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�� Introduction�

We begin by considering a class of fractal subsets of Rd formed by the following gener

alization of the construction of the Cantor ternary set� Let d � � and let F� � ��� ��

d� Let
lF � � be an integer and divide F� into �lF �

d equal subcubes� Next remove a symmetric
pattern of subcubes from F� and call what remains F�� Now repeat the procedure
 divide
each subcube that is contained in F� into l

d
F equal parts� remove the same symmetric pattern

from each as was done to obtain F� from F�� and call what remains F�� Continuing in this
way we obtain a decreasing sequence of �closed� subsets of ��� ��d� Let F � ��n��Fn� we call
F a generalized Sierpinski carpet �GSC� or simply� a carpet� The standard SC �see �Sie�� is
the GSC for which d � �� lF � �� and F� consists of F� minus the central square� Let mF be
the number of subcubes remaining in F�� and let df � logmF � log lF � Then the Hausdor	
dimension of F is df � For an example of a GSC in R

� � see the picture of the Menger sponge

in �Man�� p� ����

Figure �
 The �rst two stages of the construction of the
standard Sierpinski carpet in two dimensions�

We will also be interested in two other related sets� which have a large
scale structure
similar to the small
scale structure of F � The �rst� which following �O�� we call the pre�carpet�
is the set eF� � ��n��l

n
FFn� �Here and throughout this paper we write �G � f�x 
 x � Gg��

Note that eF� � Rd� � and that eF� � ��� lnF �d consists of ��� lnF �d with a number of �possibly
adjacent� cubical holes removed� of sides varying from � to ln��F � Write � � int � eF��
 then �
is a �non
empty� domain in Rd with a piecewise linear boundary � see Figure �� It is easy to
check that � satis�es the volume doubling condition� The second related set is the unbounded
GSC eF � ��n��l

n
FF �
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Figure �
 �Part of� the pre
carpet� The small squares have side ��

We may regard these sets as idealized models of a region with obstacles of many di	erent
sizes� Our purpose in this paper is to study the Laplace and heat equations on the spaces F �eF�� and eF � In particular we

��� prove a uniform Harnack inequality for positive harmonic functions on eF��
��� study the heat equation on eF and F � and obtain upper and lower bounds on the heat

kernel which are� up to constants� the best possible�
��� construct a locally isotropic di	usion X on F and determine its basic properties�
��� extend some classical Sobolev and Poincar�e inequalities to this setting�

Just as the Euclidean dimension enters the standard heat kernel estimates and Sobolev
inequalities� the Hausdor	 dimension df of F plays a role in the analogues for F � What makes
the fractal case intriguing� however� is that there is another parameter� called the spectral
dimension ds� which is much more signi�cant� For example� the Sobolev inequality in R

d for
d � � states that if p � �d��d� �� and f and its gradient are in L��Rd �� then

kfkp � c�krfk�� �����

The corresponding inequality for a GSC �see Theorem ���� has the Lp norm of f on the left
hand side� but now with p � �ds��ds���� the dimension df does not enter into the inequality�
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The Hausdor	 dimension of F � df can be calculated easily from lF and the Lebesgue
measure of F�� On the other hand the spectral dimension ds appears to be a �physical� or
�analytic� constant rather than a geometric one� we know of no simple formula for ds in terms
of the geometry of F � and believe that none exists� Rather� ds is de�ned via the properties
of harmonic functions on the sets Fn� While the exact determination of ds seems to be
a hard problem� it is quite easy to obtain certain bounds� and we have in particular that
� � ds � df � d�

Any argument based purely on the geometry of F will inevitably lead to results involving
geometric constants� Since all the key inequalities relating to F involve ds� we cannot expect
to be able to derive them by� say� starting with an isoperimetric inequality� as is possible in
Rd � Other methods suited to Rd also fail� and in fact� even very basic tools �like the cut
o	
functions used in Moser �M�� do not work�

We therefore had to develop some new techniques� Our basic approach is probabilistic

we construct a di	usion X on eF � which� because it is locally isotropic� we call a �Brownian
motion� on eF � We can then use properties of X to derive bounds on its transition density
�which solves the heat equation on F �� Given these bounds� we can then derive Sobolev and
Poincar�e inequalities on eF and eF��

The starting point of our analysis� and the hardest result in this paper� is a uniform
�elliptic� Harnack inequality� Let B be an open set in Rd � We say that h is harmonic on
B � FN if �h�x� � � for x � B � int �FN �� and the normal derivative of h is � on B � �FN
almost everywhere with respect to surface measure on �FN � Write B�x� r� for the usual open
ball in Rd with centre x and radius r�

Theorem ���� There exists c� not depending on N � such that if x � FN � r � �� and h is
positive and harmonic on B�x� �r� � FN � then writing A � B�x� r� � FN �

sup
A

h�x� � c� inf
A
h�y�� �����

A similar result holds for the pre
carpet eF��
Of course� since FN is a Lipschitz domain� for each N the standard Harnack inequality

guarantees there exists c��N� such that ����� holds� The point of this theorem is that c� can
be taken to be independent of N �

In an earlier paper �BB�� we proved a uniform Harnack inequality in the case d � ��
The proof used a �path
crossing� argument which cannot be generalized to the case d � ��
Kusuoka and Zhou �KZ� extended this result to fractals satisfying ds � �� but their method is
also tied to the low
dimensional case� Standard approaches to Harnack inequalities in higher

dimensions� such as Moser�s iterative technique �M� or the Nash
Fabes
Stroock method �FS��
do not appear to work for GSCs� and we were therefore forced to use a di	erent approach� Our
proof of ����� uses the probabilistic technique of coupling� �See �Lv� for a general introduction
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to this method�� More precisely� given distinct points x� y � FN � we construct two re�ecting
Brownian motions on FN � starting at x� y� such that the two processes meet with a positive
probability p which is independent of N � Using this� we then establish a Harnack inequality
with constants independent of N � We believe that our use of coupling to prove Harnack
inequalities is new� it may also be applicable to a variety of other situations�

Given the Harnack inequality� we modify methods developed by us in earlier work on
two
dimensional Sierpinski carpets �see �BB�
BB���� We can construct the process X as
the limit of �suitably accelerated� re�ecting Brownian motions on the sets FN � Let � be �a
multiple of� the Hausdor	 xdf 
measure on eF �
Theorem ���� There exists a nondegenerate continuous strong Markov process Xt whose
state space is eF � Xt has transition densities which have the strong Feller property and which
are ��symmetric� The law of the process �Xt� t � �� is locally invariant under local isometries

of eF �
Write Pt for the semigroup associated with X� and let �L�D�L�� be the in�nitesimal

generator of Pt� we call L the Laplacian on eF � The heat equation on eF then becomes

�u

�t
�x� t� � Lu�x� t�� x � eF� t � �� �����

The fundamental solutions to the heat equation are given by the transition densities p�t� x� y�
for the process Xt on eF � The spectral dimension ds is de�ned from the sequence Rn of
electrical resistances across the sets lnFFn� Let dw � �df�ds� note that as ds � df we have
dw � ��

Theorem ���� p�t� x� y� is symmetric and jointly continuous on �����	 eF 	 eF � and for each
x� y the function p�t� x� y� is C� in t� There exist c�� c�� c�� c� such that for all x� y � eF and
t � ��

c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
� p�t� x� y� � c�t

�ds�� exp
�
� c�

� jx� yjdw

t

����dw��	�
� �����

Let Wt be Brownian motion on the pre
carpet eF�� with normal re�ection on � eF�� and
let q�t� x� y� be its transition density with respect to Lebesgue measure on eF�� These transi

tion densities are the fundamental solutions to the heat equation �u��t � �

��u on
eF� with

Neumann boundary conditions�

Since eF� is locally similar to Rd � but has a �fractal� global structure� we would expect
q�t� x� y� to have di	erent behavior for small and large t� We would also expect� in view of
standard large
deviation theory for Brownian motion� that� if jx� yj is large in comparison
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with t then q�t� x� y� will exhibit Gaussian behavior� �Very roughly� if jx� yj is much larger
than t� then for the process W to move from x to y in time t� it will with high probability
stay close to the shortest path connecting x and y� and it will have no time to feel the fractal
structure of eF���
Theorem ���� There exist c�� � � � � c
 � ����� such that if x� y � eF� and
�a� t � max��� jx� yj�� then

c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
�����

� q�t� x� y� � c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
�

�b� if t � �� then

c�t
�d�� exp��c�jx� yj��t� � q�t� x� y� � c
t

�d�� exp��c
jx� yj��t�� �����

�c� if t � �� jx� yj � t� then

c�t
�ds�� exp��c�jx� yj��t� � q�t� x� y� � c
t

�ds�� exp��c
jx� yj��t�� �����

As remarked above� the set eF� satis�es the usual volume doubling condition and an
elliptic Harnack inequality� However� since q�t� x�� �� is parabolic on the whole space �����	eF� it follows easily from the bounds in Theorem ��� that the �usual� parabolic Harnack
inequality on eF� fails for any GSC for which dw � �� �See Proposition ���� for details� and
Remark ��� for examples of GSCs for which it is known that dw � ��� This answers a question
raised in Grigor�yan �Gr�� Essentially the point is that whereas an elliptic Harnack inequality
such as Theorem ��� contains no information on the space
time scaling of the process W � this
scaling information appears explicitly in the parabolic Harnack inequality�

To obtain the parabolic estimates above from Theorem ��� some additional information
on the process W is needed� This is provided by exploiting the close connection between
resistances and crossing times� For graphs this was proved in �CRRST� � see also �Tet�� and
for Sierpinski carpets see �BB��� �BB��� Using this� the resistance bounds in �BB�� and �McG��
and the Harnack inequality� we can obtain good bounds on the time taken by W to escape
from a region of the form B�x� r� � eF�� These bounds then enable us to derive estimates
for expressions like

R�
� e��ttpq�t� x� y� dt for suitable p� and using these we prove the upper

bounds in Theorem ���� This method is also new and could easily be modi�ed to give new
proofs of the upper bounds of Aronson �A� for the heat kernels of uniformly elliptic operators
in divergence form on Rd �

For the key estimate for the lower bound for q�t� x� y� we again use coupling� this may
also have applications outside the fractal context� The bounds in Theorem ��� follow easily
from those in Theorem ���
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The relationship between bounds on the behavior of the norm of Pt and Sobolev and
other analytic inequalities has been explored very extensively in recent years� following the
basic papers �V�� and �CKS�� Write kfkpp �

ReF jf jpd�� As X is �
symmetric� we can associate
a Dirichlet form �E �D�E�� with Pt �see �FOT��� Since Theorem ��� implies easily that

kPtfk� � c�t
�ds��kfk��

we can apply the theory mentioned above to immediately deduce a Sobolev inequality on eF �
Theorem ���� Suppose ds � �� There exists c� such that for all f � D�E�

kfkp � c�E�f� f�
���� p � �ds��ds � ���

We also obtain a Sobolev inequality on eF�� and Poincar�e and mass
capacity inequalities
for both eF and eF�� see Section ��

Let G be the graph whose vertices are the centers of those unit squares that lie in eF��
Two vertices x and y will be connected by an edge if jx�yj � �� G is called the graphical SC�
In �BB�� the results of this paper are used to obtain Poincar�e� Sobolev� and mass
capacity
inequalities for G and to obtain transition probability estimates for the symmetric random
walk on G�

Initial interest in the study of random walks or di	usions on fractals came from math

ematical physicists working in the theory of disordered media � see �RT�� �AO�� and for a
survey from a physical viewpoint �HBA�� The initial mathematical work was on the simplest
non
trivial regular connected fractal� the Sierpinski gasket� in �Kus��� �Go�� �BP�� In partic

ular� �BP� obtained bounds similar to those in Theorem ��� for the transition densities of
the Brownian motion on the Sierpinski gasket� The Sierpinski gasket G is �nitely rami�ed�
that is� it can be disconnected by removing a �nite number of points� This means that many
subsets of G have a �nite boundary� and so a Harnack inequality can be proved in an elemen

tary way� Subsequently many other �nitely rami�ed fractals have been treated in a similar
fashion � see for example �L�� �Kig��� �Kig��� �Kum��� and �Fuk�� Note that while some of
these papers use probability theory� others employ a purely analytic approach� and construct
the Dirichlet form directly� However� no purely analytic derivation of the bounds on the heat
kernel is known in the fractal context� While it possible for a �nitely rami�ed fractal to have
ds � � �see �Kum�� or �Ny�� these spaces are in some sense quite inhomogeneous� Indeed�
Proposition ���� of �Bar�� implies that if bounds of the form ����� hold on a �nitely rami�ed
fractal then ds � �� So if one wishes to study regular higher dimensional fractal spaces which
are not simple products one is led to consider in�nitely rami�ed fractals�

Generalized Sierpinski carpets provide a reasonably simple but general family of in�nitely
rami�ed fractals� See �GAM�� �BAH� for early work by mathematical physicists� and �HHW���
�HHW�� for an approximate approach to the calculation of the spectral dimension� GSCs in
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two dimensions have been studied in �BB�� BB�� BBS� BB�� BB��� but as ds � df � d
these sets also have ds � �� There are only a few previous papers on GSCs with d � ��
The fractals studied by Kusuoka and Zhou in �KZ� include GSCs� and that paper contains
a Harnack inequality similar to Theorem ��� above for GSCs with ds � �� �They also have
some results for more general GSCs�� �See section � of this paper for an example of a GSC
with d � � but ds � ��� In addition� Osada �O�� has proved an isoperimetric inequality� and
used it to deduce that

q�t� x� y� � c�t
�di��� x� y � eF�� t � �� �����

where di is the �isoperimetric dimension� of eF�� Comparing ����� with ����� we see that
ds � di� and we expect that in general the inequality is strict�

For surveys of work on �nitely rami�ed fractals see �Kus�� or �Bar��� and for Sierpinski
carpets see �Bas���

The layout of this paper is as follows� Section � introduces the notation we will use
together with a few basic facts� Section � contains the coupling argument
 as this is quite
long and hard we give here a very brief summary of the essential ideas� See also �BB��� where
these results were announced�

Let N � �� Let S�n be the set of cubes of side length �l
�n
F with vertices in �l�nF Zd� Let

us say x
m

 y if x � S� � S�m� y � S� � S�m� and there is an isometry from S� to S� that

takes x to y� Given x
m

 y� we construct two re�ecting Brownian motions W x

t and W
y
t on FN

starting from x and y� respectively� such that W x
t
m

W y

t for all t� and such that with some

positive probability c� � � we have W
x
��

m��

 W y

��
� where 	� is the �rst time either W

x or W y

moves more than a few cubes in Sm away from their starting points� This construction uses
the symmetry of F� very heavily� If �nm� is a sequence of integers and 	n is the nth timeW

x

or W y has moved more than a few cubes in Sm� then a renewal
type argument tells us that

W x�	nm�
m��

 W y�	nm� with probability at least � � �� � c��

nm � Repeating this argument

for m � �� m � �� ���� we see that there is positive probability that W x �

W y at some time

before either W x or W y hits �F��
In Section � we derive the uniform Harnack inequality from the coupling result� Section

� contains the construction of the Brownian motion� In Section � we establish the bounds
on the heat kernel for both eF and eF�� and in Section � we consider Sobolev and Poincar�e
inequalities� In Section � we establish a number of basic properties of the process Xt� These
include transience and recurrence� moduli of continuity� the Hausdor	 dimension of the range�
the existence of local times� self
intersections� rates of escape� and a zero
one law� The paper
is concluded in Section � by some examples and open problems�

�� Notation and preliminaries�

We begin by setting up our notation� We use the letter c with subscripts to denote con

stants which depend only on the dimension d and the carpet F � We renumber the constants
for each lemma� proposition� theorem� and corollary�

�



Let d � �� F� � ��� ��
d� and let lF � N � lF � � be �xed� For n � Z let Sn be the collection

of closed cubes of side l�nF with vertices in l�nF Zd� For A � Rd � set

Sn�A� � fS
S � A� S � Sng�

For S � Sn� let  S be the orientation preserving a!ne map which maps F� onto S�

We now de�ne a decreasing sequence �Fn� of closed subsets of F�� Let � � mF � ldF
be an integer� and let F� be the union of mF distinct elements of S��F��� We impose the
following conditions on F�


Hypotheses ����

�H�� �Symmetry� F� is preserved by all the isometries of the unit cube F��

�H�� �Connectedness� Int�F�� is connected� and contains a path connecting the hyperplanes
fx� � �g and fx� � �g�

�H�� �Non�diagonality� Let B be a cube in F� which is the union of �d distinct elements of

S�� �So B has side length �l��F �� Then if int �F� �B� is non�empty� it is connected�

�H	� �Borders included� F� contains the line segment fx 
 � � x� � �� x� � ��� � xd � �g�

We may think of F� as being derived from F� by removing the interiors of l
d
F � mF

squares in S��F��� Given F�� F� is obtained by removing the same pattern from each of the
squares in S��F��� Iterating� we obtain a sequence �Fn�� where Fn is the union of m

n
F squares

in Sn�F��� Formally� we de�ne

Fn�� �
�

S�Sn�Fn	

 S�F�� �
�

S�S��F�	

 S�Fn�� n � ��

We call the set F � ��n��Fn a generalized Sierpinski carpet �GSC�� Let dim� � � denote
Hausdor	 dimension� by �Hu� dim�F � � logmF � log lF �

Remark ���� These conditions are natural higher
dimensional analogues of the ones given in
�BB��������� Since we are interested in constructing continuous processes on F � the hypothesis
�H�� is essential� It would be interesting to be able to consider GSCs for which the symmetry
condition �H�� was either weakened or dispensed with entirely� However� �H�� plays a vital
role in this paper� namely� in the key coupling argument in Section �� Indeed� we do not expect
the Harnack inequality Theorem ��� to remain true without strong symmetry assumptions
on F��

The other two hypotheses� �H�� and �H��� are not so essential� We expect that results
similar to those in this paper still hold for GSCs which do not satisfy �H��� However� the
natural state space of the limiting process X may no longer be F � and the added generality
would signi�cantly increase the complexity of the arguments� We include �H�� for simplicity
� it ensures that the shortest path metric and the Euclidean metric on F are comparable�
See �BB�� Sect� �� for some remarks on GSCs which do not satisfy �H��� and �FHK�� �Kum��
for constructions of such a shortest path metric in the case of nested fractals�
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We will be interested in unbounded analogues of F � Set Fk � F� for k � � and for n � Z

let eFn � ��
r��

lrFFn�r� �����

and eF � T�
n��

eFn� In particular we call eF� the pre�carpet �see �O���� Let
�n�dx� � mn

F �eFn�x�dx�
and let � be the weak limit of the �n
 � is a constant multiple of the Hausdor	 x

logmF � log lF


 measure on eF �
We need notation for a block of cubes that have a point x near the center� For x �

�x�� � � � � xd�� let 
�xi� be the integer j such that l
�r
F �j � ������ � xi � l�rF �j " ������ and let

Dr�x� �
h
�x��� �

lrF
�

�x�� " �

lrF

i
	 � � � 	

h
�xd�� �
lrF

�

�xd� " �

lrF

i
� �����

Observe that Dr�x� decreases as r increases� Note also that Dr�x� is a cube of side length
�l�rF �

For distance on the sets eFn we will frequently �nd it convenient to use the k�k� norm�
since in this norm the unit ball is a cube with sides parallel to the axes� We denote by
B��y� �� the set fx � Rd 
 kx� yk� � �g� and use B�x� �� to denote the usual open balls in
Rd � Note the following


Lemma ���� �a� If y � Dn�x� then kx� yk� � �����l�nF �
�b� If kx� yk� � �����l�nF then y � Dn�x��

�c� If x � eF and n � Z then m�n
F � ��Dn�x�� � �dm

�n
F �

�d� If x � eF� and n � � then m�n
F � ���Dn�x�� � �dm

�n
F �

�e� There exist constants c�� c� such that for x � eF��
c�r

d � ���B�x� r�� � c�r
d� � � r � ��

c�r
df � ���B�x� r�� � c�r

df � r � ��

�f� There exist constants c�� c� such that for x � eF �
c�r

df � ��B�x� r�� � c�r
df � r � ��

In particular it follows immediately from �e� that � eF�� j ���j� ��� satis
es the volume doubling
condition �see �Gr��


���B�x� r�� � c���B�x� �r��� for x � eF�� r � ��
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A similar volume doubling condition also holds for eF �
We write

Hi�t� � fx � Rd 
 xi � tg� t � R� �����

We write B�G� for the Borel subsets of the set G� For a Borel set A and process X on Rd we
write

TA � T �A� � TA�X� � T X
A � infft � � 
 Xt � Ag �����

for the hitting time of A and

�A � ��A� � �A�X� � �XA � T �Ac� �����

for the exit time of A� We also let

	r�x� � 	Xr �x� � 	r�x�X� � infft � � 
 Xt �� Dr�x�g� �����

We de�ne the coupling time for two processes


De�nition ���� Let Xk
t � k � �� �� be processes on Rd � The coupling time of X�� X� is

de�ned by
TC � TC�X

�� X�� � infft � � 
 X�
t � X�

t g� �����

We say the Xk are coupled if X�
t � X�

t for t � TC �

Let D be an �open� Lipschitz domain in Rd � We call a process Xt a re�ecting Brownian
motion on D� or RBM�D� for short� if X is a D
valued di	usion which is locally a Brownian
motion on D� with normal re�ection on �D� If D is a closed set in Rd � D � int �D�� and
int �D� satis�es the conditions above� then we say X is a RBM�D� if X is a RBM�int �D���
The existence �and uniqueness in law� of such processes is proved in �BH�� Sect� �� and �Bas���

In the remainder of this section we will give some basic properties of RBM�D�� where
D is a Lipschitz domain� We write W for RBM� eF���

In Section � we will make frequent use of the following fact�

Lemma ���� Let D be a Lipschitz domain in Rd � and let X be a RBM�D�� If A � Rd and
A is polar for standard d�dimensional Brownian motion� then A �D is polar for X�

Note in particular that subspaces of Rd of codimension greater than or equal to � are polar
for X�

Proof� Suppose d � � and A is polar for d
dimensional Brownian motion� If x � D� then
there exists rx � � such that D � B�x� rx� � D� � B�x� rx�� where D

� is the region above
the graph of a Lipschitz function in some coordinate system� Since D can be covered by a
countable union of balls of this kind and a countable union of polar sets is polar� it is su!cient

��



to consider the case when D is the region above the graph of a Lipschitz function and A is
bounded�

Let v be the Green function for X on D� and w be the Green function for Brownian
motion on Rd � By �BH�� Corollaries ��� and ���� there exist c� and c� such that

c�jy � zj��d � v�y� z� � c�jy � zj��d� y� z � D� �����

Suppose 
 is a non
zero measure supported on A with
R
v�y� z�
�dz� � � for all y� ThenR

w�y� z� 
�dz� is bounded� which implies that A is not polar for d
dimensional Brownian
motion� So no such measure 
 exists and A is polar for X�

If d � �� we consider eXt � �Xt� Zt� in D	R� where Zt is an independent one
dimensional
Brownian motion and use the above argument to show that A	 R is polar for eX since it is

polar for �
dimensional Brownian motion� �

We need to extend some results that were proved in �BH� for RBM in regions above the
graph of a Lipschitz function to RBM in eF�� We begin with a support theorem for RBM� eF���
Proposition ���� Let � � � and let � 
 ��� �� 
 eF� be a di�erentiable curve� There exists
c� � � depending only on � and k��k� such that

P���	�sup
s��

jWs � ��s�j � �� � c��

Proof� Let x � ����� By Proposition ��� of �BH� and scaling� there exist �� and �� depending
on � and k��k� such that with probability at least c� we have sups��� jWs���s�j � ��� and
dist �W�� � �D� � ��� By the Markov property� it thus su!ces to show

Py� sup
���s��

jWs � ��s�j � �� � c� �����

when jy � �����j � ��� and dist �y� �D� � ����� However ����� follows by applying the
support theorem for standard d
dimensional Brownian motion ��Bas�� p� ���� with � replaced
by ��� and � replaced by a curve � starting at y that is always within ��� of � but such that
� never gets closer than a distance �� � ����� to �D� �

Fix x� � eF�� Let m � Z� As eF� � Dm�x�� is a bounded Lipschitz domain� by Lemma
��� of �BH� and its proof� a RBM� eF� � Dm�x��� W has a continuous transition density
qDm�x�	�t� x� y� � q�t� x� y� with respect to Lebesgue measure on eF� �Dm�x��� By Theorem
��� and Remark ���� of �BH��

q�t� x� y� � c��m�t
�d�� exp��c��x� y���t�� x� y � eF� �Dm�x��� t � �� ������

��



Since q is the transition density of a symmetric process� q�t� x� y� � q�t� y� x�� By �Bas���
Sect� �� there is an eigenvalue expansion for q


q�t� x� y� �
�X
i��

e��it�i�m�x��i�m�y�� ������

where the convergence is absolute and uniform� This and ������ imply

q�t� x� y� � c�t
�d�� exp��c�t�� x� y � eF� �Dm�x��� t � �� ������

where c� and c� depend on m� Cauchy
Schwarz and ������ imply

q�t� x� y� � q�t� x� x����q�t� y� y���� ������

and also that q�t� x� x� is nonincreasing in t for each x � eF��
�� Coupling of Brownian motions�

The coupling argument given in this section is the foundation of the results in this paper�
The argument is quite long� and requires several steps� A great deal of notation� especially
for various special subsets of Rd � will be required� however� none of the notation introduced
in this section will be used elsewhere� The reader may �nd it helpful to focus on the case
d � ��

Lemma ���� �A re�ection principle�� Let D� be a Lipschitz domain in Rd � let D � D� and
let W be a RBM�D�� Let H be a hyperplane� g 
 Rd 
 Rd be re�ection across H� and J�� J�
be the two half spaces determined by H� Let A � �D� and B�� B� be subsets of A�

Suppose that

g 
 D 
 D ������i�

g�B�� � B� �ii�

Bi � Ji� i � �� �� �iii�

g�A � J�� � A� �iv�

Then
Px�WTA � B�� � Px�WTA � B�� for x � J� �D� �����

Proof� Let C� � A � J� � B�� and C� � g�C��� Note that C� is not necessarily contained
in A� Write ui�x� � Px�WTA � Bi�� and v � u� � u�� Since Wt killed on hitting A has
continuous paths� the maximum principle holds for v� Let � � supx�J��D v�x�� Suppose
� � �� As v�x� � � for x � A � J�� by the maximum principle we have

sup
x�J��D

v�x� � sup
y�H�D

v�y��

��



Set S � TB�
� TB�

� TC�
� TC�

� Then for y � H �D�

ui�y� � Py�WS � Bi� " E y��WS�C�	ui�WS�� i � �� ��

Since by symmetry Py�WS � B�� � Py�WS � B��� it follows that

v�y� � Ey��WS�C�	v�WS��

However� again by symmetry� Py�WS � C�� � Py�WS � C��� and so P
y�WS � C�� � ����

Hence for y � H � D� v�y� � Py�WS � C��� � ���� Thus � � ���� a contradiction to our
assumption that � � �� �

The following de�nition of a sequence of stopping times will be used several times�

De�nition ���� Let H � fH�� � � Ig be a family of closed non
empty subsets of Rd with
the property that f� 
 H� � B�x� �� �� �g is �nite for all x� �Note this implies that I is
countable�� Write H �

S
��I

H�� Let �Xt� t � �� be a continuous process on Rd such that

H� � H� is polar for X� for all �� � � I� Then successive disjoint hits by X on H are the
sequence of stopping times �Tn� n � �� de�ned by


T� � infft � � 
 Xt � Hg�

�n � f� � I 
 XTn � H�g�

Tn�� � infft � Tn 
 Xt � H �
�
���n

H�g�
�����

Lemma ���� Let H� X� �Tn� be as above� Then lim
n��

Tn � "�� a�s�

Proof� Suppose Tn � �� Since B�XTn���� �� intersects at most �nitely many H�� �n is
a �nite set� �In fact� if Tn � � then as H� � H� is polar� �n contains only one element��

Therefore XTn��� is a positive distance from H�����nH�� Hence Tn�� � Tn� Now suppose
lim
n
Tn��� � S��� � �� Then as f� 
 H� � B�XS���� �� �� �g is �nite� there must exist

�� � � I such that XTn��� � H	 for in�nitely many n� for � � �� �� So XS��� � H� � H��
and hence� by the polarity assumption� we deduce P�S ��� � �� �

De�nition ���� Let D � Fn� � for some n� � �� and let W be RBM�D�� We de�ne

Hij � fx 
 xi " xj � �g

Li � Hi��� � ��� ����
d�

Mij � fx � ��� ��d 
 xi � �� ��� � xj � �� � � xk � ���� k �� jg� for i �� j�

� � infft � � 
Wt �
d�
i��

Hi���g�

��



The hyperplane Hi�t� was de�ned in ������ For any hyperplane H � Rd � let gH 
 R
d 
 Rd

be re�ection in H� If x � �x�� � � � � xd� note that

gHi����	�x� � �x�� � � � � xi��� �� xi� xi��� � � � � xd��

gH��
�x� � ��� x�� �� x�� x�� � � � � xd��

We now use the symmetry of D� and the invariance of W under certain isometries of D�
to deduce lower bounds for certain hitting probabilities of W � �These are higher
dimensional
analogues of the �corner� and �knight�s� moves in �BB���� In what follows we use qi to denote
strictly positive reals which depend only on the dimension d�

Proposition ���� Let i� j � f�� � � � � dg� Then

Px�TLj � �� � q� � �� for x � Li� �����

Proof� Set T � T
�
Hj��� �

dS
k��

Hk���
�
� We will actually prove that Px�WT � Lj� � q� for

x � Li� By the symmetry of D we can take j � �� i � �� �If i � j the result is trivial�� Fix
x � L��

Now apply Lemma ��� with H � H������� A �
�
H���� �

dS
k��

Hk���
�
� D� B� �

H���� � D� B� � H���� � D� J� � fx 
 x� � ���g� J� � fx 
 x� � ���g� Hypotheses
������i���iv� are easily veri�ed� L� � J� �D� and so we deduce

Px�WT � H����� � Px�WT � H������ �����

We now use Lemma ��� again� with H � H�k �k �� ��� A as before� B� � H���� � D�
B� � Hk����D� J� � fx 
 x� " xk � �g� J� � Rd � �H � J��� Once again ����� �i���iv� are
easily veri�ed� and so

Px�WT � H����� � Px�WT � Hk����� k �� �� �����

Combining ����� and ������ and using that fact that

Px�WT � H����� "
dX

k��

Px�WT � Hk���� � ��

we obtain
Px�WT � H����� � �� " d���� �����

Now set Gn � �H���� � D� �
nT

k��

fxk � ���g� for � � n � d� Write G� � H����� Let

� � n � d � �� set G�
n � Gn�� �Gn� and apply Proposition ��� with H � Hn������ B� �

Gn� B� � G�
n� J� � fx 
 xn � ���g� J� � fx 
 xn � ���g� and A as before� We deduce that

Px�WT � Gn� � Px�WT � G�
n��

��



Hence
�Px�WT � Gn� � Px�WT � Gn� " Px�WT � G�

n� � Px�WT � Gn����

Since Gd � L��
Px�WT � L�� � �

��d��	Px�WT � H������

and this proves the proposition with q��� � �� " d��d��� �

Remark ���� We call a piece of the path of W in which it moves from Li to Lj a corner
move� The other kind of move we will need is from Li to Mij � which we will call a slide� The
next few results lead up to the proof of the following�

Figure �
 A corner move�

��



Figure �
 A slide�

Proposition ��	� Let � � i�� j� � d� with i� �� j�� Then

Px�TMi�j�
� �� � q� � �� for x � Li� �

By symmetry it is su!cient to prove this in the case i� � �� j� � �� Write #
�
i � f� �

xi � ���g� #�i � f��� � xi � �g� and let

Kl
� � D �H���� � #

l
�� l � �� ��

Kl
j � D �Hj��� � #

l
�� l � �� �� � � j � d�

� �
d�
i��

Hi����

K � H���� � #
�
� �D�

�����

Lemma ��
� Px�TM��
� �� � ���dPx�TK � ��� x � L��

Proof� Set Gd�� � K� and let

Gn � K �
d�

i�n

#�i � � � n � d�

So G� � D � H���� � #
�
� �

dT
�
#�i � M��� Now let � � n � d� and apply Proposition ���

with H � Hn������ B� � Gn� B� � gH�Gn�� J� � fxn � ���g� J� � fxn � ���g� and
A � � � B� �B� � � �Gn���

We verify ������i���iv�� �i� and �ii� are obvious� while �iii� is immediate from the obser

vation Gn � #

�
n � J�� To prove ������iv� let x � A � J�� If x � B�� gH�x� � B�� so suppose

x � �� Then x �
S
i	�n

Hi���� and so gH�x� �
S
i 	�n

Hi���� Then gH�A � J�� � A� as required�

Finally� note that L� � J�� So by ������

Px�WTA � Gn� � Px �WTA � gH�Gn�� � x � L��

Hence� since Gn�� � Gn � gH�Gn�� we deduce

Px�WT ��
Gn��	 � Gn� �
�
�P

x�WT ��
Gn��	 � Gn��� �
�
�P

x�TGn��
� T���

Since Px�TGn
� T�� � Px�WT��Gn��

� Gn�� it follows that P
x�TGn

� T�� � �����Px�TGn��
�

T�� for � � n � d� and the result follows immediately� �

Lemma ���� Set A � K �
dS
i��

Hi���� For x � L��

�a� Px�WTA � K� � Px�WTA � K�
���

�b� Px�WTA � K�
� � � Px�WTA � K�

���

Proof� These follow from Proposition ��� with H � H��� for �a�� and with H � H�������
for �b��

��



Lemma ����� Px �W
 � H����� � q� � � for x � L��

Proof� For � � i � d set

Fi � fW hits L�� L�� � � � � Ld in order before �� and W
 � Hi���g�

Let F �
S

��i�d Fi� By Proposition ��� P
x�F � � qd��� � Set q� � qd��� � Now let N be a

random variable independent of �Wt� t � �� with P�N � i� � �d� ���� for i � f�� �� � � � � dg�
Let #i � fx 
 x� � xig for i �� �� let gi � g�i � and de�ne

W �
t �

�
Wt � � t � T�N �
gN �Wt� T�N � t�

Then W � is also a RBM�D�� Note that T�N � max
i	��

T�i � � on F � and that on

Fk�fN � kg�W �

 � gN �W
 � � gk�W
 �� so that as gk 
 Hk���
 H����� we haveW

�

 � H�����

Therefore

Px�W
 � H����� � Px�W �

 � H�����

� Px
��
k 	��

Fk � fN � kg
�

�
X
k 	��

Px�Fk� � P�N � k�

� �d� ����Px�F � � �d� ����q�� �

Proof of Proposition ��	� From Lemma ���� we have� writing A � K �
dS
i��

Hi����

q� � Px�W
 � H�����

� Px�W
 � H����� TK � �� " Px�W
 � H����� TK � ��

� Px�WTA � K� " Px�WTA � H������

From Lemma ����

Px�WTA � H����� � Px�WTA � K�
�� " Px�WTA � K�

�� � �P
x�WTA � K��

So Proposition ��� follows� with q� � q���� �

De�nition ����� A set A � Rd is a half�face if there exists i � f�� � � � � dg� a � �a�� � � � � ad� �
�
�Z

d with ai � Z such that

A � fx 
 xi � ai� aj � xj � aj " ��� for j �� ig�

��



For A as above set ��A� � i� Let A be the collection of half
faces� and set

A� �
�
fA 
 A � Ag� A�� �

�
fA �B�A�B � A� A �� Bg� �����

Note that dim�A��� � d��� so that A�� is polar for RBM�D� by Lemma ��� for any Lipschitz
domain D � Rd � Recall the de�nition of eF�� Set

AF � fA � A 
 A � eF�g�
We de�ne a graph structure on A by taking fA�Bg to be an edge if

dim�A � B� � d� �� and A �B � C for some C � S�� ������

Let E�A� be the set of edges� and let

E�AF � � ffA�Bg � E�A� 
 A�B � AFg ������

be the edges in the subgraph
�
AF � E�AF �

�
� Write dF for the natural graph distance on AF �

Since eF� is connected we deduce immediately
Lemma ����� The graph

�
AF � E�AF �

�
is connected�

We will need terminology for the various types of edges in E�A�� We call an edge fA�Bg
an i�j corner if ��A� � i� ��B� � j� and i �� j and call fA�Bg an i�j slide if ��A� � ��B� � i�
and the line joining the centers of A and B is parallel to the xj axis� We say two edges are
of the same type if they are both i� j corners� or both i� j slides� for some pair �i� j�� Note
that the move �Li� Lj� is an i� j corner� and �Li�Mij� is an i� j slide�

Now set

A��	
F � f�A�B� � AF 
 ��A� � ��B�g� ������

E
�
A
��	
F

�
�
n�
�A�A��� �B�B��

	

 fA�Bg� fA�� B�g are edges

of the same type in E�AF �
o
�

The graph
�
A��	
F � E�A��	

F �
�
is not connected� and this will cause us some additional trouble�

Write d
��	
F for the graph distance �with values in Z� � f"�g� on A

��	
F �

Let gRi 
 Rd 
 Rd be re�ection in the hyperplane Hi���� and let GR be the group
generated by the gRi � thus GR is the set of transformations that can be obtained by a sequence
of re�ections parallel to the axes� Note that GR is commutative� For n � Z let S�n be the
collection of cubes of side �l�nF with vertices in �l�nF Zd� For C � S�n let �C be the translation

which maps C onto ��l�nF � l�nF �
d
� and let

G�C�D� � f���D � g � �C 
 g � Gg�

For x� y � Rd write x
n

 y if there exist C� D � S�n� and g � G�C�D� such that x � C� y � D�

and g�x� � y� Similarly� for A� B � A write A
n

 B if there exist C� D � S�n� and g � G�C�D��

such that g�A� � B� We write 
 for
�

�

��



Proposition ����� Let A� B � AF � with A 
 B� Let C� � S� eF�� with A � C�� Suppose
B � B�� B�� � � � � Bn � A is a chain in AF with fBi��� Big � E�AF � for � � i � n� Then
there exist A�� A�� � � � � An in AF such that
�a� f�Ai��� Bi���� �Ai� Bi�g � E�A

��	
F � for � � i � n�

�b� Ai � C� for � � i � n�
�c� Ai 
 Bi for � � i � n�
�d� �A�� B�� � �A�B�� �An� Bn� � �A�A��

In particular� d
��	
F

�
�A�B�� �A�A�

�
� dF �A�B��

Proof� Let C� be a cube in S�� eF�� such that B� � B� � C�� For i � �� �� let Di be the
unique cube in S�� containing Ci� Let A� � A� As A� 
 B�� there exists g � G�D�� D��
with g�A�� � B�� If g�C�� �� C�� then since B� � C� � g�C�� there exists an isometry
h � G�D�� D�� mapping g�C�� to C� and preserving B�� If C� � g�C�� take h to be the
identity� Let g� � h � g
 then g��A�� � B�� and g��C�� � C�� Set A� � �g

�����B��� Since
A� � C� � eF�� A� � AF � It is clear that the edges �A�� A��� �B�� B�� in AF are of the same

type� therefore
�
�A�� A��� �B�� B��

	
� E�A��	

F

�
� Also� since g��A�� � B�� we have A� 
 B��

Continuing in this way we can construct a sequence Ai� � � i � n� in AF satisfying
conditions �a�� �b�� �c� above� To prove �d�� note that since An 
 Bn � A� we have An 
 A�
However� since A and An are both contained in C�� this implies that An � A�

This argument also proves that d
��	
F

�
�A�B�� �A�A�

�
� dF �A�B�� the reverse inequality

is evident� �

Let bFN � �
x�Zd

�x" FN �� ������

Let G � Rd be a union ��nite or in�nite� of cubes in S�
 we will assume G is connected� We
now construct a re�ecting Brownian motion on G � bFN from a driving process � on bFN � We
begin with a deterministic construction�

Let ��t�� t � � be a continuous path on bFN with ���� � z which satis�es the conditions
��t� �� A�� for any t � �� Let x � G � bFN with x 
 z� and let � � ���� ��� � � �� � f�� �g

Z�� We
construct from � and � a continuous path w�t� on eFN � with w��� � x�

Let Tn� n � � be successive disjoint hits by ���� on A� �We can of course take the process
X in De�nition ��� to be deterministic�� If z �� A� then T� � �� Then each of z� x lies
in exactly one cube in S�� 
 call these cubes D

x� Dz� and let � � G�Dz� Dx� be such that
��z� � x� De�ne

w�t� � ����t��� � � t � T��

Let z� � ��T��� x
� � w�T��� we have x

�� z� � A� � A��� Thus each of x
�� z� lies in exactly two

cubes in S�
 call these cubes Sx� � S
x
� � S

z
� � S

z
� � Using lexicographic ordering of the cubes in

S�� we can ensure these labels are uniquely speci�ed� As x� � G� there are two possibilities


��



�i� Exactly one of Sx� � S
x
� is contained in G� ������

�ii� Sx� � S
x
� are both contained in G�

For y � x� z� i � �� � let Dy
i � S

�
� satisfy S

y
i � Dy

i � For i� j � �� � there exists a unique
map �ij � G�Dz

i � D
x
j � such that �ij�z

�� � x�� and �ij�S
z
i � � Sxj � The uniqueness is evident�

the existence is proved as in Proposition ����� Note that ��j � ��j on S
z
� � S

z
� �

�i� Let Sxi � G� so �intSx��i� �G � �� Now de�ne

� 
 Sz� � S
z
� 
 Sxi by � � �ij jSz

j
for j � �� ��

and let w�t� � �
�
��t�

�
� T� � t � T��

�ii� For k � �� � de�ne �k 
 S
z
� � S

z
� 
 Sx� � S

x
� by

�k � �ij jSz
j
� i � �� ��

here j � j�i� k� � i" k�mod��� Set w�t� � ���
�
��t�

�
� T� � t � T��

Note that in either case� for each t � �T�� T��� there exists i� j such that w�t� � �ij
�
��t�

�
�

so that w�t� 
 ��t� for T� � t � T�� �We also have w�t� 
 ��t� on the initial segment ��� T����
The same construction can now be repeated on each of the time intervals �Ti��� Ti��

using� as above� the index �i�� to make a choice of maps each time case �ii� arises� The path
w � C�R� � G � bFN � is a function of G� �� � and x only� we write

w � ���x�G� �� ��� ������

We can now de�ne a pair of Brownian motions on eF � Recall the de�nition of A�� from
������ The following theorem follows in a straightforward fashion from the properties of ���

Theorem ����� Let �$�F �Ft�P� be a probability space carrying a re�ecting Brownian mo�
tion �t on bFN � and independent sequences ���i � i � ��� ��

�
i � i � �� of i�i�d� Bernoulli random

variables� Let each of Gk� k � �� �� be a union of cubes in S�� Suppose �� � z �� A��� and let
xk � Gk � bFN � satisfy x� 
 x� 
 z� Let Ti� i � � be successive disjoint hits by � on A� and
suppose that �ki � FTi � k � �� �� i � �� Set

Xk
t � ���xk� Gk� �� �

k�� k � �� �� ������

Then
�a� Xk is a RBM�Gk � bFN �� with Xk

� � xk�
�b� Xk

t 
 �t for t � ��
�c� X� and X� are conditionally independent given ��
�d� If Ti�X

k�� i � � denote successive disjoint hits by Xk on A� then Ti�X
k� � Ti for i � ��

Proof� Note that A�� is polar for �t� so that �Ti� and Xk are well
de�ned� �b�� �c�� �d� are
all evident from the de�nition of ���

��



For �a�� let Sx�j � S
z
j denote the cubes in S� given in the construction of ��� Fix k� We

have
Xk
t � ���t�� � � t � T��

where � 
 Sz� � Sz� 
 eFN � In case �������ii� � is an isometry between �Sz� � Sz� � � bFN and
�Sxk� � Sxk� � �

bFN � so that Xk
t is a RBM� bFN� on the time interval ��� T��� In case �������i��

if Sx�k � eF�� then � can be written in the form � � �� � ��� where �� is re�ection in the
hyperplane containing Sxk� � Sxk� � and �� is an isometry of R

d � Again� it is clear that Xt is a
RBM� bFN� on ��� T��� �

Remark We will call a pair of processes de�ned in this way linked RBMs�

The next sequence of results will extend the lower bounds on the probabilities of certain
moves� given in Propositions ��� and ���� to joint moves by a pair of RBM Xk� de�ned by
������� We begin by introducing some further notation�

De�nition ����� Let J � f��� �gd� and let E�J� �
�
fx� yg � J 
 jx � yj � �

	
� Then�

J� E�J�
�
is the natural graph of vertices of the hypercube� For a � �a�� � � � � ad� � J � let

Ca � fx � ���� ��d 
 � � xiai � �g

be the portion of ���� ��d that is in the orthant determined by a� For example� if d � � and
a � ������ �� then

Ca � ��� ��	 ���� ��	 ��� ���

Let J�� J� be non
empty� connected subsets of J � and let

Di �
�
a�Ji

�Ca � bFN �� i � �� ��

For e � fa� bg � E�J�� let

Ge � Ca � Cb� G �
�

e�E�J	

Ge� Le � Ge � ������ ����
d�

Thus Le � A� for j �� ��Le� letMej be the unique half face contained in Ge which is obtained
by translating Le a distance ��� parallel to the j
axis�

We remark that

Le 
 Lf if and only if ��Le� � ��Lf ��

Mei 
Mfj if and only if i � j and ��Le� � ��Lf ��
������

Now let xk � Dk� k � �� �� satisfy x� 
 x�� with xk �� A��� let �
k� �� �Ft� be as in Theorem

����� and let
Xk � ���xk� Dk� �� �

k�� k � �� �� ������

��



be a pair of linked RBMs on D�� D�� respectively� Let

� � infft � � 
 �t � ����� ��dg�

and let �Tn� n � �� be successive disjoint hits by � on H � fGe� e � E�J�g � f����� ��dg�
Note that � � TM for some �random� M � �� Let � 
 ���� ��d 
 ��� ��d be de�ned by
��x�� � � � � xd� � �jx�j� � � � � jxdj�� Since

��X�
t � � ��X�

t � � ���t�� � � t � ��

we see that if �T kn � n � �� k � �� �� are successive disjoint hits by X
k on H� then T kn � Tn for

� � n �M �
We now de�ne a number of processes associated with Xk and �� For n � M � let

In � f�� � � � � dg be such that �Tn � HIn���� and for a � J let An�a� be the unique element of
J such that Ca � CAn�a	 � HIn���� Set Gt � 	��s� s � t�� note that In and An�a� are GTn
measurable on fn � Mg� For each � � n � M � Xk

Tn
lies in exactly two of the cubes Ca� while

Xk
TM

lies in exactly one cube� a�s� For � � n � M let Zk
n be the unique element of Jk such

that CZkn � fXk
Tn��

� Xk
Tn
g� Choose ak such that xk � Cak and let Z

k
� � ak�

Set� for n � ��

pn�a� b� � Px�Z�
n � a� Z�

n � b j GTn���n�M	� ������

pkn�a� � Px�Zk
n � a j GTn���n�M	�

Lemma ����� pn�a� b� � p�n�a�p
�
n�b��

Proof� Write F �k	
t for the natural �ltration of Xk� Then Zk

n � F �k	
Tn
� while fM � ng �

GTn � By ������ F
��	
t and F

��	
t are conditionally independent given GTn � the result follows

immediately� �

Now write
V k
n �a� � �Jk

�
Ak
n�a�

�
� a � J� ������

Lemma ���	� For a � Jk�

pkn���a� � ��n���M	

�
pkn�a�

�
�� V k

n �a�
�
" �

�

�
pkn�a� " pkn

�
An�a�

��
V k
n �a�

�
� a�s� ������

To simplify notation� in the next two proofs we will omit the superscript k from X� pn� etc�

Proof� Note �rst that since XTn � CZn � CAn�Zn	� we have Zn�� � fZn� An�Zn�g� So also
Zn � fZn��� An�Zn���g� and

fZn� An�Zn�g � fZn��� An�Zn���g� on fn" � � Mg� ������

��



Suppose �rst that An�a� �� Jk� Then ������ implies that Zn�� � a and n"� � M if and
only if Zn � a� and n" � � M � So

��n���M	

�
�� Vn�a�

�
pn���a� � ��n���M	

�
�� Vn�a�

�
� a�s� ������

Now suppose that An�a� � Jk� Then to have Zn�� � a it is necessary that XTn � Ca�
while if XTn � Ca then Zn�� � a if and only if n " � � M and XTn�� � Ca� Since the set
Ca � CAn�a	 is symmetric about the hyperplane HIn���� it follows that

��n���M	Vn�a�pn���a� � ��n���M	Vn�a�
�
�
�
pn�a� "

�
�
pn
�
An�a�

��
� ������

Combining ������ and ������ gives ������� �

Now let Uk
n � fa 
 pkn�a� � �g� u

k
n � %�U

k
n�� and

qkn � ��n�M	minfpn�a� 
 pn�a� � �g� ������

Lemma ���
� For n � �� qkn��n�M	 � �
��d��n�M	�

Proof� Note �rst that as p��ak� � �� q� � �� From ������ we have that on fn " � � Mg
either pn���a� � pn�a�� or pn���a� �

�
�

�
pn�a� " pn

�
An�a�

��
�

Suppose n " � � M � and Un � Un��� Choose a � Un�� such that qn�� � pn���a�� If
An�a� �� Jk� then pn���a� � pn�a� � qn� If An�a� � Jk then pn

�
An�a�

�
� �� since otherwise

pn��

�
An�a�

�
� pn�a��� � �� so that An�a� � Un�� � Un� Therefore

pn���a� �
�

�

�
pn�a� " pn

�
An�a�

��
� qn�

So if Un � Un�� we have qn�� � qn� on fn" � � Mg�
If n " � � M � and Un �� Un��� we have un�� � un � �� Again choose a such that

qn�� � pn���a�� since at least one of a or An�a� must be in Un we deduce qn�� � qn���
So� in all cases we have

qn�� � �
��un���un	qn on fn" � � Mg�

and since � � u� � un � �d� for all n� the result follows� �

For the RBM��� Xk de�ned above� and A�� A� � A� set

T �A�� A�� � infft � � 
 �X
�
t � X

�
t � � �A�� A��g� ������

Given two linked processes Xk
t � k � �� �� we let P�x��x�	 denote the joint law of the pair

�X�
t � X

�
t � with X

k
t started at xk� k � �� �� When the starting points are clear� we just write

P�

We can now give a lower bound on the probability of certain joint moves�

��



Theorem ����� There exists a constant p� � p��d� � �� with the following properties�
Suppose for k � �� �� ek� fk � E�J�� xk � Lek � x� 
 x�� xk �� A��� with ��Lf�� � ��Lf�� � i�
and Gfk � Dk� Then
�a� P

�
T �Lf� � Lf�� � �

�
� p��

�b� If j �� i� then

P
�
T �Mf�j �Mf�j� � �

�
� p��

Proof� Let �t � ���t�� note that Ti� � � i � M � are also successive disjoint hits by � on
H� For r � � de�ne sets Br by Br � Hr��� � ��� ����d� � � r � d� and Bkd�r � Br� for
k � �� � � r � d� Let

S� � �� Sr�� � infft � Sr 
 �t � Br��g� r � ��

Thus the stopping times �S�� S�� � � �� form a subsequence of �T�� T�� � � ��� For r � �� let Nr be
such that TNr

� Sr�
Suppose that Sr � � � and that Uk

Nr
�� Jk� Then �since Jk is connected� there exists

a � Uk
Nr
� b � Jk � Uk

Nr
such that fa� bg � E�J�� Let j � ��Ca � Cb�� If Sr�d � � � then for

some i � f�� � � � � d� �g� �Sr�� lies in the hyperplane Hj���� so that A
k
Nr��

�a� � b� Hence� by

������� pk��Nr��
�b� � �� so that b �� Uk

Nr�d
� So� if Sd�d � � we must have pkN

d�d
�a� � � for

each a � Jk� Therefore� by Lemmas ���� and �����

pNm
�a� b� � ���

d

on fNm � Mg� ������

for each a � J�� b � J�� and any m � d�d�
Since each move from Br to Br�� is a corner move of the type considered in Proposition

���� we also have from ����� that

Pxk �TNm
� �� � qm� � ������

Let d�d � m � �d" ���d be such that ��Bm� � ��Lf��� Choose bk � Jk such that Lfk � Cbk �
Then note that Xk

TNm
� Lfk on the event fNm � M�Zk

Nm
� bkg� so that� using ������ and

�������

P
�
T �Lf� � Lf�� � �

�
� P

�
Xk
TNm

� Lfk � TNm
� �

�
� E

�
pNm

�b�� b����Nm�M	

�
� ���

d

q
�d��	�d

� �

which proves �a��
To prove �b�� let S� � infft � Tm 
 �t �Mijg� Then by Proposition ���

P�S� � � j Tm � �� � q��

��



We have S� � TN � for some N � � m� on fS� � �g� Then Xk
TN�

� Mfkj on the event

fN � � M�Zk
N � � bkg� and so

P
�
T �Mf�j �Mf�j� � �

�
� P�Zk

N � � bk� k � �� �� N
� � M�

� ���
d

P�N � � M�

� ���
d

P�N � � M j TM � ��P�Tm � ��

� ���
d

q�q
m
� � ���

d

q�q
�d��	�d

� �

proving �b�� �

For the next result� we recall from Section � the de�nition of the cubes Dn�x� and the
stopping times 	n�x��

Corollary ����� Let �� ��� ��� �$�F �Ft�P� be as above� and let x� 
 x�� with xk �� A���

Set Xk � ���xk� eFN � �� �k�� Let xk � Ak � A� and let f�A�� A��� �B�� B��g � E�A
��	
F ��

Then

P
�
T �B�� B�� � 	��x�� X

�� � 	��x�� X
��
�
� p��

Proof� This is immediate from ������ and Theorem ����� by mapping the cubes D��xi� to
���� ��d� �

Given processes X�
t � X

�
t on eFN � set for m � Z�

�m�X
�� X�� � infft � � 
 X�

t
m

 X�

t g� ������

Theorem ����� Let N � �� Let x�
n

 x�� with xk �� l�nF A��� xk � eFN � There exist a pair of

process �W �
t �W

�
t � on eFN with W k

� � xk such that
�i� W k are RBM� eFN�� k � �� ��
�ii� W �

t
n

W �

t for t � ��
�iii� Writing �m � �m�W

��W �� then

P
�

sup
��t�
n��

max
k����

kW k
t � xkk� � �� " lF �l

�n
F � �n�� ��

�
� p� � � ������

for some p� � p��d� lF ��

Proof� By scaling� it is enough to prove the result for n � �� Let Ak � AF � Ck � S�� eF����
Dk � S��� be such that xk � Ak � Ck � Dk� Then there exists g � G�D�� D�� such that

g�C�� � C�� Let x
�
� � g�x��� as x

�
�
��

 x� 
 x�� we have x

�
� 
 x�� Set A

�
� � g�A��� we also

have A�� 
 A��

��



The restriction of the graph
�
AF � E�AF �

�
to C� is connected� so A

�
� and A� are connected

by a chain A�� � ���� �
�
�� � � � � �

�
m � A� where �

�
i � C�� �

�
i � AF � and where m � c��d� lF �� Let

C � � S�� eF�� be such that A� � C �� Then� as in Proposition ����� there exists Bi� � � i � m�

such that Bi � C �� Bi � AF � B� � Bm � A�� and f���i� Bi�� ��i��� Bi���g � E�A
��	
F �

for � � i � m � �� Set �i � g�����i�� Then f��i� Bi�� ��i��� Bi���g � E�A
��	
F � also� and

���� B�� � �A�� A��� ��m� Bm� � �g
���A��� A��� which implies that �m

��

 Bm�

Let �� �k� �Ft� be as in Theorem ����� and let W k � ���xk� eFN � �� �k�� Set for i � �
S� � ��

Si � infft � Si�� 
W
�
t � �i and W

�
t � Big�

Ri � infft � Si�� 
W
�
t �� D��W

�
Si��

� or W �
t �� D��W

�
Si��

�g�

By Corollary ���� P�Si � Ri j FSi��
� � p�� and therefore if G �

mT
i��

fSi � Rig we have

P�G� � pm� � Note that on the event G� W
k
Si

� Ck� so that kW
k
t � xkk� � lF " � for

� � t � Sm� Write Yk � W k
Sm
� on G we have Y� � A�� Y� � �m � g���A��� so that g�Y��

and Y� both lie in A�� However Y� 
 Y�� and Y�
��

 g�Y��� so that g�Y�� 
 Y�� Hence �since

Yk �� A��� we have g�Y�� � Y�� so that Y�
��

 Y�� Thus ��� � Sm� and taking p� � p

c��d�lF 	
�

this proves the theorem� �

The following result is used to start o	 the �nal coupling given in Theorem �����

Lemma ����� Let n � �� and let xk � eFn� k � �� �� There exists a constant p� � p��d� � �
and processes W k

t on eFn with W k
� � xk such that writing �n � �n�W

��W ���
�i� W k

t are RBM� eFn�� k � �� ��
�ii� P

�
sup

��t�
n

max
k
kW k

t � xkk� � �l�nF � �n ��
�
� p��

Recalling the de�nition of �n from ������� the lemma says that W
�
t

n

W �

t at time t � �n and
neither W �

t nor W
�
t has moved too far from its starting point�

Proof� By scaling it is enough to consider the case n � �� First we note the following
property of a Brownian motion on Rd � which is connected with �re�ection coupling�� Let B �
B��� ���� � Rd and let y�� y� � B��� ���� with y� � �y�� Let H be the hyperplane through
� perpendicular to the line connecting y�� y�� and let � 
 R

d 
 Rd be re�ection in H� Then
if V �

t � t � �� is a Brownian motion on R
d with V �

� � y�� P�TH �V �� � TBc �V ��� � c��d� � ��
�Here c� depends only on the dimension d�� So if V

� � ��V ��� we deduce

P�TC �V
�� V �� � TBc�V �� � TBc�V ��� � c� � �� ������

Now �x x�� x� � eF�� and let S�k � S�� � Sk � S�� eF�� satisfy xk � Sk � S�k � Let
g � G�S�� � S

�
�� be such that g 
 S� 
 S�� Let zk be the center of Sk� and write Bk � B�zk� �����

��



For k � �� � let Uk
t � t � � be independent RBM� eF�� with Uk

� � xk� on a probability space
�$�F �P�� Let �t be the standard shift operators on $
 Uk

s ��t�� � Uk
s�t���� Let

Ak � fUk
� � Bk� 	�xk� U

k� � �g�

Note that on Ak we have sup��s�� jjU
k
s � xkjj� � ���� By Proposition ��� there exists

c� � c��d� � �� �not depending on xk�� such that

Pxk �Ak� � c��

Let Y� � U�
� � Y� � g�U�

� �� Set Z � �Y� " Y����� and let B
� � B�Z� ����� On A� � A�

we have jYk � z�j � ���� so that jZ � z�j � ���� and jZ � Ykj � ���� In particular B� � S��
Let H be the hyperplane containing Z and perpendicular to the direction Y� � Y�� and let
h 
 Rd 
 Rd be re�ection in H� Set W � � U�� and let eU�

t � h�U�
t �� t � �� Set

W �
t � U�

t ��A��A�	c " �A��A�
��������t�U

�
t " �����	�t�g

���eU�
t ���

If S � infft � � 
 �W �
t �W

�
t � �� S� 	 S�g then W

� is a RBM� eF�� started at x� for � � t � S�
It is then straightforward to extend W � to a RBM� eF�� on ������

Write T �C � TC�U
�� eU�� � ��� �

� � ��B��U�� � �B��U��� � ��� and let A� � fT �C � � �g� By
������ we have

P�T �C � � � j A� �A�� � c��

so that� writing A � A��A��A�� P�A� � c�c
�
�� On A we have� by the de�nition of W

�� that
W �
T �
C

 W �

T �
C
� so that �� � T �C � Also� on A� maxk sup��t�T �

C
jjW k

t �W k
� jj� � ���� so that

maxk sup��t�T �
C
jjW k

t � xkjj� � ��� " ��� � �� �

Recall from ����� the de�nition of the exit times 	r�x��

Proposition ����� Let N � m� n � Z� m � n " �� x � eFN � and z be the center of Dn�x��

Suppose x�
m

 x�� xk �� A��� and kxk � zk� � l�nF �� � l��F �� k � �� �� Then there exist

RBM� eFN� W k
t � with W k

� � xk� such that if n� � d�d��lF �
�m�n	d� then

P
�
TC�W

��W �� � 	n�z�W
�� � 	n�z�W

��
�
� pn�� �

Proof� Suppose �rst that m � �� �So jnj � �n � ��� Let xk � Ak � AF � and let
Ck � S�� eF�� be such that Ak � Ck� Note that in the k � k� norm Ck is at least a distance

l
jnj��
F �� � l�F �� � lF "�� from Dn�x�

c� Hypotheses ��� �H��H�� imply we can �nd a chain

of cubes in S�� eF�� of length less than or equal to n� � ��lF �jnjd connecting C� and C�� and

contained in the cube center z and side ��l
jnj
F � ��� If A� B � C� where C � S�� eF��� then

certainly dF �A�B� � d�d� the total number of half
faces contained in C� So we can �nd a

��



chain A� � ��� ��� � � � �r � A� in AF � where r � n� � d�d��lF �
�nd� and where each �i is a

distance at least � from Dn�x�
c�

We have A� 
 A�� we can therefore as in Proposition ���� �nd a chain ��i� Bi� in A
��	
F

such that ���� B�� � �A�� A��� ��r� Br� � �A�� A��� and each Bi � C�� Using Corollary
����� we therefore have that if W k � ���xk� eFN � �� �k�� with �� �k as above� then the process
�W ��W �� moves along the chain ��i� Bi� with probability at least p

r
� � pn�� � As the half
faces

in the chain are all a distance at least � from Dn�x�
c� and since C� � D��x�� � Dn���x��� it

follows that

P
�
TDn���x�	�W

�� � 	n�z��W
��� TC�W

��W �� � 	��z�W
�� � 	��z�W

��
�
� pn�� � ������

This implies the result when m � �� if m �� �� we can scale by lmF � and replace �N�m� n� by
�N �m� �� n�m�� �

The following lower bound on the probability of hitting small cubes is an essential in

gredient in the Harnack inequality Theorem ����

Corollary ����� Let N � n � Z� x � eFN � and z be the center of Dn�x�� There exists
� � ��lF � d� such that if y�� y� � B�z� �� l

�n
F �� and W is a RBM� eFN�� then

Py�
�
	n�j���y��W � � 	n�z�

�
� �j � j � ��

Proof� We begin with the case j � �� Take m � n " �� as in the previous proof we can
suppose m � �� Let x� � y�� and choose x� � D��y�� such that x� 
 x�� and C� so that
C� � D��y��� Then ������ implies that� writing n� � d�d��lF �

�d� � � pn�� �

P�	��y�� � 	n�z�� � ��

We now iterate� Write Sk � 	n�k���y��� and let zk be the center of Dk�y��� Since WS� �

y� � B��zn��� l
�n��
F �� and 	n���zn��� � 	n�zn�� we have

Py� �S� � 	n�z�� � E y�
�
��S���n�z		P

WS� �S� � 	n���zn����
�
� ���

This gives the case j � �� and by induction we obtain the general case� �

Theorem ����� Let N � n � Z� x�� x� y � eFN � � � �� There exist constants p� � p��d� lF � �
�� � � ���� d� lF � � �� and coupled RBM� eFN� W x

t � W
y
t � with W x

� � x� W y
� � y� with the

following properties�
�a� If x� y � Dn���x��� then

P
�
TC�W

x�W y� � 	n�x�W
x� � 	n�x�W

y�
�
� p�� ������

��



�b� If kx� yk� � l�nF �� then

P
�
TC�W

x�W y� � 	n�x�W
x� � 	n�x�W

y�
�
� �� ��

Proof� By scaling it is su!cient to prove this for n � ��
Set A�

Z
� �n�Zl

�n
F A��� and note that A

�
Z
is polar for any RBM� eFN�� this ensures that

the various sequences of successive disjoint hits below are well
de�ned� Write x� � x� x� � y�
Let m� � � �to be chosen below�� and let M � max�N�m��� We construct processes W

k
t

successively on the intervals ��� �M �� ��M � �M���� � � �� where the � are given by ������� as
follows�

Suppose �rst that W k
t � � � t � �m � �m�W

��W ��� k � �� �� have been de�ned� Use
Theorem ���� applied conditionally on 	�W k

s � s � �m� k � �� �� to de�ne RBM� eFN� Xk�m��
t �

t � �� such that

Xk�m��
� �W k


m � k � �� ��

X��m��
t

m

 X��m��

t � t � �� ������

and the estimate ������ holds� Set

Sm�� � infft � � 
 max
k
kXk�m��

t �W k

m
k� � �� " lF �l

�m
F g�

If Sm�� � �m���X
��m��� X��m��� we say that �trial �m� �� succeeds�� and otherwise we say

�trial �m� �� fails�� ������ implies the probability of success is at least p�� We now de�ne W
k

on an additional interval in ����� by

W k

m�t � Xk�m��

t � � � t � Sm�� � �m���X
��m��� X��m����

If trial �m� �� succeeds we have de�ned W k on ��� �m���� and are ready to repeat the same
construction at level m � �� If trial �m� �� fails� we repeat the attempt� using Theorem ����
to de�ne RBM� eFN�� Xk�m��

t � t � �� satisfying ������� ������� and with initial conditions

Xk�m��
� � Xk�m��

Sm��
� k � �� ��

Continuing in this way� we make trials �m� i�� i � �� �� � � � at achieving coupling at level m���
until one succeeds� As the probability of success �conditional on the past� is at least p� for
each trial� we have �m�� �� a�s�

We use a similar argument to de�ne W k on the initial segment ��� �M �� except that here
we use Lemma ���� instead of Theorem ����� Finally� we note that TC�W

��W �� � �n for all
su!ciently small n� and de�ne W k on �TC�W

��W ����� by takingW �
t to be a RBM� eFn� for

t � TC�W
��W ��� and setting W �

t �W �
t �

��



Set p � min�p�� p��� and let a�� a�� � � � � aM � � � � be positive integers� to be chosen below�
Let Yi� � � i � M " �� be the number of the trial at level i that �rst succeeds� From ������
we have

P�Yi � r j Yi��� � � � � YM��� � ��� p�r�

Let m� � �� and let
G � fYi � ai�m� � i �M " �g�

Therefore

P�Gc� �
M��X
i�m�

��� p�ai �

while on G we have

kV k
t � xkk� �

M��X
i�m�

ai�� " lF �l
�i
F � for � � t � �m�

�

Now take ai � ��lF���
i� then as lF � � we have ai � i� so that

P�Gc� � p����� p�m� �

while
�X

i�m�

ai�� " lF �l
�i
F � ��� " lF ������

m��

Now choose m� to be the smallest integer such that m� � �� ��� " lF �l
�m�

F � ��lF �
��� and

p�����p�m� � ���� Note that m� depends only on d and lF � Let z be the center of the cube
D��x�� On G we have� for k � �� ��

kxk � zk� � kx� � zk� " kxk � x�k� � �
� "

�
� l
��
F � �

� �

Therefore

sup
��t�
m�

kV k
t � zk� � kxk � zk� " ��lF �

�� � �
� " ��lF �

�� � �� l��F �

so that on G� �m�
� 	�z� V �� � 	�z� V ���

By Proposition ���� there exist RBM� eFN� Uk
t � with U

k
� � V k


m�
� such that

P
�
TC�U

�� U�� � 	��z� U
�� � 	��z� U

��
�
� pn�� �

where n� � d�d��lF �
m�d� Now de�ne

W k
t �

�
V k
t � � t � �m�

�
Uk
t�
m�

�m�
� t�

��



and let W x
t � W �

t � W
y
t �W y

t ��t�TC	 "W x
t ��t�TC	� We have

P
�
TC�W

x�W y� �	��x�W
x� � 	��x�W

y�
�

� P�G�P
�
TC�U

�� U�� � 	��z� U
�� � 	��z� U

�� j G
�

� �
�
pn�� � p��

Since p� depends only on d and lF � this proves �a��
To prove �b�� we use �a� iteratively� Let m be the smallest integer divisible by � such that

���p���m��	�� � �� and let � � �
� l
�m
F � We de�ne inductively RBM� eFN�W x�W y successively

on intervals �Ti� Ti���� stopping times Ti� and random variables Xi � W x
Ti
� Yi � W y

Ti
such

that Yi � Dm��i�Xi��
We take X� � x� Y� � y� since kx � yk� � � � �

� l
�m
F � we have y � Dm�x�� Suppose

now W x� W y are de�ned on ��� Ti�� and Yi � Dm��i�Xi�� Apply �a� with n � m � �i � �
to obtain RBM� eFN� V x�i

t � V y�i
t with V x�i

� � Xi� V
y�i
� � Yi satisfying ������� Set Si �

	m��i���Xi� V
x�i� � 	m��i���Xi� V

y�i� and T iC � TC�V
x�i� V y�i�� and let

Ti�� � Ti " Si�

W z
t � V z�i

t�Ti
� Ti � t � Ti��� z � x� y�

Xi�� �W x
Ti��

� Yi�� � W y
Ti��

�

Note that as V x�i
t � V y�i

t for t � T iC � we have W
x
t �W y

t for t � TC � TC�W
x�W y�� If T iC �

Si then Yi�� � Xi�� � Dm��i���Xi���� Otherwise we have� as Xi��� Yi�� � Dm��i���Xi��
that

kXi�� �Xik� � kYi�� � Yik� � �
� l
��m��i��	
F �

kXi�� � Yi��k� � �l
��m��i��	
F � �

��l
��
F l

��m��i��	
F �

������

so since �l��F � � we have Yi�� � Dm���i��	�Xi����
For each i� we have� by �a�

P�T i� � Si j FTi� � p��

Let H � fT iC � Si for some i �
�
� �m� ��g� so that P�Hc� � ��� p��

�m��	�� � �� On H we
have� using ������� and writing l � �m� �����

kXl � xk� � kYl � yk� �
lX

i��

�
� l
�m��i��
F

� �
� l

��m
F l

��l��	
F �l�F � ��

��

� �
� l

��m
F l��F lm����

F � ���l�F � �
� �

So� on H� W x and W y couple before leaving D��x�� and P�H� � �� �� �

��



Remark ����� Much of the argument above only uses the symmetry of F� with respect to
re�ection in the sets Hi������ which is a strictly weaker condition than Hypothesis ��� �H���
We do use �H�� however in the proof of Proposition ���� when we re�ect in the hyperplanes
Hij �

Remark ���	� The arguments above use essentially only three properties of the Markov
process W 
 its continuity� the fact that W is symmetric with respect to the symmetries of
the cube� and the fact that A�� is polar for W � We use this in �BB��� where we couple a �cable
process� associated with the graphical pre
carpet�

�� Uniform Harnack inequality�

In this section we use the coupling of Section � to prove a Harnack inequality for harmonic
functions on eFN with constants which are independent of N � The proofs use ideas of �LR�
and �Ca�� For a function f and a Borel set A� de�ne

Osc
A

f � sup
A

f � inf
A
f�

Proposition ���� There exists � � ��� �� independent of n and N such that if x� � eFN � and
h is harmonic on Dn�x�� � eFN � then

Osc
Dn���x�	

h � � Osc
Dn�x�	

h�

Proof� There is nothing to prove if OscDn�x�	 h is in�nite� so we may suppose h is bounded
on Dn�x��� By adding a constant to h� we may suppose infDn�x�	 h � �� Let x� y �

Dn���x�� � eFN � and let W x� W y be the RBM� eFN� given in Theorem �����a�� Let U �
	n�x��W

x� � 	n�x��W y� and TC � TC�W
x�W y�� by ������ we have

P�TC � U� � �� p��

where p� depends only on d and lF � Set � � �� p�� Since h is harmonic we have

h�x� � Eh�W x
U�TC

� �����

� E �h�W x
TC
��TC � U � " E �h�W x

U ��TC � U �

and similarly

h�y� � E �h�W y
TC
��TC � U � " E �h�W y

U ��TC � U �� �����

Since h�W x
TC
� � h�W y

TC
�� subtracting ����� from ����� gives

jh�x�� h�y�j � jE �h�W x
U �� h�W y

U ��TC � U �j

� P�TC � U� Osc
Dn�x�	

h

� � Osc
Dn�x�	

h� �

��



Theorem ���� There exist M and � depending only on d and lF such that if x� � eFn and
h is harmonic in Dn�x�� � eFN � then

jh�x�� h�y�j �M jx� yj�ln�F sup
Dn�x�	

jhj� x� y � Dn���x���

Proof� By iterating Proposition ����

Osc
Dn��j�x	

h � � Osc
Dn���j����x	

h � �j Osc
Dn�x	

jhj � ��j sup
Dn�x�	

jhj� �����

Let kx� yk� � r� and choose j such that y � Dn��j�x��Dn���j��	�x�� by Lemma ���

�
� l
�n��j
F � r � �

� l
�n��j��
F �

So c��
j � �lnF r�

log����	�� log lF � c��
j � and hence by ������

jh�y�� h�x�j � Osc
Dn��j�x	

h � c�l
n�
F r� sup

Dn�x�	

jhj�

where � � log������� log lF � �

Theorem ���� �Uniform Harnack inequality�� There exists c� depending only on d and lF
such that if x� � eFN and h is nonnegative and harmonic in Dn�x�� � eFN � then

h�x� � c�h�y�� x� y � Dn���x��� �����

Proof� Let z be the center of Dn�x��� By looking at h " � and then letting � � �� we may
assume h is bounded below by a positive constant in Dn�x��� Multiplying by a constant� we
may assume infDn�	�x�	 h � �� Since

eFN is a Lipschitz domain� h is bounded and continuous
on A � B�z� l�nF ��� l��F ��� we need to show that we can bound h in Dn���x�� by a constant
independent of n and N �

By Corollary ���� we have� for x � A� and � � ��d� lF ��

Py
�
TDn�j�x	 � 	n�x��

�
� �j � j � ��

This yields an estimate on the minimum of h on Dn�j�x�� we have

� � h�y� � E y �h�X�TDn�j�x	��� TDn�j�x	 � 	n�x��� � �j inf
Dn�j�x	

h�

so that
inf

Dn�j�x	
h � ��j � x � A� j � �� �����

��



Now choose M � � so that ��M � ������������ Let j� � �M��� If x � A� Dn�j��M �x� �
Dn�x�� for j � j�� and so from Proposition ���

Osc
Dn�j��M �x	

h � ��M Osc
Dn�j�x	

h

�
���

��� � �
Osc

Dn�j�x	
h� j � j�� x � A� �����

Let K � �M " �� Suppose there exists x� � Dn���x�� such that h�x
�� � ��K�j���� We use

induction to construct a sequence xj� j � j� such that xj� � x� and

h�xj� � ��K�j��� �����

kxj � zk� � �
� l
�n��
F " �

� l
�n��
F

jX
i�j�

l�jF � �����

Suppose we have constructed xj� � � � � � xj� Since by ����� xj � A� we have by ����� that

inf
Dn�K�j�xj	

h � ��K�j � �����

while by �����
h�xj� � ��K�j���

Hence

Osc
Dn�K�j�xj	

h � ���� � ����K�j �

By ������

Osc
Dn�K�j��M �xj	

h � ��K�j���

Since h is nonnegative� this implies that there must exist a point xj�� � Dn�j���xj� such
that h�xj��� � ��K�j��� As kxj�� � xjk� � �

� l
�n�j��
F � xj�� satis�es ����� and ������

By induction� we therefore have a sequence xj � j � j� in A with h�xj� 
 �� which
contradicts the fact that h is bounded on A� It follows that h is bounded on Dn���x�� by
��K�j���� �

Remark ���� Note that the proofs of the results in this section do not use the symmetry
assumption Hypothesis ��� �H�� directly� but only through Corollary ���� and Theorem �����
So if eFN is a generalized Sierpinski carpet at level N � for which F� satis�es Hypothesis ���
�H��H��� and in addition we know that Corollary ���� and Theorem ���� hold for eFN � then
all the results in this section hold for eFN �
Remark ���� The proof of Theorem ���� is immediate from Theorem ����

��



�� Constants and inequalities�

Constants� We de�ne the resistance constant Rn by

R��
n � inf

nZ
ln
F
Fn

jrf j�dx 
 f � � on x� � �� f � � on x� � lnF

o
� �����

Thus Rn is the resistance between two opposite faces of the set l
n
FFn� In �McG� �see also

�KZ� and for the case d � � �BB���� it is shown that there exists a constant �F and constants
c�� c� such that

c��
n
F � Rn � c��

n
F � �����

The proof uses a subadditivity argument� which does not yield the value of �F � We call �F
the resistance scale factor of F � and de�ne the time scale factor by tF � �mF ���F �� We
de�ne the fractal dimension� dimension of the walk� and spectral dimension of F by

df � logmF � log lF � �����

dw � log tf� log lF �

ds � �df�dw � � logmF � log tF �

df is the Hausdor	 dimension �and also the packing dimension � of F and eF �
Using standard shorting and cutting arguments �see �DS�� and also �BB�� Prop� ����� we

have the following estimates for �F �

Proposition ���� �a� tF � l�F �
�b� �F � ���dlF �

Proof� �a� Note that lnFFn consists of mF sets each congruent to l
n��
F Fn��� For � � i � lF

let ai be the number of sets congruent to l
n��
F Fn�� contained in lnFFn � fx 
 �i � ��l

n��
F �

x� � iln��F g� Then
P

ai � mF � and applying shorts on each of the sets fx� � iln��F g we have
from Kircho	�s laws

Rn � Rn��

lFX
i��

a��i � �����

Using ����� it follows that

�F �
lFX
i��

a��i �

By Cauchy
Schwarz�

l�F �
� lFX
i��

a
���
i a

����
i

��
�
� lFX
i��

ai
�� lFX

i��

a��i

�
� mF

� lFX
i��

a��i

�
�

��



�a� is now clear�

�b� Using Hypothesis ��� �H�� we have that the two sides fx� � �g and fx� � lnF g of l
n
FFn

are connected by �d�� disjoint blocks� each consisting of lF copies of l
n��
F Fn�� arranged in

series� �In the case d � � we are considering the cubes that touch the four edges connecting
fx� � �g and fx� � lnFg�� Therefore

Rn � Rn���
��d��	lF � �����

from which �b� follows immediately� �

Remark ���� Note that while �a� is true for any GSC satisfying Hypotheses ��� �H�� and
�H��� �b� relies on �H��� and does not always hold for more general GSCs�

Corollary ���� For GSCs which satisfy Hypotheses ��� �H����H	� the following inequalities
hold


dw � �� ds � df � d� �����

dw � � " df � �d� ���log �� log lF � � � " df � �����

ds �
�df
� " df

� �� �����

Proof� ����� and ����� are immediate from Proposition ��� and the de�nitions of df � dw� ds�
Hypothesis ��� �H�� implies that mF � lF � so df � �� and ����� follows from ������ �

Remarks ����

�� Note that the proof of Proposition ����a� shows that tF � l�F provided that the ai are not
all equal� In fact we have a proof that strict inequality holds in Proposition ����a� for any
GSC� However� the proof is rather longer than that given above� As a consequence� we know
that dw � � and ds � df in ������

�� Let � � b � a� d � �� and consider the GSC given by taking lF � a� and F� �
F� � ��a� b���a� �a" b���a�d� So F� is obtained by removing a central block of b

d cubes of
side a��� We denote this GSC by SC�a� b� d�� We have mF � ad� bd� and the estimates �����
and ����� give

a� b

ad��
"

b

ad�� � bd��
� �F �

a

ad�� � bd��
� �����

In the particular case of the standard �
dimensional SC� SC��� �� ��� this implies that ����� �
�F � ������ so that

������ � dw � ������� ������ � ds � �������

��



This may be compared with the estimate

ds � di �
log ��

log������
� ������

obtained in �O�� using an isoperimetric inequality�

Processes� Let �aFn � fx � Fn 
 x� � � � � � xd � �g� We let Wn
t be Brownian motion oneFn with normal re�ection on � eFn� Let �Wn � infft 
 Wn

t � �aFng� Let Gn � fx � Fn 

x� � � � � � xd �

�
�g� Then there exist c�� c� such that for all n � �

c��tF�l
�
F �

n � inf
x�Gn

Ex�Wn � sup
x�Fn

Ex�Wn � c��tF �l
�
F �

n� ������

this is proved just as in �BB�� Prop� ���� and �BB�� Prop� ��� and ����� We make the
remark that �tF�l

�
F �

�n is also comparable to the �rst eigenvalue for the Laplacian on Fn
with Dirichlet boundary conditions on �aFn and Neumann boundary conditions elsewhere�
see �BB�� Prop� �����

Let Xn
t � Wn��tF�l

�
F �

nt� and let Pxn be the law of X
n
t when Xn

� � x� We have the
following estimates on the P
n laws of 	r�x� � 	r�x�X��

Proposition ���� �a� For � � r � n� x � eFn�
c�t

�r
F � Exn	r�x� � c�t

�r
F � ������

�b� Let n � �� If m � n and t � ln�mF �tnF � then

Pxn�	m�x� � t� � c� exp
�
� c��t

�m
F �t����dw��	

�
� ������

If m � n and t � ln�mF �tnF � or if m � n and t � �� then

Pxn�	m�x� � t� � c� exp
�
� c��l

�n
F �tnF ��l

��m
F �t�

�
� ������

�c� For x � eFn� � � l�nF �

Pxn�sup
s�t

jXn
s �Xn

� j � �� � c
 exp
�
� c
��

dw�t����dw��	
�
� ������

Proof� As the proofs are similar to those in �BB�� Prop� ���� and �BB�� ������ Prop� ��� and
Theorem ���� we only give a sketch of the argument�

Note that ������ follows from ������ using scaling� which proves �a��
We turn to the proof of �b�� It is easy to see ������ holds if r � n " �� By scaling we

may suppose n � � and r � �� In this case� Dr�x� is a subset of the region above a Lipschitz

��



function� Let v�y� z� be the Green function for a RBM in eF� killed on exiting Dr�x�� By
Corollary ��� of �BH� and integration�

Ex	Wr �x� �

Z
eF� v�x� y� dy � c�l

��r
F �

As in the proof of Proposition ���� if d � �� there exists K not depending on r such that
v�y� z� � c��jy � zj��d for y� z � Dr�K�x�� An integration then gives

Ex	Wr �x� �

Z
Dr�K�x	

v�x� y� dy � c��l
��r
F �

The case d � � is similar�
Since Xt is a time change of Wt� we then have

c��t
�n
F l��r��n

F � Exn	
X
r �x� � c��t

�n
F l��r��n

F � r � n" ��

It follows as in �BB�� Lemma ���� that for t � �� x � eFn�
Pxn�	r�x� � t� � c�� " c��anrt� ������

where c�� � ��� �� and anr � tnF if r � n " �� and anr � l�r��nF tnF if r � n " �� If x�t�

is a continuous path in eFn we call an r�crossing a segment of the path t� � s � t� where
x�t�� � �Dn�x�t��� and x�s� � Dn�x�t��� for t� � s � t�� If m � r then any path from
x to Dm�x�

c must include at least lr�mF �� disjoint r
crossings� So� writing M � lr�mF ���

	m�x� �
PM

i�� Vi� where the Vi satisfy the bounds in ������� By �BB�� Lemma �����

log Pxn�	m�x� � t� � ��anrMt�c���
��� �M log���c����

It therefore follows that for r � m�

logPx�	m�x� � t� � c��
h
�trF l

r�m
F t���� � lr�mF

i
for r � n" �� ������

and
log Px�	m�x� � t� � c��

h
�l�r��nF tnF l

r�m
F t���� � lr�mF

i
for r � n" �� ������

The bounds in �b� then follow on choosing r to minimize the right hand sides of ������ and

�������
�c� follows easily from �b�� for a similar proof see� for example� �BB�� Theorem ����b��� �

De�nition ���� Let A and B be Borel sets� For A � eF write �eFA for the relative boundary
of A in eF � A local isometry of eF is a triple ���A�B� where A�B � eF and � is an isometry
between A and B and also between �eFA and �eFB� A Markov process Y � �Qx � Yt�� x �eF � t � �� is said to be invariant with respect to the local isometries of eF if for every local
isometry ���A�B� and x � A�

Qx���Yt�
�A	� � � � t � �� � Q��x	�Yt�
�B	 � � � t � ��� ������

We will also say that Y is locally isotropic�

As in �BB�� we have the theorem

��



Theorem ��	� There exists a strong Markov process X � �Px� Xt�� x � eF � t � �� with
state space eF such that X has a Feller transition semigroup which is ��symmetric� X has
continuous paths� and the process X is invariant with respect to the local isometries of eF �

As a consequence of our results on the transition densities of Xt later on� we shall see
that Xt actually has a strong Feller transition semigroup�

The proof of Theorem ��� is the same as that in �BB�� Sect� ��� We brie�y review the
outline of the proof and refer the reader to that paper for details� De�ne

U�
nf�x� � Ex

Z �

�

e��tf�Xn
t � dt�

By the Harnack inequality and the modulus of continuity estimates for harmonic functions
proved in Section � of this paper� it is not hard to see that when f is bounded and continuous�
then fU�

nfg
�
n�� is equicontinuous on compact sets� By a diagonalization and limit argument�

there exists a subsequence n� such that U�
n�f converges uniformly on compacts� say to U

�f �
for all � � � and f bounded and continuous� Since fPxn�g is tight� for each x there exist
convergent subsequences� Any limit point Px satis�es Ex

R�
�

e��tf�Xt� dt � U�f�x� for f
bounded and continuous� from which one deduces that Pxn� converges� If one calls the limit
Px and lets Xt be the canonical process on F � one then can show that �P

x� Xt� has the strong
Markov property as well as the other required properties� It is then straightforward to extend
�Px� Xt� to a process on eF �

Many properties of X follow almost immediately from the corresponding properties of
the Xn� Thus from Proposition ��� we deduce

Proposition ��
� For r � Z� t � ��

Px�	r�x� � t� � c� exp��c��t
r
F t�

����dw��	�� ������

c�t
�r
F � Ex	r�x� � c�t

�r
F � ������

and
Px�sup

s�t
jXs �X�j � �� � c� exp��c���

dw�t����dw��	�� � � �� ������

We also have the weak scaling property
 the Pl
r
F x law of l�rF X�trF t� satis�es the estimates

��������������

Let Pt be the semigroup of the process Xt �acting on L�� eF� ���� and �L�D�L�� be the
in�nitesimal generator of �Pt�� Since X is �
symmetric� we have for f � g � L�� eF � ���Z

f�x�Ptg�x���dx� �

Z
Ptf�x�g�x���dx��

��



By �FOT� there exists a Dirichlet form E with domain D�E� � L�� eF � �� associated with
the semigroup �Pt�� See �FOT� Chapter �� for details of the relations between X� Pt and
�E �D�E��� here we just note that D�L� is dense in D�E� and that

E�f� g� � �

Z
Lf�x�g�x���dx�� f � D�L�� g � D�E�� ������

If h 
 eF 
 R we say h is harmonic �with respect to X� if h � D�L� and Lh � �� or�
equivalently� if h�Xt� is a local martingale�

Theorem ���� Let x� � eF � n � Z� and h be nonnegative and harmonic in Dn�x�� � eF �
There exist c�� c� and �� depending only on d and lF such that

�a�
h�x� � c�h�y�� x� y � Dn���x��� ������

�b�
jh�x�� h�y�j � c�jx� yj�ln�F sup

Dn�x�	

jhj� x� y � Dn���x��� ������

Proof� �a� By ������ we have that Xt leaves a point x immediately� It follows from the
symmetry of X that if x � �Dm���� then P

x��Dm��	 � �� � �� and by the Blumenthal �
� law
this probability must be �� This shows that if f is a continuous function on �Dm���� then
f�X�m��	� is a continuous functional of the path except for a null set� so un�x� � Exnf�X�m��	�
converges �along a subsequence� to u�x� � Exf�X�m��	�� By Theorem ��� the functions un
satisfy ������ with constants independent of n� and therefore u also satis�es ������� This
proves the result when u is non
negative and continuous on Dn�x��� eF � by a limit argument
we then obtain the result for all positive harmonic functions�

�b� This is standard using an argument of Moser �M�� �

Remark ����� By very analogous methods� we can construct a process bX on domains of the
form eF � Dn�x�� with normal re�ection on �Dn�x��� We let cWm

t be RBM� eF� � Dm�x����

set bXt � cWm��tF�l
�
F �

nt�� and proceed as in the proof of Theorem ����

For use in Section � we note the estimates�

Px�	r�x� bX� � t� � c� exp��c��t
r
F t�

����dw��	�� t � �� r � n� ������

and
Ex	r�x� bX� � c�t

�r
F � r � n� ������

Remark ����� Note that the process X in Theorem ��� is only obtained as a subsequential
limit of the processes Xn� If we had X � limXn then it would follow easily that X was

��



self
similar� that is� that the Px law of l��F Xt would be equal to the P
x�lF law of Xt�tF � See

section � for some further remarks on this point�
However� a self
similar process Yt on eF can be constructed as follows� By Proposition

��� we have �FmF � l�F � so that �F � ldFm
�d
F l��dF � l��dF � So F satis�es the �good borders�

hypothesis in �KZ�� and we may now follow the argument of �KZ� to construct a di	usion Yt
on eF that is also self
similar� We refer the reader to �KZ� for details� Brie�y� in that paper
En is de�ned to be the Dirichlet form for a graphical approximation to Y n� �

n

Pn
j�� Ej is

shown to have subsequential limit points� and if E is one of those subsequential limit points�
it is shown that E is a closable Dirichlet form� The process Yt is then the Markov process
associated with E �

�� Transition density estimates�

Let �Px�Wt� be a RBM� eF��� We have the following estimates on the transition densities
of Wt�

Proposition ���� Wt has continuous transition densities q�t� x� y� with respect to Lebesgue
measure �� on eF�� which satisfy

q�t� x� y� � q�t� y� x� � q�t� x� x����q�t� y� y����� �����

q�t� x� x� is nonincreasing in t for each x � eF�� and for each t�

q�t� x� y� � c��t��t
�d��� � � t � t�� x� y � eF�� �����

Proof� Fix x� y � eF� and select m � � so that x� y � Dm���x�� � eF�� Let C be a small
subset of Dm���x�� � eF� containing y� Let S� � 	m�x��� Ui � infft � Si 
Wt � Dm���x��g�
and Si�� � infft � Ui 
Wt �� Dm�x��g� Then

Px�Wt � C� � Px�Wt � C� t � S�� " Px�Wt � C�U� � t � S�� �����

" Px�Wt � C�U� � t � S�� " � � � �

If q�t� x� y� is the transition density for Wt killed on exiting Dm�x��� the �rst term on the
right of ����� is Z

C

q�t� x� z� dz�

The second term is Z
C

Ex
h Z t

�

q�t� s�WU� � z��U� � ds
i
dz�

Note that this is less than

sup
w��Dm���x�	

sup
z�Dm�	�x�	

sup
r�t

q�r� w� z�Px�U� � t����C�� �����

��



and the succeeding terms of ����� are bounded similarly� Provided t is small enough� ������ and
������ imply that the ith term of ����� is bounded by c��

it�d�����C�� where � � �� Therefore
Px�Wt � dy� is absolutely continuous with respect to Lebesgue measure� the density q�t� x� y�
satis�es

q�t� x� z� � q�t� x� z� " Ex
h Z t

�

q�t� s�WU� � z��U� � ds
i
" � � � � �����

and the series is uniformly convergent in a neighborhood of y� Since for each w we know
that q�t� w� z� is continuous in z� this implies that q�t� x� z� is continuous in z for z in a
neighborhood of y�

Taking y � x� we obtain from ����� that

q�t� x� x� � c�t
�d��� t � t�� x � eF�� �����

Since q�t� x� y� �� for t small enough� the semigroup property shows that q�t� x� y� �� for
all t� Letting m
 ��� ������ implies ������ Finally� ����� is implied by ������ ������ and the
semigroup property� �

Proposition ���� There exist c� and c� such that q�t� x� y� � c�t
�d�� if jx � yj � c�t

����
t � ��

Proof� Let q�t� x� y� be the transition density for W killed on exiting eF� � D��x��� Let D
�

be the region above the graph of a Lipschitz function in some coordinate system such that
D� �D��x�� � eF� �D��x��� Let q

��t� x� y� be the transition densities for RBM in D�� Let Si
and Ui be de�ned as in Proposition ���� and as in ������

q��t� x� y� � q�t� x� y� " Ex
h Z t

�

q��t� s�WU� � y��U� � ds
i
� x� y � D
�x���

By �BH�� Theorem ����

q��t� x� y� � c�t
�d�� exp��c�jx� yj��t�� x� y � D
�x���

while �BH�� Theorem ��� says that

q��t� s� w� y� � c�t
�d�� exp��c�jw � yj���t� s���

Since Px�U� � t� � c
 exp��c
�t� by ������ for t su!ciently small and x � D
�x��� then if
we take t� su!ciently small

q�t� x� y� � c�t
�d�� exp��c��jx� yj��t�� x� y � D
�x��� t � t��

and so
q�t� x� y� � c��t

�d��� x� y � D
�x��� jx� yj � c��t
���� t � t��

The proposition now follows by repeated applications of the semigroup property� �

��



Lemma ���� Let x � eF�� Then writing 	�n�x� � 	�n�x�W ��

Px�	�n�x� � t� � c� exp��c��t t
�n
F �����dw��	�� t � lnF � n � �� �����

Px�	�n�x� � t� � c� exp��c�l
�n
F �t�� � � t � lnF � n � Z� �����

Py�	�n�x� � t� � c� exp��c�t t
�n
F �� t � �� x � eF�� y � D�n�x�� n � � �����

Proof� ����� and ����� are just restatements of ������ and ������� To prove ������ note �rst the
estimate E y	�n�y� � c
t

n
F given in ������� Let t� � �c

��

 t�F � Then Py�	�n���y� � t�t

n
F � �

��� for y � eF�� If y � D�n�x�� then 	�n���y� � 	�n�x�� so Py�	�n�x� � t�t
n
F � � ����

Iterating and using the strong Markov property we deduce that Py�	�n�x� � kt�t
n
F � � �

�k

for k � �� and ����� follows easily� �

Integrating these bounds we obtain


Lemma ���� �a� There exists c� � c��p� such that

Ey	�n�x�
p � c�t

pn
F � y � D�n�x�� p � �� n � �� ������

�b� There exist constants c�� c�� such that

Exe����n�x	 � c� exp��c���t
n
F �

��dw �� � � � � �� n � �� ������

Lemma ���� There exists c� such that if x� � eF� and A � D��x�� then

Ey
Z ��n�x�	

�

�A�Ws� ds � c����A�t
n���ds��	
F � n � �� y � �D�n�x���D�n���x��� � eF��

Proof� Let n� x� be �xed� let qn�t� x� y� be the transition density of W killed on exiting
D�n�x��� and let v�x� y� �

R
qn�t� x� y�dt� So

E y
Z ��n�x�	

�

�A�Ws� ds �

Z
A

v�y� z����dz�� ������

Let z � A� Then v��� z� is harmonic on �D�n�x�� � fzg� � eF�� and is zero on the boundary
of D�n�x��� Thus it is su!cient to bound ������ in the case y � �D�n���x��� So let
y� � �D�n���x�� � eF�� Note that if m � �n " � then Dm�y�� � D�n�x��� and Dm�y�� �
D�n���x�� � �� So v��� z� is harmonic on Dm�y�� and applying Theorem ��� in Dm�y�� we
have

v�y�� z� � c�v�y� z�� y � Dm���y���

Therefore

v�y�� z� � c����Dm���y���
��

Z
Dm���y�	

v�y� z����dy�

� c�m
�n
F

Z
D�n�x�	

v�y� z����dy�

� c�t
�nds��
F E z	�n�x�� � c�t

�nds��
F tnF �

As this estimate holds for any z � A� using ������ proves the lemma� �

��



Lemma ���� Let p � �� There exists c� � c��p� such that if x� � eF� and A � D��x�� then

E y
Z ��n�x�	

�

tp�A�Wt� dt � c����A�t
n���p�ds��	
F � n � �� y � �D�n���x���

Proof� Fix x� and A� and let qn�t� x� y� be the transition density of W killed on exiting
D�n�x��� Set

w�x� y� �

Z �

�

qn�t� x� y�t
p dt�

note that w�x� y� � w�y� x�� Set

g�y� � Ey
Z ��n�x�	

�

tp�A�Wt� dt �

Z
A

w�y� z����dz��

Let y� � �D�n���x��� Then D�n���y�� � A � �� and so if y � D�n���y��� then writing
T � 	�n���y��� and using Lemmas ��� and ����

g�y� � Ey
Z ��n�x�	

T

tp�A�Wt�dt

� c�E
y
�
T pEWT

Z ��n�x�	

�

�A�Wt�dt
�
" c�E

y
�
EWT

Z ��n�x�	

�

tp�A�Wt�dt
�

� c����A��t
n
F �

p���ds�� " c�E
yg�WT �� ������

Now let

h�y� � E yg�WT ��

h is harmonic on D�n���y��� so applying Theorem ��� in D�n���y��� we have

h�y�� � c�h�y�� y � D�n���y���

Using the de�nitions of g and h and the strong Markov property�

h�y� � Eyg�WT �

� EyEWT

Z ��n�x�	

�

tp�A�WT � dt

� Ey
Z ��n�x�	

T

�t� T �p�A�Wt� dt

� Ey
Z ��n�x�	

�

tp�A�WT � dt � g�y��

��



We deduce that

h�y�� � c����D�n���y���
��

Z
D�n�
�y�	

g�y����dy�

� c�m
�n
F

Z
D�n�y�	

Z
A

w�y� z����dz����dy�

� c�m
�n
F

Z
A

���dz�

Z
D�n�y�	

w�z� y����dy��

However�Z
D�n�y�	

w�z� y����dy� � E z
Z ��n�x�	

�

tpdt � c
E
z	�n�x��

p�� � c
�t
n
F �

��p�

Therefore
h�y�� � c����A��t

n
F �

��p�ds���

and using ������ it follows that

Ey�
Z ��n�x�	

�

tp�A�Wt� dt � c�����A��t
n
F �

��p�ds�� ������

for y� � �D�n���x�� � eF�� Now if y� � �D�n���x��� then applying ������ in the case n" �
we have

Ey�
Z ��n�x�	

�

tp�A�Wt� dt � E y�
Z ��n���x�	

�

tp�A�Wt� dt

� c�����A��t
n
F �

��p�ds���

proving the lemma� �

Choose p � d � ds� and for � � � write

g��p�x� y� �

Z �

�

q�t� x� y�tpe��tdt�

Proposition ��	� There exists c� � c��p� such that

g��p�x� x� � c��
�p���ds��� x � eF�� � � ��

Proof� �In this proof� we suppress the dependence of the constants ci on p�� Fix x � eF��
and write 	�n � 	�n�x�� Let A � D��x�� and set

V �A� � Ex
Z �

�

�A�Ws�s
pe��sds

� Ex
Z ��

�

�A�Wt�t
pe��tdt"

�X
n��

Ex
Z ��n��

��n

�A�Wt�t
pe��tdt� ������

��



Write q�t� x� y� for the transition density of W killed at 	��x�� Then by ������

q�t� x� y� � c�t
�d��e�c�t� t � ��

Therefore

Ex
Z ���x	

�

�A�Wt�t
pe��tdt �

Z
A

Z �

�

q�t� x� y�tpe��tdt ���dy�

� c�

Z
A

���dy�

Z �

�

tp�d��e�c�tdt � c����A��

Write Jn for the nth term of the sum in ������� and note that

Jn � Ex
�
e����nEW��n

Z ��n��

�

�A�Wt��	�n " t�pe��tdt
�

� c�
�
Exe����n	p�n E

W��n

Z ��n��

�

�A�Wt�dt
�

" c�E
x
�
e����n EW��n

Z ��n��

�

tp�A�Wt�dt
�
�

Using the bounds in Lemmas ��� � ���� we therefore have

Jn���A�
�� � c�E

x�	p�ne
����n�t

n���ds��	
F " c�E

x�e����n�t
n���p�ds��	
F

� c�t
n���ds��	
F

�
�Ex �	�p�n��

����Ex�e����n����� " tnpF Exe����n
�

� c�t
n���p�ds��	
F exp��c
��t

n
F �

��dw��

Writing � � � " p� ds��� we deduce from the calculations above that

V �A� � c
���A�
�
� "

�X
n��

�t�F �
n exp��c���t

n
F �

��dw �
�
�

Let m� be such that t
m�

F � ��� � tm���
F � Then� as � � �� the sum above is bounded by

c�����A�t
m��
F � So

V �A� �

Z
A

g��p�x� y����dy� � c�����A��
���p�ds���

and as g��p�x� y� is continuous� this proves the proposition� �

��



Theorem ��
� For x � eF��
q�t� x� y� �

�
c�t

�d��� � � t � ��
c�t

�ds��� � � t ���

Proof� The bound for t � ��� �� is given by ������ If t � �� let � � t��� Since q�t� x� x� is
non
increasing in t�

c�t
��p�ds�� � g��t�p�x� x�

�

Z t

t��

q�s� x� x�spe�s�tds

� q�t� x� x�

Z t

t��

spe�s�tds � c�t
��pq�t� x� x��

This proves the theorem if x � y� and the general case now follows from ������ �

Theorem ���� There exist c�� � � � � c
 � ����� such that if x� y � eF� and
�a� t � �� jx� yj � t� then

c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
������

� q�t� x� y� � c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
�

�b� if t � �� jx� yj � t� or if t � �� then writing D�t� � d� t � �� D�t� � ds for t � ��

c�t
�D�t	�� exp��c�jx� yj��t� � q�t� x� y� � c
t

�D�t	�� exp��c
jx� yj��t�� ������

Proof� The argument for the upper bounds in �a� and �b� follows that of �BB�� quite closely�
Fix x� y� t� and choose small neighborhoods Cx� Cy of x and y� Let Ax � fz � eF� 


jx� zj � jx� yjg� and de�ne Ay similarly� Let 
x � ��jCx � 
y � ��jCy � and let

S � infft � � 
 jWt �W�j �
�
� jx� yjg�

As ���Ax �Ay� � ��Z
Cy

Z
Cx

q�t� x�� y�����dx
�����dy

��

� P�x �Wt � Cy�

� P�x �Wt � Cy�Wt�� � Ax� " P�x �Wt � Cy�Wt�� � Ay�� ������

��



We begin with the second term in �������

P�x �Wt � Cy�Wt�� � Ay� � P�x �S � t���Wt � Cy�Wt�� � Ay�

� P�x �S � t��� sup
y��Ay

Py
�

�Wt�� � Cy�

� ���Cx� sup
x��Cx

Px
�

�S � t��� sup
y��Ay

Py
�

�Wt�� � Cy�� ������

For the �rst term in ������ we have� using the symmetry of W �

P�x �Wt � Cy�Wt�� � Ax� � P�y �Wt � Cx�Wt�� � Ax��

which can be bounded in exactly the same way as ������� Therefore� as q is continuous it

follows from ������� ������ and ����� that

q�t� x� y� � � sup
x�

Px
�

�S � t��� sup
z
q�t��� z� z�� ������

The upper bounds in �a� and �b� now follow immediately from ������ on using the bounds
given in Lemma ��� and Theorem ����

We now turn to the lower bounds in �a� and �b�� Using a standard chaining argument
such as in the proof of Theorem ��� of �BB��� these can be proved once we establish the
estimates

q�t� x� y� � c�t
�ds��� jx� yj � c��t

��dw � t � �� ������

q�t� x� y� � c��t
�d��� jx� yj � c��t

���� t � �� ������

������ is proved in Proposition ���� so we just prove �������
We deduce from the upper bound ������ that there exists c�� such that

q�t� x� x� � c��t
�ds��� x � eF�� t � �� ������

the proof is as follows �cf� Lemma ��� in �BB���� By ������

Px�	r�x� � t� � c�� exp��c���t
r
F t�

����dw��	��

Pick a such that c�� exp��c��a
����dw��	� � ��� and let r � �log��a�t�� log tF �� Then

Px�Ws � Dr�x�� � Px�	r�x� � t��� � ���

and
���Dr�x�� � c��m

�r
F � c�
t

ds���

��



By Cauchy
Schwarz�

��� � �Px�Wt�� � Dr�x���
� �

�Z
Dr�x	

q�t��� x� y����dy�
��

� ���Dr�x��

Z
Dr�x	

q�t��� x� y�����dy�

� ���Dr�x��q�t� x� x��

������ now follows immediately�
By ������ there exists c�
 such that

q�t� x� y� � c�
t
�ds��� x� y � eF��

Now �x t � � and x � eF�� Take c�� � �c�� � c�
��� and let A � fy 
 q�t��� x� y� � c��t
�ds��g�

Then

c��t
�ds�� � q�t� x� x� �

Z
q�t��� x� y�q�t��� x� y����dy�

�

Z
A

c�
t
�ds��q�t��� x� y����dy� "

Z
Ac

c��t
�ds��q�t��� x� y����dy��

Therefore
c�� � c�
P

x�Wt�� � A� " c��P
x�Wt�� � Ac�

� c�� " �c�
 � c���P
x�Wt�� � A��

So� if c�� � �c�� � c�����c�
 � c���� then P
x�Wt�� � A� � c���

Let � � c����� and choose m such that

Py�	m�x� � t��� � �� y � Dm�x��

By ����� this will hold if m is chosen so that t tmF � c�� � t tm��F � for a suitable c��� Write
D � Dm�x�� As � depends only on d and lF � by Theorem �����b� there exists � � ��
depending only on d and lF � such that if jx � yj � �l�mF � then there exist RBM� eF��� W x�
W y� starting at x� y� respectively� such that

P�TC �W
x�W y� � TD�W

x� � TD�W
y�� � �� ��

Therefore� writing TC � TC�W
x�W y��

�� � � P�TC � TD�W
x� � TD�W

y��

� P�TC � t��� " P �TD�W
x� � t��� " P �TD�W

y� � t����

so that
P�TC � t��� � �� ���

��



Thus
P�W y

t�� � A� � P�W x
t�� � A� TC � t���

� P�W x
t�� � A�� P�TC � t���

� c�� � �� � c�����

So if jx� yj � �l�mF � then

q�t� x� y� �

Z
A

q�t��� x� z�q�t��� z� y����dz�

� c��t
�ds��Py�Wt�� � A� � c��c��t

�ds�����

Since l�mF � c��t
��dw and � depends only on d and lF � the estimate ������ follows� �

Observe that Theorem ��� is the same as Theorem ����

For � � � let

v��x� y� �

Z �

�

q�t� x� y�e��tdt

be the �
potential kernel density forW � Let v � v�� v is the Green function forW � Integrating
the bounds in Theorem ��� we have


Corollary ����� Let ds � �� Then

c�jx� yjd�� � v�x� y� � c�jx� yjd�� if jx� yj � ��

c�jx� yjdw�df � v�x� y� � c�jx� yjdw�df if jx� yj � ��

Recall that for n � � the process Xn on eFn is given by
Xn
t � l�nF Wt�tn

F
	� t � �� ������

Let pn�t� x� y� be the transition density of X
n with respect to �n� Then from ������ we have

the scaling relation
pn�t� x� y� � mn

F q�t
n
F t� l

n
Fx� l

n
Fy�� ������

Theorem ����a� therefore implies


Corollary ����� There exist c�� c�� c�� c� � ����� such that if n � �� x� y � eFn and t � t�nF �

jx� yj � l
n�dw��	
F t� then

c�t
�ds�� exp

�
� c�

� jx� yjdw

t

����dw��	�
� pn�t� x� y� � c�t

�ds�� exp
�
� c�

� jx� yjdw

t

����dw��	�
� ������

��



Remark ����� Taking a limit along a subsequence shows that the density p�t� x� y� of Xt

with respect to � exists and gives the bounds in Theorem ����

De�ne the �
resolvent of X by U�f�x� � Ex
R�
�

e��sf�Xs� ds for � � � and write U for
U�� Set also

u��x� y� �

Z �

�

e��tp�t� x� y�dt�

and write u�x� y� � u��x� y�� Then u� is the density of the U�� and u is a Green function for
X� The following bounds for u��x� y� are obtained by integrating those for p�t� x� y�� in �b�
and �c� below one uses Laplace�s method�

Corollary ����� �a� If ds � � then

c�jx� yjdw�df � u�x� y� � c�jx� yjdw�df � x� y � eF � ������

�b� If ds � � then for � � �� x� y � eF �
c��

ds���� exp��c��
��dw jx� yj� � u��x� y� � c��

ds���� exp��c��
��dw jx� yj��

�c� If ds � � then writing r � ���dw jx� yj�

c
�log
����r� " e�c�r� � u��x� y� � c��log

����r� " e�c��r��

Since there are only countably many GSCs� and �as far as we know� there is no simple
expression for ds� it is unlikely that any GSC actually satis�es case �c� above� However� we
include it for completeness�

We now show that p�t� x� y� is C� in t and each of the partial derivatives is H&older

continuous in x and y� Let m � �� be �xed and let P t be de�ned on Dm��� by

P tf�x� � Ex �f�Xt�� t � 	m�����

Let p�t� x� y� be the corresponding transition density for Xt killed on exiting Dm���� Since
p�t� x� y� � p�t� x� y�� we have

p�t� x� y� � c�t
�ds��� x� y � Dm��� � eF � t � �� ������

Let u��x� y� �
R�
�

e��tp�t� x� y� dt and let U
�
be the corresponding resolvent operator� Write

U for U
�
�

��



Proposition ����� �a� There exist c� and � not depending on m such that if f is bounded�
then

jU
�
f�x�� U

�
f�y�j � c��� " ����jx� yj�kfk�� x� y � Dm����� � eF �

�b� U
�
f is continuous in Dm��� � eF with a modulus of continuity that depends only on ��

m and kfk��

Proof� �a� Let UDn�x�	 be the Green operator for Xt killed on exiting Dn�x��� If x� � Dm���

and Dn�x�� � eF � Dm��� � eF � then for bounded h
Uh�x� � UDn�x�	h�x� " ExUh�X�n�x�	�� x � Dn�x��� ������

The second term is harmonic in Dn���x��� and so by Theorem ��� there exist c� and �
�independent of m� such that

jExUh�X�n�x�	�� EyUh�X�n�x�	�j � c�jx� yj�ln�F kUhk�

if x� y � Dn���x��� On the other hand� by �������

kUDn�x�	hk� � c�t
�n
F khk��

Taking x � x� we therefore deduce that if n� y satisfy

Dn�x� � eF � Dm��� � eF � y � Dn���x� ������

then

jUh�x�� Uh�y�j � �c�t
�n
F khk� " c�jx� yj�ln�F kUhk��

� c��khk� " kUhk���t
�n
F " l�nF jx� yj��� ������

Now suppose x � Dm����� and jx � yj � l��F ��� Then if n � �� ������ is satis�ed�
Choosing n be the greatest integer less than � log jx� yj������" dw� log lF � it follows from
������ that

jUh�x�� Uh�y�j � c��khk� " kUhk��jx� yj���

where � � �dw��" dw�
���

By the resolvent identity�

U
�
f � U�f � �U

�
f��

Set h � f � �U
�
f � as kU

�
fk� � ���kfk�� we deduce jjhjj� � �jjf jj�� As Uh � U

�
f �

jjUhjj� � ���jjf jj�� and so jjhjj� " jjUhjj� � �� " ����jjf jj�� Therefore

jU
�
f�x�� U

�
f�y�j � c��� " ����jx� yj�kfk��

��



Finally� if jx� yj � � then we can �nd a chain x � x�� x� � � � xk � y with jxi�� � xij � l��F ��
and k � c
�d� lF �� So� using the triangle inequality �a� follows�
�b� Let A � �rDm��� be the relative boundary of Dm���� eF in eF � Write D � Dm���� eF�A�
If x � D then there exists n� � � such that Dn��x�� eF � D� If y � Dn����x�� eF and y �� x
choose n so that y � D�n�x��D�n���x�� Then ������ holds� and so by ������

jUh�x�� Uh�y�j � c
�khk� " kUhk���t
�n
F " l�n�F �

� c��khk� " kUhk��jx� yj	

for some � � �� Thus Uh is continuous on D�
We now show Uh vanishes continuously on A� For n � � set Bn � �z�ADn�z� � eF �

bn � supx�Bn jUh�x�j� Note that by ������ b� � c�t
�m
F jjhjj��

By Corollary ����� there exists � depending only on lF � d such that

Px�X�n�x	 �� Dm���� � �� x � Bn���

Since Uh � � outside Dm����

jUh�x�j � c�t
�n
F khk� " jE

xUh�X�n�x	�j

� c�t
�n
F khk� " ��� ��bn��� x � Bn���

Thus
bn�� � c�t

�n
F khk� " ��� ��bn�

Thus bn 
 � as n 
 �� We therefore have that Uh is continuous on Dm��� � eF with a
modulus of continuity depending on m and khk�� Using the resolvent identity as in �a�� we
obtain �b�� �

Proposition ����� There exist reals � � �� � �� � � � � and bounded continuous functions
�i on Dm�x�� such that
�a� the only subsequential limit point of f�ig is ��
�b� the �i form a complete orthonormal system for L��Dm�x��� ���
�c� we have the expansion

p�t� x� y� �
�X
i��

e��it�i�x��i�y� ������

where the convergence is absolute and uniform for each t � ��

Proof� We �rst show that if P tf � � a�e� for f � L�� then f � � a�e� By �FOT�� Lemma
����� the semigroup �P t� is strongly continuous on L

��F� ��� so that jjP tf �f jj� 
 � as t � ��
If P tf � �� then

� �

Z
f�P tf� �

Z
�P t��f��P t��f��

��



or P t��f � � a�e� By induction P t��nf � � a�e�� and so f � � a�e�

p�t� x� y� is symmetric and bounded� Since ��Dm�x��� ��� then

Z
Dm�x�	

Z
Dm�x�	

p�t� x� y����dx���dy� ���

By �RS
N�� P t is a self
adjoint completely continuous operator on L�� and by the proofs in
�Bas��� Sect� II��� there exist e�i that form a complete orthonormal system of functions in L�

with

p�t� x� y� �
�X
i��

e��it e�i�x�e�i�y�
for �� a�e� pair �x� y�� Moreover the convergence is absolute and takes place in L��Dm�x��	
Dm�x���� and �a� holds�

Next note P t e�i � e��it e�i a�e�� so U� e�i � ��" �i�
�� e�i a�e� Setting �i � ��" �i�U

� e�i�
we have �i � e�i a�e�� while by Proposition ���� �i is continuous�

If s � t�

e�itP t e�i�x� � e�isP s�e
�i�t�s	P t�s e�i��x� � e�isP s e�i�x�

because e�i�t�s	P t�s e�i � e�i a�e� and P s has a density� It follows that for each x and i�
e�itP t e�i�x� is constant in t� Writing wi�x� for e�itP t e�i�x��

U
� e�i�x� � Z t

�

e��tP t e�i�x� dt � Z �

�

e��te��itwi�x� dt � ��" �i�
��wi�x��

Hence

e�itP t e�i�x� � wi�x� � �i�x�

for all t and x� Since
R e��

i �x���dx� � �� from Cauchy
Schwarz and Remark �����

�i�x� � e�itP t e�i�x� � e�it
�Z e��

i �y���dy�
�����Z

Dm�x�	

p�t� x� y����dy�
����

�

and so �i is bounded in x�

Let

r�t� x� y� �
�X
i��

e��it�i�x��i�y��

As the �i are orthonormal� then

Z
r�t��� x� z�r�t��� z� y���dz� �

�X
i��

e��it��e��it���i�x��i�y� � r�t� x� y�� ������

��



If f �
P

ai�i � L�� Z
f�y�r�t� x� y���dy� �

X
e��itai�i�x��

while

P tf�x� �
X

aiP t e�i�x� �X aie
��it�i�x��

Thus r�t� x� �� is a transition density for P t and r�t� x� �� � p�t� x� �� a�e� We then have by
������ that

p�t� x� y� �

Z
p�t��� x� z�p�t��� z� y���dz� �

Z
r�t��� x� z�r�t��� z� y���dy� � r�t� x� y��

From �Bas��� Sect� II��� the sum in ������ is absolutely and uniformly convergent� consequently
p�t� x� y� � r�t� x� y� is jointly continuous in x and y� �

Fix t� � �� write � � t��� � and let

sk�x� y� �
�X
i��

��" �i����i�
ke��it��i�x��i�y�� k � �� �� �� � � � �

Skf�x� �

Z
f�y�sk�x� y���dy��

Proposition ����� There exist constants c��k� independent of m such that if f � L� then

jjSkf jj� � c��k�t
�k���ds��
� jjf jj��

Proof� Note �rst that supr���� " r�rke�rt��� � c��k�t
�k��
� for some function c��k�� So�

using Cauchy
Schwarz�

jsk�x� y�j �
�X
i��

��" �i��
k
i e
��it� j�i�x�j j�i�y�j�

�
� �X
i��

��" �i��
k
i e
��it��i�x�

�
����� �X

i��

��" �i��
k
i e
��it��i�y�

�
����

� sup
x

�
sup
i
��" �i��

k
i e
��it���

�X
i��

e��it����i�x�
�
�

� c��k�t
�k��
� sup

x
p�t���� x� x�

� c��k�t
�k���ds��
� �

The result is now immediate� �

Let �t be an abbreviation for ���t and �
k
t an abbreviation for �

k��tk�

��



Proposition ���	� For each k � �� t � �� �kt p�t� x� y� is continuous in x and y on Dm���� eF �
Further there exist constants c��k�� c��k�� �� not depending on m� such that

j�kt p�t� x� y�j � c��k�t
�k�ds��� x� y � Dm��� � eF � ������

j�kt p�t� x� y�� �kt p�t� x
�� y�j � c��k��� " t�jx� x�j�t�k���ds�� ������

for x� x�� y � Dm��� � eF� jx� x�j � ��

Proof� Let f�z� � p�s� z� y�� Then

P t�f�x� �

Z
p�t�� x� z�p�s� z� y���dz� � p�t� " s� x� y��

Therefore� using the eigenvalue expansion�

�kt p�t� " s� x� y� � �kt P t�f�x� � U
�
Skf�x��

Thus �kt p�t� " s� x� y� is continuous on Dm��� by Proposition �����b�� As jjf jj� � � we have�
using Proposition �����

j�kt p�t� " s� x� y�j � jjU
�
Skf jj�

� ���jjSkf jj�

� ���c��k�t
���k�ds��
� �

If x� x� � Dm����� � eF and jx� x�j � � then by Proposition �����a�

j�kt p�t� " s� x� y�� �kt p�t� " s� x�� y�j � jU
�
Skf�x�� U

�
Skf�x

��j

� c��� " ����jx� x�j�jjSkf jj�

� c��k��� " t��jx� x�j�t���k�ds��� �

The result follows immediately from these bounds� �

Theorem ���
� There exist constants c��k�� c��k�� depending only on k� and � � � such
that for x� x�� y � eF � t � �� k � �

j�kt p�t� x� y�j � c��k�t
�k�ds��� ������

Writing R � jx� x�jt���dw �

j�kt p�t� x� y�� �kt p�t� x
�� y�j � c��k�max�R

�� Rdw�t�k�ds��� ������

��



Proof� As the bounds in Proposition ���� are independent of m it follows by the argument
of �BB�� Sect� ��� that �kt p�t� x� y� is continuous and satis�es the bounds ������ and �������
This proves �������

To prove ������ we use weak scaling� Let X �
t � lnFX�t�t

n
F �� and let p

��t� x� y� be the
transition density of X �� Then p� also satis�es ������ and ������� and

p�t� x� y� � mn
Fp

��tnF t� lnF x� lnF y��

Write � � lnF � if �jx� x�j � �� then using ������ it follows that

j�kt p�t� x� y�� �kt p�t� x
�� y�j � c��k���

�dw " t���jx� x�j�t�k���ds���

Optimizing over � � flnF � n � Zg we obtain ������� �

Proof of Theorem ���� The continuity and symmetry of p�t� x� y� follow from Propositions
���� and ����� while the bounds in ����� follow from Corollary ����� �

Proof of Theorem ���� Combine Theorem ��� and Theorem ���� �

Remark ����� We can use the spectral theorem to obtain an expansion of p�t� �� �� on eF 	 eF �
Proposition ����� Suppose p�t� x� y� � pD��x�	�t� x� y� is the transition density for Xt killed

on exiting D��x��� Let t� � ��� l
d
F � and c� � �� Then there exists c� such that p�t� x� y� �

c�t
�ds��
� if jx� yj � c�t

��dw
� and x� y � D��x���

Proof� We have p�t� x� y� � p�t� x� y� � c�t
�ds�� by Theorem ���� Just as in the proof of

������ there exists r � � such that

p�t� x� x� � c�t
�ds��

provided x � Dr�x��� Just as in the proof of ������� we have

p�t� x� y� � c�t
�ds��� jx� yj � c�t

��dw � x� y � Dr���x���

Finally we obtain our proposition by using the chaining argument in the proof of Theorem
��� of �BB��� �

Proposition ����� Suppose bp�t� x� y� � bpD��x�	�t� x� y� is the transition density for Xt with
re�ection on �D��x��� There exists c� such that

bp�t� x� y� � c�t
�ds��� t � ��

��



Proof� The proof is very similar to that for the unre�ected process� In view of ������� if
x � Dr���y�� then Dr���y� � Dr�x� and

Ex	r���y� � Ex	r�x� � c�t
�r
F �

If x �� Dr���y�� then E
x	r���y� � �� Therefore�

Ex	r�y� � c�t
��r��	
F � c�t

�r
F � x� y � F� ������

	r�y� is an additive functional for Xt and by ������ and subadditivity �see �BK���

Ex	r�y�
p � c��p�t

�rp
F � p � �� x� y � F� ������

Proceeding just as in the proofs of Lemma ���� Proposition ���� and Theorem ���� we deduce

bp�t� x� y� � c�t
�ds���

Just as in the proof of �������

bp�t� x� x� � c�t
�ds��� x � F�

and as in the proof of ������� bp�t� x� y� � c
t
�ds��

if jx � yj � c
t
��dw � An application of the chaining argument of Theorem ��� in �BB��

completes the proof� �

	� Inequalities�

In this section we apply the estimates obtained in Section � to deduce a number of
Sobolev and related inequalities for the processes X and W � Let U be the potential operator
for Xt� and �E �D�E�� be the Dirichlet form de�ned in Section �� From �CKS� and the upper
bound p�t� x� y� � c�t

�ds�� given in Theorem ���� we deduce immediately

Theorem 	��� �Nash inequality� There exists c� such that

kfk
����ds
� � c�E�f� f�kfk

��ds
� � f � D�E��

Theorem 	��� �Sobolev inequality� Suppose ds � �� Let q � �ds��ds � ��� Then there
exists c� such that

kfkq � c�E�f� f�
���� f � D�E��

Thus Theorem ��� is proved�

Recall from Remark ���� the construction of Brownian motion on Dn�x�� � eF with
re�ection on the boundaries of Dn�x��� Let bp�t� x� y� be the transition densities for this
re�ecting Brownian motion� Normalized Lebesgue measure on Dn�x�� � Fm is an invariant
measure for the approximating processes Xm

t � and a limit argument shows that �jDn�x�	 is
an invariant measure for re�ecting Brownian motion� We write EDn�x�	�f� f� for the Dirichlet

form of this process� and let Dn�x� be its domain� For A � B� eF � let fA � ��A���
R
A
fd��

We now give a proof of the Poincar�e inequality� modeled after the proof in �SC��

��



Theorem 	��� �Poincar�e inequality� There exists c� such thatZ
Dn�x�	

jf � fDn�x�	j
� � c�l

�ndw
F EDn�x�	�f� f�� f � Dn�x� �

Proof� Let t � l�ndwF � By Proposition ���� and weak scaling�

bp�t� x� y� � bpDn�x�	�t� x� y� � c�l
ndf
F � �����

Let bPtf�x� � R f�y�bp�t� x� y���dy�� Since �jDn�x�	 is an invariant measure for bp�t� x� y�� thenZ
Dn�x�	

bPtf�x���dx� � Z Z bp�t� x� y�f�y��Dn�x�	�x���dy���dx� �

Z
Dn�x�	

f�y���dy�� �����

Now from ������ for x � Dn���x���

bPt�f � bPtf���x� � c�l
ndf
F

Z
Dn���x�	

jf � bPtf j� � c�l
ndf
F

Z
Dn���x�	

jf � fDn���x�	j
��

Integrating both sides over Dn���x���Z
Dn���x�	

bPt�f � bPtf���x���dx� � c�

Z
Dn���x�	

jf � fDn���x�	j
�� �����

The left
hand side of ����� is equal toZ
Dn�x�	

bPt�f��� Z
Dn�x�	

� bPtf�� � Z
Dn�x�	

f� �

Z
Dn�x�	

� bPtf��
� �

Z t

�

Z
Dn�x�	

�s� bPsf����dy� ds
� c�tEDn�x�	�f� f��

The conclusion of Theorem ��� now follows by applying the techniques of Jerison �Je�� �

Suppose ds � �� For A � eF de�ne C�A�� the capacity of A� by

C�A� � supf
�A� 
 U
 � �g�

It is standard ��FOT�� that C�A� can also be de�ned as

C�A� � inffE�f� f� 
 f � � on A� f�x�
 � as x
�g

if all points of �A � eF are regular for Ac�

��



Theorem 	��� �Mass�Capacity inequality�� Let ds � �� Then for A � B� eF �
��A� � c�C�A�

ds��ds��	�

Proof� Choose n � Z such that m�n
F � ��A� � m�n��

F � Write �A � �jA� Then

U��A��x� �

Z
A

u�x� y���dy� �

Z
Dn�x	

u�x� y���dy� "

Z
A�Dn�x	

u�x� y���dy�� �����

Now ��Dm�x��Dm���x�� � c�m
�m
F � while by Corollary ���� we have

u�x� y� � c��l
�m
F �dw�df � c�t

�m
F mm

F � y � Dn�x�
c� �����

Therefore Z
Dm�x	�Dm���x	

u�x� y���dy� � c�t
�m
F �

Summing over m � n to bound the �rst term in ����� and using the estimate ����� in the
second� we deduce that

U��A��x� � c�t
�n
F " c�t

�n
F mn

F�A�A�

� c�t
�n
F � c
��A�

��ds �

So if 
 � �c
��A�
��ds����A� then U
 � �� and therefore C�A� � 
�A� � c��
 ��A�����ds � �

We now proceed to obtain the Sobolev� mass
capacity� and Poincar�e inequalities for the
pre
carpet� We start with the mass
capacity inequality� We let C��A� denote the capacity of
A with respect to RBM� eF��� Recall that �� is Lebesgue measure restricted to eF��
Theorem 	��� Suppose ds � �� There exists c� such that if A � B� eF�� and ���A� � �� then

C��A� � c����A�
�ds��	�ds �

Proof� This is very similar to the proof of Theorem ���� except that we use Corollary
���� instead of Corollary ����� Let A � eF�� with ���A� � �� Then choosing n such that
m�n
F � ���A� � m�n��

F � we have n � �� Corollary ���� implies thatZ
D��x	

u�x� y���dy� � c��

and the remainder of the proof follows that of Theorem ���� �

Remark 	��� Write

E��f� f� �
�
�

Z
eF� jrf j� dx

for the Dirichlet form associated with W � By �FOT�� Sect� ���� the capacity of A is equal to

inffE��f� f� 
 f � � on A� f 
 � as kxk� 
�g�

We now proceed to the Sobolev inequality�

��



Theorem 	�	� Suppose ds � �� Let q � ds��ds � ���
�a� There exists c� such that if f is nonnegative and r is such that ���fx 
 f�x� � rg� � ��

then
kfk�q � c�E��f� f�

��� " k�f � r��k�q�

�b� There exists c� such that if r and s are such that ���fx 
 f
��x� � rg� � � and

���fx 
 f��x� � sg� � �� then

kfk�q � c�E��f� f�
��� " k�f� � r��k�q " k�f

� � s��k�q�

Proof� We have
kfk�q � kf � rk�q " k�f � r��k�q�

So if we show
kf � rk�q � c�E��f � r��r�

���� �����

�a� will follow since E��f � r� f � r� � E��f� f��
We follow the proof of �Ma�� pp� ���
���� Let '�x� �� � j�j and p � �� then the �p� '�


capacity of Maz�ja is� using Remark ���� the same as our capacity� Let Nt � fx 
 f�x� � r �
tg� By our assumption on r� Nt is either empty or ���Nt� � �� So using Theorem ����
���Nt� � c�C��A�

q� We now obtain �a� by the proof in �Ma��
To prove �b�� we write

kfk�q � kf�k�q " kf
�k�q

and apply �a� to f� and f�� observing that f� � ���f � ��� so

E��f
�� f�� � E���f � ���f � �� � E���f��f� � E��f� f�

and similarly for E��f�� f��� �

Remark 	�
� The Sobolev inequality for E� is more complicated than that for E � as q�t� x� x�
behaves di	erently at � and �� We give here two other Sobolev inequalities for E�� both of
which follow from the bounds in Theorem ����

First� from �V�� we have

kfk�q � c��E��f� f� " kfk��� �����

We also have� from �Co��
kP�fk�q � c�E��f� f�� �����

Here P� can be replaced by other �regularizing� operators which smooth out short range
�uctuations in f �

From �CKS� Theorem ���� we have the following conditional Nash inequality for E��

��



Theorem 	��� For each c� � � there exists c� such that

kfk����ds
� � c�E��f� f�kfk

��ds
� whenever E��f� f� � c�kfk

�
�

Finally we give a Poincar�e inequality for eF�� Write
E��Dn�x�	�f� f� �

Z
Dn�x�	�eF� jrf�x�j�dx�

Theorem 	���� There exists c� such that if x� � eF � n � �� thenZ
Dn�x�	

jf � fDn�x�	j
� � c�t

�n
F E��Dn�x�	�f� f��

The proof is very similar to that of Theorem ����

As remarked in the introduction� the bounds in Theorem ��� are su!cient to show that�
while �by Theorem ���� an elliptic Harnack inequality holds for eF�� the usual type of parabolic
Harnack inequality fails for any GSC for which dw � �� �See Remark �����

Let B � Rd be open� and � � t� � t� � �� A function u � u�t� x�� t � �t�� t���
x � B � eF�� is parabolic on �t�� t��	 �B � eF�� if

�u

�t
� �

��u on �t�� t��	 �B � eF���
and �u��n � � almost everywhere on B � � eF�� Let x � eF�� r � �� t � �r�� and set

Q� � �t� �r
�� t� �r��	 �B�x� �r� � eF��

Q� � �t� r�� t�	 �B�x� r� � eF��
The standard parabolic Harnack inequality �see for example �FS�� would assert that if u is

parabolic and non
negative then
sup
Q�

u � c� inf
Q�

u� �����

where the constant c� is independent of x� r� t and u�

Proposition 	���� Suppose the GSC F is such that dw � �� Then the parabolic Harnack
inequality ����� fails for eF��
Proof� Fix x � eF�� and let r � �� Let y � eF� be chosen so that jx � yj � r� and let
u�s� z� � q�s� y� z�� Take t � �r�� Then by ������

sup
Q�

u � q�r�� y� y� � c�r
�ds �

��



while �since jx� yj � r � r� � t�

inf
Q�

u � q��r�� x� y�

� c�r
�ds exp��c��r

dw��r�����dw��	�

� c�r
�ds exp��c�r

�dw��	��dw��	��

Taking r su!ciently large� ����� fails� �

We can� however� give a di	erent form for a parabolic Harnack inequality for eF�� Let
x � eF�� r � �� t � �rdw � let n be such that l�nF � r � l�n��

F � and set

R� � �t� �r
dw � t� �rdw �	 �Dn�x� � eF���

R� � �t� rdw � t�	 �Dn���x� � eF���
Let � � t� � t� �rdw � t � t�� and B � Rd be an open set with Dn�x� � B� Let u be

non
negative and parabolic on �t�� t��	 �B � eF���
Theorem 	���� There exists a constant c�� independent of x� r� t� u such that

sup
R�

u � c� inf
R�

u� ������

The proof follows from the estimates on q�t� x� y� in Theorem ��� by the same argument
as that used in �FS��

We now discuss the functions in D�E� in a little more detail� If f � D�E� then by �FOT�
Lemma ������

E�f� f� � lim
t��

Et�f� f��

where
Et�f� f� � t����I � Pt�f� f��

Set

�t�f��x� � ��t�
��

Z
pt�x� y�

�
f�x�� f�y�

��
��dy��

Then Z
�t�f��x���dx� �

�
� t
��

Z Z
pt�x� y�

�
f�x�� f�y�

��
��dy���dx�

� t��
Z Z

f�x�pt�x� y�
�
f�x�� f�y�

�
��dy���dx�

� Et�f� f��

��



Proposition 	���� Suppose the GSC F is such that dw � �� Let f � C��Rd�� and suppose
g � f jeF � D�E�� Then g is constant�

Proof� Suppose g is non
constant� Then we can �nd x� � eF such that f is approximately

linear �with non
zero gradient� in a neighbourhood of x�� It follows that we can �nd su!

ciently small constants a�� a�� a�� a� such that whenever x � B� � B�x�� a�� and � � t � a��
there exists y� � B�x� t��dw� such that

jf�y�� f�x�j � a�t
��dw for y � B�y�� a�t

��dw ��

So� writing B� � B�y�� a�t
��dw �� and c�� c� for positive constants depending on the ai�

�t�f��x� � ��t�
��

Z
B�

pt�x� y�
�
f�x�� f�y�

��
��dy�

� c� t
����B��t

�df�dw t��dw � c�t
���dw	�dw �

Hence

Et�f� f� �

Z
B�

�t�f��x���dx� � c���B��t
���dw	�dw �

Hence limt�� Et�f� f� ��� so f �� D�E�� �

Remark 	���� For the Sierpinski gasket� see �BP� Corollary ���� �or �BST� Theorem ���� for
an analytic proof� for an analogous result for D�L��

Remark 	���� There are several recent papers on Sobolev inequalities and capacity on
general metric spaces �including fractals� � see� for example� �H�� and �KM�� Specialized to a
GSC eF � Haj(lasz �H�� de�nes the space L���� eF � �� to be the set of f 
 eF 
 R such that there
exists E � eF and g � L�� eF � �� such that for x� y � eF �E�

jf�x�� f�y�j � jx� yj�g�x� " g�y���

The norm jjf jjL��� is de�ned to be the in�mum of jjgjj� for g satisfying the above�
As an example of the kind of results that can be obtained� Haj(lasz proves ��H�� Lemma

��� the Poincar�e inequality Z
B

jf�x�� fBj
� � c r�jjf jjL���� ������

where B � B�x� r� � eF � Thus this Poincar�e inequality has the usual r� scaling� rather than
the rdw scaling of Theorem ����

While the relation between these two approaches is not clear to us in general� we can
remark that Haj(lasz�s space L���� eF � �� is very di	erent from D�E�� For example� if f �
C�
K�R

d� and f� � f jeF then f� � L���� eF � ��� while� by Proposition ����� f� � D�E� only if f�
is constant�

��




� Properties of the process�

In this section we list a number of properties of the processes X and W �

�a� Spectral dimension

Let x� be �xed and let p�t� x� y� be the transition densities of Xt killed on exiting D��x���
By Proposition ���� we may write

p�t� x� y� �
�X
i��

e��it�i�x��i�y�

for suitable eigenvalues �i and eigenfunctions �i �cf� �Bas��� Section II���� Just as in �BP��
pp� ���
����

lim
���

log%f�j 
 �j � �g

log�
� ds�

which says that ds agrees with what is known in the mathematical physics literature as the
spectral dimension�

�b� Transience� recurrence and regularity of points

Let Tx � infft � � 
 Xt � xg�

Theorem 
��� X is transient if and only if ds � �� Points are regular for themselves if and
only if ds � �� More precisely� if x� y � eF then


�a� if ds � �� then Px�Ty ��� � � and Px�Tx � �� � ��

�b� if ds � �� then Px�Ty ��� � �� Px�Tx � �� � �� and Px�TDn�y	 ��� � � for all n�

�c� if ds � �� then Px�Ty ��� � �� Px�Tx � �� � �� and Px�limt�� jXt � yj ��� � ��

Proof� �a� may be proved as in �BB�� Theorem �����

�b� Let � � �� By Corollary �����c� u��x� y� �� for x �� y� while u��x� x� � � for all
x� Since u��Xt� y� is a non
negative P

x 
supermartingale� it follows that that Xt cannot hit
y�

Since Xt has a density� E
x
R �m�x�	

� �fxg�Xs�ds �
R�
� p�s� x� x�ds � �� or Xt leaves fxg

immediately� By the preceding paragraph and the strong Markov property� Xt never returns
to x�

Let u�x� y� be the Green function for Xt killed on exiting D��y�� We observe that there
exist c� and c� such that

u�x� y� �

Z �

�

p�t� x� y� dt � c�

Z �

c�jx�yjdw
t�ds�� dt � �c� log jx� yj� x� y � D��y��

��



From ������� Theorem ���� and integration we obtain u�x� y� � �c� log jx � yj� Since
u�Xt��n�m�y	� y� is a martingale and u�x� y� � � if x � �D��y�� this martingale is a time

change of a one
dimensional Brownian motion� Since 	��y� has �nite expectation� it is �nite
almost surely� and we conclude that

Pl
m�n
F

x�TDn�m�y	 � 	��y��
 � as m
 ���

By weak scaling� Px�TDn�y	 � 	m�y��
 � as m
 ��� which completes the proof of �b��
�c� The �rst two assertions are proved as in �b�� u�Xt� y� is a nonnegative supermartin


gale� hence it converges a�s� It is clear that the only possible limit value is �� Therefore
jXtj 
 �� a�s� �

�c� Modulus of continuity�

There exists c� such that

lim
���

sup
��s�t�T
js�tj��

jXt �Xsj

js� tj��dw�log���js� tj���dw��	�dw
� c�� a�s� �����

The proof is the same as that of the corresponding result for the Sierpinski gasket in �BP��

�d� Occupation times�

Proposition 
��� Suppose ds � � and let

At�r� � sup
x�F�

Z t

�

�B�x�r	�Xs� ds�

Then there exists c� �� such that

lim sup
r��

A��r�

rdw log���r�
� c��

Proof� Let Ct�x� r� �
R t
� �B�x�r	�Xs� ds� By Corollary ����

sup
y
EyC��x� r� � sup

y

Z
B�x�r	

jz � yjdw�df ��dz� � c�r
dw �

Since Ct�x� r� is an additive functional� by subadditivity �see �BK��� there exist c� and c� such

that
sup
y
E y exp�c�C��x� r��r

dw� � c��

��



So
Py�C��x� r� � �rdw � � c�e

�c
��

There existM � c
r
�d balls of radius �r such that if x � ��� ��d� then B�x� r� is contained

in one of these M balls� Then

Py�A��r� � c
 log���r�r
dw� � c�c
r

�de�c
c� log���r	�

If we choose c
 su!ciently large �but depending only on c� and d�� then

Py�A��r� � c
 log���r�r
dw� � r���

We apply this estimate for rj � �
�j � j � �� �� � � �� By the Borel
Cantelli lemma�

Py�A��rj� � c
 log���rj�r
dw
j i�o�� � ��

Since A��r� increases in r as does log���r�r
dw for r small� while log����r���r�dw is bounded

by a constant times log���r�rdw � the proposition follows� �

�e� Local times

If ds � �� the argument of �BB�� shows Xt has a jointly continuous local time� If ds � ��
Theorem ��� shows that a point y is never hit� so a local time at y cannot exist�

�f� Hausdor� dimension of the range�

Proposition 
��� Suppose ds � �� If R��� � fXt��� 
 � � t � �g� then with probability
one the Hausdor� dimension of R��� is dw�

This provides some justi�cation for calling dw the �dimension� of the walk� �See �AO��
�RT��� If ds � �� then the continuity of the local times of X implies that the range of Xt

includes an open subset of F � and hence the Hausdor	 dimension of the range is df �

Proof� We �rst show the dimension of R��� is less than or equal to dw� Let � � �� By the
modulus of continuity result in �c�� there exists M �depending on �� such that

jXt �Xsj �M js� tj���dw��	

if � � s� t � �� Let j be an integer� � � ���j " ��� and ti � i�� i � �� �� � � � � j� Then the set of
balls B�Xti����M����dw��	� covers R���� We also have

jX
i��

�M����dw��	�dw�� �Mdw��

jX
i��

� �Mdw�� ��

��



for all j� This implies that the dimension of R��� does not exceed dw " �� and since � is
arbitrary� dimR��� � dw�

Next we show that dimR��� is at least dw� By Proposition ��� there existsM
� �depending

on �� such that A��r���� � M �rdw�� if r � �� Suppose there exists a sequence of balls
B�x�� r��� B�x�� r��� � � � that cover R��� with supi ri � ��� and

P
i r

dw���
i � ��M �� We have

Z �

�

�B�xi�ri	�Xs� ds � A��ri� �M �rdw��i �

Summing over i�

� �

Z �

�

�R��	�Xs� ds �M �
X
i

rdw��i

� ������M �
X
i

rdw���i � �������

a contradiction� Therefore there cannot exist such a sequence of balls� and so dimR��� �
dw � ��� However� � is arbitrary� �

�g� Self�intersections

By �Ro� and �FiS�� Xt intersects itself if and only ifZ
D��x	

�u��x� y�����dy� ���

where u� is the �
resolvent for Xt� Note thatZ
D��x	

�u��x� y�����dy� �
�X
i��

Z
Di�x	�Di���x	

�u��x� y�����dy��

��Di�x�� � c�l
�idf
F and it is easy to see that ��Di�x� � Di���x�� � c�l

�idf
F � Using the

estimates for u��x� y�� which are obtained similarly to those for u�x� y�� it follows that Xt has
self
intersections if and only if

�X
i��

��l�iF �
dw�df ��l

�idf
F ���

that is� if ��dw � df � " df � �� or if ds � �df�dw � ��

�h� Zero�one law
An event A is a tail event if it is in 	�Xu�u � t� for all t � �� We prove that the tail

	
�eld is trivial�

��



Theorem 
��� Suppose A is a tail event� Then either Px�A� is � for all x or else it is � for
all x�

Proof� Let � � � and �x x� � eF � By the martingale convergence theorem� Ex� ��A j Ft�
 �A
almost surely as t
�� Choose t� large enough so that

Ex� jEx� ��A j Ft� �� �Aj � �� �����

Write Y for Ex� ��A j Ft� �� Using ������� choose M large so that

Px� �sup
s�t�

jXs � x�j � Mt
��dw
� � � �� �����

For each t� by Theorem ���� we have the continuity of Ptf�x� in x with a modulus depending
only on t and kfk�� We use scaling and choose t� large so that

jPt�f�x�� Pt�f�x��j � �kfk�� jx� x�j �Mt
��dw
� � �����

We note

jPx��A�� Ex� �Y �A�j � jEx� ��A�A�� Ex� �Y �A�j � �� �����

Since A is a tail event� there exists C such that A � C � �t��t� � Let f�z� � Pz�C�� By
the Markov property at time t��

Ew ��C � �t�� � EwEX�t� 	�C � Ewf�Xt�� � Pt�f�w�� �����

By the Markov property at time t� and ������

Ex� �Y �A� � Ex� �Y EX�t� 	��C � �t��� � Ex� �Y Pt�f�Xt���� �����

while

Px��A� � Ex� �A � Ex� EX�t� 	��C � �t�� � Ex� �Pt�f�Xt���� �����

If jXt� � x�j �Mt
��dw
� � then jPt�f�Xt��� Pt�f�x��j � � by ������ Since

Ex� �Y Pt�f�Xt��� � Ex� �Y Pt�f�Xt��� jXt� � x�j �Mt
��dw
� �

" Ex� �Y Pt�f�Xt��� jXt� � x�j � Mt
��dw
� ��



Ex� �Y Pt�f�Xt��� jXt� � x�j �Mt
��dw
� �� Pt�f�x��E

x� �Y � jXt� � x�j �Mt
��dw
� �



 � ��

and

Ex� �Y � jXt� � x�j �Mt
��dw
� � � Ex�Y � Ex� �Y � jXt� � x�j � Mt

��dw
� ��

��



then
jEx� �Y Pt�f�Xt���� Pt�f�x��E

x�Y j � ��� �����

Similarly
jEx�Pt�f�Xt��� Pt�f�x��j � ��� ������

Combining ������ ������ ������ ������ and �������

jPx� �A�� Px� �A�Ex�Y j � ���

Using this and ������
jPx��A�� Px� �A�Px��A�j � ����

Since � is arbitrary� we deduce Px� �A� � �Px� �A���� or Px� �A� is � or �� Since Px�A� �
ExPt�f�Xt�� � Pt��Pt�f��x� is continuous in x and eF is connected� then Px�A� is either
identically � or identically �� �

Remarks 
��� �� An event A is invariant if A � �t � A for all A� In particular� invariant
events are in the tail 	
�eld� hence trivial� It follows that there are no nonconstant bounded
harmonic functions on eF �
�� Since we have similar estimates for the transition densities of Brownian motion on the
nested fractals� the same proof shows there is a zero
one law for �unbounded� nested fractals
as well�

�i� Rate of escape

Proposition 
��� Suppose ds � �� Then

lim inf
t��

jXt � xj

t��dw�log t�	

equals � with Px probability one if � � ���dw � df � and equals � with Px probability one if
� � ���dw � df ��

Proof� By Corollary �����a� and the fact that u�Xt� x� is a local martingale� there exist
� � c� � c� �� such that

c��� � �r�jy � xj�dw�df � � Py�Xt ever hits B�x� r�� � c��� � �r�jy � xj�dw�df ��

Using this� for any q � � and any z � eF �
Pz�jXt � xj � rn for some t � qn�

� E zPXqn �jXt � xj � rn for some t � ��

�

Z
Py�jXt � xj � rn for some t � ��P

z�Xqn � ��dy��

� c�

Z � rn
jy � xj

� �
�dw�df

p�qn� z� y���dy��

��



Set rn � c�q
n�dw �log qn��	 � If

An � fjXt � xj � rn for some t � qng�

then
Pz�An� � c��log q

n��	�dw�df 	� ������

By the Borel
Cantelli lemma we see that if � � ���dw� df �� then P
x�An i�o�� � �� no matter

what c� is�
For the other direction

Px�jXt � xj � rn for some t � �q
n� qn����

� ExPXqn �jXt � xj � rn for some t � ��

� ExPXqn�� �jXt � xj � rn for some t � ���

Let rn � c�q
n�dw �log qn��	 � As above� the second term on the right is bounded by

c��log q
n��	�dw�df 	q���dw �

On the other hand� the �rst term on the right is bounded below byZ
Py�jXt � xj � rn for some t � �� p�q

n� x� y���dy� � c
�log q
n��	�dw�df 	�

Set Bn � fjXt � xj � rn for some t � �q
n� qn��g� Then provided q is su!ciently large�

Px�Bn� � c
�log q
n��	�dw�df 	� ������

If � � ���dw � df �� then
P

Px�Bn� ���
Let � � �� If j � i" �� then

Px�Bi � Bj� � Ex �PX�qi��	�jXt � xj � rj for some t � �q
j � qi��� qj�� � qi�����Bi�

� Ex �sup
y
Py�jXt � xj � rj for some t � qj � qi����Bi��

As in the proof of ������� the right hand side is less than or equal to c�P
x�Bi��log q

j��	�dw�df 	�
Using ������� this in turn is bounded by c��P

x�Bi�P
x�Bj�� so

Px�Bi � Bj� � c��P
x�Bi�P

x�Bj��

By a Borel
Cantelli lemma for dependent events �see� e�g�� �Bas��� Prop� II������� Px�Bn i�o�� �
�� The result now follows from Theorem ���� the zero
one law� �

�j� Process on the pre�carpet

The properties of X above which relate to large scale behavior of the process have
analogues for the process W on eF�� with almost identical proofs� We summarize some of
them in the following theorem�

��



Theorem 
�	� �a� If ds � � then Px�T W
Dn�y	

� �� � � for all x� y � eF�� so that W is
neighborhood�recurrent�
�b� If ds � � then W is transient� and

lim inf
t��

jWt � xj

t��dw�log t�	

equals � with probability one if � � ���dw � df � and equals � with probability one if
� � ���dw � df ��
�c� The tail 	�
eld for W is trivial�

�� Examples and open problems�

Examples�

We have already� in Example ���� de�ned the the carpet SC�a� b� d�� where a� b� d are integers�
d � �� and � � b � a� Note that the symmetry assumption Hypothesis ��� �H�� implies that
a � b �mod��� and that therefore b � a � �� Recall that for SC�a� b� d�� mF � ad � bd� and
that

a� b

ad��
"

b

ad�� � bd��
� �F �

a

ad�� � bd��
� �����

Since bd�� � �a� ��d�� � �a � ��ad�� � ad�� � �ad��� we have �F � �
�a

��d� In particular
�F � � whenever d � �� so that SC�a� b� d� is transient for all d � �� �This generalizes a
result of Zhou �Z��� This result is not surprising� since all these spaces contain a copy of R�

� �
SC�a� b� �� is recurrent by Corollary ���� since ds � df � ��

To obtain a GSC in dimension � for which the processes W or X are recurrent� we need
to ensure that eF does not contain a copy of R�

� � Take d � �� let � � b � a � �� write

Iab � ��a� b���a� �a" b���a�� let ��x� �
P�

i�� �Iab�xi�� and let

F� � fx � F� 
 ��x� � �g�

Call the resulting GSC a Menger Sponge �see �Man� p� ����� or MS�a� b�� For the basic
MS��� ��� F� consists of F� with the central cube and the � adjacent cubes removed� �See
�Man� p� ���� for an excellent picture�� Note that mF � a� � �b� " �b��a� b��� Using shorts
and cuts� as in Proposition ���� we can easily estimate �F for these sets
 we obtain

a� b

a� � b�
"

b

�a� b��
� �F �

a

�a� b��
� �����

In particular� for MS��� �� we have �
� � �F � ���� so that MS��� �� is transient� However� if

a � � and b � � then we have ����� � �F � ���� so thatMS��� �� is recurrent� On the other
hand� as mF � ��� we have df � log ��� log � � ���� � �� so the family of Menger Sponges
includes sets with Hausdor	 dimension greater than �� but spectral dimension less than ��

Open problems�

We conclude this paper with some open questions concerning these processes� �See also
the problems in �Bas����

��



�� Spectral dimension

Of the three �dimensions� mentioned in this paper� df � dw� and ds� the �rst is given
explicitly in terms of lF and mF � The other two are de�ned in terms of the resistance
exponent �F � which we only know how to de�ne as a limit


log �F � lim
n��

logRn

n
�

Is there a more explicit equation which de�nes �F ) S�R�S� Varadhan has asked if �F could
be de�ned by some kind of variational equation�

�� Uniqueness

There are two di	erent kinds of uniqueness we can consider� The �rst relates to the
construction of X and its law Px given here� In Section � we stated that the set of laws of
the approximating processes fPxn� n � �g was weakly compact� and so has limit points� Can
one show that P x

n converges weakly to P
x� that is� that the limit is unique) If so� then one

would immediately have that the resulting process was self
similar�
A second kind of uniqueness is given by our conjecture that the process constructed in

this paper is �up to a deterministic time change� the unique symmetric di	usion on X which
is locally isotropic� �For an analogous theorem for the Sierpinski gasket see �BP��� If we knew
this� then any two limit points of Pxn could di	er only by a deterministic time change� and
also� more signi�cantly� we would know that any other construction of a symmetric locally
isotropic di	usion on eF �such as the one given in �KZ� using random walks� would lead to
essentially the same process�

We remark here that Osada �O�� has recently de�ned a di	usion Z � �Qx � Zt� on F
which is not equal in law to X and does not satisfy ������� but which does satisfy a more
limited kind of invariance under local isometries� Let S�� S� � Sn� write Ai � int �Si�� and
suppose that � is an isometry between S� � F and S� � F � Then for x � A� � F one has

Qx���Zt�
�A�	� � � � t � �� � Q��x	�Zt�
�A�	 � � � t � ��� �����

The key di	erence between ����� and ������ is that in ����� the processes are stopped on
hitting the boundary of the cubes Si�

This example shows that the de�nition of �locally isotropic� is quite sensitive�

See �Sa� and �Me� for some uniqueness results in the �nitely rami�ed case�

�� Continuity of harmonic functions�

Let x� � eF and set D � Dn�x�� � eF � D� � Dn���x��� Let h be non
negative and
harmonic in D� Then we know by Theorem ��� that there exists � � � such that h is H&older
continuous of order � in D�� What is the correct H&older exponent for h) The constant �

given in Theorem ��� comes from the Harnack inequality� so would not be a good estimate�
If ds � � then the estimates of Section � of �BB�� imply that h is H&older continuous of order
dw � df � Even here� though� we do not know if that is best possible�

��
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