.d. random variables with distribution given by P(¢, = r) = 6,. Note that for
anyn > 1, w e W,,

n

(5.18) fio ({v € W:vjn = w}) =[] bu,-

=1

Definition 5.27. Let B(F) be the o-field of subsets of F' generated by the sets
{Fyp,w € W,,n >1}. (By Lemma 5.12 this is the Borel o-field). For 4 € B(F), set

u(4) = i~ (4)).
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Then for w € W,
(5.19) ol ) = s (x (Fu) = fio ({0 5 vl = w}) = b = [[ b

In contexts when 6 is fixed we will write pu for pug.

Remark. If (F,1y,...,%) is a nested fractal, then the sets ¢;(F), 1 <i < M
are congruent, and it is natural to take ; = M ~1. More generally, for an ANF, the
‘natural’ € is given by

Bi:az,

where 3 is defined by (5.4).

The following Lemma summarizes the self-similarity of x in terms of the space
LY(F, p).

Lemma 5.28. Let f € L'(F,p). Then for n > 1

(5.20) /fd,u— > 6 /f Yo)dp, 0 >1.

weWw,

Proof. Tt is sufficient to prove (5.20) in the case n = 1: the general case then follows
by iteration. Write G = F — V(0. Note that G, N Gy = 0 if v, w € W, and v # w.
As p is non-atomic we have u(F,) = u(G, ) for any w € W,,. Let f = 1¢_ for some
w e W,. Then fot; =0if ¢ # wy, and fo,, =1¢,,. Thus

/(f o) dp = (Gow) = b5, 1(Grw) = b5, /fdu,

proving (5.20) for this particular f. The equality then extends to L' by a standard
argument. U

We will also need related measures on the sets V(?). Let Ny = #V (%, Fix 0
and set

(5.21) pa(@) =N " Y 0ul,0(z), =€V,
weW,,

Lemma 5.29. p, is a probability measure on V(") and
wlimy, oo ftn = pe.

Proof. Since #V( ) = = Ny we have
VN = DT N Y 6 Lo (e =) fu=1,
zeV () weW,, weW,,

proving the first assertion.
We may regard u, as being derived from p by shifting the mass on each n-

complex F,, to the boundary Vu(,o), with an equal amount of mass being moved to
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each point. (So a point z € VIE,O) obtains a contribution of 8,, from each n-complex
it belongs to). Soif f: F — R then

/F fdu - /F Fdpn

It follows that fi,— fig. O

(5.22) < max sup |f(z)— f(y)|

weW, $,y€Fw

Symmetries of p.c.f.s.s. sets.

Definition 5.30. Let G be a group of continuous bijections from F to F. We call
G a symmetry group of F if

(1) g: VO - v for all g € G.

(2) For each i € I, g € G there exists j € I, ¢’ € G such that

(5.23) go;=1jog.
Note that if g, h satisfy (5.23) then

(goh)o¢i:go(hozp,-):go(¢joh'):(go¢j)oh'
= (Yrog)oh' =9pog",

for some j,k € I, ¢',h', 9" € G. The calculation above also shows that if G; and
Go are symmetry groups then the group generated by G; and G, is also a symmetry
group. Write G(F) for the largest symmetry group of F. If G is a symmetry group,
and g € G write (i) for the unique element j € I such that (5.23) holds.

Lemma 5.31. Let g € G. Then for each n > 0, w € W,,, there exist v € W,,,
g' € G such that g o, = 1, 0 g'. In particular g : V(™ — V().

Proof. The first assertion is just (5.23) if n = 1. If n > 1, and the assertion holds
for all v € W,, thenif w =7-v € W, 47 then

gothy =goh;0th, =1hjog 0th, =1hj0thy 04",
forjel, ¢g,¢" €g. O

Proposition 5.32. Let (F,41,...,¥) be an ANF. Let G, be the set of isometries
of R? generated by reflections in the hyperplanes bisecting the line segments [z;, zjl,
i # 3, 2i,2; € VO, Let Gy be the group generated by Gi. Then Gr = {g|r : g € Go}
is a symmetry group of F.

Proof. If g € Gy then g : V(™ — V(%) for each n and hence also g : F — F. Let
i € I: by the symmetry axiom (A2) g(Vi(O)) = V]-(O) for some j € I. For each of
the possible forms of V(9 given in Remark 5.25(3), the symmetry group of v s

generated by the reflections in G;. So, there exists ¢’ € Gy such that goy; = ¢,0g’.
Thus (5.23) is verified for each g € G1, and hence (5.23) holds for all g € Gy. O

Remark 5.33. In [BK] the collection of ‘p.c.f. morphisms’ of a p.c.f.s.s. set was
introduced. These are rather different from the symmetries defined here since the
definition in [BK] involved ‘analytic’ as well as ‘geometric’ conditions.
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Connectivity Properties.

Definition 5.34. Let F be a p.c.f.s.s. set. For n > 0, define a graph structure on
V(") by taking {z,y} € E, if z # y, and z,y € Vi for some w € W, .

Proposition 5.35. Suppose that (V1) E;) is connected. Then (V(™,E,) is con-
nected for each n > 2, and F is pathwise connected.

Proof. Suppose that (V(*) E,) is connected, where n > 1. Let z,y € V{»+tD_ If

x,Y € Vé,l) for some w € W,,, then, since (V(l),El) is connected, there exists a path
Yt (z) = 20,21,y 2k = P t(y) in (VW,E;) connecting ¢, (z) and ¢ (y). We
have z;_y, 2z; € VIE,?) for some w; € Wy, for each 1 < i < k. Then if 2z = v¥,(z),
Zi_q1, 2t € Fy,p and so {z}_,,2;} € E,y1. Thus z,y are connected by a path in
(VD By ).

For general z, y € V(»t1) as (V("),En) is connected there exists a path
Yo, -+, Ym in (V™ E,) such that {y;_1,9;} € E, and z,yo, and y,y,, lie in the
same n + 1-cell. Then, by the above, the points x,y9,¥1,.-.,Ym,y can be connected
by chains of edges in E,, ;.

To show that F is path-connected we actually construct a continuous path
v :[0,1] — F such that F = {(t),t € [0,1]}. Let zg,...,zy be a path in (V1) E,)
which is “space-filling”, that is such that V(!) C {zg,...,zx}. Define y(i/N) = z;,
Ay = {i/N, 0 < i < N}. Now zg,z1 € Vu(,o), for some w € W;. Let z¢g =
Y0,Y1,---»Ym = T1 be in a space-filling path in ( u(,l),Ez). Define v(k/Nm) = y,
0 < k < m. Continuing in this way we fill each of the sets Vé,l), w € Wy, and so
can define Ay C [0,1] such that A5 C Ay, and (t), t € A, is a space filling path in
the graph (V(z), E,). Repeating this construction we obtain an increasing sequence
(A,) of finite sets such that y(t), t € A, is a space filling path in (V(®,E,), and
UnA, is dense in [0,1]. If £ € A,,, and t' < ¢ < ¢’ are such that (¢',t") N A4, = {t},
then ~(s) is in the same n-complex as (¢t) for s € (¢',t"). So, if t € [0,1] — A, and
Snytn € A, are chosen so that s, <t < t,, (8n,tn) N A, = 0, then the points y(u),
u € AN(s,t) all lie in the same n-complex. So defining y(¢) = lim,, y(¢,), we have
that the limit exists, and 7y is continuous. The construction of « also gives that -y is

space filling; if w € W then for any n > 1 a section of the path, v(s), a, < s < by,
5 € Ay, fills V).
It follows immediately from the existence of v that F' is pathwise connected. [

Remark. This proof returns to the roots of the subject — the original papers
of Sierpinski [Siel, Sie2| regarded the Sierpinski gasket and Sierpinski carpet as
“curves”.

Corollary 5.36. Any ANF is pathwise connected.

Remark 5.37. If F is a p.c.f.s.s. set, and the graph (V(!),E;) is not connected,
then it is easy to see that F' is not connected.

For the case of ANF's, we wish to examine the structure of the graphs (V(”) JE,)
a little more closely. Let (F,4¢1,...,%) be an ANF. Then let

a:min{|x—y| D,y € V(O),x;«éy},
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and set
E) = {{z,y} e VO : |z — y| = a},

E, = {{$7y} €E,:z=1vu(z'),y = Yul(y’) for some
weW,, {z',y'} € E{]}, n > 1.

Proposition 5.38. Let F be an ANF.

(a) Let =,y z € V(0 be distinct points. Then there exists a path in (V) E})
connecting x and y and not containing z.

(b) Let z,y € V(). There exists a path in (V) E!) connecting =,y which does
not contain any point in V©) — {z y}.

(c) Let z,y,z',y' € V(O with |z — y| = |&' —4'|. Then there exists g € G such that
9(z") ==z, g(y') =y.

Proof. If #(V(©) = 2 then Eq = E{, so (a) is vacuous and (b) is immediate from
Corollary 5.36. So suppose #(V(O)) > 3.

(a) Since (see Remark 5.25(3)) V(0 is either a d-dimensional tetrahedron, or a d-
dimensional simplex, or a regular polygon, this is evident. (For a proof which does
not use this fact, see [L1, p. 34-35]).

(b) This now follows from (a) by the same kind of argument as that given in Propo-
sition 5.35.

(c) Write g[z, y] for the reflection in the hyperplane bisecting the line segment [z, y].
Let g1 = g[y,y'], and z = g1(z'). Then if z = = we are done. Otherwise note that
|z —y| =2’ —y'| = |z —yl, so if g2 = g[z, 2] then g2(y) = y. Hence g; 0 g2 works. [

Metrics on Nested Fractals.

Nested fractals, and ANFs, are subsets of R?, and so of course are metric spaces
with respect to the Euclidean metric. Also, p.c.f.s.s. sets have been assumed to be
metric spaces. However, these metrics do not necessarily have all properties we
would wish for, such as the mid-point property that was used in Section 3. We saw
in Section 2 that the geodesic metric on the Sierpinski gasket was equivalent to the
Euclidean metric, but for a general nested fractal there may be no path of finite
length between distinct points. (It is easy to construct examples). It is however,
still possible to construct a geodesic metric on a ANF.

For simplicity, we will just treat the case of nested fractals. Let (F, (;)},) be
a nested fractal, with length scale factor L. Write d,(z,y) for the natural graph
distance in the graph (V) E,). Fix z¢, yo € V(9 such that {zo,y0} € E}, and let
an = dp(20,90), and by be the maximum distance between points in (V) E}).

Lemma 5.39. Ifz,y € V(® then a, < dn(z,y) < boay,.

Proof. Since z,y are connected by a path of length at most by in (V(),El), the
upper bound is evident. Fix z,y, and let k = d,,(z,y). If {z,y} € E{ then d,(z,y) =
dn(T0,y0) = an, so suppose {z,y} ¢ Ej. Choose y' € V(%) such that {z,y'} € EJ,
let H be the hyperplane bisecting [y, y’] and let g be reflection in H. Write 4, A’
for the components of R — H containing y,y’ respectively. As |z — ¢'| < |z — y|
we have z € A'. Let z = zy,21,...,2 = y be the shortest path in (V(*) E,)
connecting  and y. Let j = min{i : z; € A}, and write z; = z; if i < j, 2} = g(z;)
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if 4 > j. Then 2!, 0 < i < k is a path in (V("),E,) connecting z and y’, and so

do(z,y) =k > dy(z,y') = an. O
Lemma 5.40. Let z,y € V(). Then for m > 0
(524) amdn(way) S dn-}-m(a:ay) S bOamdn(wvy)'

In particular
(5.25) A Om < Gpim < bpanady,, m>0,m>0.

Proof. Let k = d,(z,y), and let & = zp,21,...,2; = y be a shortest path connecting
z and y in (V(™,E,) . Then since by Lemma 5.39 d,,(zi_1,2;) < bgam, the upper
bound in (5.24) is clear.

For the lower bound, let r = dp4m(2,y), and let (z;)7_, be a shortest path in
(V("+m),En+m) connecting x,y. Let 0 = ¢g,21,...,1, = 7 be successive disjoint hits
by this path on V(™). (Recall the definition from Section 2: of course it makes sense
for a deterministic path as well as a process). We have s = d,(z,y) > an. Then
since z;;_,,2;,; lie in the same n-cell, i; — i;_1 = dm(2;,_,,2i;) > am, by Lemma
5.39. Sor = Z;Zl(ij —1j_1) > Qplp. d

Corollary 5.41. There exists y € [L,bpay] such that
(5.26) bo_l'y” <a, <A™

Proof. Note that log(bpa, ) is a subadditive sequence, and that log a,, is superaddi-
tive. So by the general theory of these sequences there exist 6, #; such that

n—oo

8o = lim n~'log(bpan) = ir;fo n"log(byan),

1 = lim n~*log(ay,) = supn~'log(a,).
n— 00 n>0

So 8y = 61, and setting v = €%, (5.26) follows.
To obtain bounds on 7 note first that as a, < byaja,—1 we have v < byay.
Also,

|zo — yo| < anL™"|zo — yol,

sovy > L. O

Definition 5.42. We call d. = logy/log L the chemical exponent of the fractal F,
and y the shortest path scaling factor.

Theorem 5.43. There exists a metric drp on F' with the following properties.
(a) There exists ¢; < oo such that for each n > 0, w € W,,,

(527) dF(mvy) < 017_n for z,Yy € Fun
and
(5.28) dp(z,y) > gy ™™ for x € VW y € N, (z)°.

(b) dr induces the same topology on F as the Euclidean metric.



78
(c) dg has the midpoint property.
(d) The Hausdorff dimension of F with respect to the metric dr is

log M
2 d¢(F) = .
(5:29) (F) = 122

Proof. Write V. = U, V(" . By Lemma 5.41 for z,y € V we have

(5.30) by Y™ (2, y) < dngm(2,y) < boy™dn (2, y).

So (v ""dptm(z,y),m > 0) is bounded above and below. By a diagonalization
argument we can therefore find a subsequence n;y — oo such that

dr(z,y) = LILIIOIO v "*d,, (z,y) exists for each z,y € V.

So, if z,y € VJ,O) where w € W,, then
(5.31) gy < dp(z,y) < coy ™

It is clear that dF is a metric on V.
Let n > 0and y € VW, For m = n— 1,n — 2,...,0 choose inductively
Ym € V(™ such that y,, is in the same m-cell as Ym41s ey Yn. LThen

Qo1 (U Yma1) < max{dy(z',y") 1 2',y' e VDY = ¢ < 0.

So by (5.30) dp(Ym»Yms1) < boy™ ("¢, and therefore

o

d(yk,y) <ecd Tt =dy R
1=k

So if z,y € V are in the same k-cell, choosing zj in the same way we have

(5.32) dr(z,y) < dp(z,zr) + de(zh, yi) + dr(yr, y) < a1y,

since dg(2g,yr) < byp. Thus dp is uniformly continuous on V x V, and so extends
by continuity to a metric dg on F. (a) is immediate from (5.31).

If 2,y € V(™ and = # y then dp(z,y) > by 'y~™. This, together with (5.30),
implies (b).

If 2,y € V(*) then there exists z € V(") such that

|dn(u, z) — %dn(m,y)| <1, u=u=zuy.

So the metrics d,, have an approximate midpoint property: (c) follows by an easy
limiting argument.

Let u be the measure on F associated with the vector § = (M1, .., M~1).
Thus u(F,) = M~*l for each w € W,,. Since we have diamg, (F,) =< v~ /%! it
follows that, writing dy = log M/ log,

C5rdf < u(Bgg(z,r)) < cGrdf, recF

and the conclusion then follows from Corollary 2.8. O
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Remark 5.44. The results here on the metric dr are not the best possible. The
construction here used a subsequence, and did not give a procedure for finding the
scale factor . See [BS|, [Kum2|, [FHK], [Ki6] for more precise results.

6. Renormalization on Finitely Ramified Fractals.

Let (F,41,...,%n) be a p.cfs.s. set. We wish to construct a sequence Y (™) of
random walks on the sets V(") nested in a similar fashion to the random walks on
the Sierpinski gasket considered in Section 2. The example of the Vicsek set shows
that, in general, some calculation is necessary to find such a sequence of walks. As
the random walks we treat will be symmetric, we will find it convenient to use the
theory of Dirichlet forms, and ideas from electrical networks, in our proofs.

Fix a p.c.f.s.s. set (F, (Qp,)f‘il), and a Bernouilli measure @ = pg on F, where
each 8; > 0. We also choose a vector » = (71,...,7ar) of positive “weights”: loosely
speaking r; is the size of the set ¢;(F) = F;, for 1 <i < M. We call r a resistance
vector.

Definition 6.1. Let D be the set of Dirichlet forms &£ defined on C (V(O)). From Sec-
tion 4 we have that each element £ € D is of the form €4, where A is a conductance
matrix. Let also [D; be the set of Dirichlet forms on C(V(l)).

We consider two operations on [D:

(1) Replication — i.e. extension of £ € I to a Dirichlet form &% € ;.
(2) Decimation/Restriction/Trace. Reduction of a form £ € D; to a form £ € D.
Note. In Section 4, we defined a Dirichlet form (£, D) with domain D C L2(F, ).

But for a finite set F, as long as u charges every point in the set it plays no role
in the definition of £. We therefore will find it more convenient to define £ on

C(F)={f:F —R}.

Definition 6.2. Given £ € D, define for f,g € C(V(l)),
M

(6.2) ER(f,9) =Y 1 E(f o thirg o).

=1

(Note that as ¢; : VO — V) foy, € C(V(®).) Define R: D — D; by
R(&) = EE.

Lemma 6.3. Let £ = €4, and let

(6.3) afy = z_; 1 (ZEV;(O)) 1 (eri(O)) Ti_la@bi_l(m)ﬂ/)i_l(y)'
Then
(6.4) ER(f,9) = 3 2l (F(z) = f(v)) (9(2) — 9(y))-
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AR = (afy) is a conductance matrix, and £¥ is the associated Dirichlet form.

Proof. As the maps ; are injective, it is clear that aR > 0if z # y, and o < 0.
Also a® = af is immediate from the symmetry of A. ertmg T, =P, l(a:) we have

zy yz
R _
Z aa:y_z i V(O) Z 1V(°) ¥, (z),%; " (v)
yev ) yev)
—Z Hyw(@) D) aay =0,
yev®

so AP is a conductance matrix.

To verify (6.4), it is sufficient by linearity to consider the case f = g = 6,
ze€V), Let B={iecW, :z¢ K(O)}. If : ¢ B, then f o;(z) = 0, since ¥;(z)
cannot equal 2. If i € B, then f o 4;(z) = §,(z), where z; = ¥, (2). So,

5(f oy, fo ")/’z) = 8(621"621‘) = —0zz-

Thus
ER(f 1) == 3 i oms = - Z vy (2)ay-10) g1y = —az,
icB
while \
32 al (f(z)— fly) =—fTARf = -
T,y
So (6.4) is verified. O

The most intuitive explanation of the replication operation is in terms of elec-
trical networks. Think of V(?) as an electric network. Take M copies of V(9 and
rescale the ith one by multiplying the conductance of each wire by r;° 1 (This ex-
plains why we called r a resistance vector). Now assemble these to form a network

with nodes V1), using the ith network to connect the nodes in Vi(o). Then £% is
the Dirichlet form corresponding to the network V1),

As we saw in the previous section, for z,y € V() there may in general be
more than one 1-cell which contains both z and y: this is why the sum in (6.3) is
necessary. If x and y are connected by k wires, with conductivities cy,...,cg then
this is equivalent to connection by one wire of conductance ¢; + ... + cg.

Remark 6.4. The replication of conductivities defined here is not the same as the
replication of transition probabilities discussed in Section 2. To see the difference,
consider again the Sierpinski gasket. Let V() = {#z1,22,23}, and y3 be the mid-
point of [z1,2s], and define y;, ys similarly. Let A be a conductance matrix on
V(O), and write a;; = a,,,,. Take r; = r2 = r3 = 1. While the continuous time
Markov Chains X, X(1) associated with £4 and & f will depend on the choice of
a measure on V(%) and V(1) their discrete time skeletons that is, the processes X (*)
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sampled at their successive jump times do not — see Example 4.21. Write Y9 for
these processes. We have

+ as1
P (V) € {oomn}) = .
1 €z 2a12 + a31 + ag3

On the other hand, if we replicate probabilities as in Section 2,

PYs (Yl(l) c {22,91}) — pys (Yl(l) c {21,92}) _ %;

in general these expressions are different. So, even when we confine ourselves to
symmetric Markov Chains, replication of conductivities and transition probabilities
give rise to different processes.

Since the two replication operations are distinct, it is not surprising that the
dynamical systems associated with the two operations should have different be-
haviours. In fact, the simple symmetric random walk on V(%) is stable fixed point
if we replicate conductivities, but an unstable one if we replicate transition proba-
bilities.

The second operation on Dirichlet forms, that of restriction or trace, has already
been discussed in Section 4.

Definition 6.5. For £ € D; let
(6.5) T(E) = Tr(ElVD).

Define A : D — D by A(€) = T(R(€)). Note that A is homogeneous in the sense
that if 8 > 0,
A(BE) = BA(E).

Example 6.6. (The Sierpinski gasket). Let A be the conductance matrix corre-
sponding to the simple random walk on V(9 so that

py =1, THY, gz =—2.

Then AP is the network obtained by joining together 3 symmetric triangular net-
works. If A(£4) = Ep, then B is the conductance matrix such that the networks
(V) AR) and (V{9 B) are electrically equivalent on V(?). The simplest way to
calculate B is by the A —Y transform. Replacing each of the triangles by an (upside
down) Y, we see from Example 4.24 that the branches in the Y each have conduc-
tance 3. Thus (V1) A®) is equivalent to a network consisting of a central triangle of
wires of conductance 3/2, and branches of conductance 3. Applying the transform
again, the central triangle is equivalent to a Y with branches of conductance 9/2.
Thus the whole network is equivalent to a Y with branches of conductance 9/5, or
a triangle with sides of conductance 3/5.
Thus we deduce

A(E4) = EB, where B = 2 A.

oo
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The example above suggests that to find a decimation invariant random walk
we need to find a Dirichlet form £ € D such that for some A > 0

(6.6) A(E) = AE.

Thus we wish to find an eigenvector for the map A on 0. Since however (as we will
see shortly) A is non-linear, this final formulation is not particularly useful. Two
questions immediately arise: does there always exist a non-zero (£, ) satisfying
(6.6) and if so, is this solution (up to constant multiples) unique? We will abuse
terminology slightly, and refer to an £ € D such that (6.6) holds as a fized point of
A. (In fact it is a fixed point of A defined on a quotient space of D.)

Example 6.7. (“abc gaskets” — see [HHW1]).

Let my, msy, m3 be integers with m; > 1. Let 21, 2z, 23 be the corners of the unit
triangle in R?, H be the closed convex hull of {z1,23,23}. Let M = my +mgy + ms,
and let ¢;, 1 <7 < M be similitudes such that (writing for convenience ¥y ; = 9,
1<j< M) H;, =¢;,(H) C H, and the M triangles H; are arranged round the
edge of H, such that each triangle H; touches only H;, ; and H;,;. (H; touches
Hjs and Hj only). In addition, let 21 € Hy, z9 € Hypy41, 23 € Hypytm, +1- So there
are m3 + 1 triangles along the edge [z1, 23], and m; + 1, ms + 1 respectively along
[22,23], [23,21]. We assume that 1; are rotation-free. Note that the triangles H,
and Hjs do not touch, unless m; = my = mg = 1.

Let F be the fractal obtained by Theorem 5.4 from (t1,...,%a). To avoid
unnecessarily complicated notation we write v; for both ¢; and ;|F.

A
AA

A A
A

Figure 6.1: abc gasket with m; = 4, my = 3, mg = 2.

A

It is easy to check that (F,1,...,%) is a p.c.f.s.s. set. Writer =1, s = m3+1,
t = ms 4+ my + 1. We have 7(i$) = x((i + 1)#) for 1 < i < mg, 7(it) = w((¢ + 1)3)
for ms +1 §i§m3+m1,7r(i7"):7r((i+1)i) for mg +mq +1<i< M —1, and
m(M7+) = m(1¢). The set B = U(H; N H;) consists of these points. Hence

P = {(T),(S),(t)}, v = {#1,22, 23}
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While it is easier to define F in R?, rather than abstractly, doing so has the
misleading consequence that it forces the triangles H; to be of different sizes. How-
ever, we will view F' as an abstract metric space in which all the triangles H; are of
equal size, and so we will take r; =1 for 1 <:¢ < M.

We now study the renormalization map A. If £ = €4 € D, then A is specified
by the conductivities

a]. - 0’22,237 a2 - a’23,217 a3 — a‘Zl,Zg'

Let f : R®* — R3 be the renormalization map acting on (a3, az,a3). (Soif A = A(a)
then A(g) = gA (f(a)) )

It is easier to compute the action of the renormalization map on the variables 3;
given by the A —Y, transform. So let ¢ : (0,00)® — (0,00)3 be the A —Y map given
in Example 4.24. Note that ¢ is bijective. Let § = ¢(a) be the Y —conductivities,

and write 3 = (51 , 52,53) for the renormalized Y —conductivities: then 8 = o(f(a)).

Applying the A — Y transform on each of the small triangles, we obtain a
network with nodes 21,22, 23,¥1,¥2,ys, where {z;,y;} has conductivity 3;, and if
i # j {yi,y;} has conductivity 8;, and if ¢ # j, {y;,v;} has conductivity

B
* B+ By

where k = k(i, ) is such that k € {1,2,3} — {7,j}.
Apply the A —Y transform again to {y1,y2,¥3}, to obtain a Y, with conduc-
tivities 61, 02, 03, in the branches where

bivi=S=mr+rrt+rn 1<i<3
Then
(6.7) Bri=prt+ ot =0 + s

Suppose that a € (0,00)% is such that p(a) = Aa for some A > 0. Then since
w(fa) = 6 p(a) for any 6 > 0, we deduce that 3 = ¢(f(a)) = A\G. So, from (6.7),

—1,5—-1 _ -1 B B
A ’81 _’61 + (ﬁ2+[233)2m15 ’

which implies that A=! > 1. Writing T = 318203/S, and § = TA(1 — \)71, we
therefore have

my (B2 + B3) =9,

and (as S,T are symmetric in the ;) we also obtain two similar equations. Hence

(6.8) B2+ B3 =0/m1, Bs+pP1=0/my, [1+P2=0/ms,

which has solution

(6.9) 261 = 0(my "t +myt —mit), ete.
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Since, however we need the 3; > 0, we deduce that a solution to the conductivity
renormalization problem exists only if mi_1 satisfy the triangle condition, that is
that

(6.10) myt +myt >mrt, o myt4+myt >myt, mit+mgt > mpt

If (6.10) is satisfied, then (6.9) gives (; such that the associated a = ¢~!(3) does
satisfy the eigenvalue problem.

In the discussion above we looked for strictly positive a such that p(a) = Aa.
Now suppose that just one of the «;, asz say, equals 0. Then while z, and z; are only
connected via z3 in the network V(%) they are connected via an additional path in
the network V(1) So, p(a)s > 0, and o cannot be a fixed point. If now o; > 0, and
ay = a3 = 0 then we obtain ¢(a)2 = p(a); = 0. So a = (1,0,0) satisfies p(a) = A
for some A > 0. Similarly (0,1,0) and (0,0,1) are also fixed points. Note that in
these cases the network (V(%), A(a)) is not connected.

The example of the abc gaskets shows that, even if fixed points exist, they
may correspond to a reducible (ie non-irreducible) £ € ). The random walks (and
limiting diffusion) corresponding to such a fixed point will be restricted to part of
the fractal F. We therefore wish to find a non-degenerate fized point of (6.6), that
is an £4 € D such that the network (V(%), A) is connected.

Definition 6.8. Let D! be the set of £ € Dy such that £ is irreducible — that is
the network (V(O),A) is connected. Call £ € D strongly irreducible if £ = £4 and
azy > 0 for all z # y. Write D** for the set of strongly irreducible Dirichlet forms
on V(0.

The existence problem therefore takes the form:

Problem 6.9. (Existence). Let (F,1,...,9) be a p.c.f.s.s. set and let »; > 0.
Does there exist £ € D?, A > 0, such that

(6.12 A(E) = AE?

Before we pose the uniqueness question, we need to consider the role of symmetry.
Let (F,(1;)) be a p.c.f.s.s. set, and let H be a symmetry group of F.

Definition 6.10. £ € D is H-invariant if for each h €¢ H
E(foh,goh)=E(f,g), f.ge (VD)

ris H-invariant if v,y = ri for all h € H. (Here h is the bijection on I associated

with h).
Lemma 6.11. (a) Let £ = £4. Then & is H-invariant if and only if:

(6.13) Ah(e) h(y) = Gay for all z,y € v, heHn.

(b) Let £ and r be H-invariant. Then AE is H-invariant.

Proof. (a) This is evident from the equation £(1,,1y) = —agy.
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(b) Let f € C(V)). Then if h € H,

5R(f0h,foh)—zT‘i_lf(fohmbi,fohow

—Z E(f oy o i fo vy o hs)
Z rh(l) E(f o iy, f oY) = ER(f, 1)
If g € C(V(©) then writing € = A(E), if f|y©) = g then as f o h|y© =goh,
E(goh,goh) <ER(foh,foh)=ER(F, 1),

and taking the infimum over f, we deduce that for any h € H, g(goh, goh) < g(g, g)-
Replacing g by g o h and h by h~! we see that equality must hold. O

If the fractal F has a non-trivial symmetry group G(F) then it is natural to
restrict our attention to G(F')-symmetric diffusions. We can now pose the uniqueness
problem.

Problem 6.12. (Uniqueness). Let (F,(v;)) be a p.c.f.s.s. set, let H be a symmetry
group of F, and let 7 be H-invariant. Is there at most one H-invariant £ € D* such
that A(E) = AE?

(Unless otherwise indicated, when I refer to fixed points for nested fractals,
I will assume they are invariant under the symmetry group Gr generated by the
reflections in hyperplanes bisecting the lines [z, y], z,y € V(0).

The following example shows that uniqueness does not hold in general.

Example 6.13. (Vicsek sets — see [Me3].) Let (F,4;,1 < i < 5) be the Vicsek set
— see Section 2. Write {21, 22, 23, 24, } for the 4 corners of the unit square in R?. For
a,[,7 > 0 let A(a,3,7) be the conductance matrix given by

a1z = Qg3 =ase =ag41 =, o3 =f, axn=71,
where a;; = a., ;. If 1 is the group on F generated by reflections in the lines [21, 23]

and [2z3,z4] then A is clearly H-invariant. Define &, 5, ¥ by

MEa) =€,435.5

Then several minutes calculation with equivalent networks shows that

. ala+B)aty)

(6.14) A= 2 + 308 + 3ay + By’
16: %(a+ﬂ)_&7
¥=1(a+v)-a.

If (1,83,7) is a fixed point then (&,B, v) = (6,003,07) for some § > 0, so that
B =af,7=ay. Soa :%, and this implies that Sy = 1. We therefore have that
(1, 8,871) is a fixed point (with A = %) for any § € (0,00) Thus for the group H

uniqueness does not hold.
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However if we replace H by the group Gr = G(F), generated by all the sym-
metries of the square then for £4 to be Gr-invariant we have to have 8 = 7. So in
this case we obtain

_ o(a +p)?
6.15 =

ﬁ(aaﬁ) = %(a —I_IB) —a.
This has fixed points (0,3), 8 > 0, and (a, «), o > 0. The first are degenerate, the
second not, so in this case, as we already saw in Section 2, uniqueness does hold for

Problem 6.12.
This example also shows that A is in general non-linear.

As these examples suggest, the general problem of existence and uniqueness is
quite hard. For all but the simplest fractals, explicit calculation of the renormaliza-
tion map A is too lengthy to be possible without computer assistance — at least for
20th century mathematicians. Lindstrgm [L1] proved the existence of a fixed point
£ € D* for nested fractals, but did not treat the question of uniqueness. After
the appearance of [L1], the uniqueness of a fixed point for Lindstrgm’s canonical
example, the snowflake (Example 5.26) remained open for a few years, until Green
[Gre] and Yokai [Yo| proved uniqueness by computer calculations.

The following analytic approach to the uniqueness problem, using the theory
of quadratic forms, has been developed by Metz and Sabot — see [Me2-Me5, Sabl,
Sab2]. Let M be set of symmetric bilinear forms Q(f, g) on C(V(%)) which satisfy

Q(1,1) = 0,
Q(f,f) >0 forall f e C(V),
For Q1, Q2 € M4 we write Q1 > Q2, if Q2 — Q1 € M, or equivalently if
Qa(f,f) 2 Qu(f, f) for all f € C(V(O))' Then [ C My ; it turns out that we need

to consider the action of A on M, and not just on [D. For () € M, the replication
operation is defined exactly as in (6.2)

M
(616) QR(f;g) = Z Ti_l Q(f 0 'l;biag 0 ¢z)a .fag € C(V(l))

=1

The decimation operation is also easy to extend to M, :

T(Q™)(g,9) = mf{QR(f,£): f € C(VV), flyw = g};
we can write T(QF) in matrix terms as in (4.24). We set A(Q) = T(QF).

Lemma 6.14. The map A on M, satisfies:

(a) A : M4 — M, and is continuous on int(M 4 ).
(b) A(Q1+ Q2) > A(Q1) + A(Q2).

(c) A(6Q) = 0A(Q)

Proof. (a) is clear from the formulation of the trace operation in matrix terms.
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Since the replication operation is linear, we clearly have Q¥ = QF + QZF,

(0Q)F = 0QF. (c) is therefore evident, while for (b), if g € C(V(?),

T(QF)(g,9) = inf{QF (f.f)+QF (f.f): flve =g}
>inf{QT (£,f): flvw =g} +inf{QF (£, f) : flvo =g}
= T(Q)(g,9) + T(Q3) (g, 9)- O

Note that for £ € D¢, we have £(f, f) = 0 if only if f is constant.
Definition 6.15. For &,& € D? set

m(€1/E2) =sup{a > 0; & — aby € My}

=in Li(4,7) : f non constan
= tant}-
Similarly let
. gl (.fa f) .
M(&1/&) = sup{—gz(f,f) : f non constant}.
Note that
(618) M(51/52) = m(52/€1)_1.

Lemma 6.16. (a) For £1,& € D*, 0 < m(&1,&) < o .

(b) If &1, E; € D*i then m(E1/E) = M(E1/E;) if and only if E; = A& for some
A>0.

(c) If £1,E2,E3 € DY then

m(&1/E€s) > m(€1/E;) m(E2/E3),
M(&1/€) < M(&E:1/E2) M(E2/Es).

Proof. (a) This follows from the fact that &; are irreducible, and so vanish only on
the subspace of constant functions.
(b) is immediate from the definition of m and M.

(c) We have
&N EGD |
R e N T A It
while the second assertion is immediate from (6.18). O

Definition 6.17. Define

M(& &)

2] 61,6, € DL
m(€1 52) 1 2

dH(gl,gg) = 10g

Let pD¢ be the projective space D*/ ~, where & ~ & if & = A&. dp is called
Hilbert’s projective metric — see [Nus|, [Me4].
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Proposition 6.18. (a) dg(&;,&;) = 0 if and only if & = A&, for some A\ > 0.
(b) dg is a pseudo-metric on D*, and a metric on pD®.

(c) IfE,E,E € D* then for ag, a1 > 0,
dH(g,Olo 5(] + 011(91) S max(dH(é’,Eg),dH(E,El)).

In particular open balls in dg are convex.
(d) (pD*,dy) is complete.

Proof. (a) is evident from Lemma 6.17(b). To prove (b) note that dg(&;1,&2) > 0,
and that dg(&1,&) = dg(€s,&1) from (6.18). The triangle inequality is immediate
from Lemma 6.17(c). So dgr is a pseudo metric on D°®.

To see that dg is a metric on pID?, note that

m()\c‘,’l/é'g) = )\m(c‘,’l/é'g), A > 0,
from which it follows that dg(A&1,&2) = dy(&1,&2) and thus dy is well defined on

pDi. The remaining properties are now immediate from those of dy on D¢.

(c) Replacing & by (m(&1/&)/m(€/€1))€Er we can suppose that
m(E/&) =m(E /E;) = m.
Write M; = M(E/&;). Then if F = ag & + oz &,

aoéo(f, f) + ar&a(f, f)
E(£,1)
Z aom(é'/é’o) + alm(é'/é’l) =y + a7 .

M(E/F) = ir;f

Similarly M(E/F) < agMy + o1 My. Therefore

expdy (€, F) < (ao/(ao + 1)) (Mo/m) + (ea /(a0 + 1)) (M1 /m)
< max (My/m, My /m).

It is immediate that if & € B(€,r) then dg(€, & + (1 — X\)&1) < 7, so that
B(&,r) is convex. For (d) see [Nus, Thm. 1.2]. O

Theorem 6.19. Let £,&, € D*. Then

(6.19) m(A(&1),A(&2)) > m(&1, &),

(6.20) M(A(&1),A(&2)) < M(&1,E2).
In particular A is non-expansive in dy :
(6.21) dg(A(&1),A(E2)) < dg(&1,E2).

Proof. Suppose o < m(€1,&). Then Q =& — a & € My, and Q(f, f) > 0, for all
non-constant f € C(V(O)). So by Lemma 6.14

A(&r) = AMQ + a&) > A(Q) + aA(&,),
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and since A(Q) > 0, this implies that A(£;) — aA(E2) > 0. So a < m(A(&1),A(E2)),
and thus m(&1,&2) < m(A(&1),A(E2)), proving (6.19). (6.20) and (6.21) then follow
immediately from (6.19), and the definition of dg. O

A strict inequality in (6.21) would imply the uniqueness of fixed points. Thus
the example of the Vicsek set above shows that strict inequality cannot hold in
general. So this Theorem gives us much less than we might hope. Nevertheless, we
can obtain some useful information.

Corollary 6.20. (See [HHW1, Cor. 3.7]) Suppose &1, &, are fixed points satisfying
A(E,) = A,E,, 1= 1,2 Then )\1 = Az.

Proof. From (6.19)

m(€1/E2) < m(A(E1)/A(E2)) = (M/A2)m(E1/Ez),
so that A\; > Ag. Interchanging £ and £ we obtain A\; = A,. Il
We can also deduce the existence of H-invariant fixed points.

Proposition 6.21. Let H be a symmetry group of F. If A has a fixed point &; in
[D* then A has an H-invariant fixed point in [D*.

Proof. Let A = {£ € D : £ is H-invariant.}. (It is clear from Lemma 6.11 that
A is non-empty). Then by Lemma 6.11(b) A : A — A. Let & € A, and write
r =dg(&,&), B = Bg,(E1,2r). By Theorem 6.20 A: B - B. SoA: ANB —
AN B. Each of A, B is convex (A is convex as the sum of two H-invariant forms
is H-invariant, B by Proposition 6.18(c)), and so A N B is convex. Since A is a
continuous function on a convex space, by the Brouwer fixed point theorem A has
a fixed point £’ € AN B, and &’ is H-invariant. O

We will not make use of the following result, but is useful for understanding
the general situation.

Corollary 6.22. Suppose A has two distinct fixed points & and &, (with £ # A&,
for any A\). Then A has uncountably many fixed points.

Proof. (Note that the example of the Vicsek set shows that (& + &) is not
necessarily a fixed point). Let ' C D* be the set of fixed points. Let &,& € F;
multiplying & by a scalar we can take m(&y,&1) = 1. Write R = dg(&,&1). If
Ex = A1 + (1 — A)&p then as in Proposition 6.19(c)

exp d')-[(g)\,g[)) < (1 - )\) + )\M(gl,g(])

and so

dr(E1/2,€0) < log((1 + €7)/2).
Thus there exists §, depending only on R, such that
A={€eD': €€ B(&,(1-8)R)()B(&,(1-6)R)}
is non-empty. Since A preserves A, A has a fixed point in A. [ thus has the property:

if £1, &, are distinct elements of [F then there exists £3 € F
such that 0 < dy(&3,&1) < dn(&E2,Er).
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As [ is closed (since A is continuous) we deduce that F is perfect, and therefore
uncountable. O

This if as far as we will go in general. For nested fractals the added structure
— symmetry and the embedding in R?, enables us to obtain stronger results. If
(F,(v;)) is a nested fractal, or an ANF, we only consider the set D* N {&€ : € is
Gr-invariant }, so that in discussing the existence and uniqueness of fixed points we
will be considering only Gg-invariant ones.

Let (F,(v;)) be a nested fractal, write G = G and let £4 be a (G-invariant)
Dirichlet form on C(V(%)). £, is determined by the conductances on the equivalence
classes of edges in (V(%), &) under the action of G. By Proposition 5.38(c) if |z —y| =
|z' — y'| then the edges {z,y} and {z',y'} are equivalent, so that A,, = A,,.

List the equivalence classes in order of increasing Euclidean distance, and write
a1, Qz...,ap for the common conductances of the edges. Since A = A(A4) is also
G-invariant, A induces a map A’ : R’j_ — R’j_ such that, using obvious notation,
A(A(a)) = A(A (a)). ,

Set D* ={a:a; > az > ... > ap > 0}. Clearly we have D* C D**. We have
the following existence theorem for nested fractals.

Theorem 6.23. (See [L1, p. 48]). Let (F,(v;)) be a nested fractal (or an ANF).
Then A has a fixed point in D*.

Proof. Let £4 € D*, and let oy, ...c;, be the associated conductivities. Let (Yz, ¢ >
0, Q®,x € V(O)) be the continuous time Markov chain associated with £4 and let

(Yo, n >0, Q°,z € V() be the discrete time skeleton of Y.
Let Eél), v Eék) be the equivalence classes of edges in (V(O),E’O), so that A,, =
aj if {z,y} € E(g’). Then if {z,y} € E'[()]),

M=y ==—""7F-
Zy#a} A‘By
As ¢; = ), A,y does not depend on z (by the symmetry of V(9)) the transition

y7#e

probabilities of Y are proportional to the a;.

Now let R(A) be the conductivity matrix on V() attained by replication of
A. Let (Xt >0, P? 2z € VV) and (X'n,n > 0, P2,z € V(1)) be the associated
Markov Chains. Let Ty, 71, ... be successive disjoint hits (see Definition 2.14) on
VO by X,.

Write A = A(A), and & for the edge conductivities given by A. Using the trace
theorem,

P*(Xr, =y) = ajjer  if {m,y} € BY.
Now let x1,y1,y2 € VO, with |z — 31| < |z — y2|. We will prove that
(6.23) IP”“()/(\—T1 =13) < P“(X—Tl = y1).

Let H be the hyperplane bisecting [y1,y2], let g be reflection in H, and z; =
9(z1). Let
T =min{n >0: X, € VIO — {2,}},
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so that T7 = T P*t-almost surely. Set
Fa(®@) = B Lz <y (1y, (X1) = 1y, (X1))-
Let p(z,9y), z,y € V(%) be the transition probabilities of X. Then

(6.24 Fra1(z) = 1a(z) fo(z) + Lac () Y p(z,9) fnly)-

Y

Let J;2 = {z € v . |z — y1| < |z — y2]}, and define Jp; analogously. We
prove by induction that f, satisfies

(6.25a) fu(z) 20,  z € Jip,
(6.25Db) fn(z) + folg(z)) >0, z € Jia.

Since fo = 1, — 1, , and y; € Jia, fo satisfies (6.25). Let = € A°U Jy» and
suppose f, satisfies (6.25). If p(z,y) > 0, and y € Jf,, then z,y are in the same
1-cell so if y' = g(y), v’ is also in the same 1-cell as z; and |z — /| < |z — y|. So
(since E4 € D*), p(z,y") > p(z,y) and using (6.25b), as fr(y') > 0,

p(z,y) fn(y) + p(z, ¥ ) faly') > p(z, y)(fuly) + fulg(y)) > 0.

Then by (6.24), fr+1(z) > 0. A similar argument implies that f, 11 satisfies (6.25b).
So (fn) satisfies (6.25) for all n, and hence its limit f., does. Thus fo(z1) =
P*( Xy =1y) — @()?T = y3) > 0, proving (6.23).
From (6.23) we deduce that a; > as > ... > ag, so that A : D* — D*. As
A (8a) = 8A'(a), we can restrict the action of A’ to the set

{aGRﬁ_ tap > . > ag ZO,Zaizl}.

This is a closed convex set, so by the Brouwer fixed point theorem, A’ has a fixed
point in D*. O

Remark 6.24. The proof here is essentially the same as that in Lindstrgm [L1]. The
essential idea is a kind of reflection argument, to show that transitions along shorter
edges are more probable. This probabilistic argument yields (so far) a stronger
existence theorem for nested fractals than the analytic arguments used by Sabot
[Sabl] and Metz [Me7]|. However, the latter methods are more widely applicable.

It does not seem easy to relax any of the conditions on ANFs without losing
some link in the proof of Theorem 6.23. This proof used in an essential fashion not
only the fact that V(% has a very large symmetry group, but also the Euclidean
embedding of V(©) and V1),

The following uniqueness theorem for nested fractals was proved by Sabot
[Sabl]. It is a corollary of a more general theorem which gives, for p.c.f.s.s. sets,
sufficient conditions for existence and uniqueness of fixed points. A simpler proof
of this result has also recently been obtained by Peirone [Pe].
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Theorem 6.25. Let (F,(1);)) be a nested fractal. Then A has a unique G g-invariant
non-degenerate fixed point.

Definition 6.26. Let £ be a fixed point of A. The resistance scaling factor of £ is
the unique p > 0 such that
AE)=ptE.

Very often we will also call p the resistance scaling factor of F: in view of Corollary
6.21, p will have the same value for any two non-degenerate fixed points.

Proposition 6.27. Let (F,(v;)) be a p.c.f.s.s. set, let (r;) be a resistance vector,
and let £4 be a non-degenerate fixed point of A. Then for each s € {1,...M} such
that m(3) € V(0),

(6.27) rep t < 1.

Proof. Fix 1 < s < M, letz = n(3), and let f =1, € C(V(9). Then

yeVvo), y#e
Let g =1, € C(V)). As A(E4) = p~ &4,

(6.28) P Aza| = A(EA)S, ) < EX(9,9) :

since g is not harmonic with respect to Ef, strict inequality holds in (6.28). By
Proposition 5.24(c), z is in exactly one 1-complex. So

EX(g,9) =) 17 Ealgo i g o) =717 Azl

and combining this with (6.28) gives (6.27). O
Since r, = 1 for nested fractals, we deduce
Corollary 6.28. Let (F,(v;)) be a nested fractal. Then p > 1.

For nested fractals, many properties of the process can be summarized in terms
of certain scaling factors.

Definition 6.29. Let (F,(¢;)) be a nested fractal, and £ be the (unique) non-
degenerate fixed point. See Definition 5.22 for the length and mass scale factors L
and M. The resistance scale factor p of F is the resistance scaling factor of £. Let

(6.29 T=DMp;

we call 7 the time scaling factor. (In view of the connection between resistances
and crossing times given in Theorem 4.27, it is not surprising that 7 should have a
connection with the space-time scaling of processes on F'.)

It may be helpful at this point to draw a rough distinction between two kinds
of structure associated with the nested fractal (F,+). The quantities introduced
in Section 5, such as L, M, the geodesic metric dr, the chemical exponent v and
the dimension d,,(F) are all geometric — that is, they can be determined entirely
by a geometric inspection of F. On the other hand, the resistance and time scaling
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factors p and 7 are analytic or physical — they appear in some sense to lie deeper than
the geometric quantities, and arise from the solution to some kind of equation on
the space. On the Sierpinski gasket, for example, while one obtains L =y = 2, and
M = 3 almost immediately, a brief calculation (Lemma 2.16) is needed to obtain
p. For more complicated sets, such as some of the examples given in Section 5, the
calculation of p would be very lengthy.

Unfortunately, while the distinction between these two kinds of constant arises
clearly in practice, it does not seem easy to make it precise. Indeed, Corollary 6.20
shows that the geometry does in fact determine p: it is not possible to have one
nested fractal (a geometric object) with two distinct analytic structures which both
satisfy the symmetry and scale invariance conditions.

We have the following general inequalities for the scaling factors.

Proposition 6.30. Let (F, (1)), be a nested fractal with scaling factors L, M, p,T.
Then

(6.30) L>1, M > 2, M > L, T=Mp> L.

Proof. L > 1, M > 2 follow from the definition of nested fractals. If § = diam(V(O)),
then, as V(1) consists of M copies of V(%) each of diameter L~'6, by the connectivity
axiom we deduce ML~19 > 4. Thus M > L.

To prove the final inequality in (6.30) we use the same strategy as in Proposition
6.27, but with a better choice of minimizing function.

Let H be the set of functions f of the form f(z) = Oz + a, where z € R¢ and O
is an orthogonal matrix. Set H, = {f|y ), f € H}. Let 0 =sup{&E(f,f): f € Ho}:
clearly # < oco. Choose f to attain the supremum, and let ¢ € H be such that

f = g|V(0). Then lf f1 = g|V(1)
M
P 0 =pE(f, F) = MENF F) < ER(g1,01) = E(g1 0 %1 0 i)

=1

However, g1 0; is the restriction to V(%) of a function of the form L0z + a;, and
so E(goi,go;) < L™20. Hence p~16 < ML™26, proving (6.30). O

The following comparison theorem provides a technique for bounding p in cer-
tain situations.

Proposition 6.31. Let (Fy,{v;,1 < i < M;}) be a p.c.fs.s. set. Let Fy C Fy,
My < M;, and suppose that (Fy,{v;,1 < i < M,}) is also a p.c.fs.s. set, and
that V}?) = VI,E(?). Let (rgk),l < i < Mjy) be resistance vectors for k = 0,1, and
suppose that 7’50) > 7’1(.1) for 1 < ¢ < My. Let Ay be the renormalization map for
(Fy, (;)11% | (rfk))f\i’i) If &, are non-degenerate Dirichlet forms satisfying Ay (Ex) =

p;lgk’ k= 0,1, then p1 < po-

Proof. Since V}S) C Vl—s,ll), we have, writing R,; for the replication maps associated
with F;,
RiE(f, 1) 2 RoE(f, f),  FeC(V)).
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So A1(E) > Ag(€) for any € € D. If m = m(&1 /&), then
pr e = A (&1) > Ai(m &) > Ag(m &) = mpy L& > py t&r,

which implies that pg > p;. d

7. Diffusions on p.c.f.s.s. sets.

Let (F, (t/},)) be a p.c.f.s.s. set, and r; be a resistance vector. We assume that

the graph (V(l),El) is connected. Suppose that the renormalization map A has a
non-degenerate fixed point £(®) = £4, so that A(é’(o)) = p~ 100 Fixing F, r, and
€4, in this section we will construct a diffusion X on F, as a limit of processes on
the graphical approximations V(™). In Section 2 this was done probabilistically for
the Sierpinski gasket, but here we will use Dirichlet form methods, following [Kus2,
Ful, Ki2].

Definition 7.1. For f € C(V (™), set
(7.1) EM ) =p" D 12 EO(f 0 thu, f o).

weW,,

This is the Dirichlet form on V{*) obtained by replication of scaled copies of £(¥,

where the scaling associated with the map ,, is p™r !.

These Dirichlet forms have the following nesting property.

Proposition 7.2. (a) For n > 1, Tr(£M|V(»—1) = gln-1),
(b)If f € C(V™), and g = f|y-1 then EM(f, f) > E=D(g,g).

(c) €™ is non-degenerate.

Proof. (a) Let f € C(V(™). Then decomposing w € W,, into v -4, v € W,_1,

(12)  EW ) = Y gt D EO(f oty ot fodh 0 t)

vEW, _1

=p" Y eV (fos o)y

’veanl

where f, = fo, € C(VWV)., Now let g € C(V»V). If flyw-1) = g then
foly@ =got, = gy. As £ ig a fixed point of A,

(7.3) inf{é’(l)(h,h) iy = g,,} - pinf{Rg(O)(h,h) bl = gv}
- pA(g(O))(gvvgv) - 8(0) (gv’gv)-

Summing over v € W,,_; we deduce therefore

inf {E(f, 1) flyo v =g} <" 110 (g,9) = £ (g,g).
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For each v € W,,_1, let h,, € C(V()) be chosen to attain the infimum in (7.3). We
wish to define f € C(V(™) such that

(74) f 0 ¢v - hva S Wn—l-
Let v € W,,_1. We define

f(¢v(y)) = hv(y)a Yy € V(l)

We need to check f is well-defined; but if v, u are distinct elements of W,,_; and
z = 1y (y) = Yu(2), then £ € V(»=1) by Lemma 5.18, and so y, z € V(%). Therefore

f(¢v(y)) = hv(y) = gv(y) = g(.’IZ) = f(¢u(z))a
so the definitions of f at = agree. (This is where we use the fact that F' is finitely

ramified: it allows us to minimize separately over each set of the form Vi,(l)).

So
eM(f, 1) =€"(g,9),
and therefore Tr (£(M|V(n=1)) = g(n=1),
(b) is evident from (a).
(c) We prove this by induction. & (0) is non-degenerate by hypothesis. Suppose
£(=1) is non-degenerate, and that £(™(f, f) = 0. From (7.2) we have

EM(f.f)=p Y €TV (F oty f o),
veEW;

and so f o %, is constant for each v € W;. Thus f is constant on each 1-complex,
and as (V1) E;) is connected this implies that f is constant. O

To avoid clumsy notation we will identify functions with their restrictions,
so, for example, if f € C(V(™), and m < n, we will write £™ (£, f) instead of

EC™ (Flyem, Flyom)-
Definition 7.3. Set V() = ux V(M. Let U = {f : V() — R}. Note that the
sequence (5(")(f,f)) 2021 is non-decreasing. Define

D' ={f €U :supEM(f,f) < oo},

E'(f,9) =supE™(f,g); f,geD.

&' is the initial version of the Dirichlet form we are constructing.
Lemma 7.4. &' is a symmetric Markov form on D'.

Proof. &' clearly inherits the properties of symmetry, bilinearity, and positivity from
the £, If f € D', and g = (0V f) A 1 then £ (g,g) < EM(F, f), as the £™) are
Markov. So £'(g,9) < &'(f, f). O

What we have done here seems very easy. However, more work is needed to
obtain a ‘good’ Dirichlet form £ which can be associated with a diffusion on F'.
Note the following scaling result for £’.
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Lemma 7.5. Forn > 1, f € D/,

(7.5) = Y " EN(f 0 Yu, 0 Pu)

weW,,

Proof. We have, for m > n, f € D',

EM(E )= p " €M (f o thu, £ oY)

weW,
Letting m — oo it follows, first that f o ,, € D', and then that (7.5) holds. O
If H is a set, and f : H — R, we write

(7.6) Osc(.B) = sup |f(x) ~ f(y)|, BCH.

Lemma 7.6. There exists a constant ¢y, depending only on £, such that

Ose(f, V) < €(f,f),  fec(vV)
Proof. Let Eq = {{z,y} : Asy > 0}. As £ is non-degenerate, (V(O),EO) is
connected; let N be the maximum distance between points in this graph. Set a =

min{A,,, {z,y} € EO}. If 2, y € V(9 there exists a chain ¢ = zg, #1,...,L, = ¥
connecting z, y with n < N, and therefore,

2
£ () - (Zlf flziz 1)I)
< n2|f Flzizy)
na ! ZAwi_l,wi f
=1

< Na'eO(f, 1), O

(z:) — F(zic1)|?

Since V(1) consists of M copies of V(0 we deduce a similar result for V(1.

Corollary 7.7. There exists a constant ¢; = c¢1(F,r, A) such that
(7.7) Osc(£,V) <ar€V(f.f),  feD.
Proof. For i € Wy, f € C(VV),

Ose(£,V?) = Osc(f 0 5, V() < €O (F 0 4pi, £ 0 9s).
So, as V(1) is connected,

Osc(f, V) <3 0se(£, V")

S Zcog(o) (f O¢'i7f O'l:bl) S 615(1)(f,f),
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where ¢; is chosen so that ¢y < clpri_l for each 7 € W;. O
Corollary 7.8. Let w e W,, and z, y € Vu(,l). Then
Osc(f, V) < crrup ™E'(f,f),  feD.

Proof. We have Osc(f, Vu(,l)) = Osc(f 0 Py, VD) < 1 EW(f 0 4y, f 0 2hy). Since
EW) < &' and by (7.5)

EN(f 0w, fothw) <rwp "E'(f, f),
the result is immediate. O

Definition 7.9. We will call the fixed point £ a regular fized point if
(7.8) 7y < p for 1<i< M.

Proposition 6.27 implies that (7.8) holds for any s € {1,...,M} such that
m(8) € V(. In particular therefore, for nested fractals, where every point in V()
is of this form and r is constant, any fixed point is regular.

It is not hard to produce examples of non-regular fixed points. Consider the
Lindstrgm snowflake, but with », =1, 1 < i < 6, 7 = r > 1. Writing p(r) for the
resistance scale factor, we have (by Proposition 6.31) that p(r) is increasing in 7.
However, also by Proposition 6.31, p(r) < po, where pg is the resistance scale factor
of the nested fractal obtained just from %;, 1 <7 < 6. So if we choose r7 > pg, then
as r7 > po > p(r7), we have an example of an affine nested fractal with a non-regular
fixed point.

From now on we take £(°) to be a regular fixed point. (See [Kum3] for the
general situation). Write v = max;r;/p < 1. For z, y € F, set w(z,y) to be the
longest word w such that =, y € F,,.

Proposition 7.10. (Sobolev inequality). Let f € D'. Then if £ is a regular
fixed point

(78) |f(£13) - f(y)|2 < c2rw(w,y)p_|w(w’y)|gl(fa f)? T,y € V(OO)

Proof. Let z, y € V(") let w = w(z,y) and let |w| = m. We prove (7.8) by a
standard kind of chaining argument, similar to those used in continuity results such
as Kolmogorov’s lemma. (But this argument is deterministic and easier). We may
assume n > m.

Let v € W,, be an extension of w, such that = € VJO): such a u certainly
exists, as = € V,ﬁo) N F,. Write ug, = ulk for m < k < n. Now choose a sequence
2k, m < k < n such that z, = x, and z; € Vuf,?) for k < m < n — 1. For each
k€ {m,...,n—1} we have zg, 211 € V,E,;l). So

|
-

n

(7.9) [f(zn) = F(zm)| < ) [f(2r41) — f(2)]

=
Il
3

3
|
—

1/2

IN

(clruk p_kg(fa f))

x
Il

m
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= (carap™ e, 1) (3 o)

k=m

As € is a regular fixed point, v = max; 7;/p < 1, so the final sum in (7.9) is bounded
by (3 hem Ak=m)1/2 = ¢3 < co. Thus we have

|[f(z) = f(zm)|* < cresrup™E'(f, f),
and as a similar bound holds for |f(y) — f(2.,)|?, this proves (7.8). O

We have not so far needed a measure on F. However, to define a Dirichlet form
we need some L? space in which the domain of £ is closed. Let y be a probability
measure on (F,B(F)) which charges every set of the form F,, w € W,. Later
we will take p to be the Bernouilli measure pg associated with a vector of weights
6 € (0,00)M, but for now any measure satisfying the condition above will suffice.

As w(F) =1, C(F) C L*(F,u). Set

D={f€C(F): flyw € D'}
g(f?f):gl(f|V(°°)?f|V(°°))7 fGD

Proposition 7.11. (£,D) is a closed symmetric form on L?(F, ).

Proof. Note first that the condition on p implies that if f,g € D then ||f —g|l2 =0
implies that f = g. We need to prove that D is complete in the norm || f||%1 =
E(f,f)+ |If]I3- So suppose (f,) is Cauchy in || - ||¢,. Since (f,) is Cauchy in || - |2,
passing to a subsequence there exists ]? € L*(F,p) such that f, — f p—a.e. Fix

zg € F such that f,(z¢) — f(x). Then since f, — f, is continuous, (7.8) extends
to an estimate on the whole of F and so

[ful2) = fm(@)] < [(fn = fm)(@) = (fn = fm)(20)] + |(Fr = fm)(z0)]
< & E(fn~ fons f = f)* | fu0) = Frn(0)]
So (fn) is Cauchy in the uniform norm, and thus there exists f € C(F) such that

frn — f uniformly.
Let n > 1. Then as £(™)(g, g) is a finite sum,

EM(f.£) = lim €™ (fpn, fn) < lim sup E(fm, frm)

m— o0

< sup || fmllg, < oo
m

Hence 5(")( f,f) is bounded, so f € D. Finally, by a similar calculation, for any
N > 1,
S(N)(fn - fa fn - f) S n}inoog(fn - fmafn - fm)

So E(fn—f,fn—f) — 0 as n — oo, and thus Hf—anf€1 = 0. 0

To show that (£, D) is a Dirichlet form, it remains to show that D is dense in
L*(F, ). We do this by studying the harmonic extension of a function.
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Definition 7.12. Let f € C(V(™). Recall that EM™(f, f) = inf{£("TV(g,g) :

9lye = f}. Let Ho1f € C(V*+D) be the (unique, as £+D) is non-degenerate)
function which attains the infimum.
For z € V() set

ﬁnf(w) = lim H,Hy_1...Hyop1f(2);

m— o0

note that (as ﬁn—l—lf = f on V(™) this limit is ultimately constant.

Proposition 7.13. Let £ be a regular fixed point.
(a) H,f has a continuous extension to a function H,f € D N C(F'), which satisfies

E(Hnf, Haf) = EM(F, §).

(b)If f, g € C(F)
(7.10) E(Hnf.g) = EM(F,9).

Proof. From the definition of ffn+1, E(""'l)(ﬁn“f, I:_in_|_1f) = £M(f,f). Thus
Em)(H,f, H, f) = EM(F, f) for any m, so that H,f € D' and

E(H.f, Haf) = EW(F,F), fecov™)

If we W,,, and z, y € V() N F, then by Proposition 7.10

(711) |Hof (@) = Huf () < corup™ ™™ (1, ).

Since r,p~™ < 4™, (7.11) implies that Osc(H, f,V(>) N F,) converges to 0 as
|w| = m — oo. Thus H,f has a continuous extension H, f, and H,f € D since
H,feD.

(b) Note that, by polarization, we have
8(n+1)(ﬁn+1f’ ﬁn-{—lg) = g(n)(fag)
Since £V (H, 11 f, k) = 0 for any h such that k| () = 0, it follows that

ECT(Hpoya f,9) = EM(F, 9).
Iterating, we obtain (7.10). O
Theorem 7.14. (£,D) is an irreducible, regular, local Dirichlet form on L*(F, ).
Proof. Let f € C(F). Since for any n > 1, w € W,, we have

inf f < Hof(z) <supf,  we Py
it follows that H,, f — f uniformly. As H, f € D, we deduce that D is dense in C(F)
in the uniform norm. Hence also D is dense in L*(F, ;). As (4.5) is immediate, we
deduce that D is a regular Dirichlet form. If £(f,f) = 0 then EM™(f, f) = 0 for
each n. Since £(™) is irreducible, fly @ is constant for each n. As f is continuous,
f is therefore constant. Thus £ is irreducible.
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To prove that £ is local, let f, g be functions in D with disjoint closed supports,
S¢, Sy say. If E(™)(f,g) # 0 then one of the terms in the sum (7.1) must be non-zero,

so there exists w, € W,, and points z,, € S¢ N qu,?l), Yn € SgN Vlf,?t). Passing to a
subsequence, there exists 2 such that z, — z, y, — 2, and as therefore z € SN §,,
this is a contradiction. O

By Theorem 4.8 there exists a continuous p-symmetric Hunt process (X, ¢ >
0,P*,z € F) associated with (£,D) and L2(F, ).

Remark 7.15. Note that we have constructed a process X = X (¥ for each Radon
measure i on F. So, at first sight, the construction given here has built much more
than the probabilistic construction outlined in Section 2. But this added generality
is to a large extent an illusion: Theorem 4.17 implies that these processes can all
be obtained from each other by time-change.

On the other hand the regularity of (£, D) was established without much pain,
and here the advantage of the Dirichlet form approach can be seen: all the proba-
bilistic approaches to the Markov property are quite cumbersome.

The general probabilistic construction, such as given in [L1] for example, en-
counters another obstacle which the Dirichlet form construction avoids. As well as
finding a decimation invariant set of transition probabilities, it also appears neces-
sary (see e.g. [L1, Chapter VI |) to find associated transition times. It is not clear
to me why these estimates appear essential in probabilistic approaches, while they
do not seem to be needed at all in the construction above.

We collect together a number of properties of (£, D).
Proposition 7.16. (a) For eachn >0

(7.12) = Y P E(f 0 Pusg 0 Pu).
weW,
(b) For f € D,
(7.13) |f(x) — f(y)|2 <carwp "E(f,f) i z,y € Fy, w €W,

(7.14) /f di < e2€(F, ) /fd,u ,

(7.15) f(z)? <2 / fldu+2¢€(f,f), =zcF.

Proof. (a) is immediate from Lemma 7.5, while (b) follows from Proposition 7.10
and the continuity of f. Taking n = 0 in (7.13) we deduce that

(f(z) - f())® < c1&(F,f), feD.
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So as pu(F) =1,

| [ it tamntan) = s 5)
< [ [ * () u(dy)
:2/f2d,u—2</fdﬂ>2a
proving (7.14).

Since f(z)? <2f(y)? +2|f(z) — f(y)|* we have from (7.13) that

- / f(2)u(dy)
<2 [ u(an) + 200 [ €05, 5)utan)

which proves (7.15). O
We need to examine further the resistance metric introduced in Section 4.

Definition 7.17. Let R(z,z) = 0, and for = # y set

R(z,y)' =inf{E(f,f): f(x) =0,f(y) =1,f € D}.
Note that

{ f(z) — F(y)]°
E(f. )

Proposition 7.18. (a) If x # y then 0 < R(z,y) < ¢; < o0.
(b) If w € W,, then

(7.16) R(z,y) = sup : f €D, f non constant}.

(7.17) R(z,y) < c1rwp™ ", x,y € Fy.
(c) For f € D
(7.18) |£(2) = F)I* < R(z,9)E(f, f)-

(d) R is a metric on F, and the topology induced by R is equal to the original
topology on F.

Proof. Let z, y be distinct points in F. As D is dense in C(F), there exists f € D
with f(z) > 1, f(y) < 0. Since & is irreducible, £(f, f) > 0, and so by (7.16)
R(z,y) > 0. (7.17) is immediate from Proposition 7.16, proving (b). Taking n = 0,
and w to be the empty word in (7.17) we deduce R(z,y) < ¢; for any z, y € F,
completing the proof of (a).

(c) is immediate from (7.16).

(d) R is clearly symmetric. The triangle inequality for R is proved exactly as in
Proposition 4.25, by considering the trace of £ on the set {z,y,z}.
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It remains to show that the topologies induced by R and d (the original metric
on F') are the same. Let R(z,,z) — 0. If ¢ > 0, there exists f € D with f(z) =1
and supp(f) C By(z,¢). By (7.16) R(z,y) > E(f,f)~! > 0 for any y € By(z,¢)°.
So &, € By(z,¢) for all sufficiently large n, and hence d(z,,z) — 0.

If d(zp,z) — 0 then writing

Np(z) = | J{Fuw:w € Wy, x€F,}

we have by Lemma 5.12 that z, € Np(z) for all sufficiently large n. However
if v = max;r;/p < 1 we have by, (7.17), R(z,y) < ¢17y™ for y € N,,(z). Thus
R(z,,z) — 0. O

Remark 7.19. The resistance metric R on F is quite well adapted to the study
of the diffusion X on F. Note however that R(z,y) is obtained by summing (in a
certain sense) the resistance of all paths from z to y. So it is not surprising that R
is not a geodesic metric. (Unless F is a tree).

Also, R is not a geometrically natural metric on F. For example, on the Sier-
pinski gasket, since »; = 1, and p = 5/3, we have that if z, y are neighbours in
(V(») E,) then

R(z,y) < (3/5)".

However, for general p.c.f.s.s. sets it is not easy to define a metric which is
well-adapted to the self-similar structure. (And, if one imposes strict conditions of
exact self-similarity, it is not possible in general — see the examples in [Ki6]). So,
for these general sets the resistance metric plays an extremely useful role. The next
section contains some additional results on R.

It is also worth remarking that the balls Bg(z,r) = {y : R(z,y) < r} need not in
general be connected. For example, consider the wire network corresponding to the
graph consisting of two points z, y, connected by n wires each of conductivity 1. Let
z be the midpoint of one of the wires. Then R(z,y) = 1/n, while the conductivities
in the network {z,y,z} are given by C(z,2) = C(z,y) = 2, C(z,y) = n — 1. So,
after some easy calculations,
n+1 1

R(z,z) = im0

So if n = 4, R(x,y) = 7 while R(z,2z) = 5. Hence if < r < } the ball Bg(z,r)
is not connected. (In fact, y is an isolated point of Bg(, %) ={z' : d(z,2") < i})
(Are the balls Bgr(x,r) in the Sierpinski gasket connected? I do not know).

Recall the notation E,(f,g) = £E(f,9)+a(f,g). Let (Uy, @ > 0) be the resolvent
of X. Since by (4.8) we have

ga(Uafag) = (fag)a

if U, has a density u,(z,y) with respect to p, then a formal calculation suggests
that

Ea(talz,),9) = Ea(Uabs,g) = (62, 9) = g(z).

We can use this to obtain the existence and continuity of the resolvent density u,.

(See [FOT, p. 73]).
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Theorem 7.20. (a) For each « € F there exists u% € D such that
(7.19) Ealus, f) = f(z) for all f e D.
(b) Writing us(z,y) = u%(y), we have
Ua(z,y) = ua(y, ) for all xz,y € F.
(c) ua(:,-) is continuous on F X F and in particular
(7.20) 4a(,) — a8 )P < R(5o a2, 2).

(d) ua(z,y) is the resolvent density for X: for f € C(F),

B [ Xt = Uaf(@) = [ wale. @ty

(e) There exists ca() such that
(7.21) walt,y) < (@), myeEF.

Proof. (a) The existence of u?® is given by a standard argument with reproducing

kernel Hilbert spaces. Let z € F, and for f € D let ¢(f) = f(z). Then by (7.15)
B(H)F =7 (@) <2||£5 +2c1&(F, ) < calalf, ),

where ¢, = 2max(c;,a~!). Thus ¢ is a bounded linear functional on the Hilbert
space (D, || ||¢ ), and so there exists a u% € D such that

¢(f) = Ealug, f) = f(z), fenD.

(b) This is immediate from (a) and the symmetry of &:

ug () = Ealug, ug) = Ealug, ug) = ug(y)-

(c) As uZ € D, ug(z,x) < co. Since E(u%,u’) = uq(x,z) < 0o, the estimate (7.20)
follows from (7.18). It follows immediately that  is jointly continuous on F X F.
(d) This follows from (7.19) and linearity. For a measure v on F set

Vi@) = [uale)i@iay).  feCF)

As u,, is uniformly continuous on F X F, we can choose v, —p so that Vi.f =Vf
uniformly, and v,, are atomic with a finite number of atoms. Write V,, = V,,_,

V =V,. Since by (7.19)

Ea(Valr9) = Y va{2})f(2)Ea(us, )

T

=3 F@)g(z)a{z}) = / fgdvm,
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we have

ga(an - me? an - me) -
/f(an_me)an_/f(vnf_vmf)dym-

Thus Eo(Vaf — V£, Vaf — Vinf) — 0 as m, n — o0, and so, as £ is closed, we
deduce that Vf € D and £4(Vf,g9) =limEL(Vf,g9) = lim/fg dv, = /fg dup. So

Ea(Vf,9) = Ea(Unf,g) for all g, and hence Vf = U,f.
(e) As R(y,y') < ¢; for y, y' € F, we have from (7.20) that

(7.22) Ua(Z,y) > Ua(z, ) — (clua(a:,m))l/2.

Since /ua(m,y),u(dy) = a~ !, integrating (7.22) we obtain

ua(a:,m) < (Clua(maw))l/z + a_la

and this implies that u,(z,z) < ca(a), where ¢(a) depends only on o and ¢;. Using
(7.20) again we obtain (7.21). O

Theorem 7.21. (a) For each z € F, z is regular for {z}.
(b) X has a jointly continuous local time (L7, z € F,t > 0) such that for all bounded
measurable f

/otf(X‘“)dS:/f(a)L?N(da), a.s.

Proof. These follow from the estimates on the resolvent density wu,. As u, is
bounded and continuous, we have that = is regular for {z}. Thus X has jointly
measurable local times (Ly,z € F,t > 0).

Since X is a symmetric Markov process, by Theorem 8.6 of [MR], LY is jointly
continuous in (z,t) if and only if the Gaussian process Y,, ¢ € F with covariance
function given by

EY, Y, = uy(a,b), a,b€eF

is continuous. Necessary and sufficient conditions for continuity of Gaussian pro-
cesses are known (see [Tal]), but here a simple sufficient condition in terms of metric
entropy is enough. We have

E(Y, - Y3)? = ui(a,a) — 2us(a,b) + uy (b,b) < c1R(a,b)'/2.

Set 7(a,b) = R(a,b)'/? : r is a metric on F. Write N, (¢) for the smallest number of
sets of r-diameter € needed to cover F. By (7.17) we have R(a,b) < cy"ifa, b € F,,
and w € W,,. So Nr(c"y"/z) < #W, = M"™, and it follows that

Nr(g) S 625_'67

where 3 = 2log M/log8~1. So

/ (log NT(s))l/2 de < o0,
0+
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and thus by [Du, Thm. 2.1] Y is continuous. O

We can use the continuity of the local time of X to give a simple proof that X
is the limit of a natural sequence of approximating continuous time Markov chains.
For simplicity we take i to be a Bernouilli measure of the form p = ug, where
8; > 0. Let u, be the measure on V(™ given in (5.21). Set

I
F
= inf{s: A7 > t},
Theorem 7.22. (a) (X;",t > 0,P",z € V(")) is the symmetric Markov process

associated with £™ and L*(V(™ p,,).
(b) X — X; a.s. and uniformly on compacts.

Proof. (a) By Theorem 7.21(a) points are non-polar for X. So by the trace the-
orem (Theorem 4.17) X™ is the Markov process associated with the trace of £ on
L2 V(™ ). But for f € D, by the definition of £,

Tr(EVEN) (£, £) = EM (Flvm, Flym).

(b) As F is compact, for each T > 0, (L7,0 <t < T,z € F) is uniformly continuous.
So, using (5.22), if T, < Ty < T then A} — ¢ uniformly in [0,7}], and so 7> — ¢
uniformly on [0,T3]. As X is continuous, X;* — X uniformly in [0, T%]. O

Remark 7.23. As in Example 4.21, it is easy to describe the generator L, of X™.
Let a(™ (z,), z, y € V(") be the conductivity matrix such that

E(F,£) = § S ot (,9) (F(2) ~ Fw))’.

T,y

Then by (7.1) we have

(7.23) " (@,y) = D 1, eno) " e AL (2), 451 (9)),
weWw,,
where A is such that £ = £4, and A(z,y) = A,,. Then for f € L2 (V™ u,),
(7:24) Lof(x) = pa({z})™" D a™(,9) (£(9) — £(2)).
yEV(")

Of course Theorem 7.22 implies that if (Y™) is a sequence of continuous time
Markov chains, with generators given by (7.24), then Y- X in D([0,c0), F).
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8. Transition Density Estimates.

In this section we fix a connected p.c.f.s.s. set (F, (¢l)), a resistance vector r;,
and a non-degenerate regular fixed point £4 of the renormalization map A. Let
i = g be a measure on F, and let X = (Xt > 0,P* 2z € F) be the diffusion
process constructed in Section 7. We investigate the transition densities of the
process X: initially in fairly great generality, but as the section proceeds, I will
restrict the class of fractals.

We begin by fixing the vector § which assigns mass to the 1-complexes 9;(F),
in a fashion which relates g (%(F)) with ;. Let 3; = r;p~!: by (7.8) we have

(8.1) B;i<1l, 1<i<M.

Let o > 0 be the unique positive real such that

M
(8.2) Y B =1
=1

Set

(8.3) 0, =B, 1 <1< M,
and let ;1 = p1g9 be the associated Bernouilli type measure on F. Write 8, = max; (;,
[— =min; 3;: we have 0 < f_ < 3; <[4 < L.

We wish to split the set F up into regions which are, “from the point of view
of the process X7, all roughly the same size. The approximation Theorem 7.22
suggests that if w € W,, then the ‘crossing time’ of the region F,, is of the order of
Pl = Buwlyt = Bl (See Proposition 8.10 below for a more precise state-
ment of this fact). So if r. is non-constant the decomposition F = U {F,,, w € W, }
of F' into n complexes is unsuitable; instead we need to use words w of different
lengths. (This idea is due to Hambly — see [Ham2]).

Let W, = U2 ,W,, be the space of all words of finite length. W, has a natural
tree structure: if w € W,, then the parent of w is w|n — 1, while the offspring of w
are the words w-i, 1 <i < M. (We define the truncation operator 7 on W, by
Tw = w|(|w| — 1).) Write also for w € W,

w-W={w-v,veW}={veW:vy,=w,;, 1<i<|w|}.
Lemma 8.1. (a) For A\ > 0 let
Wy ={w € Wy : B <A, Brw > A}
Then the sets {w - W, w € Wy} are disjoint, and

U w-W=W.
weWsy
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(b) For f € L}(F, u),

[tan="% bu [ fudu

wEW,

EF )= Bu'E(fu, fu)-

weWy

Proof. (a) Suppose w, w' € Wy and v € (w-W) N (w' - W). Then there exist u,
u' € W such that v = w-u = w' - u'. So one of w, w' (say w) is an ancestor of the
other. But if 8, < A, 874 > A then as 3; < 1 we can only have B, > X if w' = w.
Soif w# w', w-W and w’ - W are disjoint.

Let v € W. Then f,), = [I;—; Bv; — 0 as n — co. So there exists m such that
vlm € Wy, and then v € (v|m) - W, completing the proof of (a).
(b) This follows in a straightforward fashion from the decompositions given in (7.12)
and Lemma 5.28. g

Note that 5_ > 0 and that
(8.4) B < Buw < A, (B)¥AY < 8y, < AY, w e W,.
Definition 8.2. The spectral dimension of F is defined by
dy = ds(F,E4) = 2a/(1 + ).
Theorem 8.3. For f € D,

(8.5) LA < o (85 + 1£13) 113

Proof. 1t is sufficient to consider the case f non-negative, so let f € D with f > 0.
Let 0 < A < 1: by Lemma 8.1, (7.14) and (8.4) we have

(8.6) 1712=3 6, / 72 dp

weWy

<Za (615 Fus fw) + (/fwd,u)2>

2
SCZZAag(fw’fw)+CZZ>\a</fwdﬂ)
< *"“Zﬂ LE(fuos fuo) +Cz>\a< /fwdu>
§63)\a+15(f,f)+04/\_ (Zew/fwd:u)

= X HE(L, F) + e fII2.
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The final line of (8.6) is minimized if we take \>*t! = c5||7||3/E(F, f). If E(f, f) >
cs||f||? then A < 1 and so we obtain from (8.6) that

(8.7) IF112 < c€(f, f)/ Gt (| p|3) D/ Gt
which implies that that
(8.8) IFI3T4% < ce(F, HIFITY i E(F f) > esllF]3

If £(f, f) < cs||f||? then by (7.14)

1713 < 1 (EC£ 1)+ I£17) < ellfI3

and so
(8.9) IFIT %5 < ellf 1A i E(F F) < eslF3-
Combining (8.8) and (8.9) we obtain (8.5). O

From the results in Section 4 we then deduce

Theorem 8.4. X has a transition density p(t,z,y) which satisfies

(8.10) p(t,z,y) < crt =%/ 0<t<1, =z,ye€eF,

2 _1—
(8.11)  |p(t,z,9) — p(t,2,y')|" < eat™ "2 R(y,y), 0<t<1, =z,y,y €F.

Proof. By Proposition 4.14 X has a jointly measurable transition density, and by
Corollary 4.15 we have for z, y € F, 0 <t <1,

p(t,z,y) < ct—ds/2ect < pmds/2

By (4.17) the function g:, = p(t,z,-) satisfies £(gtz,q:.2) < ct™17%/% and so
gt,» € D and is continuous. Further, by Proposition 7.18

2 _d.j2—
Ip(t, 2,y) — p(t, 2,y )" < cR(y,y" )t~ %71, a,y,y € F.
Thus p(¢,-,-) is jointly Holder continuous in the metric R on F. O

Remarks 8.5. 1. As a > 0, we have 0 < d, = 2a(1 + )~ ! < 2.

2. The estimate (8.10) is good if t € (0,1] and z close to y. It is poor if ¢ is small
compared with R(z,y), and in this case we can obtain a better estimate by chaining,
as was done for fractional diffusions in Section 3. For this we need some additional
properties of the resistance metric.

Lemma 8.6, If v, w € Wy and v # w then F, N F,, = Vv(o) N Vu(,o).

Proof. This follows easily from the corresponding property for W,,. Let v, w € W,
with |v] = m < |w| =n, v # w. Let ¢ € F, N F,,. Set w' = w|m; then as F,, C F,y,
z € F,NF,, and so by Lemma 5.17(a) = € Vv(o) N Vif,?). Further, as € F, there
exists v’ € W,, such that v'/m = v, and € F,,. Then z € F,, N F,, = Vv(,o) N VJ,O).
So z € ViV n v, O
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Definition 8.7. Set
W= J v
weW,

Let Gy = (V)EO),EA) be the graph with vertex set Vio), and edge set E) such that
{z,y} is an edge if and only if z, y € Vi for some w € Wy. For A C F set
Nx(4) = | J{Fu 1w e Wy, F, N A # 0},
Nx(2) = Nx (Ma({z})).-

As we will see, N, A(z) is a neighbourhood of = with a structure which is well adapted
to the geometry of F in the metric R. We write Nx(y) = N ({y}).

Lemma 8.8. (a)Ifz, y € V;O) and x # y then

R(z,y) > c1 .

(b) If {z,y} € Ex then R(z,y) < c2\.

Proof. (b) is immediate from the definition of Wy and Proposition 7.18(b). For
(a), note first that if « € F then by Proposition 5.21 z can belong to at most
M; = M+#(P) n—complexes, for any n. So there are at most M; distinct elements
w € Wy such that z € F,,.

As V(O is a finite set, and 6’20) is non-degenerate, there exists c3, ¢4 > 0 such
that,

(8.12) cs > R(z, VO —{2}) > ¢, z eV,

(Recall that this resistance is, by the construction of £, the same in (F,€) as in
(V(O),Eg]))). Now fix z € V;O). If w € Wy, and = € Vi, let o' = Yo1(z), and g,
be the function on F such that g,(z') =1, gu(y) =0, g € V(® — {2’} and

E(gwrgw) ™ = B (a', VO — {2}) > cs.

Define g/, on F,, by g, = gw ot !, and extend ¢/, to F by setting ¢/, = 0 on F — F,,.
Now let g, =0 if z ¢ Vv(o), V € Wy, and set

9="Y_ gy

veEWy

Then g(z) =1, g(y) =0ify € V)EO), y # x, and

E(g,9)= Y By E(g0 w90 Pu)

weEWy
= Z’Bgll(fﬂef’w)g(nggw) S 05)\_1M1.
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Hence if y A x, y € Vfo), we have
R(z,y)~" <&(g,9) <A "My,
so that R(z,y) > cgA. O

Remark. For z € Vio) the function g constructed above is zero outside N ({z}).
So we also have

(8.13) R(z,y) > cr, zeV, yeN({z})"

Proposition 8.9. There exist constants c; such that for x € F, A > 0,

(8.14) Bg(z,c1)\) C Na(z) C Br(z,ca)),
(8.15) csA® < p(Bgr(w, ) < car®
(8.16) esA < Rz, Na(z)¢) < ¢

(8.17) cr A < R(x,BR z,\) ) < 8)\

Proof. Let z € F. If y € Nx({z}) then by (7.17), R( ) < cX. Soif z € Nx(z),
since there exists y € Nx({z}) with z € Nx({y}), R(z,2) < ', proving the right
hand inclusion in (8.14).

If 2 € V% then by (8.13), if ¢o = cs.1.6,
Bpr(z,c9)) C Na(z).

Now let z ¢ V)fo), so that there exists a unique w € Wy with ¢ € F,,. For each y €
VO let fy(+) be the function constructed in Lemma 8.8, which satisfies f,(y) = 1,
fy = 0 outside Nx(y), fy(z) = 0 for each z € V;O) —{y}, and E(fy, fy) < croA L.
Let f =3, fy: then f(y) =1for each y € VY. So if

g = ]-Fw —I_]-F,j)f?

E(g,9) <E(f,f) < #(V(O))clg)\ D <eph™ 1. As g(z) = 1, and g(2) = 0 for z ¢
Nx(z), we have for z ¢ Ny(z) that R(z,2)”" < &(g,9) < 112", So Br(z,c11)) C
Ny(z). This proves (8.14), and also that R(:B Ni(z (2)°) > eif A

The remaining assertions now follow fairly easily. For w € Wy we have cjaA* <
w(Fy) < c13A*. As Ny(z) contains at least one A\—complex, and at most M?2#(P)?
A—complexes, we have

,u(f\})\(m)) = )\a’
and using (8.14) this implies (8.15).
If A C B then it is clear that R(z,A) > R(z,B). So (provided A is small
enough) if z € F we can find a chain z, y;, y2, y3 where y; € V)EO), {vi,Yix1}

is an edge in Ey, y; ¢ Nx(w), and ¢ and y are in the same A—complex. Then
R(z,y3) < ¢\ by (7.17), and so, using Lemma 8.8(b) we have R(z,ys) < ¢/A. Thus
R(:B,N)‘(:L‘)C) < R(z,ys3) < ¢’ proving the right hand side of (8.16): the left hand
side was proved above.

(8.17) follows easily from (8.14) and (8.16). O



111

Corollary 8.10. In the metric R, the Hausdorff dimension of F is «, and further
0 < HR(F) < oo.

Proof. This is immediate from Corollary 2.8 and (8.15). O
Proposition 8.11. For z € F, v > 0 set 7(x,r) = T, (z,r)e- Then

(8.18) crt <E*7(z,7) < cpr™?, zeF, r>0.

Proof. Let B = Bpg(z,7). Then by Theorem 4.25 and the estimates (8.15) and
(8.17)
E®7r(z,7) < w(B)R(x, B¢) < c3rotl,

which proves the upper bound in (8.18).
Let (X2,t > 0) be the process X killed at 7 = Tg., and let g(z,y) be the
Greens’ function for XZ. In view of Theorem 7.19, we can write

g(z,y) = E*LY, xz,y € F.

Then if f(y) = g(z,y)/g9(z,z), f € D and by the reproducing kernel property of ¢
we have

g(f?f) = g(a:vx)_zg(g(w? ')?g(wv )) = g(ZB,ZB)_l,
and as in Theorem 4.25 g(z,z) = R(z, B¢) > ¢4r. By (7.18)

f(z) = £(y)* < R(z,9)E(}, f) < R(z,y)(car) > < L

if R(z,y) < %cy“ Thus f(y) > % on Bpr(z, C4’I“), and hence

s T (BR ( icar)) > esrite,

proving (8.18). O
We have a spectral decomposition of p(t,z,y). Write (f,g) fF fadpu.

Theorem 8.12. There exist functions ¢; € D, A\; > 0,7 > 0, such that (¢;, ;) =1,

0= <A <---, and

E(pi, ) = Xilei, f)s f eD.

The transition density p(t,z,y) of X satisfies

O

(8.19) pt,z,y) = Y e Moi(2)pi(y),

1=0

where the sum in (8.19) converges uniformly and absolutely. So p is jointly contin-
uous in (t,z,y).

Proof. This follows from Mercer’s Theorem, as in [DaS]. Note that ¢y = 1 as £ is
irreducible and p(F) = 1. O

The following is an immediate consequence of (8.19)
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Corollary 8.13. (a) Forz,y € F,t > 0,

p(t,z,y)* < p(t,z,z)p(t,y,y).

(b) For each z,y € F
1tlim p(t,z,y) = 1.

Lemma 8.14.
(8.20) p(t,z,y) > et~ %2, 0<t <1, R(z,y) < egtt/0F),

Proof. We begin with the case £ = y. From Proposition 8.11 and Lemma 3.16 we
deduce that there exists co > 0 such that

P*(r(z,r) <t) < (1 —2cp) 4 cstr™ 1.
Choose ¢4 > 0 such that c;»,tro_a_l = ¢y if rg = cgt/(1+®) Then
[P’“’(Xt € BR(a:,rg)) > [P"'”(T(:I:,ro) < t) > cs.

So using Cauchy-Schwarz and the symmetry of p, and writing B = Bg(z,7¢),
0<ef < (/ p(t,w,'y)ﬂ(dy)z)
B

< / u(dy)/ p(t,z,y)p(t,y, z)u(dy)
B(z,7rq) B
< u(B)) p(2t,z,)
< C5ta/(1+a)p(2t,:1:,m).
Replacing t by /2 we have
p(t,x,z) > cot~%/2.
Fix t,z, and write ¢(y) = p(t,z,y). By (4.16) and (8.5) £(g,q) < cet™17%/2 for
t <1, so using (7.18), if R(z,y) < ert}/(+%) then, as 1+ d,/2 = (1 + 22)/(1 + «),
q(y) > q(z) = lg(z) - q(y)|
> eot~ /04 — (R(x,4)€(q, )"
> cot— /() _ (c7c6t_2°‘/(1+a))1/2
= ¢~/ () (g — (ere)t/?).
Choosing ¢7 suitably gives (8.20). O

We can at this point employ the chaining arguments used in Theorem 3.11 to
extend these bounds to give upper and lower bounds on p(¢,z,y). However, as R
is not in general a geodesic metric, the bounds will not be of the form given in
Theorem 3.11. The general case is given in a paper of Hambly and Kumagai [HK2],
but since the proof of Theorem 3.11 does not use the geodesic property for the upper
bound we do obtain:
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Theorem 8.15. The transition density p(t,z,y) satisfies
(8:21) p(t,7,9) < et/ exp (e (R(w )+ /1))

Note. The power 1/« in the exponent is not in general best possible.

Theorem 8.16. Suppose that there exists a metric p on F with the midpoint
property such that for some 6 > (0

(8.22) ap(z,y)? < R(z,y) < cap(z,y) z,y € F.

Then if d,, = (1 + a), df = ab, (F,p,p) is a fractional metric space of dimension
ds, and X is a fractional diffusion with indices dy, d,,.

Proof. Since B,(z,(r/c3)?) C Br(z,r) C By(z,(r/c1)?), it is immediate from (8.15)
that (F, p)isa FMS(ds). Write 7,(x,7) = inf {t : X; ¢ B,(x,7)}. Then from (8.18)
and (8.22)

erfite) < E*r,(z,7) < carf1ta)

So, by (8.10) and (8.20), X satisfies the hypotheses of Theorem 3.11, and so X is a
FD(dy, dy). O

Remark. Note that in this case the estimate (7.20) on the Holder continuity of
ux(z,y) implies that
1
(8.23) lux(z,y) — ur(z',y)| < cR(z,2")2 < c'p(x,z')8/?,
while by Theorem 3.40 we have

(8.24) ua(z,y) — ua(z', 9)| < ep(z,2')°.

The difference is that (8.23) used only the fact that u,(.,y) € D, while the proof of
(8.24) used the fact that it is the A-potential density.

Diffusions on nested fractals.

We conclude by treating briefly the case of nested fractals. Most of the necessary
work has already been done. Let (F,(1;)) be a nested fractal, with length, mass,
resistance and shortest path scaling factors L, M, p, 7. Recall that in this context
we take r; =1, 6; =1/M, 1 <i < M, and pu = ug for the measure associated with
0. Write d = dp for the geodesic metric on F defined in Section 5.

Lemma 8.17. Set 8 =logp/log~y. Then
(8.24) crd(z,y)® < R(x,y) < cod(z,y)?, z,y € F.

Proof. Let A € (0,1). Since all the r; are equal, ]VA(w) is a union of n-complexes,

where p~™ < XA < p~"*l. So by Theorem 5.43 and Proposition 8.8, since 7" =
(p~)%,

(8.26) y € ]VA(m) implies that R(z,y) < ¢\, and d(z,y) < c2\?,
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(8.27) y & Nx(z) implies that R(z,y) > csA, and d(z,y) > caA’.
The result is immediate from (8.26) and (8.27). O

Applying Lemma 8.17 and Theorem 8.15 we deduce:
Theorem 8.18. Let F' be a nested fractal, with scaling factors L, M, p, . Set

df =logM/logy, d., =1logMp/log~.

Then (F,dp, ) is a fractional metric space of dimension d¢, and X is a FD(d¢,d.,).
In particular, the transition density p(t,z,y) of X is jointly continuous in (t,z,y)
and satisfies

(8.28) eyt~ /4w exp (—cz (d(z,y)* /t) 1/(dw_1))

<) < a0 (a4 ).
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