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Abstract

We construct Brownian motion on a class of fractals which are spatially homogeneous
but which do not have any exact self-similarity. We obtain transition density estimates
for this process which are up to constants best possible.

1 Introduction

There is now a fairly extensive literature on the heat equation on fractal spaces, and on the
spectral properties of such spaces. Most of these papers treat sets F which have exact self-
similarity, so that there exist 1-1 contractions %; : F — F such that ¢;(F) N 9;(F) is (in
some sense) small when ¢ # 7, and

F = Ui (F). (L1)

In the simplest cases, such as the nested fractals of Lindstrgm [18], F' C RY, the 1; are linear,
and ¢;(F) N 4;(F) is finite when ¢ # j. For very regular fractals such as nested fractals,
or Sierpinski carpets, it is possible to construct a diffusion X; with a semigroup P; which is
symmetric with respect to u, the Hausdorff measure on F', and to obtain estimates on the
density p;(z,y) of P, with respect to pu. In these cases (see [3, 15]) there exist constants d,,,
ds (called, following the physics literature, the walk and spectral dimensions of F') such that

M)l/(dw—l))

; , t€(0,1),z,y,€ F, (1.2)

pel@,y) < ert™ /% exp(—ca(
with a lower bound of the same form but different constants. Here |z — y| is the Euclidean
metric in R2.

In the mathematical physics literature, the main interest is not in regular fractals, (except
as models), but in irregular objects such as percolation clusters, which are believed to exhibit
“fractal” properties. It is therefore of interest to investigate the extent to which bounds such
as (1.2) hold for less regular sets with some “fractal” structure.
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In this paper we will study a family of sets F', based on the Sierpinski gasket, which are
locally spatially homogeneous, but which do not satisfy any exact scaling relation of the form
(1.1). To give the essential flavour of our results we consider a fractal first discussed in [10].
Consider two regular fractals, the standard Sierpinski gasket SG(2) and a variant SG(3) - see
Figure 1. Each of these sets may be defined by

where (for a = 2 or 3) F, is obtained from F,_; by subdividing each triangle in F,_; into

a? smaller triangles, and deleting the ‘downward facing’ ones. Thus we can write F, =

&) (F,_1) for a = 2,3. (A more precise definition of the maps ®(® is given in Section 2.)

Figure 1: The first stages in the construction of SG(2) and SG(3)

Let E = {2, 3}N, and let £ = (£1,...) € E; we call £ an environment sequence. Given £ we
can construct a set F(&) = mnF,ﬁﬁ) where we use £, to determine which construction to use
at level n: we have Fg) = <I>(5")F7E£_)1. Unless the sequence ¢ is periodic F¢) does not have
any exact scaling property, but it is spatially homogeneous in the sense that all triangles of

a given size in F(¢) are identical. Figure 2 shows the first 3 levels in the construction of the
set F' associated with the sequence £ = (2,3,2,...).

Figure 2: The first three levels of a scale irregular Sierpinski gasket

A previous paper by one of us [10] considered the case when the environment sequence £
was a sequence of i.i.d. random variables; the sets obtained were called ‘homogeneous random
Sierpinski gaskets’. We use a different term here, as the sets studied in this paper are not



necessarily random. An example of such a scale irregular Sierpinski gasket was discussed in
Section 9 of [10]. We also remark that if, at each level, one chooses a different (random)
procedure for subdividing each small triangle, then one obtains an example of the random
recursive fractals studied in [19], and that diffusions on some sets of this type are studied in
[11].

For the case described above our main results take the following form. For a = 2,3 write
(lg, mq,t,) for the length, mass and time scaling factors (see [18]) associated with SG(a). Here
(see [10]) we have (I3, ma,t2) = (2,3,5) and (I3, m3,t3) = (3,6,90/7). Let Ly = My =Ty = 1,

and set for n > 1,
Ln=H15i, Mn:Hmfi’ Tn=Ht5i. (1.3)
i=1 i=1 i=1

There is a natural ‘flat’ measure y on F = F(©) which is characterised by the property that
it assigns mass M, ! to each triangle in F of side L,!. In section 3 we will construct a
p-symmetric diffusion Xy, with semigroup P;, on F. We do this analytically, by constructing
a regular local Dirichlet form £ on L?(F, u). Here we follow the ideas of [16], [14], [8]; though
the arguments of these papers do not directly cover the case treated here, they can be adapted
without difficulty to our situation.

Once we have constructed P;, we can prove the existence of a density p;(x,y) with respect
to p, and obtain bounds on p;, by using similar techniques to those developed for regular
fractals in [3], [7].

To maintain consistency with notation for more general SGs introduced later, set B,, = L,,
and let

dy(n) =logT,/log B, ds(n)=2logM,/logT,, (1.4)

and for n,m > 0 set
k=k(m,n)=1inf{j > 0:Tp4;/Bm+; > Tn/Bn}. (1.5)
Note that k(m,n) =0 if m > n, and that if m < n then n < m + k(m,n) < oco.

Theorem 1.1 (a) P; has a continuous density pi(z,y) with respect to .
(b) There exist constants c1,ca,c3,cq (not depending on €) such that if L} < |z —y| < L;Ll_l,
T, <t< T, then

|z — y|*e(mth)

. )1/(dw(m+k)—1))

pe(z,y) < ert” M2 exp(—c ; (1.6)

and
|z — y|dw(m+h)

t

To understand these estimates intuitively first note that if £, = a (where a = 2 or 3) then
dyw(n) = logty/logl,, ds(n) = 2logm,/logt,, and we recover the estimates for the heat
kernels on the fractals SG(2) and SG(3) obtained in [5, 15]. For non-constant £, d,(n) and
ds(n) are the ‘effective walk and spectral dimensions at level n’. For given t, z, y, let m,n
be as in the Theorem, so that T, ! ~ t and L.} =~ |z — y|.

If m > n then k(m,n) = 0, and the term in the exponential is of order 1, so that

pelz,y) > st (M2 exp(—cy )1/ (o (mtk)=1)y, (1.7)

pe(z,y) =~ ¢ ds(n)/2 M,,.

Since p{y : |z —y| < L'} ~ M, 1, it follows that in time T}, ! the diffusion X moves a
distance O(L;1).



If m < n, so that |z — y| is large relative to ¢, then n < m + k, and the estimates (1.6),
(1.7) involve the two ‘dimensions’ at different levels of the set. For the time factor we have
ds(n) as before, but the exponent d,,(m + k) involves the structure of F' at a level finer than
either the ‘space level’ m or the ‘time level’ n. In both cases we see that the heat kernel at
time ¢ is not greatly affected by structures in the set F' which appear at a length scale finer
than L;IlJrk; that is by &; for i > m + k.

In Section 6 we consider the case when d;(n) and d,(n) converge to limits d, and d,
respectively, and in Theorem 6.1 we show that the bounds given in Theorem 1.1 can be
written in terms of the limiting dimensions with correction terms. It is worth noting that we
only obtain bounds of the form (1.2) if the convergence of ds(n) and d,,(n) is essentially as
fast as possible. (See Theorem 6.2 and the remark following).

If the environment sequence ; are i.i.d. random variables, then it is clear that ds(n) and
dw(n) converge a.s. In this case the results we obtain improve and extend those obtained in
[10]; see Corollary 6.3 for the exact correction functions hidden by the £ used in that paper.

In Section 2 we define the fractal F', and set up our notation. The construction of the
process is outlined in Section 3, where we also establish the key inequalities involving the
Dirichlet form €. Sections 4 and 5 deal with the transition density estimates, which lead to
our main results Theorems 4.5 and 5.4, of which Theorem 1.1 is a special case. In Section
6 we look at some examples, and in Section 7 we use (1.6), (1.7) to estimate the eigenvalue
counting function N ().

2 Scale irregular Sierpinski gaskets

As the building blocks for our scale irregular Sierpinski gaskets will all be nested fractals, we
begin by recalling from Lindstrgm [18] the definition of a nested fractal. See [18] for a fuller
account of the motivation and definitions.

For a > 1, an a-similitude is a map 1 : R? — RP such that

Y(z) = o U (z) + 2o, (2.1)

where U is a unitary, linear map and zg € RP. Let ¥ = {¢1,...,%m} be a finite family of
a-similitudes. For B C RP, define

$(B) = U, ¢i(B),

and let
®,(B)=®o0...0%(B).

By Hutchinson [12], the map ® on the set of compact subsets of RP has a unique fixed point
F, which is a self-similar set satisfying F' = ®(F).

As each 1); is a contraction, it has a unique fixed point. Let F’ be the set of fixed points
of the mappings 9;, 1 < i < m. A point x € F' is called an essential fized point if there
exist 7,7 € {1,...,m}, i # j and y € F' such that ¢;(z) = ¢;(y). We write Fy for the set of
essential fixed points. Now define

Piyoin (B) =iy 0 ...09; (B), B CRP.

We will call the set 4, __; (Fp) an n-cell and +;, . ; (F) an n-complez. The lattice of fized
points F,, is defined by
F, = ®,(Fp), (2.2)



and the set F' can be recovered from the essential fixed points by setting
F = Cl(U;?Lo:()Fn).
We can now define a nested fractal as follows.

Definition 2.1 The set F' is a nested fractal if {¢1,...,%n} satisfy:

(A1) (Connectivity) For any 1-cells C and C’, there is a sequence {C; : ¢ = 0,...,n} of 1-cells
such that Co = C,C,, =C"and C; 1NC; #0, i=1,...,n.

(A2) (Symmetry) If z,y € Fy then reflection in the hyperplane H,y ={z: |z — z| = |z — y|}
maps F}, to itself.

(A3) (Nesting) If {i1,...,in},{Jj1,-..,Jn} are distinct sequences then

Biroosin (F) [\ W11 (F) = Wiy i (F0) | 1,0 (F).-

(A4) (Open set condition) There is a non-empty, bounded, open set V' such that the 3;(V)
are disjoint and U 9;(V) C V.

We now define the family of scale irregular Sierpinski gaskets. Let Fy = {29, 21, 22} be the
vertices of a unit equilateral triangle in R2. Let A be a finite set, for a € A let I, € (1,00),
mg € N, and for each a € A let

@ = (i) @) g a,

be a family of l,-similitudes on R?, with set of essential fixed points F, which satisfies the
axioms for nested fractals. Write F(®) for the nested fractal associated with ¥(®), and let ¢,
be the time scaling factor (see [18])) of F(%). (Note that the definition of ¢, just involves the

sets Fy and Fl(a)).

Let E = AN; we call £ € E an environment. We will occasionally need a left shift 6 on =:

if € = (&1, &2,...) then 6¢ = (£3,€3,...). For B C R? set
2@ (B) = |\ (B),
=1

38 (B) =3 o ... 0 dl)(B).
Then the fractal F(¢) associated with the environment sequence ¢ is defined by

F = (U, 9 (Fy)). (2.3)

This set is not in general self-similar, but the family {F © ¢ e E} does satisfy the equation
F© = &) (FO)). Let H be the closed convex hull of Fy. For many examples the families
of maps (%) will have the additional property that &(®) (H) C H for each a € A, and in this
case we have a slightly simpler description of F©).

&) — m @%)(H)‘
n=0

At this point we fix an environment sequence £, and, except where clarity requires it, will
drop £ from our notation.



We will use ¢, ¢’ to denote unimportant positive constants, which may change in value
from line to line, and ¢; to denote positive constants which will be fixed in each section.
Outside Section 7 we will refer to the j-th constant of Section 7 as c; ;. These constants
will in general depend on the family of nested fractals specified by ¥(%), ¢ € A, but will be
independent of the particular environment sequence .

We define L,,, T, and M, by (1.3). We define the word space W associated with F by

W=QNL,...,me} = {(wi,wa,...) 1 1 < w; <mg}. (2.4)
i=1
For w € W write w|n = (w1,...,w,), and
Yufn = Pt 0. o). (2.5)

We write W,, = {(w1,...,wy) : 1 < w; <mg,;,1 <4 < n} for the set of words of length n. Let
i be the unique measure on F' such that u(¢w|n(F(0n5))) = M7 forallw € W, n >0. As
for nested fractals we define Fy, = Uyew, %w(Fo), and call sets of the form 1., (Fo) n-cells,
and the sets '«,/)w‘n(F(eng)) n-complexes. We define a natural graph structure on Fj, by letting
{z,y} be an edge if and only if z,y both belong to the same n-cell. This graph is connected
by (Al); write p,(z,y) for the graph distance in F,. (So p,(z,y) is the length of the shortest
chain of edges in the graph F, connecting = and y.)

Definition 2.2 Let b, = p1(29, 21) on the graph Fl(a), and set

B, = ﬁb&. (2.6)
=1

The scaling factors (I, Mg, tq,bs) play a fundamental role in what follows. We note the
following elementary facts:

lo>1, ba>2 by>l,, me>3 acA. (2.7)

Write m* = max, mg, t* = max, t,, b* = maxg b,.

For many simple nested fractals, such as the SG(2) and SG(3) discussed in the introduc-
tion, we have [, = b,. In this case it is easy to see that there exists ¢ such that if z,y € F
then z,y are joined by a piecewise linear arc (with in general infinitely many segments) of
length less than c|z — y|. In general however we can have b, > l,, and then we will have to
define an intrinsic metric on F. For general nested fractals this takes some work — see [15],
[7], but here the simple nature of the Sierpinski gaskets makes it straightforward.

Let

b, = max{py(2,y) : 2,y € F\"},

and write b = max, b,. Since A is finite, b}, /b, < c for some ¢ < oo. It is then easy to verify
that if z,y € F,, and m > n then p,,(z,y) = (By/Bn)pn(z,y), and that

pn(z,y) < c1B,/By if z,y € F,, belong to the same k-complex. (2.8)

Now define
d(z,y) = B, 'pu(w,y) fora,y € F,, n>0. (2.9)



Then d is well-defined, and from (2.8) we deduce that d extends from U, F}, to a metric d on
F. Tt follows from (2.8) that

d(z,y) < clBk_1 if z,y belong to the same k-complex. (2.10)

Note also that if d(z,y) < Bk_1 then z,y are either in the same k-complex or in adjacent
k-complexes. If B(z,r) = {y € F : d(z,y) < r}, then as the y-measure of each k-complex is
Ml;l, we have CQM]:]' < ,u(B(x,Ble)) < 03M,;1. Set

log M,
) = o (2.11)
it follows that if B! < r < B;_ll,
ear®™) < p(B(z,r)) < esr¥™, 2 €F. (2.12)

Write dimg g(.) and dimpg(.) for Hausdorff and packing dimension with respect to the
metric d. The following result follows easily from (2.12) and the density theorems for Haus-
dorff and packing measure — see [6].

Lemma 2.3 (a) dimpq(F)=liminf, . d¢(n),
(b) dimpg(F) =limsup,_ . ds(n).

For some simple fractals the distance d is equivalent to Euclidean distance. We just prove
this for the examples given in the introduction.

Lemma 2.4 Suppose that A = {2,3}, and F(® is the $SG(a) defined in the introduction.
Then
|z —y| < d(z,y) < cglz —y| =,y € F.

Proof. Note that as [, = b, for each a € A, L, = B, for all n. If ¢, y € F,, then there exists
a path in F, connecting = and y of length L 'p,(z,y). So d(z,y) > |z — y| for z, y € F,,
and this inequality extends to F'.

The other inequality requires a little more work. For z € F let «,(z) denote the corner of
the n-complex containing z which is closest (in Euclidean distance) to 2, where we adopt some
procedure for breaking ties. (If z € F,, then «,(z) = z). We have p,11(knt1(2), kn(z)) < 3,
so that d(knt1(z), kn(z)) < 3L;_|1_1. So d(z,kn(z)) < 3L For z € F let D,(z) denote the
union of the n-complexes containing &, (). Write ¢c; = v/3/4, and note that B(zx,c; L )NF C
D, (z).

Now let z,y € F, and choose m such that y € D,,(z) — Dy y1(z). Then |z —y| > C7L;7EH_,
while y and k() are in the same m-complex. Since d(km,(z), km(y)) < L!, we have

d(z,y) <7L' <clz -yl



3 Dirichlet form and Brownian motion

We now construct a Dirichlet form € on L2(F, ), following the ideas of [8, 14, 10]. Tt will be
useful to keep in mind the interpretation of Dirichlet forms in terms of electrical networks —
see [4, 14]. Note that as F,, is a discrete set, the space C(F,) of continuous functions on F;,
is just the space of all functions on Fj,. For f € C(Fy) define

Eo(fr9) =3 Y (f(®) — F)(g(z) — g(y)). (3.1)

z,ycFy

Set rq = tq/mg: we call r, the resistance scaling factor of the nested fractal F(@) | Set

Ry =][]re (3.2)
i=1
En(fr9) = Rn D Eo(f 0 thu, g0 Pu). (3-3)
weWw,
Then we can write
En(fr9)=3Rn Y en(®,9)(f(2) — F¥)(9(=) — 9(v)), (3.4)
z,yEF,

where e, (z,y) = 1 if there exists w € W, such that z,y € 1,,(Fy), and e, (z,y) = 0 otherwise.
The choice of R,, above ensures that the Dirichlet forms £,, have the decimation property

871,71(9)9) = lnf{gn(faf) : f|Fn—1 = g} for g€ C(anl)) (35)

— see [8] for details. We need some further inequalities relating ¢,,m, and [,.

Lemma 3.1 For eacha € A,

re > 3, (3.6)
tq > b2 > 2b,. (3.7)

Proof. Let g(z9) =0, g(z1) = g(22) = 1, so that £y(g,g) = 2. We let {1 = a and apply (3.5)
in the case n = 1. For (3.6) let f(z) = A for x € F; — Fy. Then

Enf, f) =ra(2? +4(1 - 1)),
so that, taking A = 2/3, we obtain r, > 3/2.
To prove (3.7) let f(z) = min(1, p1(z0,2)/bs), for x € Fi. Let i € {1,...,my}, and

consider the 1-cell 1/)1@) (Fo) = {y1,y2,y3} say. Since the distance (in the graph Fl(a)) between
each pair y;, y;, is 1, we have |f(y;) — f(yr)| < b1, for each 7, k, and at least two of the f(y;)

must be equal. Therefore £y(f o d)ga),f o 1/)1@)) < 2b,2, so that 2 = £o(g,9) < rama(2b,2).

a

The second inequality in (3.7) is immediate from (2.7). O

Lemma 3.2 For alln >0, f € C(F,), 0 <m < n we have

|f(x) — f(y)|2 < clR:nlﬁ'n(f, f) if z,y are in the same m-complex. (3.8)



Proof. We can view F), as an electrical network with associated Dirichlet form &, — see [4].
Note that the resistance of an edge in F, is R,!. Write r(x,y) for the effective resistance
between the points z and y in the network F,,. Then (see [14]) r is a metric and for f € C(F,)

Note first that if k < n, z,y € Fj and pg(z,y) = 1 then r(z,y) < 1/Ry. So if z,y € F}, are
in the same (k — 1)-complex then 7(z,y) < b*/Ry. Now let =,y € F,, and suppose that z,y
are in the same m-complex. Choose z,, € F}, in the same m-complex as z,y. Then there
exists a chain z, = ©m,Lmy1,...,%n = ¢ such that zp € Fj, and zp 1,z are in the same
(k — 1)-complex. Hence

M(zm,2) < Y r(zpom) <BT D 1/R,
k=m+1 k=m+1

<b'R," ) (2/3) <2v"R,},
j=1
where we used (3.7) in the last line. Combining this with (3.9) proves the lemma with
cl = 4bt. O
The decimation property (3.5) implies that if f : FF — R then &£,(f|r,, f|r,) is non-
decreasing in n. This enables us to define a limiting bilinear form (€, F) by

F={f€C(F): lim £,(f,f) < oo},

and

E(f,f)=E0(f,f) = lim Ea(f,f), fEF.

The following result is proved from Lemma 3.2 in the same way as Theorem 4.14 of [16].

Theorem 3.3 (a) The bilinear form (€, F) is a regular local Dirichlet form on L*(F, p).
(b) |f(x) = f()I? < c1&(f, f) for all f € F.

Note also that from (3.8) we deduce for f € F
1f(z) — f()|> < e1RIE(f, f) if ¢,y are in the same m-complex. (3.10)

We need some further properties of the Dirichlet form £, and begin by proving the fol-
lowing Poincaré inequality. For v € C(F) we write & = [, udp.

Lemma 3.4 For f € F B
E(f. ) = eallf = FII3- (3.11)

Proof. Let g = f — f. Then from Lemma 3.2, for z,y € F, (g9(z) — g(y))? = (f(z) — f(y))? <
Clg(f7 f) SO)

GE(f,f) = e / / E(f, £)pldz) pu(dy)

Y4

//(g(x) — g(y)*p(dz) p(dy)
= 2 [ g@)u(d). 0

The following decomposition of Dirichlet forms is along the same lines as that given in
[15], but the non-constant environment gives it a more cumbersome form. We use notation
such as R,(£) to denote the quantity R, associated with the environment sequence £.



Lemma 3.5 For f € F,n >0,
EOF = D RuOETI(forpu, f otpu). (3.12)
weWn(‘f)
Proof. If m > n then
EQUF) = ) Rul&Eo(f o tu, fotu)

weWm (£)

= Y Y Rul©Rual0"E)E0(f 0t 0 %u, f 0w 0 3h0)
WEWR (§) VEWm _n (7€)

= Y Ra(©OE(F 0w, f o).

weWn(‘f)

Letting m — oo the result follows. O

4 Transition density estimates: upper bounds

Let P; be the semigroup of positive operators associated with the Dirichlet form (£,F) on
L%(F,p) — see [9]. As (£,F) is regular and local, there exists a Feller diffusion (X;,t >
0,P?,x € F) with semigroup P;, which we will call Brownian motion on F. As in [8] we
deduce from Theorem 3.3 that G\ = fe_’\tPtdt has a bounded symmetric density gy (z,y)
with respect to pu. As ga(z,y) € F C C(F), gx(z,.) is continuous for each z. As in Lemma
2.9 of [7], it follows that P; has a bounded symmetric density p;(z,y) with respect to u, and
that p;(z,y) satisfies the Chapman-Kolmogorov equations. We now obtain upper bounds on
pe(z,y), beginning with the on-diagonal upper bound, where we follow closely the argument

of [17].
Lemma 4.1 There is a constant ¢1 such that if Tn_1 <t< T,:_ll then

1Pdf1 o0 < 1M, (4.1)
Proof. For w € W,, write f, = f o1, and

Fo— (7€)
For= [ oy £olen ™9 da).

Note that for v € C(Fy), v = [vdpu =Y e My 0.
Let ug € F with ug > 0 and |luglly = 1. Set ui(z) = (Pyug)(z) and g(t) = ||w]|3. We
remark that g is continuous and decreasing. As the semigroup is Markov, ||u:]|1 = 1, and

using Lemmas 3.5 and 3.4,

d

Eg(t) = —2&(ug,uy)

= -2 Z RnS(an)(ut 0y, ut 0%y)  (by 3.12)
’LUEWn

_203_1Rn Z /(utﬂU — ﬂt’w)zd'u,(enf)

= —2c31R, M, /u?d,u +2c31Rn Y 07,

IN

< —2¢31R, My ||ug|3 + 2¢31 R, M2. (4.2)

10



Since M, R, = T,, we have ¢'(t) < —cT,(g(t) — M,,), for all n > 0. Therefore

~ % log (g(t) — My) > Ty, if g(t) > M,. (4.3)

Let s, = inf{t > 0: g(¢t) < M,} for n € N. Thus (4.3) holds for 0 < t < s,. Integrating (4.3)
from s,,42 to s,11 we obtain

IA

—log (g(sn+1) — Ma) +log (g(sns2) — Mp)
= log (Mats — My)/(Mas1 — M) < log (m* +1),

CTn (5n+1 - 5n—|—2)

Thus $,11 — spi2 < ¢(T,) "1, and iterating this we have

sn < c Z (T1) ™ < ea(T) ™!

k=n—1

This implies that g(c2/T,) < g(sn) = M,. It follows that there exists ¢; < oo such that if
T 1<t< Tn__l1 then
g(t) < c1M,.

Finally || P||1—00 = || P||?_,5 = g(t), proving the Lemma. O

As in [7], Lemma 4.6 we can now use the symmetry of p;(z,y), and the fact that it satisfies
the Chapman-Kolmogorov equations, to deduce that p;(z,y) is jointly continuous in z,y for
each t. We therefore obtain from Lemma 4.1 the pointwise bound

Pt(%y) < Can, x,y € F. (4:4)

For any process Z on F define the stopping times S¥(Z) by S§(Z) = inf{t > 0: Z; € F},},
and

$H(2) = inf{t > S{1(2) : Zi € F\{Zgs_(5)}};

these are the times of the successive visits to Fj, by Z. We define the crossing times on
level k by Wk(Z) = S¥(2) — S* [(Z), and write S¥ = SF(X), W} = WF(X). We now
recall some properties of X and the crossing times — see [5, 18] for details. Let Y;*» = Xgn;

then Y™ is a simple random walk on F,. The ‘Einstein relation’ ¢, = mg,r, implies that
EWrMY™) =T,/T, fori > 1, n < m. If X]* = Y7, 4 then, as in [5], we have that the

processes X" converge a.s. to X. We also have W?(X™) — W2(X) a.s. and in L? as
m — oo, from which we deduce that EW}(X) =T, ! forn >0, i > 1.

Now fix z € F,,, and B be the union of the n- complexes z,l)w( ), w € W, which contain z.
Write Sp = inf{t > 0 : X; ¢ B}, and note that E*Sp = . For x € B we have Sp < ST
P? -a.s., and since ST*, m > n is a decreasing sequence w1th 11m1t 0 (as X is non- constant),

we deduce

S < Z(sz Sithy, (4.5)

As XS{“ € Fi,1, we have E(Si — 8TT1) < y(&i1)T, 1+1, where y(a) is such that if {; = a and

Sp =inf{r >0:Y,! € Fy}, then
max EYSy) = v(a).
yEFla)
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(Note that as Y'! is for each a a random walk on the irreducible set Fl(a), v(a) is finite.) Let
c3 = max, y(a). From (4.5) we have, for z € B,

E*Sp <c3» Ty <l ' (4.6)

Since Sp <t + 1(5,-+)(Sp —t) we have, from (4.6),

E*Sp < t+E*(155-0E*(SB))
< t+ P*(Sp > t)e T L

So P*(Sp <t) < chTnt +(1- ch), and as Sp = W{* P?-a.s., we deduce there exist c5 > 0,
c6 € (0,1) such that
PZ(Wln < t) <esTpt+cg, t>0. (4:7)

This bound is quite crude, but we can now, as in [2], use it to derive a much better
estimate on P* (W <t).

We first define T T

k = k(m,n) =inf{y ZO:Bm—ﬂ > =

}. (4.8)
As the function k(m,n) plays a crucial role in our bounds, we need to spend a little time
exploring its properties. First, we recall the inequalities 2 < b, < b*, 4 < t, < t*, 2 < b, <
ta/bg < t*/2, from (2.7) and Lemma 3.1.

If m > n then T3, /By, > T, /By, so k(m,n) =0. If m < n then as T,,/B, < T,/B,, we
deduce that k(m,n) > n —m. On the other hand, writing k = k(m,n), we have

m+j - Bm

ob—1 o Tmti—1/Tm

< T /Ty < (5",
- Bm+k—1/Bm / ( )

so that
n—m< k(m,n) <c;(n—m) when m<n. (4.9)

Note also from (4.9) and the remarks preceding that if m < n then n < m + &k <
m~+ c7(n —m) < (1 + ¢7)n. Therefore, for any n, m,

n <m+k(m,n) < (14 c7)n. (4.10)

Using the bounds on t,/b, above we have, for ¢ > 0,

gitl Tmrt o Tmi1etvi _ (#/2)i+ Tt

B, 117 Bpgi4iti Bt
from which it follows that
|k(m+1,n) — k(m,n)| < cg, for all m,n. (4.11)
So, we have,
|10g(B7?1';+n(l,Wm)) —log(%%:lmﬁ < (1+ cg)|m’ — m|log b*. (4.12)

We now define the approximate walk and spectral dimensions,

_ 2log My,

log T,

~ log By’

dyw(m) (4.13)

log Ty,

12



Lemma 4.2 Let 0 <t <1,0<r <1, and let n,m satisfy
-1 -1 -1 -1
T, <t<T,4, B, <r<B_, ;.

Then writing k = k(m,n),

%exp <09 Bg;—k) < exp<<w)l/(dw(m+k)_l)) < exp (CIO Bg;k) (4.14)

Proof. If m > n then k = 0, and so By, ;/Bn=1. Since d,(m) < logt*/log2 < ¢, and
r < cB; ', we have pdw(m+k) — plogTm/log Bm < cT-1, so that rd“’(m"'k)/t <l /T <. As
pde(mtk) /t > the lower bound is clear. It follows that (4.14) holds.
If m < n then writing a = d,(m + k),
r*/t < T, /By, < CTm—&-k/(Bm-I-kBg;l) = C(Bm—&-k/Bm)ail:

with a similar lower bound. O

Lemma 4.3 There exist constants c11,c12 such that if k = k(m,n) then
P(W™ < T, ') < c11 exp (—c12Bom 1/ Bum)- (4.15)

Proof. If j > 0, then for the process X to cross one m-complex it must cross at least
N = By, +j/Bm (m + j)-complexes. So

Bj+m/Bm

wir> Y W,
=1

where V; are i.i.d. and have distribution W{n+j. Lemma 1.1 of [2] states that if P(V; < s) <
po + as, where pg € (0,1) and o > 0, then

N
log P(S_ Vi < 1) < 2(aNt/po)'/* — Nlog(1/po). (4.16)
1

Thus, using (4.7) and (4.16), we have
log PW" < T, ") < c13(Bmj/Bm) " *[(Ton45/Ta) "> = c14(Bmyj/Bm)"?.  (417)
Given k = k(m,n) as above, there exists c15 and kg such that k — ¢15 < ko < k, and
(Tnteo /Tn)? < 214(Bimiko / Bm) /2.
Provided ky > 1 we deduce
log P(Wi* < T, ') < —2e13c14Buikg/Bm < —c12Bumik/Bm.

Choosing c1; large enough we have 1 < ¢17 exp(—c12Bp %/ Bm) whenever k < c15+1, so that
(4.15) holds in all cases. O
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Lemma 4.4 There exist constants c11,c1g such that if 0 <t < 1,0 <71 <1, and n,m satisfy
T, ' <t<T %Y, B)'<r<B',
and k = k(m,n) then forz € F

waUn+k)
P*( sup d(Xs,z) >7r) <ecnn exp(—clg(i

o M)

Proof. Let mg be such that 202,1B;i <r< 2c2,1B;1i71. Then |m — mg| < ¢. From (2.10) we

have that d(z,y) < 62_1Bl_1 if z,y are in the same [-complex. So, d(X;,z) < 20213;1% <r
for 0 < s < S7*°. Therefore, writing ko = k(mg, n),

P*( sup d(X,,z) >r) < P*(S{" <1t)
0<s<t
< PRS0 ST
< c11exp(—c12Bmg+ke/Bms)
< cirexp(—ceByik/Bm), (using (4.12))
re ) )1
< ci1exp —016(f) 5
by Lemmas 4.2 and 4.3. O

Theorem 4.5 There exist constants c17,ci1g such that if 0 <t <1, z,y € F, and n, m satisfy
T,' <t<T,Y, B,'<d(z,y) <B,! (4.19)

m—1?

and k = k(m,n) then

(d(fﬂ, y)dw(m+h) )1/(dw(m+k)71)) '

. (4.20)

pe(z,y) < ergt ()2 eXP(_ClS

Proof. Noting that M, < ct—%(")/2 this is proved from (4.4) and Lemma 4.4 by exactly the
same argument as in Theorem 6.2 of [3]. O

Remark. Note that the bound (4.20) may also be written in the form

pi(z,y) < cM, exp(—c Bpir/Bn), (4.21)

where m,n satisfy (4.19), and k = k(m,n).

5 Lower Bounds

In this section we use techniques developed in [3], [7] to obtain lower bounds on p;(z,y) which
will be identical, apart from the constants, to the upper bound (4.20).

Lemma 5.1 There exists a constant ¢1 such that if T;l <t then

pi(z,z) > c1M, forallxz € F. (5.1)
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Proof. Note from Lemma 4.4 that if » = AB_ !, with A > b*, then
P*(d(z, X1) > r) < can1exp(—ca.16Bm1k/Bm),

where m < n satisfies B! < AB;! < B;Ll_l, and k = k(m,n). Note that A < (b*)"~™+1,
Since m + k > n we have B,,.1/By > B, /Bpy > 2"™. Thus

Bm+k/Bm > c)\logZ/logb*’
so that there exists co > 0 such that
P*(d(z, X;) > r) < cexp(—c \?). (5.2)

Now let A = Ag be large enough so the left hand side of (5.2) equals % Then by (2.12)
pw(B(z,oB;Y)) < cM; !, and so writing G = B(x, A\oB;!) we have P*(X; € G) > % So,
using Cauchy-Schwarz,

i <P*X,€@G))? = (Lpt(w,y)p(dy))2,

IN

u(G) /G P, 9)2uldy) < M Ypa(e, ).

Ift > T,;l then t/2 > T7:-|}1> so we deduce that py(z,z) > cMy1 > c1 M,. O

We need to extend this ‘on-diagonal lower bound’ to a ‘near-diagonal lower bound’, which
we do via an estimate on the Hélder continuity of the heat kernel.

Lemma 5.2 Letm >0,n >0, and T; ! < t, d(z,2') < B;il. Then for each y € F,

| Ry
|pt($7y) _pt(wlay)| < C3Mn R_ (53)

In particular pi(.,.) is uniformly continuous on F x F for each t > 0.
Proof. By (3.10) if z,z' are in the same m-complex then

pe(z,y) — pe(a', y)|* < R €D, ), il 9))- (5.4)
As in [7] Lemma 6.4, we have, writing u(z) = p;/»(=,y),

E(Pyjau, Pygu) < c(t/2) 7 lull3,
S Ct_lpt(yay) S C’t_an S C”TnMn~

As T, = M,R, we deduce that (5.3) holds if z,z’ are in the same m-complex. If now we
just have d(z,z') < B;Ll_l, then there is a chain of at most b m-complexes linking z,z’, and
again we have, adjusting the constant ¢, that (5.3) holds. O

Lemma 5.3 There exist cy,c5 such that if T;! < t, then

pi(z,y) > caM,  whenever d(z,y) < ¢5B,, . (5.5)
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Proof. We can find ¢ such that there exists m with n < m <n+cand R,,/R,, > (3/2)™ " >
4¢3/c3. As m —n < ¢ we have B, ' | > ¢5B, ! for some constant c5. So if d(z,y) < c5B;!
then by Lemmas 5.1 and 5.2,

pel@,y) > pi(z, ) — Ipe(z,y) — pel@,2)| > Myler — es(Ru/Rm)"? ) > Le1 M.
O

We can now use a standard chaining argument to obtain general lower bounds on p; from
Lemma 5.3.

Theorem 5.4 There exist constants cg,c7 such that if z,y in F, t € (0,1) and
T,' <t<T,.Y, B,'<d(zy) <B,ly,

then 4 .

d(z,y) e (mt ))1/(dw(m+k)1))
SE— .
Proof. Using (5.5) we see that the bound is satisfied if m > n. Now let m < n, write
k = k(m,n), and choose j,! with 0 < j < | < ¢ such that

2177 > 3" [ea,  (b%) < (2b%);
note that such a choice is possible, with a constant ¢ depending only on ¢2 and b*. We then
have

pi(z,9) > cot~ "2 exp(~ex( (5.6)

B, B, Coedi o Tk g T ;
Thtl o Zmakty yeyl-i < Zmaktd o (pryl-i « ZmAkt (5.7)
Bm—l—k Bm+k Tm+k Tm—l—k
and .
3b* 3p*2i ! co
< <

. 5.8
Bitk+t ~ Bmtk+i ~ Bmtk+s (5:8)

Let N = By, k4 j/Bm. Since d(z,y) < b*B,,! there exists a chain = = zg, z1,..., 2y = y with
d(zi—1,2;) < B! Let G; = B(zi,b*B_1 ); then, if z; € G;, we have

m+k+j° m+k+j
-1 -1
d(zi—1,2;) < 3b*Bm+k+l < C2Bm+k-|—j' (5.9)

Let s = t/N, then
s> B, > Bm+k > 1 )
LBkt~ TmikBmikrt  Toakys
From (5.5), (5.9) and (5.10) we have ps(zit1,%;) > cMpmipy; > ¢ Moqp. Therefore since

p(G;) > CSMn_@-ch’ and m + k > n,

(5.10)

pileyy) > /G /G pel,21) ... pa(er—1,p)(der) ... plden—1),

N-1
> (I #(G))(csMmi)™,
=1
> cMpyypexp(—coN) > cM, exp(—c10Bm+k/Bm).
Using Lemma 4.2 completes the proof. O

Proof of Theorem 1.1. This is an immediate consequence of Lemma 2.4 and Theorems 4.5
and 5.4. O
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6 Examples

In this section we apply Theorems 4.5 and 5.4 to see how oscillations in the environment
sequence &; relate to oscillations in the transition density.

For the environment sequence £ set
n
ha(n) =n"'> 1 a), a€A
i=1
Let (p,) be a probability distribution on A, and suppose that £ satisfies, for some regularly
varying increasing function g,

he(n) = po asn — oo foreacha€ A, (6.1)

|ha(n) — pal < ntg(n), n>1,a€A. (6.2)

Note that if 0 < p, < 1 then liminf [nhy(n) —npy| > 0, so that the rate of convergence given
by taking g(n) = O(1) is the fastest possible.

We have R " . " .
a a a ta
dy(n) = 2ol 08 00 () Zalal®) 081 (6.9
> a ha(n)logta > ha(n)logb,
Let " )
4, = lim dy(n) = 22zaPaloB™Ma
n YaPalogty

and define d,, similarly.
If (pa), (ga) are probability distributions on A, and for a € A, u,, v, satisfy u* > u, > c1,
v* > v, > c1, then elementary calculations yield

Z Gatta Zpaua

S o0 S pav < cf2u*v* max |Pa — Gal- (6.4)
Therefore (6.1), (6.2) imply that
$lds(n) — d| < can 1 g(n), |dw(n) —dy| < c3n”g(n). (6.5)

Let
P(t) = g(log(1/t)), te€(0,1).

Theorem 6.1 Let { satisfy (6.1) and (6.2). Then for0 <t<1,z,y€ F

dw

pe(zsy) < eqt—de/2ees b0 eXp(_cﬁe—csfﬁ(t)(M)l/(dw—l)), (6.6)
doy

() > ert~ /267590 exp gyttt (AL /a0, (6.7)

Proof. Let T71<t< T;_ll, Bl <r=d(z,y) < B;zl_l. Then, since 4" < T, < (t*)", and
similar bounds hold for B,,, we have

en <log(1/t) < cdn, cm <log(1/r) < c'm. (6.8)
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So by (6.5)
= ds(0)/2 < p=ds/24=canTg(n) < —ds/2 exp(cg(cn)) < t7%/2 exp(csep(1/t)). (6.9)

For the off-diagonal term we have, writing u = r% /t,

T T B dyy—1 _
e <ok o SR gl e
Bl = "B, 4Bl B,

so that if y = (dy — dw(m + k))/(dy — 1) then
Buik/Bm > cut/ =By (6.10)
Using (4.10) we have ¢'n < log B, 1x < ¢'n, and so
log B, .}, > —cnldw(m + k) — du| > —c'g(n). (6.11)

From (4.21) we have
pi(@,y) < ct™ /% exp(—cBpni1/Bm),

and combining this with (6.9), (6.10) and (6.11) we obtain (6.6).

The lower bound is proved in exactly the same way. O

The on-diagonal bounds here are (up to constants) the best possible. Set

q:(z) = py(z, z)th/2

Theorem 6.2 Let ¢ satisfy (6.1) and suppose there exists a sequence n; — oo such that
ni(ds(n;) —ds) > g(n;), > 1. (6.12)

Then if s; = Tn_l,l,
gs; (x) > exp(cp(1/s;)), > 1. (6.13)
Similarly, if ni(ds(n;) — ds) < g(n;), then g5, (z) < exp(—cyp(1/s;)) fori > 1.

Proof. From Theorem 5.4, and using the calculations in Theorem 6.1 we have
ge, () > esi 42 > cexp(dg(ny)) > cexp(dip(1/s:)),
which establishes (6.13). The lower bound is proved in the same way. O

Remark. Theorems 6.1 and 6.2 imply that the bounds on p; of the kind which hold for
regular fractals such as nested fractals or Sierpinski carpets, (see [3, 15]), hold for scale
irregular Sierpinski gaskets if and only if the convergence of ds(n) to d; is as fast as possible,
so that the function g in (6.2) satisfies g(n) < K for all n.
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We can apply Theorem 6.1 to the case when the environment random variables &; (de-
fined on a probability space (2, F,[P)) are i.i.d. with (non-degenerate) distribution (p,).
By the law of the iterated logarithm the random variables h,(n) satisfy (6.2) with g(n) =
C(w)(nloglogn)/2, where P(C(w) < oo) = 1. Applying Theorem 6.1, and writing $(t) =
maz{((log(1/t))logloglog(1/t))'/2,1}, we have

Corollary 6.3 There exists a constant C = C(w) € (0,00) such that for 0 < t < 1 and
z,ye FEW) P_gq5.,

dy
pel(w,y) < cqt™H/2e090) eXp(—666_04’“)(%)”@“1)) , (6.14)

with a stmilar lower bound.

Remark. In [10] it was proved that for each € > 0 there exist ¢7(e,w), cg(e,w) such that
fOI' a’;’y E F(‘g(“"))

d(z,y)%te _1)—
pi(z,y) §C7t7d“/275exp(—08(7( 3’;) )1/(d“’ ) 6). (6.15)

Setting r = d(z,y) let a(r,t), b(r,t) denote the right hand sides of (6.14) and (6.15)
respectively. Since limy g t2e¥(®) = 0, we have that a(0,t) < b(0,t) for all sufficiently small
t. With a little more labour we can also show that a(r,t) < b(r,t) for all sufficiently small
r,t, so that, neglecting constants, the bound in (6.14) improves that of (6.15). (Of course,
this is to be expected, since Theorem 5.4 shows that the bounds in Theorem 4.5 are, up to
constants, the best possible).

Note, however, that for the on diagonal bounds there is less oscillation in the random
recursive case [11] than that observed here.

7 Spectral results

Write £ for the infinitesimal generator of the semigroup (P;): we call £ the Laplacian on

the fractal F'. The uniform continuity of p; (see Lemma 5.2) implies that P; is a compact

operator on L?(F, 1), so that P;, and hence —£L, has a discrete spectrum. Let 0 < A\; < ... be

the eigenvalues of —£, and let N(A) = #{); : A; < A} be the eigenvalue counting function.
Since

/Fpt(a:,a:)y(da:)=/ooo e *IN(ds), t>0,

using (4.20) and (5.6) we have
aM, < / efs/T"N(ds) <coM,, n>0. (7.1)
0

Proposition 7.1 There exist constants c3, ca, c5 such that if X > c3 and n is such that
Tho1 < A<T, then
cax (M2 < N(X) < esads(M)/2, (7.2)

Proof. It is sufficient to prove that there exists cg > 0 such that

cM, < N(T,) <M, forn > cg.
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The right hand inequality is easy. From (7.1)
Tn
co M, > / e_S/T"N(ds) > e IN(Tp).
0
For the left hand inequality, let » < n and note that
o
1M, < N(T,) +/ e /TN (ds).

Tn

We have

Ooefs/T,, s — 75/T,, s )
/Tn N(ds) Z/T N (ds) (7.3)

< SN )
k=n
< cM,.Zm*(m*)k_T exp(—4"7"). (7.5)
k=n

So there exists cg > 0 such that if n > ¢g then there exists n — ¢g < r < n such that
O
/ efs/TTN(ds) < %cer.
Tn

We therefore deduce that N(T3) > c1M > ¢' M, by the choice of r for n > cg. O

Finally, we consider the case, mentioned in Section 6, when the environment sequence is
iid. with non-degenerate distribution (ps). Let ¢(X) = ((log ) logloglog A)*/2. Combining
Proposition 7.1 with the calculations made in Section 6 we obtain

Corollary 7.2 There exists positive constants cy,cg such that P-a.s.

N (X))

lim sup a2

A—o0

< o0,

N(A)e*“‘d’(}‘)
liminf ————

A—o0 )\dS/2 > 0.
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