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1. Introduction.

The notes are based on lectures given in St. Flour in 1995, and cover, in greater
detail, most of the course given there.

The word “fractal” was coined by Mandelbrot [Man] in the 1970s, but of course
sets of this type have been familiar for a long time — their early history being as a
collection of pathological examples in analysis. There is no generally agreed exact
definition of the word “fractal”, and attempts so far to give a precise definition have
been unsatisfactory, leading to classes of sets which are either too large, or too small,
or both. This ambiguity is not a problem for this course: a more precise title would
be “Diffusions on some classes of regular self-similar sets”.

Initial interest in the properties of processes on fractals came from mathematical
physicists working in the theory of disordered media. Certain media can be modelled
by percolation clusters at criticality, which are expected to exhibit fractal-like prop-
erties. Following the initial papers [AO], [RT], [GAM1-GAM3| a very substantial
physics literature has developed — see [HBA] for a survey and bibliography.

Let G be an infinite subgraph of Z?. A simple random walk (SRW) (X, n > 0)
on G is just the Markov chain which moves from ¢ € G with equal probability to
each of the neighbours of z. Write p,(z,y) = P*(X, = y) for the n-step transition
probabilities. If G is the whole of Z? then F(X,)? = n with many familiar con-
sequences — the process moves roughly a distance of order /n in time n, and the
probability law p,(z,-) puts most of its mass on a ball of radius cy4n.

If G is not the whole of Z? then the movement of the process is on the average
restricted by the removal of parts of the space. Probabilistically this is not obvious
— but see [DS] for an elegant argument, using electrical resistance, that the removal
of part of the state space can only make the process X ‘more recurrent’. So it is
not unreasonable to expect that for certain graphs G one may find that the process
X is sufficiently restricted that for some § > 2

(1.1) E® (X, — z)? < n?/P,

(Here and elsewhere I use < to mean ‘bounded above and below by positive con-
stants’, so that (1.1) means that there exist constants c;, ¢z such that en?/f <
E* (X, —z)? < cznz/ﬁ). In [AO] and [RT] it was shown that if G is the Sierpinski
gasket (or more precisely an infinite graph based on the Sierpinski gasket — see Fig.
1.1) then (1.1) holds with 8 = log 5/ log 2.
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Figure 1.1: The graphical Sierpinski gasket.
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Physicists call behaviour of this kind by a random walk (or a diffusion — they are
not very interested in the distinction) subdiffusive — the process moves on average
slower than a standard random walk on Z%. Kesten [Ke] proved that the SRW on
the ‘incipient infinite cluster’ C' (a percolation cluster at p = p. but conditioned to
be infinite) is subdiffusive. The large scale structure of C' is given by taking one
infinite path (the ‘backbone’) together with a collection of ‘dangling ends’, some of
which are very large. Kesten attributes the subdiffusive behaviour of SRW on C
to the fact that the process X spends a substantial amount of time in the dangling
ends.

However a graph such as the Sierpinski gasket (SG) has no dangling ends, and
one is forced to search for a different explanation for the subdiffusivity. This can
be found in terms of the existence of ‘obstacles at all length scales’. Whilst this
holds for the graphical Sierpinski gasket, the notation will be slightly simpler if we
consider another example, the graphical Sierpinski carpet (GSC). (Figure 1.2).
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Figure 1.2: The graphical Sierpinski carpet.

This set can be defined precisely in the following fashion. Let Hy = Z?2. For
z = (n,m) € Hy write n,m in ternary — so n = >~ n;3", where n; € {0,1,2}, and
n; = 0 for all but finitely many :. Set

Ji = {(m,n) : ni =1 and my, = 1},

so that J;, consists of a union of disjoint squares of side 3*: the square in J; closest
to the origin is {3%,...,2.3% — 1} x {3%F ... 2.3 — 1}. Now set

(1.2) H, = Hy — 0 Ju, H= ﬁ H,.
k=1 n=0
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Figure 1.4: The set H, .

Note that HN[0,3"]? = H,,N[0,3"]?, so that the difference between H and H,
will only be detected by a SRW after it has moved a distance of 3" from the origin.
Now let X(® be a SRW on H,,, started at the origin, and let X be a SRW on H.
The process X(® is just SRW on Z?I_ and so we have

(1.3) E(X()? ~ p,

The process XV is a random walk on a the intersection of a translation invariant
subset of Z2 with Zi_. So we expect ‘homogenization’: the processes n_l/zX[(;t)],
t > 0 should converge weakly to a constant multiple of Brownian motion in R?I_. So,
for large n we should have E(Xr(zl) )2 ~ a;n, and we would expect that a; < 1, since
the obstacles will on average tend to impede the motion of the process.

Similar considerations suggest that, writing ¢, (t) = E° (Xt(n))2, we should have
on(t) ~ant ast — oo.

However, for small ¢ we would expect that ¢, and ¢,41 should be approximately
equal, since the process will not have moved far enough to detect the difference
between H,, and H, ;. More precisely, if t, is such that ¢,(t,) = (3")? then ¢,
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and ¢,y1 should be approximately equal on [0,¢,41]. So we may guess that the
behaviour of the family of functions ¢, (t) should be roughly as follows:

(1.4) on(t) = b+ an(t —tn), £ >t
Pnt1(8) = @n(s), 0< s <tnq1.

If we add the guess that a,, = 37% for some o > 0 then solving the equations above
we deduce that
tn < 32t g — 32

So if p(t) = E%(X;)? then as p(t) ~ lim, ¢,(t) we deduce that ¢ is close to a
piecewise linear function, and that

p(t) < 1217

where 5 = 2 4+ a. Thus the random walk X on the graph H should satisfy (1.1) for
some 3 > 2.

The argument given here is not of course rigorous, but (1.1) does actually
hold for the set H — see [BB6, BB7]. (See also [Jo] for the case of the graphical
Sierpinski gasket. The proofs however run along rather different lines than the
heuristic argument sketched above).

Given behaviour of this type it is natural to ask if the random walk X on H
has a scaling limit. More precisely, does there exist a sequence of constants 7, such
that the processes

(15) (3_nX[t/Tn]7t > 0)

converge weakly to a non-degenerate limit as n — co? For the graphical Sierpinski
carpet the convergence is not known, though there exist 7,, such that the family
(1.5) is tight. However, for the graphical Sierpinski gasket the answer is ‘yes’.

Thus, for certain very regular fractal sets F C R? we are able to define a limiting
diffusion process X = (X;,t > 0,P* 2 € F) where P? is for each z € F a probability
measure on Q@ = {w € C([0,0),F) : w(0) = z}. Writing T;f(z) = E* f(X;) for
the semigroup of X we can define a ‘differential’ operator Lp, defined on a class of
functions D(Lr) C C(F). In many cases it is reasonable to call Lr the Laplacian
on F.

From the process X one is able to obtain information about the solutions to
the Laplace and heat equations associated with L, the heat equation for example
taking the form

(1'6) a = EFu,

U(O, CB) = 'U'O(m)a

where u = u(t,z), z € F, t > 0. The wave equation is rather harder, since it is not
very susceptible to probabilistic analysis. See, however [KZ2] for work on the wave
equation on a some manifolds with a ‘large scale fractal structure’.



The mathematical literature on diffusions on fractals and their associated in-
finitesimal generators can be divided into broadly three parts:

1. Diffusions on finitely ramified fractals.

2. Diffusions on generalized Sierpinski carpets, a family of infinitely ramified frac-
tals.

3. Spectral properties of the ‘Laplacian’ Lg.

These notes only deal with the first of these topics. On the whole, infinitely
ramified fractals are significantly harder than finitely ramified ones, and sometimes
require a very different approach. See [Bas| for a recent survey.

These notes also contain very little on spectral questions. For finitely ramified
fractals a direct approach (see for example [FS1, Sh1-Sh4, KL]), is simpler, and
gives more precise information than the heat kernel method based on estimating

/ p(t,z,z)dz = Z e Mt
F

i

In this course Section 2 introduces the simplest case, the Sierpinski gasket. In
Section 3 I define a class of well-behaved diffusions on metric spaces, “Fractional
Diffusions”, which is wide enough to include many of the processes discussed in
this course. It is possible to develop their properties in a fairly general fashion,
without using much of the special structure of the state space. Section 4 contains
a brief introduction to the theory of Dirichlet forms, and also its connection with
electrical resistances. The remaining chapters, 5 to 8, give the construction and
some properties of diffusions on a class of finitely ramified regular fractals. In this
I have largely followed the analytic ‘Japanese’ approach, developed by Kusuoka,
Kigami, Fukushima and others. Many things can now be done more simply than in
the early probabilistic work — but there is loss as well as gain in added generality, and
it is worth pointing out that the early papers on the Sierpinski gasket ([Kusl, Go,
BP]) contain a wealth of interesting direct calculations, which are not reproduced
in these notes. Any reader who is surprised by the abrupt end of these notes in
Section 8 should recall that some, at least, of the properties of these processes have
already been obtained in Section 3.

c; denotes a positive real constant whose value is fixed within each Lemma,
Theorem etc. Occasionally it will be necessary to use notation such as c¢3.5.4 — this
is simply the constant ¢4 in Definition 3.5. ¢, ¢/, ¢” denote positive real constants
whose values may change on each appearance. B(z,r) denotes the open ball with
centre z and radius r, and if X is a process on a metric space F' then

Ty =inf{t >0: X, € A},
Ty, =inf{t > 0: X; =y},
T(z,r) =inf{t > 0: X; & B(z,r)}.
I have included in the references most of the mathematical papers in this area
known to me, and so they contain many papers not mentioned in the text. I am

grateful to Gerard Ben Arous for a number of interesting conversations on the
physical conditions under which subdiffusive behaviour might arise, to Ben Hambly
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for checking the final manuscript, and to Ann Artuso and Liz Rowley for their
typing.
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Fellowship.

2. The Sierpinski Gasket

This is the simplest non-trivial connected symmetric fractal. The set was first
defined by Sierpinski [Siel], as an example of a pathological curve; the name “Sier-
pinski gasket” is due to Mandelbrot [Man, p.142].

Let Gy = {(0,0),(1,0),(1/2,v/3/2)} = {ag,a1,as} be the vertices of the unit
triangle in R?, and let Hu(Go) = Hy be the closed convex hull of Gy. The con-
struction of the Sierpinski gasket (SG for short) G is by the following Cantor-type
subtraction procedure. Let by, b1, bs be the midpoints of the 3 sides of Gy, and
let A be the interior of the triangle with vertices {bg,b1,b2}. Let Hy = Hy — A, so
that H; consists of 3 closed upward facing triangles, each of side 27!. Now repeat
the operation on each of these triangles to obtain a set H, consisting of 9 upward
facing triangles, each of side 272.

A
AA
A

Figure 2.1: The sets H; and H,.

Continuing in this fashion, we obtain a decreasing sequence of closed non-empty
sets (Hy,). -

neo> and set

(2.1) G= () Ha.



Figure 2.2: The set Hy.

It is easy to see that G is connected: just note that 0H,, C H,, for all m > n,
so that no point on the edge of a triangle is ever removed. Since |H,| = (3/4)"|Hy]|,
we clearly have that |G| = 0.

We begin by exploring some geometrical properties of G. Call an n-triangle a
set of the form G N B, where B is one of the 3™ triangles of side 27" which make
up H,. Let u, be Lebesgue measure restricted to H,, and normalized so that
pn(Hyp) = 1; that is

pn(dz) =2-(4/3)"1g, (z) de.

Let pg = wlimp,; this is the natural “flat” measure on G. Note that pg
is the unique measure on G which assigns mass 37" to each n-triangle. Set

df =log3/log2~ 1.58...
Lemma 2.1. Forx e G,0<r <1
(2.2) 37 < pg(B(z,7)) < 1874,

Proof. The result is clear if » = 0. If » > 0, choose n so that 2=(»+1) < » < 2—7™
we have n > 0. Since B(z,r) can intersect at most 6 n-triangles, it follows that

1%} (B(x,r)) <6.37" = 18.3—(n+1)
= 18(2~(»t1))dr < 18y,

As each (n + 1)-triangle has diameter 2=("*t1)| B(z,r) must contain at least one
(n + 1)-triangle and therefore

pe(B(z,r)) >3~ = 371 (2=m)ds > 3=1pds, O
Of course the constants 37!, 18 in (2.2) are not important; what is significant

is that the pg-mass of balls in G grow as r%/. Using terminology from the geometry
of manifolds, we can say that G has volume growth given by 797,



Detour on Dimension.

Let (F,p) be a metric space. There are a number of different definitions of
dimension for F' and subsets of F': here I just mention a few. The simplest of these
is box—counting dimension. For ¢ > 0, A C F, let N(A,¢) be the smallest number
of balls B(z,¢) required to cover A. Then

. . log N(A,¢)
(2.3) dimpc(4) = lm;l%up Tloge 1

To see how this behaves, consider some examples. We take (F, p) to be R? with the
Euclidean metric.

Ezamples. 1. Let A = [0,1]¢ C R%. Then N(4,¢) < £~ ¢, and it is easy to verify
that y
log N([0,1
o log N([0.1]%, )

=d.
el0 log 6_1

2. The Sierpinski gasket G. Since G C H,, and H,, is covered by 3™ triangles
of side 27", we have, after some calculations similar to those in Lemma 2.1, that

N(G,7) = (1/r)lg3/lo82 Go,

1
dimpo(Q) = 283

" log?2’

3. Let A=QnJ0,1]. Then N(A4,¢) < e !, so dimpc(A4) = 1. On the other hand
dimpc({p}) = 0 for any p € A.

We see that box-counting gives reasonable answers in the first two cases, but
a less useful number in the third. A more delicate, but more useful, definition is
obtained if we allow the sizes of the covering balls to vary. This gives us Hausdorff
dimension. 1 will only sketch some properties of this here — for more detail see for
example the books by Falconer [Fal, Fa2].

Let h : Ry — R4 be continuous, increasing, with A(0) = 0. For U C F write
diam(U) = sup{p(z,y) : ¢,y € U} for the diameter of U. For § > 0 let

HE(A) = inf{z h(d(Uy) - Ac Ui,  diam(U;) < 5}.
Clearly H?(A) is decreasing in §. Now let

(2.4) HM(A) = Lim My (A);

we call H*(-) Hausdorff h-measure . Let B(F) be the Borel o-field of F.
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Lemma 2.2. H" is a measure on (F,B(F)).
For a proof see [Fal, Chapter 1].

We will be concerned only with the case h(z) = z%: we then write H* for H".
Note that & — H*(A) is decreasing; in fact it is not hard to see that H*(A) is either
+o0 or 0 for all but at most one a.

Definition 2.3. The Hausdorff dimension of A is defined by
dimr(A) = inf{o : H7(4) = 0} = sup{a : H(4) = +oo}.

Lemma 2.4. dimg(A4) < dimpc(A4).

Proof. Let a > dimpc(A). Then as A can be covered by N(A4,¢) sets of diameter
2e, we have H(A) < N(A,¢e)(2¢)* whenever 2¢ < §. Choose 0 so that dimpc(A) <
o — 0 < a; then (2.3) implies that for all sufficiently small e, N(4,¢) < e~ (=9 So
Hg(A) =0, and thus H*(A) = 0, which implies that dimg(4) < a. O

Consider the set A = QnN[0,1], and let A = {p1,pa,...} be an enumeration of
A. Let 6 > 0, and U; be an open internal of length 27¢ A § containing p;. Then (U;)
covers A, so that Hg(A) < Y02, (6§ A27%)%, and thus H*(A4) = 0. So dimg(A4) = 0.
We see therefore that dimg can be strictly smaller than dimpe, and that (in this
case at least) dimpy gives a more satisfactory measure of the size of A.

For the other two examples considered above Lemma 2.4 gives the upper bounds
dimg(]0,1]%) < d, dimg(G) < log3/log 2. In both cases equality holds, but a direct
proof of this (which is possible) encounters the difficulty that to obtain a lower bound
on HZ(A) we need to consider all possible covers of A by sets of diameter less than
0. It is much easier to use a kind of dual approach using measures.

Theorem 2.5. Let u be a measure on A such that 1(A) > 0 and there exist ¢; < oo,
ro > 0, such that

(2.5) p(B(z,r)) <cir®, z €A, r<r.

Then H*(A) > ¢7'u(A), and dimg(A) > a.

Proof. Let U; be a covering of A by sets of diameter less than 6, where 26 < r¢. If
z; € U;, then U; C B(a:,-,diam (Ui)), so that u(U;) < ¢y diam (U;)*. So

Z diam (U;)* > ! ZM(Ui) > ¢y ' u(4).

Therefore HE(A) > c;'u(A), and it follows immediately that H*(4) > 0, and
dimg(4) > o. d

Corollary 2.6. dimy(G) =log3/log2.

Proof. By Lemma 2.1 pi¢ satisfies (2.5) with o = d¢. So by Theorem 2.5 dimg(G) >
d¢; the other bound has already been proved. O

Very frequently, when we wish to compute the dimension of a set, it is fairly
easy to find directly a near-optimal covering, and so obtain an upper bound on
dimg directly. We can then use Theorem 2.5 to obtain a lower bound. However,
we can also use measures to derive upper bounds on dimg.
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Theorem 2.7. Let i1 be a finite measure on A such that ,LL(B(ZB,T)) > cor® for all
z €A, r<ry. Then H*(A) < o0, and dimg(4) < a.

Proof. See [Fa2, p.61].

In particular we may note:

Corollary 2.8. If i is a measure on A with u(A) € (0,00) and
(2.6) cir® < ,u(B(ar,r)) <er®, e A, r<nrg
then H*(A) € (0,00) and dimg(4) = .

Remarks. 1. If 4 is a k-dimensional subspace of R¢ then dimg(A4) = dimpc(4) =
k.

2. Unlike dimg¢ dimyg is stable under countable unions: thus
dim g (U Ai) = sup dimg (4;).
=1 ¢

3. In [Tri] Tricot defined “packing dimension” dimp(-), which is the largest rea-
sonable definition of “dimension” for a set. One has dimp(A4) > dimg(A4); strict
inequality can hold. The hypotheses of Corollary 2.8 also imply that dimp(A4) = a.
See [Fa2, p.48].

4. The sets we consider in these notes will be quite regular, and will very often
satisfy (2.6): that is they will be “a-dimensional” in every reasonable sense.

5. Questions concerning Hausdorff measure are frequently much more delicate than
those relating just to dimension. However, the fractals considered in this notes will
all be sufficiently regular so that there is a direct construction of the Hausdorff mea-
sure. For example, the measure pg on the Sierpinski gasket is a constant multiple
of the Hausdorff 247 -measure on G.

We note here how dimg changes under a change of metric.

Theorem 2.9. Let p1, p» be metrics on F, and write H**, dimg ; for the Hausdorff

measure and dimension with respect to p;, ¢ = 1, 2.

(a) If pr1(z,y) < p2(z,y) for all z,y € A with ps(z,y) < &, then dimg,(A4) >
dimH,z (A)

(b) If 1 A p1(z,y) < (LA p2(z,y))? for some § > 0, then

dimH,z(A) =40 dimH71 (A)
Proof. Write d;(U) for the p;-diameter of U. If (U;) is a cover of A by sets with

p2(U;) < 6 < by, then
Zdl(Ui)a < Zdz(Ui)a

so that ;"' (4) < Hy'?(A). Then H*(A) < H*2(A) and dimg;(4) > dimz 5(A),
proving (a).
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(b) If U; is any cover of A by sets of small diameter, we have
Z dl(Ui)a = Z dz(Ui)oa.

Hence H*!(A) = 0 if and only if H%*?(A) = 0, and the conclusion follows. O
Metrics on the Sierpinski gasket.

Since we will be studying continuous processes on G, it is natural to consider
the metric on G given by the shortest path in G between two points. We begin with
a general definition.

Definition 2.10. Let A C R%. For z,y € A set
da(z,y) = inf{|y| : v is a path between = and y and v C A}.

If da(z,y) < oo for all z, y € A we call d the geodesic metric on A.

Lemma 2.11. Suppose A is closed, and that ds(z,y) < oo for all , y € A. Then
d 4 is a metric on A and (A,d ) has the geodesic property:

For each x,y € A there exists a map ®(t) : [0,1] — A such that
da(z,®(t)) =tda(z,y), da(®(t),y) =1 —t)da(z,y).

Proof. Tt is clear that d4 is a metric on A. To prove the geodesic property, let
z,y € A, and D = da(z,y). Then for each n > 1 there exists a path v,(¢),
0 <t <1+ D such that v, C A, |dy,(t)| = dt, 7,(0) = = and 7,(t,) = y for
some D <t, < D+n~t If p € [0,D] NQ then since |z — v,(p)| < p the sequence
(vn(p)) has a convergent subsequence. By a diagonalization argument there exists
a subsequence ny such that «,, (p) converges for each p € [0, D] N Q; we can take
® = limvy,,. O

Lemma 2.12. For z,y € G,
|z —y| < dg(z,y) < ez —yl.

Proof. The left hand inequality is evident.
It is clear from the structure of H,, that if A, B are n-triangles and AN B = 0,
then
la —b] > (V3/2)2™" forac A, be B.

Let z, y € G and choose n so that
(V3/2)2-4) < | — y| < (V3/2)27.

So x,y are either in the same n-triangle, or in adjacent n-triangles. In either case
choose z € G,, so it is in the same n-triangle as both z and y.
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Let z, = 2z, and for £ > n choose z; € Gj such that z,z; are in the same k-
triangle. Then since z; and 21 are in the same k-triangle, and both are contained
in Hey1, we have dg(2k, 2841) = da ., (2, 2041) < 27k, So,

da(z,z) < Z da(zr, 2he1) < 2177 < 4|z —yl.

k=n

Hence dg(z,y) < dg(z,2) + da(z,y) < 8|z — y|. O

Construction of a diffusion on the Sierpinski gasket.

Let G, be the set of vertices of n-triangles. We can make G,, into a graph
in a natural way, by taking {z,y} to be an edge in G, if z,y belong to the same
n-triangle. (See Fig. 2.3). Write E,, for the set of edges.

Figure 2.3: The graph G3.

Let Yk(n), k=0,1,... be a simple random walk on G,,. Thus from = € G,,, the
process Y (®) jumps to each of the neighbours of 2 with equal probability. (Apart
from the 3 points in Gy, all the points in G,, have 4 neighbours). The obvious way
to construct a diffusion process (X;,t > 0) on G is to use the graphs G,, which
provide a natural approximation to GG, and to try to define X as a weak limit of the
processes Y (™. More precisely, we wish to find constants (an,n > 0) such that

(2.7) (Y(") t> o) = (X4t >0).

[ant]’

We have two problems:

(1) How do we find the right (a,)?
(2) How do we prove convergence?

We need some more notation.

Definition 2.13. Let S,, be the collection of sets of the form GN A, where A is an
n-triangle. We call the elements of S,, n-complezes. For z € G,, let D,(z) = |J{S €
Sp:xz €S}

The key properties of the SG which we use are, first that it is very symmetric,
and secondly, that it is finitely ramified. (In general, a set A in a metric space F is
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finitely ramified if there exists a finite set B such that A — B is not connected). For
the SG, we see that each n-complex A is disconnected from the rest of the set if we
remove the set of its corners, that is A N G,,.

The following is the key observation. Suppose Yo(n) =y € Gp_1 (take y ¢ Gy
for simplicity), and let T = inf{k > 0 : Yk(n) € Gn_1 — {y}}. Then Y(®) can only
escape from D,,_1(y) at one of the 4 points, {z1,..., 24} say, which are neighbours of
y in the graph (G, _1, E,_1). Therefore Yq(vn) € {z1,...,24}. Further the symmetry
of the set G,, N D, (y) means that each of the events {Yj(,n) = z;} is equally likely.

X3 X3

Xl y X4

Figure 2.4: y and its neighbours.

Thus
P (ngn) = &y

v =y) =1,

and this is also equal to P(Yl(n_l) = :13,-|Y0(n_1) = y). (Exactly the same argument
applies if y € Gy, except that we then have only 2 neighbours instead of 4). It
follows that Y(™) looked at at its visits to G,,_; behaves exactly like y(»=1) To
state this precisely, we first make a general definition.

Definition 2.14. Let T = Ry or Z, let (Z;,t € T) be a cadlag process on a metric
space F', and let A C F be a discrete set. Then successive disjoint hits by Z on A
are the stopping times T, T1,... defined by

To :inf{t >0:2; € A},
Tpi1=inf{t >T,:Z, € A—{Zr,}}, n > 0.

(2.8)

With this notation, we can summarize the observations above.

Lemma 2.15. Let (T;);>o be successive disjoint hits by Y™ on G,_;. Then
(Yq({l),i > 0) is a simple random walk on G,_; and is therefore equal in law to
("0 > 0).

Using this, it is clear that we can build a sequence of “nested” random walks
on G,. Let N > 0, and let YkEN), k > 0 be a SRW on G with YO(N) = 0. Let
0<m<N-1and (TiN’m)izg be successive disjoint hits by Y(&) on G,,, and set

v =y@hm =y, iz

7
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It follows from Lemma 2.15 that Y (™) is a SRW on Gn,andforeach0 <n<m<N
we have that Y (™) sampled at its successive disjoint hits on G,,, equals Y (%),

We now wish to construct a sequence of SRWs with this property holding for
0 <n <m < oo. This can be done, either by using the Kolmogorov extension
theorem, or directly, by building Y (¥*1) from Y(™) with a sequence of independent
“excursions”. The argument in either case is not hard, and I omit it.

Thus we can construct a probability space (2, F,P), carrying random variables

(Yk(n),n >0,k > 0) such that
a) For each n, Y(n), k> 0)is a SRW on G,, starting at 0.
k
(b) Let T/*™ be successive disjoint hits by Y on G,,. (Here m < n). Then
(2.9) vy =y™, i>0, m<n.

If we just consider the paths of the processes Y(?) in G, we see that we are
viewing successive discrete approximations to a continuous path. However, to define
a limiting process we need to rescale time, as was suggested by (2.7).

Write 7 = T} = min{k >0 : |Yk(1)| =1}, and set f(s) =Es", for s € [0,1].

Lemma 2.16. f(s) = s?/(4 —3s), Er = f'(1) = 5, and Er* < oo for all k.

Proof. This is a simple exercise in finite state Markov chains. Let a1, az be the two
non-zero elements of Gy, let b = %(al + a3), and ¢; = %a,-. Writing f.(s) = E%s7,
and defining f3, f, similarly, we have f,(s) =1,
f(s) = sfe(s),
fe(s) = 35(f(8) + fe(s) + fo(s) + fa(s)),
1
58

fb(S) = (fc(s) +fa(3))7
and solving these equations we obtain f(s).
The remaining assertions follow easily from this. O
a,
b, c
0 b, a,

Figure 2.5: The graph G;.
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Now let Z, = T7" ’0, n > 0. The nesting property of the random walks Y (")
implies that Z,, is a simple branching process, with offspring distribution (p,, ), where

(2.10) F(s) =Y s"p.

k=2

To see this, note that Yk(n+1), for TZH_I’" < k< Tﬁ:il’n is a SRW on G,4+1 N

d
Dn(Yi(n)), and that therefore le_tl’n - Tin+1’n @ 7. Also, by the Markov property,
the r.v. §; = Tirfi_—lil’n — Tin+1’n, ¢ > 0, are independent. Since

Zn,—1
Zn—l—l = Z £i7
1=0

(Z,) is a branching process.
As E7? < oo, and Er = 5, the convergence theorem for simple branching
processes implies that
5" Z, S5 W

for some strictly positive r.v. W. (See [Har, p. 13]). The convergence is easy using
a martingale argument: proving that W > 0 a.s. takes a little more work. (See
[Har, p. 15]). In addition, if

p(u) = Be™V

then ¢ satisfies the functional equation

(2.11) o(5u) = f(p(w), ¢'(0) = —L.

We have a similar result in general.

Proposition 2.17. Fix m > 0. The processes

ZO) =™ T > m

1—1

are branching processes with offspring distribution 7, and Z(*) are independent.
Thus there exist Wi(m) such that for each m (W-(m),i > 0) are independent,

Wi(m) (i) 5~™W, and
5™ (Tin’m — TZZT) — Wl-(m) a.s.

Note in particular that E(T;*°) = 57, that is that the mean time taken by ¥ (%)
to cross G, is 5™. In terms of the graph distance on G, we have therefore that
Y (™) requires roughly 5" steps to move a distance 27; this may be compared with
the corresponding result for a simple random walk on 7%, which requires roughly
4™ steps to move a distance 2".

The slower movement of Y (™) is not surprising — to leave G, N B(0,1/2), for
example, it has to find one of the two ‘gateways’ (1/2,0) or (1/4,+/3/4). Thus the
movement of Y (™ is impeded by a succession of obstacles of different sizes, which
act to slow down its diffusion.
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Given the space-time scaling of Y (™ it is no surprise that we should take o, =
5™ in (2.7). Define

n __ (n)
Xy =Ygy, t2>0.

In view of the fact that we have built the Y () with the nesting property, we
can replace the weak convergence of (2.7) with a.s. convergence.

Theorem 2.18. The processes X™ converge a.s., and uniformly on compact inter-
vals, to a process X3, t > 0. X is continuous, and X; € G for all t > 0.

Proof. For simplicity we will use the fact that W has a non-atomic distribution
function. Fix for now m > 0. Let ¢t > 0. Then, a.s., there exists ¢ = i(w) such that

7 +1
Swim << wim,
7j=1 7j=1

As W](m) =lim, .o 5" (T;L’m — T;‘_’Tf) it follows that for n > ng(w),

(2.12) ;™ < 5"t <TI0

Now Y(™(T/™) = Y™ by (2.9). Since Y™ € D,,(Y\™) for T/"™ < k < T/,
we have

|}f[g:)t] - Yi(m)| <2™™ for all n > ng.

This implies that |X}* — XZLI| < 27™+1 for n, n’ > ng, so that X is Cauchy, and
converges to a r.v. X;. Since X' € G, we have X; € G.

With a little extra work, one can prove that the convergence is uniform in ¢, on
compact time intervals. I give here a sketch of the argument. Let a € N, and let

Then &,, > 0 a.s. Choose ngy such that for n > nyg
’5—”:@."”" _ ZW}’”)’ <le,  1<i<asm™
=1

Then if 7 = i(t,w) is such that W™ <t < W/, and i < a5™ we have 5~ "T;"[* <
t < 5Ty for all m > ng. So, |XP — Y| < 27™*! for all n > ng. This implies
that if T,,, = Z?Z: Wi(m), and S < T,,, then

Xp - Xp| <2mt?
sup | Xi' — X' [ <
0<t<S

for all n, n’ > ny. If S < liminf,, T,, then the uniform a.s. convergence on the
(random) interval [0, S| follows. If s, ¢t < T, and |t — s| < &, then we also have
| X7 — X <27™*%2 for n > ng. Thus X is uniformly continuous on [0, S]. Varying
a we also obtain uniform a.s. convergence on fixed intervals [0, o]. O]
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Although the notation is a little cumbersome, the ideas underlying the con-
struction of X given here are quite simple. The argument above is given in [BP],
but Kusuoka [Kusl|, and Goldstein [Go|, who were the first to construct a diffusion
on G, used a similar approach. It is also worth noting that Knight [Kn] uses similar
methods in his construction of 1-dimensional Brownian motion.

The natural next step is to ask about properties of the process X. But unfor-
tunately the construction given above is not quite strong enough on its own to give
us much. To see this, consider the questions

(1) Is W = lim,_00 5~ "T7"° = inf{t > 0: X, € G — {0}}?
(2) Is X Markov or strong Markov?

For (1), we certainly have Xy € G—{0}. However, consider the possibility that each
of the random walks Y,, moves from 0 to a2 on a path which does not include a;, but
includes an approach to a distance 27". In this case we have a; ¢ {X*,0 <t < W},
but X7 = a; for some T' < W. Plainly, some estimation of hitting probabilities is
needed to exclude possibilities like this.

(2). The construction above does give a Markov property for X at stopping times of
the form Z;Zl W}m). But to obtain a good Markov process X = (X;,t > 0,P* x €
G) we need to construct X at arbitrary starting points z € G, and to show that (in
some appropriate sense) the processes started at close together points z and y are
close.

This can be done using the construction given above — see [BP, Section 2.
However, the argument, although not really hard, is also not that simple.

In the remainder of this section, I will describe some basic properties of the
process X, for the most part without giving detailed proofs. Most of these theorems
will follow from more general results given later in these notes.

Although G is highly symmetric, the group of global isometries of G is quite
small. We need to consider maps restricted to subsets.

Definition 2.19. Let (F,p) be a metric space. A local isometry of F is a triple
(A, B, @) where A, B are subsets of F and ¢ is an isometry (i.e. bijective and distance
preserving) between A and B, and between 04 and 9B.

Let (X¢,t > 0,P®,z € F) be a Markov process on F. For H C F, set Ty =

inf{t > 0: X; € H}. X is invariant with respect to a local isometry (A, B, ) if
P (o(XiaTs,) € -t > 0) = PP (Xyap,, € -, > 0).

X is locally isotropic if X is invariant with respect to the local isometries of F'.

Theorem 2.20. (a) There exists a continuous strong Markov process X = (X, t >
0,P*. 2 € G) on G.
(b) The semigroup on C(G) defined by

Pif(z) = E* f(X4)

is Feller, and is pg-symmetric:

| #@Pg(@nolin) = [ o(@)Pes@hnalda),
G
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(c) X is locally isotropic on the spaces (G,|-—-|) and (G,dg).

(d) For n > 0 let T, ;, i > 0 be successive disjoint hits by X on G,. Then ﬁ(n) =
X, ;, % > 0 defines a SRW on G,,, and }/}[(5:1] — X uniformly on compacts, a.s. So,
in particular (X;,t > 0,P?) is the process constructed in Theorem 2.18.

This theorem will follow from our general results in Sections 6 and 7; a direct
proof may be found in [BP, Sect. 2]. The main labour is in proving (a); given this
(b), (c), (d) all follow in a relatively straightforward fashion from the corresponding

properties of the approximating random walks Yy,

The property of local isotropy on (G, dg) characterizes X:

Theorem 2.21. (Uniqueness). Let (Z;,t > 0,Q",2 € G) be a non-constant locally
isotropic diffusion on (G,dg). Then there exists a > 0 such that

Q*(Z; € ,t >0) =P*( X, €-,t>0).

(So Z is equal in law to a deterministic time change of X ).

The beginning of the proof of Theorem 2.21 runs roughly along the lines one
would expect: for n > 0 let (12-(”), i > 0) be A sampled at its successive disjoint
hits on G,,. The local isotropy of VA implies that Y(™ is a SRW on G.,,. However
some work (see [BP, Sect. 8]) is required to prove that the process Y does not have
traps, i.e. points z such that Q*(Y; = z for all t) = 1.

Remark 2.22. The definition of invariance with respect to local isometries needs
some care. Note the following examples.

1. Let z,y € G,, be such that D, (z) N Gy = ag, D,,(y) N Gy = 0. Then while there
exists an isometry ¢ from D,(z) N G to D,(y) N G, ¢ does not map gD, (z) N G
to OrD,(y) N G. (Or denotes here the relative boundary in the set G).

2. Recall the definition of H,,, the n-th stage in the construction of G, and let
B, = 8H,. We have G = cl(UB,). Consider the process Z; on G, whose local
motion is as follows. If Z; € H, — H,_1, then Z; runs like a standard 1-dimensional
Brownian motion on H,,, until it hits H,_;. After this it repeats the same procedure
on H,,_; (or H,_y if it has also hit H,,_j at that time). This process is also invariant
with respect to local isometries (A, B, ¢) of the metric space (G,|- — -|). See [He]
for more on this and similar processes.

To discuss scale invariant properties of the process X it is useful to extend G
to an unbounded set G with the same structure. Set

G=|J2q,
n=0
and let én be the set of vertices of n-triangles in én, for n > 0. We have

én = U 2an—|—k7
k=0
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and if we define G,,, = {0} for m < 0, this definition also makes sense for n < 0. We
can, almost exactly as above, define a limiting diffusion X = (X, ¢t > 0,P*, 2z € G)
on G:
Xt = nll_I)I;o Y[gn)t], t >0, a.s.

where (?,c(n),n > 0,k > 0) are a sequence of nested simple random walks on én,
and the convergence is uniform on compact time intervals.

The process X satisfies an analogous result to Theorem 2.20, and in addition
satisfies the scaling relation

(2.13) P*(2X; € -,t > 0) = P?*(X5 € -,¢ > 0).

Note that (2.13) implies that X moves a distance of roughly #1°82/1085 in time t.
Set
dyw = dy(G) = log 5/ log 2.

We now turn to the question: “What does this process look like?”

The construction of X, and Theorem 2.20(d), tells us that the ‘crossing time’ of
a O-triangle is equal in law to the limiting random variable W of a branching process
with offspring p.g.f. given by f(s) = s2/(4—3s). From the functional equation (2.11)
we can extract information about the behaviour of p(u) = F exp(—uW) as u — oo,
and from this (by a suitable Tauberian theorem) we obtain bounds on P(W < t)
for small t. These translate into bounds on P*(|X; — z| > \) for large A. (One uses
scaling and the fact that to move a distance in G greater than 2, X has to cross at
least one 0-triangle). These bounds give us many properties of X. However, rather
than following the development in [BP], it seems clearer to first present the more
delicate bounds on the transition densities of X and X obtained there, and derive
all the properties of the process from them. Write jig for the analogue of f pg for G
and P, for the semigroup of X. Let L be the infinitesimal generator of P,.

Theorem 2.23. P, and P, have densities p(t z,y) and p(t,z,y) respectively.
(a) p(t,z,y) is continuous on (0,0) X G x G.

(b) p(t,z,y) = p(t,y,z) for all t,z,y.
(c)t — p(t,z,y) is C™ on (0,00) for each (z,y).
(d) For each t, y

|deds g 2" € G.

p(t,z,y) — Ptz y)| < etz —

(e) For t € (0,00), z,y € G

1/(dy—1)
(2.14) cot s/ dw _ M < Bl
. i e <t .9)

e \ /(de—=1)
< C4t_df/d“‘ exp <—C5 (%) ) .
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(f) For each yy € G, p(t,x,y0) is the fundamental solution of the heat equation on
G with pole at yy:

0 - ~_ -
Ep(tvxayO) — Ep(t,l',y(]), p(07 ',Z/O) = 6yo(')-

() p(t,z,y) satisfies (a)—(f) above (with G replaced by G and t € (0, 00| replaced
by t € (0,1]).

Remarks. 1. The proof of this in [BP] is now largely obsolete — simpler methods
are now available, though these are to some extent still based on the ideas in [BP].
2. If df = d and d,, = 2 we have in (2.14) the form of the transition density of
Brownian motion in R%. Since d,, = log5/log2 > 2, the tail of the distribution of
| Xt — x| under P* decays more rapidly than an exponential, but more slowly than
a Gaussian.

It is fairly straightforward to integrate the bounds (2.14) to obtain information
about X. At this point we just present a few simple calculations; we will give some
further properties of this process in Section 3.

Definition 2.24. For z € é, n € 7, let x, be the point in G, closest to = in
Euclidean distance. (Use some procedure to break ties). Let D,(z) = D, (z,).

Note that fig (Dn(zy)) is either 37" or 2.37™, that

(2.15) |z —y| <227 if y € D,(z),
and that
(2.16) @ —y| > 22"+ if y € G| Dulx)".

The sets D, (z) form a convenient collection of neighbourhoods of points in G. Note
that UpezDy(z) = G.

Corollary 2.25. For x € é,

et/ <FP|X, — 2| < gt/ e, t>0.
Proof. We have

B1Xe = aft = [ (u = o)Flt,, )i (dy).

Set A,, = Dy,(2) — Dypy1(2). Then
1) [ -0 peia(d)

1/(dw—1)
< (2724w ey (—c' ((rm)“’w /t) ) 3=

_ 6(2_m)2+dft_df/dw exp (—C,(5_m/t)1/(d“’ —1)) )
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Choose n such that 57" < ¢t < 57 "*! and write a,,(t) for the final term in (2.17).
Then

n—1

B (X —2)? < ) am()+ Y am(t).

m=—o0 m=n
For m < n, 5~™/t > 1 and the exponential term in (2.17) is dominant. After a few
calculations we obtain

n—1

Z am(t) < 6(2_n)2+dft_df/dw

m=—oco

< ) [dy—dp[dy o oy(4dy)[du—ds/du < 42/ du

where we used the fact that (27")% < t. For m > n we neglect the exponential
term, and have

S am(t) < ¢ t-ilhe 37 (2mm)2Hds

S ct—df/dw (2—n)2+df S c't2/d“’ .
Similar calculations give the lower bound. O

Remarks 2.26. 1. Since 2/d,, = log4/log5 < 1 this implies that X is subdiffusive.

2. Since g (B(m,r)) = rds, for z € é, it is tempting to try and prove Corollary
2.25 by the following calculation:

(218)  E*|X-af = / ridr / Bt 2, y)fic(dy)
0 8B(z,r)
< [ gt e (—r s
0

o 1/dy—1
— ¢2/dw / sltds exp (—c(sdw) / ) ds = ct?/dw
0

Of course this calculation, as it stands, is not valid: the estimate
fiig(B(z,r + dr) — B(z,r)) < rds =Ly

is certainly not valid for all r. But it does hold on average over length scales of
2" < r < 2"t and so splitting G into suitable shells, a rigorous version of this
calculation may be obtained — and this is what we did in the proof of Corollary
2.25.

The A-potential kernel density of X is defined by
’U’)\("Bay) = / e_)\tﬁ(tvmay) dt.
0

From (2.14) it follows that uy is continuous, that uy(z,z) < eA%/% =1 and that
uy — 00 as A — 0. Thus the process X (and also X) “hits points” — that is if
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T, = inf{t > 0: X, =y} then
(2.19) P*(Ty < 00) > 0.

It is of course clear that X must be able to hit points in GG,, — otherwise it could not
move, but (2.19) shows that the remaining points in G have a similar status. The
continuity of ux(z,y) in a neighbourhood of z implies that

that is that = is regular for {z} for all z € G.

The following estimate on the distribution of |5(:t — z| can be obtained easily
from (2.14) by integration, but since this bound is actually one of the ingredients in
the proof, such an argument would be circular.

Proposition 2.27. For z € é, A>0,t>0,
crvexp (—ea(X /1)) < PR, — 2] > )
< c3 exp (—04()\dw /t)(l/dw_l)) .

From this, it follows that the paths of X are Holder continuous of order 1 [dw — €
for each ¢ > 0. In fact we can (up to constants) obtain the precise modulus of

continuity of X. Set
h(t) = t1/ 3w (logt~1)(dw—1)/du,

Theorem 2.28. (a) For z € G

X, - X
c1 <lim sup M < ea, P?* — a.s.
810 g<s<t<1 h(s —1t)

[t—s|<8

(b) The paths of X are of infinite quadratic variation, a.s., and so in particular X
is not a semimartingale.

The proof of (a) is very similar to that of the equivalent result for Brownian motion
in R4,

For (b), Proposition 2.23 implies that | X;, s — X;| is of order h!/%; as d,, > 2 this
suggests that X should have infinite quadratic variation. For a proof which fills in
the details, see [BP, Theorem 4.5]. O

So far in this section we have looked at the Sierpinski gasket, and the construc-
tion and properties of a symmetric diffusion X on G (or G). The following three
questions, or avenues for further research, arise naturally at this point.
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1. Are there other natural diffusions on the SG?

Can we do a similar construction on other fractals?

3. What finer properties does the process X on G have? (More precisely: what
about properties which the bounds in (2.17) are not strong enough to give
information on?)

The bulk of research effort in the years since [Kusl, Go, BP] has been devoted
to (2). Only a few papers have looked at (1), and (apart from a number of works
on spectral properties), the same holds for (3).

R

Before discussing (1) or (2) in greater detail, it is worth extracting one property
of the SRW Y1) which was used in the construction.

Let V = (V,,,n > 0,P% a € Gy) be a Markov chain on Gy: clearly V is specified
by the transition probabilities

p(ai,a]-) = [P’“i(Vl = aj), O S ’l,_] S 2

We take p(a,a) = 0 for a € Gy, so V is determined by the three probabilities
p(a;,a;), where j =i+ 1 (mod 3).

Given V we can define a Markov Chain V' on G; by a process we call replication.
Let {bg1,b02,b12} be the 3 points in G; — Gy, where b;; = %(ai + a;). We consider
G to consist of three 1-cells {a;, b;j,7 # i}, 0 <4 < 2, which intersect at the points
{b;j}. The law of V' may be described as follows: V' moves inside each 1-cell in
the way same as V does; if Vj lies in two 1-cells then it first chooses a 1-cell to

move in, and chooses each 1-cell with equal probability. More precisely, writing
—=a
V=V, n>0,P,a€G), and

p'(a,b) = P*(V{ = b),
we have
(220) pl(aiabij) - p(aiaa’j)a
p'(bij, bir) = 3p(aj,ax), P'(bij,a:) = 3p(aj, a;).

Now let Ty, k > 0 be successive disjoint hits by V' on Gy, and let Uy = V., k > 0.
Then U is a Markov Chain on Gj; we say that V is decimation invariant if U is
equal in law to V.

We saw above that the SRW Y(®) on G, was decimation invariant. A natural
question is:

What other decimation invariant Markov chains are there on Gy?

Two classes have been found:

1. (See [Go]). Let p(ag,a1) = p(a1,a0) =1, p(az,a9) = 3.
2. “p-stream random walks” ([Kuml]). Let p € (0,1) and

p(“Oaal) = P(Cbl,az) = P(az,ao) = D-

From each of these processes we can construct a limiting diffusion in the same
way as in Theorem 2.18. The first process is reasonably easy to understand: essen-
tially its paths consist of a downward drift (when this is possible), and a behaviour
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like 1-dimensional Brownian motion on the portions on G which consist of line
segments parallel to the z-axis.

For p > % Kumagai’s p-stream diffusions tend to rotate in an anti-clockwise
direction, so are quite non-symmetric. Apart from the results in [Kuml] nothing is
known about this process.

Two other classes of diffusions on G, which are not decimation invariant, have
also been studied. The first are the “asymptotically 1-dimensional diffusions” of
[HHW4|, the second the diffusions, similar to that described in Remark 2.22, which
are (G, |- — - |)-isotropic but not (G, dg)- isotropic — see [He|. See also [HH1, HK1,
HHK] for work on the self-avoiding random walk on the SG.

Diflusions on other fractal sets.

Of the three questions above, the one which has received most attention is that
of making similar constructions on other fractals. To see the kind of difficulties
which can arise, consider the following two fractals, both of which are constructed
by a Cantor type procedure, based on squares rather than triangles. For each curve
the figure gives the construction after two stages.

Figure 2.6: The Vicsek set and the Sierpinski carpet.

The first of these we will call the “Vicsek set” (VS for short). We use similar
notation as for the SG, and write Gy, G1,... for the succession of sets of vertices
of corners of squares. We denote the limiting set by F = Fyg. One difficulty arises
immediately. Let Y,. be the SRW on Gy which moves from any point x € G to each
of its neighbours with equal probability. (The neighbours of x are the 2 points y in
Go with |z — y| = 1). Then Y(?) is not decimation invariant. This is easy to see:
Y (© cannot move in one step from (0,0) to (1,1), but Y(*) can move from (0,0) to
(1,1) without hitting any other point in Gj.

However it is not hard to find a decimation invariant random walk on Gg. Let
p € [0,1], and consider the random walk (Y,,r > 0,E?,z € Gy) on G which moves
diagonally with probability p, and horizontally or vertically with probability %(1 —p).
Let (Y, > 0,E;,z € G1) be the Markov chain on G; obtained by replication, and
let Ty, k > 0 be successive disjoint hits by Y’ on Gy.
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Then writing f(p) = P)(Yy, = (1,1)) we have (after several minutes calcula-

tion)
1

4 —3p

f(p) =

The equation f(p) = p therefore has two solutions: p = % and p = 1, each of which
corresponds to a decimation invariant walk on Gy. (The number % here has no
general significance: if we had looked at the fractal similar to the Vicsek set, but
based on a 5 x b square rather than a 3 x 3 square, then we would have obtained a
different number).

One may now carry through, in each of these cases, the construction of a dif-
fusion on the Vicsek set F', very much as for the Sierpinski gasket. For p = 1 one
gets a rather uninteresting process, which, if started from (0,0), is (up to a constant
time change) 1-dimensional Brownian motion on the diagonal {(¢,t),0 <t < 1}. It
is worth remarking that this process is not strong Markov: for each z € F one can
take P* to be the law of a Brownian motion moving on a diagonal line including
x, but the strong Markov property will fail at points where two diagonals intersect,
such as the point (1, 1).
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For p = % one obtains a process (X;,t > 0) with much the same behaviour
as the Brownian motion on the SG. We have for the Vicsek set (with p = %)

d¢(Fys) = log5/log3, dy,(Fvs) = log15/log 3. This process was studied in some
detail by Krebs [Krl, Kr2|. The Vicsek set was mentioned in [Go], and is one of the
“nested fractals” of Lindstrgm [L1].

This example shows that one may have to work to find a decimation invariant
random walk, and also that this may not be unique. For the VS, one of the decima-
tion invariant random walks was degenerate, in the sense that P*(Y hits y) = 0 for
some z,y € Gy, and we found the associated diffusion to be of little interest. But it
raises the possibility that there could exist regular fractals carrying more than one
“natural” diffusion.

The second example is the Sierpinski carpet (SC). For this set a more serious
difficulty arises. The VS was finitely ramified, so that if Y; is a diffusion on Fyg,
and (Tj, k > 0) are successive disjoint hits on G, for some n > 0, then (Y7, ,k > 0)
is a Markov chain on G,,. However the SC is not finitely ramified: if (Z;,t > 0) is a
diffusion on Fg¢, then the first exit of Z from [0, %]2 could occur anywhere on the
line segments {(%,y),(] <y< %}, {(z, %), 0<z< %} It is not even clear that a
diffusion on Fg¢ will hit points in G,,. Thus to construct a diffusion on Fg¢o one
will need very different methods from those outlined above. It is possible, and has
been done: see [BB1-BB6|, and [Bas] for a survey.

On the third question mentioned above, disappointingly little has been done:
most known results on the processes on the Sierpinski gasket, or other fractals,
are of roughly the same depth as the bounds in Theorem 2.23. Note however the
results on the spectrum of £ in [FS1, FS2, Sh1-Sh4], and the large deviation results
in [Kumb|. Also, Kusuoka [Kus2] has very interesting results on the behaviour of
harmonic functions, which imply that the measure defined formally on G by

v(dz) = |V f|*(z)u(dz)

is singular with respect to y. There are many open problems here.



27
3. Fractional Diffusions.

In this section I will introduce a class of processes, defined on metric spaces,
which will include many of the processes on fractals mentioned in these lectures. I
have chosen an axiomatic approach, as it seems easier, and enables us to neglect
(for the time being!) much of fine detail in the geometry of the space.

A metric space (F, p) has the midpoint property if for each ,y € F there exists
z € F such that p(z,z) = p(z,y) = 2p(z,y). Recall that the geodesic metric dg in
Section 2 had this property. The following result is a straightforward exercise:

Lemma 3.1. (See [Blu]). Let (F, p) be a complete metric space with the midpoint
property. Then for each x, y € F there exists a geodesic path (y(t),0 <t < 1) such
that y(0) = z, ¥(1) = y and p(v(s),7(t)) = [t — s[d(z,y), 0 <s <t < 1.

For this reason we will frequently refer to a metric p with the midpoint property
as a geodesic metric. See [Stul] for additional remarks and references on spaces of
this type.

Definition 3.2. Let (F,p) be a complete metric space, and p be a Borel measure
n (F,B(F)). We call (F,p, 1) a fractional metric space (FMS for short) if

(3.1a) (F, p) has the midpoint property,

and there exist dy > 0, and constants c;,cy such that if 7o = sup{p(z,y) : =,y €
F} € (0,00] is the diameter of F then

(3.1b) crrdt < w(B(z, 7)) < cardt for zeF, 0<r<r.

Here B(z,r) ={y € F: p(z,y) < r}.

Remarks 3.3. 1. R¢, with Euclidean distance and Lebesgue measure, is a FMS,
with df = d and ro = oo

2. If G is the Sierpinski gasket, dg is the geodesic metric on G, and p = pg is
the measure constructed in Section 2, then Lemma 2.1 shows that (G,dg,x) is a
FMS, with df = d¢(G) = log 3/log 2 and ro = 1. Similarly (é, dz, i) is a FMS with
Tog = OQ.

3. If (Fr,dg, pix), k = 1,2 are FMS with the same diameter ry and p € [1,00], then
setting F = Fy x Fy, d((#1,72), (y1,92)) = (d1(z1,y1)P+da(m2,y2)P) /P, 1 = pi1 X pia,
it is easily verified that (F,d, p) is also a FMS with d¢(F) = d(F1) + ds(F2).

4. For simplicity we will from now on take either rq = co or 7o = 1. We will write
r € (0,79] to mean r € (0,79] N (0,00), and define r§ = oo if @ > 0 and ry = oco.

A number of properties of (F, p, i) follow easily from the definition.
Lemma 3.4. (a) dimgy(F) = dimp(F) = dy.
(b) F is locally compact.
(C) df Z 1.

Proof. (a) is immediate from Corollary 2.8.
(b) Let z € F, A = B(z,1), and consider a maximal packing of disjoint balls
B(z;,¢), ©; € A 1 <i<m. As p(A) < ¢z, and p(B(z;,€)) > c1ef, we have

m < ca(cre®)” ' <00, Also A = U™, B(z;,2¢). Thus any bounded set in F' can be
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covered by a finite number of balls radius ¢; this, with completeness, implies that F'
is locally compact.

(c) Take z,y € F with p(z,y) = D > 0. Applying the midpoint property repeatedly
we obtain, for m = 2%, k > 1, a sequence = = zg, 21,...,2m = y With p(2;,zi11) =
D/m. Set r = D/2m: the balls B(z;,r) must be disjoint, or, using the triangle
inequality, we would have p(z,y) < D. But then

m—1

U B(zi,r) C B(z,D),

1=0
so that

m—1
ey D > ,u(B(a:,D)) > Z u(B(zi,r))
> mey DY (2m) ™% = em! T4,

If df < 1 a contradiction arises on letting m — oo. d

Definition 3.5. Let (F,p,u) be a fractional metric space. A Markov process
X = (P*,z € F,X;,t > 0) is a fractional diffusion on F if

(3.2a) X is a conservative Feller diffusion with state space F.

(3.2b) X is p-symmetric.

(3.2¢) X has a symmetric transition density p(¢,z,y) = p(t,y,z), t > 0, z,y € F,
which satisfies, the Chapman-Kolmogorov equations and is, for each ¢ > 0, jointly
continuous.

(3.2d) There exist constants «,3,7,¢1 — ¢4, to = roﬁ, such that

cit™*exp (—cop(z,y)P't77) < p(t,z,y)

(3.3) . o
< cst™"exp (—eap(z,y)7t7) , 2,y € F, 0 <t < to.

Examples 3.6. 1. If F is R?, and a(z) = a;j(z), 1 < i, j <d, z € R? is bounded,
symmetric, measurable and uniformly elliptic, let £ be the divergence form operator

0 0
L= —a;i(z)—.
%,: 8:13, ¢ J(w) 8£Bj
Then Aronsen’s bounds [Ar| imply that the diffusion with infinitesimal generator £
isa FD, with a =d/2, 5 =2,~v=1.
2. By Theorem 2.23, the Brownian motion on the Sierpinski gasket described in
Section 2 is a FD, with a = d¢(SG)/d,(SG), B = dw(SG) and v =1/(8 — 1).

The hypotheses in Definition 3.5 are quite strong ones, and (as the examples
suggest) the assertion that a particular process is an FD will usually be a substantial
theorem. One could of course consider more general bounds than those in (3.3) (with
a correspondingly larger class of processes), but the form (3.3) is reasonably natural,
and already contains some interesting examples.

In an interesting recent series of papers Sturm [Stul-Stu4] has studied diffusions
on general metric spaces. However, the processes considered there turn out to have
an essentially Gaussian long range behaviour, and so do not include any FDs with

g # 2.
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In the rest of this section we will study the general properties of FDs. In
the course of our work we will find some slightly easier sufficient conditions for a
process to be a FD than the bounds (3.3), and this will be useful in Section 8 when
we prove that certain diffusions on fractals are FDs. We begin by obtaining two
relations between the indices d¢, o, [, 7, so reducing the parameter space of FDs
to a two-dimensional one.

We will say that F is a FMS(ds) if F is a FMS and satisfies (3.1b) with
parameter df (and constants cj, cg). Similarly, we say X is a FD'(ds,a,3,7) if
X is a FD on a FMS(dy), and X satisfies (3.3) with constants «, G, y. (This is
temporary notation — hence the ’).

It what follows we fix a FMS (F, p, 1), with parameters 7o and dy.

Lemma 3.7. Let a,7v,z > 0 and set

I(v,z) = / e~ dt,
1

S(a,vy,z) = i ate®"
n=0
Then
(3.4) (a—1)S(a,y,a"z) < I(v,z) < (a—1)S(a,7,z),
and
(3.5) I(y,2) <277 forz <1,
(3.6) I(y,z) <z~ te™® forz >1,
Proof. We have .
I(v,z) = f: /a et d,
n=0""

and estimating each term in the sum (3.4) is evident.
If 0 < z <1 then since

e I(y, z) = / e ¥ ds — c(v) as  — 0,

131/7

(3.5) follows.
If x > 1 then (3.6) follows from the fact that

ze®I(y,z) = 7_1/ e~ ((z +u)/z) 7y — 471 as 2 — oco. O
0

Lemma 3.8. (“Scaling relation”). Let X be a FD'(d¢,c,3,7) on F. Then o =
dy/B.

Proof. From (3.1) we have

p(t,z,y) > crt™%e 2 = et for p(z,y) < t/P.
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Set tg = 0. So if A = B(x,t!/8), and t < t,

1> P*(p(x, X;) < t1/7) = / p(t, z,y)u(dy) > cst™*u(A) > et~ t4/P,
A

If ro = oo then since this holds for all ¢ > 0 we must have a = d¢/8. If 7o =1 then
we only deduce that o < ds/g.

Let now 79 = 1, let A > 0, ¢ < 1, and A = B(z, A\t'/#). We have u(F) < c3.1.2,
and therefore

1= Pz(Xt S A) + Pz(Xt S AC)

< w(A) sup p(t,z,y) + w(F — A) sup p(t,z,y)
yEA yEA°

< cgt TP\ /B C5t_°‘e_c‘°’)‘ﬁ7.

Let A = ((df/B)c5 " log(l/t))l/ﬁv; then we have for all ¢ < 1 that
1 < et—H4/B(1 + (log(1/t))}/P7,

which gives a contradiction unless o > ds/f. O

The next relation is somewhat deeper: essentially it will follow from the fact
that the long-range behaviour of p(t, z,y) is fixed by the exponents d¢ and 3 govern-
ing its short-range behaviour. Since 7 only plays a role in (3.3) when p(z,y)? > t,
we will be able to obtain 7 in terms of dy and § (in fact, it turns out, of 5 only).

We begin by deriving some consequences of the bounds (3.3).

Lemma 3.9. Let X be a FD'(ds,ds/B,03,7). Then
(a) For t € (0,t0], » >0

[Pw(p(m,Xt) > 7’) < exp(—czr'67t_7).

(b) There exists c3 > 0 such that

Cq €XP (—C5rﬁ7t_7) < P*(p(x,X¢) > r) forr < czrp, t < P,

(c) Forz € F,0 < r < cgrg, if T(x,r) =inf{s > 0: X, & B(z,r)} then

(3.7) ce™? <E7(z,1r) < cprf.

Proof. Fix © € F, and set D(a,b) ={y € F : a < p(z,y) < b}. Then by (3.1b)
c3.1.20% > u(D(a,b)) > c3.1.10% — c3.1.0a%.

Choose 6 > 2 so that c3.1.10% > 2¢3.1.2: then we have

(3.8) csa® < p(D(a,8a)) < coa.

Therefore, writing D,, = D(6"r,6"t1r), we have u(D,,) < ™% provided 78" *t! < rq.
Now
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69 PleX>n) = [ o)
B(z,r)c

=Z/D p(t, z,y)p(dy)

<Z (r0%)drt~ df/ﬁexp( crot 77 (r6™)P)

= (_5/t)df/55(0 By, co(r? [1)7).

If c197? > t then using (3.6) we deduce that this sum is bounded by

c11 €xXp (—clz(rﬁ/t)7> ,

while if c;or? < t then (as P®(p(z, X;) > r) < 1) we obtain the same bound, on
adjusting the constant c¢y;.

For the lower bound (b), choose c3 > 0 so that c3# < 1. Then u(Dgy) > cr?s
and taking only the first term in (3.9) we deduce that, since 7° > ¢,

P (p(z, X¢) > 1) > (P [t)% /P exp(—c13(rP /t)7)
> cexp(—ci3(r?/)7).
(c) Note first that
(3.10) PY(r(xz,r) > t) < PY(X; € B(z,r))
= / p(t, y, 2)p(dz)
B(z,r)
< ct—4s/Bpds
So, for a suitable c14
PY(r(z,7) > c1ar®) < %, ye€F.
Applying the Markov property of X we have for each £ > 1
PY(r(z,7) > kcigr®) <27, y € F,

which proves the upper bound in (3.7).
For the lower bound, note first that

P(r(z,2r) < t) =P° ( sup p(z,X¢) > 27’)
0<s<t

<P*(p(z,X¢) > ) + P(r(z,27) < t,p(z, X¢) <)
Writing S = 7(z,2r), the second term above equals

ECD]-(.S'<t)]P)X.‘SV (P($aXt—S) < 7") < sup Suppy(p(ant—s) > T)a
y€OB(=z,2r) s<t
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so that, using (a),

(3.11) Pm(T(m,27’) < t) < 2 sup sup [P’y(p(y,Xs) > r)
s<t yeF

< 2¢p exp (—cz (rﬁ/t)7) .

So if 4cie=°2%” =1 then P*(7(z,2r) < ar®) < 1, which proves the left hand side of
(3.7). O

Remark 3.10. Note that the bounds in (¢) only used the upper bound on p(t, z,y).

The following result gives sufficient conditions for a diffusion on F to be a
fractional diffusion: these conditions are a little easier to verify than (3.3).

Theorem 3.11. Let (F,p,pn) be a FMS(ds). Let (Y;,t > 0,P*, 2 € F) be a pu-
symmetric diffusion on F which has a transition density q(t,z,y) with respect to
i which is jointly continuous in x,y for each t > 0. Suppose that there exists a
constant 3 > 0, such that

(3.12) q(t,z,y) < it~ %P forallz,y e F,te (0, o],
(313) Q(t7$7y) > czt_df/ﬁ 1f,0(:1:,y) < c3t1/ﬁ? IS (O,to],
(3.14) car? <E*7(z,7) < csrP, forz € F, 0 <7 < cgro,

where 7(xz,r) = inf{t > 0 : Yy ¢ B(z,7)}. Then 8 > 1 and Y is a FD with
parameters dy, d¢ /3, 5 and 1/(6 — 1).

Corollary 3.12. Let X be a FD'(d¢,ds/B3,5,7) on a FMS(dg) F. Then 3 > 1
andy=1/(f-1).

Proof. By Lemma 3.8, and the bounds (3.3), the transition density p(t,z,y) of X
satisfies (3.12) and (3.13). By Lemma 3.9(c) X satisfies (3.14). So, by Theorem
3.11 8> 1, and X is a FD'(ds,ds/B3,8,(8 — 1)~1). Since p(t,z,y) cannot satisfy

(3.3) for two distinct values of «, we must have y = (8 — 1)_1. O

Remark 3.13. Since two of the four parameters are now seen to be redundant, we
will shorten our notation and say that X isa FD(d¢,3)if X isa FD'(d¢,ds/3,0,7).

The proof of Theorem 3.11 is based on the derivation of transition density
bounds for diffusions on the Sierpinski carpet in [BB4]: most of the techniques
there generalize easily to fractional metric spaces. The essential idea is “chaining”:
in its classical form (see e.g. [FaS|) for the lower bound, and in a slightly different
more probabilistic form for the upper bound. We begin with a some lemmas.

Lemma 3.14. [BB1, Lemma 1.1] Let &,&2,...,&n, V be non-negative r.v. such
that V > 3 7 &. Suppose that for some p € (0,1), a > 0,

(3.15) P(¢ <tlo(ér,...,&i—1)) <p+at, t > 0.
Then

ant \ /2 1
(3.16) log P(V <t) <2 — —nlog —.
p p
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Proof. If 7 is a r.v. with distribution function P(n <t) = (p + at) A 1, then

o(&,. . 7£i—1)) < Ee ™\

(1—p)/a
=p+ / e Madt
0

E (e_AEi

<p+4arl
So
P(V<t)y=P (e_)‘V > e_At) < eMEe Y
< eMEexp A Z & < eM(p+ar™h)"
1
< p"exp ()\t + %) .
Ap
The result follows on setting A\ = (an/pt)'/2. O

Remark 3.15. The estimate (3.16) appears slightly odd, since it tends to +oo as
p | 0. However if p = 0 then from the last but one line of the proof above we obtain
log P(V <t) < At +nlog %, and setting A = n/t we deduce that

ate

(3.17) log P(V < t) < nlog(—).

Lemma 3.16. Let (Y;,t > 0) be a diffusion on a metric space (F, p) such that, for
xeF,r>0,

n

erP < E*r(z,r) < carP.
Then for x € F,t > 0,
PE(T(.’IZ,T) < t) < (1 —ec1/(2P¢3)) + c3rPt.
Proof. Let z € F, and A = B(x,r), 7 = 7(z,7). Since 7 < t 4 (7 —t)1(;¢) we have
E*7 <t+E"15yE" (1 —t)
<t+P*1>t)supEYr.
y
As 7 < 7(y,2r) PY%a.s. for any y € F, we deduce
P <EPr <t + P77 > t)ea(2r)P,

so that
cz2ﬁ[P’“’(T <t) < (Zﬁcz —c)+ tr—P. d

The next couple of results are needed to show that the diffusion Y in Theorem
3.11 can reach distant parts of the space F' in an arbitrarily short time.
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Lemma 3.17. Let Y; be a u-symmetric diffusion with semigroup T; on a complete
metric space (F,p). If f,g > 0 and there exist a < b such that

(3.18) /f(m)E’”g(E)u(dm) =0 fort € (a,b),

then [ f(z)E® g(Y:)u(dz) = 0 for all t > 0.

Proof. Let (Ex, A > 0) be the spectral family associated with T;. Thus (see [FOT,
p. 17)) Ty = [, e *dE\, and

(£,Tug) = /0 e d(f, Brg) = /0 )

where v is of finite variation. (3.18) and the uniqueness of the Laplace transform
imply that v = 0, and so (f,T¢g) = 0 for all ¢. O

Lemma 3.18. Let F and Y satisfy the hypotheses of Theorem 3.11. If p(z,y) <
c3rg then P*(Y; € B(y,r)) > 0 for all » > 0 and ¢t > 0.

Remark. The restriction p(z,y) < c3rg is of course unnecessary, but it is all we
need now. The conclusion of Theorem 3.11 implies that P*(Y; € B(y,r)) > 0 for all
r>0andt>0,forall z,y € F.

Proof. Suppose the conclusion of the Lemma fails for z,y,r,t. Choose g € C(F,R})
such that [, gdp =1 and g = 0 outside B(y,r). Let t; =t/2, r; = c3(t1)P, and
choose f € C(F,Ry) so that [, fdu =1, f(z) > 0 and f = 0 outside A = B(z,r1).
If 0 < s < t then the construction of g implies that

0= 59V = [ alsz. o) B g(Vioulis')

Since by (3.13) g¢(s,z,z') > 0 for t/2 < s < t, ' € B(z,71), we deduce that
E* ¢(Y,) = 0 for ' € B(z,r1), u € (0,t/2). Thus as supp(f) C B(z,r)

Lf(w')E$'g(Yu)dM =0

for all v € (1,t/2), and hence, by Lemma 3.17, for all v > 0. But by (3.13) if
u = (p(z,y)/c3)” then g(u,z,y) > 0, and by the continuity of f,g and q it follows
that [ fE”g(Y,)dp > 0, a contradiction. O

Proof of Theorem 3.11. For simplicity we give full details of the proof only in the
case rg = o00; the argument in the case of bounded F' is essentially the same. We
begin by obtaining a bound on

P*(r(z,7) < t).
Let n > 1, b = r/n, and define stopping times S;, i > 0, by

S() = 0, Si-l-l = inf{t 2 S, : p(YS”Y.t) 2 b}
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Let ¢ = S; — S;—1, i > 1. Let (F;) be the filtration of Y;, and let G; = Fs,. We
have by Lemma 3.16

P?(¢iy1 < t|G;) = PY5i (1(Ys,,b) < t) < p+ cgb™Pt,

where p € (0,1). As p(Ys,,Ys,,,) = b, we have p(Y,Yg, ) < r,sothat S, = 3 7§ <
7(Yy,7). So, by Lemma 3.14, with a = cg(r/n) 7,

log P*(7(z,r) <t) < 2”2 (067’_ﬁn1+ﬁt)% — nlog1
(3.19) P

- 1+ﬁt)%

= cr(r cgm.

If 5 <1 then taking ¢ small enough the right hand side of (3.17) is negative, and
letting n — oo we deduce P“"(T(x,r) < t) = 0, which contradicts the fact that
P*(Y; € B(y,r)) > 0 for all t. So we have 8 > 1. (If rp = 1 then we take r small
enough so that r < c3).

If we neglect for the moment the fact that n € N, and take n = ng in (3.19) so
that

1/2
lq;ng = 07( 1484 — '3) ,
then
(3.20) ng_l = (c2/4ck)rPt71,

and
log[P”’(T(:B,r) < t) < —%csno.

So if 7Pt~1 > 1, we can choose n € N so that 1 < n < ng V 1, and we obtain

B\ 1/(8-1)
(3.21) P*(r(z,r) <t) < cgexp (—610 (7> ) .

Adjusting the constant c¢g if necessary, this bound also clearly holds if 78t~ < 1.
Now let z,y € F, write r = p(z,y), choose ¢ < r/4, and set C, = B(z,¢),
z=u,y. Set A, ={z € F :p(z,z) < p(z,9)}, Ay = {z : p(2,2) > p(z,y)}. Let v,,
vy be the restriction of u to C, Cy respectively.
We now derive the upper bound on ¢(¢,z,y) by combining the bounds (3.12)
and (3.21): the idea is to split the journey of Y from C, to C, into two pieces, and
use one of the bounds on each piece. We have

(3.22) P"(Y: € Cy) // (t, 2",y \pu(dz" ) pu(dy")

< PV«: (Yt Cy, Yi2 € Ag) + P=(Y; € Cy, Yy /5 € Ay).
We begin with second term in (3.22):

(3.23) P (Y € Cy, Y2 € Ay) =P (7(Yo,7/4) < t/2,Y;5 € Ay, Y; € Cy)

< = (T(Yo,r/4) < t/2) sup Py (Yt/2 € C’y)
y' €A,y
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4)8\ 1/ (B=1)
< vg(Cy)eg exp <—010 ((T/ ) ) clyy(Cy)t_df/ﬁ

t/2
= M(Cm)/i(cy)cnt_df/ﬁ exp (—clz(rﬁ/t)l/(ﬁ—l)) ,

where we used (3.21) and (3.12) in the last but one line.
To handle the first term in (3.22) we use symmetry:

P¥«(Y; € Cy, Yis € Ay) = PY(Y; € G, Yy € A,),

and this can now be bounded in exactly the same way. We therefore have

[ [ atea vtastay)
¢, C.

_ 1/(8—1
< p(Ca)(Cy)2enat™ 1P exp (—era(r? 1) 77V,
so that as ¢(t,-,-) is continuous

(3.24) q(t,z,y) < 2¢11t 4 /P exp (—C1z(rﬁ/t)1/(ﬁ_1)> .

The proof of the lower bound on ¢ uses the technique of “chaining” the
Chapman-Kolmogorov equations. This is quite classical, except for the different
scaling.

Fix z,y,t, and write 7 = p(z,y). If » < c3t'/# then by (3.13)

and as exp(—(rﬁ/t)l/(ﬁ_l)) > exp(—c;/(ﬂ_l)), we have a lower bound of the form
(3.3). So now let r > cst'/P. Let n > 1. By the mid-point hypothesis on the metric
p, we can find a chain z = z¢,z1,...,2, = y in F such that p(z;_1,2;) = r/n,
1 <i < n. Let B; = B(z;,7/2n); note that if y; € B; then p(y;—1,y:;) < 2r/n. We
have by the Chapman-Kolmogorov equation, writing yo = z¢, ¥y» = ¥,

n

(3.25) q(t, z,y) Z/N(dyl)--- / H(dyn—l)HQ(t/myi—hyi)-

B, Bo_a =1

We wish to choose n so that we can use the bound (3.13) to estimate the terms
q(t/n,yi—1,y;) from below. We therefore need:

2r £\ /P
(3.26) — <3 (—)

n n
which holds provided

B
(3.27) nf1 > 2%;“7.
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As B > 1 it is certainly possible to choose n satisfying (3.27). By (3.25) we then
obtain, since u(B;) > c(r/2n)%,

(3.28) q(t,z,y) > c(r/2n)% (>~ (cz(t/n)—df/ﬁ)n
= c(r/2n)_df (cz(t/n)—l/ﬁ(rmn)df)"
= (/)= ((t/n) "0 (/)"
Recall that n satisfies (3.27): as r > ¢3t1/P we can also ensure that for some c¢13 > 0

(3.29) > c13(t/n)/P,

S

so that n®~1 < 28¢7°rP/t. So, by (3.28)

q(t,z,y) > c(t/n)~ VP el
> c5t” /P exp (nlogcia)

> 15t~ 4 /P exp (—clﬁ(rﬁ/t)l/(ﬁ_l)) .
Remarks 3.19.

1. Note that the only point at which we used the “midpoint” property of p is in the
derivation of the lower bound for q.

2. The essential idea of the proof of Theorem 3.11 is that we can obtain bounds on
the long range behaviour of Y provided we have good enough information about the
behaviour of Y over distances of order t!/?. Note that in each case, if r = p(z,y),
the estimate of ¢(¢,z,y) involves splitting the journey from z to y into n steps,
where n < (rﬁ/t)l/(ﬁ_l).

3. Both the arguments for the upper and lower bounds appear quite crude: the
fact that they yield the same bounds (except for constants) indicates that less is
thrown away than might appear at first sight. The explanation, very loosely, is
given by “large deviations”. The off-diagonal bounds are relevant only when 77 > t
— otherwise the term in the exponential is of order 1. If 77 >> t then it is difficult
for Y to move from x to y by time ¢ and it is likely to do so along more or less the
shortest path. The proof of the lower bound suggests that the process moves in a
‘sausage’ of radius r/n x t/rP71,

The following two theorems give additional bounds and restrictions on the
parameters dy and 3. Unlike the proofs above the results use the symmetry of the
process very strongly. The proofs should appear in a forthcoming paper.

Theorem 3.20. Let F be a FMS(ds), and X be a FD(d¢,3) on F. Then
(3.30) 2<B<1+dy.

Theorem 3.21. Let F be a FMS(ds). Suppose X' are FD(dy,3;) on F, for
1= 1,2 Then ,81 :,82.

Remarks 3.22. 1. Theorem 3.21 implies that the constant 3 is a property of the
metric space F, and not just of the FD X. In particular any FD on R¢, with the
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usual metric and Lebesgue measure, will have 3 = 2. It is very unlikely that every
FMS F carries a FD.

2. T expect that (3.30) is the only general relation between § and d¢. More precisely,
set

A ={(ds,p) : there exists a FD(d¢,[3)},

and T' = {(ds,8) : 2 < B < 1+ ds}. Theorem 3.20 implies that A C T', and I
conjecture that int I' C A. Since BM(R?) is a FD(d,2), the points (d,2) € A for
d > 1. I also suspect that

{df : (df,2) S A} =N,

that is that if F' is an FMS of dimension d¢, and dy is not an integer, then any FD
on F' will not have Brownian scaling.

Properties of Fractional Diffusions.

In the remainder of this section I will give some basic analytic and probabilistic
properties of FDs. I will not give detailed proofs, since for the most part these
are essentially the same as for standard Brownian motion. In some cases a more
detailed argument is given in [BP] for the Sierpinski gasket.

Let F be a FMS(ds), and X be a FD(d¢,3) on F. Write T; = E* f(X,) for

the semigroup of X, and £ for the infinitesimal generator of 7.

Definition 3.23. Set
_ 2dy

o
This notation follows the physics literature where (for reasons we will see below)

d, is called the “walk dimension” and d, the “spectral dimension”. Note that (3.3)
implies that

dw:ﬁa ds

p(t,z,z) < 742 0 <t <t

so that the on-diagonal bounds on p can be expressed purely in terms of d,. Since
many important properties of a process relate solely to the on-diagonal behaviour
of its density, d is the most significant single parameter of a FD.

Integrating (3.3), as in Corollary 2.25, we obtain:
Lemma 3.24. F?p(Xy,z)? <P/  zc F,t>0,p>0.

Since by Theorem 3.20 d,, > 2 this shows that FDs are diffusive or subdiffusive.
Lemma 3.25. (Modulus of continuity). Let @(t) = t1/% (log(1/t))(4—1)/4w Then

X, X
(3.31) cy <lim sup u ca.
510 p<sct<1 @(t — 8)
[t—s|<8

So, in the metric p, the paths of X just fail to be Hélder (1/d,,). The example
of divergence form diffusions in R? shows that one cannot hope to have ¢; = ¢; in
general.
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Lemma 3.26. (Law of the iterated logarithm — see [BP, Thm. 4.7]). Let 9(t) =
t1/dw (loglog(1/t))(4—1)/dw  There exist ¢i, c; and constants c(z) € [c1,cz] such
that

Of course, the 01 law implies that the limit above is non-random.

Lemma 3.27. (Dimension of range).
(3.32) dimg ({X; : 0 <t <1}) =df Ady.

This result helps to explain the terminology “walk dimension” for d,,. Provided
the space the diffusion X moves in is large enough, the dimension of range of the
process (called the “dimension of the walk” by physicists) is d.,,.

Potential Theory of Fractional Diffusions.

Let A > 0 and set

ux(z,y) =/ e p(s,z,y) ds.
0

Then if -
UAf(m):EQ’/ e M F(X,) ds
0

is the A-resolvent of X, u) is the density of Uj:

Usf(@) = [ uslvpuldy)

F
Write u for ug.

Proposition 3.28. Let A\ = 1/ry. (If ro = 0o take A\g = 0).
(a) If ds < 2 then ux(z,y) is jointly continuous on F x F and for A > Ay

(3.33) e A™/ P exp(—cA M p(z,y)) < us(w,y)
< ez A% /2 exp (—C4)\1/d“’ p(m,y)) .

(b) If dy = 2 and X\ > Xy then writing R = p(z,y)A\/ %

(3.34) Cs (10g+(1/R) + e—csR) < u}\(m’y) < ep (10g+(1/R) T e—CsR) .
(c) If dg > 2 then

(335) ch(a‘,’,y)dw —dg < U)\O($,y) < Clop(m,y)d’”_df.

These bounds are obtained by integrating (3.3): for (a) and (b) one uses
Laplace’s method. (The continuity in (b) follows from the continuity of p and
the uniform bounds on p in (3.3)). Note in particular that:
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(i) if ds < 2 then uy(z,z) < +00 and )l‘in}) ux(z,y) = +oo.
(ii) if ds > 2 then u(z,z) = 400, while u(z,y) < oo for z # y

Since the polarity or non-polarity of points relates to the on-diagonal behaviour
of u, we deduce from Proposition 3.28

Corollary 3.29. (a) If d;, < 2 then for each z,y € F
P*(X hits y) = 1.

(b) If d; > 2 then points are polar for X.
(c) If dg < 2 then X is set-recurrent: for € > 0

PY({t: X: € B(y,¢)} is non-empty and unbounded) = 1.

(d) If d; > 2 and ro = oo then X is transient.

In short, X behaves like a Brownian motion of dimension d,; but in this context a
continuous parameter range is possible.

Lemma 3.30. (Polar and non-polar sets). Let A be a Borel set in F.
(a) P*(Ta < 00) > 0 if dimpg(A) > df — dy,
(b) A is polar for X if dimg(A) < df — d,.

Since X is symmetric any semipolar set is polar. As in the Brownian case, a
more precise condition in terms of capacity is true, and is needed to resolve the
critical case dimg(A) = df — do.

If X, X' are independent FD(ds,() on F, and Z; = (X, X{), then it follows
easily from the definition that Z is a F'D on F x F, with parameters 2ds and 3. If
D = {(z,z) : x € F} C F X F is the diagonal in F x F, then dimg(D) = d¢, and
so Z hits D (with positive probability) if

df > 2df — dy,
that is if d;, < 2. So
(3.36) P*(X; = X, for some t > 0) >0 if d, < 2,
and
(3.37) P*(X; = X, for some t > 0) =0 ifd, > 2.

No doubt, as in the Brownian case, X and X’ do not collide if d, = 2.
Lemma 3.31. X has k-multiple points if and only if d; < 2k/(k —1).

Proof. By [Rog] X has k-multiple points if and only if

/ ws (e, ) u(dy) < oo;
B(z,1)
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the integral above converges or diverges with
1
/ phdo—(k=1)ds -1 g,
0

by a calculation similar to that in Corollary 2.25. g

The bounds on the potential kernel density ux(z,y) lead immediately to the
existence of local times for X — see [Sha, p. 325].

Theorem 3.32. Ifd, < 2 then X has jointly measurable local times (L ,x € F,t >
0) which satisfy the density of occupation formula with respect to pu:

t
(3.38) /0 f(Xs)ds:/Ff(a)Lf,u(da), f bounded and measurable.

In the low-dimensional case (that is when d, < 2, or equivalently d; < d,,)
we can obtain more precise estimates on the Holder continuity of wy(z,y), and
hence on the local times L7. The main lines of the argument follow that of [BB4,
Section 4], but on the whole the arguments here are easier, as we begin with stronger
hypotheses. We work only in the case rg = oco: the same results hold in the case
ro = 1, with essentially the same prooofs.

For the next few results we fix F, a FMS(ds) with 7o = oo, and X, a
FD(df,dy) on F. For A C F write

7a=Ts =inf{t >0: X, € A°}.

Let Ry be an independent exponential time with mean A~!. Set for A > 0

TA
ui(z,y) = F° / e MdLY =E° LY ,p ,
0

UL (x) = / ud (e, )l dy).

F
Let
pi(z,y) = P*(T, < 74 A R));
note that
(3.39) uf(z,y) = pi(z,y)us (v,9) < ui(¥,9)-

Write u?(z,y) = ui(z,y), UA = Ug, and note that uy(z,y) = uf(z,y),
Uy = U;f‘. As in the case of u we write p4, py for p(‘)‘l, pf. As (P*, X;) is p-symmetric
we have u$(z,y) = u(y,z) for all z, y € F.

The following Lemma enables us to pass between bounds on uy and u*.

Lemma 3.33. Suppose A C F, A is bounded, For z, y € F we have

UA(:E??/) = uf(m,y) + E* (1(R,\STA)UA(XR>\?y)) — K (1(R,\>TA)uf(X"'A’y)) :
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Proof. From the definition of u4,

uA(.'B,y) =E*(LY ;Rx <7a)+E"(LY, ;Rx>Ta)

TA ) TA )
=FE” (LZIJQA ;R)\ S TA) + Eﬂ:(l(RASTA)EXR)‘ L}I’_A)
—I—Ez(L%A Ry > TA) - Em(L?IJ%A/\TB — L,,y_A Ry > TA)
= 'U,)\(Qj,y) + E” (1(R>\§TA)UA(XRMy)) — [&* (1(R>\>TA)U>\(XTA7y)) . O
Corollary 3.34. Let x € F, and r > 0. Then

crrde—ds < uB(“”T)(:I:,:I:) < cqrde=ds,

Proof. Write A = B(z,r), and let A\ = #r~%_ where 6 is to be chosen. We have
from Lemma 3.33, writing 7 = 7(z,r),

u(2,y) < ua(z,y) + E°1(n, <) u (Xry, ¥)-
So if v = sup, u“(z,y) then using (3.33)
(3.40) v < esA%/ 2 L PF(Ry < 7).
Let t9 > 0. Then by (3.10)

PRy < 7) =P%(Rx < 7,7 <tg) + P*(Rx < 7,7 > t9)
< P*(Rx < to) + P?(7 > 1)

<(1- e_>‘t°) + cto_df/d“’ ris,

Choose first ty so that the second term is less than i, and then A so that the first

term is also less than %. We have t; < r% < \7!, and the upper bound now follows
from (3.40).

The lower bound is proved in the same way, using the bounds on the lower tail
of 7 given in (3.11). O

Lemma 3.35. There exist constants ¢; > 1, ¢y such that if z,y € F, r = p(z,y),
to = r% then
[P’“’(Ty <ty < ’7'(33,(,’17‘))2 ca.

Proof. Set A = (8/r)%; we have py(z,y) > c3 exp(—c4f) by (3.33). So since
pa(z,y) = B e v <PHT, <t)+ e,

we deduce that
P*(T, < t) > c3 exp(—cqf) — exp(—6%).

As d,, > 1 we can choose 8 (depending only on c3, ¢4 and d,,) such that P*(T, <
t) > csexp(—cab) = c5. By (3.11) for a > 0

P2(7(x,aR) < R%) < cg exp(—crate/(dw 1))
so there exists ¢; > 1 such that P*(7(z,c17) < to) < 1¢s5. So

P*(Ty < to < 7(z,c17)) > P*(Ty < to) — P*(7(z,c17) < o) > Fes. O
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Definition 3.36. We call a function h harmonic (with respect to X) in an open
subset A C F if Lh = 0 on A, or equivalently, h(X¢ar,. ) is a local martingale.

Proposition 3.37. (Harnack inequality). There exist constants ¢; > 1, ¢3 > 0,
such that if zy € F, and h > 0 is harmonic in B(zg,c17), then

h(z) > c2h(y), =,y € B(zo,r).

Proof. Let ¢; = 1+ ¢3.35.1, so that B(z,c3.3517) C B(zg,c17) if p(z,z9) < r. Fix z,
y, write r = p(z,y), and set S = Ty AT(z,c3.35.17). As h(X Ag) is a supermartingale,
we have by Lemma 3.35,

h(z) > E*h(Xs) > h(y)P*(Ty < 7(x,c3.35.17)) > c3.35.2h(Yy). O

Corollary 3.38. There exists ¢c; > 0 such that if xy € F, and h > 0 is harmonic
in B(zg,r), then
h(z) > c1h(y), x,y € B(xyg, %r).

Proof. This follows by covering B(zo, 2r) by balls of the form B(y,csr), where c;
is small enough so that Proposition 3.37 can be applied in each ball. (Note we use
the geodesic property of the metric p here, since we need to connect each ball to a
fixed reference point by a chain of overlapping balls). O

Lemma 3.39. Let z,y € F, r = p(z,y). If R > r and B(y,R) C A then
u(y,y) — ut(z,y) < et
Proof. We have, writing 7 = 7(y,7), T = Txe,
u?(y,y) = BYLY + BVEX LY = «B(y,y) + BV u?(X,,y),
so by Corollary 3.34
(3.41) EY (u(y,y) — u*(X7,y)) = u®(y,9) < earde ™.

Set p(z') = u(y,y) —u?(z',y); ¢ is harmonic on A — {y}. As p(z,y) = r and p has

the geodesic property there exists z with p(y,z2) = ir, plz,z) = %r. By Corollary

3.38, since ¢ is harmonic in B(z,7r),

0(z) > c3.38.10(x).

Now set 9(z') = Ewltp(X,.) for 2’ € B. Then v is harmonic in B and ¢ < v on B.
Applying Corollary 3.38 to ¢ in B we deduce

P(y) > c338.19(2) > c338.19(2) > (e3.38.1)  0().
Since ¥(y) = FY(u?(y,y) — u*(X,,y)) the conclusion follows from (3.41). O
Theorem 3.40. (a) Let A > 0. Then for z, 2', y € F, and f € L'(F), g € L>(F),
(3.42) [ur(2,9) — wa(o',9)] < e2pla, ),

(3.43) Uxf(z) = Uxf(2")] < erp(a, &)™~ fls.
(3.44) Ung(z) — Ung(a")| < 2™ %2 p(z, 2") % =] | g o .
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Proof. Let z, ' € F, write r = p(xz,2') and let R > r, A = B(z,R). Since

u{(y,z') > pd(y,z)ui(z,2'), we have using the symmetry of X that
(3.45) ui (z,y) —ux(z'y) < ul(y, 2) — p3 (v, 2)ul (2, 2")

= pf(ya x) (uf($v x) - uf($v xl)) .

Thus
A

[ugt (z,9) — uf («', y)| < |ug(z,2) — u(z,z")].
Setting A = 0 and using Lemma 3.39 we deduce
(3.46) [ut(2,y) — u(2',y)| < cartemd.

So

A (@) = UA @) < [ (o) = ut )l £ )
< car®e || f1al1-
To obtain estimates for A > 0 we apply the resolvent equation in the form
uj (2,y) = w(z,y) — \UA0(2),
where v(z) = uf(z,y). (Note that ||v||; = A~!). Thus

[usl (2, y) — ux(2',9)] < [u(z,y) —u (2, y)] + AT 0(2) — U4o(a")|

< ear® ™Y+ Aeyr® T Jul|y

= 203rdw —ds,

Letting R — oo we deduce (3.42), and (3.43) then follows, exactly as above, by
integration.
To prove (3.46) note first that px(y,z) = ux(y,z)/uxr(z,z). So by (3.33)

(3.47) /A Py, o) F ()| dy) < || Fllooun (e 2)~? /A u(y, 2)u(dy)

= [|llocun(z, 2) A
< callfllh %2,

From (3.45) and (3.46) we have
[uf (z,y) — u (2, 9)| < e2 (PR (9, 2) + PR (v, 2)) P77,

and (3.44) then follows by intergation, using (3.47). O

The following modulus of continuity for the local times of X then follows from
the results in [MR].
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Theorem 3.41. Ifd, < 2 then X has jointly continuous local times (Lf,x € F,t >
0). Let p(u) = ul®—%)/2(log(1/u))/?. The modulus of continuity in space of L’
is given by:

c(sup L2)Y/2,

hm su u | s |
zEF

810 p<s<t 0<s<t 90( (
lz—y|<6

o) =

It follows that X is space-filling: for each z,y € F there exists a r.v. T such
that P*(T < o0) =1 and

B(y,1) € {X;,0 <t <T).

The following Proposition helps to explain why in early work mathematical
physicists found that for simple examples of fractal sets one has d, < 2. (See also

[HHW)).

Proposition 3.42. Let F be a FMS, and suppose F is finitely ramified. Then if
X isa FD(ds,d,) on F, ds(X) < 2.

Proof. Let Fy, F» be two connected components of F', such that D = F; N F, is
finite. If D = {y1,...,¥Yn}, fix A > 0 and set

=e Y ua(Xe,yi)-
=1

Then M is a supermartingale. Let Tp = inf{t > 0: X; € D}, and let 2y € F; — D.
Since P*°(X; € F3) > 0, we have P*°(Tp <1) > 0. So

oo > £ My > EwOMTD,

and thus Mp, < oo a.s. So ux(X1,,y:) < oo for each y; € D, and thus we must
have ux(y;,y;) < oo for some y; € D. So, by Proposition 3.25, d, < 2. O

Remark 3.43. For k = 1,2 let (F),dy, pr) be FMS with dimension d¢(k), and
common diameter rg. Let F = F; X Fy, let p > 1 and set d((z1,22),(y1,y2)) =
(di(z1,y1)? + dz(mz,yz)p)l/p, = p1 X p2. Then (F,d, ) is a FMS with dimension
ds = ds(1)+ds(2). Suppose that for k = 1,2 X* isa FD(d¢(k),d(k)) on Fj. Then
if X = (X1, X?) it is clear from the definition of FDs that if d,(1) = d(2) = 3
then X is a FD(ds,(3) on F. However, if d,,(1) # d,(2) then X is not a FD on
F. (Note from (3.3) that the metric p can, up to constants, be extracted from the
transition density p(¢,z,y) by looking at limits as t | 0). So the class of FDs is not
stable under products.

This suggests that it might be desirable to consider a wider class of diffusions
with densities of the form:

(3.48) p(t @, y) ~ ™ exp(—Zpi(w,y)ﬁ”"t_”),
1

where p; are appropriate non-negative functions on F x F. Such processes would
have different space-time scalings in the different ‘directions’ in the set F given
by the functions p;. A recent paper of Hambly and Kumagai [HK2] suggests that
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diffusions on p.c.f.s.s. sets (the most general type of regular fractal which has been
studied in detail) have a behaviour a little like this, though it is not likely that the
transition density is precisely of the form (3.48).

Spectral properties.

Let X be a FD on a FMS F with diameter 1y = 1. The bounds on the density
p(t,z,y) imply that p(t,.,.) has an eigenvalue expansion (see [DaSi, Lemma 2.1]).

Theorem 3.44. There exist continuous functions ¢;, and A\; with 0 < A\g < A1 < ...
such that for each t > (

O

(3.49) p(t,z,y) = Ze_A"t(pn(m)(pn(y),

n=0
where the sum in (3.49) is uniformly convergent on F' x F.

Remark 3.45. The assumption that X is conservative implies that Ay = 0, while
the fact that p(¢,z,y) > 0 for all ¢ > 0 implies that X is irreducible, so that A\; > 0.

A well known argument of Kac (see [Ka, Section 10|, and [HS] for the necessary
Tauberian theorem) can now be employed to prove that if N(A) = #{\; : \; < A}
then there exists ¢; such that

(3.50) A% /2 < N(X) < epd%/2 for A > 3.

So the number of eigenvalues of £ grows roughly as A%/2. This explains the
term spectral dimension for d,.

4. Dirichlet Forms, Markov Processes, and Electrical Networks.

In this chapter I will give an outline of those parts of the theory of Dirichlet
forms, and associated concepts, which will be needed later. For a more detailed ac-
count of these, see the book [FOT]. I begin with some general introductory remarks.

Let X = (X¢,t > 0,P*,z € F) be a Markov process on a metric space F. (For
simplicity let us assume X is a Hunt process). Associated with X are its semigroup
(Ty,t > 0) defined by

(4.1) Tif(x) = E* f(Xy),

and its resolvent (U, A > 0), given by

(4.2) Urf(z) = / T, f(z)e~ M dt = E* / e M f(X,)ds.

0 0
While (4.1) and (4.2) make sense for all functions f on F such that the random
variables f(X;), or [e~>*f(X,)ds, are integrable, to employ the semigroup or re-
solvent usefully we need to find a suitable Banach space (B, || - ||g) of functions on
F such that Ty : B — B, or Uy : B — B. The two examples of importance here are
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Co(F) and L?(F, ), where p is a Borel measure on F. Suppose this holds for one
of these spaces; we then have that (T}) satisfies the semigroup property

Tt+s - Ttha 8,0 > 07
and (U, ) satisfies the resolvent equation
Ua—Uﬁ: (,B—a)UaUﬁ, a, B > 0.

We say (T3) is strongly continuous if ||Tyf — f|lp — 0 as t | 0. If T} is strongly
continuous then the infinitesimal generator (ﬁ, 'D(L)) of (T}) is defined by

(4.3) Lf= ltiln[[)lt_l(th - f), feDXL),

where D(L) is the set of f € B for which the limit in (4.3) exists (in the space B).
The Hille-Yoshida theorem enables one to pass between descriptions of X through
its generator £, and its semigroup or resolvent.

Roughly speaking, if we take the analogy between X and a classical mechanical
system, £ corresponds to the equation of motion, and T3 or Uy to the integrated
solutions. For a mechanical system, however, there is another formulation, in terms
of conservation of energy. The energy equation is often more convenient to handle
than the equation of motion, since it involves one fewer differentiation.

For general Markov processes, an “energy” description is not very intuitive.
However, for reversible, or symmetric processes, it provides a very useful and pow-
erful collection of techniques. Let p be a Radon measure on F: that is a Borel
measure which is finite on every compact set. We will also assume p charges ev-
ery open set. We say that T} is p-symmetric if for every bounded and compactly

supported f,g,
(4.4) / T, f(2)g(z)u(de) = / Ty(e) f(2)u(de).

Suppose now (T}) is the semigroup of a Hunt process and satisfies (4.4). Since
Ti1 < 1, we have, writing (-,-) for the inner product on L%(F, i), that

1/2
T (2)] < (Tof*(@) ' (Te1(2)* < (Tuf?(2))Y?
by Hoélder’s inequality. Therefore

ITef1I2 < ITef*l = (Tef?,1) = (f%,Te1) < (f%,1) = 1 £]l3,

so that T} is a contraction on L%(F, p).

The definition of the Dirichlet (energy) form associated with (T%) is less direct
than that of the infinitesimal generator: its less intuitive description may be one
reason why this approach has until recently received less attention than those based
on the resolvent or infinitesimal generator. (Another reason, of course, is the more
restrictive nature of the theory: many important Markov processes are not symmet-
ric. I remark here that it is possible to define a Dirichlet form for non-symmetric
Markov processes — see [MR]. However, a weaker symmetry condition, the “sector
condition”, is still required before this yields very much.)
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Let F be a metric space, with a locally compact and countable base, and let u
be a Radon measure on F. Set H = L%*(F, ).

Definition 4.1. Let D be a linear subspace of H. A symmetric form (£,D) is a
map £ : D X D — R such that

(1) & is bilinear

(2) £(7.f) >0, feD.

For a > 0 define &, on D by E,4(f, f) = E(f, f) + || f||2, and write

IF11E, = IF1I3 + &(F, F) = Ea(f. 1)

Definition 4.2. Let (£, D) be a symmetric form.

(a) & is closedif (D,| - ||¢,) is complete

(b) (€,D)is Markoviffor f € D,if g = (0V f)Al then g € D and &(g,9) < E(f, f)-

(c) (&,D)is a Dirichlet form if D is dense in L2(F, y1) and (€, D) is a closed, Markov
symmetric form.

Some further properties of a Dirichlet form will be of importance:

Definition 4.3. (£, D) is regular if

(4.5) DNCy(F)is densein Din || -]|g, and
(4.6) DN Cy(F) is dense in Co(F) in || - ||oo-

£ is local if £(f,g) = 0 whenever f, g have disjoint support.
£ is conservative if 1 € D and £(1,1) = 0.
£ is irreducible if £ is conservative and £(f, f) = 0 implies that f is constant.

The classical example of a Dirichlet form is that of Brownian motion on R%:

Epm(f f) =1 [ |Vf*de, fe HW2(R).
Rd

Later in this section we will look at the Dirichlet forms associated with finite state
Markov chains.

Just as the Hille-Yoshida theorem gives a 1 — 1 correspondence between semi-
groups and their generators, so we have a 1 — 1 correspondence between Dirichlet
forms and semigroups. Given a semigroup (7}) the associated Dirichlet form is
obtained in a fairly straightforward fashion.

Definition 4.4. (a) The semigroup (T}) is Markovian if f € L*(F,u), 0 < f <1
implies that 0 < T3 f < 1 p-a.e.

(b) A Markov process X on F is reducibleif there exists a decomposition F = A;UA,
with A; disjoint and of positive measure such that P*(X,; € A, for all t) = 1 for
x € A;. X is irreducible if X is not reducible.
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Theorem 4.5. ([FOT, p. 23]) Let (Tt,t > 0) be a strongly continuous p-symmetric
contraction semigroup on L*(F,u), which is Markovian. For f € L*(F,p) the
function ¢#(t) defined by

er(t) =t (f —Tef, f), t>0

is non-negative and non-increasing. Let
D={f € L*(F,p) : limps(t) < oo},

E(f,f)=lmps(t), feD.

Then (€,D) is a Dirichlet form. If (£,D(L)) is the infinitesimal generator of (T%),
then D(L) C D, D(L) is dense in L*(F, ), and
(4.7) £(f,9)=(=Lf,9), feD(L),g€eD.

As one might expect, by analogy with the infinitesimal generator, passing from
a Dirichlet form (&€,D) to the associated semigroup is less straightforward. Since
formally we have U, = (o — £)™!, the relation (4.7) suggests that

(4‘8) (fvg) = ((a - ‘C)Uaf’ 9) = O‘(Uafag) + 5(Uafvg) = 5a(Uafvg)‘

Using (4.8), given the Dirichlet form £, one can use the Riesz representation theorem
to define U,f. One can verify that U, satisfies the resolvent equation, and is
strongly continuous, and hence by the Hille-Yoshida theorem (U,) is the resolvent
of a semigroup (T%).

Theorem 4.6. ([FOT, p.18]) Let (£,D) be a Dirichlet form on L?(F,u). Then
there exists a strongly continuous p-symmetric Markovian contraction semigroup
(T) on L*(F, ), with infinitesimal generator (L£,D(L)) and resolvent (Uy, o > 0)
such that £ and & satisfy (4.7) and also

(4.9) E(Uaf,9) +of,9) = (f,9), f€L*F,p),geD.

Of course the operations in Theorem 4.5 and Theorem 4.6 are inverses of each
other. Using, for a moment, the ugly but clear notation £ = Thm 4.5((T})) to
denote the Dirichlet form given by Theorem 4.5, we have

Thm 4.6(Thm 4.5((T%))) = (Ty),

and similarly Thm 4.5(Thm 4.6 (£)) = €.

Remark 4.7. The relation (4.7) provides a useful computational tool to identify the
process corresponding to a given Dirichlet form — at least for those who find it more
natural to think of generators of processes than their Dirichlet forms. For example,
given the Dirichlet form E(f, f) = [ |V f|?, we have, by the Gauss-Green formula,
for f,g € Cg(Rd)? (_‘C'fag) = g(fag) = fva.g = _ngfa so that £ = A.

We see therefore that a Dirichlet form (£,D) give us a semigroup (7%) on
L?(F, u). But does this semigroup correspond to a ‘nice’ Markov process? In gen-
eral it need not, but if £ is regular then one obtains a Hunt process. (Recall that
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a Hunt process X = (X;,t > 0,P* 2 € F) is a strong Markov process with cadlag
sample paths, which is quasi-left-continuous.)

Theorem 4.8. ([FOT, Thm. 7.2.1.]) (a) Let (£, D) be a regular Dirichlet form on
L2(F, u). Then there exists a y-symmetric Hunt process X = (X;,t > 0,P® z € F)
on F with Dirichlet form £.

(b) In addition, X is a diffusion if and only if £ is local.

Remark 4.9. Let X = (Xt > 0,P% z € R?) be Brownian motion on R%. TLet
A C R? be a polar set, so that

P*(T4 < o0) = 0 for each z.

Then we can obtain a new Hunt process Y = (X; > 0,Q%,z € R?) by “freezing”
X on A. Set Q® =P~ z € A°, and for z € A let Q% (X; = z, all t € [0,00)) = 1.
Then the semigroups (T7%), (T ), viewed as acting on L?(R?), are identical, and so
X and Y have the same Dirichlet form.

This example shows that the Hunt process obtained in Theorem 4.8 will not, in
general, be unique, and also makes it clear that a semigroup on L? is a less precise
object than a Markov process. However, the kind of difficulty indicated by this
example is the only problem — see [FOT, Thm. 4.2.7.]. In addition, if, as will be
the case for the processes considered in these notes, all points are non-polar, then
the Hunt process is uniquely specified by the Dirichlet form &£.

We now interpret the conditions that £ is conservative or irreducible in terms
of the process X.

Lemma 4.10. If € is conservative then T;1 = 1 and the associated Markov process
X has infinite lifetime.

Proof. If f € D(L) then 0 < E(1 4+ Af,1+ Af) for any A € R, and so £(1, f) = 0.
Thus (—£L1, f) = 0, which implies that £1 = 0 a.e., and hence that T;1 = 1. O

Lemma 4.11. If € is irreducible then X is irreducible.

Proof. Suppose that X is reducible, and that FF = A; U A, is the associated de-
composition of the state space. Then Tyl4, = 14,, and hence £(14,,14,) = 0. As
1 # 14, in L*(F,p) this implies that £ is not irreducible. O

A remarkable property of the Dirichlet form & is that there is an equivalence
between certain Sobolev type inequalities involving £, and bounds on the transition
density of the associated process X. The fundamental connections of this kind were
found by Varopoulos [V1]; [CKS] provides a good account of this, and there is a very
substantial subsequent literature. (See for instance [Co| and the references therein).

We say (&, D) satisfies a Nash inequality if

(4.10) IFISE (BIIFI13 + ECF ) = el F13T°, fe.

This inequality appears awkward at first sight, and also hard to verify. However,
in classical situations, such as when the Dirichlet form £ is the one connected with
the Laplacian on R? or a manifold, it can often be obtained from an isoperimetric
inequality.
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In what follows we fix a regular conservative Dirichlet form (€, D). Let (T%) be
the associated semigroup on L%*(F, ), and X = (X;,t > 0,P%) be the Hunt process
associated with £.

Theorem 4.12. ([CKS, Theorem 2.1]) (a) Suppose £ satisfies a Nash inequality
with constants ¢, §, 8. Then there exists ¢’ = ¢'(¢c,0) such that

(4.11) ITe|l1 oo < €782 > 0.

(b) If (T}) satisfies (4.11) with constants ', §, § then £ satisfies a Nash inequality
with constants ¢’ = ¢'(c',9), §, and 6.

Proof. 1 sketch here only (a). Let f € D(L). Then writing f; = T3 f, and

Jgih = h_l(ft+h — fi) — T L,

we have ||ginll2 < |lgonll2 — 0 as h — 0. It follows that (d/dt)f; exists in L%(F, p)
and that

%ft =T, Lf = LT,f.
Set o(t) = (f4, f¢). Then
= p(t +h) = @(t) = 2TLETef) = (9ens fo + fean) + (LS, fern — fo),
and therefore ¢ is differentiable, and for ¢ > 0
(4.12) ¢'(t) = 2(Lfs, fr) = —2E(fe, fo)-

If f € L*(F,u), Tyf € D(L) for each t > 0. So (4.12) extends from f € D(L) to all
f € L*(F, p).

Now let f > 0, and ||f||s = 1: we have ||f¢||1 = 1. Then by (4.10), for ¢t > 0,
(413)  (0) = —26(F 1)) < 26050 — clFIH° = 250(0) — ciplt) /7.
Thus ¢ satisfies a differential inequality. Set 1(t) = e~2%*¢(t). Then

'le(t) < —261/}(t)1+2/0646t/9 < —2C’lﬁ(t)1+2/0.

If )y is the solution of ¢f = —c¢(1)+2/0 then for some a € R we have, for ¢y = cy(c, ),

Po(t) = co(t +a) /2.
If ) is defined on (0,00), then a > 0, so that
Po(t) < cgt™%2, t>0.
It is easy to verify that i satisfies the same bound — so we deduce that
(4.14) IT:f2 = e*tp(t) < coe®™ 702, fe L, |flli=1.

Now let f, g € L2 (F, ) with |||l = ||g|s = 1. Then

(Toif,9) = (Tef, Teg) < | Tefll2||Tegllz < c2ed2t=072,
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Taking the supremum over g, it follows that ||Th:f|le < c2e82%t~9/2) that is,
replacing 2t by t, that
Tl — oo < cBet0/2, O

Remark 4.13. In the sequel we will be concerned with only two cases: either § = 0,

or 6 = 1 and we are only interested in bounds for ¢t € (0,1]. In the latter case we
can of course absorb the constant e’ into the constant c.

This theorem gives bounds in terms of contractivity properties of the semigroup
(Ty). If Ty has a ‘nice’ density p(t,z,y), then | T¢||1 o = sup, ,p(t,z,y), so that
(4.11) gives global upper bounds on p(t,-,-), of the kind we used in Chapter 3. To
derive these, however, we need to know that the density of T; has the necessary

regularity properties.
So let F, £, T} be as above, and suppose that (T}) satisfies (4.11). Write Py(z,-)

for the transition probabilities of the process X. By (4.11) we have, for A € B(F),
and writing ¢; = ce®*t—0/2

Pz, A) < ciu(A)  for p-a.a. .

Since F has a countable base (A4, ), we can employ the arguments of [FOT, p.67] to
see that

(415) Pt(m,An) S Ct,U,(An), reF — Nt,
where the set N; is “properly exceptional”. In particular we have p(N;) = 0 and
P*(Xs € Ny or X,_ € N, for some s >0) =0

for z € F — N;. From (4.15) we deduce that Pi(z, ) < p for each z € F — N;. If
s > 0 and p(B) = 0 then P,(y,B) = 0 for p-a.a. y, and so

Poyo(2,B) = /Ps(x,dy)Pt(y,B) —0, zcF—N,.

So Pyys(z,.) € pfor all s > 0, z € F — N;. So taking a sequence t,, | 0, we obtain
a single properly exceptional set N = U, N; such that Pi(z,-) < u for all ¢t > 0,
z € F — N. Write F/ = F — N: we can reduce the state space of X to F'.

Thus we have for each ¢, z a density 5(t,z,-) of Pi(x,-) with respect to pr. These
can be regularised by integration.

Proposition 4.14. (See [Y, Thm. 2]) There exists a jointly measurable transition
density p(t,z,y), t > 0, z,y € F' X F', such that

Pi(z,A) = /p(t,a:,y)u(dy) forze F', t>0,A¢€B(F),
A
p(t,z,y) = p(t,y,x) for all z,y,t,

ot +5,2,2) = [ Do g)pltop2)u(dy)  for all oz, t,s
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Corollary 4.15. Suppose (€, D) satisfies a Nash inequality with constants ¢, 6, 6.
Then, for all z,y € F', t > 0,

p(tv z, y) < c'et=0/2,

We also obtain some regularity properties of the transition functions p(t,z,-).
Write g¢0(y) = p(t, z,y).

Proposition 4.16. Suppose (£, D) satisfies a Nash inequality with constants c, 8,
. Then for zx € F',t >0, ¢, € D(L), and

2 26t,—6/2
|2 < c1e”’t / )

(4.16) 164,
(4.17) E(Gte,qt,e) < coeltt176/2

Proof. Since Gt = T}/2q4/2,0, and G4/ 4 € L', we have ¢; , € D(L), and the bound
(4.16) follows from (4.14).
Fix z, write f; = ¢, and let o(t) = ||f+||3. Then

d
o' (t) = %(%ft,ft) = 4(Lfe, Lfe) > 0.

So, ¢’ is increasing and hence

o< (t) = olt/2) + / #(s) ds < p(t/2) + (£/2)(1).
Therefore using (4.13),

E(firfr) = —2¢'(t) <t71p(t/2) < celtt=179/2, -
Traces of Dirichlet forms and Markov Processes.

Let X be a u-symmetric Hunt process on a LCCB metric space (F, ), with
semigroup (7}) and regular Dirichlet form (&, D). To simplify things, and because
this is the only case we need, we assume

(4.18) Cap({z}) > 0 for all z € F.
It follows that z is regular for {z}, for each z € F, that is, that
P¥T,=0)=1, =z €F.

Hence (|GK]|) X has jointly measurable local times (L¥,z € F,t > 0) such that

/Otf(Xs)ds = /Ff(iﬂ)qu(das), F € L*(F, p).
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Now let v be a o-finite measure on F. (In general one has to assume v charges
no set of zero capacity, but in view of (4.18) this condition is vacuous here). Let A;
be the continuous additive functional associated with v:

Ay = /L?V(da),

and let 7 = inf{s : A; > t} be the inverse of A. Let G be the closed support of v.
Let X; = X,,: then by [BG, p. 212], X = (X;,P* 2z € G) is also a Hunt process.
We call X the trace of X on G.

Now consider the following operation on the Dirichlet form £. For g € L*(G,v)
set

(4.19) E(9,9) = inf{(f, 1) : fle = g}-
Theorem 4.17. (“Trace theorem”: [FOT, Thm. 6.2.1)).
(a) (€,D) is a regular Dirichlet form on L?(G,v).

(b) X is v-symmetric, and has Dirichlet form (€, D).
Thus £ is the Dirichlet form associated with X: we call € the trace of £ (on G).

Remarks 4.18. 1. The domain D on £ is of course the set of g such that the infimum
in (4.19) is finite. If g € D then, as &€ is closed, the infimum in (4.19) is attained,
by f say. If h is any function which vanishes on G°, then since (f + A\h)|g = g, we
have

E(f,f) <E(f+ A, f+Ah), AeR

which implies £(f,h) = 0. So,if f € D(L), and we choose h € D, then (—h,Lf) = 0,
so that Lf = 0 a.e. on G°.

This calculation suggests that the minimizing function f in (4.19) should be
the harmonic extension of g to F'; that is, the solution to the Dirichlet problem

f=g on G
Lf=0 on G°.

2. We shall sometimes write

£ = Tr(€|G)

to denote the trace of the Dirichlet form £ on G.
3. Note that taking traces has the “tower property”; if H C G C F, then

Tr(£|H) = Tr(Te(€|G) | H).

We now look at continuous time Markov chains on a finite state space. Let F
be a finite set.
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Definition 4.19. A conductance matriz on F is a matrix A = (a,y), ¢,y € F,

which satisfies
Agy > 0, z=#y,

Aoy = Qyaz,
Z Agy = 0.
y
Set ay = Y, Gpy = —age. Let B4 = {{z,y} : azy > 0}. We say that A is irreducible

y#e
if the graph (F, E4) is connected.

We can interpret the pair (F, A) as an electrical network: a,, is the conductance
of the wire connecting the nodes  and y. The intuition from electrical circuit theory

is on occasion very useful in Markov Chain theory —for more on this see [DS].
Given (F, A) as above, define the Dirichlet form £ = £4 with domain C(F) =
{f:F >R} by

(4.20) E(f,9) = 5 Xy tay(f(z) — £ () (9(z) — 9(v)).

Note that, writing f, = f(z) etc.,

S(f,g) = %Z Z awy(fw - fy)(gw - gy)

T yFe
= Z Z oy fede — Z Z Gzy fzgy
T yFzx T yFz
= — Z a:b:cfwgw - Z Z a'wyf:”gy
z T yFz

= — Zzawyfwgy = _fTAg'
Ty

In electrical terms, (4.20) gives the energy dissipation in the circuit (F, A) if
the nodes are held at potential f. (A current I, = a.y(f(y) — f(z)) flows in

the wire connecting = and y, which has energy dissipation I, (f(y) - f(m)) =

aay (f(y) — f(av))2 The sum in (4.20) counts each edge twice). We can of course
also use this interpretation of Dirichlet forms in more general contexts.

(4.20) gives a 1-1 correspondence between conductance matrices and conser-
vative Dirichlet forms on C(F'). Let pu be any measure on F which charges every
point.

Proposition 4.20. (a) If A is a conductance matrix, then £4 is a regular conser-
vative Dirichlet form.

(b) If € is a conservative Dirichlet form on L?(F, u) then £ = €4 for a conductance
matrix A.

(c) A is irreducible if and only if £ is irreducible.

Proof. (a) It is clear from (4.20) that £ is a bilinear form, and that £(f, f) > 0. If
g =0V (1Af)then |g, — gy| < |fe — fy| for all z,y, so since a,, > 0 for = # y,
£ is Markov. Since E(f, f) < c(A4, w)||fl3, ||-|le, is equivalent to ||.||2, and so & is

closed. It is clear from this that £ is regular.
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(b) As £ is a symmetric bilinear form there exists a symmetric matrix A such

that £(f,g) = —fTAg. Let f = fap = al, + B1,; then

g(faf) = _azaww - 2aﬁa$y _ﬂzayy-

Taking a = 1, § = 0 it follows that a,, < 0. The Markov property of £ implies that
E(fo1, fo1) < E(fa1s far) if @ < 0. So

2
0 < —a"aze — 20a,y,

which implies that a., > 0 for « # y. Since £ is conservative we have 0 = £(f,1) =
—fT Al for all f. So Al = 0, and therefore Zy azy = 0 for all x.

(c) is now evident. O

Example 4.21. Let g be a measure on F, with u({z}) = g, > 0 for z € F. Let

us find the generator L of the Markov process associated with £ = £4 on L?(F, ).
Let z€ F,g=1,,and f € L*(F, ). Then

E(f,9) = —gTAf == azyf(y) = azy(f(2) - £(9)).

and using (4.7) we have, writing (-,-), for the inner product on L*(F, ),

g(fvg) = (_Lfvg)ll = _HZLf(Z)'
So,
(4.21) Lf(2) = ) (aws/p:)(f(2) = £(2))-
THz

Note from (4.21) that (as we would expect from the trace theorem), changing
the measure i changes the jump rates of the process, but not the jump probabilities.

Electrical Equivalence.

Definition 4.22. Let (F, A) be an electrical network, and G C F. If B is a
conductance matrix on G, and

Ep = Tr(€E4|G)
we will say that the networks (F, A) and (G, B) are (electrically) equivalent on G.

In intuitive terms, this means that an electrician who is able only to access the
nodes in G (imposing potentials, or feeding in currents etc.) would be unable to
distinguish from the response of the system between the networks (F, A) and (G, B).

Definition 4.23. (Effective resistance). Let Gy, G; be disjoint subsets of F. The
effective resistance between Gy and G, R(Gy,G1) is defined by

(4.22) R(Go,G1)™ " =inf{&(f, ) : fl, =0, f|m, = 1}.
This is finite if (F, A) is irreducible.
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If G = {z,y}, then from these definitions we see that (F, A) is equivalent to
the network (G, B), where B = (b,,) is given by

bay = byz = —bgy = —byy = R(z,y) "

Let (F,A) be an irreducible network, and G C F be a proper subset. Let
H = G°, and for f € C(F) write f = (fu, fa) where fg, fa are the restrictions of
f to H and G respectively. If g € C(G), then if £ = Tr(E4|G),

£(9,9) Zin{( }-Fz,gT)A<f;>, fm € C(H)}-
We have, using obvious notation
(4.23) (fi9")A (f;) = fhAgnfe +2fkAncg + 9" Acay.

The function fz which minimizes (4.23) is given by fg = Az Arcg. (Note that
as A is irreducible, 0 cannot be an eigenvalue of Ay g, so A;I;I exists). Hence

(4.24) £(g,9) = 9T (Aga — Agu Ay AnG)9,
so that £ = &€ B, Where B is the conductivity matrix
(4.25) B = Agg — AcuAgyAnc.

Example 4.24. (A-Y transform). Let G = {z¢, 21,22} and B be the conductance
matrix defined by,

bﬂ)oﬂ):[ — az, bil}]_il}g — a07 bmzibo — a].'
Let F = GU {y}, and A be the conductance matrix defined by

Apiz; — 0, @#7j,
amiy:ﬁ,-, 0§Z§2
If the o; and J3; are strictly positive, and we look just at the edges with positive

conductance the network (G, B) is a triangle, while (F,4) is a Y with y at the
centre. The A —Y transform is that (F, A) and (G, B) are equivalent if and only if

oy = B152
Bo + b1+ B2’
B200
4.26 =
(4.26) Y Bo+ B+ Ba
oy = Bob1
Bo + B1 + B
Equivalently, if S = aya; + a1y + asag, then
S .
(4.27) GBi=—, 0<i<2.

a;
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This can be proved by elementary, but slightly tedious, calculations. The A —Y
transform can be of great use in reducing a complicated network to a more simple
one, though there are of course networks for which it is not effective.

Proposition 4.25. (See [Ki5]). Let (F,A) be an irreducible electric network, and
R(z,y) = R({z},{y}) be the 2-point effective resistances. Then R is a metric on F.

Proof. We define R(z,z) = 0. Replacing f by 1 — f in (4.22), it is clear that
R(z,y) = R(y,z), so it just remains to verify the triangle inequality. Let x¢, z1, 2
be distinct points in F, and G = {z¢, 21,3 }.

Using the tower property of traces mentioned above, it is enough to consider
the network (G, B), where B is defined by (4.25). Let ag = by, 4,, and define oy, ay
similarly. Let By, 81, B2 be given by (4.27); using the A — Y transform it is easy to
see that

R(zi,z;) =B+ 8", i#j

The triangle inequality is now immediate. O

Remark 4.26. There are other ways of viewing this, and numerous connections
here with linear algebra, potential theory, etc. I will not go into this, except to
mention that (4.25) is an example of a Schur complement (see [Car]), and that an
alternative viewpoint on the resistance metric is given in [Me6].

The following result gives a connection between resistance and crossing times.

Theorem 4.27. Let (F,A) be an electrical network, let y be a measure on F
which charges every point, and let (X,t > 0) be the continuous time Markov chain
associated with £4 on L*(F,u). Write T, = inf{t > 0: X; = z}. Then if ¢ # y,

(4.28) E*Ty + E'T, = R(z,y)u(F).

Remark. In view of the simplicity of this result, it is rather remarkable that its
first appearance (which was in a discrete time context) seems to have been in 1989,
in [CRRST]. See [Tet] for a proof in a more accessible publication.

Proof. A direct proof is not hard, but here I will derive the result from the trace
theorem. Fix z,y, let G = {z,y}, and let £ = € = Tr(€|G). If R = R(z,y), then

we have, from the definitions of trace and effective resistance,
—R! R™!

Let v = p|g; the process X, associated with (5~, L?(G,v)) therefore has generator
given by

Lf(z) = (Rp:)"" > (f(w) = £(2)).

w#z

Writing fm, fy for the hitting times associated with X we therefore have

E*T, + E'T, = R(pig + ity)-
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We now use the trace theorem. If f(z) = 1,(z) then the occupation density
formula implies that

t
jaLE = / (X ds = |{s <t: X, = 2}|.
0
So

t
At = / ]_G(Xs)ds,
0

and thus if § = inf{t > T, : X, = 2} and § is defined similarly, we have

S
S:/ 1g(X3)dS.
0

However by Doeblin’s theorem for the stationary measure of a Markov Chain

(4.29) W(G) = (E* §)~1E* /0  Le(X.) dsu(F).
Rearranging, we deduce that
E®S = F°T, + EYT,
= (W(F)/m(G))E* S
= (WF)/1(@) (BT, + BT, ) = Ru(F), a
Corollary 4.28. Let H C F, 2 ¢ H. Then
E*Ty < R(z, H)u(F).

Proof. If H is a singleton, this is immediate from Theorem 4.27. Otherwise, it
follows by considering the network (F', H') obtained by collapsing all points in H
into one point, h, say. (So F' = (F — H) U {h}, and a,;, = >_ g @ay)- O

Remark. This result is actually older than Theorem 4.27 — see [Tel].



