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1. Introduction.

We begin by considering a class of fractal subsets of R? formed by the following gener-
alization of the construction of the Cantor ternary set. Let d > 2 and let Fy = [0,1]¢. Let
Ir > 3 be an integer and divide Fy into (Ir)? equal subcubes. Next remove a symmetric
pattern of subcubes from F\, and call what remains F;. Now repeat the procedure: divide
each subcube that is contained in F} into l% equal parts, remove the same symmetric pattern
from each as was done to obtain F; from Fj, and call what remains F5. Continuing in this
way we obtain a decreasing sequence of (closed) subsets of [0,1]¢. Let F = Ny F,,; we call
F' a generalized Sierpinski carpet (GSC) or simply, a carpet. The standard SC (see [Sie]) is
the GSC for which d = 2, [ = 3, and F} consists of Iy minus the central square. Let mg be
the number of subcubes remaining in Fi, and let dy = logmp/loglr. Then the Hausdorff
dimension of F'is df. For an example of a GSC in R3, see the picture of the Menger sponge

in [Man], p. 145.

Figure 1: The first two stages of the construction of the
standard Sierpinski carpet in two dimensions.

We will also be interested in two other related sets, which have a large-scale structure
similar to the small-scale structure of F'. The first, which following [O1] we call the pre-carpet,
is the set Fy = U I F,. (Here and throughout this paper we write A\G = {Az : z € G}).
Note that Fy C R¢, and that Fy N [0,1%]% consists of [0,1%:]¢ with a number of (possibly
adjacent) cubical holes removed, of sides varying from 1 to l’}_l. Write I' = int (f’o): then T’
is a (non-empty) domain in R? with a piecewise linear boundary — see Figure 2. It is easy to
check that I satisfies the volume doubling condition. The second related set is the unbounded
GSC F = U2,/ F.
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Figure 2: (Part of) the pre-carpet. The small squares have side 1.

We may regard these sets as idealized models of a region with obstacles of many different
sizes. Our purpose in this paper is to study the Laplace and heat equations on the spaces F,
Fy, and F'. In particular we:

(1) prove a uniform Harnack inequality for positive harmonic functions on Fy;

(2) study the heat equation on F and F, and obtain upper and lower bounds on the heat
kernel which are, up to constants, the best possible;

(3) construct a locally isotropic diffusion X on F' and determine its basic properties;

(4) extend some classical Sobolev and Poincaré inequalities to this setting.

Just as the Euclidean dimension enters the standard heat kernel estimates and Sobolev
inequalities, the Hausdorff dimension d¢ of F' plays a role in the analogues for /'. What makes
the fractal case intriguing, however, is that there is another parameter, called the spectral
dimension d,, which is much more significant. For example, the Sobolev inequality in R? for
d > 2 states that if p = 2d/(d — 2) and f and its gradient are in L2(R?), then

1flly < erl[V£lle- (1.1)

The corresponding inequality for a GSC (see Theorem 1.5) has the L? norm of f on the left
hand side, but now with p = 2d,/(ds —2); the dimension d; does not enter into the inequality.
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The Hausdorff dimension of F', df can be calculated easily from [r and the Lebesgue
measure of F;. On the other hand the spectral dimension ds appears to be a ‘physical’ or
‘analytic’ constant rather than a geometric one; we know of no simple formula for ds in terms
of the geometry of F', and believe that none exists. Rather, d, is defined via the properties
of harmonic functions on the sets F,,. While the exact determination of d, seems to be
a hard problem, it is quite easy to obtain certain bounds, and we have in particular that
1<d, <dj <d.

Any argument based purely on the geometry of F' will inevitably lead to results involving
geometric constants. Since all the key inequalities relating to F' involve dg, we cannot expect
to be able to derive them by, say, starting with an isoperimetric inequality, as is possible in
R?. Other methods suited to R? also fail, and in fact, even very basic tools (like the cut-off
functions used in Moser [M]) do not work.

We therefore had to develop some new techniques. Our basic approach is probabilistic:
we construct a diffusion X on F', which, because it is locally isotropic, we call a ‘Brownian
motion’ on F. We can then use properties of X to derive bounds on its transition density
(which solves the heat equation on F'). Given these bounds, we can then derive Sobolev and
Poincaré inequalities on F' and Fj.

The starting point of our analysis, and the hardest result in this paper, is a uniform
(elliptic) Harnack inequality. Let B be an open set in R?. We say that h is harmonic on
BN Fy if Ah(z) =0 for z € BNint (Fy), and the normal derivative of h is 0 on BN JFy
almost everywhere with respect to surface measure on 0Fy. Write B(x,r) for the usual open
ball in R? with centre z and radius r.

Theorem 1.1. There exists ¢c; not depending on N, such that if x € Fn, r > 0, and h is
positive and harmonic on B(z,2r) N Fy, then writing A = B(z,r)N Fy,

sip h(z) < igf h(y). (1.2)

A similar result holds for the pre-carpet F,.

Of course, since Fy is a Lipschitz domain, for each N the standard Harnack inequality
guarantees there exists ¢1 (V) such that (1.2) holds. The point of this theorem is that ¢; can
be taken to be independent of V.

In an earlier paper [BB1] we proved a uniform Harnack inequality in the case d = 2.
The proof used a ‘path-crossing’ argument which cannot be generalized to the case d > 3.
Kusuoka and Zhou [KZ] extended this result to fractals satisfying ds < 2, but their method is
also tied to the low-dimensional case. Standard approaches to Harnack inequalities in higher
dimensions, such as Moser’s iterative technique [M] or the Nash-Fabes-Stroock method [FS],
do not appear to work for GSCs, and we were therefore forced to use a different approach. Our
proof of (1.2) uses the probabilistic technique of coupling. (See [Lv] for a general introduction
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to this method). More precisely, given distinct points z, y € Fy, we construct two reflecting
Brownian motions on Fly, starting at x,y, such that the two processes meet with a positive
probability p which is independent of N. Using this, we then establish a Harnack inequality
with constants independent of N. We believe that our use of coupling to prove Harnack
inequalities is new; it may also be applicable to a variety of other situations.

Given the Harnack inequality, we modify methods developed by us in earlier work on
two-dimensional Sierpinski carpets (see [BB1-BB4]). We can construct the process X as
the limit of (suitably accelerated) reflecting Brownian motions on the sets F. Let u be (a
multiple of) the Hausdorff % -measure on F.

Theorem 1.2. There exists a nondegenerate continuous strong Markov process X whose
state space is F'. X; has transition densities which have the strong Feller property and which

are pi-symmetric. The law of the process (X¢,t > 0) is locally invariant under local isometries
of F'.

Write P; for the semigroup associated with X, and let (£, D(L£)) be the infinitesimal
generator of P;; we call £ the Laplacian on F'. The heat equation on F' then becomes

ou

a(m,t) = Lu(x,t), zeF, t>0. (1.3)

The fundamental solutions to the heat equation are given by the transition densities p(t,x,y)
for the process X; on F. The spectral dimension ds is defined from the sequence R, of
electrical resistances across the sets [%F,,. Let d,, = 2ds/ds; note that as dy < dy we have
dy > 2.

Theorem 1.3. p(t,z,y) is symmetric and jointly continuous on (0,00) X FxF, and for each
x,y the function p(t,z,y) is C*° in t. There exist ¢y, ce, c3, 4 such that for all x,y € F and
t>0,

— |0\ 1/(dw—1)
R O e I
< M)Ww‘”),

t (1.4)

p(t,z,y) < cat=%/Zexp ( — 64(

Let W; be Brownian motion on the pre-carpet ﬁo, with normal reflection on 3?0, and
let q(t,x,y) be its transition density with respect to Lebesgue measure on ﬁo. These transi-
tion densities are the fundamental solutions to the heat equation du/dt = 3 Au on Fy with
Neumann boundary conditions.

Since ﬁo is locally similar to R?, but has a ‘fractal’ global structure, we would expect
q(t,x,y) to have different behavior for small and large t. We would also expect, in view of
standard large-deviation theory for Brownian motion, that, if |z — y| is large in comparison
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with ¢ then ¢(t, z,y) will exhibit Gaussian behavior. (Very roughly, if |x — y| is much larger
than ¢, then for the process W to move from x to y in time ¢, it will with high probability
stay close to the shortest path connecting x and y, and it will have no time to feel the fractal
structure of Fp).

Theorem 1.4. There exist cy, ..., cs € (0,00) such that if z,y € Fy and
(a) t > max(1, | —y|), then

crt =%/ 2 exp ( — cz(wy/(dw_l)) (1.5)

Y

|z — gyt )1/(dw—1)>

< q(t,z,y) < ezt~ %/ % exp ( — 64( -

(b) ift <1, then
est™ % exp(—cglr — y|*/t) < q(t,x,y) < crt ™ exp(—cs|z — y|*/t). (1.6)
(c) ift > 1, |z —y|>t, then

cst™4/ 2 exp(—csla — y|?/t) < q(t,z,y) < crt™ /% exp(—cs|z — y|2/1). (1.7)

As remarked above, the set ﬁo satisfies the usual volume doubling condition and an
elliptic Harnack inequality. However, since ¢(t, xg, .) is parabolic on the whole space (0, 00) X
Fy it follows easily from the bounds in Theorem 1.4 that the (usual) parabolic Harnack
inequality on Fp fails for any GSC for which d,, > 2. (See Proposition 7.11 for details, and
Remark 5.4 for examples of GSCs for which it is known that d,, > 2). This answers a question
raised in Grigor’yan [Gr]. Essentially the point is that whereas an elliptic Harnack inequality
such as Theorem 1.1 contains no information on the space-time scaling of the process W, this
scaling information appears explicitly in the parabolic Harnack inequality.

To obtain the parabolic estimates above from Theorem 1.1 some additional information
on the process W is needed. This is provided by exploiting the close connection between
resistances and crossing times. For graphs this was proved in [CRRST] — see also [Tet], and
for Sierpinski carpets see [BB2], [BB4]. Using this, the resistance bounds in [BB4] and [McG],
and the Harnack inequality, we can obtain good bounds on the time taken by W to escape
from a region of the form B(x,r) N Fy. These bounds then enable us to derive estimates
for expressions like fooo e~ tPq(t, z,y) dt for suitable p, and using these we prove the upper
bounds in Theorem 1.4. This method is also new and could easily be modified to give new
proofs of the upper bounds of Aronson [A] for the heat kernels of uniformly elliptic operators
in divergence form on RY.

For the key estimate for the lower bound for ¢(¢,z,y) we again use coupling; this may
also have applications outside the fractal context. The bounds in Theorem 1.3 follow easily
from those in Theorem 1.4



The relationship between bounds on the behavior of the norm of P, and Sobolev and
other analytic inequalities has been explored very extensively in recent years, following the
basic papers [V1] and [CKS]. Write || f||b = [+ |f[Pdp. As X is p-symmetric, we can associate
a Dirichlet form (€, D(€)) with P; (see [FOT]). Since Theorem 1.3 implies easily that

1P floo < crt™%"2||f|I1,

we can apply the theory mentioned above to immediately deduce a Sobolev inequality on F.

Theorem 1.5. Suppose ds > 2. There exists ¢; such that for all f € D(E)
||f||p Sclg(.ﬂf)l/zv p:2ds/(ds_2)

We also obtain a Sobolev inequality on ﬁo, and Poincaré and mass-capacity inequalities
for both F' and Fj; see Section 7.

Let G be the graph whose vertices are the centers of those unit squares that lie in ﬁo.
Two vertices x and y will be connected by an edge if |z —y| = 1. G is called the graphical SC.
In [BB6] the results of this paper are used to obtain Poincaré, Sobolev, and mass-capacity

inequalities for G and to obtain transition probability estimates for the symmetric random
walk on G.

Initial interest in the study of random walks or diffusions on fractals came from math-
ematical physicists working in the theory of disordered media — see [RT], [AO], and for a
survey from a physical viewpoint [HBA]. The initial mathematical work was on the simplest
non-trivial regular connected fractal, the Sierpinski gasket, in [Kusl], [Go], [BP]. In partic-
ular, [BP] obtained bounds similar to those in Theorem 1.3 for the transition densities of
the Brownian motion on the Sierpinski gasket. The Sierpinski gasket G is finitely ramified,
that is, it can be disconnected by removing a finite number of points. This means that many
subsets of GG have a finite boundary, and so a Harnack inequality can be proved in an elemen-
tary way. Subsequently many other finitely ramified fractals have been treated in a similar
fashion — see for example [L], [Kigl], [Kig2], [Kuml], and [Fuk]. Note that while some of
these papers use probability theory, others employ a purely analytic approach, and construct
the Dirichlet form directly. However, no purely analytic derivation of the bounds on the heat
kernel is known in the fractal context. While it possible for a finitely ramified fractal to have
ds > 2 (see [Kum2] or [Ny]) these spaces are in some sense quite inhomogeneous. Indeed,
Proposition 4.42 of [Barl] implies that if bounds of the form (1.4) hold on a finitely ramified
fractal then ds < 2. So if one wishes to study regular higher dimensional fractal spaces which
are not simple products one is led to consider infinitely ramified fractals.

Generalized Sierpinski carpets provide a reasonably simple but general family of infinitely
ramified fractals. See [GAM], [BAH] for early work by mathematical physicists, and [HHW1],
[HHW?2] for an approximate approach to the calculation of the spectral dimension. GSCs in
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two dimensions have been studied in [BB1, BB2, BBS, BB3, BB4], but as d; < dy < d
these sets also have ds < 2. There are only a few previous papers on GSCs with d > 3.
The fractals studied by Kusuoka and Zhou in [KZ] include GSCs, and that paper contains
a Harnack inequality similar to Theorem 1.1 above for GSCs with ds; < 2. (They also have
some results for more general GSCs). (See section 9 of this paper for an example of a GSC
with d = 3 but ds < 2). In addition, Osada [O1] has proved an isoperimetric inequality, and
used it to deduce that

q(t,x,y) < it~ %2 poye Fy, t>1, (1.8)

where d; is the “isoperimetric dimension” of Fy. Comparing (1.8) with (1.5) we see that
ds > d;, and we expect that in general the inequality is strict.

For surveys of work on finitely ramified fractals see [Kus2] or [Barl], and for Sierpinski
carpets see [Bas3].

The layout of this paper is as follows. Section 2 introduces the notation we will use
together with a few basic facts. Section 3 contains the coupling argument: as this is quite
long and hard we give here a very brief summary of the essential ideas. See also [BB5], where
these results were announced.

Let N > 0. Let S} be the set of cubes of side length 217" with vertices in 215"Z<. Let
us say z~y if x € S; € S, y € Sy € S, and there is an isometry from S; to Sy that
takes z to y. Given z <y, we construct two reflecting Brownian motions W and W) on Fy
starting from x and y, respectively, such that W} ~ W} for all ¢, and such that with some
positive probability ¢; > 0 we have W7 mt W¥ , where oy is the first time either W* or W¥
moves more than a few cubes in §,, away from their starting points. This construction uses
the symmetry of Fy very heavily. If (n,,) is a sequence of integers and o, is the nth time W?*
or W¥ has moved more than a few cubes in §,,, then a renewal-type argument tells us that
W?(op,,) mr\_JlWy(anm) with probability at least 1 — (1 — ¢1)™™. Repeating this argument
for m — 1, m — 2, ..., we see that there is positive probability that W* LAWY at some time
before either W* or WY hits 0F.

In Section 4 we derive the uniform Harnack inequality from the coupling result. Section
5 contains the construction of the Brownian motion. In Section 6 we establish the bounds
on the heat kernel for both F and ﬁo, and in Section 7 we consider Sobolev and Poincaré
inequalities. In Section 8 we establish a number of basic properties of the process X;. These
include transience and recurrence, moduli of continuity, the Hausdorff dimension of the range,
the existence of local times, self-intersections, rates of escape, and a zero-one law. The paper
is concluded in Section 9 by some examples and open problems.

2. Notation and preliminaries.

We begin by setting up our notation. We use the letter ¢ with subscripts to denote con-
stants which depend only on the dimension d and the carpet F'. We renumber the constants
for each lemma, proposition, theorem, and corollary.
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Let d > 2, Fy = [0,1]%, and let I € N, [r > 3 be fixed. For n € Z let S,, be the collection
of closed cubes of side [ with vertices in [;"Z%. For A C R%, set

Sp(A)={S:SCASeS,}.
For S € §,,, let g be the orientation preserving affine map which maps Fj onto S.

We now define a decreasing sequence (F},) of closed subsets of Fy. Let 1 < mp < l%
be an integer, and let F; be the union of mp distinct elements of S1(Fp). We impose the
following conditions on F:

Hypotheses 2.1.
(H1) (Symmetry) Fy is preserved by all the isometries of the unit cube Fy.

(H2) (Connectedness) Int(F}) is connected, and contains a path connecting the hyperplanes
{z1 =0} and {z, = 1}.

(H3) (Non-diagonality) Let B be a cube in Fy which is the union of 2% distinct elements of
Si. (So B has side length 213"). Then if int (Fy N B) is non-empty, it is connected.

(H4) (Borders included) Fy contains the line segment {z : 0 < 21 < 1,29 = ... = 4 = 0}.

We may think of F; as being derived from F, by removing the interiors of I% — mp
squares in 81(Fp). Given Fy, F5 is obtained by removing the same pattern from each of the
squares in S;(Fy). Iterating, we obtain a sequence (F,), where F), is the union of m/. squares
in S,,(Fp). Formally, we define

Fopn= |J %)= (J ¥s(F.), n>1
SES, (Fy) SES: (F1)

We call the set F' = N9 F,, a generalized Sierpinski carpet (GSC). Let dim(-) denote
Hausdorff dimension; by [Hu| dim(F') = logmpg/loglp.

Remark 2.2. These conditions are natural higher-dimensional analogues of the ones given in
[BB4-(2.1)]. Since we are interested in constructing continuous processes on F, the hypothesis
(H2) is essential. It would be interesting to be able to consider GSCs for which the symmetry
condition (H1) was either weakened or dispensed with entirely. However, (H1) plays a vital
role in this paper, namely, in the key coupling argument in Section 3. Indeed, we do not expect
the Harnack inequality Theorem 4.3 to remain true without strong symmetry assumptions
on Fy.

The other two hypotheses, (H3) and (H4), are not so essential. We expect that results
similar to those in this paper still hold for GSCs which do not satisfy (H3). However, the
natural state space of the limiting process X may no longer be F', and the added generality
would significantly increase the complexity of the arguments. We include (H4) for simplicity
— it ensures that the shortest path metric and the Euclidean metric on F' are comparable.
See [BB4, Sect. 8] for some remarks on GSCs which do not satisfy (H4), and [FHK], [Kuml]
for constructions of such a shortest path metric in the case of nested fractals.
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We will be interested in unbounded analogues of F'. Set Fj, = Fy for k < 0 and for n € Z
let

Fo=J 5P, (2.1)
r=0

and F = No_o F,,. In particular we call Fyy the pre-carpet (see [O1]). Let

() = mip 1 (2)de,

Fn(

and let p be the weak limit of the pi,: p is a constant multiple of the Hausdorft glogmr/loglr
- measure on F'.

We need notation for a block of cubes that have a point z near the center. For x =
(z1,...,24), let ¢(z;) be the integer j such that 17" (5 — (1/2)) < z; <1z"(j+ (1/2)) and let

¢(z1) — 1 ¢(551)+1] ‘e [¢($d)_1 Plwa) +17

Y Y

Dy(z) = (2.2)

Ip Ip 42 42

Observe that D, (x) decreases as r increases. Note also that D,.(z) is a cube of side length
25"

For distance on the sets F, we will frequently find it convenient to use the ||.||so norm,
since in this norm the unit ball is a cube with sides parallel to the axes. We denote by
Boo(y, ) the set {x € R? : |2 — y||oo < €}, and use B(z,¢) to denote the usual open balls in
R?. Note the following:

Lemma 2.3. (a) If y € Dy(z) then ||z — yl/o < (3/2)I5".
(b) If ||z — y||oo < (1/2)Iz" then y € Dy(z).

(c) Ifz € F and n € Z then mp" < w(Dp(x)) < 2¢mp".
(d) If z € Fy and n < 0 then mp" < po(Dp(x)) < 2%9mz".
(e) There exist constants c1, cs such that for = € Fy,

c1r? < po(B(w, 7))
cir® < po(B(z,1))

IAIN

(f) There exist constants ¢y, ¢y such that for z € F,
cir® < p(B(z,r)) < cor™, > 1.
In particular it follows immediately from (e) that (Fy, |- —-|, uo) satisfies the volume doubling
condition (see [Gr]):
po(B(z, 1)) < cpo(B(z,2r)), forz e Fy, r>0.
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A similar volume doubling condition also holds for F.

We write
Hi(t)={z cR¢:z; =1}, tcR (2.3)

We write B(G) for the Borel subsets of the set G. For a Borel set A and process X on R? we
write

Ta=T(A) =Ta(X)=TF =inf{t >0: X; € A} (2.4)
for the hitting time of A and

Ta=T7(A) =T14(X) = Tj( = T(A°) (2.5)
for the exit time of A. We also let

X(x) =o,(z,X) =inf{t >0: X; ¢ D,(2)}. (2.6)

or(x) =0,

We define the coupling time for two processes:

Definition 2.4. Let XF, k = 1,2, be processes on R?. The coupling time of X', X2 is
defined by
Tec =To (X' X?) =inf{t >0: X} = X?}. (2.7)

We say the X* are coupled if X} = X2 for t > Tc.

Let D be an (open) Lipschitz domain in R?. We call a process X; a reflecting Brownian
motion on D, or RBM (D) for short, if X is a D-valued diffusion which is locally a Brownian
motion on D, with normal reflection on dD. If D is a closed set in RY, D = int (D), and
int (D) satisfies the conditions above, then we say X is a RBM (D) if X is a RBM (int (D)).
The existence (and uniqueness in law) of such processes is proved in [BH], Sect. 4, and [Basl].

In the remainder of this section we will give some basic properties of RBM (D), where
D is a Lipschitz domain. We write W for RBM (Fp).

In Section 3 we will make frequent use of the following fact.

Lemma 2.5. Let D be a Lipschitz domain in R?, and let X be a RBM (D). If A C R* and
A is polar for standard d-dimensional Brownian motion, then AN D is polar for X.

Note in particular that subspaces of R? of codimension greater than or equal to 2 are polar
for X.

Proof. Suppose d > 3 and A is polar for d-dimensional Brownian motion. If z € D, then
there exists r, > 0 such that D N B(z,r,) = D' N B(z,r,), where D’ is the region above
the graph of a Lipschitz function in some coordinate system. Since D can be covered by a
countable union of balls of this kind and a countable union of polar sets is polar, it is sufficient
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to consider the case when D is the region above the graph of a Lipschitz function and A is
bounded.

Let v be the Green function for X on D, and w be the Green function for Brownian
motion on RY. By [BH], Corollaries 3.3 and 3.5, there exist ¢; and ¢y such that

aly— 2P <o(y,2) <eoly— 24 yzeD. (2.8)

Suppose v is a non-zero measure supported on A with [ v(y, z)v(dz) <1 for all y. Then
[ w(y,z) v(dz) is bounded, which implies that A is not polar for d-dimensional Brownian
motion. So no such measure v exists and A is polar for X.

If d = 2, we consider X; = (X¢, Z;) in DX R, where Z; is an independent one-dimensional

Brownian motion and use the above argument to show that A x R is polar for X since it is
polar for 3-dimensional Brownian motion. O

We need to extend some results that were proved in [BH] for RBM in regions above the
graph of a Lipschitz function to RBM in Fy. We begin with a support theorem for RBM(FO)

Proposition 2.6. Let ¢ > 0 and let 1 : [0,1] — Fy be a differentiable curve. There exists
c1 > 0 depending only on € and ||¢)’||oo such that

p¥(0) (sup |[Ws —(s)| <€) > c;.
s<1

Proof. Let z = ¢(0). By Proposition 3.6 of [BH] and scaling, there exist d; and d2 depending
on € and [|9)||oo such that with probability at least c; we have sup 5, [Ws —4(s)| < ¢/3 and
dist (Ws,,0D) > 65. By the Markov property, it thus suffices to show

PY( sup |Ws—1(s)| <e)>cs (2.9)
51§S§1

when |y — ¢(01)| < €/3 and dist (y,0D) > 62/2. However (2.9) follows by applying the
support theorem for standard d-dimensional Brownian motion ([Bas2, p. 59]) with e replaced
by £/3 and 1 replaced by a curve v starting at y that is always within £/3 of ¢ but such that
1 never gets closer than a distance (g A d2)/2 to OD. O

Fix 79 € Fy. Let m € Z. As Fy N D, (xp) is a bounded Lipschitz domain, by Lemma
4.3 of [BH] and its proof, a RBM(Fy N Dy, (x0)) W has a continuous transition density
Ip,, (x0)(ts T, y) = q(t, ,y) with respect to Lebesgue measure on Fy N Dy, (7o). By Theorem
2.3 and Remark 3.11 of [BH],

at,z,y) < cr(m)t= Y2 exp(—co(z — y)2/t), x,y € Fy N\ Dpy(xp), ¢ < 1. (2.10)
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Since @ is the transition density of a symmetric process, q(t,z,y) = q(t,y,z). By [Bas2],
Sect. 4, there is an eigenvalue expansion for §:

oo

1(t5,9) = 3 €N, (05 0) (211)

where the convergence is absolute and uniform. This and (2.10) imply
Tt z,y) < cst™ Y2 exp(—eut), 2,y € Fo N Dy (), t>0, (2.12)

where ¢z and ¢4 depend on m. Cauchy-Schwarz and (2.11) imply

at, v, y) <q(t, 2z, 2)Y2q(t, y, y) /> (2.13)

and also that (¢, x, z) is nonincreasing in ¢ for each x € Fp.

3. Coupling of Brownian motions.

The coupling argument, given in this section is the foundation of the results in this paper.
The argument is quite long, and requires several steps. A great deal of notation, especially
for various special subsets of R?, will be required; however, none of the notation introduced
in this section will be used elsewhere. The reader may find it helpful to focus on the case
d=3.

Lemma 3.1. (A reflection principle). Let D° be a Lipschitz domain in R?, let D = DO and
let W be a RBM (D). Let H be a hyperplane, g : R* — R? be reflection across H, and Jy, Ja
be the two half spaces determined by H. Let A C 0D, and By, By be subsets of A.

Suppose that

g:D—D (3.1)(i)
9(B1) = B> (i)
B;C, i=1,2. (iii)
g(AnJy) C A (iv)
Then
P*(Wy, € By) > P*(Wy, € By) for z€ J;ND. (3.2)

Proof. Let Co = AN Js — By, and Cy = g(C3). Note that C; is not necessarily contained
in A. Write u;(z) = P*(Wyr, € B;), and v = uz — u;. Since W; killed on hitting A has
continuous paths, the maximum principle holds for v. Let 8 = sup,c;~pv(z). Suppose
B>0. As v(z) <0 for z € AN Jy, by the maximum principle we have

sup v(z) = sup ov(y).
zeJiND yEHﬂD
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Set S =Tp, NTp, NTe, ATe,. Then for y € HN D,
ui(y) =P(Ws € Bi) + B lweec)ui(Ws), i=1,2.
Since by symmetry PY(Wg € By) = PY(Wg € B»), it follows that

v(y) = ]Eyl(WSecl)U(WS)-

However, again by symmetry, PY(Ws € Cy) = PY(Wg € C3), and so PY(Wg € Cy) < 1/2.
Hence for y € HN D, v(y) < PY(Wg € C1)p < /2. Thus < 3/2, a contradiction to our
assumption that 5 > 0. O

The following definition of a sequence of stopping times will be used several times.

Definition 3.2. Let H = {H,,« € I} be a family of closed non-empty subsets of R? with
the property that {a : H, N B(z,1) # 0} is finite for all . (Note this implies that I is

countable). Write H = |J H,. Let (X;,¢t > 0) be a continuous process on R? such that
acl
H, N Hg is polar for X, for all a, 3 € I. Then successive disjoint hits by X on H are the

sequence of stopping times (7),,n > 0) defined by:
T():inf{tZOIXt EH},
I'y={aecl:Xp € H,},

Tpyr =inf{t > T, : X, € H— | ] Ha}.
acl’,

(3.3)

Lemma 3.3. Let H, X, (T,,) be as above. Then lim T, = +oo, a.s.

n— 00

Proof. Suppose T;, < co. Since B(Xr, (w),1) intersects at most finitely many H,, I, is
a finite set. (In fact, if 7;, > 0 then as H, N Hpg is polar, I, contains only one element).
Therefore X1, (w) is a positive distance from H —Uqer, Hy. Hence T},1 > T;,. Now suppose
lié'nTn(w) = S(w) < oco. Then as {« : H, N B(Xg(w),1) # 0} is finite, there must exist
a, € I such that X7, (w) € H, for infinitely many n, for v = o, 8. So Xs(w) € H, N Hp,
and hence, by the polarity assumption, we deduce P(S < oco) = 0. O

Definition 3.4. Let D = F,,_, for some ng > 1, and let W be RBM (D). We define

Hijj={x:2;+z; =1}
L; = H;(0)n[0,1/2]%,
Mj={zec[0,1]": x;=0, 1/2<z; <1, 0<z, <1/2, k # j}, for i# 3,
d
r=inf{t >0: W, € | J H;(1)}.

=1
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The hyperplane H;(t) was defined in (2.3). For any hyperplane H C R%, let gz : R? — R?

be reflection in H. If x = (z1,...,24) note that
ng(l/Z)(l') = (mla cey Tim1, L = T, Ty, - .,Sﬁd),
gm, () = (1 — 29,1 — 21, 23,...,24).

We now use the symmetry of D, and the invariance of W under certain isometries of D,
to deduce lower bounds for certain hitting probabilities of W. (These are higher-dimensional
analogues of the ‘corner’ and ‘knight’s’ moves in [BB1]). In what follows we use ¢; to denote
strictly positive reals which depend only on the dimension d.

Proposition 3.5. Leti,j € {1,...,d}. Then
P*(Tp, <7)>q1 >0, forxzel; (3.4)

d
Proof. Set T = T(Hj(O) Uy Hk(l)) We will actually prove that P*(Wr € L;) > ¢q for
k=1

x € L;. By the symmetry of D we can take j =1, i = 2. (If i = j the result is trivial). Fix
x € Lz.

d
Now apply Lemma 3.1 with H = H,(1/2), A = (Hl(()) U U Hk(1)> nD, B, =
k=1

H(0)ND, By = Hi(1)ND, J; = {z:x1 < 1/2}, Jo = {z : zy > 1/2}. Hypotheses
(3.1)(i)—(iv) are easily verified, Ly C J; N D, and so we deduce

P (W € H,(0)) > P*(Wy € Hi(1)). (3.5)

We now use Lemma 3.1 again, with H = Hyy (k # 1), A as before, By = H(0) N D,
By =H(1)ND, Jy={x:21+x <1}, Jo=R:—(HU.J;). Once again (3.1) (i)-(iv) are
easily verified, and so

P*(Wr € Hy(0)) > P*(Wr € Hi(1)), k#1. (3.6)
Combining (3.5) and (3.6), and using that fact that

P*(Wr € Hi(0)) + Y _P"(Wr € Hy(1)) > 1,
k=1

we obtain

P (Wr € Hy(0)) > (14d)". (3.7)
Now set G,, = (H1(0) N D) N N {zx < 1/2}, for 2 < n < d. Write G; = H;(0). Let
k=2

1<n<d-1,set G, =G,_1— Gy, and apply Proposition 3.1 with H = H,,(1/2), By =
Gn, Bo =G, J1 ={x 2z, <1/2}, Jo ={x: 2z, >1/2}, and A as before. We deduce that

Pm(WT € Gn) > Pm(WT € G;)
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Hence
2]P)m(WT € Gn) > ]P)m(WT € Gn) + ]P)m(WT € G;) > ]P)I(WT € Gn—l)-

Since G4 = L,
P* (Wr € Ly) > 2~ “4=YVP*(Wr € Hy(0)),

and this proves the proposition with ¢; ' = (1 + d)2¢-1. O
Remark 3.6. We call a piece of the path of W in which it moves from L; to L; a corner

move. The other kind of move we will need is from L; to M;;, which we will call a slide. The
next few results lead up to the proof of the following.

Figure 3: A corner move.
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Figure 4: A slide.
Proposition 3.7. Let 1 < 19,70 < d, with 19 # jo. Then
P*(Tat,y;, < 7) > q2 >0, for v € Ly,

i9J
By symmetry it is sufficient to prove this in the case ig = 1,jp = 2. Write A? = {0 <
T <1/2}, Al = {1/2 < z; <1}, and let

Kl=DnH (1)nA,, 1=0,1,
Ki=DnH;(1)NnAY, 1=0,1, 2<j<d,
d
3.8
r=JH), (38)
=1
K =H(0)nAyND.
Lemma 3.8. P*(Ty,, < 7) > 2279P* (T < 7), x € L.

Proof. Set G441 = K, and let

d
Gn=Kn[)A}, 1<n<d

d
So Gz = DN H(0) N AN AY = Mys. Now let 3 < n < d, and apply Proposition 3.1
3

with H = H,(1/2), By = G, By = gu(Gy), J1 = {x, <1/2}, Jy = {z, > 1/2}, and
A=TUB;UBy=TUGy1.

We verify (3.1)(i)—(iv). (i) and (ii) are obvious, while (iii) is immediate from the obser-
vation G,, C AY C J;. To prove (3.1)(iv) let z € AN Jy. If x € By, gu(x) € Ba, so suppose
z € I'. Then z € |J H;(1), and so gu(z) € |J Hi(1). Then gg(ANJy) C A, as required.

i#n i#n
Finally, note that L; C Jy1. So by (3.2),
P* (W, € G,,) > P* Wy, € gu(Gn)), x € Ly.
Hence, since Gy,11 = Gy, U g (Gy,), we deduce
P (Wrrug, 1) € Gn) = 5P (Wrrug,..) € Gni1) = 5P (Ta,,, < Tr)-

Since P*(Tg, < Tr) =2 P*(Wr g, ,, € Gn), it follows that P*(7¢, < Tr) = (1/2)P*(Tq,, <
Tr) for 3 < n < d, and the result follows immediately. O

d
Lemma 3.9. Set A=K U |J H;(1). For x € Ly,
i=1
(a) B*(Wr, € K) > P*(Wr, € K3),
(b) P*(Wr, € Kg) > P*(Wr, € K%)

Proof. These follow from Proposition 3.1 with H = Hys, for (a), and with H = H;(1/2),
for (b).
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Lemma 3.10. P* (W, € Hy(1)) > g3 > 0 for x € L.
Proof. For 1 <3 <d set
F; = {W hits Lo, L3, ..., Ly in order before 7, and W, € H;(1)}.

Let F = ;c;<q F;- By Proposition 3.5 P*(F) > ¢{~'. Set ¢4 = ¢/"'. Now let N be a
random variable independent of (Wy,t > 0) with P(N = i) = (d — 1)~! for i € {1,3,...,d}.
Let A; = {x: x9 = x;} for i # 2, let g; = ga,, and define

W*_ Wt 0§t§77\N7
B lgn(Wy) Tay <t

Then W* is also a RBM (D). Note that Tp, < mﬁgcﬂi < 7 on F, and that on

(
Fxn{N =k}, W* = gn(W;) = g (W), so that as g, : Hi(1) — H2(1), we have W* € Ha(1).
Therefore

P (W, € Hy(1)) = P* (W € Hy(1))
> w(U Fyn{N = k})

k2
— ZPw(Fk) -P(N = k)

k#£2
= (d-1)7'P*(F) > (d— 1) g 0

d
Proof of Proposition 3.7. From Lemma 3.10 we have, writing A = KU |J H;(1),
=1

1=

g3 < P*(W; € Ha(1))
P (W, € Ha(1), Tic < 1)+ P (W, € Hy(1), Tic = 7)
= P*(Wr, € K) + P*(Wr, € Hy(1)).

From Lemma 3.9,
P* (W, € Ho(1)) < P*(Wr, € K9) +P*(Wr, € Ky) <2P*(Wr, € K).
So Proposition 3.7 follows, with g2 = ¢3/3. O

Definition 3.11. A set A C R? is a half-face if there exists i € {1,...,d}, a = (ay,...,aq) €
%Zd with a; € Z such that

A={z:z;=0a;, a;<z;<a;+1/2 forj#i}.
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For A as above set t(A) =i. Let A be the collection of half-faces, and set
Ar=|J{a:4e4), A;=|J{ANB;A,Bc A A# B}. (3.9)

Note that dim(Af) = d — 2, so that Af is polar for RBM (D) by Lemma 2.5 for any Lipschitz
domain D C R?. Recall the definition of Fj. Set

Ap={Aec A: AC Fy}.
We define a graph structure on A by taking {A, B} to be an edge if

dim(ANB)=d—-2, and AUB C C for some C € Sy. (3.10)
Let £(A) be the set of edges, and let
E(Arp)={{A,B} € &(A): A,B € Ar} (3.11)

be the edges in the subgraph (AF, S(AF)). Write dp for the natural graph distance on Ap.
Since ﬁo is connected we deduce immediately

Lemma 3.12. The graph (Ap,E(Ar)) is connected.

We will need terminology for the various types of edges in £(A). We call an edge {A, B}
ani—j corner if L(A) =i, (B) = j,and i # j and call {A, B} ani—j slide if «(A) = +(B) = i,
and the line joining the centers of A and B is parallel to the z; axis. We say two edges are
of the same type if they are both ¢ — j corners, or both i — j slides, for some pair (7, j). Note
that the move (L;, L;) is an ¢ — j corner, and (L;, M;;) is an i — j slide.

Now set

AR = {(A,B) € Ap : 1(A) = u(B)}, (3.12)
£ (A;?) - {{(A,A'), (B,B")} : {A, B}, {4, B'} are edges

of the same type in S(Ap)}.

The graph (AE?,S (A%Z))) is not connected, and this will cause us some additional trouble.

Write dg) for the graph distance (with values in Z, U {+00}) on Ag).

Let g : R? — R? be reflection in the hyperplane H;(0), and let Gr be the group
generated by the gf¥; thus Gr is the set of transformations that can be obtained by a sequence
of reflections parallel to the axes. Note that Gr is commutative. For n € Z let S be the
collection of cubes of side 2/™ with vertices in 2/"Z®. For C € S} let 1 be the translation

which maps C onto [—I5", l;"]d, and let
G(C,D) = {¢p' ogotc: g€ G}

For z, y € R? write 2 ~ y if there exist C, D € S*, and g € G(C, D) such that z € C,y € D,
and g(z) = y. Similarly, for A, B € A write A ~ B if there exist C, D € S}, and g € G(C, D),

such that g(A) = B. We write ~ for 2
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Proposition 3.13. Let A, B € Ap, with A ~ B. Let Cy € S(ﬁo) with A C Cy. Suppose
B = By, B1,...,B, = A is a chain in Ap with {B;_1,B;} € £(AFp) for 1 < i < n. Then
there exist Ag, A1,..., A, in Ar such that

(a) {(Ai—1, Bi_1), (Ai, By)} € E(AD) for 1 <i < n.

(b) A; C Cy for 0 < i <n.

(d) (A(),Bo) = (Av B)? (AmBn) = (AvA)

In particular, dg?) ((A, B), (A, A)) =dp(A, B).

Proof. Let C7 be a cube in So(ﬁo) such that BoU By C Cy. For i = 0,1, let D; be the
unique cube in S} containing C;. Let Ay = A. As Ay ~ By, there exists g € G(Dy, D)
with g(Ag) = Bo. If g(Cy) # C1, then since By C Cy N g(Cy) there exists an isometry
h € G(Dy, D) mapping g(Cp) to Cy and preserving By. If Cy = g(Cy) take h to be the
identity. Let g’ = hog: then ¢g’'(Ag) = By, and ¢'(Cy) = Cy. Set Ay = (¢')"1(B1). Since
Ay CCy C ﬁo, Ay € Ap. Tt is clear that the edges (Ao, A1), (Bo, B1) in Ap are of the same
type; therefore {(AO,Al), (Bo, Bl)} € S(Ag)). Also, since ¢'(A;) = By, we have A; ~ Bj.

Continuing in this way we can construct a sequence A;, 0 < i < n, in Ap satisfying
conditions (a), (b), (¢) above. To prove (d), note that since A, ~ B, = A, we have A, ~ A.
However, since A and A,, are both contained in Cj, this implies that A,, = A.

This argument also proves that dg)((A, B), (A, A)) < dr(A, B); the reverse inequality
is evident. OJ

Let

Fy = |J (@+Fy). (3.13)

Let G C R? be a union (finite or infinite) of cubes in Sp: we will assume G is connected. We
now construct a reflecting Brownian motion on G N F v from a driving process £ on F v. We
begin with a deterministic construction.

Let £(t), t > 0 be a continuous path on Fy with £(0) = z which satisfies the conditions
() ¢ Az for any t > 0. Let z € GN Fy with z ~ z, and let 5 = (o, 71, ...) € {0,1}7+. We
construct from ¢ and 7 a continuous path w(t) on Fy, with w(0) = .

Let T, n > 0 be successive disjoint hits by £(-) on A. (We can of course take the process
X in Definition 3.2 to be deterministic). If z ¢ A* then T, > 0. Then each of z,z lies
in exactly one cube in Sj: call these cubes D*, D? and let 1» € G(D?, D*) be such that
¥ (z) = x. Define

w(t) =y(E(t), 0<t<To

Let 2’ = &(To), ' = w(Ty); we have z’, 2" € A* — A§. Thus each of z/, 2’ lies in exactly two
cubes in Sp: call these cubes S§, ST, S5, S7. Using lexicographic ordering of the cubes in
Sy, we can ensure these labels are uniquely specified. As z/ € G, there are two possibilities:
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(i) Exactly one of S§, ST is contained in G, (3.14)
(ii) S§, ST are both contained in G.

For y = ,2,1=0,1let D! € S satisfy SY C DY. For i, j = 0,1 there exists a unique
map t;; € G(D7, Df) such that ¢;;(2") = ', and 1;;(S7) = S7. The uniqueness is evident;
the existence is proved as in Proposition 3.13. Note that 1g; = ¢1; on S§ N S7.

(i) Let S C G, so (int S{_,) NG = (). Now define

@:S5US; = S7 by ¢ =1, |g; for 7 = 0,1,

and let w(t) = ¢(£(t)), To < ¢t < Ty.
(ii) For £ = 0,1 define ¢y, : S§ U S — S§ U ST by

©r = Vij |S;, 1 =0,1;

here j = j(i,k) = i + k(mod2). Set w(t) = ¢n, (£(t)), To <t < Ty.
Note that in either case, for each ¢ € [Ty, T1], there exists ¢, j such that w(t) = ¢;; (£(t)),
so that w(t) ~ &(t) for Top < t < Ty. (We also have w(t) ~ £(t) on the initial segment [0, Tp]).
The same construction can now be repeated on each of the time intervals [T;_1,T;],
using, as above, the index 7;_; to make a choice of maps each time case (ii) arises. The path
we C(Ry,GN ﬁN) is a function of G, &, n and x only; we write

w = F()(ZU, Gaﬁﬂ?) (315)

We can now define a pair of Brownian motions on F. Recall the definition of A¥ from
(3.9). The following theorem follows in a straightforward fashion from the properties of T'y.

Theorem 3.14. Let (2, F, F;,P) be a probability space carrying a reflecting Brownian mo-
tion & on ﬁ'N, and independent sequences (n},i > 0), (n?,i > 0) of i.i.d. Bernoulli random
variables. Let each of Gy, k = 1,2, be a union of cubes in Sy. Suppose & = z ¢ Af, and let
T € G N ﬁ’N, satisfy x1 ~ x9 ~ z. Let T;, © > 0 be successive disjoint hits by £ on A, and
suppose that nf € Fr., k=1,2,i > 0. Set

Xk =To(2r,Gr,6,0%), k=1,2. (3.16)

Then

(a) X* is a RBM (G N Fy), with X} = xy,.

(b) XF ~ & fort > 0.

(c) X! and X? are conditionally independent given &.

(d) If T;(X%), i > 0 denote successive disjoint hits by X* on A, then T;(X*) = T; for i > 0.

Proof. Note that A} is polar for &, so that (T}) and X* are well-defined. (b), (c), (d) are
all evident from the definition of T'j.
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For (a), let Sf, S7 denote the cubes in S given in the construction of I'y. Fix k. We
have
Xf =), 0<t<T,

where ¢ : S§ U ST — Fy. In case (3. 14)(ii) ¢ is an isometry between (S§ U ST) N Fy and
(Sg*uST*)N Fy, so that X¥ is a RBM (Fx) on the time interval [0, Ty]. In case (3.14)(i),
if S;* C Fp, then ¢ can be written in the form ¢ = ¢ o 1, where ¢y is reflection in the
hyperplane containing S§* N ST*, and @y is an isometry of RY. Again, it is clear that X is a
RBM (Fy) on [0, T1]. 0

Remark We will call a pair of processes defined in this way linked RBMs.

The next sequence of results will extend the lower bounds on the probabilities of certain
moves, given in Propositions 3.3 and 3.7, to joint moves by a pair of RBM X¥, defined by
(3.16). We begin by introducing some further notation.

Definition 3.15. Let J = {—1,1}%, and let £(J) = {{z,y} € J : |z — y| = 2}. Then
(J, S(J)) is the natural graph of vertices of the hypercube. For a = (ay,...,aq) € J, let
C,={x¢€ [—1,1]d : 0<xia; <1}

be the portion of [—1,1]% that is in the orthant determined by a. For example, if d = 3 and
a=(1,—1,1) then
Co =[0,1] x [-1,0] x [0, 1].

Let Ji, J2 be non-empty, connected subsets of .J, and let

D; = U(CamﬁN), i=1,2.
a€J;

For e = {a,b} € £(J), let

Ge=CanNCy G= ] Gey Le=G.N[-1/2,1/2]%.
e€&(J)

Thus L. € A, for j # 1(L.) let M.; be the unique half face contained in G, which is obtained
by translating L. a distance 1/2 parallel to the j-axis.
We remark that

L. ~ Ly if and only if ¢(Le) = ¢(Ly),

. DA (3.17)
Me; ~ My;j if and only if ¢ = j and «(L.) = ¢(Ly).

Now let zx € Dy, k = 1,2, satisfy z1 ~ xa, with zy, ¢ A, let ¥, £, (F;) be as in Theorem
3.14, and let
Xk:F0($k7Dk7£7nk)7 k= 1727 (318)
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be a pair of linked RBMs on D;, D,, respectively. Let

T=inf{t > 0: & € 9[-1,1]%},

and let (T;,,n > 0) be successive disjoint hits by £ on H = {G.,e € E(J)} U {9[-1,1]%}.
Note that 7 = Ty for some (random) M > 0. Let 7 : [-1,1]¢ — [0,1]¢ be defined by
m(x1,...,2q4) = (|z1],..., |x4]). Since

(X)) =n(X7)=n(&), 0<t<T,

we see that if (T¥,n > 0,k = 1,2) are successive disjoint hits by X* on H, then T¥ = T,, for
0<n<M.

We now define a number of processes associated with X* and &. For n < M, let
I, € {1,...,d} be such that &, € Hy, (0), and for a € J let A, (a) be the unique element of
J such that Co N Cy, (o) C Hr,(0). Set G; = o(&s, s < t); note that I, and An(a) are G,
measurable on {n < M}. For each 0 < n < M, X} lies in exactly two of the cubes C,, while
X%M lies in exactly one cube, a.s. For 1 <n < M let Z* be the unique element of Jj such
that Czx D {Xéinil,Xéin}. Choose ay, such that x3, € C,, and let Z§ = ay.

Set, for n > 0,

pn(a,b) =P*(Z) = a, Z2 = b | G1,) L (nerr), (3.19)
pn(a) =P*(Zy = a | Gr,)lnemr)-
Lemma 3.16. p,(a,b) = pk(a)p2(b).

Proof. Write ]:,fk) for the natural filtration of X*. Then Z¥ € .7-"7(15), while {M < n} €

Ggr,. By (3.18) .E(l) and ]:t(z) are conditionally independent given Gr ; the result follows
immediately. O

Now write

VF(a) =15, (AE(a)), a€ (3.20)

n

Lemma 3.17. For a € Jp,

Phi1(@) = Tnercan (P (@) (1= VE@) + § (0h(a) + 5 (4n(@)) VE@)), a5 (3:21)

To simplify notation, in the next two proofs we will omit the superscript £ from X, p,,, etc.

Proof. Note first that since X7, € Cz, NCy, (z,), we have Z, 41 € {Zn, An(Z,)}. So also
Zn € {Zn+17An(Zn+1)}7 and

(Zns An(Z)} = {Zns1, An(Zns1)}, on {n+1< M}. (3.22)
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Suppose first that A, (a) ¢ Ji. Then (3.22) implies that Z,,+1 = a and n+1 < M if and
only if Z,, =a,and n+1 < M. So

Linsi<an) (1= Va(a))pnt1(a) = Lpgicmn) (1 = Va(a)), as. (3.23)

Now suppose that A, (a) € Ji. Then to have Z,,11 = a it is necessary that X € C,,
while if X7 € C, then Z,,11 = a if and only if n +1 < M and X7, , € C,. Since the set
Co UCQ, (q) is symmetric about the hyperplane Hr, (0), it follows that

Ln1<an Vi (@Pns1 (@) = Losrcan V(@) (3pa(@) + 390 (4n(@) ). (3.24)

Combining (3.23) and (3.24) gives (3.21). O

Now let UF = {a : p¥ (a) > 0}, uF = #(UF), and
¥ = 1u<ary min{p,(a) : pn(a) > 0}. (3.25)
Lemma 3.18. Forn > 0, qﬁl(n<M) > 2_2d1(n<M).

Proof. Note first that as pg(ax) = 1, go = 1. From (3.21) we have that on {n + 1 < M}
either pn-{—l(a) = DPn (a), or pn—i—l(a) = %( n(a) + Pn (An (a)))

Suppose n + 1 < M, and U,, = U,,+1. Choose a € U,41 such that ¢,+1 = ppy1(a). If
An(a) ¢ Ji, then poi1(a) = pn(a) > g,. If A,(a) € Ji, then p, (A, (a)) > 0, since otherwise
Pnt1(An(a)) = pn(a)/2 > 0, so that A,(a) € Uy41 — Uy,. Therefore

1
Prti1(a) > §<pn(a) + P (An(a))) > .

So if U, = U, 41 we have g,11 > qn,on {n+1 < M}.

Ifn+1< M, and U, # Up,41, we have u,4+1 — u, > 1. Again choose a such that
In+1 = Pn+1(a); since at least one of a or A, (a) must be in U,, we deduce g, +1 > ¢, /2.

So, in all cases we have

(n+1 > 2_(“”“_“")% on {n+1< M},

and since 1 < u; < u,, < 2%, for all n, the result follows. O

For the RBM (-) X* defined above, and Ay, Ay € A, set
T(Ay, Ay) = inf{t > 0: (X}, X?) € (A1, A3)}. (3.26)

Given two linked processes XF, k = 1,2, we let P(z1:72) denote the joint law of the pair
(X}, X2) with X[ started at x, k = 1,2. When the starting points are clear, we just write
P.

We can now give a lower bound on the probability of certain joint moves.
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Theorem 3.19. There exists a constant p; = p1(d) > 0, with the following properties.
Suppose for k = 1,2, ex, fr € E(J), x € Le,, x1 ~ 2, 21, & AS, with o(Ly,) = o(Ly,) = 1,
and Gy, C Dy,. Then
(a) P(T(Ly,,Lys,) <T) > p1.
(b) If j # i, then

P(T(Mflj7Mf2j) < T) > Pp1-

Proof. Let &, = m(&); note that T;, 0 < i < M, are also successive disjoint hits by & on
H. For r > 1 define sets B, by B, = H,.(0)N[0,1/2]¢, 1 < r < d, and Bgqy, = B,, for
E>1,1<r<d. Let

Sp =0, Spp1=inf{t > S, :& € By}, 1> 1.

Thus the stopping times (Sg, Si,...) form a subsequence of (Tp, T4, ...). For r > 0, let N, be
such that Ty, = S,.

Suppose that S, < 7, and that U]’f,r # Ji. Then (since Ji is connected) there exists
a €Uy ,be J,— U} such that {a,b} € £(J). Let j = +(Ca N Cy). If S, yq < 7, then for
some i € {0,...,d — 1}, ESTH lies in the hyperplane H;(0), so that A’f\,r+1 (a) = b. Hence, by
(3.21), p’f+Nr+1(b) > 0, so that b ¢ U]’f,rer. So, if Sgpe < 7 we must have p’fvdzd (a) > 0 for
each a € Ji. Therefore, by Lemmas 3.16 and 3.18,

oy, (a,b) > 472" on {N,, < M}, (3.27)

for each a € Jq, b € Jo, and any m > d2%.
Since each move from B, to B, is a corner move of the type considered in Proposition
3.3, we also have from (3.4) that

P (T, < 7) > g (3.28)

Let d2¢ < m < (d 4 1)2¢ be such that «(By,) = ¢(Ly,). Choose by, € Jj such that Ly, C Cp,.
Then note that X5 € Ly, on the event {N,, < M, Z}, = by}, so that, using (3.27) and
(3.28),

P(T(Ly,, Ly,) <7) > P(X§, €Lg Ty, <7)

> B (pw,, (b1, b2) 1 (v, <ar))
> 472" gl D

Y

which proves (a). ~
To prove (b), let S” = inf{t > T,,, : £, € M;;}. Then by Proposition 3.7

P(S" <7 |Tm <T) > qo.
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We have S’ = T+ for some N' > m, on {S’ < 7}. Then X{,?N, € My, ; on the event
{N' < M, Z¥, = b}, and so

P(T(My,j, My,;) <7) >P(Zk: = b,k =1,2,N' < M)
> 472"P(N' < M)
= 4 2'"P(N' < M | Tys < 7)P(Tyy, < 7)

_od _od d+1)2¢
> 47 goq > 47 gogltY

proving (b). O

For the next result, we recall from Section 2 the definition of the cubes D, (z) and the
stopping times o, (z).
Corollary 3.20. Let &, nt, n?, (Q,F,F;,P) be as above, and let z1 ~ xa, with zj ¢ A},
Set X* = To(ag, Fn, & k). Let o € A, € A, and let {(Ay, Ay), (By, By)} € £(AP).
Then
P (T (B1, B2) < oo(z1,X") A ooz, X?)) > p1.

Proof. This is immediate from (3.17) and Theorem 3.19, by mapping the cubes Dg(z;) to
[—1,1]%. O

Given processes X2, X2 on Fy, set for m € Z,
b (X1, X2) = inf{t > 0: X! T X?}. (3.29)

Theorem 3.21. Let N > 0. Let x1 ~ x4, with z}, ¢ Iz Af, xy, € ﬁN. There exist a pair of
process (W}, W2) on Fx with WE = ;. such that
(i) Wk are RBM(Fy), k = 1,2.
(ii) Wt X W2 fort > 0.
(iii) Writing K, = K (WL, W?2) then

]P’( sup  max |[WF — 2xlleo < (1 +1R)E" fin_1 < oo) >py >0 (3.30)
0<t<kmn_1 k=1,2
for some ps = pa(d,lF).

Proof. By scaling, it is enough to prove the result for n = 0. Let Ay € Ap, Cr € &1 (ﬁ’_l),
Dy € §8*, be such that z € Ay C Cy C Dg. Then there exists g € G(Dy, D2) such that

g(C1) = Cy. Let 2} = g(x1); as x} ~ 1 ~ T3, we have xh ~ 9. Set A} = g(A1); we also
have A} ~ As.

26



The restriction of the graph (AF, £ (Ap)) to Cy is connected, so A} and Ay are connected
by a chain A} = ap, oy, ..., ap, = Az where o) C Cy, a; € Af, and where m < ¢(d,[r). Let
C' € Sy(Fp) be such that Ay C C’. Then, as in Proposition 3.13, there exists B;, 0 < i < m,
such that B; C C', B; € Ap, By = By, = As, and {(c/, B;), (g1, Bir1)} € E(AD)
for 0 < i < m—1. Set a; = g~ (). Then {(, B;), (11, Biv1)} € S(Ag)) also, and
(o, Bo) = (Al,Az) (Qm, Bm) = (9~ (Ag) Asz), which implies that a,, _Nle.

Let &, 0¥, (F;) be as in Theorem 3.14, and let W* = Fo(xk,FN,£ n*). Set for i > 1

So =0,
S; = inf{t > S;_1 : W} € a; and W? € B;},
R; = inf{t > S;_1 : W, ¢ Do(W5,_ ) or W} & Do(W3._ )}

By Corollary 3.20 P(S; < R; | Fs,_,) > p1, and therefore if G = ﬂ {S; < R;} we have

=

P(G) > pi". Note that on the event G, W§ € Cy, so that ||[W} — a:k||oo < lIp +1 for
0<t<§S,,. Write Y}, = Wsm; on G we have Yy € Ay, Y1 € ayy, = g7 1(As), so that g(Y7)
and Y3 both lie in A;. However Y7 ~ Y3, and Y; _ng(Yl) so that g(Y7) ~ Y3. Hence (since

Y. ¢ Af) we have g(Y1) = Ya, so that Y ’_VIYQ Thus k_; < S,,, and taking py = pcl(d br)
this proves the theorem. O

The following result is used to start off the final coupling given in Theorem 3.25.

Lemma 3.22. Let n > 0, and let zj, € F,,, k = 1,2. There exists a constant ps = p3(d) >0
and processes W} on F,, with WE = xy, such that writing k,, = r, (W1, W?2),
(i) Wk are RBM(E,), k = 1,2,
(ii) ]P’( sup max ||[WF — zglleo < 205", ki < oo) > ps.
0<t<k, K
Recalling the definition of ,, from (3.29), the lemma says that W' © W2 at time t = &,, and
neither W,! nor W2 has moved too far from its starting point.

Proof. By scaling it is enough to consider the case n = 0. First we note the following
property of a Brownian motion on R?, which is connected with ‘reflection coupling’. Let B =
B(0,1/4) C R? and let yy, yo € B(0,1/8) with y; = —y». Let H be the hyperplane through
0 perpendicular to the line connecting 11, y2, and let ¢ : R* — R¢ be reflection in H. Then
if Vi1, t > 0, is a Brownian motion on R? with V! = y1, P(Tg(V?) < T (V1)) > c1(d) > 0.
(Here c; depends only on the dimension d). So if V2 = 4 (V?!), we deduce

P(Te(VY,V?) < T (VY A Tge(V?)) > ¢1 > 0. (3.31)

Now fix x1, 72 € Fy, and let Sy e 8§, Sk € SO(ﬁo) satisfy z, € Sp C S;. Let
g € G(S3,57) besuch that g : Sy — S;. Let zi, be the center of Sy, and write By, = B(zg, 1/8).
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For k = 1,2 let UF, t > 0 be independent RBM(l?b) with U¥ = 3, on a probability space
(Q, F,P). Let 0; be the standard shift operators on Q: UF(yw) = UF, ,(w). Let

A = {Uv{C € By, U(:Uk, Uk) > 1}.

Note that on Ay we have supyc,<; [[UF — 1]l < 3/2. By Proposition 2.6 there exists
co = c3(d) > 0, (not depending on zy), such that

Px (Ak) Z Co.

Let Y1 = Ull, Y2 = g(Ulz) Set Z = (Yl + Yg)/2, and let B/ = B(Z,1/4) On A1 ﬂAQ
we have |Yi, — 21| < 1/8, so that |Z — z1| < 1/8, and |Z — Y}| < 1/8. In particular B’ C S;.
Let H be the hyperplane containing Z and perpendicular to the direction Y2 — Y7, and let
h:R* — R? be reflection in H. Set W' = U1, and let U2 = h(U}), t > 0. Set

W = U144 + 1ainas 110,10 UZ + 1(1.00) ()9 (TR)].

If S=inf{t > 1: (W}, W?2) ¢ S; x Sy} then W? is a~RBM(}N7b) started at zo for 0 <¢ < S.
It is then straightforward to extend W? to a RBM (Fy) on [0,00).
Write T, = Te (U, U?) 0 61, 7' = (15 (U) A1 (U?)) 061, and let A3 = {T, < 7'}. By
(3.31) we have
P(Té <7 | AlﬂAz) > C1,

so that, writing A = Ay N AsN A3z, P(A) > c1¢2. On A we have, by the definition of W2, that
le,,c ~ W2,C7 so that kg < T¢. Also, on A, max sup;<y<r, [|WF — WE||w < 1/4, so that
maxksupOStSTéHWtk—kaoo <3/2+1/4<2. O

Recall from (2.6) the definition of the exit times o, (x).

Proposition 3.23. Let N, m, n € Z, m > n+3, © € Fy, and z be the center of D, (x).
Suppose 1 ~ 2, xr ¢ A, and ||vg — 2|l < ["(1 — IzY), k = 1,2. Then there exist
RBM (Fy) WE, with W} = xy,, such that if ng = d2¢(21p)™=™4, then

]P’(TC(WI, W2) < op(z, Wl) Aon(z, WZ)) > pi°.

Proof. Suppose first that m = 0. (So |n| = —n > 3). Let zx € Ay € Ap, and let
Cx € So(Fp) be such that Ay C Cy. Note that in the || - ||oc norm Cj is at least a distance

l|1?|_1 —1>1%-1>1lp+1, from D, (z)¢. Hypotheses 2.1 (H1-H4) imply we can find a chain
of cubes in Sy(Fp) of length less than or equal to n; = (21F)"l¢ connecting C; and Cy, and

contained in the cube center z and side 2(l|lf| —2). If A, B C C, where C € Sy(Fp), then
certainly dp(A, B) < d2¢, the total number of half-faces contained in C. So we can find a
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chain A} = ag,ay,...q, = Ay in Ap, where r < ng = d2%(2lp)~™¢, and where each «; is a
distance at least 2 from D, (z)°.

We have A; ~ As; we can therefore as in Proposition 3.13 find a chain («;, B;) in A&?’
such that (ao, Bo) = (A1, A4z2), (ar, Br) = (A2, Az), and each B; C Cs. Using Corollary
3.20, we therefore have that if W* = Tg(zx, Fn, &, 1), with £, n* as above, then the process
(W1 W?2) moves along the chain (o, B;) with probability at least p} > p7°. As the half-faces
in the chain are all a distance at least 2 from D,,(z)¢, and since Cy C Do(z2) C Dyy3(x2), it
follows that

P(Tp (Wh) < on(2)(WH), Tc(WH W?) < oo(2, W') Aoz, W?)) > pi°.  (3.32)

n+3(z2)
This implies the result when m = 0; if m # 0, we can scale by I, and replace (N, m,n) by

(N —m,0,n —m). O

The following lower bound on the probability of hitting small cubes is an essential in-
gredient in the Harnack inequality Theorem 4.3.

Corollary 3.24. Let N, n € Z, © € Fy, and z be the center of Dy (x). There exists
6 = 6(lp,d) such that if y1,y> € B(z, 3lz"), and W is a RBM (Fy), then

PY (0pyjr2(ye, W) < on(2)) > 67, j>1.

Proof. We begin with the case 7 = 1. Take m = n + 3; as in the previous proof we can
suppose m = 0. Let x; = y;, and choose x5 € Dg(y2) such that xy ~ z2, and Cy so that
Coy C Do(y2). Then (3.32) implies that, writing ny = d2%(2lg)3¢, § = pT*,

]P)(O'()(yz) < O'n(Z)) > 0.

We now iterate. Write Sy, = 0p1k42(y2), and let zx be the center of Dy(y2). Since Wg,,
Y2 € Boo(Zns1, 17" 1), and 0,41 (2ng1) < 0n(2n), we have

Py (52 < Un(Z)) > EY (1(51<0n(z))]PW51 (82 < an+1(zn+1))) > 52.
This gives the case 7 = 2, and by induction we obtain the general case. O
Theorem 3.25. Let N, n € Z, xg,x,y € EV, e > 0. There exist constants py = py(d,lp) >
0, 6 = d(e,d,lp) > 0, and coupled RBM (Fy) W, W}, with W& = z, Wy =y, with the
following properties.
(a) If 7,y € Dyy2(x0), then
P(Te(W*, WY) < on(z, W*) A op(z, WY)) > ps. (3.33)
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(b) If ||z — y|leo < {z"0, then

P(Tc(W* WY) < 0p(x, W) Aop(z, WY)) > 1 —¢.

Proof. By scaling it is sufficient to prove this for n = 0. _

Set A), = Upezlp""Ajy, and note that A7 is polar for any RBM (Fy); this ensures that
the various sequences of successive disjoint hits below are well-defined. Write 1 = x, zo = y.
Let mg > 0 (to be chosen below), and let M > max(N,mg). We construct processes W}
successively on the intervals [0, kar], [Kar, Sm—1], ..., where the k are given by (3.29), as
follows.

Suppose first that WE, 0 < t < Ky, = k(WL W?2), k = 1,2, have been defined. Use
Theorem 3.21 applied conditionally on o(W¥, s < ki, k = 1,2) to define RBM (Fy) XF™,
t > 0, such that

xXpmt=wk | k=12
xR xP™L >0, (3.34)

and the estimate (3.30) holds. Set

Sm =1inf{t > 0: m,?XHXf’m’l - W:mHoo > (L+1p)lz™}.

If Syt > K1 (XH™1 X2™1) we say that “trial (m, 1) succeeds”, and otherwise we say
“trial (m, 1) fails”; (3.30) implies the probability of success is at least po. We now define W*
on an additional interval in [0, 00) by

k 1
WE o= XE™L 0 <8< S Aoy (XD™1, X2mD),

If trial (m, 1) succeeds we have defined W* on [0, k,,,_1], and are ready to repeat the same
construction at level m — 1. If trial (m, 1) fails, we repeat the attempt, using Theorem 3.21
to define RBM (Fy), X["™2 t > 0, satisfying (3.34), (3.30), and with initial conditions

km,2 k,m,1 -
Xgmt=Xgm™ k=1,2.

Continuing in this way, we make trials (m, ), 4 = 1,2, ... at achieving coupling at level m —1,
until one succeeds. As the probability of success (conditional on the past) is at least po for
each trial, we have k,,_1 < o0 a.s.

We use a similar argument to define W* on the initial segment [0, k7], except that here
we use Lemma 3.22 instead of Theorem 3.21. Finally, we note that Tc(W*, W?) = &, for all

sufficiently small n, and define W* on [To(W?, W?2), 00) by taking W} to be a RBM (F},) for
t > Te(WL W?), and setting W2 = WL

30



Set p = min(ps, p3), and let ag, a1,...,an, ... be positive integers, to be chosen below.
Let Y;, 0 <i < M + 1, be the number of the trial at level i that first succeeds. From (3.30)
we have
]P’(Y, >r | Yiri,.. .,YM_|_1) < (1 —p)r.

Let mg > 0, and let

Therefore
M+1
P(GY) < > (1—p)™,
’i:mo
while on G we have
M+1 .
||Vtk — Tgloo < Z ai(L+1p)lg", for 0 <t < Kpy,.
i:mo

Now take a; = (2[r/3)%; then as [r > 3 we have a; > 4, so that
P(G°) < p~'(1—p)™,

while -

> ai(l+1p)lg' < 3(1+1p)(2/3)™.

’i:mo

Now choose mg to be the smallest integer such that mg > 3, 3(1 + Ip)lz™° < (2lF)~!, and
p~ (1 —p)™ < 1/2. Note that mgo depends only on d and [r. Let z be the center of the cube
Dy(x). On G we have, for k =1, 2,

e = 2lloe < 1o — 2lloo + ok — wolloo < & + 3057 < 2.
Therefore

sup |V = zlloo < llzn — 2lloc + (2Up)TH < 3+ (2p) T S 1R
0<t<tm,

so that on G, km, < o(z, V') Ao (z,V?).
By Proposition 3.23 there exist RBM (Fy) UF, with U} = V,fmo, such that

]P’(TC(Ul, U?) < 0o(z,UY) Aog(z, U2)) > pit,

where n; = d24(21r)™?. Now define

k
Wk _ ‘/tk; 0 S t S Rmg
¢ Ut—K,mO K’mo S t?
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and let W = W}, WY = Wlcr,) + Wilgst.,). We have

P(TC(Wmv Wy) <0'0(.77, Ww) A 0o ('T7 Wy))
> P(G)P(Tc (U, U?) < 0o(2,U") Aao(2,U?) | G)
> 2p7' = pa.
Since p4 depends only on d and [, this proves (a).

To prove (b), we use (a) iteratively. Let m be the smallest integer divisible by 4 such that
(1—ps)m=5)/* < ¢, and let § = 11" We define inductively RBM (Fy) W*, W¥ successively
on intervals [T;, T;11], stopping times T;, and random variables X; = Wi, Y = sz such
that Y; € Dm—4z(Xz)

We take X = z, Yy = y; since ||z — yl|oo < 8 < 3Iz™, we have y € Dy, (z). Suppose
now W*, W¥ are defined on [0, Ti], and Y; € Dy,—4;(X;). Apply (a) with n = m — 4i — 2
to obtain RBM (Fy) V;**, V" with V5" = X;, V"' =Y, satisfying (3.33). Set S; =
O'm_4¢_2(X7;, Vm’z) A O'm_47;_2(X¢, Vy,z) and Té, =T¢ (Vw’i, Vy’i), and let

Tiv1 =T, + S,
Wtz:‘/;z_’iTi) TzStST’L—i—l) Z=I,Y,
_ _wY
Xip1=Wr, Yig =Wq, .

Note that as V;"' = V' for t > Tf, we have W = WY for t > To = To(W?*, WY). If T <
51; then 1/i~|—1 = X1;_|_1 € Dm—4i—4(Xi~|—1)- Otherwise we have, as X1;_|_1, 1/1'4_1 S Dm_4i_2(X1;),
that (r—ti—2)

[Xi+1 = Xilloo V [[Yig1 = Yilloo < 5177,

p— i (3.35)
1Xis1 = Yipalloo < 205" 7H72 < Jarp2p 40,

so since 4/;° < 1 we have Yj,; € Doy —agit1)(Xig1).
For each i, we have, by (a)

P(Ty < Si | Fr,) > pa.

Let H = {T} < S; for some i < 3(m — 5)}, so that P(H¢) < (1 — ps)m=9/% <. On H we
have, using (3.35), and writing [ = (m — 5)/4,

l

1Xi = 2lloo V[V = ylloo < Y 51"
1=0

3i2m s 1)

SETR IR =320 < ¢

-1

IAIA

So, on H, W* and WY couple before leaving Dy(z), and P(H) > 1 —e¢. O
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Remark 3.26. Much of the argument above only uses the symmetry of F} with respect to
reflection in the sets H;(1/2), which is a strictly weaker condition than Hypothesis 2.1 (H1).
We do use (H1) however in the proof of Proposition 3.5, when we reflect in the hyperplanes
Hij-

Remark 3.27. The arguments above use essentially only three properties of the Markov
process W: its continuity, the fact that W is symmetric with respect to the symmetries of
the cube, and the fact that A is polar for W. We use this in [BB6], where we couple a ‘cable
process’ associated with the graphical pre-carpet.

4. Uniform Harnack inequality.

In this section we use the coupling of Section 3 to prove a Harnack inequality for harmonic
functions on Fyy with constants which are independent of N. The proofs use ideas of [LR]
and [Cal. For a function f and a Borel set A, define

Ojc f= sipf—lgff.

Proposition 4.1. There exists 0 € (0,1) independent of n and N such that if o € fN?’N, and
h is harmonic on Dy, (xo) N Fy, then

Osc h <8 Osc h.
D, t2(z0) D, (z0)

Proof. There is nothing to prove if Osc p, (4,) I is infinite, so we may suppose h is bounded
on Dy(rg). By adding a constant to h, we may suppose infp ()b = 0. Let =, y €

Dpy2(zo) N Fr, and let W?, WY be the RBM(Fy) given in Theorem 3.25(a). Let U =
On (o, WE) AN op(xo, WY) and T = Te (W, WY); by (3.33) we have

P(Tc > U) <1—pa,
where py depends only on d and [p. Set § =1 — py. Since h is harmonic we have
h(z) = Eh(Wiar,,) (4.1)
=Eh(Wr,); Te < U]+ ER(W); Te > U]
and similarly
h(y) = Blh(Wr,, ); Te < U]+ E[n(Wg); Te > Ul. (4.2)
Since h(W§,) = h(W{,_), subtracting (4.2) from (4.1) gives

|h(z) — h(y)| = [E[R(WF) — h(W7); Te 2 U]

<P(Te > U) DO?C )h
n\Zo

<f Osc h. O
D, (o)
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Theorem 4.2. There existLM and « depending only on d and lr such that if xy € ﬁn and
h is harmonic in Dy, (z¢) N F, then

\h(z) — h(y)| < M|z — y|*IF* DSI(lp | A, 2,y € Dpio(z0).
n\L0

Proof. By iterating Proposition 4.1,

Osc h<® Osc h<# Osc |h| <207 sup |h|. (4.3)
Dyyoj(x) Dry2(j—1) (@) D, (x) D,.(zo)

Let ||z — y||lcoc = 7, and choose j such that y € Dy 2;(2) — Dpiagj+1)(2); by Lemma 2.3
—n—2j —n—2j-2
e’z = gl T
So ¢107 > (Ikr)los(1/6)/2logle > .07 and hence by (4.3),

|h(y) — h(z)| < Osc h <cglpr® sup |hl,
Dyt2; () D, (zo)

where a = log(1/6)/2loglp. O

Theorem 4.3. (Uniform Harnack inequality). There exists c; depending only on d and g
such that if xg € Fy and h is nonnegative and harmonic in D, (xz¢) N Fy, then

h(z) < c1h(y), z,y € Dpya(xp). (4.4)

Proof. Let z be the center of D, (z(). By looking at h 4+ & and then letting € | 0, we may
assume h is bounded below by a positive constant in D,,(z9). Multiplying by a constant, we
may assume infp ., (z,)h =1. Since F v is a Lipschitz domain, A is bounded and continuous
on A = B(z,13"(1 —1z")); we need to show that we can bound A in D, 4(z¢) by a constant
independent of n and N.
By Corollary 3.24 we have, for z € A, and 6 = 6(d,[r),
PY(Tp

ntj(x) < Un($0))> 5j7 Jj=3.

This yields an estimate on the minimum of h on D, ;(x); we have

1= h(y) > EY [h(X(TDn+]($)))’ TDn+j(m) < O'n(l'o)] > 5J D ll’lf( )h’v
nti (@

so that .
inf h <077, xe A, j>3. (4.5)
Dyyj(z)
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Now choose M > 3 so that 0=M > §72/(671 —1). Let jo = 2M —2. If z € A, Dytj—om(z) C
D, (xg) for j > jo, and so from Proposition 4.1

Osc h>0"™ Osc h

Dyt j—2m () D, (x)

5—2
Osc h, J > Jjo, x € A. (4.6)

>
T 0t =1 Do)

Let K = 2M + 3. Suppose there exists 2’ € D, ;4(7¢) such that h(z') > §~E-90-2 We use
induction to construct a sequence z;,j > jo such that z;, =z’ and

h(z;) > 6~ K-i—1 (4.7)

J
lzj = zlloo < 31E""* + 515772 ) 1E7 (4.8)

i=jo
Suppose we have constructed xj,,...,z;. Since by (4.8) x; € A, we have by (4.5) that

inf  h <o K, (4.9)

Dyt r4j(z;)

while by (4.7) .
h(z;) > 6 K71,

Hence
Osc  h> (6"t —1)6 K7,
Dt r+i(25)
By (4.6),
Osc h> 6 K-i-2
Dyt rtj—2m(z5)

Since h is nonnegative, this implies that there must exist a point x;41 € Dyyjt3(2;) such
that h(z;41) > 07 K7972 As ||zj41 — 2j]]oo < %l;"_j_?’, xj41 satisfies (4.7) and (4.8).

By induction, we therefore have a sequence zj, j > jo in A with h(z;) — oo, which
contradicts the fact that A is bounded on A. It follows that h is bounded on D, 4(z¢) by
§—K—do=2, O

Remark 4.4. Note that the proofs of the results in this section do not use the symmetry
assumption Hypothesis 2.1 (H1) directly, but only through Corollary 3.24 and Theorem 3.25.
So if F' v is a generalized Sierpinski carpet at level N, for which F; satisfies Hypothesis 2.1
(H2-H4), and in addition we know that Corollary 3.24 and Theorem 3.25 hold for F v, then
all the results in this section hold for Fly.

Remark 4.5. The proof of Theorem 1.1. is immediate from Theorem 4.3.
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5. Constants and inequalities.

Constants. We define the resistance constant R, by
R;lzinf{/ |Vf|2da::f:00na:1:(),f:1ona:lzl%}. (5.1)
InF,

Thus R,, is the resistance between two opposite faces of the set I F,,. In [McG] (see also
[KZ] and for the case d = 2 [BB3]), it is shown that there exists a constant pp and constants
c1, c2 such that

c1pp < Ry, < copp. (5.2)

The proof uses a subadditivity argument, which does not yield the value of pr. We call pr
the resistance scale factor of F', and define the time scale factor by tp = (mp)(pr). We
define the fractal dimension, dimension of the walk, and spectral dimension of F' by

dy =logmp/loglp, (5.3)
dy =logtys/loglr,
ds =2d¢/dy, =2logmp/logtp.

dy is the Hausdorff dimension (and also the packing dimension ) of F' and F.
Using standard shorting and cutting arguments (see [DS], and also [BB3, Prop. 5.3]) we
have the following estimates for pp.

Proposition 5.1. (a) tp > [%.
(b) pr < 21_dlp.

Proof. (a) Note that [.F,, consists of mp sets each congruent to l%‘an_l. For 1 <:<lg
let a; be the number of sets congruent to I% 'F,_; contained in I%F, N {x : (i — 1)I% " <
1 < il;ffl}. Then > a; = mp, and applying shorts on each of the sets {z1 = il%‘l} we have

from Kirchoff’s laws
lr

Ry >Ry_1)» ajl. (5.4)

=1

Using (5.2) it follows that

=1
By Cauchy-Schwarz,
lF 2 lF lF lF
Z%Z(Zail/zai_l/z) S(Za¢>(2a;1>:mp(2ai_l>.
i=1 i=1 i=1 i=1



(a) is now clear.

(b) Using Hypothesis 2.1 (H4) we have that the two sides {x1 = 0} and {z; = I} of I%F,
are connected by 2¢~! disjoint blocks, each consisting of [z copies of l;flen_l arranged in
series. (In the case d = 3 we are considering the cubes that touch the four edges connecting
{z1 =0} and {z1 ={%}). Therefore

Rp < Ry_127 @ Vg, (5.5)
from which (b) follows immediately. O

Remark 5.2. Note that while (a) is true for any GSC satisfying Hypotheses 2.1 (H1) and
(H2), (b) relies on (H4), and does not always hold for more general GSCs.

Corollary 5.3. For GSCs which satisfy Hypotheses 2.1 (H1)—-(H4) the following inequalities
hold:

dy > 2, ds < dy <d, (5.6)

dy <1+df—(d—1)(log2/loglr) < 1+dy, (5.7)
2ds

ds 1. 5.8

~ 1+dy ~ (5-8)

Proof. (5.6) and (5.7) are immediate from Proposition 5.1 and the definitions of dy, d,, ds.
Hypothesis 2.1 (H2) implies that mp > lp, so d¢ > 1, and (5.8) follows from (5.7). O

Remarks 5.4.

1. Note that the proof of Proposition 5.1(a) shows that tz > I% provided that the a; are not
all equal. In fact we have a proof that strict inequality holds in Proposition 5.1(a) for any
GSC. However, the proof is rather longer than that given above. As a consequence, we know
that d,, > 2 and ds; < dy in (5.6).

2. Let 1 < b < a, d > 2, and consider the GSC given by taking lp = a, and F; =
Fo — ((a — b)/2a, (a + b)/2a)?. So F; is obtained by removing a central block of b cubes of
side a~!. We denote this GSC by SC(a,b,d). We have mpr = a® —b?, and the estimates (5.4)
and (5.5) give

a—>b b

o e v e ) S Wy W (5.9)

In the particular case of the standard 3-dimensional SC, SC(3, 1, 3), this implies that 25/72 <
pr < 27/72, so that

2.0028 < d,, < 2.0729, 2.8614 < ds < 2.9615.
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This may be compared with the estimate

d.>d log 26

L= 080 97642
- log(26/8)

obtained in [O1] using an isoperimetric inequality.

Processes. Let 0o F, = {x € F, : 21 V--- Vx4 = 1}. We let W/* be Brownian motion on
F,, with normal reflection on 0F,. Let 7V = inf{t : W € 8,F,}. Let G, = {z € F, :
T V- Vg < %} Then there exist c¢1, co such that for all n > 0

cl(tp/l%w)” < mlencg EmT,I;V < sEuI? EmT,I;V < cz(tp/l%w)”; (5.10)

this is proved just as in [BB1, Prop. 4.2] and [BB2, Prop. 2.2 and 2.3]. We make the
remark that (tg/l%)~™ is also comparable to the first eigenvalue for the Laplacian on F,

with Dirichlet boundary conditions on d,F,, and Neumann boundary conditions elsewhere;
see [BB2, Prop. 2.2].

Let X" = W"((tp/l%)"t) and let PZ be the law of X when X7 = z. We have the
following estimates on the P;, laws of o.(z) = o, (x, X).

Proposition 5.5. (a) For 0 <r <mn, z € E,,
cty <Efop(x) < cotzn'. (5.11)
(b) Let n > 0. If m <mn and t >l ™ /t’k, then
P? (o () <t) < cgexp(— C4(t;m/t)1/(dw_1)). (5.12)
Ifm <nandt>1""/th, orif m >n and t > 0, then
B (o) < 1) < e exp  — co(B0 /R 12 1)), (5.13)
(c) For z € F,, A > =",
Pﬁ(sglz | X? — X > X) <crexp(— cg(A %= /t)l/(dw_l)). (5.14)
Proof. As the proofs are similar to those in [BB1, Prop. 4.4] and [BB4, (3.1), Prop. 3.3 and
Theorem 3.4] we only give a sketch of the argument.
Note that (5.11) follows from (5.10) using scaling, which proves (a).

We turn to the proof of (b). It is easy to see (5.11) holds if 7 < n + 2. By scaling we
may suppose n = 0 and r > 2. In this case, D, (x) is a subset of the region above a Lipschitz
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function. Let ¥(y, z) be the Green function for a RBM in Fj killed on exiting D,(z). By
Corollary 3.3 of [BH] and integration,

]Ema,‘fv(x) = /~ U(z,y)dy < le}z’".
Fy

As in the proof of Proposition 2.5, if d > 3, there exists K not depending on r such that
v(y, 2) > cioly — 2|24 for y, 2 € D, i (z). An integration then gives

E* oWV (z) > / ( )5($,y) dy > i1l
D,.+K T

The case d = 2 is similar.
Since X; is a time change of W;, we then have

cratp 172 T < B o (z) < epstp G, r>nt2.
It follows as in [BB1, Lemma 4.3] that for ¢t > 0, z € }~7’n,

]P’ﬁ (Ur(l') < t) < c14 + c15a4,-1, (5.15)
where c14 € (0,1) and ay, = t% if r < n+ 2, and a,, = [p 2"t% if r > n + 2. If z(t)
is a continuous path in Fj, we call an r-crossing a segment of the path t; < s < t5 where
x(t2) € 0Dy (x(t1)) and z(s) € Dyp(x(ty)) for t;1 < s < to. If m < r then any path from
x to Dp,(z)¢ must include at least [ ™ /4 disjoint r-crossings. So, writing M = [%7™/4,
Om(x) > Ef\il Vi, where the V; satisfy the bounds in (5.15). By [BB1, Lemma 1.1],

log P (0 () < ) < 2(anye Mt/c14)"/? — Mlog(1/c14).
It therefore follows that for r > m,

log P (0 () < ) < c15 [(t;z;:mt)l/? - z;:m] for r < n + 2, (5.16)
and
x 2r—2n n r—my\1/2 _ gr—m
log P? (6 () < 1) < c16 [(lF gnyromel/2 g ] for r > n + 2. (5.17)

The bounds in (b) then follow on choosing 7 to minimize the right hand sides of (5.16) and
(5.17).

(c) follows easily from (b); for a similar proof see, for example, [BB4, Theorem 3.4(b)]. O
Definition 5.6. Let A and B be Borel sets. For A C F write 07 A for the relative boundary

of Ain F. A local isometry of F is a triple (p, A, B) where A, B C F and ¢ is an isometry
between A and B and also between dzA and 0zB. A Markov process Y = Q" Y), x €

ﬁ,t > 0, is said to be invariant with respect to the local isometries of F if for every local
isometry (¢, A, B) and z € A,

Q" (¢(Yinr(a)) € + 1t > 0) = Q¥ (YVjr () € -, £ > 0). (5.18)
We will also say that Y is locally isotropic.

As in [BB1] we have the theorem
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Theorem 5.7. There exists a strong Markov process X = (P?, Xy), © € ﬁ,t > 0, with
state space F' such that X has a Feller transition semigroup which is y—symmetric, X has
continuous paths, and the process X is invariant with respect to the local isometries of F'.

As a consequence of our results on the transition densities of X; later on, we shall see
that X; actually has a strong Feller transition semigroup.

The proof of Theorem 5.7 is the same as that in [BB1, Sect. 6]. We briefly review the
outline of the proof and refer the reader to that paper for details. Define

D) =B [ e ar
0

By the Harnack inequality and the modulus of continuity estimates for harmonic functions
proved in Section 4 of this paper, it is not hard to see that when f is bounded and continuous,
then {U2 f}°°_; is equicontinuous on compact sets. By a diagonalization and limit argument,
there exists a subsequence n’ such that Uﬁ\' f converges uniformly on compacts, say to U>f,
for all A > 0 and f bounded and continuous. Since {PZ,} is tight, for each x there exist
convergent subsequences. Any limit point P” satisfies E* [ e™ f(X;)dt = U* f(x) for f
bounded and continuous, from which one deduces that P?, converges. If one calls the limit
P* and lets X; be the canonical process on F', one then can show that (P*, X;) has the strong
Markov property as well as the other required properties. It is then straightforward to extend
(P*, X;) to a process on F.

Many properties of X follow almost immediately from the corresponding properties of
the X™. Thus from Proposition 5.5 we deduce

Proposition 5.8. Forr € Z,t > 0,

P?(or(z) <t) <cy exp(—cz(t’l}t)_l/(dw_l)), (5.19)
csty <E%0,(z) < caty’, (5.20)

and
P” (sup | X — Xo| > A) < ¢5 exp(—cg(A% /t)/(dw=1)) X > 0, (5.21)

s<t

We also have the weak scaling property: the P'r® law of I." X (t}.t) satisfies the estimates
(5.19)—(5.21).

Let P, be the semigroup of the process X, (acting on L%(F, u)), and (£,D(L)) be the
infinitesimal generator of (P;). Since X is u-symmetric, we have for f, g € L2(F, u),

[ t@Pg@ntdn) = [ Puf@glz)no).
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By [FOT] there exists a Dirichlet form £ with domain D(€) C Lz(ﬁ , 1) associated with
the semigroup (P;). See [FOT, Chapter 1] for details of the relations between X, P; and
(€,D()); here we just note that D(L) is dense in D(£) and that

E(frg) = / Lf(@)g@)uldr), feD(L),geDE). (5.22)

If h: F — R we say h is harmonic (with respect to X) if h € D(£) and Lh = 0, or,
equivalently, if h(X};) is a local martingale.

Theorem 5.9. Let zo € ﬁ, n € Z, and h be nonnegative and harmonic in D, (x¢) N F.
There exist ¢y, co and «, depending only on d and g such that

(a)

h(z) < cah(y), z,y € Dpig(xp). (5.23)
(b)
|h(z) = h(y)| < erle — y[* 15" ﬂpﬁw 2,y € Dpya(wo), (5.24)
Dn To

Proof. (a) By (5.19) we have that X; leaves a point z immediately. It follows from the
symmetry of X that if z € 0D, (0), then P*(7p, (o) > 0) > 0, and by the Blumenthal 0-1 law
this probability must be 1. This shows that if f is a continuous function on dD,,(0), then
f(Xs,.(0)) is a continuous functional of the path except for a null set, so u, (r) = Ef, (X, (0))
converges (along a subsequence) to u(z) = E* f(X,, (0)). By Theorem 4.3 the functions wu,,
satisfy (5.23) with constants independent of n, and therefore u also satisfies (5.23). This
proves the result when wu is non-negative and continuous on Dy, (xo) N F’; by a limit argument
we then obtain the result for all positive harmonic functions.

(b) This is standard using an argument of Moser [M]. O

Remark 5.10. By very analogous methods, we can construct a process X on domains of the
form F N Dy (x) with normal reflection on 9D, (). We let Wt be RBM (Fy N Dy, (x0)),
set X, = Wm((tp/l2 )"t), and proceed as in the proof of Theorem 5.7.

For use in Section 6 we note the estimates,

P* (o, (2, X) < t) < ¢q exp(—ca(tpt) "V @=1) >0, r>n, (5.25)

and R
Eo(z,X) <ecstzp", r>n. (5.26)

Remark 5.11. Note that the process X in Theorem 5.7 is only obtained as a subsequential
limit of the processes X". If we had X = lim X" then it would follow easily that X was
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self-similar, that is, that the P* law of l}lXt would be equal to the P*/F law of Xy/tp- See
section 9 for some further remarks on this point.

However, a self-similar process Y; on F can be constructed as follows. By Proposition
5.1 we have ppmp > l%, so that pp > l%m;dl%:d > l};d. So F' satisfies the ‘good borders’
hypothesis in [KZ], and we may now follow the argument of [KZ] to construct a diffusion Y}
on F' that is also self-similar. We refer the reader to [KZ] for details. Briefly, in that paper
&y is defined to be the Dirichlet form for a graphical approximation to Y, % ?:1 & is
shown to have subsequential limit points, and if £ is one of those subsequential limit points,
it is shown that £ is a closable Dirichlet form. The process Y; is then the Markov process

associated with &£.
6. Transition density estimates.

Let (P*, W;) be a RBM (Fy). We have the following estimates on the transition densities
of Wt.

Proposition 6.1. W; has continuous transition densities q(t,z,y) with respect to Lebesgue
measure jig on Fy, which satisfy

q(t.z,y) = q(t,y,7) < q(t,z, ) %q(t,y, )", (6.1)
q(t,x, ) is nonincreasing in t for each x € Fy, and for each tg

g(t,,y) < calto)t™ 2, 0<t<to, zy€ k. (6.2)

Proof. Fix z,y € ﬁONand select m < 0 so that z,y € Dp,14(xo) N Fy. Let C be a small
subset of Dy, 14(xo) N Fy containing y. Let S1 = 0., (o), U; = inf{t > S; : Wi € Dy, 12(0)},
and S; 11 = inf{t > U; : Wy ¢ Dy, (z9)}. Then

P*(Wy e C)=P*(W, € C,t < S1) +P*(W, € C,U; <t < Ss) (6.3)
+PP(W e C,Us <t < S3)+---.

If G(t,z,y) is the transition density for W; killed on exiting D,,(zo), the first term on the

right of (6.3) is
/ﬁ(t,aj, z)dz.
C

t
/Em[/ q(t — s, Wy,,2); Uy € ds| dz.
c 0

The second term is

Note that this is less than

sup sup  sup q(r,w, 2)P*(U; < t)uo(C), (6.4)
wEaDm+2($0) ZEDm+4($0) ’I”St
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and the succeeding terms of (6.3) are bounded similarly. Provided ¢ is small enough, (5.13) and
(2.10) imply that the ith term of (6.3) is bounded by c2p*t=%2p(C), where p < 1. Therefore
P* (W, € dy) is absolutely continuous with respect to Lebesgue measure, the density (¢, z, y)
satisfies

t
q(t,z,z) =q(t,x,z) + E* [/ q(t —s,Wy,,2);Uy €ds| +---, (6.5)
0

and the series is uniformly convergent in a neighborhood of y. Since for each w we know
that (¢, w,z) is continuous in z, this implies that ¢(¢,z,z) is continuous in z for z in a
neighborhood of y.

Taking y = z, we obtain from (6.5) that

qt,z,x) <est=¥2, 1 <t, zek. (6.6)

Since ¢(t,z,y) < oo for t small enough, the semigroup property shows that ¢(¢,z,y) < oo for
all ¢. Letting m — —oo, (2.13) implies (6.1). Finally, (6.2) is implied by (6.6), (6.1), and the
semigroup property. l

Proposition 6.2. There exist c; and cy such that q(t,z,y) > cit=¥? if |z — y| < cpt/?,
t<1.

Proof. Let q(t,z,y) be the transition density for W killed on exiting Fo N Dy(zo). Let D’
be the region above the graph of a Lipschitz function in some coordinate system such that
D' N Dy(xo) = Fy N Dy(xp). Let ¢'(¢, z,y) be the transition densities for RBM in D’. Let S;
and U; be defined as in Proposition 6.1, and as in (6.5),

t

q/(tvxvy) :q(tvxvy)_‘_Em |:/ q/(t_37 WU17y);U1 € ds 9 z,y € DS(-'EO)-
0

By [BH], Theorem 3.4,
q'(t,z,y) > cst™ 2 exp(—ca|z — y|?/t), z,y € Dg(zo),
while [BH], Theorem 3.1 says that
q'(t = s,w,y) < est™ Y exp(—cglw — y[*/(t — s)).

Since P*(U; < t) < crexp(—cs/t) by (5.13) for ¢ sufficiently small and = € Dg(zg), then if
we take t( sufficiently small

qlt, @, y) > cot = exp(—ciolz — y[* /1), z,y € Dg(70), t < to,
and so
q(t,z,y) > ent™ %, xy € Ds(xo), |z —y|l <eat'?, 1<t
The proposition now follows by repeated applications of the semigroup property. 0]
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Lemma 6.3. Let z € Fyy. Then writing o_p(z) = o_p(z, W),

P?(0_p(z) < t) < crexp(—co(t tz") "V =) g > 5 >0, (6.7)
P?(0_,(z) <t) < czexp(—cyl®/t), 0<t<I%, neZ, (6.8)
PY (0 _p () > t) < csexp(—cet t7"), t>0,z€ Fy,y€ D_p(z),n>0 (6.9)
Proof. (6.7) and (6.8) are just restatements of (5.12) and (5.13). To prove (6.9), note first the

estimate BYo_,,(y) < crt% given in (5.11). Let to = 2¢; 't%. Then PY(0_,_2(y) > toth) <
1/2 for y € Fy. It y € D_p(x), then o_p_s(y) > o_n(z), so PY(o_p(x) > toth) < 1/2.
Iterating and using the strong Markov property we deduce that PY(o_,,(z) > ktoth) < 27F
for £ > 1, and (6.9) follows easily. O

Integrating these bounds we obtain:

Lemma 6.4. (a) There exists ¢; = c¢1(p) such that

EVo_p(z)P <eithh', yeD_,(xz),p>0,n>0. (6.10)
(b) There exist constants ca, ¢z, such that
E* e~ (*) < ¢y exp(—es(AME)Y4), 0<A<1,n>0. (6.11)

Lemma 6.5. There exists ¢ such that if vo € Fy and A C Dg (o) then
o-n(@0) n(1—d,/2) ~
EY / 1a(Ws)ds < crpuo(A)tp , n>0, ye (D_p(xo) = D_pia(x0)) N Fo.
0

Proof. Let n, xo be fixed, let g, (¢, z,y) be the transition density of W killed on exiting
D_,(zo), and let v(z,y) = [q, (t,z,y)dt. So

o—n(Zo)
Ey/o lA(Ws)ds:/Aﬁ(y, 2) o (dz). (6.12)

Let z € A. Then T(-,z) is harmonic on (D_,(zo) — {z}) N Fy, and is zero on the boundary
of D_,(xp). Thus it is sufficient to bound (6.12) in the case y € 9D_,12(zp). So let
Yo € 0D _,12(xg) N Fy. Note that if m = —n + 3 then D, (yo) C D_p(xp), and D, (yo) N
D_p14(z0) = 0. So 9(+, 2) is harmonic on D,,(yo) and applying Theorem 4.3 in D,,(yo) we
have

(Yo, 2) < 20(y,2), Y € Diny2(yo)-

Therefore
9(yo,2) < Czuo(Dm+2(yo))_1/ v(y, 2) po(dy)
D2 (yo)
<comz” [ ol 2mo(dy)
D,n :Eo)
= Cgt;.nds/z E? O_np (.To) S C4t;nds/2 t?;v.
As this estimate holds for any z € A, using (6.12) proves the lemma. O
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Lemma 6.6. Let p > 0. There exists ¢; = ¢1(p) such that if xg € }~7’0 and A C Dg(xp) then

o—n(Zo)
EY / P14(W,) dt < cqpuo(A) TP %2 >0,y € 9D_ i1 (wo).
0

Proof. Fix zy and A, and let @, (t,z,y) be the transition density of W Kkilled on exiting
D_n(l'o). Set,

w(z,y) = / T, (t,z,y)t? dt;
0

note that w(z,y) = w(y,x). Set

o—n(Zo)
g(y) =EY /0 tP14(Wy) dt = /Aw(y, Z)po(dz).

Let yo € OD_py2(xg). Then D_p44(yo) N A = 0, and so if y € D_,,14(yo), then writing
T = 0_n+4(Y0), and using Lemmas 6.4 and 6.5,

o_n(zo0)
o(y) = B / 214 (Wy)dt
T

O',n(mo) U,n(mo)
< oY (TPEWT / 1 A(Wt)dt) 4 sy (EWT / tplA(Wt)dt)
0 0

< capo(A)(AH)PHI=4/2 4 g BY g(Wrp). (6.13)

Now let
h(y) = EY g(Wr).

h is harmonic on D_,,4(yo), so applying Theorem 4.3 in D_,,14(yo), we have
h(yo) < esh(y), y € D_nye(vo)-
Using the definitions of g and h and the strong Markov property,
h(y) = BYg(Wr)
o—n(z0)
- EyEWT/ tP1 4 (W) dt
0
o—n(z0)
_ / (t— TYPLa (W) dt
T

o—n(zo)
<K / tP1a(Wr)dt = g(y).
0
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We deduce that

h(yo) < estio(Dnis(y0) ™ /D - swm(ay)

< cemzp" / / w(y, z)po(dz) o (dy)
D—n(yo) A

:cﬁm;"/ uo(dz)/ w(z,y)po(dy).
A D (o)

However,

o—_n(z0)
/ w(z,y)po(dy) = E? / tPdt = c7 B0y (20)" " < cs(th) 7.
D _»(yo) 0

Therefore
h(yo) < copo(A) (k) TP7%/2,

and using (6.13) it follows that
o—n(z0)
B / P14 (W) dt < cropo(A)(th) 1 P—de/2 (6.14)
0

for yo € 0D _p12(z0) N Fy. Now if y1 € OD_p11(xp), then applying (6.14) in the case n + 1
we have

U,n(mo) U,nfl(mo)
Y / 1714 (W) dt < B9 / 1714 (W) dt
0 0
< cripio(A) (th) P /2,

proving the lemma. O

Choose p > d > dg, and for A > 0 write
gx,p(x,y)zf q(t, =, y)tPe M dt.
0

Proposition 6.7. There exists ¢; = ¢1(p) such that
gaplz, ) < i ATPTIHA/2 e ﬁo, A <1.

Proof. (In this proof, we suppress the dependence of the constants ¢; on p). Fix x € F,
and write o_,, = o_,(z). Let A C Dg(x), and set

V(A):Em/O 14(Wy)sPe ™ ds
O_n—1

oo o0
_ / LA(Wy)tre e + 3 B2 / Ly (W) tPe— Mt (6.15)
0

n=0 O—n
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Write q(t, x,y) for the transition density of W killed at o¢(z). Then by (2.12)
q(t,m,y) < cat™ et > 0.
Therefore
Uo(m) o0
E” / La(Wy)tPedt = / / q(t, 2, y)tPe = dt po(dy)
0 aJo
< 02/ uo(dy)/ tP= 2=t dt = capp(A).
A 0
Write J,, for the nth term of the sum in (6.15), and note that
O_n—1
J, = E° (e—AU—nEWG—n / La(Wi) (o + t)pe_’\tdt)
0
< cs <]Eme_’\‘7—"afn EVo-n / o lA(Wt)dt>
0
+ esE” (e_M‘" EW”—n/ o tplA(Wt)dt).
0

Using the bounds in Lemmas 6.4 — 6.6, we therefore have

Juio(A) 71 < e (o7 e AT R el (Ao )
< C5t’,;/7v(1_d3/2) ((]Em (azpn))l/Z(Em (e—Acrfn))l/2 + t’;_'PEme—Aafn)

< cﬁt%(lﬂ_ds/z) exp(—cz (AtH) Y/ d),

Writing 8 =1+ p — ds/2, we deduce from the calculations above that
V(A) < ool A)(1+ 3 (10)" exp(—eo (M) /%))
n=0

Let mg be such that t7;° > 1/A > t}?o_l. Then, as # > 0, the sum above is bounded by
Clouo(A)t?;?o'B. So

V(A) = /AgA,p(iU,y)/Lo(dy) < cll,uo(A))\—l—p-i-ds/27

and as g p(z,y) is continuous, this proves the proposition. 0]
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Theorem 6.8. For x € ﬁo,

=42 0<t<1
t,,fl?, < C1 9 >~ 4,
q( y) - {clt_d5/2, 1 <t<oo.

Proof. The bound for ¢ € (0,1] is given by (6.2). If £ > 1, let A = ¢t~!. Since q(¢,x, ) is
non-increasing in ¢,

cotttP=ds/2 > 91/tp(T, )

t
> / q(s,z, z)sPe/tds
t/2

t
> q(t,z, a:)/ sPe=5/tds = cst' Pq(t, z, x).
t/2

This proves the theorem if z = y, and the general case now follows from (6.1). 0]

Theorem 6.9. There exist ¢1,...,cs € (0,00) such that if x,y € Fy and
(a) t > 1, [z —y| <t, then

crt~% /2 exp < - Q(%)l/(dw_l)) (6.16)

Y

|z — y|de )1/(dw—1)>

< q(t,7,y) < cst ™%/ exp ( — C4< .

(b) ift>1, |x —y| >t, orift <1, then writing D(t) =d, t <1, D(t) =ds fort > 1,

est =P/ exp(—cslz —y[*/t) < q(t,z,y) < crt= PO/ exp(—cslz — y|*/1). (6.17)

Proof. The argument for the upper bounds in (a) and (b) follows that of [BB4] quite closely.
Fix z, y, t, and choose small neighborhoods C,, Cy of z and y. Let A, = {2z € F} :
|z — 2| < |z — y|}, and define A, similarly. Let v, = uolc,, vy = polc,, and let

S =inf{t >0: W, — Wo| > Lz —y|}.

As [l,o(Am N Ay) = 0,

/Cy /cmq(t’ 7',y Yo (da’) po(dy’)

== Pyz (Wt € Cy)
=P (W, € Cy, Wyja € Ay) + P (W, € Gy, Wy g € Ay). (6.18)
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We begin with the second term in (6.18).

I (Wt € Cy,Wt/g € Ay) = PV= (S < t/Q,Wt € Oy,Wt/Q € Ay)

<PV (S < t/2) sup PY (W, € C,)
y’EAy

< j1o(Cy) sup P*(S < t/2) sup PY (Wy)5 € Cy). (6.19)
z'eC, y' €Ay
For the first term in (6.18) we have, using the symmetry of W,
P¥= (Wt € Oy, Wt/2 € Am) = P% (Wt € Om, Wt/2 € Am)7

which can be bounded in exactly the same way as (6.19). Therefore, as ¢ is continuous it
follows from (6.18), (6.19) and (6.1) that

q(t, z,y) < 2supP* (S < t/2) supq(t/2, z, z). (6.20)

The upper bounds in (a) and (b) now follow immediately from (6.20) on using the bounds
given in Lemma 6.3 and Theorem 6.8.

We now turn to the lower bounds in (a) and (b). Using a standard chaining argument
such as in the proof of Theorem 7.4 of [BB4], these can be proved once we establish the
estimates

q(t,z,y) > cot™ /2 |z —y| < crott/ ¢ > 1, (6.21)
q(t,z,y) > ent™ 2 |z —y| < et/ t < 1. (6.22)

(6.22) is proved in Proposition 6.2, so we just prove (6.21).
We deduce from the upper bound (6.16) that there exists ¢13 such that

q(t,z,z) > cist~ %2z € ﬁo, t>1; (6.23)
the proof is as follows (cf. Lemma 7.1 in [BB4]). By (5.19)
P? (0, () < t) < c14exp(—cy5(tht) ™/ (de=1),
Pick a such that ci4 exp(—cisa="/ (4w =1) < 1/2 and let r = [log(2a/t)/logtr]. Then
P*(W; € Dy(x)) > P*(0r(z) > 1/2) > 1/2

and
po(Dr(2)) < eremp” < crpt® /2,
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By Cauchy-Schwarz,
A< W € D@ = ([ e/ )mola)’

< po(D (x)) /D 020,

< po(Dr(x))q(t, 2, 2).

(6.23) now follows immediately.
By (6.16) there exists c1g such that

q(t,x,y) < ClSt_ds/z, T,y € ﬁo.

Now fix t > 1 and z € Fy. Take c19 = (c13 A c1g)/2 and let A = {y : q(t/2, z,y) > crot~%/2}.
Then

ci3t™ %/ < q(t,z,2) = /Q(t/2,x,y)Q(t/2,x,y)uo(dy)

c

S/clst‘ds/zq(t/lx,y)uo(dy)+/ crot ™4/ 2q(t/2, 2, y) po(dy).
A

Therefore
ciz3 < Clg]Pw(Wt/z €A+ Clg]P’w(Wt/z € A°)
= c19 + (c18 — c19)P* (Wy /o € A).
SO, if e99 = (613 — Clg)/(Clg — Clg), then Pw(Wt/g € A) > C90-
Let € = ¢20/4, and choose m such that

PY(om(x) > t/2) < e, Yy € Dp, ().

By (6.9) this will hold if m is chosen so that ¢ tF > co1 >t t;?_l, for a suitable cy;. Write
D = Dp(x). As e depends only on d and Ir, by Theorem 3.25(b) there exists 6 > 0,
depending only on d and lp, such that if |z — y| < 6lz™, then there exist RBM (Fy), W7,
WY, starting at x, y, respectively, such that

P(Te(W*,WY) < Tp(W*) ANTp(W¥)) > 1 —e.
Therefore, writing Te = Te(W*, WY),

1—e<P(Te < Tp(W?*) ANTp(WY))
<P(Te <t/2)+ P(Tp(W?) >t/2) + P(Tp(WY) > t/2),

so that
P(Te <t/2) > 1— 3e.
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Thus

P(W?

io €A) 2 P(W, € A, To < 1/2)

> P(W, € A) — P(Tc > t/2)
2 Co0 — 3 = 020/4.

So if | — y| < 6lz™, then

alt, z,9) > /A a(t/2,2, 2)q(t/2, 2z, y)po(d)
> Clgt_ds/zpy(wt/g € A) > Clgczot_d5/2/4.
Since [ < o1t/ % and § depends only on d and lp, the estimate (6.21) follows. O

Observe that Theorem 6.9 is the same as Theorem 1.4.

For A > 0 let
v*(:v,y)zf q(t,z,y)e” Mdt
0

be the A-potential kernel density for W. Let v = v%; v is the Green function for W. Integrating
the bounds in Theorem 6.9 we have:
Corollary 6.10. Let ds > 2. Then
crle —y|"? <w(,y) <eolz—y? if|lz -yl <1,
cale —y|™ ™ <o(z,y) < clo —y|TmY iz —y| > 1.

Recall that for n > 0 the process X” on fN?’n is given by

Let p,(t,z,y) be the transition density of X™ with respect to p,. Then from (6.24) we have
the scaling relation

Pu(t, z,y) = mpq(tEt, lpx, Upy). (6.25)
Theorem 6.9(a) therefore implies:

Corollary 6.11. There exist ¢y, ¢z, c3, ¢4 € (0,00) such that ifn > 0, x,y € F, and t > te",
|z —y| < l;,(d“’_l)t, then

_ qy]dw \ 1/(dw—1)
(- (E5) )

x — y|dw\ 1/(dw—1)
< pu(t,z,y) < cst =% /2 exp ( - q(%) ) (6.26)
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Remark 6.12. Taking a limit along a subsequence shows that the density p(t,z,y) of X}
with respect to p exists and gives the bounds in Theorem 1.3.

Define the A-resolvent of X by U*f(z) = E* [° ™" f(X,)ds for A > 0 and write U for
U°. Set also

(o)
uk(w,y)Z/ e Mp(t, z,y)dt,
0

and write u(z,y) = u®(z,y). Then u* is the density of the U*, and u is a Green function for
X. The following bounds for u*(z,y) are obtained by integrating those for p(¢,z,y); in (b)
and (c) below one uses Laplace’s method.

Corollary 6.13. (a) If ds > 2 then
|z —y|* Y <wu(z,y) < colw —y|* ¥, zyeF. (6.27)
(b) If dy < 2 then for A\ > 0, z,y € F,
ca\ts /271 exp(—64)\1/d“’ |z —y|) < UA(JJ, y) < cxA®e/271 exp(—cﬁ)\l/dw |z —yl).

(c) If dy = 2 then writing r = AV |z — y|,

cr(log®(1/7) + e™%") < ul(z,y) < co(log™ (1/r) +e™T).

Since there are only countably many GSCs, and (as far as we know) there is no simple
expression for ds, it is unlikely that any GSC actually satisfies case (c¢) above. However, we
include it for completeness.

We now show that p(t,z,y) is C* in ¢t and each of the partial derivatives is Holder
continuous in z and y. Let m < —2 be fixed and let P; be defined on D,,,(0) by

Pif(x) = E°[f(Xy);t < 0m(0)].

Let p(t,z,y) be the corresponding transition density for X; killed on exiting D,,(0). Since
p(t,z,y) < p(t,z,y), we have

p(t,x,y) < et~ % /2, z,y € Dp(0) N F, t>0. (6.28)

Let 7 (x,y) = fooo e~ p(t, x,y) dt and let UA be the corresponding resolvent operator. Write
— —0
U for U .
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Proposition 6.14. (a) There exist ¢; and (3 not depending on m such that if f is bounded,
then \ N N
U f(@) =T f)l <er(+ 2Dz =yl fllo, @,y € Ding2(0) N F.

(b) UAf is continuous in Dy, (0) N F with a modulus of continuity that depends only on A,
m and || f|so-

Proof. (a) Let Up, (4,) be the Green operator for X, killed on exiting Dy, (o). If zg € Dy, (0)
and D, (o) N F C Dy, (0) N F, then for bounded h

Uh(z) = Up, (z0)(2) + E°Uh(X,,(2)), @ € Dp (o). (6.29)

The second term is harmonic in D, y2(xp), and so by Theorem 5.9 there exist co and «
(independent of m) such that

E*Uh(Xo, (20)) — B U X o, (2))] < 2|z — y[*Ip" [Uhllo
if z,y € Dyy2(x0). On the other hand, by (5.20),
1UD,, (o) hlloo < estp"||hlloo-
Taking x = xy we therefore deduce that if n,y satisfy
Do(z)NF C D,(0)NF,  y€ Dyioz) (6.30)
then
[Uh(z) — Uh(y)| < 2cstp"[|hlloo + ezl — |15 [|UA] oo,
< callhlloo + [IUR[loo) (t" + 15" |2 — y]*)- (6.31)

Now suppose & € Dp,42(0) and |z — y| < [z?/2. Then if n > 0, (6.30) is satisfied.
Choosing n be the greatest integer less than alog |z — y|=!/((a + dyy) loglr) it follows from
(6.31) that

[Uh(x) = Uh(y)| < e5([[hlloo + [Uhlloo) |z = y17).

where 8 = ad,, (o + d, )~ .
By the resolvent identity,
—A — —A
U f=T(f - AU f).
Set h = f — AU f; as [T fllo < A=Y [f]loo, we deduce ||h]|co < 2||f|lco. As Th =T f,

TR oo < A7Y[f]loo, and 80 [|A]|so + [[UR||oo < (2 + A™H]|f]|so- Therefore

T (@) = T ()] < cs(1+ A5z — y[2[ flloo-
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Finally, if |x — y| < 1 then we can find a chain z = zg,z; ...z, = y with |z, — ;| < l;z/Q
and k < ¢7(d, lF). So, using the triangle inequality (a) follows. _
(b) Let A = 0, Dy, (0) be the relative boundary of D, (0)NF in F. Write D = D, (0)NF'— A.

If z € D then there exists ng > 2 such that D, ()N F C D. If y € Dyy12(z) N F and y # =
choose n so that y € Do, (z) — Dapy2(z). Then (6.30) holds, and so by (6.31)

Uh(z) = Uh(y)| < es([|hlloc + [[Uhlloo) (t5" + 15")
< co([|Plloc + [|UR]loo) 2 — y|”

for some v > 0. Thus Uh is continuous on D. N
We now show Uh vanishes continuously on A. For n > 1 set B,, = U,caD,(z) N F,
bn = sup,cp |Uh(z)|. Note that by (5.20) by < cstz™||h]]oo.
By Corollary 3.24, there exists ¢ depending only on [g, d such that

P (Xgn(m) ¢ Dm(O)) > 40, T € Bpio.
Since Uh = 0 outside D,,(0),

[Uh(x)| < c3tz"[|hlloo + [E°UM X, (z))]
< C3t;1n||h||oo —+ (1 — (S)bn_z, T € Bn_|_2.

Thus
bptz < cstp”[[h]foo + (1 = 0)by.

Thus b, — 0 as n — co. We therefore have that Uh is continuous on D,,(0) N F with a
modulus of continuity depending on m and ||h||. Using the resolvent identity as in (a), we
obtain (b). O

Proposition 6.15. There exist reals 0 < Ay < Ay < --- and bounded continuous functions
@i on Dy, (xo) such that

(a) the only subsequential limit point of {\;} is co;

(b) the ¢; form a complete orthonormal system for L*(D,,(xo), 1);

(c) we have the expansion
oo

Ptz y) =D e Moi(r)pi(y) (6.32)

i=1
where the convergence is absolute and uniform for each t > 0.
Proof. We first show that if P;f = 0 a.e. for f € L%, then f = 0 a.e. By [FOT], Lemma

1.4.3 the semigroup (P;) is strongly continuous on L?(F, i), so that ||[Pyf — f||2 — 0 ast | 0.
It P,f = 0, then

0= [ 1) = [@of)(Pipa).
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or ﬁt/zf = 0 a.e. By induction ﬁt/an =0 a.e., and so f =0 a.e.
p(t, x,y) is symmetric and bounded. Since pu(D,,(z¢)) < oo, then

/ / B(t, 2, y) () u(dy) < oo.
D, (z0) 7/ Do (z0)

By [RS-N], P; is a self-adjoint completely continuous operator on L2, and by the proofs in
[Bas2], Sect. 1.4, there exist @; that form a complete orthonormal system of functions in L?
with

oo

ﬁ(tv z, y) = Z e_)\itgb/i(m)[ﬁi (y)

i=1
for u? a.e. pair (z,y). Moreover the convergence is absolute and takes place in L% (D, (xq) X
Dy, (xp)), and (a) holds.
Next note P;@; = e~ it@; a.e., so UA@- = (A+ X)) 1g; a.e. Setting ¢; = (A + )\i)UA@-,
we have p; = ¢; a.e., while by Proposition 6.14 ¢; is continuous.
If s <t,

APy (x) = NP (NP, 5,) () = NP, i(x)
because e (*=9)P,_.&; = @; a.e. and Py has a density. It follows that for each z and 3,

et Pg; () is constant in t. Writing w;(z) for e**P;@;(z),

t o0
UA@(;U) = / e P, (x)dt = / e Me ity (x)dt = (A + )\i)_lwi (x).
0 0

Hence
M Pipi(w) = wi(w) = ¢i()
for all ¢ and z. Since [ @?(z) p(dz) =1, from Cauchy-Schwarz and Remark 6.12,

1/2

oite) = A Piito) < ([ Fmwtan) ([ pearuan) "

m (z0)

and so ¢; is bounded in z.
Let

T(t7 €, y) = Z e_}\it(»oi (x)cpz(y)

As the ¢; are orthonormal, then

/r(t/2,x, 2)r(t/2, z,y)u(dz) = Z e Nt 2o Nt 20 (1) i(y) = T(t, T, y). (6.33)
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If f =3 aip; € L?,

/f r(t,z, y)u(dy) =Y e api(x
ﬁtf(x) = Za PtQOz Zaz Ait 11

Thus r(t,z,-) is a transition density for P; and r(¢,z,) = p(t,z,-) a.e. We then have by
(6.33) that

while

Pt x,y) = / B(t/2, 2, 2)B(t/2, 7 ) () = / r(8)2, 2. 2)r ()2, 2y p(dy) = (1,2, ).

From [Bas2], Sect. I1.4, the sum in (6.33) is absolutely and uniformly convergent; consequently
p(t,x,y) = r(t,x,y) is jointly continuous in z and y. O

Fix to > 0, write A = ¢!, and let

oo

sk(z,y) = Z(A+ i) (=) Fe M0 (@) (y),  k=0,1,2,...,

Sif(a /f s, )n(dy).
Proposition 6.16. There exist constants ci(k) independent of m such that if f € L' then
k—1—d,/2
1Skflloe < ex(W)tg ™= 1111

Proof. Note first that sup,>o(A + ryrfe=m/2 = ¢ (k)tg® ! for some function ¢1(k). So,
using Cauchy-Schwarz,

[t (2, )] < DA+ XA e pi(@)] [ @i(y))

i=1
o) 1/2 o0 1/2
< (Do aake M ogpi(@)?) (T A)AEe M0 (1)2)
i=1 i=1
< sup (sup()\ + \i)AFeito/2 Ze‘A ito/2 . () )
v =1
< eu(k)tg " supBto/2,7,2)
< CQ(k)tOk 1—d./2
The result is now immediate. O

Let O; be an abbreviation for /0t and OF an abbreviation for 9% /0t¥.
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Proposition 6.17. For each k > 0,t > 0, 0Fp(t, z, y) is continuous in x and y on D,,(0) NF.
Further there exist constants c1(k), c2(k), 3, not depending on m, such that

08Bt v )| S i) wy e D(O)NE, (6.34)
8kp t,r,y)— 3kp t, 2 y)| <ca(k)(1+t)|z — 2 By—k—1-d;/2
t t -
for 37,55/719 S Dm(o) NnFE, |£U — ,CU/| <1.

Proof. Let f(z) =Db(s, z,y). Then

Prof(@) = [ Blta. . (5,2, 0)n(dz) = plta + ...
Therefore, using the eigenvalue expansion,
— —A
0;Plto + 5,2,y) = 0y Py, f(x) = U Sif (x).

Thus 0Fp(to + s, x,y) is continuous on D,,(0) by Proposition 6.14(b). As ||f||1 = 1 we have,
using Proposition 6.16,

—A
105 B(to + 5,2, 9)| < 1|U” Sk flloo
<A ISk S0
< A leg(kytg TR 2,

If 2,2' € Dpy2(0) N F and |z — /| < 1 then by Proposition 6.14(a)

_ B N .

OFB(to + 5,2, y) — OFB(to + 5,2, )| < [T Suf(x) — T S f ()]
< 64(1 + )\_1)|;[; _ 'T/|ﬁ||Skf||oo

<es(k)(1+t)|x — x’|5tal_k—ds/2.

The result follows immediately from these bounds. O

Theorem 6.18. There exist constants cy(k),c2(k), depending only on k, and (3 > 0 such
that for x,z',y € F, t >0,k >0

OFp(t, z,y)| < er(k gh—ds /2, 6.36
t
Writing R = |z — /|t =1/,
Op(t, z,y) — OFp(t,z',y)| < co(k) max(RP, R4 )t—F—d/2. 6.37
t t
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Proof. As the bounds in Proposition 6.17 are independent of m it follows by the argument
of [BB4, Sect. 4], that 0Fp(t,z,y) is continuous and satisfies the bounds (6.34) and (6.35).
This proves (6.36).

To prove (6.37) we use weak scaling. Let X[ = IRX(t/t), and let p'(¢,x,y) be the
transition density of X’. Then p’ also satisfies (6.34) and (6.35), and

p(t,z,y) = mpp (th .15 2,15 y).
Write § = I} if 6|z — 2’| < 1, then using (6.35) it follows that
0Fp(t, 2, y) — O p(t, 2’ y)| < ea(k) (O~ + )07 o — o' Pr7F1m /2,

Optimizing over 0 € {I%,n € Z} we obtain (6.37). O

Proof of Theorem 1.3. The continuity and symmetry of p(¢, x, y) follow from Propositions
6.15 and 6.17, while the bounds in (1.4) follow from Corollary 6.11. O

Proof of Theorem 1.2. Combine Theorem 1.3 and Theorem 5.7. |

Remark 6.19. We can use the spectral theorem to obtain an expansion of p(t, -,-) on FxF.

Proposition 6.20. Suppose p(t,z,y) = f)DO(mO)(t, x,y) is the transition density for X, killed
on exiting Do(wo). Let to € [1,1%] and ¢; > 0. Then there exists co such that p(t,z,y) >
cztads/z if |z —y| < clté/d‘“ and z,y € Da(xg).

Proof. We have p(t,z,y) < p(t,z,y) < cst—%/2 by Theorem 1.3. Just as in the proof of
(6.23) there exists r > 2 such that

p(t,w,x) > cat ™"/
provided = € D,.(z¢). Just as in the proof of (6.21), we have
ﬁ(tvmvy) > CBt_d5/27 |'T - y| < Cth/dwa T,y € DT+2(‘T;0)'

Finally we obtain our proposition by using the chaining argument in the proof of Theorem
7.4 of [BB4]. OJ

Proposition 6.21. Suppose p(t,,y) = Ppg(,)(t, T, y) is the transition density for X; with
reflection on 0Dy (zg). There exists ¢; such that

pt,z,y) > ct™%/2 t>1.
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Proof. The proof is very similar to that for the unreflected process. In view of (5.26), if
x € Dyya(y), then D, 4(y) C D, (z) and

E*0r14(y) <E%0p(x) < cotp'.
If x ¢ Dyy2(y), then E* o, 4(y) = 0. Therefore,

E%0.(y) < czt;(T_4) <ecstn', x,y € F. (6.38)
o, (y) is an additive functional for X; and by (6.38) and subadditivity (see [BK]),
E” o, (y)P < ca(p)tz'?, p>1, z,y€eF. (6.39)

Proceeding just as in the proofs of Lemma 6.8, Proposition 6.7, and Theorem 6.8, we deduce
Pt 2, y) < est™%/2,
Just as in the proof of (6.23),
Ptz ) > cot—%/2, x € F,
and as in the proof of (6.21),
Ptz y) > cqt—%/?

if |z —y| < cgt’/?. An application of the chaining argument of Theorem 7.4 in [BB4]
completes the proof. O

7. Inequalities.

In this section we apply the estimates obtained in Section 6 to deduce a number of
Sobolev and related inequalities for the processes X and W. Let U be the potential operator
for X¢, and (€, D(E)) be the Dirichlet form defined in Section 5. From [CKS] and the upper
bound p(t, z,y) < c1t~%/? given in Theorem 1.3, we deduce immediately

Theorem 7.1. (Nash inequality) There exists ¢y such that

IF13F% < e &(f, DAY, feDE).

Theorem 7.2. (Sobolev inequality) Suppose ds > 2. Let q = 2ds/(ds — 2). Then there
exists ¢y such that

Ifllg < ex&(f. )2, feD(E).
Thus Theorem 1.5 is proved.
Recall from Remark 5.11 the construction of Brownian motion on D, (zo) N F with
reflection on the boundaries of D, (z¢). Let p(¢,x,y) be the transition densities for this
reflecting Brownian motion. Normalized Lebesgue measure on D, (z¢) N F), is an invariant

measure for the approximating processes X", and a limit argument shows that p|p, (5,) is
an invariant measure for reflecting Brownian motion. We write £p_ (z,)(f, f) for the Dirichlet

form of this process, and let D, 5, be its domain. For A € B(F) let f4 = u(A)~! [, fdpu.

We now give a proof of the Poincaré inequality, modeled after the proof in [SC].
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Theorem 7.3. (Poincaré inequality) There exists ¢y such that

/D = Sl ST Ep (1) S € P
n L0

Proof. Let t = [;"* . By Proposition 6.21 and weak scaling,

Z/)\(tvxvy) pD (mo)(t z y) > 62lndf' (71)

Let Pt = [ f(y)p(t, z,y)pu(dy). Since p|p, (z,) is an invariant measure for p(¢, z,y), then

/Dn(mo)Ptf p(dx) // (&, 2,y)f (Y)1D, (@) (@) udy) p(d) :/Dn(mo)f(y)u(dy)' (7.2)

Now from (7.1), for € Dy41(x0),

fa a nd fa nd
B = Bf)2w) > eollt / = B2 > el / = Foposton -
D,,+1(z0) D, 41 (z0)
Integrating both sides over D,, 11 (o),
/ ISt(f - ﬁtf)z(x)u(dx) > 03/ \f - fDn+1(w0)|2- (7.3)
n+1(z0) D,,+1(z0)

The left-hand side of (7.3) is equal to

/Dn(mo)ﬁt(fz)—/Dn(mo)(ﬁtf)z:/Dn(mo)fz_/Dn(mo)(ﬁtf)z

t
- / / 0, (P.f)?u(dy) ds
0 Dn(mo)

= c4t€p, (20)(f5 [)-
The conclusion of Theorem 7.3 now follows by applying the techniques of Jerison [Je]. 0]
Suppose ds > 2. For A C F define C(A), the capacity of A, by
C(A) =sup{r(4) : Uv < 1}.
It is standard ([FOT]) that C'(A) can also be defined as
C(A)=inf{E(f,f): f=1on A, f(z)—0asx— oo}
if all points of A N F are regular for A°.
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Theorem 7.4. (Mass-Capacity inequality). Let dg > 2. Then for A € B(F)
H(A) < e C(A)/ @),

Proof. Choose n € Z such that mz" < p(A) < m}”“. Write pa = p|a. Then

Usa)e) = [ = [ weputin+ [ a1
A D, (z) A—Dy(z)
Now p(Dy,(x) — Dipyi1(z)) < camzp™, while by Corollary 6.13 we have

u(z,y) < 03(l}m)dw_df =csty 'mpy, y € Dy (x)°. (7.5)

Therefore
/ w(z, y)p(dy) < catz™.
D (2)—Dot1 (x)

Summing over m > n to bound the first term in (7.4) and using the estimate (7.5) in the
second, we deduce that
U(pa)(x) < sty + cstp" mppa(A)
< cotp™ < crp(A)H s
So if v = (czu(A)?/ %)~ 4, then Uv < 1, and therefore C(A) > v(A) = ¢ 'u(A)* =24, O
We now proceed to obtain the Sobolev, mass-capacity, and Poincaré inequalities for the

pre-carpet. We start with the mass-capacity inequality. We let Co(A) denote the capacity of
A with respect to RBM (Fp). Recall that g is Lebesgue measure restricted to Fp.

Theorem 7.5. Suppose dy > 2. There exists ¢y such that if A € B(Fy) and po(A) > 1, then
Co(A) > cypp(A)dm2/d=
Proof. This is very similar to the proof of Theorem 7.4, except that we use Corollary

6.10 instead of Corollary 6.13. Let A C Fp, with po(A) > 1. Then choosing n such that
mz" < po(A) < m;"“, we have n < 1. Corollary 6.10 implies that

/ u(z,y)p(dy) < ca,
Do(w)

and the remainder of the proof follows that of Theorem 7.4. O

Remark 7.6. Write
Ef.5) =4 [ (Vi ds

Fo
for the Dirichlet form associated with W. By [FOT], Sect. 2.2, the capacity of A is equal to
inf{&(f,f): f>1on A, f — 0 as ||z|l — o0}.

We now proceed to the Sobolev inequality.
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Theorem 7.7. Suppose ds > 2. Let ¢ = ds/(ds — 2).
(a) There exists c¢; such that if f is nonnegative and r is such that po({x : f(z) > r}) > 1,
then

1£ll2q < e1€(f Y2+ 1I(f =) Fll2g-
(b) There exists co such that if r and s are such that po({z : f*(x) >r}) > 1 and
po({z : f~(x) > s}) = 1, then

1Fll2q < e2E(f, Y2+ NFH =) 2 +1(F7 = )T ll2g.

Proof. We have
1fll2g < I Arllag + [1(f =) Fl2g.

So if we show
1 Arllaq < er&o(f Ar,Ar)'/2, (7.6)

(a) will follow since Eg(f Ar, fAT) < Eo(f, f).

We follow the proof of [Ma], pp. 110-112. Let ®(z,&) = |£| and p = 2; then the (p — ®)-
capacity of Maz’ja is, using Remark 7.6, the same as our capacity. Let Ny = {z : f(z) A1 >
t}. By our assumption on r, N is either empty or ug(N;) > 1. So using Theorem 7.5,
po(Nz) < e3Ch(A)?. We now obtain (a) by the proof in [Mal].

To prove (b), we write

1 ll2g < 1FF ll2g + 1177 ll2g

and apply (a) to f™ and f—, observing that f* = —(—f A 0), so
Eo(fT f7) = E(=f N0, —f NO) < Eo(—f, —f) = Eolf, f)
and similarly for E(f~, f7), O

Remark 7.8. The Sobolev inequality for &y is more complicated than that for £, as q(¢, x, )
behaves differently at 0 and co. We give here two other Sobolev inequalities for &y, both of
which follow from the bounds in Theorem 6.9.

First, from [V2] we have

1fll2q < c1(Eo(f, f) + 11 Fllo0)- (7.7)

We also have, from [Co],

1PLfll2q < c2€0(f, f)- (7.8)

Here P; can be replaced by other ‘regularizing’ operators which smooth out short range
fluctuations in f.

From [CKS, Theorem 2.9] we have the following conditional Nash inequality for &y.
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Theorem 7.9. For each c¢; > 0 there exists cy such that

IF15T4% < es&o(f, DS whenever E(f, f) < e1||f]|?

Finally we give a Poincaré inequality for ﬁo. Write

&0,D,(z0) ([, f) = /D |V f(x)|*d.

»(zo)NFy

Theorem 7.10. There exists ¢y such that if xg € f’, n < 0, then

/ |f = [Do(zo))* < c1t5"E0, D, (20) ]+ )
D, (x0)

The proof is very similar to that of Theorem 7.3.

As remarked in the introduction, the bounds in Theorem 6.9 are sufficient to show that,
while (by Theorem 4.3) an elliptic Harnack inequality holds for Fp, the usual type of parabolic
Harnack inequality fails for any GSC for which d,, > 2. (See Remark 5.4).

Let B C R? be open, and 0 < t; < t; < oco. A function u = u(t,z), t € (t1,ts),
z € BN Fy, is parabolic on (t1,t5) x (BN Fy) if

0 ~
%:%Au on (t1,t3) x (BN Fy),

and du/0n = 0 almost everywhere on B N 8f~7’o. Let x € fN?’O, r > 0,t>4r% and set

Q_ = [t —4r%,t — 3r?] x (B(z,2r) N Fy)
Q—i— = [t—’l‘z,t] X (B(.T,T‘)ﬂﬁ(])
The standard parabolic Harnack inequality (see for example [FS]) would assert that if u is

parabolic and non-negative then

supu < ¢y inf u, (7.9)
Q_ Q+

where the constant c; is independent of x, r, t and u.

Proposition 7.11. Suppose the GSC F' is such that d,, > 2. Then the parabolic Harnack
inequality (7.9) fails for Fy.

Proof. Fix z € Fy, and let » > 1. Let y € Fy be chosen so that |z — y| = r, and let
u(s,z) = q(s,y,2). Take t = 5r2. Then by (6.16)

supu > q(r?,y,y) > eir~ %,

Q-
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while (since |z — y| =r < r? <t)
infu < q(5r%, z,y)
Q+

< egr s exp(—cs (rd“’ /57"2) 1/(dw _1))

= cor~% exp(—cy"(d“’ —2)/(dw _1)).

Taking r sufficiently large, (7.9) fails. O

We can, however, give a different form for a parabolic Harnack inequality for ﬁo. Let
z € Fo, v > 1, ¢ > 4rd let n be such that I;" <r < l;"“, and set

R_ = [t —4r® t — 3r®] x (D, (x) N Fp),
R+ = [t — T'dw,t] X (Dn+2($) N ﬁo)
Let 0 <ty <t—4rt <t <ty and B Cﬁd be an open set with D,,(z) C B. Let u be
non-negative and parabolic on (¢1,t2) X (BN Fp).

Theorem 7.12. There exists a constant ¢y, independent of x,r,t,u such that

supu < ¢ inf u. (7.10)
R_ Ry

The proof follows from the estimates on ¢(¢, z,y) in Theorem 6.9 by the same argument
as that used in [FS].

We now discuss the functions in D(€) in a little more detail. If f € D(E) then by [FOT,
Lemma 1.3.4]

g(fa f) = ltlfggt(fv f)7

where
gt(faf) :t_l((I_Pt)fvf)'
Set
Ly(f)(z) = (2t)_1/pt($7y) (f(@) = ()" uldy).
Then

/ Lo(f) () p(der) = bt~ / / pe(, ) (F (@) — 1)) uldy) ()

=1" //f z)pe(z, y) (f () — f(y)) p(dy) p(da)
- 5t fa
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Proposition 7.13. Suppose the GSC F is such that d,, > 2. Let f € C*(R?), and suppose
g= f|1; € D(£). Then g is constant.

Proof. Suppose g is non-constant. Then we can find z¢ € F such that f is approximately
linear (with non-zero gradient) in a neighbourhood of zy. It follows that we can find suffi-
ciently small constants ag, a1, a2, az such that whenever x € By = B(zg,ap) and 0 < t < a1,
there exists yo € B(z,t'/%) such that

F(y) — F(@)] > ast®  for y € Blyo, agt'/ ).

So, writing By = B(yo, ast' %), and ¢, ¢y for positive constants depending on the a;,

L)@ = @07 [ pile) (@) - 1) Putdy)

B,
> ¢yt (Bt 4 /ey de > )4 (2mde)/du

Hence
E(f, f) > /B Li(f)(z)p(de) > czp,(BO)t(z—dw)/dw )
Hence limy o &(f, f) = 0o, so f & D(E). n

Remark 7.14. For the Sierpinski gasket, see [BP, Corollary 9.2] (or [BST, Theorem 4.4] for
an analytic proof) for an analogous result for D(L).

Remark 7.15. There are several recent papers on Sobolev inequalities and capacity on
general metric spaces (including fractals) — see, for example, [H1] and [KM]. Specialized to a
GSC F, Hajtasz [H1] defines the space LY2(F, ) to be the set of f: F — R such that there
exists E C F and g € L2(F, p) such that for z,y € F — E,

[f(z) = f)l < |z —yl(g(z) +9(y)).

The norm ||f||z1.2 is defined to be the infimum of ||g||2 for g satisfying the above.
As an example of the kind of results that can be obtained, Hajtasz proves ([H1, Lemma
2]) the Poincaré inequality

[ 1@~ 1l < er s, (7.11)

where B = B(z,r)N F. Thus this Poincaré inequality has the usual 72 scaling, rather than
the r?» scaling of Theorem 7.3.

While the relation between these two approaches is not clear to us in general, we can
remark that Hajlasz’s space LY2(F, p) is very different from D(€). For example, if f €
Ck(R?) and fo = f| then fo € LY2(F, p), while, by Proposition 7.13, fo € D(€) only if fo
is constant.
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8. Properties of the process.
In this section we list a number of properties of the processes X and W.

(a) Spectral dimension

Let z( be fixed and let p(¢, z, y) be the transition densities of X; killed on exiting Dg(zo).
By Proposition 6.15 we may write

p(t,z,y) = Ze Mo (@) i(y)

for suitable eigenvalues A; and eigenfunctions ¢; (cf. [Bas2|, Section I1.4). Just as in [BP],
pp- 618-619,
lim log #{)\J : )\j S )\}
A—00 log)\

- d57

which says that ds agrees with what is known in the mathematical physics literature as the
spectral dimension.

(b) Transience, recurrence and regularity of points
Let T, = inf{t > 0: X; = x}.

Theorem 8.1. X is transient if and only if ds > 2. Points are regular for themselves if and
only if dy < 2. More precisely, if x, y € F then:

(a) if dy < 2, then P*(T,, < oo) =1 and P*(T, = 0) = 1,

(b) if ds = 2, then P (T}, < o0) = 0, P*(T;, = 0) = 0, and P*(Tp, () < 0o0) = 1 for all n,

(c) if ds > 2, then P*(T}, < o0) =0, P*(T, = 0) =0, and P*(limy_,, | X; — y| = 00) = 1.

Proof. (a) may be proved as in [BB4, Theorem 8.1].

(b) Let A > 0. By Corollary 6.13(c) u*(x,y) < oo for & # y, while u*(z,x) = oo for all
x. Since u*(Xy,y) is a non-negative P? -supermartingale, it follows that that X; cannot hit
Y.

Since X; has a density, E* foam(wo) 1oy (Xs)ds < 7 p(s,z, z)ds = 0, or X, leaves {z}
immediately. By the preceding paragraph and the strong Markov property, X; never returns
to x.

Let w(z,y) be the Green function for X killed on exiting Do (y). We observe that there
exist ¢; and ¢ such that

o] 1
u(z,y) = / p(t,x,y)dt > cl/ t=%/2dt > —¢5log |z — yl, z,y € Da(y).
0 c

2|z—y|tw
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From (2.12), Theorem 6.9, and integration we obtain u(z,y) < —cqlog|r — y|. Since
UW( Xtnc, o (y)»Y) is @ martingale and @(z,y) = 0 if £ € dDy(y), this martingale is a time-
change of a one-dimensional Brownian motion. Since o¢(y) has finite expectation, it is finite
almost surely, and we conclude that

Pl;}_nm(TDner(y) < Uo(y)) — 1 as m — —0OQ.

By weak scaling, P*(7Tp,, () < 0m(y)) — 1 as m — —oo, which completes the proof of (b).
(c) The first two assertions are proved as in (b). u(X},y) is a nonnegative supermartin-

gale, hence it converges a.s. It is clear that the only possible limit value is 0. Therefore

| X¢| — o0, a.s. O

(¢) Modulus of continuity.

There exists ¢; such that

lim sup Xt — X < ey, a.s. (8.1)
3—0 0<s,t<T |S — t|1/dw (log(1/|s — t|))(dw—1)/dw -
ls— <5

The proof is the same as that of the corresponding result for the Sierpinski gasket in [BP].

(d) Occupation times.

Proposition 8.2. Suppose ds > 2 and let

t
A(r) = sup/ 15(e,r) (Xs) ds.
z€Fy JO

Then there exists ¢y < oo such that

imsup —————
0 P rdelog(1/r) —

Proof. Let Ci(z,r) = f(f 15(e,r)(Xs) ds. By Corollary 6.10

B Co () Ssup [ oyl u(d2) < ear.
Y Yy JB(z,r)

Since Cy¢(x,r) is an additive functional, by subadditivity (see [BK]), there exist ¢z and ¢4 such
that

sup BY exp(c3Coo (2, 7) /%) < ¢4.
y
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So
PY(Coo(,7) > Arte) < cge™ R,

There exist M = c;7~% balls of radius 4r such that if = € [0,1]¢, then B(x, ) is contained
in one of these M balls. Then
PY (Ao (1) > cglog(1/r)rte) < cseprdecocsloa(l/r),
If we choose cg sufficiently large (but depending only on ¢g and d), then
PY (Ao (1) > cglog(1/r)rd=) < r=2.
We apply this estimate for r; = 277,45 =1,2,.... By the Borel-Cantelli lemma,

PY(Aoo(rj) > cg log(l/rj)r?w i.o.) =0.

Since Ay (r) increases in 7 as does log(1/r)r® for r small, while log(1/2r)(2r)% is bounded
by a constant times log(1/7)r®, the proposition follows. O

(e) Local times

If ds < 2, the argument of [BB4] shows X; has a jointly continuous local time. If ds > 2,
Theorem 8.1 shows that a point y is never hit, so a local time at y cannot exist.

(f) Hausdorff dimension of the range.

Proposition 8.3. Suppose ds > 2. If R(w) = {X¢(w) : 0 < t < 1}, then with probability
one the Hausdorff dimension of R(w) is d,,.

This provides some justification for calling d,, the “dimension” of the walk. (See [AO],
[RT]). If ds < 2, then the continuity of the local times of X implies that the range of X
includes an open subset of F', and hence the Hausdorfl dimension of the range is dy.

Proof. We first show the dimension of R(w) is less than or equal to d,,. Let € > 0. By the
modulus of continuity result in (c), there exists M (depending on w) such that

1 X: — X,| < M|s — t|!/(dw+te)

if 0 <s,t <1. Let j be an integer, d = 1/(j+ 1), and t; =4, i =0,1,...,j. Then the set of
balls B(Xy, (w), M§*/(dw+e)) covers R(w). We also have

J J
Z(M(Sl/(dw—i—s))dw—i—s _ de—i—sz(s — de+e < 00
=0 =0
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for all j. This implies that the dimension of R(w) does not exceed d,, + ¢, and since ¢ is
arbitrary, dim R(w) < d,,.

Next we show that dim R(w) is at least d,,. By Proposition 8.2 there exists M’ (depending
on w) such that A;(r)(w) < M'r¢==¢ if < 1. Suppose there exists a sequence of balls
B(xy1,71), B(2a,73), . .. that cover R(w) with sup; r; < 1/2 and 3, 7 7%° < 1/M’. We have

1
/ LB(esr) (Xs) ds < Ax(ri) < M'ri ="
0

Summing over i,

1
1 :/ 1R(w)(XS) ds < M/ZT';i“’_e
0 i
< (1/2)°M' Y 7 < (1/2)°,

a contradiction. Therefore there cannot exist such a sequence of balls, and so dim R(w) >
d., — 2e. However, ¢ is arbitrary. O

(g) Self-intersections

By [Ro] and [FiS], X; intersects itself if and only if
| wen)uty) < o,
D1 (.T)

where u! is the 1-resolvent for X;. Note that

(dy) z,y)) 2 pu(dy).
/D ) ua) Z /D o )R

w(Dj(x)) < cll;idf and it is easy to see that u(D;(x) — Diy1(x)) > czl;jdf. Using the
estimates for u!(x,y), which are obtained similarly to those for u(z,y), it follows that X; has
self-intersections if and only if

oo

Sl 2R < oo,

i=1
that is, if 2(dy, — dy¢) +dy > 0, or if dy = 2ds/d,, < 4.
(h) Zero-one law

An event A is a tail event if it is in o(Xy,;u > ¢t) for all ¢ > 0. We prove that the tail
o-field is trivial.
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Theorem 8.4. Suppose A is a tail event. Then either P*(A) is 0 for all xz or else it is 1 for
all z.

Proof. Let e > 0 and fix x( € F. By the martingale convergence theorem, E*°[14 | 7] — 14
almost surely as t — oo. Choose t( large enough so that

E* |E*[14 | Fi,] — 1a] <e. (8.2)

Write Y for E*[14 | F;,]. Using (5.21), choose M large so that

P% (sup | X, — mo| > Mty/ ™) < e. (8.3)

Sgto

For each t, by Theorem 6.18 we have the continuity of P, f(z) in x with a modulus depending
only on ¢ and ||f||s. We use scaling and choose ¢ large so that

P f(2) = Poy f(0)| < €llfllos |2 — o] < Mity/™. (8.4)

We note
[P0 (A) —E™ (Y;A)| = |[E™(14; A) —E™(Y;4)| < e. (8.5)

Since A is a tail event, there exists C' such that A = C o 0y,44,. Let f(z) = P?(C). By
the Markov property at time ¢q,

EY(1c 0 6y,) = EYEX) 10 = EY f(X,,) = Py, f(w). (8.6)
By the Markov property at time ¢y and (8.6),
E™ (V; A) = E° [YEX®) (15 0 6,,)] = E* [V P,, f(X3,)], (8.7)

while
P70 (A) =K% 1,4 = EEX*0) (15 06,,) = E™ [P, f(Xy,)]- (8.8)

If | Xy, — 20| < Mty/™  then |P,, f(Xy,) — P, f(x0)| < € by (8.4). Since

E™ [Y Py, f(X1,)] = B [Y Py, f(X,); | X — 0] < Mtg/®]

+EP[Y P, f(Xy,); | Xyy — mol > MY/ ™,

[E™ [Y Py, f(X4,); | Xty — mo] < Mt(l)/dw] — Py, f(wo)E* [Y; ]| Xy — 20| < Mt(l)/dw” <g,

and
E™ V5| Xy, — w0 < Mty/™] = E™Y — E™[Y;|X,, — zo| > Mty ™),
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then
|E*[Y Py, f(X¢,)] — Pt f(z0)E*Y| < 3e. (8.9)

Similarly
|Ew0 Ptlf(Xto) — Ptlf($0)| S 3e. (810)

Combining (8.5), (8.7), (8.8), (8.9), and (8.10),
P70 (A) — P (A)E Y| < Te.
Using this and (8.2),
P70 (A) — P (A)P*° (A)| < 10e.

Since ¢ is arbitrary, we deduce P%(A) = [P%(A)]?, or P*(A) is 0 or 1. Since P*(A) =
E* P, f(Xt,) = Py (P, f)(x) is continuous in x and F is connected, then P*(A) is either
identically 0 or identically 1. O

Remarks 8.5. 1. An event A is invariant if Ao 6; = A for all A. In particular, invariant
events are in the tail o-field, hence trivial. It follows that there are no nonconstant bounded
harmonic functions on F.

2. Since we have similar estimates for the transition densities of Brownian motion on the
nested fractals, the same proof shows there is a zero-one law for (unbounded) nested fractals
as well.

(i) Rate of escape

Proposition 8.6. Suppose ds; > 2. Then

.. |Xt - 37|
hm lnf I —
t—oo tl/dw (log t)’Y

equals 0 with P* probability one if v > 1/(d,, — d¢) and equals oo with P* probability one if
v < 1/(dw _df)'

Proof. By Corollary 6.13(a) and the fact that u(X:, x) is a local martingale, there exist
0 < ¢1 < cg < oo such that

ci(LA (r/|y — z|)® %) < PY(X, ever hits B(z,r)) < c2(1 A (r/|y — x|) % —%r),
Using this, for any ¢ > 1 and any z € ﬁ,
P*(|X; — z| < r, for some t > q")

= E*P¥a" (| X; — x| < 1y, for some t > 0)

= /]P’y(|Xt —z| <1y, for some t > 0)P*(X4n € p(dy))

Tn dw—dy
< " .
< 02/ (|y gl 1) p(q", z,y)u(dy)
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Set r,, = c3q™/ % (logq™)~". If

A, = {| Xt — z| < r, for some t > q"},

then

P*(A,) < cq(logg™) =7 de=ds), (8.11)
By the Borel-Cantelli lemma we see that if v > 1/(d,, — dy), then P*(A,, i.0.) = 0, no matter
what c3 is.

For the other direction
P*(|X; — x| < ry, for some t € [¢",¢"T'])
= E*PXe" (| X, — 2| < r,, for some t > 0)
— E*PYe 1 (| X, — x| < 7,y for some t > 0).
Let r, = c5¢™/ % (logq™)~". As above, the second term on the right is bounded by
co(log g") =411/,

On the other hand, the first term on the right is bounded below by
/]Py(|Xt —z| < ry, for some t > 0) p(q", z,y) u(dy) > cz(log qn)—'y(dw—df).

Set B, = {|X; — x| < r, for some t € [¢",¢"*!}. Then provided q is sufficiently large,
P*(B,,) > cg(logq™) ™" (dw=ds), (8.12)

If v < 1/(dy — dy¢), then Y P*(B,,) = oco.
Let ¢ > 0. If j > ¢+ 2, then
i+1)

P”(B; N B;) = E*[PX( 1l

< E*[sup PY(|X; — x| < rj for some t > ¢/ — ¢"T); B;].
y

(1X; — x| <7y for some t € [¢ — ¢, q ¢"]); Bi]

As in the proof of (8.11), the right hand side is less than or equal to coP” (B;)(log g7 ) =7 (4w —ds),
Using (8.12), this in turn is bounded by c¢1oP*(B;)P?(B;), so

P (Bl N BJ) S Clo]P)ﬁlc (Bl)]P)ﬁlc (BJ)

By a Borel-Cantelli lemma for dependent events (see, e.g., [Bas2|, Prop. I1.5.14), P*(B,, i.0.) >
0. The result now follows from Theorem 8.4, the zero-one law. O

(j) Process on the pre-carpet

The properties of X above which relate to large scale behavior of the process have
analogues for the process W on Fj, with almost identical proofs. We summarize some of
them in the following theorem.
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Theorem 8.7. (a) If ds < 2 then IP’””(TII)’Z(y) < o00) = 1 for all z,y € Fy, so that W is
neighborhood-recurrent.
(b) If ds > 2 then W is transient, and

liminf V¢ |

t—oo t1/dw (logt)Y

equals 0 with probability one if v > 1/(d,, — dy) and equals oo with probability one if
v < 1/(dw — df)
(¢) The tail o-field for W is trivial.

9. Examples and open problems.

Examples.

We have already, in Example 5.4, defined the the carpet SC(a, b, d), where a, b, d are integers,
d>2,and 1 < b < a. Note that the symmetry assumption Hypothesis 2.1 (H1) implies that
a = b(mod?2), and that therefore b < a — 2. Recall that for SC(a,b,d), mr = a® — b%, and

that
a—>b b a

qd—1 + gd—1 _ pi—1 < pF < qd—1 _ pd—1°

(9.1)

Since b%7! < (a — 2)%7! < (a —2)a%? = a?~! — 24972, we have pp < a3~ In particular
pr < 1 whenever d > 2, so that SC(a,b,d) is transient for all d > 3. (This generalizes a
result of Zhou [Z]). This result is not surprising, since all these spaces contain a copy of R.
SC(a,b,2) is recurrent by Corollary 5.3, since ds < df < 2.

To obtain a GSC in dimension 3 for which the processes W or X are recurrent, we need
to ensure that F' does not contain a copy of ]Ri. Take d = 3, let 1 < b < a — 2, write

Iy, = ((a—b)/2a,(a+b)/2a), let a(z) = 2?21 17,,(x;), and let
Fr={zx € Fy:a(r) <1}
Call the resulting GSC a Menger Sponge (see [Man, p. 134]) or M S(a,b). For the basic
MS(3,1), Fy consists of Fy with the central cube and the 6 adjacent cubes removed. (See
[Man, p. 145] for an excellent picture). Note that mp = a® — (b + 3b%(a — b)). Using shorts
and cuts, as in Proposition 5.1, we can easily estimate pr for these sets: we obtain
a—b n b < < a
202 (a—b2 -PF=Tlap)?
In particular, for MS(3,1) we have % < pr < 3/4, so that M S(3,1) is transient. However, if
a =6 and b = 4 then we have 11/10 < pp < 3/2, so that M S(6,4) is recurrent. On the other

hand, as mp = 56, we have dy = log56/log6 ~ 2.25 > 2, so the family of Menger Sponges
includes sets with Hausdorff dimension greater than 2, but spectral dimension less than 2.

9.2)

Open problems.

We conclude this paper with some open questions concerning these processes. (See also
the problems in [Bas3)).
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1. Spectral dimension

Of the three ‘dimensions’ mentioned in this paper, df, d,, and dg, the first is given
explicitly in terms of [ and mp. The other two are defined in terms of the resistance
exponent pg, which we only know how to define as a limit:

log R,

log pr = nlgr;o —

Is there a more explicit equation which defines pr? S.R.S. Varadhan has asked if pr could
be defined by some kind of variational equation.

2. Uniqueness

There are two different kinds of uniqueness we can consider. The first relates to the
construction of X and its law P* given here. In Section 5 we stated that the set of laws of
the approximating processes {PZ,n > 0} was weakly compact, and so has limit points. Can
one show that P? converges weakly to P, that is, that the limit is unique? If so, then one
would immediately have that the resulting process was self-similar.

A second kind of uniqueness is given by our conjecture that the process constructed in
this paper is (up to a deterministic time change) the unique symmetric diffusion on X which
is locally isotropic. (For an analogous theorem for the Sierpinski gasket see [BP]). If we knew
this, then any two limit points of P? could differ only by a deterministic time change, and
also, more significantly, we would know that any other construction of a symmetric locally
isotropic diffusion on F (such as the one given in [KZ] using random walks) would lead to
essentially the same process.

We remark here that Osada [O2] has recently defined a diffusion Z = (Q*,Z;) on F
which is not equal in law to X and does not satisfy (5.18), but which does satisfy a more
limited kind of invariance under local isometries. Let Si, Se € S,,, write A; = int (S;), and
suppose that ¢ is an isometry between S; N F' and Sy N F. Then for z € A; N F one has

Q" (@(Zinr(ay) € -1t > 0) = Q) (Ziar(a,) € -, > 0). (9.3)

The key difference between (9.3) and (5.18) is that in (9.3) the processes are stopped on
hitting the boundary of the cubes §;.
This example shows that the definition of ‘locally isotropic’ is quite sensitive.

See [Sa] and [Me] for some uniqueness results in the finitely ramified case.

3. Continuity of harmonic functions.

Let #9 € F and set D = D,(z0) N F, D' = Dy,2(x). Let h be non-negative and
harmonic in D. Then we know by Theorem 4.2 that there exists a > 0 such that A is Holder
continuous of order o in D’. What is the correct Holder exponent for h? The constant «
given in Theorem 4.2 comes from the Harnack inequality, so would not be a good estimate.
If ds < 2 then the estimates of Section 4 of [BB3] imply that A is Hélder continuous of order
d, — d¢. Even here, though, we do not know if that is best possible.
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