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Abstract

We construct Brownian motion on a class of fractals which are spatially homogeneous

but which do not have any exact self�similarity� We obtain transition density estimates

for this process which are up to constants best possible�

� Introduction

There is now a fairly extensive literature on the heat equation on fractal spaces� and on the
spectral properties of such spaces� Most of these papers treat sets F which have exact self�
similarity� so that there exist ��� contractions �i � F � F such that �i�F � � �j�F � is �in
some sense� small when i �� j� and

F � �i�i�F �� �����

In the simplest cases� such as the nested fractals of Lindstr	m 
���� F � R
d� the �i are linear�

and �i�F � � �j�F � is 
nite when i �� j� For very regular fractals such as nested fractals�
or Sierpinski carpets� it is possible to construct a di�usion Xt with a semigroup Pt which is
symmetric with respect to �� the Hausdor� measure on F � and to obtain estimates on the
density pt�x� y� of Pt with respect to �� In these cases �see 
�� ���� there exist constants dw�
ds �called� following the physics literature� the walk and spectral dimensions of F � such that

pt�x� y� � c�t
�ds�� exp��c�� jx� yjdw

t
����dw����� t � ��� ��� x� y�� F� �����

with a lower bound of the same form but di�erent constants� Here jx� yj is the Euclidean
metric in R��

In the mathematical physics literature� the main interest is not in regular fractals� �except
as models�� but in irregular objects such as percolation clusters� which are believed to exhibit
�fractal� properties� It is therefore of interest to investigate the extent to which bounds such
as ����� hold for less regular sets with some �fractal� structure�
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In this paper we will study a family of sets F � based on the Sierpinski gasket� which are
locally spatially homogeneous� but which do not satisfy any exact scaling relation of the form
������ To give the essential �avour of our results we consider a fractal 
rst discussed in 
����
Consider two regular fractals� the standard Sierpinski gasket SG��� and a variant SG��� � see
Figure �� Each of these sets may be de
ned by

F � ��n��Fn

where �for a � � or �� Fn is obtained from Fn�� by subdividing each triangle in Fn�� into
a� smaller triangles� and deleting the �downward facing� ones� Thus we can write Fn �
��a��Fn��� for a � �� �� �A more precise de
nition of the maps �

�a� is given in Section ���

Figure �� The 
rst stages in the construction of SG��� and SG���

Let � � f�� �gN � and let � � ���� � � �� � �� we call � an environment sequence� Given � we

can construct a set F ��� � �nF ���
n where we use �n to determine which construction to use

at level n� we have F
���
n � ���n�F

���
n��� Unless the sequence � is periodic F

��� does not have
any exact scaling property� but it is spatially homogeneous in the sense that all triangles of
a given size in F ��� are identical� Figure � shows the 
rst � levels in the construction of the
set F associated with the sequence � � ��� �� �� �����

Figure �� The 
rst three levels of a scale irregular Sierpinski gasket

A previous paper by one of us 
��� considered the case when the environment sequence �
was a sequence of i�i�d� random variables� the sets obtained were called �homogeneous random
Sierpinski gaskets�� We use a di�erent term here� as the sets studied in this paper are not
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necessarily random� An example of such a scale irregular Sierpinski gasket was discussed in
Section � of 
���� We also remark that if� at each level� one chooses a di�erent �random�
procedure for subdividing each small triangle� then one obtains an example of the random
recursive fractals studied in 
���� and that di�usions on some sets of this type are studied in

����

For the case described above our main results take the following form� For a � �� � write
�la�ma� ta� for the length� mass and time scaling factors �see 
���� associated with SG�a�� Here
�see 
���� we have �l��m�� t�� � ��� �� �� and �l��m�� t�� � ��� �� ������ Let L� �M� � T� � ��
and set for n 	 ��

Ln �
nY
i��

l�i� Mn �
nY
i��

m�i� Tn �
nY
i��

t�i� �����

There is a natural ��at� measure � on F � F ��� which is characterised by the property that
it assigns mass M��

n to each triangle in F of side L��
n � In section � we will construct a

��symmetric di�usion Xt� with semigroup Pt� on F � We do this analytically� by constructing
a regular local Dirichlet form E on L��F� ��� Here we follow the ideas of 
���� 
���� 
��� though
the arguments of these papers do not directly cover the case treated here� they can be adapted
without di�culty to our situation�
Once we have constructed Pt� we can prove the existence of a density pt�x� y� with respect

to �� and obtain bounds on pt� by using similar techniques to those developed for regular
fractals in 
��� 
���

To maintain consistency with notation for more general SGs introduced later� set Bn � Ln
and let

dw�n� � log Tn� logBn� ds�n� � � logMn� log Tn� �����

and for n�m 	 � set
k � k�m�n� � inffj 	 � � Tm�j�Bm�j 	 Tn�Bmg� �����

Note that k�m�n� � � if m 	 n� and that if m � n then n � m k�m�n� �
�
Theorem ��� �a� Pt has a continuous density pt�x� y� with respect to ��
�b� There exist constants c�� c�� c�� c	 �not depending on �� such that if L

��
m � jx�yj � L��

m���

T��
n � t � T��

n��� then

pt�x� y� � c�t
�ds�n��� exp��c�� jx� yjdw�m�k�

t
����dw�m�k������ �����

and

pt�x� y� 	 c�t
�ds�n��� exp��c	� jx� yjdw�m�k�

t
����dw�m�k������ �����

To understand these estimates intuitively 
rst note that if �n � a �where a � � or �� then
dw�n� � log ta� log la� ds�n� � � logma� log ta� and we recover the estimates for the heat
kernels on the fractals SG��� and SG��� obtained in 
�� ���� For non�constant �� dw�n� and
ds�n� are the �e�ective walk and spectral dimensions at level n�� For given t� x� y� let m�n
be as in the Theorem� so that T��

n � t and L��
m � jx� yj�

If m 	 n then k�m�n� � �� and the term in the exponential is of order �� so that

pt�x� y� � t�ds�n��� �Mn�

Since �fy � jx� yj � L��
n g � M��

n � it follows that in time T��
n the di�usion X moves a

distance O�L��
n ��
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If m � n� so that jx� yj is large relative to t� then n � m  k� and the estimates ������
����� involve the two �dimensions� at di�erent levels of the set� For the time factor we have
ds�n� as before� but the exponent dw�m k� involves the structure of F at a level 
ner than
either the �space level� m or the �time level� n� In both cases we see that the heat kernel at
time t is not greatly a�ected by structures in the set F which appear at a length scale 
ner
than L��

m�k� that is by �i for i 	 m k�
In Section � we consider the case when ds�n� and dw�n� converge to limits ds and dw

respectively� and in Theorem ��� we show that the bounds given in Theorem ��� can be
written in terms of the limiting dimensions with correction terms� It is worth noting that we
only obtain bounds of the form ����� if the convergence of ds�n� and dw�n� is essentially as
fast as possible� �See Theorem ��� and the remark following��

If the environment sequence �i are i�i�d� random variables� then it is clear that ds�n� and
dw�n� converge a�s� In this case the results we obtain improve and extend those obtained in

���� see Corollary ��� for the exact correction functions hidden by the � used in that paper�

In Section � we de
ne the fractal F � and set up our notation� The construction of the
process is outlined in Section �� where we also establish the key inequalities involving the
Dirichlet form E � Sections � and � deal with the transition density estimates� which lead to
our main results Theorems ��� and ���� of which Theorem ��� is a special case� In Section
� we look at some examples� and in Section � we use ������ ����� to estimate the eigenvalue
counting function N�	��

� Scale irregular Sierpinski gaskets

As the building blocks for our scale irregular Sierpinski gaskets will all be nested fractals� we
begin by recalling from Lindstr	m 
��� the de
nition of a nested fractal� See 
��� for a fuller
account of the motivation and de
nitions�

For 
 � �� an 
�similitude is a map � � RD � R
D such that

��x� � 
��U�x�  x�� �����

where U is a unitary� linear map and x� � RD� Let ! � f��� � � � � �mg be a 
nite family of

�similitudes� For B � R

D� de
ne

��B� � �mi���i�B��

and let
�n�B� � � 
 � � � 
��B��

By Hutchinson 
���� the map � on the set of compact subsets of RD has a unique 
xed point
F � which is a self�similar set satisfying F � ��F ��

As each �i is a contraction� it has a unique 
xed point� Let F
� be the set of 
xed points

of the mappings �i� � � i � m� A point x � F � is called an essential �xed point if there
exist i� j � f�� � � � �mg� i �� j and y � F � such that �i�x� � �j�y�� We write F� for the set of
essential 
xed points� Now de
ne

�i� �����in�B� � �i� 
 � � � 
 �in�B�� B � R
D�

We will call the set �i� �����in�F�� an n�cell and �i������in�F � an n�complex� The lattice of �xed
points Fn is de
ned by

Fn � �n�F��� �����
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and the set F can be recovered from the essential 
xed points by setting

F � cl���n��Fn��

We can now de
ne a nested fractal as follows�

De�nition ��� The set F is a nested fractal if f��� � � � � �mg satisfy�
�A�� �Connectivity� For any ��cells C and C �� there is a sequence fCi � i � �� � � � � ng of ��cells
such that C� � C�Cn � C � and Ci�� � Ci �� �� i � �� � � � � n�
�A�� �Symmetry� If x� y � F� then re�ection in the hyperplane Hxy � fz � jz � xj � jz � yjg
maps Fn to itself�
�A�� �Nesting� If fi�� � � � � ing� fj�� � � � � jng are distinct sequences then

�i������in�F �
�

�j� �����jn�F � � �i� �����in�F��
�

�j� �����jn�F���

�A�� �Open set condition� There is a non�empty� bounded� open set V such that the �i�V �
are disjoint and �mi���i�V � � V �

We now de
ne the family of scale irregular Sierpinski gaskets� Let F� � fz�� z�� z�g be the
vertices of a unit equilateral triangle in R�� Let A be a 
nite set� for a � A let la � ���
��
ma � N� and for each a � A let

!�a� � f��a�
� � � � � � ��a�

ma
g� a � A�

be a family of la�similitudes on R
�� with set of essential 
xed points F�� which satis
es the

axioms for nested fractals� Write F �a� for the nested fractal associated with !�a�� and let ta
be the time scaling factor �see 
����� of F �a�� �Note that the de
nition of ta just involves the

sets F� and F
�a�
� ��

Let � � AN � we call � � � an environment� We will occasionally need a left shift � on ��
if � � ���� ��� ���� then �� � ���� ��� ����� For B � R

� set

��a��B� �

ma�
j��

�
�a�
j �B��

����
n �B� � �

���� 
 � � � 
 ���n��B��

Then the fractal F ��� associated with the environment sequence � is de
ned by

F ��� � cl��n����
n �F���� �����

This set is not in general self�similar� but the family fF ���� � � �g does satisfy the equation
F ��� � ������F ������ Let H be the closed convex hull of F�� For many examples the families
of maps !�a� will have the additional property that ��a��H� � H for each a � A� and in this
case we have a slightly simpler description of F ����

F ��� �
��
n��

����
n �H��

At this point we 
x an environment sequence �� and� except where clarity requires it� will
drop � from our notation�
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We will use c� c� to denote unimportant positive constants� which may change in value
from line to line� and ci to denote positive constants which will be 
xed in each section�
Outside Section i we will refer to the j�th constant of Section i as ci�j� These constants

will in general depend on the family of nested fractals speci
ed by !�a�� a � A� but will be
independent of the particular environment sequence ��

We de
ne Ln� Tn and Mn by ������ We de
ne the word space W associated with F by

W �

�O
i��

f�� � � � �m�ig � f�w�� w�� � � �� � � � wi � m�ig� �����

For w � W write wjn � �w�� � � � � wn�� and

�wjn � �����
w�


 � � � 
 ���n�
wn � �����

We write Wn � f�w�� � � � � wn� � � � wi � m�i � � � i � ng for the set of words of length n� Let
� be the unique measure on F such that ���wjn�F

��n���� � M��
n for all w � W � n 	 �� As

for nested fractals we de
ne Fn � �w�Wn
�w�F��� and call sets of the form �wjn�F�� n�cells�

and the sets �wjn�F
��n��� n�complexes� We de
ne a natural graph structure on Fn by letting

fx� yg be an edge if and only if x� y both belong to the same n�cell� This graph is connected
by �A��� write 
n�x� y� for the graph distance in Fn� �So 
n�x� y� is the length of the shortest
chain of edges in the graph Fn connecting x and y��

De�nition ��� Let ba � 
��z�� z�� on the graph F
�a�
� � and set

Bn �

nY
i��

b�i� �����

The scaling factors �la�ma� ta� ba� play a fundamental role in what follows� We note the
following elementary facts�

la � �� ba 	 �� ba 	 la� ma 	 �� a � A� �����

Write m� � maxama� t
� � maxa ta� b

� � maxa ba�
For many simple nested fractals� such as the SG��� and SG��� discussed in the introduc�

tion� we have la � ba� In this case it is easy to see that there exists c such that if x� y � F
then x� y are joined by a piecewise linear arc �with in general in
nitely many segments� of
length less than cjx� yj� In general however we can have ba � la� and then we will have to
de
ne an intrinsic metric on F � For general nested fractals this takes some work " see 
����

��� but here the simple nature of the Sierpinski gaskets makes it straightforward�

Let
b�a � maxf
��x� y� � x� y � F

�a�
� g�

and write b� � maxa b
�
a� Since A is 
nite� b

�
a�ba � c for some c �
� It is then easy to verify

that if x� y � Fn and m 	 n then 
m�x� y� � �Bm�Bn�
n�x� y�� and that


n�x� y� � c�Bn�Bk if x� y � Fn belong to the same k�complex� �����

Now de
ne
d�x� y� � B��

n 
n�x� y� for x� y � Fn� n 	 �� �����
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Then d is well�de
ned� and from ����� we deduce that d extends from �nFn to a metric d on
F � It follows from ����� that

d�x� y� � c�B
��
k if x� y belong to the same k�complex� ������

Note also that if d�x� y� � B��
k then x� y are either in the same k�complex or in adjacent

k�complexes� If B�x� r� � fy � F � d�x� y� � rg� then as the ��measure of each k�complex is
M��

k � we have c�M
��
k � ��B�x�B��

k �� � c�M
��
k � Set

df�n� �
logMn

logBn
� ������

it follows that if B��
n � r � B��

n���

c	r
df �n� � ��B�x� r��� c
r

df �n�� x � F� ������

Write dimH�d��� and dimP�d��� for Hausdor� and packing dimension with respect to the
metric d� The following result follows easily from ������ and the density theorems for Haus�
dor� and packing measure " see 
���

Lemma ��� �a� dimH�d�F � � lim infn�� df�n��
�b� dimP�d�F � � lim supn�� df�n��

For some simple fractals the distance d is equivalent to Euclidean distance� We just prove
this for the examples given in the introduction�

Lemma ��� Suppose that A � f�� �g� and F �a� is the SG�a� de�ned in the introduction�
Then

jx� yj � d�x� y� � c�jx� yj x� y � F�

Proof� Note that as la � ba for each a � A� Ln � Bn for all n� If x� y � Fn then there exists
a path in Fn connecting x and y of length L��

n 
n�x� y�� So d�x� y� 	 jx � yj for x� y � Fn�
and this inequality extends to F �

The other inequality requires a little more work� For x � F let �n�x� denote the corner of
the n�complex containing x which is closest �in Euclidean distance� to x� where we adopt some
procedure for breaking ties� �If x � Fn then �n�x� � x�� We have 
n����n���x�� �n�x�� � ��
so that d��n���x�� �n�x�� � �L��

n��� So d�x� �n�x�� � �L��
n � For x � F let Dn�x� denote the

union of the n�complexes containing �n�x�� Write c� �
p
���� and note thatB�x� c�L

��
n ��F �

Dn�x��
Now let x� y � F � and choose m such that y � Dm�x��Dm���x�� Then jx�yj 	 c�L

��
m���

while y and �m�x� are in the same m�complex� Since d��m�x�� �m�y�� � L��
m � we have

d�x� y� � �L��
m � cjx� yj�

�
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� Dirichlet form and Brownian motion

We now construct a Dirichlet form E on L��F� ��� following the ideas of 
�� ��� ���� It will be
useful to keep in mind the interpretation of Dirichlet forms in terms of electrical networks "
see 
�� ���� Note that as Fn is a discrete set� the space C�Fn� of continuous functions on Fn
is just the space of all functions on Fn� For f � C�F�� de
ne

E��f� g� � �
�

X
x�y�F�

�f�x�� f�y���g�x�� g�y��� �����

Set ra � ta�ma� we call ra the resistance scaling factor of the nested fractal F
�a�� Set

Rn �
nY
i��

r�i � �����

En�f� g� � Rn

X
w�Wn

E��f 
 �w� g 
 �w�� �����

Then we can write

En�f� g� � �
�Rn

X
x�y�Fn

en�x� y��f�x�� f�y���g�x�� g�y��� �����

where en�x� y� � � if there exists w � Wn such that x� y � �w�F��� and en�x� y� � � otherwise�
The choice of Rn above ensures that the Dirichlet forms En have the decimation property

En���g� g� � inffEn�f� f� � f jFn�� � gg for g � C�Fn���� �����

" see 
�� for details� We need some further inequalities relating ta�ma and la�

Lemma ��� For each a � A�

ra 	 �
� � �����

ta 	 b�a 	 �ba� �����

Proof� Let g�z�� � �� g�z�� � g�z�� � �� so that E��g� g� � �� We let �� � a and apply �����
in the case n � �� For ����� let f�x� � 	 for x � F� � F�� Then

E��f� f� � ra��	
�  ���� 	����

so that� taking 	 � ���� we obtain ra 	 ����
To prove ����� let f�x� � min��� 
��z�� x��ba�� for x � F�� Let i � f�� � � � �mag� and

consider the ��cell �
�a�
i �F�� � fy�� y�� y�g say� Since the distance �in the graph F �a�

� � between
each pair yj� yk is �� we have jf�yj��f�yk�j � b��

a � for each j� k� and at least two of the f�yj�

must be equal� Therefore E��f 
 ��a�
i � f 
 ��a�

i � � �b��
a � so that � � E��g� g� � rama��b

��
a ��

The second inequality in ����� is immediate from ������ �

Lemma ��� For all n 	 �� f � C�Fn�� � � m � n we have

jf�x�� f�y�j� � c�R
��
m En�f� f� if x� y are in the same m�complex� �����
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Proof� We can view Fn as an electrical network with associated Dirichlet form En " see 
���
Note that the resistance of an edge in Fn is R

��
n � Write r�x� y� for the e�ective resistance

between the points x and y in the network Fn� Then �see 
���� r is a metric and for f � C�Fn�

jf�x�� f�y�j� � r�x� y�En�f� f�� �����

Note 
rst that if k � n� x� y � Fk and 
k�x� y� � � then r�x� y� � ��Rk� So if x� y � Fk are
in the same �k � ���complex then r�x� y� � b��Rk� Now let x� y � Fn� and suppose that x� y
are in the same m�complex� Choose zm � Fm in the same m�complex as x� y� Then there
exists a chain zm � xm� xm��� � � � � xn � x such that xk � Fk and xk��� xk are in the same
�k� ���complex� Hence

r�zm� x� �
nX

k�m��

r�xk��� xk� � b�
nX

k�m��

��Rk

� b�R��
m

n�mX
j��

�����j � �b�R��
m �

where we used ����� in the last line� Combining this with ����� proves the lemma with
c� � �b

�� �

The decimation property ����� implies that if f � F � R then En�f jFn� f jFn� is non�
decreasing in n� This enables us to de
ne a limiting bilinear form �E�F� by

F � ff � C�F � � lim
n��

En�f� f� �
g�
and

E�f� f� � E����f� f� � lim
n��

En�f� f�� f � F�
The following result is proved from Lemma ��� in the same way as Theorem ���� of 
����

Theorem ��� �a� The bilinear form �E�F� is a regular local Dirichlet form on L��F� ���
�b� jf�x�� f�y�j� � c�E�f� f� for all f � F �

Note also that from ����� we deduce for f � F
jf�x�� f�y�j� � c�R

��
m E�f� f� if x� y are in the same m�complex� ������

We need some further properties of the Dirichlet form E� and begin by proving the fol�
lowing Poincar#e inequality� For u � C�F � we write $u �

R
F ud��

Lemma ��� For f � F
E�f� f� 	 c�kf � $fk��� ������

Proof� Let g � f � $f � Then from Lemma ���� for x� y � F � �g�x�� g�y��� � �f�x�� f�y��� �
c�E�f� f�� So�

c�E�f� f� � c�

Z Z
E�f� f���dx���dy� 	

Z Z
�g�x�� g�y����dx���dy�

� �

Z
g�x����dx�� �

The following decomposition of Dirichlet forms is along the same lines as that given in

���� but the non�constant environment gives it a more cumbersome form� We use notation
such as Rn��� to denote the quantity Rn associated with the environment sequence ��

�



Lemma ��� For f � F� n 	 ��
E ����f� f� �

X
w�Wn���

Rn���E��n���f 
 �w� f 
 �w�� ������

Proof� If m 	 n then

E ���m �f� f� �
X

w�Wm���

Rm���E��f 
 �w� f 
 �w�

�
X

w�Wn���

X
v�Wm�n��n��

Rn���Rm�n��
n��E��f 
 �w 
 �v� f 
 �w 
 �v�

�
X

w�Wn���

Rn���E��
n��

m�n�f 
 �w� f 
 �w��

Letting m�
 the result follows� �

� Transition density estimates� upper bounds

Let Pt be the semigroup of positive operators associated with the Dirichlet form �E�F� on
L��F� �� " see 
��� As �E�F� is regular and local� there exists a Feller di�usion �Xt� t 	
�� P x� x � F � with semigroup Pt� which we will call Brownian motion on F � As in 
�� we
deduce from Theorem ��� that G� �

R
e��tPtdt has a bounded symmetric density g��x� y�

with respect to �� As g��x� y� � F � C�F �� g��x� �� is continuous for each x� As in Lemma
��� of 
��� it follows that Pt has a bounded symmetric density pt�x� y� with respect to �� and
that pt�x� y� satis
es the Chapman�Kolmogorov equations� We now obtain upper bounds on
pt�x� y�� beginning with the on�diagonal upper bound� where we follow closely the argument
of 
����

Lemma ��� There is a constant c� such that if T��
n � t � T��

n�� then

jjPtjj��� � c�Mn� �����

Proof� For w �Wn write fw � f 
 �w and
$fw �

Z
F ��n��

fw�x��
��n���dx��

Note that for v � C�Fn�� $v �
R
vd� �

P
w�Wn

M��
n $vw�

Let u� � F with u� 	 � and ku�k� � �� Set ut�x� � �Ptu���x� and g�t� � kutk��� We
remark that g is continuous and decreasing� As the semigroup is Markov� kutk� � �� and
using Lemmas ��� and ����

d

dt
g�t� � ��E�ut� ut�

� ��
X

w�Wn

RnE ��n���ut 
 �w� ut 
 �w� �by �����

� ��c���Rn

X
w

Z
�ut�w � $ut�w��d���n��

� ��c���RnMn

Z
u�td� �c���Rn

X
w

$u�t�w

� ��c���RnMnkutk��  �c���RnM
�
n� �����

��



Since MnRn � Tn� we have g
��t� � �cTn�g�t��Mn�� for all n 	 �� Therefore

� d

dt
log �g�t��Mn� 	 cTn� if g�t� � Mn� �����

Let sn � infft 	 � � g�t� �Mng for n � N� Thus ����� holds for � � t � sn� Integrating �����
from sn�� to sn�� we obtain

cTn�sn�� � sn��� � � log �g�sn����Mn�  log �g�sn����Mn�

� log �Mn���Mn���Mn���Mn� � log �m�  ���

Thus sn�� � sn�� � c�Tn�
��� and iterating this we have

sn � c

�X
k�n��

�Tk�
�� � c��Tn�

���

This implies that g�c��Tn� � g�sn� � Mn� It follows that there exists c� � 
 such that if
T��
n � t � T��

n�� then
g�t� � c�Mn�

Finally kPtk��� � kPtk���� � g�t�� proving the Lemma� �

As in 
��� Lemma ��� we can now use the symmetry of pt�x� y�� and the fact that it satis
es
the Chapman�Kolmogorov equations� to deduce that pt�x� y� is jointly continuous in x� y for
each t� We therefore obtain from Lemma ��� the pointwise bound

pt�x� y� � c�Mn� x� y � F� �����

For any process Z on F de
ne the stopping times Ski �Z� by S
k
� �Z� � infft 	 � � Zt � Fkg�

and
Ski �Z� � infft � Ski���Z� � Zt � FknfZSki���Z�

gg�
these are the times of the successive visits to Fk by Z� We de
ne the crossing times on
level k by W k

i �Z� � Ski �Z� � Ski���Z�� and write S
k
i � Ski �X�� W

k
i � W k

i �X�� We now
recall some properties of X and the crossing times " see 
�� ��� for details� Let Y n

i � XSn
i
�

then Y n
� is a simple random walk on Fn� The �Einstein relation� ta � mara implies that

E�Wn
i �Y

m� � Tm�Tn for i 	 �� n � m� If Xn
t � Y n


Tnt�
then� as in 
��� we have that the

processes Xn converge a�s� to X� We also have Wn
i �X

m� � Wn
i �X� a�s� and in L� as

m�
� from which we deduce that EWn
i �X� � T��

n for n 	 �� i 	 ��
Now 
x z � Fn� and B be the union of the n�complexes �w�F �� w �Wn which contain z�

Write SB � infft 	 � � Xt �� Bg� and note that EzSB � T��
n � For x � B we have SB � Sn�

P x �a�s�� and since Sm� � m 	 n is a decreasing sequence with limit � �as X is non�constant��
we deduce

SB �
�X
i�n

�Si� � Si��
� �� �����

As XSi��
�

� Fi��� we have E�S
i
� � Si��

� � � ���i���T
��
i��� where ��a� is such that if �� � a and

S� � inffr 	 � � Y �
r � F�g� then

max
y�F

�a�
�

EyS� � ��a��

��



�Note that as Y �
� is for each a a random walk on the irreducible set F

�a�
� � ��a� is 
nite�� Let

c� � maxa ��a�� From ����� we have� for x � B�

ExSB � c�

�X
i�n

T��
i�� � c	T

��
n � �����

Since SB � t ��SB�t��SB � t� we have� from ������

EzSB � t Ez���SB�t�E
Xt�SB��

� t P z�SB � t�c	T
��
n �

So P z�SB � t� � c��
	 Tnt ��� c��

	 �� and as SB �Wn
� P z�a�s�� we deduce there exist c
 � ��

c� � ��� �� such that
P z�Wn

� � t� � c
Tnt c�� t 	 �� �����

This bound is quite crude� but we can now� as in 
��� use it to derive a much better
estimate on P z�Wn

� � t��
We 
rst de
ne

k � k�m�n� � inffj 	 � � Tm�j

Bm�j
	 Tn
Bm

g� �����

As the function k�m�n� plays a crucial role in our bounds� we need to spend a little time
exploring its properties� First� we recall the inequalities � � ba � b�� � � ta � t�� � � ba �
ta�ba � t���� from ����� and Lemma ����
If m 	 n then Tm�Bm 	 Tn�Bm� so k�m�n� � �� If m � n then as Tn�Bn � Tn�Bm we

deduce that k�m�n� � n�m� On the other hand� writing k � k�m�n�� we have

�k�� � Tm�k���Tm
Bm�k���Bm

� Tn�Tm � �t��n�m�

so that
n�m � k�m�n� � c��n�m� when m � n� �����

Note also from ����� and the remarks preceding that if m � n then n � m  k �
m c��n�m� � ��  c��n� Therefore� for any n� m�

n � m k�m�n� � ��  c��n� ������

Using the bounds on ta�ba above we have� for i 	 ��

�i�� Tm�l

Bm�l
� Tm���l�i

Bm���l�i
� �t����i�� Tm�l

Bm�l
�

from which it follows that

jk�m �� n�� k�m�n�j � c�� for all m�n� ������

So� we have�

j log
�Bm��k�m� �n�

Bm�

�
� log

�Bm�k�m�n�

Bm

�
j � ��  c��jm� �mj log b�� ������

We now de
ne the approximate walk and spectral dimensions�

dw�m� �
log Tm
logBm

� ds�m� �
� logMm

log Tm
� ������

��



Lemma ��� Let � � t � �� � � r � �� and let n�m satisfy

T��
n � t � T��

n��� B��
m � r � B��

m���

Then writing k � k�m�n��

�
� exp

�
c�
Bm�k

Bm

�
� exp

��rdw�m�k�

t

����dw�m�k�����
� exp

�
c��

Bm�k

Bm

�
� ������

Proof� If m 	 n then k � �� and so Bm�k�Bm��� Since dw�m� � log t�� log � � c� and
r � cB��

m � we have rdw�m�k� � rlogTm� logBm � cT��
m � so that rdw�m�k��t � cTn�Tm � c�� As

rdw�m�k��t 	 � the lower bound is clear� It follows that ������ holds�
If m � n then writing 
 � dw�m k��

r��t � cTn�B
�
m � cTm�k��Bm�kB

���
m � � c�Bm�k�Bm�

����

with a similar lower bound� �

Lemma ��� There exist constants c��� c�� such that if k � k�m�n� then

P �Wm
� � T��

n � � c�� exp ��c��Bm�k�Bm�� ������

Proof� If j 	 �� then for the process X to cross one m�complex it must cross at least
N � Bm�j�Bm �m j��complexes� So

Wm
� 	

Bj�m�BmX
i��

Vi�

where Vi are i�i�d� and have distribution W
m�j
� � Lemma ��� of 
�� states that if P �Vi � s� �

p�  
s� where p� � ��� �� and 
 � �� then

log P �
NX
�

Vi � t� � ��
Nt�p��
����N log���p��� ������

Thus� using ����� and ������� we have

log P �Wm
� � T��

n � � c���Bm�j�Bm�
���
�Tm�j�Tn�

���� c�	�Bm�j�Bm�
����� ������

Given k � k�m�n� as above� there exists c�
 and k� such that k � c�
 � k� � k� and

�Tm�k��Tn�
��� � �

�c�	�Bm�k��Bm�
����

Provided k� 	 � we deduce

log P �Wm
� � T��

n � � ��
�c��c�	Bm�k��Bm � �c��Bm�k�Bm�

Choosing c�� large enough we have � � c�� exp��c��Bm�k�Bm� whenever k � c�
 �� so that
������ holds in all cases� �

��



Lemma ��� There exist constants c��� c�� such that if � � t � �� � � r � �� and n�m satisfy

T��
n � t � T��

n��� B��
m � r � B��

m���

and k � k�m�n� then for x � F

P x� sup
��s�t

d�Xs� x� 	 r� � c�� exp
�
�c���r

dw�m�k�

t
����dw�m�k����

�
� ������

Proof� Let m� be such that �c���B
��
m�

� r � �c���B��
m���� Then jm�m�j � c� From ������ we

have that d�x� y� � c���B
��
l if x� y are in the same l�complex� So� d�Xs� x� � �c���B

��
m�

� r
for � � s � Sm�

� � Therefore� writing k� � k�m�� n��

P x� sup
��s�t

d�Xs� x� 	 r� � P x�Sm�
� � t�

� P x�Sm�
� � T��

n �

� c�� exp��c��Bm��k��Bm��

� c�� exp��cBm�k�Bm�� �using �������

� c�� exp
�
�c���r

dw�m�k�

t
����dw�m�k����

�
�

by Lemmas ��� and ���� �

Theorem ��� There exist constants c��� c�� such that if � � t � �� x� y � F � and n�m satisfy

T��
n � t � T��

n��� B��
m � d�x� y� � B��

m��� ������

and k � k�m�n� then

pt�x� y� � c��t
�ds�n��� exp

�
�c���d�x� y�

dw�m�k�

t
����dw�m�k����

�
� ������

Proof� Noting that Mn � ct�ds�n���� this is proved from ����� and Lemma ��� by exactly the
same argument as in Theorem ��� of 
��� �

Remark� Note that the bound ������ may also be written in the form

pt�x� y� � cMn exp��c�Bm�k�Bm�� ������

where m�n satisfy ������� and k � k�m�n��

� Lower Bounds

In this section we use techniques developed in 
��� 
�� to obtain lower bounds on pt�x� y� which
will be identical� apart from the constants� to the upper bound �������

Lemma ��� There exists a constant c� such that if T��
n � t then

pt�x� x� 	 c�Mn for all x � F� �����

��



Proof� Note from Lemma ��� that if r � 	B��
n � with 	 � b�� then

P x�d�x�Xt� � r� � c	��� exp��c	���Bm�k�Bm��

where m � n satis
es B��
m � 	B��

n � B��
m��� and k � k�m�n�� Note that 	 � �b��n�m���

Since m k � n we have Bm�k�Bm � Bn�Bm 	 �n�m� Thus

Bm�k�Bm 	 c	log �� log b
�

�

so that there exists c� � � such that

P x�d�x�Xt� � r� � c exp��c�	c��� �����

Now let 	 � 	� be large enough so the left hand side of ����� equals
�
� � Then by ������

��B�x� 	�B
��
n �� � cM��

n � and so writing G � B�x� 	�B
��
n � we have P x�Xt � G� 	 �

� � So�
using Cauchy�Schwarz�

�
	 � P x�Xt � G��� �

�Z
G
pt�x� y���dy�

��
�

� ��G�

Z
G
pt�x� y�

���dy� � cM��
n p�t�x� x��

If t 	 T��
n then t�� 	 T��

n��� so we deduce that pt�x� x� 	 cMn�� 	 c�Mn� �

We need to extend this �on�diagonal lower bound� to a �near�diagonal lower bound�� which
we do via an estimate on the H%older continuity of the heat kernel�

Lemma ��� Let m 	 �� n 	 �� and T��
n � t� d�x� x�� � B��

m��� Then for each y � F �

jpt�x� y�� pt�x
�� y�j � c�Mn

r
Rn

Rm
� �����

In particular pt��� �� is uniformly continuous on F � F for each t � ��

Proof� By ������ if x� x� are in the same m�complex then

jpt�x� y�� pt�x
�� y�j� � cR��

m E�pt��� y�� pt��� y��� �����

As in 
�� Lemma ���� we have� writing u�x� � pt���x� y��

E�Pt��u� Pt��u� � c�t�����kuk���
� ct��pt�y� y� � c�t��Mn � c��TnMn�

As Tn � MnRn we deduce that ����� holds if x� x
� are in the same m�complex� If now we

just have d�x� x�� � B��
m��� then there is a chain of at most b

� m�complexes linking x� x�� and
again we have� adjusting the constant c� that ����� holds� �

Lemma ��� There exist c	� c
 such that if T��
n � t� then

pt�x� y� 	 c	Mn whenever d�x� y� � c
B
��
n � �����

��



Proof� We can 
nd c such that there exists m with n � m � n c and Rm�Rn 	 �����m�n 	
�c���c

�
�� As m � n � c we have B��

m�� 	 c
B
��
n for some constant c
� So if d�x� y� � c
B

��
n

then by Lemmas ��� and ����

pt�x� y� 	 pt�x� x�� jpt�x� y�� pt�x� x�j 	Mn�c� � c��Rn�Rm�
��� � 	 �

�c�Mn�

�

We can now use a standard chaining argument to obtain general lower bounds on pt from
Lemma ����

Theorem ��� There exist constants c�� c� such that if x� y in F � t � ��� �� and
T��
n � t � T��

n��� B��
m � d�x� y� � B��

m���

then

pt�x� y� 	 c�t
�ds�n��� exp

�
�c��d�x� y�

dw�m�k�

t
����dw�m�k����

�
� �����

Proof� Using ����� we see that the bound is satis
ed if m 	 n� Now let m � n� write
k � k�m�n�� and choose j� l with � � j � l � c such that

�l�j 	 �b��c�� �b��l � ��b��j�

note that such a choice is possible� with a constant c depending only on c� and b�� We then
have

Bm�k�l

Bm�k
� Bm�k�j

Bm�k
�b��l�j � Tm�k�j

Tm�k
��j�b��l�j �

Tm�k�j

Tm�k
� �����

and
�b�

Bm�k�l
� �b��j�l

Bm�k�j
� c�
Bm�k�j

� �����

Let N � Bm�k�j�Bm� Since d�x� y� � b�B��
m there exists a chain x � z�� z�� � � � � zN � y with

d�zi��� zi� � b�B��
m�k�j� Let Gi � B�zi� b

�B��
m�k�j�� then� if xi � Gi� we have

d�xi��� xi� � �b�B��
m�k�l � c�B

��
m�k�j� �����

Let s � t�N � then

s 	 Bm

TnBm�k�l
	 Bm�k

Tm�kBm�k�l
�

�

Tm�k�j
� ������

From ������ ����� and ������ we have ps�xi��� xi� 	 cMm�k�j 	 c�Mm�k� Therefore since

��Gi� 	 c�M
��
m�k� and m k 	 n�

pt�x� y� 	
Z
G�

� � �

Z
GN��

ps�x� x�� � � � ps�xN��� y���dx�� � � � ��dxN����

	 �
N��Y
i��

��Gi���c�Mm�k�
N �

	 cMm�k exp��c�N� 	 cMn exp��c��Bm�k�Bm��

Using Lemma ��� completes the proof� �

Proof of Theorem ���� This is an immediate consequence of Lemma ��� and Theorems ���
and ���� �

��



� Examples

In this section we apply Theorems ��� and ��� to see how oscillations in the environment
sequence �i relate to oscillations in the transition density�

For the environment sequence � set

ha�n� � n��
nX
i��

���i�a�� a � A�

Let �pa� be a probability distribution on A� and suppose that � satis
es� for some regularly
varying increasing function g�

ha�n�� pa as n�
 for each a � A� �����

jha�n�� paj � n��g�n�� n 	 �� a � A� �����

Note that if � � pa � � then lim inf jnha�n�� npaj � �� so that the rate of convergence given
by taking g�n� � O��� is the fastest possible�

We have

ds�n� �
�
P

a ha�n� logmaP
a ha�n� log ta

� dw�n� �

P
a ha�n� log taP
a ha�n� log ba

� �����

Let

ds � lim
n
ds�n� �

�
P

a pa logmaP
a pa log ta

�

and de
ne dw similarly�
If �pa�� �qa� are probability distributions on A� and for a � A� ua� va satisfy u

� 	 ua 	 c��
v� 	 va 	 c�� then elementary calculations yield

���
P

qauaP
qava

�
P

pauaP
pava

��� � c��
� u�v�max

a
jpa � qaj� �����

Therefore ������ ����� imply that

�
� jds�n�� dsj � c�n

��g�n�� jdw�n�� dwj � c�n
��g�n�� �����

Let
��t� � g�log���t��� t � ��� ���

Theorem ��� Let � satisfy ����� and ������ Then for � � t � �� x� y � F

pt�x� y� � c	t
�ds��ec�	�t� exp

�
�c�e�c�	�t��d�x� y�

dw

t
����dw���

�
� �����

pt�x� y� 	 c�t
�ds��e�c�	�t� exp

�
�c�ec�	�t��d�x� y�

dw

t
����dw���

�
� �����

Proof� Let T��
n � t � T��

n��� B
��
m � r � d�x� y� � B��

m��� Then� since �
n � Tn � �t��n� and

similar bounds hold for Bm� we have

cn � log���t� � c�n� cm � log���r� � c�m� �����

��



So by �����

t�ds�n��� � t�ds��t�c�n
��g�n� � t�ds�� exp�cg�c�n�� � t�ds�� exp�c
����t��� �����

For the o��diagonal term we have� writing u � rdw�t�

u � c
Tn

Bdw
m

� c
Tm�k

Bm�kB
dw��
m

� c
�Bm�k

Bm

�dw��
B
dw�m�k��dw
m�k �

so that if � � �dw � dw�m k����dw � �� then

Bm�k�Bm 	 cu���dw���B

m�k� ������

Using ������ we have c�n � logBm�k � c��n� and so

logB

m�k 	 �cnjdw�m k�� dwj 	 �c�g�n�� ������

From ������ we have

pt�x� y� � ct�ds�n��� exp��cBm�k�Bm��

and combining this with ������ ������ and ������ we obtain ������
The lower bound is proved in exactly the same way� �

The on�diagonal bounds here are �up to constants� the best possible� Set

qt�x� � pt�x� x�t
ds���

Theorem ��� Let � satisfy ����� and suppose there exists a sequence ni �
 such that

ni�ds�ni�� ds� � g�ni�� i 	 �� ������

Then if si � T��
ni �

qsi�x� 	 exp�c����si��� i 	 �� ������

Similarly� if ni�ds�ni�� ds� � g�ni�� then qsi�x� � exp��c����si�� for i 	 ��

Proof� From Theorem ���� and using the calculations in Theorem ��� we have

qsi�x� 	 cs
�ds�ds�ni����
i 	 c exp�c�g�ni�� 	 c exp�c�����si���

which establishes ������� The lower bound is proved in the same way� �

Remark� Theorems ��� and ��� imply that the bounds on pt of the kind which hold for
regular fractals such as nested fractals or Sierpinski carpets� �see 
�� ����� hold for scale
irregular Sierpinski gaskets if and only if the convergence of ds�n� to ds is as fast as possible�
so that the function g in ����� satis
es g�n� � K for all n�

��



We can apply Theorem ��� to the case when the environment random variables �i �de�

ned on a probability space �&�F�P�� are i�i�d� with �non�degenerate� distribution �pa��
By the law of the iterated logarithm the random variables ha�n� satisfy ����� with g�n� �
C����n log log n����� where P�C��� � 
� � �� Applying Theorem ���� and writing ��t� �
maxf��log���t�� log log log���t������ �g� we have

Corollary ��� There exists a constant C � C��� � ���
� such that for � � t � � and
x� y � F ������� P� a�s��

pt�x� y� � c	t
�ds��eC��t� exp

�
�c�e�C��t��d�x� y�

dw

t
�
���dw���

�
� ������

with a similar lower bound�

Remark� In 
��� it was proved that for each � � � there exist c���� ��� c���� �� such that
for x� y � F ������

pt�x� y� � c�t
�ds���
 exp

�
�c��d�x� y�

dw�


t
����dw����


�
� ������

Setting r � d�x� y� let a�r� t�� b�r� t� denote the right hand sides of ������ and ������
respectively� Since limt	� t


ec	�t� � �� we have that a��� t� � b��� t� for all su�ciently small
t� With a little more labour we can also show that a�r� t� � b�r� t� for all su�ciently small
r� t� so that� neglecting constants� the bound in ������ improves that of ������� �Of course�
this is to be expected� since Theorem ��� shows that the bounds in Theorem ��� are� up to
constants� the best possible��

Note� however� that for the on diagonal bounds there is less oscillation in the random
recursive case 
��� than that observed here�

� Spectral results

Write L for the in
nitesimal generator of the semigroup �Pt�� we call L the Laplacian on
the fractal F � The uniform continuity of pt �see Lemma ���� implies that Pt is a compact
operator on L��F� ��� so that Pt� and hence �L� has a discrete spectrum� Let � � 	� � � � � be
the eigenvalues of �L� and let N�	� � 'f	i � 	i � 	g be the eigenvalue counting function�

Since Z
F
pt�x� x���dx� �

Z �

�
e�stN�ds�� t � ��

using ������ and ����� we have

c�Mn �
Z �

�
e�s�TnN�ds� � c�Mn� n 	 �� �����

Proposition 	�� There exist constants c�� c	� c
 such that if 	 � c� and n is such that
Tn�� � 	 � Tn then

c		
ds�n��� � N�	� � c
	

ds�n���� �����

Proof� It is su�cient to prove that there exists c� � � such that

cMn � N�Tn� � c�Mn for n 	 c��

��



The right hand inequality is easy� From �����

c�Mn 	
Z Tn

�
e�s�TnN�ds� 	 e��N�Tn��

For the left hand inequality� let r � n and note that

c�Mr � N�Tn�  

Z �

Tn

e�s�TrN�ds��

We have

Z �

Tn

e�s�TrN�ds� �

�X
k�n

Z Tk��

Tk

e�s�TrN�ds� �����

�
�X
k�n

e�Tk�TrN�Tk��� �����

� cMr

�X
k�n

m��m��k�r exp���k�r�� �����

So there exists c� � � such that if n � c� then there exists n� c� � r � n such that

Z �

Tn

e�s�TrN�ds� � �
�c�Mr�

We therefore deduce that N�Tn� 	 �
�c�Mr 	 c�Mn by the choice of r for n � c�� �

Finally� we consider the case� mentioned in Section �� when the environment sequence is
i�i�d� with non�degenerate distribution �pa�� Let ��	� � ��log 	� log log log 	�

���� Combining
Proposition ��� with the calculations made in Section � we obtain

Corollary 	�� There exists positive constants c�� c� such that P	a�s�

lim sup
���

N�	�ec	����

	ds��
�
�

lim inf
���

N�	�e�c
����

	ds��
� ��
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