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�� Introduction�

The notes are based on lectures given in St� Flour in �

�� and cover� in greater
detail� most of the course given there�

The word �fractal� was coined by Mandelbrot �Man� in the �
��s� but of course
sets of this type have been familiar for a long time � their early history being as a
collection of pathological examples in analysis� There is no generally agreed exact
de�nition of the word �fractal�� and attempts so far to give a precise de�nition have
been unsatisfactory� leading to classes of sets which are either too large� or too small�
or both� This ambiguity is not a problem for this course� a more precise title would
be �Di	usions on some classes of regular self�similar sets��

Initial interest in the properties of processes on fractals came from mathematical
physicists working in the theory of disordered media� Certain media can be modelled
by percolation clusters at criticality� which are expected to exhibit fractal�like prop�
erties� Following the initial papers �AO�� �RT�� �GAM��GAM�� a very substantial
physics literature has developed � see �HBA� for a survey and bibliography�

Let G be an in�nite subgraph of Zd� A simple random walk �SRW� �Xn� n � ��
on G is just the Markov chain which moves from x � G with equal probability to
each of the neighbours of x� Write pn�x� y� � Px�Xn � y� for the n�step transition
probabilities� If G is the whole of Zd then E�Xn�� � n with many familiar con�
sequences � the process moves roughly a distance of order

p
n in time n� and the

probability law pn�x� �� puts most of its mass on a ball of radius cdn�
If G is not the whole of Zd then the movement of the process is on the average

restricted by the removal of parts of the space� Probabilistically this is not obvious
� but see �DS� for an elegant argument� using electrical resistance� that the removal
of part of the state space can only make the process X �more recurrent�� So it is
not unreasonable to expect that for certain graphs G one may �nd that the process
X is su�ciently restricted that for some � � �

����� Ex �Xn � x�� � n��� �

�Here and elsewhere I use � to mean �bounded above and below by positive con�
stants�� so that ����� means that there exist constants c�� c� such that c�n

��� �
Ex �Xn � x�� � c�n

����� In �AO� and �RT� it was shown that if G is the Sierpinski
gasket �or more precisely an in�nite graph based on the Sierpinski gasket � see Fig�
���� then ����� holds with � � log �� log ��

Figure ���� The graphical Sierpinski gasket�
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Physicists call behaviour of this kind by a random walk �or a di	usion � they are
not very interested in the distinction� subdi�usive � the process moves on average
slower than a standard random walk on Zd� Kesten �Ke� proved that the SRW on
the �incipient in�nite cluster� C �a percolation cluster at p � pc but conditioned to
be in�nite� is subdi	usive� The large scale structure of C is given by taking one
in�nite path �the �backbone�� together with a collection of �dangling ends�� some of
which are very large� Kesten attributes the subdi	usive behaviour of SRW on C
to the fact that the process X spends a substantial amount of time in the dangling
ends�

However a graph such as the Sierpinski gasket �SG� has no dangling ends� and
one is forced to search for a di	erent explanation for the subdi	usivity� This can
be found in terms of the existence of �obstacles at all length scales�� Whilst this
holds for the graphical Sierpinski gasket� the notation will be slightly simpler if we
consider another example� the graphical Sierpinski carpet �GSC�� �Figure �����

Figure ���� The graphical Sierpinski carpet�

This set can be de�ned precisely in the following fashion� Let H� � Z�� For
x � �n�m� � H� write n�m in ternary � so n �

P�
i�� ni�

i� where ni � f�� �� �g� and
ni � � for all but �nitely many i� Set

Jk � f�m�n� � nk � � and mk � �g�
so that Jk consists of a union of disjoint squares of side �k� the square in Jk closest
to the origin is f�k� � � � � ���k � �g � f�k� � � � � ���k � �g� Now set

����� Hn � H� �
n�

k��

Jk� H �
��
n��

Hn�






Figure ���� The set H� �

Figure ��
� The set H� �

Note that H � ��� �n�� � Hn� ��� �n��� so that the di	erence between H and Hn

will only be detected by a SRW after it has moved a distance of �n from the origin�
Now let X�n� be a SRW on Hn� started at the origin� and let X be a SRW on H�
The process X��� is just SRW on Z�

� and so we have

����� E�X���
n �� 	 n�

The process X��� is a random walk on a the intersection of a translation invariant

subset of Z� with Z�
�� So we expect �homogenization�� the processes n����X

���
�nt	�

t � � should converge weakly to a constant multiple of Brownian motion in R�
�� So�

for large n we should have E�X
���
n �� 
 a�n� and we would expect that a� � �� since

the obstacles will on average tend to impede the motion of the process�

Similar considerations suggest that� writing �n�t� � E� �X
�n�
t ��� we should have

�n�t� 
 ant as t���

However� for small t we would expect that �n and �n�� should be approximately
equal� since the process will not have moved far enough to detect the di	erence
between Hn and Hn��� More precisely� if tn is such that �n�tn� � ��n�� then �n
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and �n�� should be approximately equal on ��� tn���� So we may guess that the
behaviour of the family of functions �n�t� should be roughly as follows�

�n�t� � bn � an�t� tn�� t � tn����
�

�n���s� � �n�s�� � � s � tn���

If we add the guess that an � ��� for some � � � then solving the equations above
we deduce that

tn � ������n� bn � ��n�

So if ��t� � E� �Xt�
� then as ��t� 	 limn �n�t� we deduce that � is close to a

piecewise linear function� and that

��t� � t���

where � � � � �� Thus the random walk X on the graph H should satisfy ����� for
some � � ��

The argument given here is not of course rigorous� but ����� does actually
hold for the set H � see �BB�� BB��� �See also �Jo� for the case of the graphical
Sierpinski gasket� The proofs however run along rather di	erent lines than the
heuristic argument sketched above��

Given behaviour of this type it is natural to ask if the random walk X on H
has a scaling limit� More precisely� does there exist a sequence of constants 	n such
that the processes

����� ���nX�t��n 	� t � ��

converge weakly to a non�degenerate limit as n� �� For the graphical Sierpinski
carpet the convergence is not known� though there exist 	n such that the family
����� is tight� However� for the graphical Sierpinski gasket the answer is �yes��

Thus� for certain very regular fractal sets F 
 Rd we are able to de�ne a limiting
di	usion process X � �Xt� t � ��Px� x � F � where Px is for each x � F a probability
measure on � � f
 � C������� F � � 
��� � xg� Writing Ttf�x� � Exf�Xt� for
the semigroup of X we can de�ne a �di	erential� operator LF � de�ned on a class of
functions D�LF � 
 C�F �� In many cases it is reasonable to call LF the Laplacian
on F �

From the process X one is able to obtain information about the solutions to
the Laplace and heat equations associated with LF � the heat equation for example
taking the form

�u

�t
� LFu������

u��� x� � u��x��

where u � u�t� x�� x � F � t � �� The wave equation is rather harder� since it is not
very susceptible to probabilistic analysis� See� however �KZ�� for work on the wave
equation on a some manifolds with a �large scale fractal structure��
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The mathematical literature on di	usions on fractals and their associated in�
�nitesimal generators can be divided into broadly three parts�

�� Di	usions on �nitely rami�ed fractals�
�� Di	usions on generalized Sierpinski carpets� a family of in�nitely rami�ed frac�

tals�
�� Spectral properties of the �Laplacian� LF �

These notes only deal with the �rst of these topics� On the whole� in�nitely
rami�ed fractals are signi�cantly harder than �nitely rami�ed ones� and sometimes
require a very di	erent approach� See �Bas� for a recent survey�

These notes also contain very little on spectral questions� For �nitely rami�ed
fractals a direct approach �see for example �FS�� Sh��Sh
� KL��� is simpler� and
gives more precise information than the heat kernel method based on estimatingZ

F

p�t� x� x�dx �
X
i

e��it�

In this course Section � introduces the simplest case� the Sierpinski gasket� In
Section � I de�ne a class of well�behaved di	usions on metric spaces� �Fractional
Di	usions�� which is wide enough to include many of the processes discussed in
this course� It is possible to develop their properties in a fairly general fashion�
without using much of the special structure of the state space� Section 
 contains
a brief introduction to the theory of Dirichlet forms� and also its connection with
electrical resistances� The remaining chapters� � to �� give the construction and
some properties of di	usions on a class of �nitely rami�ed regular fractals� In this
I have largely followed the analytic �Japanese� approach� developed by Kusuoka�
Kigami� Fukushima and others� Many things can now be done more simply than in
the early probabilistic work � but there is loss as well as gain in added generality� and
it is worth pointing out that the early papers on the Sierpinski gasket ��Kus�� Go�
BP�� contain a wealth of interesting direct calculations� which are not reproduced
in these notes� Any reader who is surprised by the abrupt end of these notes in
Section � should recall that some� at least� of the properties of these processes have
already been obtained in Section ��

ci denotes a positive real constant whose value is �xed within each Lemma�
Theorem etc� Occasionally it will be necessary to use notation such as c
���� � this
is simply the constant c� in De�nition ���� c� c�� c�� denote positive real constants
whose values may change on each appearance� B�x� r� denotes the open ball with
centre x and radius r� and if X is a process on a metric space F then

TA � infft � � � Xt � Ag�
Ty � infft � � � Xt � yg�
	 �x� r� � infft � � � Xt �� B�x� r�g�

I have included in the references most of the mathematical papers in this area
known to me� and so they contain many papers not mentioned in the text� I am
grateful to Gerard Ben Arous for a number of interesting conversations on the
physical conditions under which subdi	usive behaviour might arise� to Ben Hambly
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for checking the �nal manuscript� and to Ann Artuso and Liz Rowley for their
typing�
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�� The Sierpinski Gasket

This is the simplest non�trivial connected symmetric fractal� The set was �rst
de�ned by Sierpinski �Sie��� as an example of a pathological curve the name �Sier�
pinski gasket� is due to Mandelbrot �Man� p��
���

Let G� � f��� ��� ��� ��� �����
p

����g � fa�� a�� a�g be the vertices of the unit
triangle in R�� and let Hu�G�� � H� be the closed convex hull of G�� The con�
struction of the Sierpinski gasket �SG for short� G is by the following Cantor�type
subtraction procedure� Let b�� b�� b� be the midpoints of the � sides of G�� and
let A be the interior of the triangle with vertices fb�� b�� b�g� Let H� � H� �A� so
that H� consists of � closed upward facing triangles� each of side ���� Now repeat
the operation on each of these triangles to obtain a set H�� consisting of 
 upward
facing triangles� each of side ����

Figure ���� The sets H� and H��

Continuing in this fashion� we obtain a decreasing sequence of closed non�empty
sets �Hn��n��� and set

����� G �
��
n��

Hn�
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Figure ���� The set H��

It is easy to see that G is connected� just note that �Hn 
 Hm for all m � n�
so that no point on the edge of a triangle is ever removed� Since jHnj � ���
�njH�j�
we clearly have that jGj � ��

We begin by exploring some geometrical properties of G� Call an n�triangle a
set of the form G � B� where B is one of the �n triangles of side ��n which make
up Hn� Let �n be Lebesgue measure restricted to Hn� and normalized so that
�n�Hn� � � that is

�n�dx� � � � �
���n�Hn
�x� dx�

Let �G � wlim�n this is the natural �!at� measure on G� Note that �G
is the unique measure on G which assigns mass ��n to each n�triangle� Set
df � log �� log � 	 ���� � � �

Lemma ���� For x � G� � � r � �

����� ���rdf � �G
�
B�x� r�

� � ��rdf �

Proof� The result is clear if r � �� If r � �� choose n so that ���n��� � r � ��n �
we have n � �� Since B�x� r� can intersect at most � n�triangles� it follows that

�G
�
B�x� r�

� � ����n � ������n���

� ������n����df � ��rdf �

As each �n � ���triangle has diameter ���n���� B�x� r� must contain at least one
�n� ���triangle and therefore

�G
�
B�x� r�

� � ���n��� � ������n�df � ���rdf � �

Of course the constants ���� �� in ����� are not important what is signi�cant
is that the �G�mass of balls in G grow as rdf � Using terminology from the geometry
of manifolds� we can say that G has volume growth given by rdf �






Detour on Dimension�

Let �F� 
� be a metric space� There are a number of di	erent de�nitions of
dimension for F and subsets of F � here I just mention a few� The simplest of these
is box�counting dimension� For � � �� A 
 F � let N�A� �� be the smallest number
of balls B�x� �� required to cover A� Then

����� dimBC�A� � lim sup
���

logN�A� ��

log ���
�

To see how this behaves� consider some examples� We take �F� 
� to be Rd with the
Euclidean metric�

Examples� �� Let A � ��� ��d 
 Rd� Then N�A� �� � ��d� and it is easy to verify
that

lim
���

logN���� ��d� ��

log ���
� d�

�� The Sierpinski gasket G� Since G 
 Hn� and Hn is covered by �n triangles
of side ��n� we have� after some calculations similar to those in Lemma ���� that
N�G� r� � ���r�log 
� log �� So�

dimBC�G� �
log �

log �
�

�� Let A � Q � ��� ��� Then N�A� �� � ���� so dimBC�A� � �� On the other hand
dimBC�fpg� � � for any p � A�

We see that box�counting gives reasonable answers in the �rst two cases� but
a less useful number in the third� A more delicate� but more useful� de�nition is
obtained if we allow the sizes of the covering balls to vary� This gives us Hausdor�
dimension� I will only sketch some properties of this here � for more detail see for
example the books by Falconer �Fa�� Fa���

Let h � R� � R� be continuous� increasing� with h��� � �� For U 
 F write
diam�U� � supf
�x� y� � x� y � Ug for the diameter of U � For � � � let

Hh
� �A� � inf

nX
i

h
�
d�Ui�

�
� A 


�
i

Ui� diam�Ui� � �
o
�

Clearly Hh
� �A� is decreasing in �� Now let

���
� Hh�A� � lim
���

Hh
� �A� 

we call Hh��� Hausdor� h�measure � Let B�F � be the Borel ���eld of F �
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Lemma ���� Hh is a measure on
�
F�B�F �

�
�

For a proof see �Fa�� Chapter ���

We will be concerned only with the case h�x� � x�� we then write H� for Hh�
Note that �� H��A� is decreasing in fact it is not hard to see that H��A� is either
�� or � for all but at most one ��

De�nition ���� The Hausdor	 dimension of A is de�ned by

dimH �A� � inff� � H��A� � �g � supf� � H��A� � ��g�
Lemma ���� dimH�A� � dimBC�A��

Proof� Let � � dimBC�A�� Then as A can be covered by N�A� �� sets of diameter
��� we have H�

� �A� � N�A� ������� whenever �� � �� Choose � so that dimBC�A� �
�� � � � then ����� implies that for all su�ciently small �� N�A� �� � �����	�� So
H�
� �A� � �� and thus H��A� � �� which implies that dimH �A� � �� �

Consider the set A � Q � ��� ��� and let A � fp�� p�� � � �g be an enumeration of
A� Let � � �� and Ui be an open internal of length ��i � � containing pi� Then �Ui�
covers A� so that H�

� �A� �P�
i�� �� � ��i��� and thus H��A� � �� So dimH �A� � ��

We see therefore that dimH can be strictly smaller than dimBC � and that �in this
case at least� dimH gives a more satisfactory measure of the size of A�

For the other two examples considered above Lemma ��
 gives the upper bounds
dimH���� ��d� � d� dimH�G� � log �� log �� In both cases equality holds� but a direct
proof of this �which is possible� encounters the di�culty that to obtain a lower bound
on H�

� �A� we need to consider all possible covers of A by sets of diameter less than
�� It is much easier to use a kind of dual approach using measures�

Theorem ���� Let � be a measure on A such that ��A� � � and there exist c� ���
r� � �� such that

����� �
�
B�x� r�

� � c�r
�� x � A� r � r��

Then H��A� � c��
� ��A�� and dimH�A� � ��

Proof� Let Ui be a covering of A by sets of diameter less than �� where �� � r�� If
xi � Ui� then Ui 
 B

�
xi�diam �Ui�

�
� so that ��Ui� � c� diam �Ui�

�� SoX
i

diam �Ui�
� � c��

�

X
i

��Ui� � c��
� ��A��

Therefore H�
� �A� � c��

� ��A�� and it follows immediately that H��A� � �� and
dimH�A� � �� �

Corollary ���� dimH �G� � log �� log ��

Proof� By Lemma ��� �G satis�es ����� with � � df � So by Theorem ��� dimH�G� �
df  the other bound has already been proved� �

Very frequently� when we wish to compute the dimension of a set� it is fairly
easy to �nd directly a near�optimal covering� and so obtain an upper bound on
dimH directly� We can then use Theorem ��� to obtain a lower bound� However�
we can also use measures to derive upper bounds on dimH �
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Theorem ��	� Let � be a �nite measure on A such that �
�
B�x� r�

� � c�r
� for all

x � A� r � r�� Then H��A� ��� and dimH�A� � ��

Proof� See �Fa�� p�����

In particular we may note�

Corollary ��
� If � is a measure on A with ��A� � ����� and

����� c�r
� � �

�
B�x� r�

� � c�r
�� x � A� r � r�

then H��A� � ����� and dimH �A� � ��

Remarks� �� If A is a k�dimensional subspace of Rd then dimH�A� � dimBC�A� �
k�
�� Unlike dimBC dimH is stable under countable unions� thus

dimH

� ��
i��

Ai

�
� sup

i
dimH �Ai��

�� In �Tri� Tricot de�ned �packing dimension� dimP ���� which is the largest rea�
sonable de�nition of �dimension� for a set� One has dimP �A� � dimH�A� strict
inequality can hold� The hypotheses of Corollary ��� also imply that dimP �A� � ��
See �Fa�� p�
���

� The sets we consider in these notes will be quite regular� and will very often
satisfy ������ that is they will be ���dimensional� in every reasonable sense�
�� Questions concerning Hausdor	 measure are frequently much more delicate than
those relating just to dimension� However� the fractals considered in this notes will
all be su�ciently regular so that there is a direct construction of the Hausdor	 mea�
sure� For example� the measure �G on the Sierpinski gasket is a constant multiple
of the Hausdor	 xdf �measure on G�

We note here how dimH changes under a change of metric�

Theorem ���� Let 
�� 
� be metrics on F � and writeH�
i� dimH
i for the Hausdor�
measure and dimension with respect to 
i� i � �� ��
�a� If 
��x� y� � 
��x� y� for all x� y � A with 
��x� y� � ��� then dimH
��A� �

dimH
��A��
�b� If � � 
��x� y� � �� � 
��x� y��	 for some � � �� then

dimH
��A� � � dimH
��A��

Proof� Write dj�U� for the 
j�diameter of U � If �Ui� is a cover of A by sets with

��Ui� � � � ��� then X

i

d��Ui�
� �

X
i

d��Ui�
�

so thatH�
�
� �A� � H�
�

� �A�� ThenH�
��A� � H�
��A� and dimH
��A� � dimH
��A��
proving �a��
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�b� If Ui is any cover of A by sets of small diameter� we haveX
i

d��Ui�
� �

X
i

d��Ui�
	��

Hence H�
��A� � � if and only if H	�
��A� � �� and the conclusion follows� �

Metrics on the Sierpinski gasket�

Since we will be studying continuous processes on G� it is natural to consider
the metric on G given by the shortest path in G between two points� We begin with
a general de�nition�

De�nition ����� Let A 
 Rd� For x� y � A set

dA�x� y� � inffj�j � � is a path between x and y and � 
 Ag�
If dA�x� y� �� for all x� y � A we call dA the geodesic metric on A�

Lemma ����� Suppose A is closed� and that dA�x� y� �� for all x� y � A� Then
dA is a metric on A and �A� dA� has the geodesic property�

For each x� y � A there exists a map "�t� � ��� �� � A such that

dA�x�"�t�� � tdA�x� y�� dA�"�t�� y� � ��� t�dA�x� y��

Proof� It is clear that dA is a metric on A� To prove the geodesic property� let
x� y � A� and D � dA�x� y�� Then for each n � � there exists a path �n�t��
� � t � � � D such that �n 
 A� jd�n�t�j � dt� �n��� � x and �n�tn� � y for
some D � tn � D � n��� If p � ��� D� � Q then since jx � �n�p�j � p the sequence
��n�p�� has a convergent subsequence� By a diagonalization argument there exists
a subsequence nk such that �nk �p� converges for each p � ��� D� � Q we can take
" � lim�nk � �

Lemma ����� For x� y � G�

jx� yj � dG�x� y� � c�jx� yj�
Proof� The left hand inequality is evident�

It is clear from the structure of Hn that if A�B are n�triangles and A�B � ��
then

ja � bj � �
p

������n for a � A� b � B�

Let x� y � G and choose n so that

�
p

�������n��� � jx � yj � �
p

������n�

So x� y are either in the same n�triangle� or in adjacent n�triangles� In either case
choose z � Gn so it is in the same n�triangle as both x and y�
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Let zn � z� and for k � n choose zk � Gk such that x� zk are in the same k�
triangle� Then since zk and zk�� are in the same k�triangle� and both are contained
in Hk��� we have dG�zk� zk��� � dHk��

�zk� zk��� � ��k� So�

dG�z� x� �
�X
k�n

dG�zk� zk��� � ���n � 
jx � yj�

Hence dG�x� y� � dG�x� z� � dG�z� y� � �jx � yj� �

Construction of a di�usion on the Sierpinski gasket�

Let Gn be the set of vertices of n�triangles� We can make Gn into a graph
in a natural way� by taking fx� yg to be an edge in Gn if x� y belong to the same
n�triangle� �See Fig� ����� Write En for the set of edges�

Figure ���� The graph G
�

Let Y
�n�
k � k � �� �� � � � be a simple random walk on Gn� Thus from x � Gn� the

process Y �n� jumps to each of the neighbours of x with equal probability� �Apart
from the � points in G�� all the points in Gn have 
 neighbours�� The obvious way
to construct a di	usion process �Xt� t � �� on G is to use the graphs Gn� which
provide a natural approximation to G� and to try to de�ne X as a weak limit of the
processes Y �n�� More precisely� we wish to �nd constants ��n� n � �� such that

�����
�
Y

�n�
��nt	

� t � �
�
� �Xt� t � �� �

We have two problems�

��� How do we �nd the right ��n��
��� How do we prove convergence�

We need some more notation�

De�nition ����� Let Sn be the collection of sets of the form G�A� where A is an
n�triangle� We call the elements of Sn n�complexes� For x � Gn let Dn�x� �

SfS �
Sn � x � Sg�

The key properties of the SG which we use are� �rst that it is very symmetric�
and secondly� that it is �nitely rami�ed� �In general� a set A in a metric space F is



�


�nitely rami�ed if there exists a �nite set B such that A�B is not connected�� For
the SG� we see that each n�complex A is disconnected from the rest of the set if we
remove the set of its corners� that is A �Gn�

The following is the key observation� Suppose Y
�n�
� � y � Gn�� �take y �� G�

for simplicity�� and let T � inffk � � � Y
�n�
k � Gn�� � fygg� Then Y �n� can only

escape from Dn���y� at one of the 
 points� fx�� � � � � x�g say� which are neighbours of

y in the graph �Gn��� En���� Therefore Y
�n�
T � fx�� � � � � x�g� Further the symmetry

of the set Gn �Dn�y� means that each of the events fY �n�
T � xig is equally likely�

y xx

x x
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Figure ��
� y and its neighbours�

Thus
P

�
Y

�n�
T � xi

��� Y �n�
� � y

�
� �

� �

and this is also equal to P�Y
�n���
� � xijY �n���

� � y�� �Exactly the same argument
applies if y � G�� except that we then have only � neighbours instead of 
�� It
follows that Y �n� looked at at its visits to Gn�� behaves exactly like Y �n���� To
state this precisely� we �rst make a general de�nition�

De�nition ����� Let T� R� or Z�� let �Zt� t � T� be a cadlag process on a metric
space F � and let A 
 F be a discrete set� Then successive disjoint hits by Z on A
are the stopping times T�� T�� � � � de�ned by

�����
T� � infft � � � Zt � Ag�

Tn�� � inf
�
t � Tn � Zt � A� fZTng

	
� n � ��

With this notation� we can summarize the observations above�

Lemma ����� Let �Ti�i�� be successive disjoint hits by Y �n� on Gn��� Then

�Y
�n�
Ti

� i � �� is a simple random walk on Gn�� and is therefore equal in law to

�Y
�n���
i � i � ���

Using this� it is clear that we can build a sequence of �nested� random walks

on Gn� Let N � �� and let Y
�N�
k � k � � be a SRW on GN with Y

�N�
� � �� Let

� � m � N � � and �TN
mi �i�� be successive disjoint hits by Y �N� on Gm� and set

Y
�m�
i � Y �N��TN
mi � � Y

�N�

TN�m
i

� i � ��



��

It follows from Lemma ���� that Y �m� is a SRW on Gm� and for each � � n � m � N
we have that Y �m�� sampled at its successive disjoint hits on Gn� equals Y �n��

We now wish to construct a sequence of SRWs with this property holding for
� � n � m � �� This can be done� either by using the Kolmogorov extension
theorem� or directly� by building Y �N��� from Y �N� with a sequence of independent
�excursions�� The argument in either case is not hard� and I omit it�

Thus we can construct a probability space ���F �P�� carrying random variables

�Y
�n�
k � n � �� k � �� such that

�a� For each n� �Y
�n�
k � k � �� is a SRW on Gn starting at ��

�b� Let Tn
mi be successive disjoint hits by Y �n� on Gm� �Here m � n�� Then

���
� Y �n��Tn
mi � � Y
�m�
i � i � �� m � n�

If we just consider the paths of the processes Y �n� in G� we see that we are
viewing successive discrete approximations to a continuous path� However� to de�ne
a limiting process we need to rescale time� as was suggested by ������

Write 	 � T �
�
� � minfk � � � jY ���

k j � �g� and set f�s� � E s� � for s � ��� ���

Lemma ����� f�s� � s���
� �s�� E	 � f ���� � �� and E	 k �� for all k�

Proof� This is a simple exercise in �nite state Markov chains� Let a�� a� be the two
non�zero elements of G�� let b � �

� �a� � a��� and ci � �
�ai� Writing fc�s� � Eci s� �

and de�ning fb� fa similarly� we have fa�s� � ��

f�s� � sfc�s��

fc�s� � �
�s
�
f�s� � fc�s� � fb�s� � fa�s�

�
�

fb�s� � �
�s
�
fc�s� � fa�s�

�
�

and solving these equations we obtain f�s��
The remaining assertions follow easily from this� �

b a

c

a

b
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Figure ���� The graph G��
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Now let Zn � Tn
�� � n � �� The nesting property of the random walks Y �n�

implies that Zn is a simple branching process� with o	spring distribution �pn�� where

������ f�s� �
�X
k��

skpk�

To see this� note that Y
�n���
k � for Tn��
n

i � k � Tn��
n
i�� is a SRW on Gn�� �

Dn�Y
�n�
i �� and that therefore Tn��
n

i�� � Tn��
n
i

�d�
� 	 � Also� by the Markov property�

the r�v� �i � Tn��
n
i�� � Tn��
n

i � i � �� are independent� Since

Zn�� �

Zn��X
i��

�i�

�Zn� is a branching process�
As E	 � � �� and E	 � �� the convergence theorem for simple branching

processes implies that
��nZn

a�s���W

for some strictly positive r�v� W � �See �Har� p� ����� The convergence is easy using
a martingale argument� proving that W � � a�s� takes a little more work� �See
�Har� p� ����� In addition� if

��u� � Ee�uW

then � satis�es the functional equation

������ ���u� � f
�
��u�

�
� ����� � ���

We have a similar result in general�

Proposition ���	� Fix m � �� The processes

Z�i�
n � Tn
mi � Tn
mi�� � n � m

are branching processes with o�spring distribution 	 � and Z�i� are independent�

Thus there exist W
�m�
i such that for each m �W

�m�
i � i � �� are independent�

W
�m�
i

�d�
� ��mW � and

��n
�
Tn
mi � Tn
mi��

�� W
�m�
i a�s�

Note in particular that E�Tn
�� � � �n� that is that the mean time taken by Y �n�

to cross Gn is �n� In terms of the graph distance on Gn we have therefore that
Y �n� requires roughly �n steps to move a distance �n this may be compared with
the corresponding result for a simple random walk on Zd� which requires roughly

n steps to move a distance �n�

The slower movement of Y �n� is not surprising # to leave Gn � B��� ����� for
example� it has to �nd one of the two �gateways� ����� �� or ���
�

p
��
�� Thus the

movement of Y �n� is impeded by a succession of obstacles of di	erent sizes� which
act to slow down its di	usion�



��

Given the space�time scaling of Y �n� it is no surprise that we should take �n �
�n in ������ De�ne

Xn
t � Y

�n�
��nt	� t � ��

In view of the fact that we have built the Y �n� with the nesting property� we
can replace the weak convergence of ����� with a�s� convergence�

Theorem ���
� The processes Xn converge a�s�� and uniformly on compact inter�
vals� to a process Xt� t � �� X is continuous� and Xt � G for all t � ��

Proof� For simplicity we will use the fact that W has a non�atomic distribution
function� Fix for now m � �� Let t � �� Then� a�s�� there exists i � i�
� such that

iX
j��

W
�m�
j � t �

i��X
j��

W
�m�
j �

As W
�m�
j � limn�� ��n

�
Tn
mj � Tn
mj��

�
it follows that for n � n��
��

������ Tn
mi � �nt � Tn
mi�� �

Now Y �n��Tn
mi � � Y
�m�
i by ���
�� Since Y

�n�
k � Dm�Y

�m�
i � for Tn
mi � k � Tn
mi�� �

we have
jY �n�

��nt	 � Y
�m�
i j � ��m for all n � n��

This implies that jXn
t �Xn�

t j � ��m�� for n� n� � n�� so that Xn
t is Cauchy� and

converges to a r�v� Xt� Since Xn
t � Gn� we have Xt � G�

With a little extra work� one can prove that the convergence is uniform in t� on
compact time intervals� I give here a sketch of the argument� Let a � N� and let

�m � min
��i�a�m

W
�m�
i �

Then �m � � a�s� Choose n� such that for n � n������nTn
mi �
iX

j��

W
�m�
j

��� � �

�n� � � i � a�m�

Then if i � i�t� 
� is such that Wm
i � t � Wm

i��� and i � a�m we have ��nTn
mi�� �
t � ��nTn
mi�� for all n � n�� So� jXn

t � Ym
i j � ��m�� for all n � n�� This implies

that if Tm �
Pa�m

j�� W
�m�
i � and S � Tm� then

sup
��t�S

jXn
t �Xn�

t j � ��m��

for all n� n� � n�� If S � lim infm Tm then the uniform a�s� convergence on the
�random� interval ��� S� follows� If s� t � Tm and jt � sj � �m� then we also have
jXn

t �Xn
s j � ��m�� for n � n�� Thus X is uniformly continuous on ��� S�� Varying

a we also obtain uniform a�s� convergence on �xed intervals ��� t��� �



��

Although the notation is a little cumbersome� the ideas underlying the con�
struction of X given here are quite simple� The argument above is given in �BP��
but Kusuoka �Kus��� and Goldstein �Go�� who were the �rst to construct a di	usion
on G� used a similar approach� It is also worth noting that Knight �Kn� uses similar
methods in his construction of ��dimensional Brownian motion�

The natural next step is to ask about properties of the process X� But unfor�
tunately the construction given above is not quite strong enough on its own to give
us much� To see this� consider the questions

��� Is W � limn�� ��nTn
�� � infft � � � Xt � G� f�gg�
��� Is X Markov or strong Markov�

For ���� we certainly have XW � G�f�g� However� consider the possibility that each
of the random walks Yn moves from � to a� on a path which does not include a�� but
includes an approach to a distance ��n� In this case we have a� �� fXn

t � � � t �Wg�
but XT � a� for some T � W � Plainly� some estimation of hitting probabilities is
needed to exclude possibilities like this�
���� The construction above does give a Markov property for X at stopping times of

the form
Pi

j��W
�m�
j � But to obtain a good Markov process X � �Xt� t � ��Px� x �

G� we need to construct X at arbitrary starting points x � G� and to show that �in
some appropriate sense� the processes started at close together points x and y are
close�

This can be done using the construction given above # see �BP� Section ���
However� the argument� although not really hard� is also not that simple�

In the remainder of this section� I will describe some basic properties of the
process X� for the most part without giving detailed proofs� Most of these theorems
will follow from more general results given later in these notes�

Although G is highly symmetric� the group of global isometries of G is quite
small� We need to consider maps restricted to subsets�

De�nition ����� Let �F� 
� be a metric space� A local isometry of F is a triple
�A�B� �� where A�B are subsets of F and � is an isometry �i�e� bijective and distance
preserving� between A and B� and between �A and �B�

Let �Xt� t � ��Px� x � F � be a Markov process on F � For H 
 F � set TH �
infft � � � Xt � Hg� X is invariant with respect to a local isometry �A�B� �� if

Px ���Xt�T�A � � �� t � �� � P��x� �Xt�T�B � �� t � �� �

X is locally isotropic if X is invariant with respect to the local isometries of F �

Theorem ����� �a� There exists a continuous strong Markov process X � �Xt� t �
��Px� x � G� on G�
�b� The semigroup on C�G� de�ned by

Ptf�x� � Exf�Xt�

is Feller� and is �G�symmetric�Z
G

f�x�Ptg�x��G�dx� �

Z
g�x�Ptf�x��G�dx��



�


�c� X is locally isotropic on the spaces �G� j � � � j� and �G� dG��

�d� For n � � let Tn
i� i � � be successive disjoint hits by X on Gn� Then bY �n�
i �

XTn�i � i � � de�nes a SRW on Gn� and bY �n�
��nt	 � Xt uniformly on compacts� a�s� So�

in particular �Xt� t � ��P�� is the process constructed in Theorem 	�
��

This theorem will follow from our general results in Sections � and � a direct
proof may be found in �BP� Sect� ��� The main labour is in proving �a� given this
�b�� �c�� �d� all follow in a relatively straightforward fashion from the corresponding

properties of the approximating random walks bY �n��

The property of local isotropy on �G� dG� characterizes X�

Theorem ����� �Uniqueness�� Let �Zt� t � ��Qx � x � G� be a non�constant locally
isotropic di�usion on �G� dG�� Then there exists a � � such that

Qx�Zt � �� t � �� � Px�Xat � �� t � ���

�So Z is equal in law to a deterministic time change of X��

The beginning of the proof of Theorem ���� runs roughly along the lines one

would expect� for n � � let �eY �n�
i � i � �� be eZ sampled at its successive disjoint

hits on Gn� The local isotropy of eZ implies that eY �n� is a SRW on Gn� However
some work �see �BP� Sect� ��� is required to prove that the process Y does not have
traps� i�e� points x such that Qx �Yt � x for all t� � ��

Remark ����� The de�nition of invariance with respect to local isometries needs
some care� Note the following examples�
�� Let x� y � Gn be such that Dn�x� �G� � a�� Dn�y� �G� � �� Then while there
exists an isometry � from Dn�x� � G to Dn�y� � G� � does not map �RDn�x� � G
to �RDn�y� �G� ��R denotes here the relative boundary in the set G��
�� Recall the de�nition of Hn� the n�th stage in the construction of G� and let
Bn � �Hn� We have G � cl��Bn�� Consider the process Zt on G� whose local
motion is as follows� If Zt � Hn�Hn��� then Zt runs like a standard ��dimensional
Brownian motion on Hn� until it hits Hn��� After this it repeats the same procedure
on Hn�� �or Hn�k if it has also hit Hn�k at that time�� This process is also invariant
with respect to local isometries �A�B� �� of the metric space �G� j � � � j�� See �He�
for more on this and similar processes�

To discuss scale invariant properties of the process X it is useful to extend G
to an unbounded set eG with the same structure� Set

eG �
��
n��

�nG�

and let eGn be the set of vertices of n�triangles in eGn� for n � �� We have

eGn �
��
k��

�kGn�k�



��

and if we de�ne Gm � f�g for m � �� this de�nition also makes sense for n � �� We

can� almost exactly as above� de�ne a limiting di	usion eX � � eXt� t � �� ePx� x � eG�

on eG� eXt � lim
n��

eY �n�
��nt	� t � �� a�s�

where �eY �n�
k � n � �� k � �� are a sequence of nested simple random walks on eGn�

and the convergence is uniform on compact time intervals�
The process eX satis�es an analogous result to Theorem ����� and in addition

satis�es the scaling relation

������ Px�� eXt � � � t � �� � P�x� eX�t � � � t � ���

Note that ������ implies that eX moves a distance of roughly tlog �� log � in time t�
Set

dw � dw�G� � log �� log ��

We now turn to the question� �What does this process look like��

The construction of X� and Theorem �����d�� tells us that the �crossing time� of
a ��triangle is equal in law to the limiting random variable W of a branching process
with o	spring p�g�f� given by f�s� � s���
��s�� From the functional equation ������
we can extract information about the behaviour of ��u� � E exp��uW � as u���
and from this �by a suitable Tauberian theorem� we obtain bounds on P�W � t�
for small t� These translate into bounds on Px�jXt � xj � �� for large �� �One uses

scaling and the fact that to move a distance in eG greater than �� X has to cross at
least one ��triangle�� These bounds give us many properties of X� However� rather
than following the development in �BP�� it seems clearer to �rst present the more

delicate bounds on the transition densities of eX and X obtained there� and derive
all the properties of the process from them� Write e�G for the analogue of �G for eG�
and ePt for the semigroup of eX� Let eL be the in�nitesimal generator of ePt�
Theorem ����� ePt and Pt have densities ep�t� x� y� and p�t� x� y� respectively�

�a� ep�t� x� y� is continuous on ������ eG� eG�
�b� ep�t� x� y� � ep�t� y� x� for all t� x� y�
�c� t� ep�t� x� y� is C� on ����� for each �x� y��
�d� For each t� y

jep�t� x� y�� ep�t� x�� y�j � c�t
��jx� x�jdw�df � x� x� � eG�

�e� For t � ������ x� y � eG
c�t

�df�dw exp



�c


� jx� yjdw
t

����dw���


� ep�t� x� y�����
�

� c�t
�df�dw exp



�c�

� jx� yjdw
t

����dw���


�



��

�f� For each y� � eG� ep�t� x� y�� is the fundamental solution of the heat equation oneG with pole at y��

�

�t
ep�t� x� y�� � eLep�t� x� y��� ep��� �� y�� � �y�����

�g� p�t� x� y� satis�es �a���f� above �with eG replaced by G and t � ����� replaced
by t � ��� ����

Remarks� �� The proof of this in �BP� is now largely obsolete # simpler methods
are now available� though these are to some extent still based on the ideas in �BP��
�� If df � d and dw � � we have in ����
� the form of the transition density of
Brownian motion in Rd� Since dw � log �� log � � �� the tail of the distribution of
jXt � xj under Px decays more rapidly than an exponential� but more slowly than
a Gaussian�

It is fairly straightforward to integrate the bounds ����
� to obtain information
about X� At this point we just present a few simple calculations we will give some
further properties of this process in Section ��

De�nition ����� For x � eG� n � Z� let xn be the point in eGn closest to x in
Euclidean distance� �Use some procedure to break ties�� Let Dn�x� � Dn�xn��

Note that e�G�Dn�xn�
�

is either ��n or ����n� that

������ jx� yj � ����n if y � Dn�x��

and that

������ jx� yj �
p


� ���n��� if y � eG�Dn�x�c�

The sets Dn�x� form a convenient collection of neighbourhoods of points in eG� Note

that �n	ZDn�x� � eG�

Corollary ����� For x � eG�
c�t

��dw � Ex jXt � xj� � c�t
��dw � t � ��

Proof� We have

Ex jXt � xj� �

Z
eG�y � x��ep�t� x� y�e�G�dy��

Set Am � Dm�x��Dm���x�� ThenZ
Am

�y � x��ep�t� x� y�e�G�dy�������

� c���m��t�df�dw exp

�
�c�

�
���m�

dw�t
����dw���

�
��m

� c���m���df t�df�dw exp
�
�c����m�t����dw���

�
�
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Choose n such that ��n � t � ��n��� and write am�t� for the �nal term in �������
Then

Ex�Xt � x�� �
n��X

m���
am�t� �

�X
m�n

am�t��

For m � n� ��m�t � � and the exponential term in ������ is dominant� After a few
calculations we obtain

n��X
m���

am�t� � c���n���df t�df�dw

� ct���df ��dw�df�dw � ct���df��dw�df�dw � ct��dw �

where we used the fact that ���n�dw � t� For m � n we neglect the exponential
term� and have

�X
m�n

am�t� � c t�df�dw
�X

m�n

���m���df

� ct�df�dw���n���df � c�t��dw �

Similar calculations give the lower bound� �

Remarks ����� �� Since ��dw � log 
� log � � � this implies that X is subdi	usive�

�� Since e�G�B�x� r�
� � rdf � for x � eG� it is tempting to try and prove Corollary

���� by the following calculation�

Ex j eXt � xj� �

Z �

�

r�dr

Z
�B�x
r�

ep�t� x� y�e�G�dy�������

�
Z �

�

dr r� rdf��t�df�dw exp
�
�c�rdw�t���dw��

�
� t��dw

Z �

�

s��df exp
�
�c�sdw�

��dw��
�
ds � ct��dw �

Of course this calculation� as it stands� is not valid� the estimate

e�B�B�x� r � dr��B�x� r�
� � rdf��dr

is certainly not valid for all r� But it does hold on average over length scales of
�n � r � �n��� and so splitting eG into suitable shells� a rigorous version of this
calculation may be obtained � and this is what we did in the proof of Corollary
�����

The ��potential kernel density of eX is de�ned by

u��x� y� �

Z �

�

e��tep�t� x� y� dt�

From ����
� it follows that u� is continuous� that u��x� x� � c�df�dw��� and that

u� � � as � � �� Thus the process eX �and also X� �hits points� � that is if



��

Ty � infft � � � eXt � yg then

����
� Px�Ty ��� � ��

It is of course clear that X must be able to hit points in Gn � otherwise it could not
move� but ����
� shows that the remaining points in G have a similar status� The
continuity of u��x� y� in a neighbourhood of x implies that

Px�Tx � �� � ��

that is that x is regular for fxg for all x � eG�

The following estimate on the distribution of j eXt � xj can be obtained easily
from ����
� by integration� but since this bound is actually one of the ingredients in
the proof� such an argument would be circular�

Proposition ���	� For x � eG� � � �� t � ��

c� exp
�
�c���dw�t�

��dw��
�
� Px�j eXt � xj � ��

� c
 exp
�
�c���dw�t�

���dw���
�
�

From this� it follows that the paths of eX are H$older continuous of order ��dw � �
for each � � �� In fact we can �up to constants� obtain the precise modulus of

continuity of eX � Set
h�t� � t��dw �log t����dw����dw �

Theorem ���
� �a� For x � G

c� � lim
���

sup
��s�t��
jt�sj
�

j eXs � eXtj
h�s� t�

� c�� Px� a�s�

�b� The paths of eX are of in�nite quadratic variation� a�s�� and so in particular eX
is not a semimartingale�

The proof of �a� is very similar to that of the equivalent result for Brownian motion
in Rd�
For �b�� Proposition ���� implies that jXt�h �Xtj is of order h��dw  as dw � � this
suggests that X should have in�nite quadratic variation� For a proof which �lls in
the details� see �BP� Theorem 
���� �

So far in this section we have looked at the Sierpinski gasket� and the construc�
tion and properties of a symmetric di	usion X on G �or eG�� The following three
questions� or avenues for further research� arise naturally at this point�



�


�� Are there other natural di	usions on the SG�
�� Can we do a similar construction on other fractals�
�� What �ner properties does the process X on G have� �More precisely� what

about properties which the bounds in ������ are not strong enough to give
information on��

The bulk of research e	ort in the years since �Kus�� Go� BP� has been devoted
to ���� Only a few papers have looked at ���� and �apart from a number of works
on spectral properties�� the same holds for ����

Before discussing ��� or ��� in greater detail� it is worth extracting one property
of the SRW Y ��� which was used in the construction�

Let V � �Vn� n � ��Pa� a � G�� be a Markov chain on G�� clearly V is speci�ed
by the transition probabilities

p�ai� aj� � Pai�V� � aj�� � � i� j � ��

We take p�a� a� � � for a � G�� so V is determined by the three probabilities
p�ai� aj�� where j � i � � �mod ���

Given V we can de�ne a Markov Chain V � on G� by a process we call replication�
Let fb��� b��� b��g be the � points in G� �G�� where bij � �

� �ai � aj�� We consider
G� to consist of three ��cells fai� bij� j �� ig� � � i � �� which intersect at the points
fbijg� The law of V � may be described as follows� V � moves inside each ��cell in
the way same as V does if V �

� lies in two ��cells then it �rst chooses a ��cell to
move in� and chooses each ��cell with equal probability� More precisely� writing
V � � �V �n� n � ��P

a
� a � G��� and

p��a� b� � P
a
�V �� � b��

we have

p��ai� bij� � p�ai� aj��������

p��bij� bik� � �
�p�aj � ak�� p��bij� ai� � �

�p�aj � ai��

Now let Tk� k � � be successive disjoint hits by V � on G�� and let Uk � V �Tk � k � ��
Then U is a Markov Chain on G� we say that V is decimation invariant if U is
equal in law to V �

We saw above that the SRW Y ��� on G� was decimation invariant� A natural
question is�

What other decimation invariant Markov chains are there on G��

Two classes have been found�

�� �See �Go��� Let p�a�� a�� � p�a�� a�� � �� p�a�� a�� � �
� �

�� �p�stream random walks� ��Kum���� Let p � ��� �� and

p�a�� a�� � p�a�� a�� � p�a�� a�� � p�

From each of these processes we can construct a limiting di	usion in the same
way as in Theorem ����� The �rst process is reasonably easy to understand� essen�
tially its paths consist of a downward drift �when this is possible�� and a behaviour



��

like ��dimensional Brownian motion on the portions on G which consist of line
segments parallel to the x�axis�

For p � �
� Kumagai�s p�stream di	usions tend to rotate in an anti�clockwise

direction� so are quite non�symmetric� Apart from the results in �Kum�� nothing is
known about this process�

Two other classes of di	usions on G� which are not decimation invariant� have
also been studied� The �rst are the �asymptotically ��dimensional di	usions� of
�HHW
�� the second the di	usions� similar to that described in Remark ����� which
are �G� j � � � j��isotropic but not �G� dG�� isotropic � see �He�� See also �HH�� HK��
HHK� for work on the self�avoiding random walk on the SG�

Di�usions on other fractal sets�

Of the three questions above� the one which has received most attention is that
of making similar constructions on other fractals� To see the kind of di�culties
which can arise� consider the following two fractals� both of which are constructed
by a Cantor type procedure� based on squares rather than triangles� For each curve
the �gure gives the construction after two stages�

Figure ���� The Vicsek set and the Sierpinski carpet�

The �rst of these we will call the �Vicsek set� �VS for short�� We use similar
notation as for the SG� and write G�� G�� � � � for the succession of sets of vertices
of corners of squares� We denote the limiting set by F � FV S� One di�culty arises
immediately� Let Yr be the SRW on G� which moves from any point x � G� to each
of its neighbours with equal probability� �The neighbours of x are the � points y in
G� with jx � yj � ��� Then Y ��� is not decimation invariant� This is easy to see�
Y ��� cannot move in one step from ��� �� to ��� ��� but Y ��� can move from ��� �� to
��� �� without hitting any other point in G��

However it is not hard to �nd a decimation invariant random walk on G�� Let
p � ��� ��� and consider the random walk �Yr� r � �� Exp � x � G�� on G� which moves

diagonally with probability p� and horizontally or vertically with probability �
� ���p��

Let �Y �r � r � �� Exp � x � G�� be the Markov chain on G� obtained by replication� and
let Tk� k � � be successive disjoint hits by Y � on G��
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Then writing f�p� � P�
p

�
Y �T� � ��� ��

�
we have �after several minutes calcula�

tion�

f�p� �
�


� �p
�

The equation f�p� � p therefore has two solutions� p � �

 and p � �� each of which

corresponds to a decimation invariant walk on G�� �The number �

 here has no

general signi�cance� if we had looked at the fractal similar to the Vicsek set� but
based on a �� � square rather than a �� � square� then we would have obtained a
di	erent number��

One may now carry through� in each of these cases� the construction of a dif�
fusion on the Vicsek set F � very much as for the Sierpinski gasket� For p � � one
gets a rather uninteresting process� which� if started from ��� ��� is �up to a constant
time change� ��dimensional Brownian motion on the diagonal f�t� t�� � � t � �g� It
is worth remarking that this process is not strong Markov� for each x � F one can
take Px to be the law of a Brownian motion moving on a diagonal line including
x� but the strong Markov property will fail at points where two diagonals intersect�
such as the point � �� �

�
� ��

For p � �

 one obtains a process �Xt� t � �� with much the same behaviour

as the Brownian motion on the SG� We have for the Vicsek set �with p � �

 �

df �FV S� � log �� log �� dw�FV S� � log ��� log �� This process was studied in some
detail by Krebs �Kr�� Kr��� The Vicsek set was mentioned in �Go�� and is one of the
�nested fractals� of Lindstr%m �L���

This example shows that one may have to work to �nd a decimation invariant
random walk� and also that this may not be unique� For the VS� one of the decima�
tion invariant random walks was degenerate� in the sense that Px�Y hits y� � � for
some x� y � G�� and we found the associated di	usion to be of little interest� But it
raises the possibility that there could exist regular fractals carrying more than one
�natural� di	usion�

The second example is the Sierpinski carpet �SC�� For this set a more serious
di�culty arises� The VS was �nitely rami�ed� so that if Yt is a di	usion on FV S�
and �Tk� k � �� are successive disjoint hits on Gn� for some n � �� then �YTk � k � ��
is a Markov chain on Gn� However the SC is not �nitely rami�ed� if �Zt� t � �� is a
di	usion on FSC � then the �rst exit of Z from ��� �
 �� could occur anywhere on the
line segments f� �
 � y�� � � y � �


g� f�x� �
 �� � � x � �

g� It is not even clear that a

di	usion on FSC will hit points in Gn� Thus to construct a di	usion on FSC one
will need very di	erent methods from those outlined above� It is possible� and has
been done� see �BB��BB��� and �Bas� for a survey�

On the third question mentioned above� disappointingly little has been done�
most known results on the processes on the Sierpinski gasket� or other fractals�
are of roughly the same depth as the bounds in Theorem ����� Note however the
results on the spectrum of L in �FS�� FS�� Sh��Sh
�� and the large deviation results
in �Kum��� Also� Kusuoka �Kus�� has very interesting results on the behaviour of
harmonic functions� which imply that the measure de�ned formally on G by

��dx� � jrf j��x���dx�

is singular with respect to �� There are many open problems here�
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�� Fractional Di
usions�

In this section I will introduce a class of processes� de�ned on metric spaces�
which will include many of the processes on fractals mentioned in these lectures� I
have chosen an axiomatic approach� as it seems easier� and enables us to neglect
�for the time being&� much of �ne detail in the geometry of the space�

A metric space �F� 
� has the midpoint property if for each x� y � F there exists
z � F such that 
�x� z� � 
�z� y� � �

�
�x� y�� Recall that the geodesic metric dG in
Section � had this property� The following result is a straightforward exercise�

Lemma ���� �See 
Blu��� Let �F� 
� be a complete metric space with the midpoint
property� Then for each x� y � F there exists a geodesic path ���t�� � � t � �� such
that ���� � x� ���� � y and 
���s�� ��t�� � jt � sjd�x� y�� � � s � t � ��

For this reason we will frequently refer to a metric 
 with the midpoint property
as a geodesic metric� See �Stu�� for additional remarks and references on spaces of
this type�

De�nition ���� Let �F� 
� be a complete metric space� and � be a Borel measure
on
�
F�B�F �

�
� We call �F� 
� �� a fractional metric space �FMS for short� if

����a� �F� 
� has the midpoint property�

and there exist df � �� and constants c�� c� such that if r� � supf
�x� y� � x� y �
Fg � ����� is the diameter of F then

����b� c�r
df � �

�
B�x� r�

� � c�r
df for x � F� � � r � r��

Here B�x� r� � fy � F � 
�x� y� � rg�
Remarks ���� �� Rd� with Euclidean distance and Lebesgue measure� is a FMS�
with df � d and r� � ��
�� If G is the Sierpinski gasket� dG is the geodesic metric on G� and � � �G is
the measure constructed in Section �� then Lemma ��� shows that �G� dG� �� is a

FMS� with df � df �G� � log �� log � and r� � �� Similarly � eG� deG� e�� is a FMS with
r� � ��
�� If �Fk� dk� �k�� k � �� � are FMS with the same diameter r� and p � ������ then
setting F � F��F�� d��x�� x��� �y�� y��� � �d��x�� y��p�d��x�� y��p���p� � � ������
it is easily veri�ed that �F� d� �� is also a FMS with df �F � � df �F�� � df �F���

� For simplicity we will from now on take either r� � � or r� � �� We will write
r � ��� r�� to mean r � ��� r�� � ������ and de�ne r�� � � if � � � and r� � ��

A number of properties of �F� 
� �� follow easily from the de�nition�

Lemma ���� �a� dimH�F � � dimP �F � � df �
�b� F is locally compact�
�c� df � ��

Proof� �a� is immediate from Corollary ����
�b� Let x � F � A � B�x� ��� and consider a maximal packing of disjoint balls
B�xi� ��� xi � A� � � i � m� As ��A� � c�� and �

�
B�xi� ��

� � c��
df � we have

m � c��c��
df �

��
��� Also A � �mi��B�xi� ���� Thus any bounded set in F can be
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covered by a �nite number of balls radius � this� with completeness� implies that F
is locally compact�
�c� Take x� y � F with 
�x� y� � D � �� Applying the midpoint property repeatedly
we obtain� for m � �k� k � �� a sequence x � z�� z�� � � � � zm � y with 
�zi� zi��� �
D�m� Set r � D��m� the balls B�zi� r� must be disjoint� or� using the triangle
inequality� we would have 
�x� y� � D� But then

m���
i��

B�zi� r� 
 B�x�D��

so that

c�D
df � �

�
B�x�D�

� � m��X
i��

�
�
B�zi� r�

�
� mc�D

df ��m��df � cm��df �

If df � � a contradiction arises on letting m��� �

De�nition ���� Let �F� 
� �� be a fractional metric space� A Markov process
X � �Px� x � F�Xt� t � �� is a fractional di�usion on F if
����a� X is a conservative Feller di	usion with state space F �
����b� X is ��symmetric�
����c� X has a symmetric transition density p�t� x� y� � p�t� y� x�� t � �� x� y � F �
which satis�es� the Chapman�Kolmogorov equations and is� for each t � �� jointly
continuous�
����d� There exist constants �� �� �� c� � c�� t� � r�� � such that

�����
c�t

�� exp
��c�
�x� y���t��

� � p�t� x� y�

� c
t
�� exp

��c�
�x� y��� t��
�
� x� y � F� � � t � t��

Examples ���� �� If F is Rd� and a�x� � aij�x�� � � i� j � d� x � Rd is bounded�
symmetric� measurable and uniformly elliptic� let L be the divergence form operator

L �
X
ij

�

�xi
aij�x�

�

�xj
�

Then Aronsen�s bounds �Ar� imply that the di	usion with in�nitesimal generator L
is a FD� with � � d��� � � �� � � ��
�� By Theorem ����� the Brownian motion on the Sierpinski gasket described in
Section � is a FD� with � � df �SG��dw�SG�� � � dw�SG� and � � ���� � ���

The hypotheses in De�nition ��� are quite strong ones� and �as the examples
suggest� the assertion that a particular process is an FD will usually be a substantial
theorem� One could of course consider more general bounds than those in ����� �with
a correspondingly larger class of processes�� but the form ����� is reasonably natural�
and already contains some interesting examples�

In an interesting recent series of papers Sturm �Stu��Stu
� has studied di	usions
on general metric spaces� However� the processes considered there turn out to have
an essentially Gaussian long range behaviour� and so do not include any FDs with
� �� ��



�


In the rest of this section we will study the general properties of FDs� In
the course of our work we will �nd some slightly easier su�cient conditions for a
process to be a FD than the bounds ������ and this will be useful in Section � when
we prove that certain di	usions on fractals are FDs� We begin by obtaining two
relations between the indices df � �� �� �� so reducing the parameter space of FDs
to a two�dimensional one�

We will say that F is a FMS�df � if F is a FMS and satis�es ����b� with
parameter df �and constants c�� c��� Similarly� we say X is a FD��df � �� �� �� if
X is a FD on a FMS�df �� and X satis�es ����� with constants �� �� �� �This is
temporary notation # hence the ���

It what follows we �x a FMS �F� 
� ��� with parameters r� and df �

Lemma ��	� Let �� �� x � � and set

I��� x� �

Z �

�

e�xt
�

dt�

S��� �� x� �
�X
n��

�ne�x�
n�

�

Then

���
� ��� ��S��� �� ��x� � I��� x� � �� � ��S��� �� x��

and

I��� x� � x���� for x � �������

I��� x� � x��e�x for x � �������

Proof� We have

I��� x� �
�X
n��

Z �n��

�n
e�xt

�

dt�

and estimating each term in the sum ���
� is evident�
If � � x � � then since

x���I��� x� �

Z �

x���
e�s

�

ds� c��� as x� ��

����� follows�
If x � � then ����� follows from the fact that

xexI��� x� � ���

Z �

�

e�u��x� u��x�������du� ��� as x��� �

Lemma ��
� ��Scaling relation��� Let X be a FD��df � �� �� �� on F � Then � �
df���

Proof� From ����� we have

p�t� x� y� � c�t
��e�c� � c
t

�� for 
�x� y� � t��� �



��

Set t� � r�� � So if A � B�x� t����� and t � t�

� � Px�
�x�Xt� � t���� �

Z
A

p�t� x� y���dy� � c
t
����A� � ct���df�� �

If r� � � then since this holds for all t � � we must have � � df��� If r� � � then
we only deduce that � � df���

Let now r� � �� let � � �� t � �� and A � B�x� �t����� We have ��F � � c
�����
and therefore

� � Px�Xt � A� � Px�Xt � Ac�

� ��A� sup
y	A

p�t� x� y� � ��F �A� sup
y	Ac

p�t� x� y�

� c�t
���df���df�� � c�t

��e�c��
��

�

Let � �
�
�df���c��


 log���t�
�����

 then we have for all t � � that

� � ct���df���� � �log���t������ �

which gives a contradiction unless � � df��� �

The next relation is somewhat deeper� essentially it will follow from the fact
that the long�range behaviour of p�t� x� y� is �xed by the exponents df and � govern�
ing its short�range behaviour� Since � only plays a role in ����� when 
�x� y�� � t�
we will be able to obtain � in terms of df and � �in fact� it turns out� of � only��

We begin by deriving some consequences of the bounds ������

Lemma ���� Let X be a FD��df � df��� �� ��� Then
�a� For t � ��� t��� r � �

Px
�

�x�Xt� � r

� � c� exp
��c�r��t����

�b� There exists c
 � � such that

c� exp
��c�r��t��� � Px �
�x�Xt� � r� for r � c
r�� t � r� �

�c� For x � F � � � r � c
r�� if 	 �x� r� � inffs � � � Xs �� B�x� r�g then
����� c
r

� � Ex	 �x� r� � c�r
� �

Proof� Fix x � F � and set D�a� b� � fy � F � a � 
�x� y� � bg� Then by ����b�

c
����b
df � �

�
D�a� b�

� � c
����b
df � c
����a

df �

Choose � � � so that c
�����
df � �c
����� then we have

����� c�a
df � �

�
D�a� �a�

� � c�a
df �

Therefore� writing Dn � D��nr� �n��r�� we have ��Dn� � �ndf provided r�n�� � r��
Now



��

Px
�

�x�Xt� � r

�
�

Z
B�x
r�c

p�t� x� y���dy����
�

�
�X
n��

Z
Dn

p�t� x� y���dy�

�
�X
n��

c�r�i�df t�df�� exp
��c��t���r�n���

�
� c�r��t�df��S��� ��� c���r��t����

If c��r
� � t then using ����� we deduce that this sum is bounded by

c�� exp
�
�c���r��t�

�
�
�

while if c��r
� � t then �as Px �
�x�Xt� � r� � �� we obtain the same bound� on

adjusting the constant c���
For the lower bound �b�� choose c
 � � so that c
� � �� Then ��D�� � crdf �

and taking only the �rst term in ���
� we deduce that� since r� � t�

Px
�

�x�Xt� � r

� � c�r��t�df�� exp��c�
�r��t���

� c exp��c�
�r��t����

�c� Note �rst that

Py�	 �x� r� � t� � Py�Xt � B�x� r��������

�

Z
B�x
r�

p�t� y� z���dz�

� ct�df��rdf �

So� for a suitable c��

Py�	 �x� r� � c��r
�� � �

� � y � F�

Applying the Markov property of X we have for each k � �

Py�	 �x� r� � kc��r
�� � ��k� y � F�

which proves the upper bound in ������
For the lower bound� note �rst that

Px�	 �x� �r� � t� � Px
�

sup
��s�t


�x�Xt� � �r

�
� Px

�

�x�Xt� � r

�
� Px

�
	 �x� �r� � t� 
�x�Xt� � r

�
Writing S � 	 �x� �r�� the second term above equals

Ex��S
t�P
XS
�

�x�Xt�S� � r

� � sup
y	�B�x
�r�

sup
s�t

Py
�

�y�Xt�s� � r

�
�



��

so that� using �a��

Px
�
	 �x� �r� � t

� � � sup
s�t

sup
y	F

Py
�

�y�Xs� � r

�
������

� �c� exp
��c��r��t�

��
�

So if 
c�e
�c�a� � � then Px�	 �x� �r� � ar�� � �

� � which proves the left hand side of
������ �

Remark ����� Note that the bounds in �c� only used the upper bound on p�t� x� y��

The following result gives su�cient conditions for a di	usion on F to be a
fractional di	usion� these conditions are a little easier to verify than ������

Theorem ����� Let �F� 
� �� be a FMS�df �� Let �Yt� t � ��Px� x � F � be a ��
symmetric di�usion on F which has a transition density q�t� x� y� with respect to
� which is jointly continuous in x� y for each t � �� Suppose that there exists a
constant � � �� such that

q�t� x� y� � c�t
�df�� for all x� y � F� t � ��� t���������

q�t� x� y� � c�t
�df�� if 
�x� y� � c
t

��� � t � ��� t���������

c�r
� � Ex	 �x� r� � c�r

� � for x � F� � � r � c
r������
�

where 	 �x� r� � infft � � � Yt �� B�x� r�g� Then � � � and Y is a FD with
parameters df � df��� � and ���� � ���

Corollary ����� Let X be a FD��df � df��� �� �� on a FMS�df � F � Then � � �
and � � ���� � ���

Proof� By Lemma ���� and the bounds ������ the transition density p�t� x� y� of X
satis�es ������ and ������� By Lemma ��
�c� X satis�es ����
�� So� by Theorem
���� � � �� and X is a FD��df � df��� �� �� � ������ Since p�t� x� y� cannot satisfy

����� for two distinct values of �� we must have � � �� � ����� �

Remark ����� Since two of the four parameters are now seen to be redundant� we
will shorten our notation and say that X is a FD�df � �� if X is a FD��df � df��� �� ���

The proof of Theorem ���� is based on the derivation of transition density
bounds for di	usions on the Sierpinski carpet in �BB
�� most of the techniques
there generalize easily to fractional metric spaces� The essential idea is �chaining��
in its classical form �see e�g� �FaS�� for the lower bound� and in a slightly di	erent
more probabilistic form for the upper bound� We begin with a some lemmas�

Lemma ����� 
BB
� Lemma 
�
� Let ��� ��� � � � � �n� V be non�negative r�v� such
that V �Pn

� �i� Suppose that for some p � ��� ��� a � ��

������ P
�
�i � tj����� � � � � �i���

� � p � at� t � ��

Then

������ logP �V � t� � �

�
ant

p

����

� n log
�

p
�



��

Proof� If � is a r�v� with distribution function P �� � t� � �p � at� � �� then

E
�
e���ij����� � � � � �i���

� � Ee���

� p �

Z ���p��a

�

e��tadt

� p � a����

So
P �V � t� � P

�
e��V � e��t

� � e�tEe��V

� e�tE exp�
nX
�

�i � e�t�p � a����n

� pn exp

�
�t�

an

�p

�
�

The result follows on setting � � �an�pt����� �

Remark ����� The estimate ������ appears slightly odd� since it tends to �� as
p � �� However if p � � then from the last but one line of the proof above we obtain
logP �V � t� � �t� n log a

� � and setting � � n�t we deduce that

������ logP �V � t� � n log�
ate

n
��

Lemma ����� Let �Yt� t � �� be a di�usion on a metric space �F� 
� such that� for
x � F � r � ��

c�r
� � Ex	 �x� r� � c�r

� �

Then for x � F � t � ��

Px
�
	 �x� r� � t

� � ��� c�����c��� � c
r
��t�

Proof� Let x � F � and A � B�x� r�� 	 � 	 �x� r�� Since 	 � t� �	 � t�����t� we have

Ex	 � t � Ex����t�E
Yt �	 � t�

� t � Px�	 � t� sup
y
Ey 	�

As 	 � 	 �y� �r� Py�a�s� for any y � F � we deduce

c�r
� � Ex	 � t � Px�	 � t�c���r�� �

so that
c���Px�	 � t� � ���c� � c�� � tr�� � �

The next couple of results are needed to show that the di	usion Y in Theorem
���� can reach distant parts of the space F in an arbitrarily short time�



�


Lemma ���	� Let Yt be a ��symmetric di�usion with semigroup Tt on a complete
metric space �F� 
�� If f� g � � and there exist a � b such that

������

Z
f�x�Exg�Yt���dx� � � for t � �a� b��

then
R
f�x�Exg�Yt���dx� � � for all t � ��

Proof� Let �E�� � � �� be the spectral family associated with Tt� Thus �see �FOT�
p� ���� Tt �

R�
� e��tdE�� and

�f� Ttg� �

Z �

�

e��td�f�E�g� �

Z �

�

e��t��d���

where � is of �nite variation� ������ and the uniqueness of the Laplace transform
imply that � � �� and so �f� Ttg� � � for all t� �

Lemma ���
� Let F and Y satisfy the hypotheses of Theorem ��

� If 
�x� y� �
c
r� then P

x�Yt � B�y� r�� � � for all r � � and t � ��

Remark� The restriction 
�x� y� � c
r� is of course unnecessary� but it is all we
need now� The conclusion of Theorem ���� implies that Px�Yt � B�y� r�� � � for all
r � � and t � �� for all x� y � F �

Proof� Suppose the conclusion of the Lemma fails for x� y� r� t� Choose g � C�F�R��
such that

R
F gd� � � and g � � outside B�y� r�� Let t� � t��� r� � c
�t��� � and

choose f � C�F�R�� so that
R
F
fd� � �� f�x� � � and f � � outside A � B�x� r���

If � � s � t then the construction of g implies that

� � Exg�Yt� �

Z
F

q�s� x� x��Ex�g�Yt�s���dx���

Since by ������ q�s� x� x�� � � for t�� � s � t� x� � B�x� r��� we deduce that
Ex�g�Yu� � � for x� � B�x� r��� u � ��� t���� Thus as supp�f� 
 B�x� r��Z

F

f�x��Ex�g�Yu�d� � �

for all u � ��� t���� and hence� by Lemma ����� for all u � �� But by ������ if
u � �
�x� y��c
�� then q�u� x� y� � �� and by the continuity of f� g and q it follows
that

R
fExg�Yu�d� � �� a contradiction� �

Proof of Theorem ����� For simplicity we give full details of the proof only in the
case r� � � the argument in the case of bounded F is essentially the same� We
begin by obtaining a bound on

Px
�
	 �x� r� � t

�
�

Let n � �� b � r�n� and de�ne stopping times Si� i � �� by

S� � �� Si�� � infft � Si � 
�YSi� Yt� � bg�



��

Let �i � Si � Si��� i � �� Let �Ft� be the �ltration of Yt� and let Gi � FSi � We
have by Lemma ����

Px��i�� � tjGi� � PYSi
�
	 �YSi� b� � t

� � p � c
b
��t�

where p � ��� ��� As 
�YSi � YSi��� � b� we have 
�Y�� YSn� � r� so that Sn �
Pn

� �i �
	 �Y�� r�� So� by Lemma ���
� with a � c
�r�n����

����
�
logPx

�
	 �x� r� � t

� � �p�
�
�

�
c
r

��n���t
� �
� � n log

�

p

� c��r��n���t�
�
� � c�n�

If � � � then taking t small enough the right hand side of ������ is negative� and
letting n � � we deduce Px

�
	 �x� r� � t

�
� �� which contradicts the fact that

Px
�
Yt � B�y� r�

�
� � for all t� So we have � � �� �If r� � � then we take r small

enough so that r � c
��
If we neglect for the moment the fact that n � N� and take n � n� in ����
� so

that
�
� c�n� � c�

�
n���� tr��

����
�

then

������ n���
� � �c���
c���r�t���

and
logPx

�
	 �x� r� � t

� � � �
� c�n��

So if r�t�� � �� we can choose n � N so that � � n � n� � �� and we obtain

������ Px
�
	 �x� r� � t

� � c� exp



�c��

�
r�

t

��������


�

Adjusting the constant c� if necessary� this bound also clearly holds if r�t�� � ��
Now let x� y � F � write r � 
�x� y�� choose � � r�
� and set Cz � B�z� ���

z � x� y� Set Ax � fz � F � 
�z� x� � 
�z� y�g� Ay � fz � 
�z� x� � 
�z� y�g� Let �x�
�y be the restriction of � to Cx� Cy respectively�

We now derive the upper bound on q�t� x� y� by combining the bounds ������
and ������� the idea is to split the journey of Y from Cx to Cy into two pieces� and
use one of the bounds on each piece� We have

P�x�Yt � Cy� �

Z
Cy

Z
Cx

q�t� x�� y����dx����dy��������

� P�x
�
Yt � Cy� Yt�� � Ax

�
� P�x�Yt � Cy� Yt�� � Ay��

We begin with second term in �������

P�x�Yt � Cy� Yt�� � Ay� � P�x
�
	 �Y�� r�
� � t��� Yt�� � Ay� Yt � Cy

�
������

� P�x
�
	 �Y�� r�
� � t��

�
sup
y�	Ay

Py
� �
Yt�� � Cy

�



��

� �x�Cx�c� exp



�c��

�
�r�
��

t��

��������


c��y�Cy�t�df��

� ��Cx���Cy�c��t
�df�� exp

�
�c���r��t��������

�
�

where we used ������ and ������ in the last but one line�
To handle the �rst term in ������ we use symmetry�

P�x�Yt � Cy� Yt�� � Ax� � P�y�Yt � Cx� Yt�� � Ax��

and this can now be bounded in exactly the same way� We therefore haveZ
Cy

Z
Cx

q�t�x�� y����dx����dy��

� ��Cx���Cy��c��t
�df�� exp

�
�c���r��t�

�������
�
�

so that as q�t� �� �� is continuous

����
� q�t� x� y� � �c��t
�df�� exp

�
�c���r��t�

�������
�
�

The proof of the lower bound on q uses the technique of �chaining� the
Chapman�Kolmogorov equations� This is quite classical� except for the di	erent
scaling�

Fix x� y� t� and write r � 
�x� y�� If r � c
t
��� then by ������

q�t� x� y� � c�t
�df�� �

and as exp���r��t�
�������

� � exp��c�������

 �� we have a lower bound of the form

������ So now let r � c
t
��� � Let n � �� By the mid�point hypothesis on the metric


� we can �nd a chain x � x�� x�� � � � � xn � y in F such that 
�xi��� xi� � r�n�
� � i � n� Let Bi � B�xi� r��n� note that if yi � Bi then 
�yi��� yi� � �r�n� We
have by the Chapman�Kolmogorov equation� writing y� � x�� yn � y�

������ q�t� x� y� �
Z
B�

��dy�� � � �

Z
Bn��

��dyn���
nY
i��

q�t�n� yi��� yi��

We wish to choose n so that we can use the bound ������ to estimate the terms
q�t�n� yi��� yi� from below� We therefore need�

������
�r

n
� c


�
t

n

����

which holds provided

������ n��� � ��c��


r�

t
�



��

As � � � it is certainly possible to choose n satisfying ������� By ������ we then
obtain� since ��Bi� � c�r��n�df �

q�t� x� y� � c�r��n�df�n���
�
c��t�n��df��

�n
������

� c�r��n��df
�
c��t�n������r��n�df

�n
� c��r�n��df

�
�t�n������r�n�

�n
�

Recall that n satis�es ������� as r � c
t
��� we can also ensure that for some c�
 � �

����
�
r

n
� c�
�t�n���� �

so that n��� � ��c���
 r
��t� So� by ������

q�t� x� y� � c�t�n��df��cn��
� c��t

�df�� exp �n log c���

� c��t
�df�� exp

�
�c�
�r��t�

�������
�
� �

Remarks �����
�� Note that the only point at which we used the �midpoint� property of 
 is in the
derivation of the lower bound for q�
�� The essential idea of the proof of Theorem ���� is that we can obtain bounds on
the long range behaviour of Y provided we have good enough information about the
behaviour of Y over distances of order t��� � Note that in each case� if r � 
�x� y��
the estimate of q�t� x� y� involves splitting the journey from x to y into n steps�

where n � �r��t�
�������

�
�� Both the arguments for the upper and lower bounds appear quite crude� the
fact that they yield the same bounds �except for constants� indicates that less is
thrown away than might appear at �rst sight� The explanation� very loosely� is
given by �large deviations�� The o	�diagonal bounds are relevant only when r� � t
� otherwise the term in the exponential is of order �� If r� � t then it is di�cult
for Y to move from x to y by time t and it is likely to do so along more or less the
shortest path� The proof of the lower bound suggests that the process moves in a
�sausage� of radius r�n � t�r����

The following two theorems give additional bounds and restrictions on the
parameters df and �� Unlike the proofs above the results use the symmetry of the
process very strongly� The proofs should appear in a forthcoming paper�

Theorem ����� Let F be a FMS�df �� and X be a FD�df � �� on F � Then

������ � � � � � � df �

Theorem ����� Let F be a FMS�df �� Suppose Xi are FD�df � �i� on F � for
i � �� �� Then �� � ���

Remarks ����� �� Theorem ���� implies that the constant � is a property of the
metric space F � and not just of the FD X� In particular any FD on Rd� with the



��

usual metric and Lebesgue measure� will have � � �� It is very unlikely that every
FMS F carries a FD�
�� I expect that ������ is the only general relation between � and df � More precisely�
set

A � f�df � �� � there exists a FD�df � ��g�
and ' � f�df � �� � � � � � � � dfg� Theorem ���� implies that A 
 '� and I
conjecture that int ' 
 A� Since BM�Rd� is a FD�d� ��� the points �d� �� � A for
d � �� I also suspect that

fdf � �df � �� � Ag � N�

that is that if F is an FMS of dimension df � and df is not an integer� then any FD
on F will not have Brownian scaling�

Properties of Fractional Di�usions�

In the remainder of this section I will give some basic analytic and probabilistic
properties of FDs� I will not give detailed proofs� since for the most part these
are essentially the same as for standard Brownian motion� In some cases a more
detailed argument is given in �BP� for the Sierpinski gasket�

Let F be a FMS�df �� and X be a FD�df � �� on F � Write Tt � Exf�Xt� for
the semigroup of X� and L for the in�nitesimal generator of Tt�

De�nition ����� Set

dw � �� ds �
�df
dw

�

This notation follows the physics literature where �for reasons we will see below�
dw is called the �walk dimension� and ds the �spectral dimension�� Note that �����
implies that

p�t� x� x� � t�ds��� � � t � t��

so that the on�diagonal bounds on p can be expressed purely in terms of ds� Since
many important properties of a process relate solely to the on�diagonal behaviour
of its density� ds is the most signi�cant single parameter of a FD�

Integrating ������ as in Corollary ����� we obtain�

Lemma ����� Ex
�Xt� x�p � tp�dw � x � F � t � �� p � ��

Since by Theorem ���� dw � � this shows that FDs are di	usive or subdi	usive�

Lemma ����� �Modulus of continuity�� Let ��t� � t��dw�log���t���dw����dw � Then

������ c� � lim
���

sup
��s
t��
jt�sj
�


�Xs� Xt�

��t� s�
� c��

So� in the metric 
� the paths of X just fail to be H$older ���dw�� The example
of divergence form di	usions in Rd shows that one cannot hope to have c� � c� in
general�



�


Lemma ����� �Law of the iterated logarithm � see 
BP� Thm� ������ Let ��t� �
t��dw�log log���t���dw����dw � There exist c�� c� and constants c�x� � �c�� c�� such
that

lim sup
t��


�Xt� X��

��t�
� c�x� Px�a�s�

Of course� the �� law implies that the limit above is non�random�

Lemma ���	� �Dimension of range��

������ dimH �fXt � � � t � �g� � df � dw�
This result helps to explain the terminology �walk dimension� for dw� Provided

the space the di	usion X moves in is large enough� the dimension of range of the
process �called the �dimension of the walk� by physicists� is dw�

Potential Theory of Fractional Di�usions�

Let � � � and set

u��x� y� �

Z �

�

e��sp�s� x� y� ds�

Then if

U�f�x� � Ex
Z �

�

e��sf�Xs� ds

is the ��resolvent of X� u� is the density of U��

U�f�x� �

Z
F

u��x� y���dy��

Write u for u��

Proposition ���
� Let �� � ��r�� �If r� � � take �� � ���
�a� If ds � � then u��x� y� is jointly continuous on F � F and for � � ��

c��
ds���� exp

��c����dw
�x� y�
� � u��x� y�������

� c
�
ds���� exp

�
�c����dw
�x� y�

�
�

�b� If ds � � and � � �� then writing R � 
�x� y����dw

����
� c�
�
log����R� � e�c�R

� � u��x� y� � c�
�
log����R� � e�c�R

�
�

�c� If ds � � then

������ c�
�x� y�dw�df � u���x� y� � c��
�x� y�dw�df �

These bounds are obtained by integrating ������ for �a� and �b� one uses
Laplace�s method� �The continuity in �b� follows from the continuity of p and
the uniform bounds on p in ������� Note in particular that�




�

�i� if ds � � then u��x� x� � �� and lim
���

u��x� y� � ���

�ii� if ds � � then u�x� x� � ��� while u�x� y� �� for x �� y

Since the polarity or non�polarity of points relates to the on�diagonal behaviour
of u� we deduce from Proposition ����

Corollary ����� �a� If ds � � then for each x� y � F

Px�X hits y� � ��

�b� If ds � � then points are polar for X�
�c� If ds � � then X is set�recurrent� for � � �

Py �ft � Xt � B�y� ��g is non�empty and unbounded� � ��

�d� If ds � � and r� � � then X is transient�

In short� X behaves like a Brownian motion of dimension ds but in this context a
continuous parameter range is possible�

Lemma ����� �Polar and non�polar sets�� Let A be a Borel set in F �
�a� Px�TA ��� � � if dimH �A� � df � dw�
�b� A is polar for X if dimH�A� � df � dw�

Since X is symmetric any semipolar set is polar� As in the Brownian case� a
more precise condition in terms of capacity is true� and is needed to resolve the
critical case dimH�A� � df � dw�

If X� X � are independent FD�df � �� on F � and Zt � �Xt� X
�
t�� then it follows

easily from the de�nition that Z is a FD on F � F � with parameters �df and �� If
D � f�x� x� � x � Fg 
 F � F is the diagonal in F � F � then dimH �D� � df � and
so Z hits D �with positive probability� if

df � �df � dw�

that is if ds � �� So

������ Px�Xt � X �
t for some t � �� � � if ds � ��

and

������ Px�Xt � X �
t for some t � �� � � if ds � ��

No doubt� as in the Brownian case� X and X � do not collide if ds � ��

Lemma ����� X has k�multiple points if and only if ds � �k��k � ���

Proof� By �Rog� X has k�multiple points if and only ifZ
B�x
��

u��x� y�k��dy� �� 




�

the integral above converges or diverges withZ �

�

rkdw��k���df r�� dr�

by a calculation similar to that in Corollary ����� �

The bounds on the potential kernel density u��x� y� lead immediately to the
existence of local times for X � see �Sha� p� �����

Theorem ����� If ds � � then X has jointly measurable local times �Lxt � x � F� t �
�� which satisfy the density of occupation formula with respect to ��

������

Z t

�

f�Xs�ds �

Z
F

f�a�Lat��da�� f bounded and measurable�

In the low�dimensional case �that is when ds � �� or equivalently df � dw�
we can obtain more precise estimates on the H$older continuity of u��x� y�� and
hence on the local times Lxt � The main lines of the argument follow that of �BB
�
Section 
�� but on the whole the arguments here are easier� as we begin with stronger
hypotheses� We work only in the case r� � �� the same results hold in the case
r� � �� with essentially the same prooofs�

For the next few results we �x F � a FMS�df � with r� � �� and X� a
FD�df � dw� on F � For A 
 F write

	A � TAc � infft � � � Xt � Acg�
Let R� be an independent exponential time with mean ���� Set for � � �

uA� �x� y� � Ex
Z �A

�

e��sdLys � ExLy�A�R� �

UA
� f�x� �

Z
F

uA� �x� y���dy��

Let
pA� �x� y� � Px�Ty � 	A �R�� 

note that

����
� uA� �x� y� � pA� �x� y�uA� �y� y� � uA� �y� y��

Write uA�x� y� � uA� �x� y�� UA � UA
� � and note that u��x� y� � uF� �x� y��

U� � UA
� � As in the case of u we write pA� p� for pA� � pF� � As �Px� Xt� is ��symmetric

we have uA� �x� y� � uA� �y� x� for all x� y � F �

The following Lemma enables us to pass between bounds on u� and uA�

Lemma ����� Suppose A 
 F � A is bounded� For x� y � F we have

uA�x� y� � uB� �x� y� � Ex
�
��R���A�u

A�XR� � y�
�� Ex���R���A�uB� �X�A � y�

�
�




�

Proof� From the de�nition of uA�

uA�x� y� � Ex�Ly�A  R� � 	A� � Ex �Ly�A  R� � 	A�

� Ex�LyR�  R� � 	A� � Ex ���R���A�E
XR�Ly�A �

� Ex �LyR�  R� � 	A�� Ex�LyR���B � Ly�A  R� � 	A�

� u��x� y� � Ex
�
��R���A�u

A�XR� � y�
�� Ex���R���A�u��X�A � y�

�
� �

Corollary ����� Let x � F � and r � �� Then

c�r
dw�df � uB�x
r��x� x� � c�r

dw�df �

Proof� Write A � B�x� r�� and let � � �r�dw � where � is to be chosen� We have
from Lemma ����� writing 	 � 	 �x� r��

uA�x� y� � u��x� y� � Ex��R�
��u
A�XR� � y��

So if v � supx u
A�x� y� then using ������

���
�� v � c
�
ds���� � Px�R� � 	 �v�

Let t� � �� Then by ������

Px�R� � 	 � � Px�R� � 	� 	 � t�� � Px�R� � 	� 	 � t��

� Px�R� � t�� � Px�	 � t��

� ��� e��t�� � ct
�df�dw
� rdf �

Choose �rst t� so that the second term is less than �
� � and then � so that the �rst

term is also less than �
� � We have t� � rdw � ���� and the upper bound now follows

from ���
���
The lower bound is proved in the same way� using the bounds on the lower tail

of 	 given in ������� �

Lemma ����� There exist constants c� � �� c� such that if x� y � F � r � 
�x� y��
t� � rdw then

Px
�
Ty � t� � 	 �x� c�r�

�� c��

Proof� Set � � ���r�dw  we have p��x� y� � c
 exp��c��� by ������� So since

p��x� y� � Exe��Ty � Px�Ty � t� � e��t�

we deduce that
Px�Ty � t� � c
 exp��c���� exp���dw��

As dw � � we can choose � �depending only on c
� c� and dw� such that Px�Ty �
t� � �

� c
 exp��c��� � c�� By ������ for a � �

Px�	 �x� aR� � Rdw� � c
 exp��c�adw��dw�����

so there exists c� � � such that Px�	 �x� c�r� � t�� � �
�c�� So

Px
�
Ty � t� � 	 �x� c�r�

�� Px�Ty � t��� Px�	 �x� c�r� � t�� � �
�c�� �




�

De�nition ����� We call a function h harmonic �with respect to X� in an open
subset A 
 F if Lh � � on A� or equivalently� h�Xt�TAc � is a local martingale�

Proposition ���	� �Harnack inequality�� There exist constants c� � �� c� � ��
such that if x� � F � and h � � is harmonic in B�x�� c�r�� then

h�x� � c�h�y�� x� y � B�x�� r��

Proof� Let c� � � � c
�
���� so that B�x� c
�
���r� 
 B�x�� c�r� if 
�x� x�� � r� Fix x�
y� write r � 
�x� y�� and set S � Ty�	 �x� c
�
���r�� As h�X��S� is a supermartingale�
we have by Lemma �����

h�x� � Exh�XS� � h�y�Px�Ty � 	 �x� c
�
���r�� � c
�
���h�y�� �

Corollary ���
� There exists c� � � such that if x� � F � and h � � is harmonic
in B�x�� r�� then

h�x� � c�h�y�� x� y � B�x��


�r��

Proof� This follows by covering B�x��


�r� by balls of the form B�y� c�r�� where c�

is small enough so that Proposition ���� can be applied in each ball� �Note we use
the geodesic property of the metric 
 here� since we need to connect each ball to a
�xed reference point by a chain of overlapping balls�� �

Lemma ����� Let x� y � F � r � 
�x� y�� If R � r and B�y�R� 
 A then

uA�y� y�� uA�x� y� � c�r
dw�df �

Proof� We have� writing 	 � 	 �y� r�� T � TAc �

uA�y� y� � EyLy� � EyEX� LyT � uB�y� y� � EyuA�X� � y��

so by Corollary ���


���
�� Ey �uA�y� y�� uA�X� � y�� � uB�y� y� � c�r
dw�df �

Set ��x�� � uA�y� y��uA�x�� y� � is harmonic on A�fyg� As 
�x� y� � r and 
 has
the geodesic property there exists z with 
�y� z� � �

� r� 
�x� z� � 

�r� By Corollary

����� since � is harmonic in B�x� r��

��z� � c
�
�����x��

Now set ��x�� � Ex
�

��X� � for x� � B� Then � is harmonic in B and � � � on B�
Applying Corollary ���� to � in B we deduce

��y� � c
�
�����z� � c
�
�����z� � �c
�
�������x��

Since ��y� � Ey �uA�y� y�� uA�X� � y�� the conclusion follows from ���
��� �

Theorem ����� �a� Let � � �� Then for x� x�� y � F � and f � L��F �� g � L��F ��

ju��x� y�� u��x�� y�j � c�
�x� x��dw�df ����
��

jU�f�x�� U�f�x��j � c�
�x� x��dw�df jjf jj�����
��

jU�g�x�� U�g�x��j � c��
�ds��
�x� x��dw�df jjgjj� ����

�







Proof� Let x� x� � F � write r � 
�x� x�� and let R � r� A � B�x�R�� Since
uA� �y� x�� � pA� �y� x�uA� �x� x��� we have using the symmetry of X that

uA� �x� y�� uA� �x�� y� � uA� �y� x�� pA� �y� x�uA� �x� x�����
��

� pA� �y� x�
�
uA� �x� x�� uA� �x� x��

�
�

Thus
juA� �x� y�� uA� �x�� y�j � juA� �x� x�� uA� �x� x��j�

Setting � � � and using Lemma ���
 we deduce

���
�� juA�x� y�� uA�x�� y�j � c
r
dw�df �

So

jUAf�x�� UAf�x��j �
Z
A

juA�x� y�� uA�x�� y�j jf�y�j��dy�

� c
r
dw�df jjf�Ajj��

To obtain estimates for � � � we apply the resolvent equation in the form

uA� �x� y� � uA�x� y�� �UAv�x��

where v�x� � uA� �x� y�� �Note that jjvjj� � ����� Thus

juA� �x� y�� uA� �x�� y�j � juA�x� y�� uA�x�� y�j � �jUAv�x�� UAv�x��j
� c
r

dw�df � �c�r
dw�df jjvjj�

� �c
r
dw�df �

Letting R � � we deduce ���
��� and ���
�� then follows� exactly as above� by
integration�

To prove ���
�� note �rst that p��y� x� � u��y� x��u��x� x�� So by ������Z
A

pA� �y� x�jf�y�j��dy� � jjf jj�u��x� x���

Z
A

u��y� x���dy����
��

� jjf jj�u��x� x������

� c�jjf jj���ds���

From ���
�� and ���
�� we have

juA� �x� y�� uA� �x�� y�j � c�
�
pA� �y� x� � pA� �y� x��

�
rdw�df �

and ���

� then follows by intergation� using ���
��� �

The following modulus of continuity for the local times of X then follows from
the results in �MR��




�

Theorem ����� If ds � � then X has jointly continuous local times �Lxt � x � F� t �
��� Let ��u� � u�dw�df����log���u������ The modulus of continuity in space of L


is given by�

lim
���

sup
��s�t

sup
��s�t
jx�yj
�

jLxs � Lys j
��
�x� y��

� c�sup
x	F

Lxt �����

It follows that X is space��lling� for each x� y � F there exists a r�v� T such
that Px�T ��� � � and

B�y� �� 
 fXt� � � t � Tg�

The following Proposition helps to explain why in early work mathematical
physicists found that for simple examples of fractal sets one has ds � �� �See also
�HHW���

Proposition ����� Let F be a FMS� and suppose F is �nitely rami�ed� Then if
X is a FD�df � dw� on F � ds�X� � ��

Proof� Let F�� F� be two connected components of F � such that D � F� � F� is
�nite� If D � fy�� � � � � yng� �x � � � and set

Mt � e��t
nX
i��

u��Xt� yi��

Then M is a supermartingale� Let TD � infft � � � Xt � Dg� and let x� � F� �D�
Since Px��X� � F�� � �� we have Px��TD � �� � �� So

� � Ex�M� � Ex�MTD �

and thus MTD � � a�s� So u��XTD � yi� � � for each yi � D� and thus we must
have u��yi� yi� �� for some yi � D� So� by Proposition ����� ds � �� �

Remark ����� For k � �� � let �Fk� dk� �k� be FMS with dimension df �k�� and
common diameter r�� Let F � F� � F�� let p � � and set d��x�� x��� �y�� y��� �
�d��x�� y��p � d��x�� y��p���p� � � �� � ��� Then �F� d� �� is a FMS with dimension
df � df ����df���� Suppose that for k � �� � Xk is a FD�df�k�� dw�k�� on Fk� Then
if X � �X�� X�� it is clear from the de�nition of FDs that if dw��� � dw��� � �
then X is a FD�df � �� on F � However� if dw��� �� dw��� then X is not a FD on
F � �Note from ����� that the metric 
 can� up to constants� be extracted from the
transition density p�t� x� y� by looking at limits as t � ��� So the class of FDs is not
stable under products�

This suggests that it might be desirable to consider a wider class of di	usions
with densities of the form�

���
�� p�t� x� y� 	 t�� exp
�
�

nX
�


i�x� y��i�it��i
�
�

where 
i are appropriate non�negative functions on F � F � Such processes would
have di	erent space�time scalings in the di	erent �directions� in the set F given
by the functions 
i� A recent paper of Hambly and Kumagai �HK�� suggests that




�

di	usions on p�c�f�s�s� sets �the most general type of regular fractal which has been
studied in detail� have a behaviour a little like this� though it is not likely that the
transition density is precisely of the form ���
���

Spectral properties�

Let X be a FD on a FMS F with diameter r� � �� The bounds on the density
p�t� x� y� imply that p�t� �� �� has an eigenvalue expansion �see �DaSi� Lemma ������

Theorem ����� There exist continuous functions �i� and �i with � � �� � �� � ���
such that for each t � �

���

� p�t� x� y� �
�X
n��

e��nt�n�x��n�y��

where the sum in ������ is uniformly convergent on F � F �

Remark ����� The assumption that X is conservative implies that �� � �� while
the fact that p�t� x� y� � � for all t � � implies that X is irreducible� so that �� � ��

A well known argument of Kac �see �Ka� Section ���� and �HS� for the necessary
Tauberian theorem� can now be employed to prove that if N��� � (f�i � �i � �g
then there exists ci such that

������ c��
ds�� � N��� � c��

ds�� for � � c
�

So the number of eigenvalues of L grows roughly as �ds��� This explains the
term spectral dimension for ds�

�� Dirichlet Forms� Markov Processes� and Electrical Networks�

In this chapter I will give an outline of those parts of the theory of Dirichlet
forms� and associated concepts� which will be needed later� For a more detailed ac�
count of these� see the book �FOT�� I begin with some general introductory remarks�

Let X � �Xt� t � ��Px� x � F � be a Markov process on a metric space F � �For
simplicity let us assume X is a Hunt process�� Associated with X are its semigroup
�Tt� t � �� de�ned by

�
��� Ttf�x� � Exf�Xt��

and its resolvent �U�� � � ��� given by

�
��� U�f�x� �

Z �

�

Ttf�x�e��t dt � Ex
Z �

�

e��sf�Xs� ds�

While �
��� and �
��� make sense for all functions f on F such that the random
variables f�Xt�� or

R
e��sf�Xs� ds� are integrable� to employ the semigroup or re�

solvent usefully we need to �nd a suitable Banach space �B� k � kB� of functions on
F such that Tt � B � B� or U� � B � B� The two examples of importance here are




�

C��F � and L��F� ��� where � is a Borel measure on F � Suppose this holds for one
of these spaces we then have that �Tt� satis�es the semigroup property

Tt�s � TtTs� s� t � ��

and �U�� satis�es the resolvent equation

U� � U� � �� � ��U�U� � �� � � ��

We say �Tt� is strongly continuous if kTtf � fkB � � as t � �� If Tt is strongly
continuous then the in�nitesimal generator

�L�D�L�
�

of �Tt� is de�ned by

�
��� Lf � lim
t��

t���Ttf � f�� f � D�L��

where D�L� is the set of f � B for which the limit in �
��� exists �in the space B��
The Hille�Yoshida theorem enables one to pass between descriptions of X through
its generator L� and its semigroup or resolvent�

Roughly speaking� if we take the analogy between X and a classical mechanical
system� L corresponds to the equation of motion� and Tt or U� to the integrated
solutions� For a mechanical system� however� there is another formulation� in terms
of conservation of energy� The energy equation is often more convenient to handle
than the equation of motion� since it involves one fewer di	erentiation�

For general Markov processes� an �energy� description is not very intuitive�
However� for reversible� or symmetric processes� it provides a very useful and pow�
erful collection of techniques� Let � be a Radon measure on F � that is a Borel
measure which is �nite on every compact set� We will also assume � charges ev�
ery open set� We say that Tt is ��symmetric if for every bounded and compactly
supported f� g�

�
�
�

Z
Ttf�x�g�x���dx� �

Z
Ttg�x�f�x���dx��

Suppose now �Tt� is the semigroup of a Hunt process and satis�es �
�
�� Since
Tt� � �� we have� writing ��� �� for the inner product on L��F� ��� that

jTtf�x�j � �Ttf��x�
�����

Tt��x�
���� � �Ttf

��x�����

by H$older�s inequality� Therefore

kTtfk�� � kTtf�k� � �Ttf
�� �� � �f�� Tt�� � �f�� �� � kfk���

so that Tt is a contraction on L��F� ���
The de�nition of the Dirichlet �energy� form associated with �Tt� is less direct

than that of the in�nitesimal generator� its less intuitive description may be one
reason why this approach has until recently received less attention than those based
on the resolvent or in�nitesimal generator� �Another reason� of course� is the more
restrictive nature of the theory� many important Markov processes are not symmet�
ric� I remark here that it is possible to de�ne a Dirichlet form for non�symmetric
Markov processes # see �MR�� However� a weaker symmetry condition� the �sector
condition�� is still required before this yields very much��




�

Let F be a metric space� with a locally compact and countable base� and let �
be a Radon measure on F � Set H � L��F� ���

De�nition ���� Let D be a linear subspace of H� A symmetric form �E �D� is a
map E � D �D � R such that
��� E is bilinear
��� E�f� f� � �� f � D�

For � � � de�ne E� on D by E��f� f� � E�f� f� � �kfk��� and write

kfk�E� � kfk�� � �E�f� f� � E��f� f��

De�nition ���� Let �E �D� be a symmetric form�
�a� E is closed if �D� k � kE�� is complete
�b� �E �D� is Markov if for f � D� if g � ���f��� then g � D and E�g� g� � E�f� f��
�c� �E �D� is a Dirichlet form if D is dense in L��F� �� and �E �D� is a closed� Markov

symmetric form�

Some further properties of a Dirichlet form will be of importance�

De�nition ���� �E �D� is regular if

D � C��F � is dense in D in k � kE� � and�
���

D � C��F � is dense in C��F � in k � k���
���

E is local if E�f� g� � � whenever f� g have disjoint support�
E is conservative if � � D and E��� �� � ��
E is irreducible if E is conservative and E�f� f� � � implies that f is constant�

The classical example of a Dirichlet form is that of Brownian motion on Rd�

EBM �f� f� � �
�

R
Rd

jrf j� dx� f � H�
��Rd��

Later in this section we will look at the Dirichlet forms associated with �nite state
Markov chains�

Just as the Hille�Yoshida theorem gives a � � � correspondence between semi�
groups and their generators� so we have a � � � correspondence between Dirichlet
forms and semigroups� Given a semigroup �Tt� the associated Dirichlet form is
obtained in a fairly straightforward fashion�

De�nition ���� �a� The semigroup �Tt� is Markovian if f � L��F� ��� � � f � �
implies that � � Ttf � � ��a�e�
�b� A Markov process X on F is reducible if there exists a decomposition F � A��A�

with Ai disjoint and of positive measure such that Px�Xt � Ai for all t� � � for
x � Ai� X is irreducible if X is not reducible�







Theorem ���� �
FOT� p� 	��� Let �Tt� t � �� be a strongly continuous ��symmetric
contraction semigroup on L��F� ��� which is Markovian� For f � L��F� �� the
function �f �t� de�ned by

�f �t� � t���f � Ttf� f�� t � �

is non�negative and non�increasing� Let

D � ff � L��F� �� � lim
t��

�f �t� ��g�
E�f� f� � lim

t��
�f �t�� f � D�

Then �E �D� is a Dirichlet form� If
�L�D�L�

�
is the in�nitesimal generator of �Tt��

then D�L� 
 D� D�L� is dense in L��F� ��� and

�
��� E�f� g� � ��Lf� g�� f � D�L�� g � D�
As one might expect� by analogy with the in�nitesimal generator� passing from

a Dirichlet form �E �D� to the associated semigroup is less straightforward� Since
formally we have U� � ��� L���� the relation �
��� suggests that

�
��� �f� g� �
�
�� �L�U�f� g

�
� ��U�f� g� � E�U�f� g� � E��U�f� g��

Using �
���� given the Dirichlet form E � one can use the Riesz representation theorem
to de�ne U�f � One can verify that U� satis�es the resolvent equation� and is
strongly continuous� and hence by the Hille�Yoshida theorem �U�� is the resolvent
of a semigroup �Tt��

Theorem ���� �
FOT� p�
��� Let �E �D� be a Dirichlet form on L��F� ��� Then
there exists a strongly continuous ��symmetric Markovian contraction semigroup
�Tt� on L��F� ��� with in�nitesimal generator

�L�D�L�
�
and resolvent �U�� � � ��

such that L and E satisfy ����� and also

�
�
� E�U�f� g� � ��f� g� � �f� g�� f � L��F� ��� g � D�
Of course the operations in Theorem 
�� and Theorem 
�� are inverses of each

other� Using� for a moment� the ugly but clear notation E � Thm 
����Tt�� to
denote the Dirichlet form given by Theorem 
��� we have

Thm 
���Thm 
����Tt��� � �Tt��

and similarly Thm 
���Thm 
�� �E�� � E �

Remark ��	� The relation �
��� provides a useful computational tool to identify the
process corresponding to a given Dirichlet form � at least for those who �nd it more
natural to think of generators of processes than their Dirichlet forms� For example�
given the Dirichlet form E�f� f� �

R jrf j�� we have� by the Gauss�Green formula�
for f� g � C�

� �Rd�� ��Lf� g� � E�f� g� �
R rf�rg � � R g)f � so that L � )�

We see therefore that a Dirichlet form �E �D� give us a semigroup �Tt� on
L��F� ��� But does this semigroup correspond to a �nice� Markov process� In gen�
eral it need not� but if E is regular then one obtains a Hunt process� �Recall that



��

a Hunt process X � �Xt� t � ��Px� x � F � is a strong Markov process with cadlag
sample paths� which is quasi�left�continuous��

Theorem ��
� �
FOT� Thm� ��	�
��� �a� Let �E �D� be a regular Dirichlet form on
L��F� ��� Then there exists a ��symmetric Hunt process X � �Xt� t � ��Px� x � F �
on F with Dirichlet form E �
�b� In addition� X is a di�usion if and only if E is local�

Remark ���� Let X � �Xt� t � ��Px� x � R�� be Brownian motion on R�� Let
A 
 R� be a polar set� so that

Px�TA ��� � � for each x�

Then we can obtain a new Hunt process Y � �Xt � ��Q x � x � R�� by �freezing�
X on A� Set Q x � Px� x � Ac� and for x � A let Q x

�
Xt � x� all t � �����

�
� ��

Then the semigroups �TXt �� �TYt �� viewed as acting on L��R��� are identical� and so
X and Y have the same Dirichlet form�

This example shows that the Hunt process obtained in Theorem 
�� will not� in
general� be unique� and also makes it clear that a semigroup on L� is a less precise
object than a Markov process� However� the kind of di�culty indicated by this
example is the only problem # see �FOT� Thm� 
������� In addition� if� as will be
the case for the processes considered in these notes� all points are non�polar� then
the Hunt process is uniquely speci�ed by the Dirichlet form E �

We now interpret the conditions that E is conservative or irreducible in terms
of the process X�

Lemma ����� If E is conservative then Tt� � � and the associated Markov process
X has in�nite lifetime�

Proof� If f � D�L� then � � E�� � �f� � � �f� for any � � R� and so E��� f� � ��
Thus ��L�� f� � �� which implies that L� � � a�e�� and hence that Tt� � �� �

Lemma ����� If E is irreducible then X is irreducible�

Proof� Suppose that X is reducible� and that F � A� � A� is the associated de�
composition of the state space� Then Tt�A�

� �A�
� and hence E��A�

� �A�
� � �� As

� �� �A�
in L��F� �� this implies that E is not irreducible� �

A remarkable property of the Dirichlet form E is that there is an equivalence
between certain Sobolev type inequalities involving E � and bounds on the transition
density of the associated process X� The fundamental connections of this kind were
found by Varopoulos �V�� �CKS� provides a good account of this� and there is a very
substantial subsequent literature� �See for instance �Co� and the references therein��

We say �E �D� satis�es a Nash inequality if

�
���� kfk��	�

�
�jjf jj�� � E�f� f�

� � ckfk����	
� � f � D�

This inequality appears awkward at �rst sight� and also hard to verify� However�
in classical situations� such as when the Dirichlet form E is the one connected with
the Laplacian on Rd or a manifold� it can often be obtained from an isoperimetric
inequality�
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In what follows we �x a regular conservative Dirichlet form �E �D�� Let �Tt� be
the associated semigroup on L��F� ��� and X � �Xt� t � ��Px� be the Hunt process
associated with E �

Theorem ����� �
CKS� Theorem 	�
�� �a� Suppose E satis�es a Nash inequality
with constants c� �� �� Then there exists c� � c��c� �� such that

�
���� kTtk��� � c�e�tt�	��� t � ��

�b� If �Tt� satis�es ���

� with constants c�� �� � then E satis�es a Nash inequality
with constants c�� � c���c�� ��� �� and ��

Proof� I sketch here only �a�� Let f � D�L�� Then writing ft � Ttf � and

gth � h���ft�h � ft�� TtLf�
we have kgthk� � kg�hk� � � as h � �� It follows that �d�dt�ft exists in L��F� ��
and that

d

dt
ft � TtLf � LTtf�

Set ��t� � �ft� ft�� Then

h��
�
��t � h�� ��t�

�� ��TtLf� Ttf� � �gth� ft � ft�h� � �TtLf� ft�h � ft��

and therefore � is di	erentiable� and for t � �

�
���� ���t� � ��Lft� ft� � ��E�ft� ft��

If f � L��F� ��� Ttf � D�L� for each t � �� So �
���� extends from f � D�L� to all
f � L��F� ���

Now let f � �� and kfk� � �� we have jjftjj� � �� Then by �
����� for t � ��

�
���� ���t� � ��E�ft� ft�� � ��jjftjj�� � ckftk����	
� � ����t�� � c��t�����	�

Thus � satis�es a di	erential inequality� Set ��t� � e���t��t�� Then

���t� � ��c��t�����	e��t�	 � ��c��t�����	 �

If �� is the solution of ��� � �c�����	
� then for some a � R we have� for c	 � c	�c� ���

���t� � c	�t � a��	���

If �� is de�ned on ������ then a � �� so that

���t� � c	t
�	��� t � ��

It is easy to verify that � satis�es the same bound � so we deduce that

�
��
� kTtfk�� � e��t��t� � c	e
��tt�	��� f � L�

�� kfk� � ��

Now let f � g � L�
��F� �� with kfk� � kgk� � �� Then

�T�tf� g� � �Ttf� Ttg� � kTtfk�kTtgk� � c�	e
��tt�	���
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Taking the supremum over g� it follows that kT�tfk� � c�	e
��tt�	��� that is�

replacing �t by t� that
kTtk��� � c�	e

�tt�	��� �

Remark ����� In the sequel we will be concerned with only two cases� either � � ��
or � � � and we are only interested in bounds for t � ��� ��� In the latter case we
can of course absorb the constant e�t into the constant c�

This theorem gives bounds in terms of contractivity properties of the semigroup
�Tt�� If Tt has a �nice� density p�t� x� y�� then kTtk��� � supx
y p�t� x� y�� so that
�
���� gives global upper bounds on p�t� �� ��� of the kind we used in Chapter �� To
derive these� however� we need to know that the density of Tt has the necessary
regularity properties�

So let F � E � Tt be as above� and suppose that �Tt� satis�es �
����� Write Pt�x� ��
for the transition probabilities of the process X� By �
���� we have� for A � B�F ��
and writing ct � ce�tt�	���

Pt�x�A� � ct��A� for ��a�a� x�

Since F has a countable base �An�� we can employ the arguments of �FOT� p���� to
see that

�
���� Pt�x�An� � ct��An�� x � F �Nt�

where the set Nt is �properly exceptional�� In particular we have ��Nt� � � and

Px�Xs � Nt or Xs� � Nt for some s � �� � �

for x � F � Nt� From �
���� we deduce that Pt�x� �� � � for each x � F � Nt� If
s � � and ��B� � � then Ps�y�B� � � for ��a�a� y� and so

Pt�s�x�B� �

Z
Ps�x� dy�Pt�y�B� � �� x � F �Nt�

So Pt�s�x� �� � � for all s � �� x � F �Nt� So taking a sequence tn � �� we obtain
a single properly exceptional set N � �nNtn such that Pt�x� �� � � for all t � ��
x � F �N � Write F � � F �N � we can reduce the state space of X to F ��

Thus we have for each t� x a density *p�t� x� �� of Pt�x� �� with respect to �� These
can be regularised by integration�

Proposition ����� �See 
Y� Thm� 	�� There exists a jointly measurable transition
density p�t� x� y�� t � �� x� y � F � � F �� such that

Pt�x�A� �

Z
A

p�t� x� y���dy� for x � F �� t � �� A � B�F ��

p�t� x� y� � p�t� y� x� for all x� y� t�

p�t � s� x� z� �

Z
p�s� x� y�p�t� y� z���dy� for all x� z� t� s�
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Corollary ����� Suppose �E �D� satis�es a Nash inequality with constants c� �� ��
Then� for all x� y � F �� t � ��

p�t� x� y� � c�e�tt�	���

We also obtain some regularity properties of the transition functions p�t� x� ���
Write qt
x�y� � p�t� x� y��

Proposition ����� Suppose �E �D� satis�es a Nash inequality with constants c� ��
�� Then for x � F �� t � �� qt
x � D�L�� and

kqt
xk�� � c�e
��tt�	����
����

E�qt
x� qt
x� � c�e
�tt���	����
����

Proof� Since qt
x � Tt��qt��
x� and qt��
x � L�� we have qt
x � D�L�� and the bound
�
���� follows from �
��
��

Fix x� write ft � qt
x� and let ��t� � kftk��� Then

����t� �
d

dt
��Lft� ft� � 
�Lft�Lft� � ��

So� �� is increasing and hence

� � ��t� � ��t��� �

Z t

t��

���s� ds � ��t��� � �t������t��

Therefore using �
�����

E�ft� ft� � � �
��

��t� � t����t��� � ce�tt���	��� �

Traces of Dirichlet forms and Markov Processes�

Let X be a ��symmetric Hunt process on a LCCB metric space �F� ��� with
semigroup �Tt� and regular Dirichlet form �E �D�� To simplify things� and because
this is the only case we need� we assume

�
���� Cap�fxg� � � for all x � F�

It follows that x is regular for fxg� for each x � F � that is� that

Px�Tx � �� � �� x � F�

Hence ��GK�� X has jointly measurable local times �Lxt � x � F� t � �� such thatZ t

�

f�Xs� ds �

Z
F

f�x�Lxt ��dx�� f � L��F� ���



�


Now let � be a ���nite measure on F � �In general one has to assume � charges
no set of zero capacity� but in view of �
���� this condition is vacuous here�� Let At

be the continuous additive functional associated with ��

At �

Z
Lat ��da��

and let 	t � inffs � As � tg be the inverse of A� Let G be the closed support of ��

Let eXt � X�t � then by �BG� p� ����� eX � � eXt�P
x� x � G� is also a Hunt process�

We call eX the trace of X on G�
Now consider the following operation on the Dirichlet form E � For g � L��G� ��

set

�
��
� eE�g� g� � inffE�f� f� � f jG � gg�
Theorem ���	� ��Trace theorem�� 
FOT� Thm� ��	�
���

�a� �eE � eD� is a regular Dirichlet form on L��G� ���

�b� eX is ��symmetric� and has Dirichlet form �eE� eD��

Thus eE is the Dirichlet form associated with eX� we call eE the trace of E �on G��

Remarks ���
� �� The domain eD on eE is of course the set of g such that the in�mum
in �
��
� is �nite� If g � eD then� as E is closed� the in�mum in �
��
� is attained�
by f say� If h is any function which vanishes on Gc� then since �f � �h�jG � g� we
have

E�f� f� � E�f � �h� f � �h�� � � R
which implies E�f� h� � �� So� if f � D�L�� and we choose h � D� then ��h�Lf� � ��
so that Lf � � a�e� on Gc�

This calculation suggests that the minimizing function f in �
��
� should be
the harmonic extension of g to F  that is� the solution to the Dirichlet problem

f � g on G

Lf � � on Gc�

�� We shall sometimes write eE � Tr�EjG�

to denote the trace of the Dirichlet form E on G�
�� Note that taking traces has the �tower property� if H � G � F � then

Tr�EjH� � Tr
�
Tr�EjG�

�� H��
We now look at continuous time Markov chains on a �nite state space� Let F

be a �nite set�
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De�nition ����� A conductance matrix on F is a matrix A � �axy�� x� y � F �
which satis�es

axy � �� x �� y�

axy � ayx�X
y

axy � ��

Set ax �
P
y ��x

axy � �axx� Let EA � ffx� yg � axy � �g� We say that A is irreducible

if the graph �F�EA� is connected�

We can interpret the pair �F�A� as an electrical network� axy is the conductance
of the wire connecting the nodes x and y� The intuition from electrical circuit theory
is on occasion very useful in Markov Chain theory #for more on this see �DS��

Given �F�A� as above� de�ne the Dirichlet form E � EA with domain C�F � �
ff � F � Rg by

�
���� E�f� g� � �
�

P
x
y axy

�
f�x�� f�y�

��
g�x�� g�y�

�
�

Note that� writing fx � f�x� etc��

E�f� g� � �
�

X
x

X
y ��x

axy�fx � fy��gx � gy�

�
X
x

X
y ��x

axyfxgx �
X
x

X
y ��x

axyfxgy

� �
X
x

axxfxgx �
X
x

X
y ��x

axyfxgy

� �
X
x

X
y

axyfxgy � �fTAg�

In electrical terms� �
���� gives the energy dissipation in the circuit �F�A� if
the nodes are held at potential f � �A current Ixy � axy

�
f�y� � f�x�

�
!ows in

the wire connecting x and y� which has energy dissipation Ixy
�
f�y� � f�x�

�
�

axy
�
f�y�� f�x�

��
� The sum in �
���� counts each edge twice�� We can of course

also use this interpretation of Dirichlet forms in more general contexts�
�
���� gives a ��� correspondence between conductance matrices and conser�

vative Dirichlet forms on C�F �� Let � be any measure on F which charges every
point�

Proposition ����� �a� If A is a conductance matrix� then EA is a regular conser�
vative Dirichlet form�
�b� If E is a conservative Dirichlet form on L��F� �� then E � EA for a conductance
matrix A�
�c� A is irreducible if and only if E is irreducible�

Proof� �a� It is clear from �
���� that E is a bilinear form� and that E�f� f� � �� If
g � � � �� � f� then jgx � gyj � jfx � fyj for all x� y� so since axy � � for x �� y�
E is Markov� Since E�f� f� � c�A���jjf jj��� jj�jjE� is equivalent to jj�jj� � and so E is
closed� It is clear from this that E is regular�
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�b� As E is a symmetric bilinear form there exists a symmetric matrix A such
that E�f� g� � �fTAg� Let f � f�� � ��x � ��y then

E�f� f� � ���axx � ���axy � ��ayy�

Taking � � �� � � � it follows that axx � �� The Markov property of E implies that
E�f��� f��� � E�f��� f��� if � � �� So

� � ���axx � ��axy �

which implies that axy � � for x �� y� Since E is conservative we have � � E�f� �� �
�fTA� for all f � So A� � �� and therefore

P
y axy � � for all x�

�c� is now evident� �

Example ����� Let � be a measure on F � with ��fxg� � �x � � for x � F � Let
us �nd the generator L of the Markov process associated with E � EA on L��F� ���
Let z � F � g � �z � and f � L��F� ��� Then

E�f� g� � �gTAf � �
X
y

azyf�y� �
X
y

azy�f�z�� f�y���

and using �
��� we have� writing ��� ��� for the inner product on L��F� ���

E�f� g� � ��Lf� g�� � ��zLf�z��

So�

�
���� Lf�z� �
X
x��z

�axz��z�
�
f�x�� f�z�

�
�

Note from �
���� that �as we would expect from the trace theorem�� changing
the measure � changes the jump rates of the process� but not the jump probabilities�

Electrical Equivalence�

De�nition ����� Let �F�A� be an electrical network� and G 
 F � If B is a
conductance matrix on G� and

EB � Tr�EAjG�

we will say that the networks �F�A� and �G�B� are �electrically� equivalent on G�

In intuitive terms� this means that an electrician who is able only to access the
nodes in G �imposing potentials� or feeding in currents etc�� would be unable to
distinguish from the response of the system between the networks �F�A� and �G�B��

De�nition ����� �E	ective resistance�� Let G�� G� be disjoint subsets of F � The
e	ective resistance between G� and G�� R�G�� G�� is de�ned by

�
���� R�G�� G���� � inffE�f� f� � f jB�
� �� f jB�

� �g�
This is �nite if �F�A� is irreducible�
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If G � fx� yg� then from these de�nitions we see that �F�A� is equivalent to
the network �G�B�� where B � �bxy� is given by

bxy � byx � �bxx � �byy � R�x� y����

Let �F�A� be an irreducible network� and G � F be a proper subset� Let
H � Gc� and for f � C�F � write f � �fH � fG� where fH � fG are the restrictions of

f to H and G respectively� If g � C�G�� then if eE � Tr�EAjG��

eE�g� g� � inf

�
�fTH � g

T �A

�
fH
g

�
� fH � C�H�

�
�

We have� using obvious notation

�
���� �fTH � g
T �A

�
fH
g

�
� fTHAHHfH � �fTHAHGg � gTAGGg�

The function fH which minimizes �
���� is given by fH � A��
HHAHGg� �Note that

as A is irreducible� � cannot be an eigenvalue of AHH � so A��
HH exists�� Hence

�
��
� eE�g� g� � gT �AGG �AGHA
��
HHAHG�g�

so that eE � EB � where B is the conductivity matrix

�
���� B � AGG �AGHA
��
HHAHG�

Example ����� �)�Y transform�� Let G � fx�� x�� x�g and B be the conductance
matrix de�ned by�

bx�x� � ��� bx�x� � ��� bx�x� � ���

Let F � G � fyg� and A be the conductance matrix de�ned by

axixj � �� i �� j�

axiy � �i� � � i � ��

If the �i and �i are strictly positive� and we look just at the edges with positive
conductance the network �G�B� is a triangle� while �F�A� is a Y with y at the
centre� The )� Y transform is that �F�A� and �G�B� are equivalent if and only if

�
����

�� �
����

�� � �� � ��
�

�� �
����

�� � �� � ��
�

�� �
����

�� � �� � ��
�

Equivalently� if S � ���� � ���� � ����� then

�
���� �i �
S

�i
� � � i � ��
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This can be proved by elementary� but slightly tedious� calculations� The ) � Y
transform can be of great use in reducing a complicated network to a more simple
one� though there are of course networks for which it is not e	ective�

Proposition ����� �See 
Ki���� Let �F�A� be an irreducible electric network� and
R�x� y� � R�fxg� fyg� be the 	�point e�ective resistances� Then R is a metric on F �

Proof� We de�ne R�x� x� � �� Replacing f by � � f in �
����� it is clear that
R�x� y� � R�y� x�� so it just remains to verify the triangle inequality� Let x�� x�� x�
be distinct points in F � and G � fx�� x�� x�g�

Using the tower property of traces mentioned above� it is enough to consider
the network �G�B�� where B is de�ned by �
����� Let �� � bx�x� � and de�ne ��� ��

similarly� Let ��� ��� �� be given by �
���� using the )� Y transform it is easy to
see that

R�xi� xj� � ���
i � ���

j � i �� j�

The triangle inequality is now immediate� �

Remark ����� There are other ways of viewing this� and numerous connections
here with linear algebra� potential theory� etc� I will not go into this� except to
mention that �
���� is an example of a Schur complement �see �Car��� and that an
alternative viewpoint on the resistance metric is given in �Me���

The following result gives a connection between resistance and crossing times�

Theorem ���	� Let �F�A� be an electrical network� let � be a measure on F
which charges every point� and let �Xt� t � �� be the continuous time Markov chain
associated with EA on L��F� ��� Write Tx � infft � � � Xt � xg� Then if x �� y�

�
���� ExTy �EyTx � R�x� y���F ��

Remark� In view of the simplicity of this result� it is rather remarkable that its
�rst appearance �which was in a discrete time context� seems to have been in �
�
�
in �CRRST�� See �Tet� for a proof in a more accessible publication�

Proof� A direct proof is not hard� but here I will derive the result from the trace
theorem� Fix x� y� let G � fx� yg� and let eE � EB � Tr�EjG�� If R � R�x� y�� then
we have� from the de�nitions of trace and e	ective resistance�

B �

� �R�� R��

R�� �R��

�
�

Let � � �jG the process eXt associated with
�eE � L��G� v�

�
therefore has generator

given by eLf�z� � �R�z���
X
w ��z

�
f�w�� f�z�

�
�

Writing eTx� eTy for the hitting times associated with eX we therefore have

Ex eTy �Ey eTx � R��x � �y��
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We now use the trace theorem� If f�x� � �z�x� then the occupation density
formula implies that

�zL
z
t �

Z t

�

�z�Xs� ds � jfs � t � Xs � zgj�

So

At �

Z t

�

�G�Xs� ds�

and thus if S � infft � Ty � Xt � xg and eS is de�ned similarly� we have

eS �

Z S

�

�G�Xs� ds�

However by Doeblin�s theorem for the stationary measure of a Markov Chain

�
��
� ��G� � �ExS���Ex
Z S

�

�G�Xs� ds��F ��

Rearranging� we deduce that

ExS � ExTy � EyTx

�
�
��F ����G�

�
Ex eS

�
�
��F ����G�

� �
Ex eTy � Ey eTx� � R��F �� �

Corollary ���
� Let H 
 F � x �� H� Then

ExTH � R�x�H���F ��

Proof� If H is a singleton� this is immediate from Theorem 
���� Otherwise� it
follows by considering the network �F �� H �� obtained by collapsing all points in H
into one point� h� say� �So F � � �F �H� � fhg� and a�xh �

P
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Remark� This result is actually older than Theorem 
��� � see �Tel��


