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Preface

The present volume represents my notes for the lecture Fractal Geometry held at Universitat
Kaiserlautern in the winter term 2000/2001. The aim of the lecture was

e to show that fractal geometry is a very diverse and colourful mathematical subject, com-
prising much more than just calendar pictures.

e to present rigorous and interesting mathematics while retaining the joy of the beautiful
pictures and surprising statements fractal geometry can offer.

e to present many general mathematical principles, which can be rediscovered in other con-
texts: like the ergodic theorem, contraction principle, the max-flow min-cut theorem,
branching processes, Brownian motion,. ...

e to introduce the audience into the world of random phenomena.

Of course the material chosen is my very personal selection and it is easy to find serious omissions
(complex dynamics, for example). In brief, I chose to make a journey starting from Hutchinson’s
notion of self-similarity and ending with the study of fractals derived from Borwnian motion.
The first chapter is devoted to self-similarity, self-similar sets are constructed using first the
contraction principle (i.e. Banach’s fixed point theorem) and then the chaos game based on the
ergodic theorem. I use the opportunity to give a modern proof of Birkhoff’s ergodic theorem,
which is nowadays rarely presented in probability lectures. Both proofs can be used as algorithms
to bring self-similar sets to the computer screen.

Next, I introduce and compare notions of dimension, highlighting the prominent role of Hausdorff
dimension (a chapter on a class of fractals where Hausdorff and packing dimension naturally
differ had to be omitted due to lack of time, unfortunately). Techniques for calculating the
Hausdorff dimension are introduced, most notably the potential theoretic method. As a first
application we derive the formula for the dimension of self-similar sets with open-set condition.

The third chapter is devoted to a brief discussion of some aspects of the geometry of self-simlilar
sets. Highlights are the recent proof of Peres, Simon and Solomyak for the invisibility of certain
self-similar 1-sets, which is presented in full detail. We use this result to construct Besicovitch
sets, one of the most striking examples of fractal geometry.

In the fourth chapter I discuss a rich and beautiful class of random fractals, the so-called Galton-
Watson fractals. The necessary tools from graph theory and probability on graphs are derived
and the chapter culminates in an applicable dimension formula.



In the fifth and final chapter Brownian motion is briefly introduced and the dimension of the
three basic sets: the graph, range and zeroset are calculated using the methods derived before.
The calculation of the dimension of the zeroset is using the approach of Graf, Mauldin and
Williams and is another highlight of the lecture. We finish the lecture with a brief glimpse of
Peres’ recent idea of intersection equivalence, which establishes a surprising relation of Brownian
motion and Galton-Watson fractals.

For most of the lecture I assumed the audience to be familiar with a tiny bit of measure theory
(as included in most analysis courses) and some basic probability (as taught to second year
students in Kaiserslautern). Only in the last chapter I used some more involved probability
theory (mainly the strong Markov property), which my audience was willing to endure.

As usual I remind the reader who did not attend the lecture that the present text cannot replace
the lecture, in particular as I did not include any pictures here (and they are a truly important
ingredient of the lecture).

Finally, I would like to thank the audience of the lecture for their enthusiasm and patience, and
Jochen Blath for the great work he did in the tutorials and many discussions, which featured
the lecture.

Kaiserslautern, February 2001

Peter Morters.



Chapter 1
Self-Similarity

In this chapter we introduce the concept of self-similarity. We define self-similar sets and describe
two algorithms to put them on a computer screen. Both algorithms are based on fundamental
principles of mathematical analysis: the first (deterministic) algorithm exploits the contraction
principle, the second (stochastic) algorithm uses the ergodic theorem. A third algorithm, the
escape time algorithm, will be discussed in the exercises.

1.1 Self-similar sets: Definition and basic properties

1.1.1 The idea of self-similarity.

The basic idea of self-similarity is very simple: A set C' is called a self-similar set if it is the
union of small copies of itself.

Example 1.1
(1) The Sierpinski gasket consists of three copies of itself, each contracted by a factor of 1/2.

(2) The von Koch curve consists of four copies of itself, each contracted by a factor of 1/3.

To formalize the idea of self-similarity we consider compact subsets of a fixed metric space X
with metric d. Recall that (X,d) is a metric space if X is a set and d : X x X — [0,00) a
mapping such that

(1) d(z,y) = d(y,z) for all z,y € X,
(2) d(z,y) =0 if and only if z = y,
(3) d(z,y) < d(z,z) + d(z,y) for all z,y,z € X (triangle inequality).

d defines a metric or distance between points and hence also, for every nonempty set A, the
diameter by

|A] == sup d(z,y).
z,yeA
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We have to make precise what we mean by a small copy of a set. We offer two possible solutions
here: The first definition gives a quite generous meaning to the notion of a small copy and we
use it to define self-similar sets in the wider sense, the second is more restrictive and we reserve
the word self-similar set for this class.

Definition 1.2 Suppose (X, d) is a metric space. A mapping
p: X — X
is called contraction, if there is a number 0 < ¢ < 1, called the contraction factor, such that

d(p(x), d(y)) < ¢-d(z,y) for all x,y € X.

A family (¢p1,... ,¢n) of finitely many contractions is called an iterated function system. A
compact set C C X is called attractor of the iterated function system (¢1,... ,¢y) if

C= Uﬁbz(c)v (1.1)

where ¢;(C) := {¢pi(x) : = € C} is the image of C under ¢;. A set is called self-similar in the
wider sense if it is attractor of an iterated function system.

A particularly interesting case occurs if ¢1,... , ¢, are similitudes. A mapping ¢ : X = X is a
similitude if there is a number 0 < r < 1, called the contraction ratio, such that

d(¢(z), ¢(y)) =r-d(z,y) for all z,y € X.

Obuviously, similitudes are contractions, but not conversely. A set C' is a self-similar set or
sometimes self-similar in the strict sense if it is the attractor of an iterated function system
(¢1,... ,bn) consisting entirely of similitudes.

Remark 1.3 Contractions are continuous. If ci,...,cy, are the contraction coefficients of
qsla s 7¢n7 then
n
c:=maxc; <1
i=1
is called the contraction coefficient of the iterated function system (P1,... , dn).

For every contraction ¢ the set ¢(A) is smaller than A in the sense that its diameter is strictly
smaller. More precisely, |p(A)| < c|A|. In the case of a similitude ¢ we even have |p(A)| = r|A|
for r = maxi_ | ;.

Example 1.4 Every finite set is self-similar in the wider sense, but the only finite sets which
are self-similar in the strict sense are the singletons. A line segment [0,1] is self-similar with
similitudes ¢1(z) = z/2 and ¢o(x) = (z + 1)/2.

These examples are, of course, not the interesting ones. The first nontrivial example will be
presented in the next section.



1.1.2 The middle-third Cantor set.

We now give a first nontrivial example of a self-similar set. We define the ternary or middle-third
Cantor set by

2T
0:2{23—;:%6{0,2}}. (1.2)
i=1
Note that
2z 1 1
IR DEPT ) ( _ ):1
0 Z (R 3¢ 1_1/3 ’
=1 =1

hence C C [0, 1].

Remark 1.5 To get an intuitive feeling for the set, recall that every real number z € [0,1] can
be expanded in a 3-adic expansion, which is a sequence (xy : k > 1) with digits =} € {0,1,2}
such that

Unfortunately, this expansion is not unique for all x. Using the formula for the sum of a
geometric sequence, one can observe, for example, that for every j > 1 and z; € {0,1},

L X2 w2 1 1 s
Yyt X gT gt ynics iy Ty (3)
i=1 1=7+1 =1 i=1

These are two different expansions of the same number. The Cantor set C is defined as the set
of points = € [0, 1] who have a 3-adic expansion, which does not use the digit 1.

A popular definition of the Cantor set is based on successively removing open intervals from
[0,1]. To understand the connection note that every x € [0,1] with z1 = 0 is in the interval
[0,1/3] and every point in this interval has a 3-adic expansion with z1 = 0. Similarly, every
x € [0,1] with z1 = 2 is in the interval [2/3,1] and every point in this interval has a 3-adic
expansion with x1 = 2. Hence, the interval I := (1/3,2/3) is disjoint from the Cantor set C, it
consists exactly of the points whose 3-adic expansion must use the digit 1 in the first place. This
interval is removed from [0,1] in the first stage of the construction of C.

Similarly, we can see that the set (1/9,2/9) U (4/9,5/9) U (7/9,8/9) consists of those numbers
x € [0,1] which have the digit xo = 1 in each of their exzpansions, so they have to be removed.
Going on like this, one can get an intuitive construction of the Cantor set. However, this is
unpleasant to write down rigorously, so we prefer the more direct definition (1.2).

Lemma 1.6 C is compact and nonempty.

Proof: Obviously, C' is nonempty. To show that it is closed, pick a point z € [0,1] \ C in the
complement. There exists a sequence (zy : k > 1) of digits in {0, 1,2} such that

o0
Tk
xZZg ’
k=1

El



a 3-adic expansion of . As z ¢ C there exists a minimal natural number j with z; = 1. Let

J
T
a= g 22 and e := — .
3¢ 3t
i=1 i=j+1

We show (i) z € (a,a,+¢) and (i7) (a,a +¢)NC = 0.

Clearly, z € [a,a+¢]. If £ = a or £ = a + ¢ (1.3) offers an alternative representation of x
avoiding the digit 1, contradicting € C'. Hence (i) is shown.

We have to show that (a,a + €) is disjoint from C. Suppose that Z € (a,a + ¢) has a 3-adic
expansion Z = » ;2 #r/3%. Suppose ; # x; for some minimal 1 < i < j. If # < z; then & < a,
if Z; > x; then £ > a + €. As this contradicts the assumption, we have Z; = x; for all 1 < ¢ < 4.
In particular, we must have £; = 2; = 1. This implies that Z ¢ C, showing (7).

We infer that [0,1] \ C' is open, so C' must be closed. It is also bounded and, by the Theorem
of Heine-Borel, compact. [ |

Lemma 1.7 Define ¢1 : [0,1] — [0,1] by ¢1(x) = z/3 and ¢o : [0,1] — [0,1] by ¢2(z) =

x/3+2/3. Then ¢1,po are similitudes on the metric space [0,1] with d(z,y) = |z — y|, their

contraction ratios are 1/3.

Proof: Obviously ¢1, ¢2 map [0, 1] into itself and
A1), 61.()) = d(42(2), d2(v)) = |

proving the statement. ]

Lemma 1.8 C = ¢1(C) U ¢o(C).

Proof: If 7 € [0,1], then z = 372 | 7/3" for a sequence (zj : k > 1) with 4, € {0,1,2}. Then

¢1 (IL‘) = - with Y1 = O,yk = Tk—1 for k > 2,

QSQ(ZL‘):ZZJ—IZ with y; =2,y = 74— for k > 2.
k=1
Hence, x € ¢1(C) if and only if x has a 3-adic expansion with ;1 = 0 and z; € {0,2} for all
k > 1. Similarly, € ¢2(C) if and only if z has a 3-adic expansion with z; = 2 and zj, € {0,2}
for all £ > 1. [ ]

Theorem 1.9 The ternary Cantor set is a self-similar set.

Proof: Lemma 1.6, Lemma 1.7 and Lemma 1.8 imply that the Cantor set C' is attractor of the
iterated function system (¢1, ¢2). [ |

10



1.1.3 The coding theorem for self-similar sets

In the previous example we have used the fact that there is a mapping

oo

7: {02}V — C, (xk)HZ%.
i=1

A similarly useful construction exists for all sets associated with an iterated function system. It
is called the code map. In this section we construct the code map.

Definition 1.10 Let ¥, := {1,... ,n}Y be the set of all sequences with values in {1,... ,n}.
For any two distinct sequences (zy) and (yi) define

dn ((zk), (yx)) = QLm for m = min{k : zy # yi} -

d, defines a metric on X, which makes X, compact. X, is called the code space in n symbols.

Remark 1.11 Compactness of 3, follows either from the Theorem of Tychonov stating that
products of compact sets are compact, or by using the sequential compactness: from every se-
quence of elements in X, we can extract a convergent subsequence using the famous diagonal
argument.

Theorem 1.12 (Coding Theorem) Suppose that (¢1,... ,¢,) is an iterated function system
and on a metric space X with metric d. Suppose K is the attractor of this iterated function
system. Then there exists a continuous and surjective mapping

7 B, — K with n((yx)) = llle by, 00y, (z) for all z € K.

such that, for all (y1,...,yx) € {1,... ,n}*,

7r({(ﬂ%‘) PXL =Yy 5 Tk :yk}) = ¢y, °"'°¢yk(K)-

7 is called the code map. If additionally all ¢p, 1 < k < n, are injective and
$i(K) 0 5(K) = 0 for all i # j.

then w is a homeomorphism.

Remark 1.13 The elements of {1,... ,n}N can be seen as addresses or address sequences. 7
maps an address sequence onto a corresponding point, if ™ fails to be injective, a point may have
several addresses.

Proof: We proceed in five steps.
Step 1: For every (zi) € X, there exists 2z € K such that

() bor 00 b, (K) = {o}.
k=1

11



To prove Step 1, look at the sets K}, := ¢, o -0 ¢y, (K). Note that

¢$1 S OQSIIC(K) C ¢$1 S O¢$k71(K)7

so that K}, C Ky for all k > 1. Each Kj is compact, because it is the image under a continuous
map of the compact set K, and it is nonempty. Recall that the intersection of a decreasing
sequence of nonempty, compact sets is nonempty. Hence, there is a nonempty compact set A
with

ﬂ bz, o"'°¢xk(K) =: A.
k=1

In order to prove that the set A is a singleton, i.e. contains exactly one point, it suffices to
show that A has diameter 0. Recall that every compact set has finite diameter. Also recall the
definition of the contraction factor c¢ of the iterated function system. We have,

‘¢x1°"'°¢xk(K)‘ = Sup{d(¢x1(x)a¢x1(y)) : xay€¢x2o"'o¢xk(K)}

< csup{d(,y) : 3,y € puyo -0 hu (K) .

Inductively, we infer
k—00

Al < |y 0+ 0 ¢ (K)| < F |K| =T 0.
This proves Step 1.

Step 2: Define the mapping 7 : 3, — K such that 7((zx)) is the only element of the set
Ny ¢z, © -+ © ¢g, (K). Then 7 is surjective.

To prove this, let z € K. We construct a sequence (x;) inductively as follows. As K =
Ui, #i(K), there exists z1 with z € ¢, (K). Having constructed z1,... ,zx with € ¢, o

0 ¢y, (K) we find Z € K such that £ = ¢,, o --- 0 ¢;, (£). Then choose zj; such that
T € ¢y, (K). By definition, z € (2, ¢z, 0+ 0 ¢g, (K) and 7((2y)) is the only point of this
set, hence z = m((xy)). This proves surjectivity.

Step 3: For all (yi,...,yx) € {1,... ,n}¥,

m({(z:) : 1 =y1,...  TE =Yk }) = Py, 0+ 0 ¢y, (K).

This implies in particular that

m((yx)) = Il% by, 00 ¢y, (z) forall z € K.

If 2 € ¢y, 0+ 0 ¢y, (K), there exists € K with x = ¢,, o--- 0 ¢, (). By Step 2 we
can choose a sequence (Zx) with £ = w((Zx)). Then «((x1,..., 2k, Z1,%2,...)) = x, hence
T € 7r({(:1:z) T =Y, .. T = yk}) This shows the inclusion D. Conversely,
77({(%') PT1L =Y, , T = yk})
oo
C U{ﬂqﬁmlo---oqﬁmi(K) : (zg) with z; =y, ... ,xk:yk}
i=1
C Pyy 00 dy, (K).

12



This finishes the proof of Step 3.
Step 4: 7 is uniformly continuous.

Suppose € > 0 is given. We fix m large enough that ¢"™|K| < e. This is possible because |K| < co
and ¢ < 1. If (z1), (yx) € X with dy, ((zx), (yr)) < 1/2™F! we infer that x1 = y1,... , Tm = Ym
and 7(zg) and 7(yg) are both in the set ¢y, o---0 ¢, (K). The diameter of this set is at most
¢ K| < e. Hence, d(m(zg), 7(yx)) < €, showing uniform continuity.

Step 5: If all ¢, 1 < k < n, are injective and
$i(K)N¢j(K) =0 for all i # j,

then 7 is a homeomorphism.

To prove the last step, we let (z;) and (y;) be different elements from X,,. Then, there exists a
minimal j > 1 with z; # y; and, by our assumptions, the sets

Puy © -0 ¢y; (K) and ¢y, 0--- 0 ¢y (K)

are disjoint. As m(zy) is in the first and and 7(yy) in the second set, they must be different.
This proves that 7 is injective. Hence an inverse mapping 7! of the code map exists. It is
automatically continuous. Indeed, if A C X, is closed, it is compact (because ¥, is compact)
and its inverse image under ! is w(A), which is compact, hence closed. |

1.2 Construction of self-similar sets via the contraction princi-
ple

The key questions about iterated function systems are the following:

e Given an iterated function system (¢1,... ,¢y,), is there an attractor?

e Given an iterated function system (¢1,... ,¢,), is the attractor uniquely determined?

It will turn out that on R? both questions have an affirmative answer. This allows us later
to define a self-similar set in the wider sense by just giving an iterated functions system, or a
self-similar set in the strong sense by giving an iterated functions system consisting of similitudes.

1.2.1 The contraction principle

We formulate a condition on a metric space (M, d), which is sufficient for the contraction prin-
ciple.

Definition 1.14 A sequence (Xj : k > 1) in a metric space (M,d) is called o Cauchy sequence

if
lim sup d(X;, X;) =0.

n— 00 l,]ZTL

A metric space (M,d) is called complete if every Cauchy sequence in (M,d) is convergent to
some X € M.

13



Example 1.15 Closed subset of R are complete metric spaces.

Recall that X € M is called a fixed point of & : M — M if &(X) = X. The following
theorem, called the contraction principle or Banach fized point theorem establishes existence
and uniqueness of fixed points for contractions on complete metric spaces.

Theorem 1.16 (Contraction principle) If (M,d) is a complete metric space and ® : M —
M a contraction. Then ® has exactly one fixed point X € M and for every Xo € M the
sequence (Xg : k > 1) defined by Xy = ®(Xg_1) converges to the fized point X.

Proof: For every Xy € M, we have, using the triangle inequality and geometric series,

d(Xo, 2 (Xo)) < d(Xo, (X)) + d(@(Xo), D*(Xo)) - -~ + d(@"(Xo), 2¥(Xo))
< (1+c+02+---+ck_1)d(X0,‘I)(X0))
d(Xo, ®(Xo))
- l1-c '
Hence, .
Jim ~ sup d(®"(Xp), ®™(Xo)) < lim —— d(Xo, ®(Xo)) =0,
—0 n,m>k k—sool—c

hence (®*(Xy)) is a Cauchy sequence and we let X be its limit. Letting & — oo in the equation
" (Xo) = @(2*(X0))
shows that X is a fixed point. Finally, if X and Y are two fixed points, we have
d(X,Y) = d(®(X),d(Y)) < ed(X,Y),

which implies d(X,Y) =0, hence X =Y. [

1.2.2 Existence of self-similar sets

We now use the contraction principle to answer the question about existence and uniqueness
of attractors of a given iterated function system on metric spaces given as closed subsets of R?
with the Euclidean distance d(z,y) = |z — y|.

Theorem 1.17 Let (¢1,... ,¢n) be an iterated function system on a nonempty closed subset
X C R, Then there is exactly one nonempty compact set K C X, which is the attractor of this
system, i.e. such that K = J;_, ¢i(K).

To prove Theorem 1.17 fix the metric space (X, d) as above and an iterated function system on
this space. The idea of the proof is to work on the set

R:={A C X : nonempty and compact}

14



and interpret the attractor K of the iterated function system as solutions of the fixed point
equation ®(K) = K for the function

O(K) = | ¢i(K) forall K € &
i=1

Existence and uniqueness of the fixed point follows from the contraction principle if we can find
a metric 0 on K such that

(i) (R,9) is a complete metric space,
(ii) @ is a contraction on (&,9).

We now define the Hausdorff metric on the set & and verify (7) and (i7) above for this metric.
Then Theorem 1.17 follows directly from the contraction principle.

Definition 1.18 If K € 8 and § > 0 then
K[0):={z € X : there isy € K with d(z,y) <4}
in called the d-parallel body of K. For two sets K, L € ! we define the Hausdorff distance by

o(K,L):=inf{§ >0 : K C L[¢] and L C K[4]}.

Lemma 1.19 0 defines a metric on the set K called the Hausdorff metric. The metric space
(R,0) is complete.

Proof: Obviously, ? is nonnegative and symmetric. Suppose that 9(K, L) = 0, then L C K]
for all 6 > 0. As K is closed we have (5., K[0] = K. Hence L C K and, by the symmetric
argument, L O K. We infer that (K, L) = 0 implies K = L. The triangle inequality follows
from the fact that K C L[] and L C M|[e] implies K C M[0 + ¢].

The crucial part of the proof is the completeness. Let (K, : n > 1) be a Cauchy sequence
in K. To prove completeness, we may, by passing to a subsequence, if necessary, assume that
3Ky, Ky) < 1/2™ for all m > n. Define

K :gcl(gm),

where cl stands for the closure of a set. Then

0+ cl( G K) C K;[1/27],

1=j

hence cl( U;’ij KZ> is compact, because it is closed and bounded. Recall that the intersection

of a decreasing sequence of compacts is nonempty. This implies that
o0 0
0 £ ﬂcl(UKi> —KcAh
j=1  i=j

15



We know already that K C K;[1/27] for all j. We intend to show that also K; C K[1/27] for all
j. Indeed, if z € K, there exist, for all £ > j, an 2}, € K} with |z — ;| < 1/2/. Because (z)
is bounded, we may pick a subsequence of (zj) which converges to a limit called y. Note that

y € cl(iL:Jk K) for all k.

Hence, y € K and |z —y| < 1/2/. This implies that K; C K[1/27] for all j.

We have shown that 9(K, K;) < 1/2/ — 0, hence K is the limit of our Cauchy sequence and
this proves completeness. [ |

Lemma 1.20 The mapping ® defined by
n
O(K) = | ¢i(K), for all K € &,
i=1
is a contraction with contraction factor ¢ = maxj_; c;.

Proof: If A, B € f, we have
3(®(A),2(B)) =o(|J ¢:(4), | ¢:1(B)) < I?Zalxa(@(A),@(B)) -
i=1 i=1

Note that
0(¢i(A), ¢i(B)) < cid(A, B),

and this completes the proof. [ |

Theorem 1.17 follows now by applying Theorem 1.16 to the mapping ® on (£,0) and recalling
that the fixed points of ® are exactly the attractors of the given iterated function system.

The previous proof is not only an abstract existence proof, but also gives a concrete way of
constructing the attractor K of a given iterated function system on a computer screen. Recall
from Theorem 1.16 that we can get the fixed point K € & of the mapping ¢ as the limit of a
sequence obtained by iterated application of ® with an arbitrary starting set. Hence we have
verified the following deterministic algorithm for the construction of the attractor of a given
iterated function system:

Algorithm 1:

Step 1: Let £ = 0 and choose an arbitrary nonempty, compact subset X, of X.
Step 2: Let Xy = ®(X;) and increase k by one.

Step 3: If k is below a given threshold, go back to Step 2, otherwise stop.
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The threshold in the algorithm depends on the contraction rate ¢ and the distance of the starting
set Xy and the fixed point K, the former is known from the iterated function system and the
latter can be estimated, for example by the diameter of X. We have

(X, K) < (X1, K) < Fo(Xp, K) < F|X| <e,

if £ > log(e/|X])/ logc.

The main disadvantage of this algorithm is that it is expensive to apply the mapping ®: in every
step of the algorithm each point in the previous picture is mapped onto n new points. We shall
discuss a more effective algorithm in Section 1.3.

1.2.3 Existence of self-similar measures

In this section we construct nice probability measures on the attractors of iterated function
systems. Having such a measure allows us to pick a point at random from the set, taking the
probability measure as the distribution of the random point.

Recall that a vector (pi,...,pn) is called a probability vector if it has nonnegative entries sum-
ming up to 1. Such a vector defines a probability distribution P on the set {1,... ,n} by

Plit =p;.

Theorem 1.21 (Existence of self-similar measures) Suppose ¢ = (¢1,... ,¢n) is an ar-
bitrary iterated function system on a closed subset X C RY and K C X its attractor. Let
p = (p1,--. ,pn) be a probability vector. Then there exists exactly one probability measure p on
K such that

n
p= prpody.
k=1

Such a measure is called the self-similar measure associated to p and ¢. We have,

k
p(dys 000y (K)) = [T ows (14)
=1

and if $;(K) N ¢;(K) =0 for all i # j and all ¢; are injective we have equality. If all p; > 0,
then the support of u is K.

Proof: We use again the contraction principle. Let 9t be the set of all probability measures on
K and define

n
oMM, B() = pepody
k=1
The self-similar measures y are the fixed points of ®. It suffices to choose a metric on 9, which

makes the space complete and ® a contraction. Let £ be the class of functions g : K — [0, 00)
with |g(z) — g(y)| < |x — y| for all z,y. For vq,v5 € M let

d(v1, 1) :sup{‘/gdz/l—/gdug‘ : gEE}.
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Then d is a metric, which makes 9t complete (see exercise). We show that & is a contraction.

The first question we have to address is, how the integrals with respect to the measure ®(v)
look like. Indeed,

/gd@(l/) ZZpk/gdvoqﬁ;l :Zpk/9°¢de-
k=1 k=1

Now we can check that ® is a contraction.

d(@(). 8w) = suw{| [gdve) - [gave)|:ge )
— sup{\kzlpk(/gomdm—/goqskdug)\ et}
< ;pksup{\/gomdm—/gomdw\ gech

Now note that

e "9 0 dr(@) = ¢ g 0 dr(y)] < ¢ () — dr(w)] < o —yl,

hence c,;l go ¢ € L. Then the previous chain of inequalities can be continued with

n
Zpkcksup{‘/cglgoqﬁkdyl—/clzlgomdug‘ : gEE}
k=1

< ZPkaSUP{‘/ngI—/ngZ‘ : gEE}
k=1

< ed(vy,e),

IA

for ¢ = maxj}_, c;. This proves existence and uniqueness of the self-similar measure. To see the
additional statement we use the defining property, and argue inductively,

Wb 00 0 ()) = Yo b (4 o0 (1))
=1

Y

py1“<¢y2 -0 ¢yk(K)>
> ﬁpyi-
i=1

If $i(K)N ¢j(K) = 0 for all i # j, and all ¢; are injective, the parts are disjoint and the
measure must add to one. Hence we must have equality. Finally, if p; > 0 for all 7, note that
every open set U C X with K NU # () contains a set ¢y, o --- o ¢, (K) for sufficiently large k
and hence p(U) > 0. We have shown that every open set intersecting K has positive measure,
which means that K is the support of p. [ |
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Remark 1.22 (Random addresses) Recall that we have the coding map
Ty, — K.

Suppose that X1, Xo, X3,... is a sequence of independent identically distributed random variables
each with low P. A natural way to choose a point from K at random would be to choose an
address from the address space ¥, at random and look at the point with this address. Formally
speaking, this means that we take the product probability measure of P on Y, and look at its
image measure under the mapping .

It is easy to check that this measure is the self-similar measure of the previous theorem. In
the construction we have assumed that, for any given probability measure P on X,, there is a
sequence of independent identically distributed random wvariables with law P. This is usually
proved in lectures on probability theory, but is by no means obvious. One way to prove it is
analogous to the proof of Theorem 1.21.

1.3 Construction of self-similar sets via the chaos game

1.3.1 The ergodic theorem

The ergodic theorem is one of the most fundamental and useful results in analysis and a link
between probability theory and dynamical systems.

The basic heuristic of the ergodic theorem can be stated, very roughly, like this:

For a chaotically moving particle at late times the average of a function along the
trajectory of the particle equals the overall spatial average.

Very roughly, our aim will be to construct a randomly moving particle on the metric space X
such that, for every set A the time spent by the particle in the set is proportional to p(A)
for a self-similar measure . Then the trajectory of the particle looks like the support of the
self-similar measure. From Theorem 1.21 we know that the support of p is K if all p; > 0.

To turn this loose heuristic idea into a mathematical theorem we fix a suitable framework:

Suppose (£2,2(, P) is a probability space and f : Q — Q a measurable invariant mapping, i.e.
Pof'=P.
f determines the movement of a particle started in xy € Q by
Tip+1 = f(xy) for all & > 0.
f is called ergodic if
P(A) =0or P(A) =1 for all A €2 with A= f"'(A).
This condition ensures that the particle does not move on a set significantly smaller than €.

Let ¢ : © — [0,00) be a bounded, measurable function. The average of ¢ along the trajectory
T1,... o, of the particle at time n is (1/n) 27— ¢(x), the overall spatial average is [ ¢ dP.

The ergodic theorem of G. Birkhoff (1931) states that for ergodic f the averages on the trajectory
converge, for almost every starting point, to the space average. We shall give a proof of this
fact, which is essentially due to Katznelson and Weiss (1982).
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Theorem 1.23 (Ergodic Theorem) Let P be a probability measure on (2,2) and f : Q — Q
an invariant mapping. Suppose that ¢ : Q@ — [0,00) is a bounded, measurable function. Then
the limit

exists and satisfies 1 o f(x) = (x) for P-almost all z, and

/ wdP = / P dP .
Moreover, if f is ergodic, then for P-almost all z, v is constant with ¢ (z) = [ ¢ dP.
Proof: Let M be the upper bound of p. Write

~ 1

j=0

w|»—~

the average along the trajectory at time k£ — 1. Let

@(z) := limsup ax(x),
k—o0

and recall that this is a measurable function. We also have

a(/(x)) = limsup wa” ) = alx),

k— o0

and, by induction, @(f*(z)) = @(z) for all k. We want to show that, for all € > 0,

/a(ac) P (z) < /(p(x) dP(z) + ¢. (1.5)

To verify (1.5) define

m(z) =min{k >0 : ax(z) > a(z) — €},
which is finite for all 2 by definition. Assume first that the measurable function 7 is bounded
above by some value T'. Now the sum «y can be broken into blocks of length at most 71" such that
the average of the ¢(f7(xz)) over the j in each block is at least @(z) — . More precisely, for each

z we define a sequence ki, ko, ... inductively, by taking k; = 7(z) and k; = 7(fF+tki-1(z))
for ¢ > 2. Then,

ke hi—1

Yoo elf@) = kg (fArR()

J=kit-+ki—a
>y @R (@) — )
= k; (a(ai) — 6) ,
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since @(z) = a@(f*(z)) for all k. Summing over all blocks,

k—1
Y ol (@) > k(@) —¢),
5=0

whenever k is of the form k1 + - - -+ k;. For an arbitrary integer k£ we let [ be the largest integer
that k1 +--- + k; < k. We get

k—1

> o(fi(x) > (k- T)(@(z) <), (1.6)
j:
using that 0 < k — (k1 +--- + k;) <T. Because f is invariant, we have

/gpofde:/godPo(fj)lz/godP.

Now we integrate (1.6) and obtain

k—1
. k — i
/(de:%jz%/go(fJ(x))dP(x)z kT(/adP—es).

Letting k£ 1 oo we obtain (1.5).

Now we suppose that 7 is unbounded. As 7(x) < oo for all z, we may choose T so large that
P(A) < ¢ for

A={z:7(z)>T}.

The idea is to change the definition of ¢ on the set A, so that we can apply the previous part to
the modified function. At the same time we have to make sure that thanks to the smallness of
A we have changed ¢ so little, that the resulting inequality for the modified function still allows
to infer sensible results for the unmodified function.

More precisely, define ¢* : Q@ — [0, 00) by

M fzeA
We define
1 k—1
ag(z) = Z > ot (f ()
§=0
and

™(z) =min{k >0 : aj(z) > a(z) —c}.
Now we have 7*(x) = 1 for all z € A and, as af > ay, for all © ¢ A we note that 7*(z) < T.

The argument in the bounded case gives the first inequality in the following chain, the others
are just definitions

/&(x) dP(z) < /(p*(x) dP(z) + ¢
- / () dP(z) + / (6" (2) — p(x) dP(z) + ¢

< [ o) P )+ Me e
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As Me + € can be made arbitrarily small, this proves (1.5) in the general case.
As (1.5) holds for all £ > 0, we have

/ a(z) dP(z) < / () dP(z).

Analogously we can define

a(z) ;= liminf o (z),
k—o00

and obtain [ a(z)dP(z) > [ ¢(x)dP(z). Altogether,

[ (a@) - atw) dP(@) > 0,

As the integrand is nonpositive, we must have a(x) = @(x) for P-almost every z. This means,
that the limit ¢ (z) = a(z) = @(z) exists and ¥(f(z)) = a(f(z)) = @(x) = ¥(z), for P-almost
every z. By construction, [¢dP = [¢dP.

Now look at the ergodic case. For every a > 0 define a set
L(a) :={z :¢¥(z) <a} C Q.

If f(z) € L(a), then ¢ (z) = ¢ (f(z)) < a, hence z € L(a). In other words, f '(L(a)) = L(a)
and we infer that every set L(a) has measure 0 or 1. Let

c:=supf{a € [0, M] : P(L(a)) =0}.

Then v(z) = ¢, P-almost surely. Finally,

c= | cdP = dP = dP .
Jew=[oa=]e

Remark: If you want to know more about ergodic theorems, you are referred to R.M Dudley’s
book “Real Analysis and Probability”, which contains a range of more general ergodic theorems
together with applications in probability.

1.3.2 The chaos game algorithm

In this section we shall present a simple stochastic algorithm that allows us to draw self-similar
sets quickly and efficiently on a computer. The algorithm is based on the ergodic theorem and
although verification of the algorithm is nontrivial, it is very easy to run the algorithm.

The algorithm is usually called the chaos game. Let (¢1, ... , ¢,) be an iterated function system
and K the associated set, which we want to draw. To run the algorithm we also choose a vector
(p1,-.. ,pn) of strictly positive numbers adding to one. Here is how the chaos game is played:

Algorithm 2:
Step 1: Pick a point yp € X and let k = 1.
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Step 2: Choose randomly an Xj € {1,... ,n}.
The choice must be made independently from previously chosen random variables such
that P{X} = j} = pj.

Step 3: Let y; = ¢x, (yx—1) and increase k by one.

Step 4: If k£ is below a given threshold, go back to Step 2, otherwise stop.
We give some practical hints for running the algorithm:

(1) The accuracy of the picture can be regulated by the threshold parameter, which gives the
number of points. The algorithm is fast, for good results the number of points should be
chosen large.

(2) In practice, it is useful not to display, roughly speaking, the first v/k out of k points, which
might be too far away from the set K if yq is chosen badly.

(3) In many cases, the best results are obtained if p; is chosen such that the probability p;
of a mapping corresponds to the optimal contraction factor ¢;, i.e. such that logp; is
proportional to logc;.

The algorithm produces a random set {y1,... ,yr}. The following theorem shows in which sense
this set is close to the self-similar set K or, more precisely, the self-similar measure p.

Theorem 1.24 (Chaos game) Suppose X C R? is a compact metric space. For every contin-
uous g : X — [0,00) we have, almost surely, that

k—oo k

1 k—1
lim — " g(y:) Z/gdu-
=0

Remark 1.25 For every set A with u(0A) = 0 the previous result implies that, for large k, the
proportion of points from {yi,... ,yx} in A is

k—1
.1
lim Z ; La(yi) = p(A).

k—o00

This equivalence can be shown by approximation of 14 with continuous functions and is some-
times called the Portmanteau Theorem.

In the first step of proof we show that the result of the algorithm does not depend on the
starting point. Indeed, if we choose two starting points yo and gy and (y;) and (7;) are the
resulting sequences with the same random choice of mappings, then

Ay, k) = d(dx, © 0 dx, (Y0), x, © - © bx, (J0)) < Fd(yo,G0) = 0.
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This implies that, for every £ > 0, there is N with |g(yx) — g(9x)| < € for all £ > N. We infer
that

1 k—1 1 k—1
lim sup ‘ = 9lui) == > 9()
k—o0 k k<
1=0 1=0
1 N 1 k—1
< limsupE Z lg(vi) — g(7:)] + limsupE Z lg(yi) — g(7:)]
< €.

As this holds for all £ > 0, the limit must be zero and the statement of the first step is shown.

In the second step we may now restrict our attention to starting points in the set K. It is
important to notice that this is just a step in the proof, the algorithm works for all starting
points by the argument of Step 1.

Of course, our framework of the ergodic theorem does not seem to involve random movements of
particles. We have to be very clever in the choice of the space  to which we apply the ergodic
theorem in order to incorporate this.

The idea is that a point in the space €2 corresponds not only to a point in X, but also to all the
list of all sample contractions we shall apply in the future. The mapping f, which determines
the movement has to do two things: The first contraction on the list is applied to our point in
X and the contraction is removed from the list.

A list of contractions from the iterated function system can be represented as an element of the
code space X, more precisely (zj) € 3, represents the list

Pzos Py Pary - oo -

By the coding theorem, a point in the attractor K of the iterated function system can also be
represented by a sequence in the address space X,,. Hence a good choice for the space €2 is the
two-sided code-space defined by

Now (zy) € X} represents the point
7T(£E_1, L2, L_-3y... )

together with the list
Prgs Py Pagy -
of contractions.

The mapping f : £7 — X7 applies the first contraction on the list, this is ¢,,, to the point
with address (x_1,2_2,2_3,...). The result, by definition of the code map =, is the point with
address (g, z_1,2_2,2_3,...). Then ¢, is removed from the list of contractions, in other words
we replace (xg,x1,x2,...) by (x1,22,23...). Altogether, applying f to an element (z3) € %,
shifts the sequence () by one element to the left,

f((zr)) = (yx) With y = 241
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We now observe that for the function

p: E; - [0,00) ) (p((xk)) = 9(71'(15_1,(1:_2,:5_3, s ))

we have, for yo = m(z_1,2_9,...),

o(f((zr)) = g(m(@o,z_1,2-2,...)) = g(Peem(@_1,2_2,...)) = g(dz (0)) = 9(¥1)
and, by induction, ‘
o (F((x1))) = g(¢a;_1 0+ 0 buo(%0)) = 9(y;) -

By now we clarified the framework except for the choice of the probability measure P on 7.
This probability measure P must be defined in such a way that the projections

Xi((zg)) =z for j =0,1,2,...,

define an independent, identically sequence of P-distributed random variables.

The o-field 2 on X7 is generated by the cylinder sets
{(:Jck) s x; =y; forall i € I}, for I C Z finite and y; € {1,... ,n}.

We let P be the product measure on ¥, which satisfies

P{(xk) cx; =y, foralli € I} = pri .
el
Such a measure exists and under this measures the random variables X; are independent and
identically P-distributed.

We have to show that f is invariant and ergodic with respect to P. This requires two useful
facts from measure theory, which we formulate as two lemmas.

Lemma A: Two probability measures on X, which agree on all cylinder sets are equal.

Lemma B: For every set A € 2 and € > 0 there exist pairwise disjoint cylinder sets Cy,... ,Cp,
with
m
P(aalJai) <.
=1

Lemma A follows from the fact that the cylinder sets are a N-stable generator of 2 and
probability measures, which agree on a N-stable generator are equal. This result is frequently
proved in the lectures on elementary probability theory and a proof can be found in Durrett’s
book Probability or Protter’s book Probability FEssentials.

Lemma B can be proved as follows: Let € be the collection of all sets A € 2, for which the
statement is true. This collection is a g-algebra, this fact can be checked easily. As it obviously
contains the cylinder sets, which generate 2, it must coincide with 2.

Step 3. f is invariant and ergodic with respect to P.

To check invariance it suffices to show that P o f~1(E) = P(E) for all cylinder sets E, because
cylinder sets are a N-stable generator of 2. This is easy, because

fﬁl{(wk) sz =y fori € I} = {(wk) s w1 =y; fori € I}.
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By definition the set on the right hand side and {(zy) : z; = y; for i € I} have the same
measure.

To check ergodicity let A € 2 with A = f~'(A) and P(A) > 0. It suffices to show that
P(ANE)=P(A)P(E) for all cylinder sets E. (1.7)

Indeed, then the probability measures P(AN-)/P(A) and P agree on the cylinder sets and hence
they are equal. Then we may plug A itself into the equation and get P(A) = P(A)? implying
P(A) € {0,1}.
To show (1.7) we use Lemma B. We fix an arbitrary cylinder set

E = {(mk) cx;=y; fori e I}, for I C Z finite and y; € {1,... ,n}.

Suppose C1, ... ,Ck are pairwise disjoint cylinder sets such that their union approximates A in
the sense of Lemma B. Then, for all NV,

P(ANE) =P(f V(A NE)=PANfY(E))

and the latter term is

IA

P(UL Cin N (®) +e,
P(U{;CmfN(E)) _e.

Now assume C' = {(z) : 2y = §forl € L} and L C Z finite. Choose N so large that
sup I — N < inf L. Then, using the definition of P,

Vv

P(CNnfY(E) = P{X;=gforleLl, X; y=y;foricl}
= P{Xl =q; forl € L} P{Xi+N =y, fori € I}
= P(O)P(E).

Taking the union over all Cj we infer that

< (P(A) +¢)P(E) +¢,
P(A“E){ > EP(A)—E%P(E)—;

Letting ¢ | 0 gives (1.7) and proves Step 3.

Step 4. We finish the proof by recalling all the steps we have done. We start the algorithm with
the randomly chosen point yg = 7w(X_1, X_9, X_3,... ), which has distribution ;1 by Remark 1.22.
However, we recall from Step 1 that the algorithm works independently of this choice. Using
the ergodic theorem in the third step, we have, P-almost surely,

k—1 k—1

.1 1

lim z g g(y;) = lim % g g(¢xi_1 0--'0¢X0(7T(X—1,X—2”---)))
1=0 1=0

k—o0 k—o0
1 k-1
= kll{go E ;g(ﬁ(xi_l,xi_g, P )))
1 k-1 -
= Jin g Sl () = [ oap

= /gow(x_l,x_g,...)dP:/gd,u.

This finishes the proof of the chaos game theorem.
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Chapter 2

Hausdorff dimension

In this chapter we introduce three notions of dimension, the Minkowski dimension, packing
dimension and Hausdorff dimension. In particular the latter is crucial in fractal geometry. We
show how Hausdorff dimension is used to determine the size of a set and describe techniques
to calculate the Hausdorff dimension. In particular, we derive a formula for the Hausdorff
dimension of self-similar sets.

2.1 Minkowski, Hausdorff and packing dimension

How can we determine the size of a geometric object? There are two levels on which this
question can be answered, the crude level is the level of dimension. It allows, for example, to
distinguish a line segment, which is a one-dimensional object, from a planar square, which is
a two-dimensional object. But it does not allow to distinguish, for example, line segments of
different length.

How can we capture the dimension of a geometric object? One requirement for a useful definition
of dimension is that it should be intrinsic. This means that it should be independent of an
embedding of the object in an ambient space like R?. Intrinsic notions of dimension can be
defined in arbitrary metric spaces.

2.1.1 The Minkowski dimension

Suppose E is a bounded metric space with metric d. Here bounded means that the diameter of
FE is finite. The example we have in mind is a bounded subset of R¢. Define, for ¢ > 0,

k
M(E,e) = min{k >1: there exist z,... 2 € B with B C | J B(xi,e)} :
=1

where B(z,e) = {y € E : d(z,y) < €} is the open ball around z of radius e. Intuitively, when
E has dimension d the number M (E,¢) should be approximately C/e¢. This can be verified in
simple cases like line segments, planar squares, etc. This argument motivates the definition of
Minkowski dimension.
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Definition 2.1 For a bounded metric space E we define the lower Minkowski dimension as

log M (E
dim,,F := lim infw ,
0 log(1/e)
and the upper Minkowski dimension as

dimy E = limsupw .
£ 10 log(1/e)

We always have dim,, E < dimyE, but equality need not hold. If it holds we write dimy E =
dim;,F = dimy/ FE.

We shall see below that these definitions have limitations. Before that, let us calculate the
Minkowski dimension of the Cantor set.

Lemma 2.2 If C is the ternary Cantor set, we have dimy; C = i%g—g.

Proof: Let a = log2/log3. For the upper bound it suffices to find an efficient covering of C
by balls of radius . If € € (0,1) is given, let n be the integer such that 1/3" < e < 1/3" ! and
look at the sets

[Z%,Z% +6] for (z1,...,zy,) € {0,2}".
=1 i=1

These sets obviously cover C' and each of them is contained in an open ball centred in a point
of C of radius €. Hence

M(C,e) < 2" =3%" =3%(3""1)* < 3%(1/e)*.

This implies dimy;C < «.

For the lower bound we assume we have a cover by open balls B(zy, ) of radius € € (0, 1), and
let n be the integer such that 1/3"+! < e < 1/3™. Let

Z,
Tk :Z 3
i=1
Then
(2
B(xk,&‘)ﬂcc{ 30 ylle,ka---aynzxn,k}a
i=1

and we need at least 2" sets of the latter type to cover C'. Hence,
M(Cye) = 2" = 39 = (1/3)%(3"+1)" > (1/3)°(1/e)°.

This implies dim,,C > «. [ ]

Our second example indicates an unpleasant limitation of the notion of Minkowski dimension.
Observe first that singletons S = {z} have Minkowski dimension 0. However, a countable set
may have positive dimension, as the following example shows.
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Lemma 2.3 Let E:={1/n : n € N} U{0}. Then dimy/ E = 3.

Proof: Given ¢ € (0,1) find the integer n such that 1/(n + 1)? < e < 1/n% Then the points in
{1/k : k > n} U {0} can be covered by n + 1 balls of radius . n further balls suffice to cover
the remaining n points. Hence

M(E,e) <2n+1< ¥l (1/)1/2]

implying dim;(F) < 1/2. On the other hand, as the distance between two neighbouring points

is
1 1 1 1

S — >
ko k+1 k(k+1) — (k+1)2°

we always need at least n — 1 balls of radius € to cover F, which implies

M(B,e) >n—1> 25 (1/e)'?,

hence dim,,(F) > 1/2. ]

The previous example shows that the Minkowski dimension does not have the countable stability
property
oo
dim | | By = sup {dim B : k > 1}.
k=1
This is one of the properties we expect from a reasonable concept of dimension. There are two
ways out of this problem.

(i) One can use a notion of dimension based on covering with balls of varying size. This
captures finer details of the set and leads to the notion of Hausdorff dimension.

(ii) One can enforce the countable stability property by subdividing every set in countably
many bounded pieces and taking the maximal dimension of them. The infimum over the
numbers such obtained leads to the notion of packing dimension.

2.1.2 The Hausdorff dimension

The Hausdorff dimension and Hausdorff measure were introduced by Felix Hausdorff in 1919.
Like the Minkowski dimension, Hausdorff dimension can be based on the notion of a covering of
the metric space E by balls. A covering of E by balls is an at most countable collection of balls

B(xla’rl)a B(anTQ)aB(x?nrii)a s
with

00
E C U B(wi,m) .
=1

For every s > 0 we say that the s-value of the covering is
o0
>
i=1
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In the case of Minkowski dimension we look at coverings of E by finitely many balls
B(zy,¢€),...,B(zk,e) with equal radius and the s-value is in this case ke®. We define the
number

M*(E) = inf{kes : B(z1,¢€),...,B(zk,¢€) is a covering of E} ,

roughly speaking this corresponds to the value of the most efficient covering by balls of equal
radius. We now show that

di_mME:inf{s >0: M°(E) :0} :sup{s >0: M*(E) > 0}.

Indeed, if dim,,;E < s then, for every dim,,F < n < s, there exists arbitrarily small € > 0, and
a covering by balls of radius € with k£ < 1/&" balls and hence an s-value smaller than
£y,
en
We infer that M*(F) = 0. If dim,,F > s then, for every dim,,E > n > s, for sufficiently small
e > 0, every covering by balls of radius € consists of at least £ > 1/&" balls, hence must have an

s-value exceeding

ES

en
We infer that M*(E) > 0, proving the claim.

€l0

Looking back at the example of Lemma 2.3 one can see that covering with sets of fixed radius
does not capture the fine features of a set if these occur in very different scales at different places.
The set {1/n : n > 1} U {0} can be covered much more effectively if we are allowed to decrease
the size of the balls as we move from right to left. The terminology of the s-values of a covering
allows to formulate a concept of dimension, which is sensitive to this effect.

Definition 2.4 For every a > 0 the (spherical) a-Hausdorff content of a metric space E is
defined as

o
S¥(F) = inf{ er‘ : (B(z4,71i)) is a covering of E},
i=1

informally speaking the a-value of the most efficient covering. If 0 < s < t, and S*(F) = 0,
then also S'(E) = 0. Thus we can define

dim F = inf{s >0: S%(F)= 0} = sup{s >0: S%FE) > 0},
the Hausdorff dimension of the set E.

Remark 2.5

(1) The Hausdorff dimension may, of course, be infinite. But from the discussion above it is
obvious that dim ' < dim,,E and, in particular, subsets of R? have Hausdorff dimension
no larger than d.

Lemma 2.6 The Hausdorff dimension has the countable stability property.
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Proof: Indeed, as £ C F implies dim £ < dim F', it is obvious that
oo
dim U Ey, > sup{dimEy, : k> 1}.
k=1
To see the converse, we use

0o 0o o0
SS(kLJIEk) < inf{Zer-, : (B(:chyk,rj’k) D g > 1) covers Ek}

k=1 j=1

o0 o0
= Zinf{er-, : (B(:Ijj7]€,’)”j’k) D g > 1) covers Ek}
7=1

k=1

= Y sm.
k=1

Hence,
o0 o0
dimUEk < sup{sZO:Ss(UEk)>0}
k=1 k=1
o0
< sup{sZO : ZSS(Ek)>0}
k=1
< scflopsup{szo : Ss(Ek) >0}.
k=1
This proves the converse inequality. [ |

The concept of the a-Hausdorff content plays an important part in the definition of the Hausdorff
dimension. However, it does not help distinguishing the size of sets of the same dimension. For
example a line segment of unit length and a plus consisting of two orthogonal line segments of
unit length have the same 1-Hausdorff content. Therefore one considers a refined concept, the

Hausdorff measure. Here the idea is to consider only coverings by small sets, which need not be
balls.

Definition 2.7 Let X be a metric space and E C X. For every o > 0 and 6 > 0 define
o0 oo
HO(E) = inf{ SCIEN | Ei o B with |Ei| < 5},
i.e. we are considering coverings of E by sets of diameter no more than §. Then

HYE) =supH§(E) = limH (F)
§>0 540

is the a-Hausdorff measure of the set E.
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Remark 2.8

(1) It can be shown with some effort that the mapping B — H*(B) is a measure on the
Borel-o-field of X. This is proved in my script Mafitheorie.

(2) If X =R and o = d the Hausdorff measure H® is a constant multiple Lebesgue measure.
If o is an integer and X is an embedded a-submanifold, then H® is the surface measure.
This idea can also be used to develop vector analysis on sets with much less smoothness
than a differentiable manifold. Some hints can be found in my script Mafltheorie.

One can express the Hausdorff dimension in terms of the Hausdorff measure.

Lemma 2.9 For every metric space E we have

dimE = inf{s : H*(E) =0} =inf{s : H*(F) < oo}
= sup{s : H*(E) > 0} =sup{s : H*(F) = oo}.

Proof: Let us prove the first equality only, the other arguments are similar. Suppose dim £ > s.
Then, for all t < s, ¢ := S(F) > 0. As an arbitrary set is contained in a ball whose radius is
the diameter of the set, we have H(E) > ¢ > 0 for all § > 0. Hence, H'(E) > ¢ > 0 and this
implies H!(E) > 0 for all ¢t < s. We infer that inf{t : H!(E) = 0} > s.

Conversely, if dim E < s, then §*(F) = 0 and hence, for every § > 0, there exists a covering by
sets By, By,... with 3.9° |Ex|® < 6. These sets have automatically diameter less than §'/°,

hence H3,,,(E) < ¢ and letting 0 | 0 yields H*(E) = 0. This proves inf{¢ : HY(E)=0}<s m

2.1.3 The packing dimension

Packing dimension was introduced surprisingly late by Tricot (1982) and should perhaps be
called Tricot dimension. Our first approach to packing dimension does not reveal why the name
packing dimension is chosen.

The notion of packing dimension can be founded on reqularization of the upper Minkowski
dimension. For every metric space £ we define

o0
dimp E = inf { stpdimy B : E = | Ei, B bounded}. (2.1)
=1 i=1
dimp F is called the packing dimension of E. The reason for this terminology will become clear

from Theorem 2.12 below.

Remark 2.10 We have, for all bounded sets E, that dimp E < dimy,E and, of course, strict
inequality may hold. Obuviously, every countable set has packing dimension 0, compare with the
example in Lemma 2.3. For this definition it is not hard to see that the countable stability
property is satisfied.

Lemma 2.11 For every metric space dimp ¥ > dim F.
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Proof: For every decomposition £ = [J;2, E; of E into bounded sets, we have, using countable
stability of Hausdorff dimension,

o0
stp dimyE; > sup dim E; = dim | ) B; = dim B,
i=1 i=1 =
and passing to the infimum yields the statement. [ |

The importance of the notion of packing dimension comes from a duality relation between
Hausdorff and packing dimension: even if one is only interested in Hausdorff dimension, packing
dimension is cropping up naturally at many places, see Example 2.14 below.

The natural dual operation to covering a set with balls, as we have done in the case of Hausdorff
dimension, is the operation of packing a set with balls. For every § > 0, a d-packing of A C E
is a countable collection of disjoint balls

B(J?l,’l“l), B(IQ,’)”Z),B(IE:),,’F?,), .

with centres z; € A and radii 0 < r; < J§. For every s > 0 we introduce the s-value of the
packing as

[o¢]

Z T

i=1

The s-packing number of A is defined as
o0

s 1 s s __ 5 . . _ :
P*(A) = %ﬁ]lP(; for P§j = sup { Zr : (B(z4,7i)) a d-packing of A} .

2
=1

Note that the packing number is defined in the same way as the Hausdorff measure with efficient
(small) coverings replaced by efficient (large) packings. A difference is that the packing numbers
do not define a reasonable measure. However a small modification gives the so-called packing
measure,

P*(A) :inf{iPS(Ai) A= [jAZ-}.
=1 =1

The packing dimension has an alternative definition analogous to the definition of Hausdorff
dimension with Hausdorff measures replaced by packing measures.

Theorem 2.12 We have

dimp E = inf{s : P*(E) =0} =inf{s : P*(F) < oo}
= sup{s : P*(E) > 0} =sup{s : P*(E) = oo}.

Proof: It is easy to see that the last three equalities hold. Hence, we only need to show the
first equality. Define, for every A C E and € > 0,

P(A,e) =max {k : there are disjoint balls B(z1,¢),... , B(zk,¢) with z; € A}.
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We first show that
P(A,4e) < M(A,2¢) < P(A,e). (2.2)

Indeed, if & = P(A,¢) let B(xy,¢),...,B(zk,e) be disjoint balls with z; € A. Suppose z €
A\ Ule B(x;,2¢), then B(z,¢) is disjoint from all balls B(xz;,e) contradicting the choice of k.
Hence B(zy,2¢),... ,B(zk,2¢) is a cover of A and we have shown M (A,2¢) < P(4,¢).

For the other inequality let m = M(A,2¢) and k = P(A,4¢) and choose z1,... ,z, € A and
Yiy--- ,Yr € A such that

m
A C | JB(wi,2) and By, 4e), ... , B(yy, 4¢) disjoint.
i=1
Then each y; belongs to some B(z;,2¢) and no such ball contains more than one such point.
Thus k£ < m, which proves P(A,4e) < M (A4, 2¢).
Suppose now that inf{t : P*(E) =0} < s. Then there is t < s and E = [J:°| A; such that, for
every set A = A;, we have P!(A) < 1. Obviously, P{(A) > P(A,¢)e’. Letting ¢ | 0 gives

lim M (A, e)e! < lim P(A,e/2)e! < 2'PY(A) < 2.
€l0 el0

Hence dimys A <t and by definition dimp F < t < s.
To prove the opposite inequality, let

0<t<s<inf{r:P(F)=0},

and A; C E bounded with E = |J;2, A;. It suffices to show that dimys(A;) > t for some i. Since
P#(E) > 0 there is i such that P*(A;) > 0. Let 0 < a < P*(A;), then for all 6 € (0,1) we have
P§(A;) > o and there exist disjoint balls B(z1,71), B(z2,72), B(23,73),... with centres z; € A;
and radii r; smaller than § with

o0 (0]
Z kpn2 ™ > er >«
m=0 j=1

This yields, for some integer N > 0,
2N (1 — 2% a < ky,
since otherwise
o0 oo
D kn2™ < 21272 e =a.
m=0 m=0
Since r; < 6 for all j, we have 2~V ! < §. Moreover,

P(A;,27 VY > ky > 2V(1 - 28 %)a,
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which gives
sup P(Ai’e’f)gt Z P(Ai,2_N_1)2_Nt_t Z 2—t(1 . 2t_s)a_
0<e<d

Letting ¢ | 0, and recalling (2.2), we obtain

limsup M (A;,€)e’ > limsup P(4;,2¢)e! >0,
cl0 €l0

and thus dimys A; > t, as required. [ |

Exercise 2.13 Let {my : k > 1} be a rapidly increasing sequence of positive integers such that

mg

lim =0.

k—o00 M1

Define two subsets of [0, 1] by

o0
EZ{ZQU—Z rw; €{0,1} and x; = 0 if my + 1 < i < mygyq for some evenk}

e )
=1
and
F = { 2—; sz €{0,1} and z; =0 if mp + 1 < i < myyq for some odd k}
i=1
Show that

(1) dim F = dim,,;F =0 and dim F' = dim,,F = 0,
(2) dimp E = dimy/E =1 and dimp F = dimy F = 1,
(3) dim(F x F) > 1.
Example 2.14 As an example of a result demonstrating the duality between Hausdorff and

packing dimension is the product formula of Bishop and Peres (1996). In the dimension theory
of smooth sets (manifolds, linear spaces) we have the following formula for product sets

dim(E x F) =dim E +dim F'.

The example discussed in Ezercise (2.13) shows that this formula fails for Hausdorff dimension,
a reasonable formula for the Hausdorff dimension of product sets necessarily involves information
about the packing dimension of one of the factor sets. Bishop and Peres have shown that, for
every Borel set A C R?,

dimp(4) = sup { dim(A x B) — dim(B)}

where the supremum is over all compact sets B C R?. One can also show that, if A satisfies
dim A = dimp A, then the product formula dim(A x B) = dim A 4+ dim B holds.
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2.2 Techniques for calculating the Hausdorff dimension

From the definition of the Hausdorff dimension it is plausible that in many cases it is relatively
easy to give an upper bound on the dimension: just find an efficient covering of the set. However
it looks more difficult to give lower bounds, as we must obtain a lower bound on a-values of all
coverings of the set. In this section we discuss two important techniques to obtain lower bounds
for the Hausdorff dimension.

2.2.1 The mass distribution principle

The basic idea of the mass distribution principle is the following: if it is possible to distribute
a positive amount of mass on a set £ in such a manner that its local concentration is bounded
above, then the set must be large in a suitable sense.

For the purpose of this method we call a measure y on the Borel sets of a metric space E a mass
distribution on E, if
0<u(E) <oo.

The intuition here is that a positive and finite mass is spread over the space F.

Theorem 2.15 (Mass distribution principle) Suppose E is a metric space and s > 0. If
there is a mass distribution p on E and constants C' > 0 and 6 > 0 such that

nU) < ClUP
for all closed sets U with diameter |[U| < 6. Then

H(E) > @ >0,

and hence dim E > s.

Proof: Suppose that {U; : i > 1} is any covering of E with |U;| < é. Denote by V; =cl U; the
closure of the covering sets and observe that |V;| = |U;|. We have

oo oo oo oo
0<uE) <p(UW) < um <X vir=cy il
i=1 i=1 i=1 i=1
Passing to the infimum over all coverings with diameter < ¢ yields

Him) > "0

and letting ¢ | 0 gives the statement. [

Remark 2.16

(1) The mass distribution principle is the reason why we were so keen on defining probability
measures on self-similar sets, see the next section for the application of the mass distribu-
tion principle to self-similar sets.
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(2) The following converse of the mass distribution principle is called Frostman’s Lemma:

Suppose that E is a complete separable metric space and H*(E) > 0. Then there exists a
mass distribution p on E such that p(B) < |B|® for all bounded Borel sets B.

This result was proved by Howroyd (1995) in the present setting, but result for closed subsets
of R is older and probably due to Frostman (1935). In the proof the main difficulty arising
is that, if H*(E) = oo, one has to find a subset A C E with 0 < H*(A) < oo.

2.2.2 The potential theoretic method

In this section we present a lower bound for the Hausdorff dimension, which is particularly
interesting in applications to random fractals: The potential theoretic method. It is based on a
localization of the mass distribution principle.

Definition 2.17 Suppose p is a mass distribution on E and s > 0. Then, for every x € E, the
value

_ B
ds(p, z) = limsup 7N( (:SE’T))
rl0 r

is called the upper s-density of u at x.

Theorem 2.18 (Local mass distribution principle) If u is a mass distribution on the met-
ric space E, and A C E a Borel set with

dg(p,z) < C forallz € A,
then H*(A) > %, and, in particular, dim A > s.
For the proof we make the following observation:
Lemma 2.19 The function z — /J,(B(ZE,’F)) 18 upper semicontinuous and hence measurable.
Proof: We have to show that, for all a > 0, the set
F={xeFl : uB(z,r)) <a}

is open. Let z € F', then
p(B(z,r+¢€)) L p(B(z,r)) ase 0.
Hence, there is € > 0 such that u(B(z,r + ¢)) < a. We infer that, for all y with d(y,z) <,

1(B(y,r)) < p(B(z,r+¢)) <a.

Thus y € F and we have shown the statement. [ |

Proof: Now we prove the local mass distribution principle. Fix § > 0. The set

As = {x € A :V0<r <4 wehave u(B(z,r)) < Crs} = ﬂ {:E € A: pu(B(z,r)) < Crs}

0<r<s
reQ
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is a Borel set. Suppose {U; : i > 1} is a covering of A by sets of diameter at most 4. If
x € U; N Ag, then U; C B(z, |U;|) and thus pu(U;) < ,u(B(:Jc, |UZ|)) < C|U;|*, and hence

o0
p(As) < Y0 u(n) <O U
U;NAs#£0D =1
Passing to the infimum over all such coverings yield
1(As) < CH(A).

Now let § | 0 and observe that pu(As) T 1(A) and H3(A) T H*(A). We infer that p(A) < CH*(A),
as claimed. ]

We now come to the potential theoretic method and introduce the necessary terminology.

Definition 2.20 Suppose p is a mass distribution on a metric space E and o > 0. The a-
potential of a point x € E with respect to u is defined as

[ duly)
i) = [ o

In the case E = R? and « = 1, this is the Newton gravitational potential of the mass . The

a-energy of u is
et ) [ dul) duty)
1) = [ da(o)du(o) = [ [ I

The (Riesz) a-capacity of E is defined as

Co(F) = sup {IOA(/L)*1 : p a mass distribution on E with p(F) = 1}.

The idea of the potential theoretic method is that mass distributions with I;(1) < oo for large s
spread the mass so that at each place the concentration is small. This is only possible on large
sets.

Theorem 2.21 (Potential theoretic method) Let s > 0 and E a melric space. Suppose
there is a mass distribution p on E with I;(n) < oo. Then H?*(E) = oo and, in particular,
dim E > s.

Remark 2.22 In order to get a lower bound on the dimension from this method it suffices to
show finiteness of a single integral. This is very convenient for random sets, where it suffices to
show that Els (1) < oo for a (random) measure on the random set E in order to get dim E > s
almost surely.

Proof: Let p be a mass distribution 4 on E with Is(p) < oo. Then, clearly, u{z} = 0 for all
z € E. Put
Ey={z€E : ds(p,z) >0},
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and note, using Lemma 2.19, that this is a Borel set. If x € F; there exists ¢ > 0 and r; | 0
such that
w(B(z, ;) > erf.

As p{z} = 0 there exist small 0 < ¢; < r; such that B; = B(z,r;) \ B(x, ¢) satisfies
1 S

By passing to a subsequence, if necessary, we may assume 7;y; < ¢; and hence the sets
By, By, Bs, ... are pairwise disjoint. We infer that

o dply) |« dply) o 1S~ —s _ oo
¢S(x) _/d(m,y)s S ;/Bl d(x,y)s = 42 v .

=1

However, because

@mz/@wmw<m,

we infer that pu(F;) = 0. But for all z € E'\ E; we have ds(u, z) = 0 and thus, for all C > 0 by
the local mass distribution theorem,
E\E)) p(E)

() > e (m\ ) > PEAE)

Hence, letting C' | 0, we get H*(F) = oo, as claimed. [

2.3 The dimension of self-similar sets
We start with an upper bound, which can be given in a quite general situation.

Theorem 2.23 Let (¢1,... ,¢,) be an iterated function system on a closed subset X C R with

contraction coefficients (ci,... ,cn). Then there is exactly one number s > 0 with
n
Z ;i =1.
=1

If K is the attractor of the iterated function system, then H*(K) < |K|* and dim K < s.

Proof: The function p(z) = Y 1, ¢¥ is continuous, strictly decreasing with p(0) = n > 1 and

i=1"1
lim,_, - p(x) = 0. Hence, by the intermediate value theorem, there is exactly one s > 0 with
p(s) = 1, which is the unique solution of our problem.

By induction from the definition of the attractor, we see that, for every k,

K= | oo o0du(K).

(z1,---57p)
e{1,...,n}k
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Recall that ¢ = max? ; ¢; < 1. As
‘¢931 o”'o¢1’k(K)‘ SCCEI T Cgy |K| SCk|Kv|

Given 6 > 0 we can choose k so large that ¢*|K| < §. Then

{$r 000 60, (K) (w1, ) € {1, m}F)

is a covering of K with s-value

S

Yo bmoodn(K) <) eod K[
(zl,...,zk) (zl,...,zk)
e{l,...,n}k e{l,...,n}k
n n
= D> &) Gkl =K,
r1=1 =1

using the defining property of s. This implies that Hj(K) < |K|° and the result follows by
letting 6 | 0. ]

When can this upper bound be sharp? First of all the contraction property needs to be sharp.
This is the case if the contractions ¢; are similitudes. Secondly, the parts ¢;(K) should not
overlap too much for different values of 7. This is the case if ¢;(K) N ¢;(K) = (. This last
condition, frequently called the strong separation condition is too restrictive, it excludes examples
like the Sierpinski gasket and the von Koch curve, where the parts ¢;(K) touch in single points,
but do not overlap. We now formulate a weaker condition, expressing that parts may touch, but
do not overlap.

Definition 2.24 An iterated function system (¢1,...,¢n) consisting of similitudes ¢; : R? —
R satisfies the open set condition, if there is a mnonempty, bounded open set V. C R with

¢i(V)Np;i(V) =0 for all i # j, and V D U, ¢:(V).
Example 2.25
(1) If ¢p;(K) N ¢;(K) = 0 for all i # j, then the open set condition is satisfied.
(2) The von Koch curve and the Sierpinski gasket satisfy the open set condition.
Proof: In (1) we choose ¢ > 0 so small that, for the set
V= {:1: e R? : there is y € K with d(z,y) < 6}

we have ¢;(V) N ¢;(V) = 0 for all ¢ # j. Then, recalling the definition of the parallel body,
U 6iv) c Jgu(K D © (| 6i(K) ) fee] = Klee] € V.
i=1 i=1 i=1

This shows that the open set condition is fulfilled in the situation of Example (1) and (2) can
be demonstrated with a picture. [ |
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Theorem 2.26 Let K be a self-similar set, which is the attractor of the iterated function system
(f1,... ,¢n) consisting of similitudes ¢; : RY — R with contraction ratios 0 < r; < 1. The

unique solution s of
n
s __
E Ti = 1,
i=1

s called the similarity dimension of the iterated function system. Suppose that the open set
condition is fulfilled, then
dimK = s,

and, moreover, 0 < H*(K) < o00.

Example 2.27

(1) The Hausdorff dimension of the unit interval, dimension is the solution s of 2?21(1/2)5 =
1, which is 1.

(2) The Hausdorff dimension of the Cantor set is the solution s of 2?21(1/3)5 =1, which is
log2/log 3.

(3) The Hausdorff dimension of the Sierpinski gasket is the solution s of 2521(1/2)5 =1,
which is log 3/ log 2.

(4) The Hausdorff dimension of the von Koch curve is the solution s of 2?21(1/3)5 =1, which
is log4/log3.

For the proof of Theorem 2.26 note that, considering Theorem 2.23, it suffices to prove
H#(K) > 0. The first step in the proof is the following lemma.

Lemma 2.28 Suppose that {V; : i > 1} is a family of disjoint open subsets of RY, such that
every V; contains a ball of radius a1r and is contained in a ball of radius asr. Then every ball
of radius r intersects at most (1 + 2a)%a;® of the sets in {cl (V;) : i > 1}.

Proof: Suppose B = B(z,r) is a ball of radius 7. Suppose that V; is such that BN clV; # 0.
Then

Vi C B(z, (1 + 2as)r) .

Suppose ¢ sets from {clV; : i > 1} intersect B. By comparison of volume, denoting the Lebesgue
measure by /,

(14 2a2)?r40(B(0,1)) = £(B(z, (1 + 2a2)r))
> > W)
clV;NB#0
> g(arr)(B(0,1)),
hence ¢ < (1 + 2a9)%a; . |
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We now complete the proof of Theorem 2.26. We use the notation, for £ C X,

E[Zﬁl,--- axk] :¢x1 Oo¢xk(E)

The proof is based on the mass distribution principle. The mass distribution we are using is
the self-similar measure p associated with the iterated function system (¢1,...,d,) and the

probability vector (rf,...,r?). Here it is vital to note that our choice of s is the only one which

makes this vector indeed a probability vector. Recall that

k
M(K[xla ,IEk]) > HT’;.J. :
7j=1

Now we have to prove that this measure u satisfies the conditions of the mass distribution
principle. Let V' be the bounded open set from the open set condition of our iterated function
system. Let a; > 0 be such that V contains a ball of radius a1, and let as be the radius of a
ball containing V.

Let 1 > p > 0. For every (z;) € ¥, there is exactly one k with
IriL‘l ...Irmk S p < IriL‘l ...Irmk—l'

Let
S={(z1,...,z) ¢ (z:) € T}

By the open set condition, the set system
{V[(I,‘l,... ,xk] : ((I,‘l,... ,:Ek) € S}

consists of pairwise disjoint sets. Every set V[zy,... ,xx] contains a ball of radius

n
1Ty Ty, = 01 Ijnzl?’l"j -p

and is contained in a ball of radius
Tz " Ty S A2 P

Now we use Lemma, 2.28 and see that every ball B of radius p intersects at most

n —
qg=(1+ 2a2)dafd(mi{17“j)
]:

sets from the collection
{d Viz,... ,zk] : (z1,... ,21) € S}.

We now show that this set system covers K. With the notation of the first chapter we have
n
Vo Jsi(v)=2eV).
i=1

Hence, using also continuity of the mappings ¢1, ... , ¢p,

AV 2O @(cdV)De*(cdV)D....
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From the results of the first chapter we know that

lim ¢*(clV) = K,

k—o00
in the Hausdorff metric. Altogether this gives c1V D K and
clVizy, ... ,x] D Klz1,... ,zg].

As the collection
{K[(L‘l,... ,(I:k] : (:El,... ,(I,‘k) S S}

covers the set K, this is also the case for
{AV]z1,... 2] : (z1,... ,21) € S}.

If now A is a closed set with diameter p, then there is a ball B of radius p containing A. We
infer

u(A) Sp(BNEK) <Y s -oori,

where the sum extends over all (z1,...,z;) € S with
Bnel Vizy,... ,xx] #0.
But, by Lemma 2.28 these are at most ¢ summands and, by definition of k£, we infer
p(A) < qp® = (1+ 2a2)dafd(1]1£i{”“j)fd A7
As this holds for all closed sets A with diameter less than 1, p is a mass distribution satisfying

the conditions of the mass distribution principle and we obtain H*(K) > 1/q and, in particular,
using also the upper bound of Theorem 2.23, we get dim K = s.
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Chapter 3

The geometry of fractal sets

In this chapter we show by example that self-similar sets have a very different geometry compared
to the objects of classical geometry. The systematic study of these differences belongs to the
mathematical field of geometric measure theory. We cannot give a more detailed treatment of
this beautiful mathematical field here, but hope to make the reader a little bit curious to see
more. An excellent reference for the subject of geometric measure theory is the book “The
geometry of sets and measures in Kuclidean spaces” by Pertti Mattila.

3.1 Projections of self-similar 1-sets

3.1.1 Projections and irregularity

The principal issue of this chapter is to juxtapose geometric properties of self-similar sets to
properties of classical geometric objects. We call a set C C R? a 1-set if

0<HY(C) < .

Note that this implies that dim C' = 1, but is strictly stronger. The most natural case for a
comparison is between two 1-sets. We shall treat a striking example in this section.

Suppose that C C R? is a self-similar set, which is the attractor of n contracting similitudes
é1,...,¢n with contraction ratios 1/n. We assume that the similitudes ¢ do not involve
rotations, so that there are vectors a, € R?> with

x
Pr(z) = — +ak.
n
We also assume that the strong separation condition holds. In this case the Hausdorff dimension
of C equals 1, because
n 1\ -
Z(—) =1liffa=1.
n

k=1

Moreover, C'is a 1-set. The easiest examples are Sierpinski carpets, based on dividing the unit

square into n2 non overlapping compact subsquares of sidelength 1/n and picking a subcollection
of n disjoint squares.
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It is natural to compare the 1-set C' with the 1-sets typical from classical geometry, namely
differentiable curves. For clarity, let v : [0,1] — R? be an injective differentiable mapping, and
consider its image [0, 1] as the differentiable curve . The set [0, 1] is easily seen to be a 1-set.

For a comparison of the 1-sets v[0, 1] and C' we will first use projections. We call a set S C R? in
the plane invisible from direction 6 € [0, ) if the orthogonal projection proj, along lines making
an angle 6 with the z-axis maps S onto a set of Lebesgue measure zero.

Projection of a differentiable curve [0, 1] gives an interval for all directions § and this interval is
degenerate to a single point only in the situation that <y is a straight line and we project parallel
to this line. In other words, differentiable curves are visible from all but at most one directions.
See how different the situation is for the self-similar set C'.

Theorem 3.1 The self-similar 1-sets C' above are invisible from almost all directions 6 € [0, 7).

3.1.2 Self-similar 1-sets are invisible from almost all directions

Theorem 3.1 follows from general but hard results of geometric measure theory. In this section
we give a direct proof, which is new and due to Peres, Simon and Solomyak (2000).

For every projection angle € € [0, 7) we let Ly be the line through the origin, which is orthogonal
to the projection direction #. By C(0) we denote the orthogonal projection of C' onto that line,
the projection itself we call proj,.

Observation: C(f) is a self-similar set on the line Ly, which has similarity dimension 1. Indeed,
if a;(#) is the projection of the vector a; onto Ly, then

o= Low) + o).

3

Of course, we must expect that the parts of C'(#) have a certain overlap.

We now formulate and prove some lemmas about self-similar sets K on the line with similarity
dimension 1. So suppose that

K:Uq/;i(K):U%KeriCR, (3.1)
i=1

for 1;(x) = z/n + b;. Abbreviate K; = 1;(K). Denote by ¢ the Lebesgue measure on the line.
Lemma 3.2 /(K; N K;) =0 for all i # j.

Proof: Fix i # j. We have

n n

(Lnj Ki) < 0K - 0(Ki N K;) = iZE(K)—E(KiﬂKj)
:€(K:) ((K; ﬂ:K) .

Hence the last term must vanish. [ ]
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Lemma 3.3 There exists i # j such that K; N K; # (.
Proof: Suppose that all K; and K; with 7 # j are disjoint. Then there exists € > 0 such that

the parallel bodies Kj[e] and Kj[e] are also disjoint. Now

n

0(K[e]) = Zn:e(Ki[g]) = nt((FK)[e)) = nf(%K[en]) — ¢(Klen)).

This is a contradiction, as K is compact and nonempty. [ |

Lemma 3.4 If {(K) > 0 and n < 1, there ezists an interval J such that £(K NJ) > n|J|.

Proof: We can assume without loss of generality that K C (0,1). Then (0,1)\ K is an open set
and its connected components are a collection of open intervals Iy, I, I3,..., which we order
starting with the biggest one. If this collection is finite, we are done, so assume it is infinite.
Clearly,

UK)=1-=Y ]I,
j=1

For a given 1 < 1, we choose n so large that
UK) -
e 1

The complement [0,1] \ U;'L:1 I; is a collection Jy,. .. , J,41 of disjoint compact intervals whose
union contains K. Suppose now that E(K N Jj) < n|J;| for all j. Then,

n n+1 n+1 n
n(1-Y151) <r) =Y (K g) <nd 1l =n(1-YI5]).

j=1 j=1 j=1 j=1
As this is a contradiction, we infer that there must exist some j with £(K N J;) > n|J;|. |
By iterating (3.1) we get

K= |J K,
w:|u|=m

where u = (u,... ,um) € {1,... ,n}™ are the words of length |u| =m > 1 and

Ky =y, 00y, (K)=m{(zg) : 1 =u1,... , T = Un} .

The parts may overlap a lot and for any two distinct words u and v of length m, we call K, and
K,, e-relatively close if

K, = K, + z for some z with |z| <en ™.

The intuitive idea now is that, if too many parts of the set K are e-relatively close, then K must
be small. The following lemma is a consequence of a theorem of Bandt and Graf (1992).
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Lemma 3.5 (Bandt-Graf Lemma) If, for all € > 0, there ezist two distinct words u # v of
the same length such that K, and K, are e-relatively close, then £(K) = 0.

Proof: Suppose that ¢/(K) > 0. By Lemma 3.4 there exists a nondegenerate interval J such
that £(K NJ) > (0.9)4(J). Let e = (0.1)4(J) > 0.

By our assumption we find K,, and K,, which are e-relatively close. We write
K,=n""K+b,and K, =n""K +b,.

Define
Ju =Py, 00y, (J) and Jy, = thy, 0+ 0y, (J).

Then, simply by scaling,
((Ky N Jy) > (0.9)£(Jy,) and £(K, N Jy) > (0.9)£(J,).
As K, and K, are e-relatively close, we get that
[bu = by| < (0.1)€(T)n™™ = (0.1)£( ).

Hence
KN K > 0(7,000) = (00) (£(T) +6(7,)) > (06)£(7,) >0,

contradicting Lemma 3.2. |
Having collected the necessary information about self-similar sets on the line we come back to
our projection problem. For every ¢ > 0 define
Ule) := {0 € [0,m) : there exist u # v such that
C(0), and C(6), are e-relatively close}.
By the Bandt-Graf Lemma,

if 0 € ﬁ U[1/n] then £(C(9)) = 0.

n=1

It therefore suffices to prove the following lemma.
Lemma 3.6 For every e > 0, the set U[e] has full Lebesque measure, i.e. £(U[e]) = .

To prove this we need a criterion for a set on the line to have Lebesgue measure zero. The
following measure theoretic lemma gives a so-called porosity condition.

Lemma 3.7 Suppose I is an interval and U C I a Borel subset such that there exist a,b > 0
such that, for every 6 € I, the following condition holds

for all & > 0 the interval [0 — ad, 0 + ad] contains an interval

of length §b, which is disjoint from I\ U. (3.2)
Then ¢(I\U) = 0.
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The condition (3.2) says essentially that in every interval the set I\ U has a hole of size at least
comparable to the length of the interval, i.e. the set I \ U is porous.

Proof: Divide I into finitely many nonoverlapping compact intervals of length 2ad. From each
such interval we can remove an open interval of length db, which does not contain points from
I'\U. The remainder is a union of compact intervals of total length |I|(1—b/2a). Now apply the
same method to each of the remaining intervals, and so forth. After n steps we see that I\ U is
contained in intervals of total length less than |I|(1—b/2a)". Letting n — oo gives £(I\U) =0. m

We now come to the proof of Lemma 3.6. Without loss of generality we can assume that C
is contained in the unit cube [0, 1]?, otherwise we can rescale the set and translate it into the
unit cube without changing the validity of the statement of the theorem.

We verify the porosity condition (3.2) for the set Ule] C [0, 7).

Observe first that it suffices to check (3.2) for ¢ of the form n~"™, m arbitrary. The condition
then holds for all § with a slightly smaller constant b.

Fix 0y € (0,7). By Lemma 3.3 there exist ¢ # j such that C'(6y); N C(6); # 0. In particular,
there exist, for every m, words u = (i,ug,... ,uy;) and v = (j,ve,... ,vy) such that

C(600)u NC(6o)y, # 0.

Recall that we have denoted C, := ¢, o--- 0 ¢,, (C) and that this set can be written as

C, = (%)mC’wLau,

for a suitable vector a,. As C' C [0, 1]?, the set C, is contained in the cube

Qy = (%)m[o, 12 + ay .

Let 6, be the angle of the line going through a, and a,. Then @, and @, have the same
projection in direction #; and so do C, and C,.

As the two cubes @), and ), have distance < 1 there exists a universal constant ¢ > 0 such that,
foralle > 0and 0 € (61 —cn ™e,0; +cn "e), we have Qy(0) = Q,(0) + = for some |z| < en ™.
Hence also C(0), = C(0), + z for all 6 in this interval and some |z| < en™™. In other words
this interval is contained in Ule].

Choose § > 0 as in the strong separation condition, i.e. such that dist(Ck,C;) > ¢ for all
1 <k #1 < m. Then, in particular, dist(Cy, Cy) > § and we get, for some constant d > 0,
n- " n-

— < < <
01 =0l < 4T ey < achey <4

This proves the porosity condition for a = d/de + ce and b = 2ce as above. Hence Lemma 3.6
and Theorem 3.1 are proved.

Example 3.8 Take the unit cube Iy = [0,1]? in the plane. Divide Iy into 16 nonoverlapping

compact subcubes and remove all but the four cubes in the corners. Call the resulting set I;.
Proceeding like this we get a sequence I, ... , I, of compact sets with Ij, consisting of 4% cubes
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of sidelength (1/4)*. Theorem 3.1 shows that the intersection C' = NI, is invisible. Another
way to formulate this is with the help of Buffon’s needle.

Throw a needle I randomly on [0, 1]2. Suppose the length of the needle is at least v/8, pick the
distance r from the origin to the needle uniformly in [0,1/2] and locate the centre of the needle
at a uniformly chosen point on the circle {|z| = r}. Formally, let A(#) C R be projy([0,1]?) and

define ¢ = fog 2(A(6)) dO. Then, for Borel sets © C [0,7) and B(8) C A(6),

P{I has direction 8 € © and proj,(I) € B(e)} - l/ ¢(B(6)) db.
€]

C

Such a needle is called Buffon’s needle. The probability that the random needle hits the set I,

F(n) = l/Oﬁe(lrn(e)) do.

C

The integral on the right is known in geometric measure theory as the Favard length of I,,.

The result of Theorem 3.1 shows that the probability that Buffon’s needle hits the set C' is zero.
Equivalently, lim,,_,o F(n) = 0. It is a difficult unsolved problem to say, even in this example,
how fast the convergence is. A recent article of Peres, Simon and Solomyak gives a very large
upper bound.

3.1.3 Intersections of self-similar 1-sets and curves

From Theorem 3.1 we can infer an equally striking result about the intersections of the 1-set C
with differentiable curves.

Theorem 3.9 Let C' be o self-similar 1-set as above. Then, for every Lipschitz mapping 7y :
R — R2, the intersection of the curve y(R) with C has 1-Hausdorff measure 0.

Sketch of the argument: If H!(y(R) N'C) > 0 one can select a small interval I C [0, 1] such
that the subsegment «(I) of the curve is almost completely covered by C. Then the projections
of y(I) N C and y(I) are almost the same and it is clear that (I) projects on a nondegenerate
interval in all but at most one direction. This contradicts the invisibility of C. We omit the
further details.

Remarks:

e This property is frequently taken as the definition of a fractal (or irregular set) in geometric
measure theory: a l-set C' in R? is a fractal if and only if the intersection of every Lipschitz
curve y(R) with C has vanishing 1-Hausdorff measure. Analogous definitions hold for m-
sets, if m is an integer, replacing curves by manifolds.

e A deep result of geometric measure theory, the Besicovitch projection theorem states that

Theorem 3.9 and 3.1 are equivalent, i.e. a 1-set is invisible from almost all directions if
and only if it is a fractal in the above sense.
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3.2 Application: The Besicovitch problem

In this section we turn our attention to a question from the beginning of the 20th century, which
has a shocking answer. The question is simple:

What is the size of the smallest set in the plane containing a line in every direction?

This problem is frequently referred to as the Besicovitch problem. Thinking about planar sets
containing a line in every direction, only sets of infinite two-dimensional Lebesgue measure £2
come to most people’s minds. This makes Besicovitch’s answer to the above question quite
surprising.

Theorem 3.10 (Besicovitch) There exists a Borel set B C R? with £?(B) = 0 containing a
line in every direction.

In this section we will construct such sets. The argument is due to Besicovitch (1964) simplifying
his first example from 1928 considerably.

The main ingredient of the proof is the following corollary.

Corollary 3.11 There is a compact subset C C [0,1]> with 0 < H'(C) < oo, such that the
projection of C' onto the x-azis is the whole interval [0,1], but C is invisible from almost all
directions.

Proof: Take the unit cube Iy = [0,1]? in the plane. Divide Iy into 16 nonoverlapping compact
subcubes and remove all but the first and third in the top line and the second and fourth in
the bottom line. Call the resulting set I;. Proceeding like this we get a sequence Iy,..., I, of
compact sets with I, consisting of 4% cubes of sidelength (1/4)*. The intersection C' = NI,, is a
1-set and Theorem 3.1 shows that it is invisible. It is obvious from the construction that the
projection on the z-axis is all of [0, 1]. |

The remainder of the construction is astonishingly easy.
Consider the lines
l(a,b) = {(x,y) Ly = aac—l—b}, for a,b € C,
and define
B = U £(a,b).
(ap)eC
For f(a,bz) = (z,az + b) we note that B’ = f(C x R). This implies that B’ is the union of
countably many compact sets, in particular a Borel set. By assumption, for every a € [0,1]
there is b € [0, 1] with (a,b) € C, hence ¢(a,b) C B'. Thus B’ contains a parallel of every line
y = ax with a € [0,1]. Taking B as the union of four suitably rotated copies of B’ we obtain a
Borel set containing a line in every direction. All is left to show is that ¢2(B’) = 0.
By Fubini’s Theorem it is enough to show that almost every vertical line meets B’ in a set of
one-dimensional Lebesgue measure zero. Define a modified projection my(z,y) = tx + y. Then

B'n{(ty :yeRy = J €a,b)n{(ty) :yeR}
(a,b)eC

= {(t,at +b) : (a,b) € C} = {t} x m(C).
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We intend to show that
¢(m(C)) = 0 for £-almost all ¢ € R. (3.3)

Indeed, from this it follows that ¢{y : (¢,y) € B’} = 0 and we are done. To show (3.3) we see
from elementary trigonometry that, if = (61,603) € 9B(0,1) is on the sphere and 03 # 0 and ¢
is the angle orthogonal to the line through the origin and 6, then proj.(z,y) = 7y, /g, (z,y)020.
Hence (3.3) follows from the fact that proj.(C) = 0 for almost all ¢ € [0, 7). This finishes the
proof.

Remark 3.12 Higher dimensional analogues of Theorem 3.10 are partially open. But there are
also some results in the opposite direction, for example Marstrand (1979) has shown that there
is no set of Lebesque measure zero in R, which contains a parallel plane for every hyperplane.
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Chapter 4

Random fractals

In many cases of interest the concept of self-similarity arises together with randomness. The idea
that a random set can be decomposed into parts, with (up to scaling) the same distribution as
the whole set is much more general and useful than the deterministic concept of self-similarity we
have discussed so far. However, it is quite difficult to give a satisfactory definition of statistical
self-similarity. The best approach in my view is still the contribution of U. Zahle (1988). Here we
do not attempt such a general approach, but instead concentrate on a class of random sets with
a natural self-similarity, the Galton Watson fractals. These sets are naturally linked to Galton-
Watson trees and branching processes and we use the opportunity to explore the relationship
and introduce basic ideas about probability on trees. The chapter culminates with a dimension
formula for Galton-Watson fractals due to Falconer, Mauldin and Williams. A comprehensive
account of the subject of this chapter will appear in the forthcoming book by Lyons and Peres,
“Probability on trees and networks”.

4.1 Coding fractals by trees

Before entering the area of random fractals we describe a general approach to describe fractals
by means of trees with weights, so called capacities associated to the edges. We investigate how
the Hausdorff dimension of the fractal can be derived from the tree and the capacities. In later
chapters we make the tree as well as the capacities random, which allows to describe a large
class of random fractals.

4.1.1 The b-adic coding

We start with the simplest case, the b-adic coding of subsets of [0,1], which goes back to
Furstenberg (1970). Here subsets of [0, 1] are coded by subtrees of the b-adic tree.

Definition 4.1 A tree is a countable set V of vertices together with a collection E C'V XV of
edges. For every vertex v € V the set of predecessors

{weV : (wv) €k}
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consists of exactly one element, except for one element p € V', which has no predecessor. This
element is the root. For every v € V there exists a unique sequence

V= 00,V1y. v ,Up_1,Up = P with (viy1,v;) € F,

which after finitely many steps leads to the root. The number n of steps is called the order of
the element v € V.. The order of an edge e = (u,v) is the order of its endvertex v. For every
verter v € V we also assume that the set of successors or children

{weV : (v,w) € E}

is finite.
To fiz some notation, we write |u| for the order of a vertez u and |e| for the order of an edge e.

We denote the predecessor of v by U and write u — v or v = u for (u,v) € E. Every infinite
sequence of edges

(pyv0), (vo,v1), (v1,v2), (V2,03),... with (v;,vi11) € E

is called a ray. The set of rays is denoted OT.

Our interest is mainly in infinite trees. We associate infinite trees to nonempty compact subsets
of [0,1].

Definition 4.2 Suppose C C [0,1] is a nonempty, compact set and b > 2 an integer. We can
consider the system of open b-adic subintervals of [0,1]. More precisely the intervals in

(k k+1

b—n,b—n> fOTkE{O, ,bn—l}

are the b-adic subintervals of order m. We denote by Ty(C) the set of those b-adic intervals
whose intersection with C' is not empty. This set constitutes the vertices of a tree.

The tree structure is given as follows: Two such intervals or vertices are connected by an edge
if one contains the other one and their orders differ by exactly one. The root of this tree is the
only b-adic subintervals of order 0, namely [0,1]. We denote this tree by T,(C) and call it the
b-adic coding of C.

Example 4.3 In the example of the ternary Cantor set the 3-adic coding produces a binary
tree, which is isomorphic to the code space Yo = {1,2}N. Other codings, like 17-adic coding of
the Cantor set are more complicated and therefore not particularly suited for the investigation
of the Cantor set.

Our aim is to show that the b-adic coding determines the Hausdorff dimension of the set. Given
a tree T" we need a notion of size that can be related to the size of the coded set.

Definition 4.4 Suppose capacities are assigned to the edges of a tree T', i.e. there is a mapping
C : E — [0,00). A flow of strength ¢ > 0 through a tree with capacities C is a mapping
0: E —[0,c] such that
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e for the root we have Ew:w:pO(p, w) = ¢, for every other vertex v # p we have H(E,v) =
Zw Tw=v 0(“’ ’UJ) i

e O(e) < C(e), in other words, the flow through the edge e is not bigger than the capacity of
this edge.

If T is a tree and X > 0, we associate capacities of C'(e) = A7I¢l to the edges of the tree. If A
is too big or the tree is too small it may be that no flow is possible, as the following example
shows.

Example 4.5 Let T be the b-adic tree, i.e. the tree such that every vertex has exactly b succes-
sors. If X < b, then there is a flow 0 through the tree defined by 0(u,v) = b~ 1" Indeed, this is a
flow of strength 1, because

H(E,v) =1Vl = pp=(WI+D) = Z 0(1),’11]).
w:W=v
As XA < b the flow b~™ through every edge is smaller than the capacity A™" of the edge.

If X > b, then there is no such flow. If there is one, let ¢ be the strength of the flow. One can
see by induction that, for each m, one of the b™ edges of order n must have a flow 6(e) > cb™".
For sufficiently large n this contradicts the condition 6(e) < A™™.

In the example of the b-adic tree flow is possible if A < b, the number of children of every vertex,
but not if A > b. This suggests that flows can be used to define a mean number of children per
vertex and hence the size of a tree.

Definition 4.6 If T is a tree and \ > 0, we associate a capacity of C(e) = \~I¥l to every edge
e € E. Define the branching number of the tree T by

brT = sup {)x >0 : there exists a flow through T with capacities C(e) = >\_|e‘}.

The main result of this section relates the branching number of the tree T, (C) with the Hausdorff
dimension of C' C [0, 1].

Theorem 4.7
log (brT;(C))

di =
imC Togb

The key to this result is a famous result of graph theory, the maz-flow min-cut Theorem of Ford
and Fulkerson (1962). A set IT of edges is called a cutset if every ray includes an edge from II.

Theorem 4.8 (Max-flow min-cut Theorem)

max {Strength (0) : 8 a flow with capacities C’} = inf{ ZC(e) : I a cutset }
e€cll
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Proof: The proof is a festival of compactness arguments.

First observe that on the left hand side the infimum is indeed a maximum, because if {0,} is a
sequence of flows with capacities C, then at every edge we have a bounded sequence {6, (e)} and
by the diagonal argument we may pass to a subsequence such that lim 6, (e) exists simultaneously
for all e € E. This limit is obviously again a flow with capacities C.

Secondly observe that every cutset II contains a finite subset II' C II, which is still a cutset.
Indeed, if this was not the case, we had for every positive integer j a ray e, e}, e},... with
eg ¢ II for all 4 < j. By the diagonal argument we find a sequence j; and edges e; of order [ such
that ef’“ =¢; for all kK > [. Then ej,es,... is a ray and ¢; € II for all [, which is a contradiction.
Now let 6 be a flow with capacities C' and II an arbitrary cutset. We let A be the set of vertices

v such that there is a sequence of edges eq,...,e, & II with e; = (p,v1), e, = (vp—1,v) and
ej = (vj_1,v;). By our previous observation this set is finite. Let

(v, e) == 1 if e = (v,w) for some w € V',
P =1 ife= (w,v) for some w € V.

Then, using the definition of a flow and finiteness of all sums,

strength () = Z d(p,e)b(e) = Z Z #(v,e)f(e)
ecE vEAecE
= 2 0(e) ) dv.e) <D 0e)
ecE vEA ecll
< Z Cle).
ecll

This proves the first inequality.

For the reverse inequality we restrict attention to finite trees. Let T, be the tree consisting of
all vertices V,, and edges F, of order < n and look at cutsets II consisting of vertices in F,,. A
flow of strength ¢ > 0 through the tree T;, with capacities C is a mapping 0 : E, — [0, | such
that

e for the root we have >, -, 0(p,w) =c,

e for every vertex v # p with |[v] < n we have 0(v,v) =3, . »_, 0(v,w),

e H(e) < Cfe).
We shall show that
max {strength (@) : 0 a flow in T,, with capacities C}

> min { Z C(e) : II a cutset in Tn} . (4.1)
e€ll

Once we have this, we get a sequence (6,) of flows in T}, with capacities C' and strength at least

¢ = min { Y ec Cle) @ II acutset in T } By using the diagonal argument once more we can
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get a subsequence such that the limits of 6,,(e) exist for every edge, and the result is a flow 6
with capacities C and strength at least ¢, as required.

To prove (4.1) let 0 be a flow of maximal strength ¢ with capacities C' in T}, and call a sequence
P = Vo, V1,...,0, with (v;,v,11) € FE,, an augmenting sequence if 0(v;,v;11) < C(vi,vi11). If
there are augmenting sequences, we can construct a flow 0 of strength > ¢ by just increasing
the flow through every edge of the augmenting sequence by a sufficiently small € > 0. As 6 was
maximal this is a contradiction. Hence there is a minimal cutset II consisting entirely of edges
in F, with 8(e) > C(e). Let A, as above, be the collection of all edges which are connected to
the root by edges not in II. As before, we have

strength (0) =Y _0(e) Y p(v,e) =Y _0(e) > > Cle),

ecE vEA ecll ecll

where in the penultimate step we use minimality. This proves (4.1) and finishes the proof. m

Proof of Theorem 4.7: The crucial principle behind all this is

a cover of C by b-adic intervals is essentially the same as a cutset of Ty(C).

To see this, recall that the vertices e € E correspond (in fact, are) exactly those open b-adic
intervals, which hit C. The length of the interval e is exactly b=, Let D be the set of all b-adic
points k/b" for some integer k,n. Note that D is countable, so that C'\ D and C have the same
Hausdorff dimension. If z € C'\ D, there exists a decreasing sequence of open, dyadic intervals
I, 15,13, ... such that the order of I,, is n with (), I,, = {«}. This is exactly a ray in T,(C). If
IT is a cutset there must be some e € II with e = I,, by definition of a cutset. In other words,
the intervals in the cutset are a cover of C'\ D and, for s = log A\/logb the s-value of this cover
is

D pmelel =y Al (4.2)

ecll e€ll

First suppose that A < brT,(C). Then there is a flow through T3(C) with C(e) = A~lel with
strength () = ¢ > 0. By the Ford-Fulkerson Theorem for every cutset IT we have

doald>e>o0,

ecll

Note that an arbitrary set E; C [0,1] with b~ ! < |E;| < b~ ™ is contained in at most two open
b-adic intervals of order n. Hence, if F1, E5, E3, ... is an arbitrary cover of C', we can get a cover
of C by open b-adic intervals Iy, I, ... with s-value

o oo

SO <2° Y B

i=1 i=1

We note that, using (4.2),

> 1 — 1 c

. 15— el
DB 2 g5 ) I =g ) A2 g5 >0,
=1 =1 ecll
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hence (here the original definition of Hausdorff dimension, based on Hausdorff content is used!)

dimC > s = @,
log b

and letting A tend to brT,(C) gives

dim ¢ > 08P (C)
log b

For the converse inequality we suppose that dim C' > s. Then there exists ¢ > 0 such that
every cover of C' (or, in fact C'\ D) has s-value at least ¢. Suppose moreover that II is an
arbitrary cutset of Tj(C). Then {e : e € I} is a cover of C'\ D and hence Y,y A/l > ¢ with
s =log A/ logb. By the max-flow min-cut Theorem we have

max {strength (0) : 0 a flow with capacities C(e) = )f'e‘} >c>0,

hence a flow through T,(C) with capacities C(e) = A~l°l exists and we infer that br T,(C) > X =

b%. Hence
< log br T, (C)

log b
and the result follows for s tending to dim C'. |

4.1.2 More general coding by trees

There is a more general way than b-adic coding to relate trees and compact sets, which is also
very useful in higher dimensions. Denote the interior of a set I by int I. For any infinite tree
T we identify a ray e, eq,es,... € 0T and the corresponding sequence of vertices vy, v1,v2, . ..
with €; — (vi_l,vi).

Definition 4.9 Let T be an infinite tree. To each vertexr v € T we associate a compact set
0 #1, CR? as follows

I, = cl(intI,), (4

(u,v) € E =1, C I, (4.

uU="17and u#v=>int [, Nint [, = (), (4

(4

for all &€ = (vg,v1,v2,...) € T we have lim |I,, | =0,
n—oo

Cy = inf

Then we associate a set I(T) to the tree T with marks {I, : v € V'}, by

(= J N

£€oT veg

We call I(T') a tree fractal.
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Before giving examples of tree fractals we show the following simple facts about sets associated
to trees.

Lemma 4.10

(1) lim max|I,| =0,

n—o0 |v|:n

@I1m= U L-

n>1[v|=n

Proof: Suppose the contrary of (1). Then there exists ¢ > 0 and a sequence of vertices v* with
|v¥| = j(k) and limy_, j(k) = 0o such that |I.| > ¢ for all k. Let

p=uvf,... ,v;-“(k) = o* with (vf |,0F) € E.

By the usual diagonal argument we can find v; € V and a sequence nj with v;'"* = v; for all
i < k. Then & = vy, v1,... is a ray with |I,, | > ¢ for all k, contradicting (4.6).
If z € I(T), there exists a ray £ = vy, v1,v2,... € 0T with = € I,,, for every n, hence

wEﬂ UIU'

nZl |fu|:n
Conversely, if z € (51 =y v and z € I, for v € V' with [v[ = n, then we find

p=uvg,v7,... vy =v with (v} ,v}") € E.
By the usual diagonal argument we can find v; € V and a sequence nj with v;'* = v; for all
1 < k. Then £ = vg,v1,... is a ray with z € ﬂv€§ I,,. This proves the second part. [ |

Example 4.11 Suppose that K is the attractor of an iterated function system (¢1,...,¢,)
consisting of similitudes with contraction ratios (r1,... ,7,). Suppose the open set condition is
satisfied with some bounded open set V. Then K is a tree fractal. Indeed, let T be the n-adic
tree, which can naturally be identified with |J7>_,{1,... ,n}™. To the vertex (z1,... ,2Zy) we
associate the compact set

Izy, ... zm] :Cl(qﬁml o---oqﬁmm(V)).

The conditions (4.3) to (4.8) are easy to check using the relations clint cl = cl and int clint = int.
To see that I(T) is the attractor of the iterated function system we note that all sets Iz, ... ,Zn]
are contained in I[xy,...,Zpm—1] and I[z1] C clV. Hence ®"(clV) is decreasing and, by the
contraction principle, in the Hausdorff metric,

n—o0

o0
K = lim ®"(clV) = ] ®"(clV).
n=1
Hence, our statement follows from the second part of the previous lemma.
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Example 4.12 If C is an arbitrary compact set C' C [0, 1], then we use the b-adic coding tree
Ty(C) and attach the closed b-adic interval corresponding to each vertex. Then it easy to check
conditions (4.3) to (4.8) and that C itself is the associated set. In a similar vein, using b-adic
cubes, one can see that every compact subset of [0, l]d can be coded as a tree fractal.

The most interesting examples of tree fractals arise in a random context, we defer this to one
of the following sections. We now give a formula for the Hausdorff dimension of tree fractals in
terms of the tree and associated capacities.

Theorem 4.13 If I(T) is the tree fractal associated to the tree T = (V, E) and sets {I, : v €
V'}. For every s > 0 define capacities Cs(e) = |I,|* if e = (v,v). Then

dim I(T) = inf{s : i%fz Cs(e) = 0} = sup {s . there is a flow with capacities Cs}.
e€ll

Note that the second equality follows from the max-flow min-cut theorem and that the statement
includes Theorem 4.7 as a special case.

Proof: The inequality < is easy, because every cutset II creates a covering

{Iv L (T,v) € H}

with s-value ) . Cs(e). To argue conversely, we consider an arbitrary cover

=1

by sets of diameter |E;| < |I,|. Define, for each 1,
I := {e : |I,| < |Bi| < |Iy| for e = (v,v)} .

Clearly, I1; is a cutset and
I(T)nE;cIT)c |J L.
(5,U)EHi

For (v,v) € II; we have
£(int1,) > eo|I,|* > eacl| 5| > eoct|E;|“.

Look at the sets
‘/i = {BEHi : IvﬂEZ#V), €= (531))}'

Each such set has at most ¢ < £(B(0,1))2%/(cac?) elements. Indeed, pick z € E; and let
B = cl B(z,2|E;|). Then I, C B if I, N E; # () and

(B(0,1)IE)* > ¢B) > Y l(intl,) > gesc] ||,
(v,v)eV;

from which our claim readily follows.
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Now

I(T)CG(Eir‘l U LJ)c[j U &

i=1 (Tw)eV; i=1 (v,0)€V;

-
Il

Then the cutset II = | V; satisfies

o0 o0
DL Y ILP<a) Bl
(Tw)el =1 (7w)eV; i=1

Hence, if there is a covering with arbitrarily small s-value, there exists a cutset with arbitrarily
small ) .;; Cs(e). This implies the statement. ]

4.2 Galton-Watson trees

4.2.1 The definition of Galton-Watson trees

In the previous section we have seen that the Hausdorff dimension of tree fractals depends only
on the diameters |I,| of the sets attached to the vertices. Our aim in the following is to study
random tree fractals arising by

e taking a random tree as a basis of the tree fractal,
e assigning random sets to each vertex of the tree.

If we do this in a proper way (i.e. such that conditions (4.3) to (4.8) are satisfied) we get a
random fractal and a dimension formula, which relates the Hausdorff dimension to flows on the
random tree — see Section 4.4. We thus start by studying random trees and flows on random
trees.

We consider a natural class of random trees, the Galton- Watson trees. Basically they are family
trees starting with a single particle, the root. The distribution of the offspring number of the
root is given by a sequence (pg : k > 1) with py > 0 and > 2 pr = 1. In other words, the
root has k children with probability p;. Each of these children (if there are any) has children
with the same offspring distribution and the offspring numbers of the children are independent
of each other and of their parent. This goes on forever or until there are no more children. We
now give a formal definition.

Definition 4.14 Suppose a sequence (py : k > 1) with p, > 0 and >_;2 pr = 1 is given. Let
(N(il,... yin) = n >0, (i1,... ,ip) € N”) be a countable family of #id random wvariables with
distribution given by P{N =k} = py. The set of vertices of the associated Galton-Watson tree
is formally given by

V= {(il,... vin) EN' :n>0and 1 <ip < N(iy,...,ix_1) for alllgkgn}.

V includes the empty tuple p. For all vertices v = (i1,... ,in) € V we call n the generation of
v, we write |[v| =n and let V, :={v € V : |v| =n}. The set of edges is formally defined as

E = {((il,... Vin)s (i1 ying1)) : >0 and (ig, ... ing1) € V}.
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It is not hard to see that this defines a tree with root p. The generation sizes of the Galton-
Watson tree are defined by Z, := #V,, and satisfy Zy = 1 and

L1 = Z N(v) for n > 0.
vEVL

The stochastic process {Z, : n > 0} is the Galton-Watson process associated to (py : k> 1).

A vital tool in dealing with Galton-Watson trees is the probability generating function of the
offspring variable N := N(p). It is defined by

o0
f(s) :==E{ sN} = Zpksk, for every s € [0, 1],
k=0
where we agree on putting 0° := 1. The first simple properties of f are collected in the following

lemma.

Lemma 4.15 f : [0,1] — [0,1] is convex and monotonically increasing. We have f(0) =
P{N =0}, f(1) =1 and f'(1) = EN.

Proof: It is easy to see that f maps [0, 1] into [0,1] and is monotonically increasing. Clearly,

f(0) = pp and f(1) = 1. To see the convexity we use convexity of the functions g(z) = z*,
FOz+ (1= Ny) = ge(Az+ (1 - Ny) P{N =k} (4.9)
k=0
<D (Agr(z) + (1 = Ngr(y)) P{N =k} = Af(2) + (1 = M) f(y) (4.10)
k=0

for all z,y € [0,1] and 0 < XA < 1. f is given as a power series which we differentiate term by
term,

o0
f'(s) = Zpkkskfl, for every s € (0,1).
k=1
The left derivative of f always exists (0o is a possible value) for convex functions be-
cause the differential quotient is increasing. It is also continuous from the left and thus

(1) =322, prk = EN. n

We are interested in the event {In Z, = 0}, which is called eztinction. The complementary
event is called noneztinction or survival. Nonextinction means that the Galton-Watson tree is
infinite.

4.2.2 The survival theorem

Our representations of fractals are using infinite trees, therefore we are interested in offspring
distributions where this event has positive probability. These offspring distributions are charac-
terized by the survival theorem for Galton-Watson trees. Note that the excluded case p; = 1 is
trivial.
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Theorem 4.16 (Survival Theorem) Suppose the offspring distribution satisfies p1 # 1.
Then

q:= P{ extinction } is the smallest fized point of f :[0,1] — [0,1].
We also have

P{ extinction } =1 if and only if EN < 1.

The proof uses the probability generating function and we first calculate the probability gener-
ating function of Z,.

Lemma 4.17 For all s € [0,1] we have E{s%»} = f"(s) where the right hand side is the nth
iterate of f. In particular, P{Z, =0} = f™(0).

Proof: Let U, be the collection of all finite subsets of N*, which is a countable set. We have

E{s} = 3 E{SUEEVN(”)l{Vn_IV}}

Vel,—1

= > E{HSN(U)I{Vn,1=V}}'

Ve, veV

Now {V,,—1 = V'} depends only on N(v) with |v| < n —2 and is hence independent of the (again
independent) random variables N (v) for |v| = n — 1. Hence we can continue

= Z E{HSN(U)l{Vn,lzv}}

Vey,_1 veV

= Y IR }Pvaa =7}

Vel,_1veV
= Y PP =V}
Vey, 1
= E{/(s9%},
and the result follows by induction starting from E{s%0} = E{sV} = f(s). |

Lemma 4.18 The extinction probability is ¢ = limy,_,~ f™(0).
Proof: Since { extinction } is the increasing union of the events {Z,, = 0} we have

g= lim P{Z, =0} = lim f"(0).
n—0o0

n—o0
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Lemma 4.19 Assume p; # 1. Then

(1) f(z) <z for all x € [g,1].
(2) g=11if and only if f'(1) < 1.

(3) Either g =1 is the only fized point of f : [0,1] — [0,1] or there are exactly two fized points
0<qg<1andl.

Proof: If f/(1) < 1 the graph of f is above the diagonal and as p; # 1 it intersects the diagonal
only in z = 1. By convexity, f’ is monotonically increasing and hence f'(s) < 1 for all s € [0, 1).
This means that f is a contraction and, by the contraction principle and the previous lemma,
q = lim,,_, f™(0) exists and is the only fixed point of f. 1 is a fixed point, hence g = 1.

If f/(1) > 1 the graph of f is below the diagonal in some interval (e, 1] for some 0 < e < 1.
There must be one (and by convexity only one) point § € [0, 1) where f intersects the diagonal.
Hence, we have exactly two fixed points, ¢ and 1. f : [0,g] — [0,g] is a contraction and the
contraction principle again states that ¢ = lim,,,o, f™(0) = q. [

Remark: The previous proof is better understood by drawing a picture of the possible cases of f.

Proof of the survival theorem: Assume p; # 1. Then the last lemma says that ¢ is in any
case the smallest fixed point of f : [0,1] — [0,1]. Moreover, ¢ = 1 if and only if f'(1) < 1 and
f'(1) = EN by Lemma 4.15. |

4.2.3 The Galton-Watson zero-one law

We also need a 0l-law for Galton-Watson trees. Let A be a set of trees or, equivalently, a
property of trees. We say that A is inherited if

e every finite tree is in A, and

e if the tree T € A and v is a vertex of the tree, then the subtree T'(v) whose root is v is
also in A.

Recall the definition of elementary conditional probabilities. For an event A with P(A4) > 0 we

have
P(AN B)

E{X1,}
P(4) '

P(B|A) = 27

and E{X | A} =

Theorem 4.20 (Galton-Watson 01-Law) For a Galton- Watson tree every inherited property
A has either probability q or probability 1. In particular, P{T € A‘ noneztinction } €{0,1}.

Proof: For a tree T' let N be the number of children of the root. If N = k let T1,... ,T}; be
the subtrees whose roots are the children of the root of T. Formally, T; is the subgraph with
vertices

{(z‘,z‘Q,... i) EN' i >0and 1 <iy < N(i,1lo,... ,ig_1) for alll<k§n}.
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Then

oo oo
P{T€A}=> P{Tc€Aand N=k} <) P{Ty€A,..., Ty €A and N =k},
k=0 k=0

because A is inherited. Because {1 € A},... ,{T; € A} and {N = k} are independent we can
continue with

o0

oo k
Y P{TieA,. .. . TheAdand N=k} = Y J[P{TicA}P{N=k}
k=0 k=01i=1

= E{P{Tc 4}V} = f(P{T € 4}),

using also that {T; € A} and {T" € A} have the same probability. Hence, altogether P{T €
A} < f(P{T € A}). On the other hand P{T € A} > ¢ since every finite tree is in A. By
Lemma 4.19 (1) we infer that f(P{T € A}) < P{T € A}. Therefore P{T € A} must be a fixed
point and hence is in {g, 1}. Finally, if {T" € A} has probability 1, then

P({T € A} N { nonextinction }) = P{ nonextinction }.
If {T € A} has probability ¢,

P({T € A} N { nonextinction }) = P{T" € A} — ¢ =0.

This finishes the proof. [ |

4.3 Galton-Watson networks

4.3.1 The definition of Galton-Watson networks

We now associate random capacities to the edges of the tree, leading to Galton- Watson networks.
We ask whether there exists a flow in such a network — after Theorem 4.13 we expect that this
question is closely linked to the Hausdorff dimension of random tree fractals.

Definition 4.21 Let

0= {(n,al,... Jan) 1 n € Na; € (0,1]} CN® U(O,l]”

n=0

and P be an arbitrary probability distribution on Q. A random element L = (N, Ay,... ,An) of Q
is interpreted as a random offspring number N and a weight A; associated to the edge e; leading
to the ith child. Asin the definition of Galton- Watson trees we can formally construct a tree with
weighted edges from an iid collection {L(i1,... ,ip) : n > 0,(i1,... ,ip) € N'} of P-distributed
random variables. If e = (vy—1,vy) is an edge in the tree we let A(e) be the associated weight.
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If vo, ... v, is the unique path from the root vy = p to v, with e = (vg_1,vx) € E, then we
define the capacity of the edge e = e, by

The Galton-Watson tree with these associated capacities is called the Galton-Watson network
generated by P.

4.3.2 Falconer’s theorem on flows in Galton-Watson networks

The most interesting question about Galton-Watson networks is the following:

Find o criterion —in terms of P alone— for the existence of a flow on the Galton-
Watson network generated by P.

The problem of survival of a Galton-Watson tree, which we solved in the previous section, is a
special case of this: let all A; = 1, then flow is possible if and only if the tree is infinite.

The best possible answer to our question is given by the following theorem of Falconer (1986).
Note that the excluded case is trivial.

Theorem 4.22 (Falconer’s Theorem) Suppose P is the distribution of (N, Aq,... ,An) and
assume that Zl]\il A; # 1 with positive probability. Let

(1) If v <1 then almost surely no flow is possible.

(2) If v > 1 then flow is possible almost surely on nonextinction of the tree.

We give a proof, which is due to Falconer (part (1)) and Lyons and Peres (part (2)). The second
part of the proof uses the idea of percolation.

Proof of (1): If v is a vertex in the tree let A(v) be the weight of the unique edge ending in v.
We equip the subtree with root v with capacities e — C,(e) := C(e)/A(v) and let #(v) be the
maximal strength of a flow in this subtree. Abbreviating 6 := 6(p) we have

0= (AW)A(AW)OW)) = DY A@)(LA0@)). (4.11)
VU=p

V:T=p

Now suppose that v < 1 and the random variable L = (N, Ay,... , Ayx) determines the chil-
dren of the root and weights attached to the edges connecting the root to its children. Using
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independence, and the fact that 6 and 6(v) have the same distribution for every edge v,

E{0) = i]E{Ol{Nn}} - iiE{A(v)u A 0(0))1{N:n}}

n=>0 n=0v=1
= S sl E{1 A0} = 3 S B A0y JE{1 16}
n=0v=1 n=0v=1

00 N
_ ;]JE{ UlA(v)l{Nn}}]E{l /\9} — yE{1 A B} < E{1 AB).

Hence € < 1 almost surely and P{# > 0} > 0 only if v = 1. This already shows that no flow is
possible if v < 1. In the case v = 1 we write, for every nonnegative random variable X,

I1X]| := inf{a  P{X >a} = 0}.

By independence, we get from (4.11) that

N
101 = - A@)
v=1

hence, if [|0]] > 0 we have |32 A(w)|| = 1. As E{N | A(v)} = v = 1 we must have
ij\f:l A(v) = 1, which is the excluded case. Hence # = 0 almost surely, which means that no
flow is possible. This finishes the proof of the first part. [ |

161]-

Proof of (2): We first look at a fixed deterministic tree T with deterministic weights A(e)
attached to the edges. We introduce a family of random variables on this tree T as follows.
Independently for every edge e € E we let

X(e) = 1 with probability A(e)
T 0 with probability 1 — A(e).

The intuition is that an edge e is open if X (e) = 1 and otherwise closed. We consider the subtree
T* C T consisting of all edges which are connected to the root by a path of open edges. Let

Q(T) := P{T" is infinite }.

For any cutset II note that ) .y C(e) is the expected number of edges in II, which are also in
T*. Note that

;C(e) - B{ %:] Heerey } > P{e € T* for some e € T} > P{T" is infinite }.

If 6(T) is the maximal strength of a flow in 7', then the last inequality together with the max-flow
min-cut theorem shows that

Q(T) >0 = 6(T) > 0. (4.12)
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Now we use this result again for a Galton-Watson network 7', in this way performing a two-
step experiment: first sampling the network 7" and the reducing it to 7. As a result of the
experiment, 7™ is another Galton-Watson tree whose offspring number has the same law as

> X(v).
v=p

Denoting by eq,... ,en the edges starting from the root we get for the mean offspring number
of T,
N © n © n
]E{ ZX(ez)} = ]E{ ZZX(ei)l{an}} => ZE{X(ez)l{an}}
i=1 =11=1 =1:=1
o nn :O
= ZZE{A(ez)l{N:n}} = ]E{ ZA(ez)l{N—n}}
n=1 =1 n=1 i=1
N
= E{ ZA(ei)} =7
i=1

If ¥ > 1, by the survival criterion for Galton-Watson trees, we have
0 < ¢ = P{T* is infinite } = E{Q(T)}.
Hence Q(T') > 0 with positive probability, and by (4.12) we infer that 8(T) > 0 with positive
probability. In other words, P{6(T) = 0} < 1. As the event {#(7") = 0} is inherited, we infer
from the Galton-Watson 01-law that
P{6(T) = 0| nonextinction } = 1.

This had to be shown. [ ]

4.4 Galton-Watson fractals

4.4.1 Examples of Galton-Watson fractals

In this section we combine Falconer’s Theorem on flows in Galton-Watson networks and the
Hausdorff dimension formula of Theorem 4.13 to obtain a formula for a large class of random
fractals, the Galton- Watson fractals. We discuss several examples.

Definition 4.23 Let L = (N, Ay, ..., An) be a random variable with 0 < A; < 1 almost surely,
which is generating a Galton- Watson network T. Suppose compact sets I, are randomly assigned
to the vertices of the Galton- Watson tree in such o way that the following conditions are satisfied
almost surely.

I, = cl(int1,), (4.13)

(u,v) € E=1, C I, (4.14)

=71 and u # v = int [, Nint I,, = 0, (4.15)
int/,

infl00t0) S o, (4.16)
v 1|4
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Moreover, assume that the normalized diameters

C((@,v))

are the capacities of the Galton-Watson network. The the random tree fractal I(T) is called a
Galton-Watson fractal associated to the network T'.

&
1,

The main result of this chapter is the following dimension formula for Galton-Watson fractals
found independently by Falconer (1986) and Mauldin and Williams (1986).

Theorem 4.24 (Dimension formula for Galton-Watson fractals) Almost surely on non-
extinction of the Galton-Watson fractal,

dim I(T) = min{a : ]E{ iA;?‘} < 1}.

=1

Before giving the (by now well-prepared) proof, we give a couple of examples.

Example 4.25 Divide [0, 1] into three equal parts and keep each independently with probability
p € (0,1). Repeat this with the remaining intervals. Now the Galton-Watson network has a
generating random variable (N, Ay, ..., Ay) with N binomial with parameters n = 3 and p and
A; deterministic with A; = 1/3. By the survival theorem, the probability that the resulting
random set is nonempty is positive if and only if p > 1/3, also

al o 1\ 3p
{3} - (-2

This is < 1 if and only if & > 1 + iggg. Hence almost surely on nonextinction,

log p

dimI(T) =1 .
imI(T) +log3

Picking p = 2/3 produces the same dimension as the classical Cantor set.

Example 4.26 We generalize the previous example and deal with percolation fractals. Fix p €
(0,1) and a positive integer n. Divide [0,1]¢ into n¢ equal subcubes. Keep each independently
with probability p. Apply the same procedure to the remaining cubes until infinity. Now the
Galton-Watson network has a generating random variable (N, Ay, ... , Ay) with N binomial with
parameters n? and p and A; deterministic with A; = 1/n. The probability that the resulting
random set is nonempty is positive if and only if p > 1/n?%. Moreover,

al 1\« ndp
(0% _ —
{4} = (5) By =T
This is < 1 if and only if a > d + %. Hence almost surely on nonextinction,
1
dimI(T) = d + 22,
logn

Percolation fractals are sometimes used as models for porous media, like soil.
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Example 4.27 Remove from [0,1] a central portion leaving two intervals of random length
Ay, A2 € (0,1/2). We repeat this, independently, for each remaining interval. Now the Galton-
Watson network has a generating random variable (N, Ay,... ,Ay) with N = 2 deterministic
and we have

dim I(T') = a for 1 = E{A} + A5} = 2E{A{}.

If A; is uniform on [0,1/2] we have
1/2 9—a
E{ A% }_2/ dh =

and we get the equation 27T! = o 4 1, which can be solved numerically (according to Lyons-
Peres with a solution between 0.45 and 0.46).

Example 4.28 Suppose M and N are random integers with M > 2 and 0 < N < M?. Divide
the unit square of R? into M? equal squares and keep N of them in some random manner. Repeat
this procedure for the remaining squares. The generating random variable is (N, 1/M,... ,1/M)
and the probability ¢ of extinction of the associated network is the smallest solution of E{¢" } =
q. Almost surely on nonextinction,

dim I(T) = min{a L E{N/M®} < 1}.

4.4.2 The dimension formula for Galton-Watson fractals

We study a further example in the next chapter, and give the proof of the dimension formula
for Galton-Watson fractals, Theorem 4.24, now.

Proof of Theorem 4.24. Since I, D U\u\:1 I, and the interiors of theses sets are disjoint, we
have £(1,) > Zlvl 1 £(int1,) and hence

UBO,1) I, > 6(I,) > e Y 11" = e | > AY,
lv|=1 lv|=1

which implies

el Y Ad} ¢(B(0,1))

jol=1 “

By the Lebesgue dominated convergence theorem, o — E{Z\U\:1 A%} converges, for a — oo, to

zero. We infer that the set N
o 5{ 34 <1)
i=1

is nonempty. Moreover, by the monotone convergence theorem, the function is continuous from
the right on [0, 00), hence the minimum exists.

Assume first that there is € > 0 with € < A; < 1 —¢ almost surely. Then the last two conditions
on tree fractals (4.6) and (4.7) are satisfied, indeed we have for every ray (vg,vi,ve,...) that

. o
Jim [, [ < |Ip[ lim (1—¢)" =0,
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and also

I
inf L] =inf A, > ¢.
vip |Iy|  v#e

Hence the dimension formula for tree fractals, Theorem 4.13, states that

dim I(T) = inf{a : irrl[feezn ‘I@’U)‘a = 0} = inf{a : irﬁfz C(e)* = 0}.

ecll

Now the capacities C(e)® come from a Galton-Watson network with generating random variable
(N, A¢, ..., A%). Falconer’s Theorem 4.22 says that

N
i%fz C(e)® = 0 almost surely, if ]E{ ZA?} <1,
ecll 1=1

but
N

irﬁf Z C(e)* > 0 almost surely on nonextinction, if IE{ Z Af‘} > 1,
ecll =1
which gives the result.

Now consider the general case, i.e. the random variables A; may take on values arbitrarily close
to 0 or 1 with positive probability. Falconer’s Theorem gives directly that

N
E{ ZA?} < 1 implies i%f Z |I,|“ = 0, almost surely,
i=1 (v,w)ell

which means there exists a covering of I(T') with arbitrarily small a-value. Hence H*(I(T')) =0
almost surely. Note that this argument also implies that, if E{>.N | A%} =1 and 3.~ | A% #1
with positive probability, then H%(I(T")) = 0 almost surely (see the corollary below).

For the other direction consider the Galton-Watson subnetwork 7. consisting of those vertices
connected to the root by edges e = (U,v) with ¢ < A(e) <1 —e. Then I(T.) C I(T'). From the
previous argument we get that

N
E{ Z Afél{sgAiglfe}} > 1 implies dim I(7:) > « almost surely on nonextinction of 7T%.
n=1

This in turn implies, of course,
dim I(T") > « almost surely on nonextinction of 7.

Note that P{T. survives} T P{T survives} as ¢ | 0. This can be proved by a simple, purely
analytical argument based on the survival theorem. Also

N N
mE{ 3° AfLeca s} =B{ AP},
e i=1 i=1
by monotone convergence. Hence

N
E{ Z Af‘} > 1 implies dim I(T') > « almost surely on nonextinction of 7'
=1
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This implies the full statement of the theorem. [ |

The proof of the upper bounds above gives a little more than we need.

Corollary 4.29 Ifdim I(T) = a and . | A¥ # 1 with positive probability, then H*(I(T)) =0
almost surely.

Remark: Compare the following two random fractals: On the one hand Example 4.25 with p =
2/3, on the other hand the random fractal obtained by dividing [0, 1] into three nonoverlapping
intervals of length 1/3 and choosing two of the three intervals at random, proceeding like this
until infinity.

In both cases we obtain fractals of Hausdorff dimension o = log 2/ log 3. To see this in the second
case just observe that the 3-adic coding tree of the fractal is the dyadic tree, exactly as in the
case of the ordinary ternary Cantor set. The previous corollary indicates a significant difference
between the two examples. Whereas for the first case, by the corollary, the a-Hausdorff measure
is zero, one can show that in the second case the a-Hausdorff measure is strictly positive.
This can be seen from the fact that there exists a flow on the coding tree with capacities
Co(v,v) = |I,]* in the second example, whilst there is none in the first.
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Chapter 5

Fractal properties of Brownian
motion

Brownian motion, the most important of all stochastic processes, gives rise to several random
sets, which can be studied as fractals: its graph, range or level sets all have an intricate geometric
nature and their deeper fractal properties give important insight in the process itself.

5.1 Brownian motion: basic properties

5.1.1 The definition of Brownian motion

The motivation for studying Brownian motion is that it is the (up to affine transformations)
only continuous random function X : [0, 00) — R? with the following properties,

e for every h > 0 the displacements X (¢ + h) — X (¢) have the same distribution at every ¢,
e the displacements X (¢t + h) — X (¢) are independent of the past {X(s) : 0 < s < ¢},

e the mean displacement is zero.

We now give a definition of one-dimensional Brownian motion in terms of its explicit distribution
and then work out properties of its paths from this definition. The fact that Brownian motion
exists (this is not obvious!) and that it is already uniquely determined by the features above
(this is a variant of the central limit theorem) is usually shown in lectures about probability
theory, see for example my script on the subject.

Definition 5.1 A family {X(t) : t > 0} of random variables on a probability space (2, A, P)
is called a (one-dimensional) Brownian motion if

(1) X :]0,00) = Rt — X(t) is a continuous function,

(2) for all 0 < t1 <ty < -+ < ty, the increments X (t2) — X(t1),... , X(tm) — X (tm-1) are
independent,
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(3) for everyt >0 and h > 0 the increment X (t+h) — X (t) is normally distributed with mean
value 0 and variance h, i.e.

u?
)duforall:l:E]R

P{X(t+h) - <z}= \/_

Brownian motion is usually called a self-similar process. This refers to the following property,
which indicates a statistical self-similarity.

Lemma 5.2 (Scaling invariance) If {X(¢) : ¢ > 0} is a Brownian motion and s > 0, then
{Y(t) : t >0} with Y(t) := s Y2X(ts) is also a Brownian motion.

Proof: The first two properties are clearly fulfilled. The increments Y (¢t + h) — Y (t) =
h~1/2X (ts 4+ hs) — X (ts) are normally distributed with mean 0 and variance (h~'/2)2hs = s, as
required. [ |

Brownian motion has a second very useful invariance property, the invariance under time-
inversion. Again there is a transformation on the space of functions, which changes the in-
dividual Brownian random functions but leaves their distribution unchanged. The following
statement is not hard to prove, but we omit the proof here (see e.g. my script on probability
theory).

Lemma 5.3 (Time inversion property) Suppose {X(t) : ¢t > 0} is a Brownian motion.
Then the process {Y (t) : t > 0} defined by

_ 07 'Lft = 0;
Y() = { EX(1/1),  ift > 0;

1s also a Brownian motion.

5.1.2 Lévy’s modulus of continuity

Brownian motion is continuous by definition, but we now prove a theorem that makes the degree
of continuity of the paths of Brownian motion more precise. Pay attention to the order of the
almost surely and the for each in the following statement and note that a change of this order
would give a (correct, but) much weaker statement. The result is the most important ingredient
in the calculation of the upper bound for the dimension of the graph and range of Brownian
motion.

Theorem 5.4 (Lévy’s modulus of continuity) There exists and absolute constant ¢ and a
random variable € > 0 such that, almost surely, for each 0 < h <e and 0 <t <t+h <1,

X(t+h) - X(t)‘ < /ehlog(1/h).
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Remark: Lévy has shown that the constant can be chosen as anything bigger than 2, but not
2 itself. Our proof produces a bigger constant, but reading between the lines you can see how it
can be improved to give the best value of the constant.

Proof: Fix ¢ > 2. We first keep ¢ and h < 1/e fixed and calculate,

PLIX(1+h) ~ X(1)| > Vehlog(UD)} = — exp (- u?/2h) du
N \/—2_7T/clog V/elog(1/h) exp (= u'/2) du
/ 7u2/2d
m e
S 2/2‘
2cm log(l/h) \/clog(1/h)

c/2
2cmlog(1/h) —

We now focus for a moment on the special case that [t,t+h] is a dyadic interval [k/27, (k+1)/27].
Then, for all N € N,

P{\X(%) = X(2k] +h)| > /chlog(1/h) for some j > N,0 <k <2 and h =277}

< Z 2i9-ic/2 — (0/2)2 N(=¢/2) 40 as N — oo.

Hence, almost surely, there exists a random N with

k . .
h)| < \/chlog(1/h) for all j > N,0 <k <2’ and h =277,

k
(X (5) —X(5+
Choose e =27V, If0<h <eand 0 <t <t+h <1, we can write [t, ¢+ h] up to the endpoints
as the union of intervals
kE k+1 .
oM 2 with 4 J_
[2j, = } with j > N,0 < k<2 — 1,

such that for every j at most two intervals in the collection have length 277/. Picking n with
27" < h < 27! we have

[ X(t+h) - X@®)| < D|X(k/27) = X((k+1)/27)]
< 2) \/e2ilog(27)
j=n
< \/2—nlog(2n)(2\/522*j/2,/HT").
§=0
e .
The last bracket is bounded by the absolute constant 2\/EZ 9=/ 2/ +1. [ |

=0
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This theorem is sharp in the sense that the function y/hlog(1l/h) cannot be replaced by any
function decreasing faster as h | 0, see my script on probability. For Holder-continuity of
Brownian motion we have the following consequence.

Corollary 5.5 For every a < 1/2 Brownian motion X : [0,1] — R is almost surely a-Holder
continuous.

Proof: Observe that, for every a < 1/2, there is 1 > 0 such that \/chlog(1/h) < h® for all
0 < h <e;. Let € > 0 as in the theorem (i.e. random) and 6 = e Ae;. If 0 < s <t <1,
then there exist s = tg < ... <t =1, withn < 1/§ and t; — t,_1 < . Hence by the triangle
inequality,

X (8) = X ()] < SOIX () — X(tem1)] € 3 Velty — 1) Log(L/ (b — ty1) < n(t - 5)°.
k=1 k=1

5.2 The dimension of graph and range of Brownian motion

5.2.1 The dimension of the graph of one-dimensional Brownian motion
If f:]0,1] — R is a function, then the graph of the function is the set
Gy = {(t,f(t)) L telo, 1]} c [0,1] x R.

The first theorem of this section determines the Hausdorff dimension of the graph of a Brownian
motion.

Theorem 5.6 If {X(t) : ¢t > 0} is a Brownian motion and X : [0,1] — R the function given
by t — X (t), then almost surely

3
dimGx = —.
imGx =
The proof has two parts:
e The upper bound for the dimension is based on the Holder continuity established in the

last section. Using the full statement of Theorem 5.4 instead of the corollary, one could
even show that H'/?(G) = 0.

e The lower bound for the dimension is based on the potential theoretic method.
The upper bound follows immediately from Corollary 5.5 and the following easy lemma.

Lemma 5.7 If f:[0,1] = R is a-Holder continuous, then dimGy <2 — a.
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Remark: If f : [0,1] — R is continuously differentiable, then its derivatives has an upper bound
C > 0 and by the mean value theorem, we have |f(z) — f(y)| < C|z — y| and the function is
1-Holder continuous (i.e. Lipschitz continuous). By our theorem, dim Gy < 1. On the other
hand, there is a surjective Lipschitz mapping 7 : Gy — [0,1] with 7(x,y) = 2, which means that
dimGy > dim[0,1] = 1. We infer that the graph of every continuously differentiable function
has Hausdorff dimension 1. Hence our theorem implies that almost surely Brownian motion is
not continuously differentiable.

Proof of Lemma 5.7: Let § > 2 — a. Divide [0, 1] into n nonoverlapping subintervals [(k —
1)/n, k/n) of length 1/n. Let my be the minimum of f on [(k—1)/n,k/n) and M}, the maximum.
By the Hélder continuity we have My — my < C/n® hence Cn'~® + 1 vertical squares of
sidelength 1/n cover the graph over the subinterval and the S-value of the total covering is

n(Cnl_a + l)ﬂ(l/n)ﬁ < const n?77F
which converges to zero as n — co. Hence H?(Gy) = 0. [ ]

Proof of Theorem 5.6: Applying Lemma 5.7 in Corollary 5.5 we get, almost surely,

dimGxy < inf (2—a)=-.
m X_0<(1121/2( @) 2

For the converse inequality we use the potential theoretic method, and therefore we need a
mass distribution on the graph Gx. We define such a mass distribution as the image under
— (t, X (t)) of a a uniformly distributed point on [0, 1]. More formally, let

px (A) = E{t €1[0,1] : (¢, X(t)) € A} for A C R? Borel.
px is obviously a mass distribution on Gx and we have to show that, for all 1 < a < 3/2, the

a-energy of px is finite. Recall that this implies the desired lower bound.

The a-energy of px is, by definition,

[ [ 1o = sl dux (o) dut // X))+ (s — 2] dsat,

which is a random variable. To show that it is almost surely finite it is sufficient (but would not
be necessary) to show that

]E{ /01 /01 [(X(s) — X ()2 + (s — 1)7] a/stdt} (5.1)
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So it suffices to show that a single integral is finite in order to establish a lower bound. This,
however, requires some preparation, so fix ¢t € [0 1] and h > 0 and calculate, for a > 1,

B{(0x(e+m - X7 +1) ) = L [T ) e (G

_ 2\ —a/2,.—1/2 -r
\/ﬂ/o (rh + h*) T exp(2)dr

)du

1 /h o B fe's) B B

< — h2)~ /2y I/er—i—/ rh) 2y I/Zdr]
1 2

< Llhoavhpnort —h(lo‘)/Z]

< o 2 )

< C-hee,

for C' = (27r)*1/2( + == > 0. Usmg this and Fubini’s Theorem, we get

a—

{ X(s) = X(1)2 + (s — 1)2] dsdt}
/ / B (1X(s) = X(H + (s — %)~ b ds e
0 0
< C/l/1 s — t|'/27* ds dt < oo,
0 0

for 1 < a < 3/2. Hence, almost surely, there exists a mass distribution of finite a-energy on
Gx and we infer that dimGx > 3/2. [ |

5.2.2 The dimension of the range of higher dimensional Brownian motion

Next we want to study the image or range of a Brownian motion. This is not particularly
interesting for a Brownian motion in dimension one, as the image is just the interval
min X (¢), max X (¢
[te[o,u ( )’te[o,l} ®)].
which has dimension one and is of little geometrical interest. Things start to look different in
higher dimensions, though.

Definition 5.8 If Xy,..., X, are independent one dimensional Brownian motions, then the
process

X = {(X1(t),...,Xq4(t)) : t >0}
with values in R is called a d-dimensional Brownian motion.
We discuss some properties of the distribution of the increments of d-dimensional Brownian

motion. First note that the displacements X (¢ + h) — X (¢) are independent from the past
{X(s) : 0 < s <t} and have the same distribution for every ¢. From

P{X;(t+h) — Xi(t) € (a;,b]} = ) dz; for all a; < b;,

\/—/epzh
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we get for any halfopen rectangle

Q = (ai, bi] x -+ x (ag, bq]
that

d
P{X(t+h) -Xt) e} = ][]
=1

b
L \/;T—h/a ( 27@ )d‘%
= ()" [ () o

using independence and Fubini’s Theorem. As every open set is the union of countably many
disjoint halfopen rectangles @@, we have

Pl xoi<o) = ()" [, o (50

= 'y(d)<%>d/2 /Opexp (_2—22>7“d1 dr,

for a constant y(d) depending only on d, using spherical coordinates.

Lemma 5.9 Let 0 < a < 1/2. There exists a random variable C' such that, for all 0 < s,t < 1,

1X(t) = X(s)]] < Clt = s|*

Proof: This was proved in the one-dimensional case in Corollary 5.5. If ¢; is the (random)
«a-Holder constant for X;, we get

d
1X() = X () = Z|X )2 < (e — s,
=1

and the result follows with C' = /3%, ¢2. ]

i=1%

Theorem 5.10 Let d > 2. For o d-dimensional Brownian motion X we have, almost surely,
dim {X(t) L te o, 1]} —9

Proof: We have seen before that a-Holder mappings can increase the Hausdorff dimension of a
set by no more than a factor of 1/«. Hence,

dim{X(t) e o, 1]} it (1) dim,1] = 2.

For the upper bound we use the potential theoretic method again. We define a mass distribution
p1x on the compact set Iy = {X(t) : t € [0,1]} as the image measure under ¢ — X () of the
uniform measure on [0, 1]. More precisely, let

px(A) = e{t €0,1] : X(t) € A} for A ¢ R? Borel.
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px is obviously a mass distribution on Iy and we have to show that, for all 1 < a < 2, the
a-energy of px is finite. Recall that this implies the desired lower bound.

Again we need a calculation to prepare things.

—« _ 1\d/z [ —« —r? d—1
{IX(+ 1) - X@)I} = @) (7) /0 rexp (- )rt L r,
_ dVh /2 /oo sh)—e/2+d/2-1/2 —S
R [ (sh) xp (- )2 s
— ,Y(d)h—a/Q%/O S—a/2+d/2 lexp( )ds
_ C_hfa/Z,

for some constant C' independent of h and ¢. Now the a-energy of the mass distribution px is

[[1e = s duxto) duxo //HX X (1) ds dt,

which is a random variable. To show that it is almost surely finite it is sufficient to show that

o [ [ 1) - Xl dsar < oo (52

This integral can be evaluated using our preparation and Fubini’s Theorem.

{/ / X (s) = X~ adsdt} _ /Ol/ol]E{Hx(S)—X(t)llO‘}dsdt
= /01/010|8—t|a/2dsdt<oo,

which proves that dimIx > « for all a < 2. [ ]

Remark: Again our finer continuity result is the key to the (easy) proof that the range of
Brownian motion has 2-Hausdorff measure zero.

5.3 The dimension of the zeroset of Brownian motion

The problem of this section is to calculate the dimension of the zeroset of a one-dimensional
Brownian motion defined as
Z={te[0,1] =0}.

This is much more difficult than the problems we were facmg in the previous section, mainly
because we do not have a natural measure readily defined on 7, as this was the case in the
previous two examples. So one way to deal with this problem would be to define a good measure
on Z. Such a measure exists (the local time) but is quite hard to construct.

Alternative ways are based on fine knowledge about distributional properties of Brownian motion
and we are going to sketch such a way here, unfortunately I cannot give full details. The idea of
the proof is based on Galton-Watson fractals and is due to Graf, Mauldin and Williams (1988).
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5.3.1 Brownian motion and Brownian bridge

A first step is to make the problem more symmetric: as Brownian motion satisfies X (0) = 0 we
would like also to have X (1) = 0. We therefore look at a process called Brownian bridge, which
is more symmetric than Brownian motion.

Definition 5.11 Let X be a Brownian motion, then define the Brownian bridge as the process

{B(t) : t >0} with B(t) := X(t) — tX(1).

Some properties of the Brownian bridge are easy to check from this definition. The finite
dimensional marginals are given by the following density: For 0 = t) <t < ... <t, <tpy1 =1,

1 n+1
PBt :d Btn :dTL - ——— e i—1,T5) 53
{ ( 1) L1, ) ( ) €z } pl(0,0) gptl ti 1($ 1, T ) ( )

where zg = 2,1 = 0 and py(z,y) = (27t) /% exp(—(y — £)?/2t). From this density we can see
that a Brownian bridge is symmetric in the following sense.

Lemma 5.12 If {B(t) : 0 <t < 1} is a Brownian bridge, then so is {B(t) : 0 <t <1} with
B(t) = B(1 —1t).

An intuitive interpretation of (5.3) is the following:
The Brownian bridge is Brownian motion conditioned on X (1) = 1.

This becomes at least plausible when we write (5.3) in the physicist’s way

P{X(tl) =dzxq,... ,X(tn+1) = dxn+1}

P{B(t\) =dzi,... ,B(t,) =dz,} = ,
{B(t1) 1, , B(tn) Tn} P{X (tn+1) = drps1} Tp1=0

and recall the definition of conditional probabilities. With elementary probability alone we can-
not make this statement rigorous, because the event { X (1) = 1} has probability zero. However,
we do not use this, instead we build on another relationship of Brownian bridge and Brownian
motion.

Lemma 5.13 Let T =sup{t <1 : X(t) = 0}. Then the process
(VT X(1T) : 0<t <1}

is a Brownian bridge.

Proof: We use a bit more of probability than some people in the audience might know. But if
you have an intuitive feeling for the notion of a stopping time and are willing to use the strong
Markov property in the sense that “at stopping times Brownian motion essentially starts from
the beginning” you can manage.
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We start with a Brownian motion X and we have successfully finished the proof if we find
another Brownian motion Z with

V1/T X(tT) = Z(t) —tZ(1) for 0 <t < 1. (5.4)

To do this first take the time-inverted Brownian motion X defined by

5 0, ift =0;
X(t) = { IX(1/t), ift> 0.

X is again a Brownian motion and

T =sup{t<1: X(t)zO}:%forS:sup{s>1 : X(s) =0}.

Now S is a stopping time for X (whereas T' is not a stopping time for X!) and hence the process
Y defined by . . .
Y(t)=X(S+t)— X(S)=X(S+1)

is another Brownian motion. We use the substitution 1/t =1+ s or s = 1/t — 1 and calculate
VITX(T) = /1/T (tT)X (1/(tT)) = /1/StX(S/t)
= 1/StX (S +5S) =t/1/SY(sS).

Now, because S is independent of Y and by Lemma 5.2 the process R defined by R(s) =

1/SY (sS) is a Brownian motion, and it is obvious that there is yet another Brownian motion
Z with R(s —1) = Z(s) — Z(1) for all s > 1. We call its time-inversion Z, and this is, finally,
another Brownian motion. We have,

t\/1/SY (sS) = tR(s) =tR(1/t—1)
= t(Z(1/t) - 2(1)) = Z(t) - tZ(1),

which is (5.4) and we are done. ]

Note that we now know two different ways of constructing a Brownian bridge from a Brownian
motion and for a given sample path of Brownian motion the two bridges have different sample
paths! We use the lemma to prove the following.

Corollary 5.14 If B is o Brownian bridge and X o Brownian motion, then
dim{t € [0,1] : B(t) = 0} < dim{t € [0,1] : X () = 0}.

Proof: By the previous lemma there is a random variable 7" and a Brownian bridge B on the
same probability space as X such that

(te[0,1] : B(t)=0}={t€[0,1] : VI/TX(tT) =0} = {s/T : X(s) =0, s € [0,1]}.

Because x — x/T and its inverse z — =T are both Lipschitz, the set on the right has the same
Hausdorff dimension as the zero set of Brownian motion. [ |
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5.3.2 The zeroset of a Brownian bridge as a Galton-Watson fractal

We now study the dimension of the zero set of a Brownian bridge. Note that P{B(1/2) = 0} =0,
this is evident from the fact that B(1/2) has a density. We define two random variables

T, =sup{t <1/2 : B(t) =0} and Ty = inf{t > 1/2 : B(t) =0}.
By Lemma 5.12 the random variables T} and 1 — T have the same distribution (but they are
not independent!) The interval (77,75) does not contain any zeros, and we remove it from [0, 1],

which leaves us with two random intervals [0,77] at the left and [T%,1] on the right. We quote
the following fact, similar to Lemma 5.13.

Theorem 5.15 Let T} = sup{t < 1/2 : B(t) = 0}. Then the process
{V1/T\ B(tT1) : 0 <t <1}

is a Brownian bridge, which is independent of {B(t) : t > T1}.
Proof: Similar to Lemma 5.13 but perhaps a bit more awkward, hence omitted. [ |

Now we can represent the zero set of the Brownian bridge as a Galton-Watson fractal: we start
with the interval [0,1] and remove a centred random interval [T7,1 — T5]. To the left of the
removed interval, we have an independent Brownian bridge

{(V1/T1B(tTy) : 0 <t <1}
By the symmetry Lemma 5.12, we also have an independent Brownian bridge
{V1/(1 = T5)B(1 —tT») : 0 <t <1},
to the right of the removed interval. If we apply the same procedure on each of the remaining

bridges, we iteratively construct the zero set of the Brownian bridge by removing all gaps. The
essence of all this is the following:

Theorem 5.16 The zero set of a Brownian bridge B is a Galton Watson fractal with generating
random variable L = (2,T1,1—Ty). Hence dim{t € [0,1] : B(t) = 0} = «, where « is the unique
solution of

E{Ty" + (1 —T5)*} = 1.

We can now calculate the dimension by evaluating this expectation for the right «.

Theorem 5.17

E{/Ti +1-T} = 1.
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Proof: By symmetry of the Brownian bridge, 77 and 1 —75 have the same distribution, hence it
suffices, to show that E{\/1 — T} = 1/2. We have, using the definition of the Brownian bridge
and the time inversion property of Brownian motion,

T, = inf{1/2<t<1: B(t)=0}

= inf{1/2<t<1:X(t)—tX(1)=0}
inf{1/2<t<1:tX(1/t)—tX(1) =0}
inf{1/2<t<1: (1/t X (1) —0}
1/sup{l <s<2:X(s)—X(1) =0}.

1=

Because {X(s) — X (1) : s > 1} has the same distribution as {X (s — 1) : s > 1}, we have

T, < !
T T4sup{0<t<1:X(t)=0}

and, in particular,

E\/I—ng/ol xxf(x)dx

where f is the density of the random variable L giving the last visit to zero by a Brownian
motion before 1,

L=sup{0<t<1:X(t)=0}.

This density can be calculated using the reflection principle of Brownian motion.

1 1
Claim: f(z) = ——————.
T /x(l —x)
Proof of the claim: Define T}, := inf{t > 0 : X (¢) = a}, which is a stopping time. This means,
loosely speaking, that at time 7, Brownian motion starts anew and behaves independently of
what happened in the past. We get the distribution of T, from the reflection principle, let a > 0,

exp(—z?/2t) dz

P(T, <1} = P{swp X(5) 20} =2P(X() 2 a}=2 [

1
V2rt
change variables z = (\/t/s)a, dz/ds = —a/ts /%2,

2/0 L op(—a?y2s) V1 g /t ! (—a?/2s) d
= ex —a S = ——a X —a S S
t V2nt P 253/2 0 V2rsd P
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The latter integrand is hence the density of T7,. We write P, for probabilities referring to
Brownian motion with start in . We use the Markov property,

P{L<s} = /00 ! exp(—22/28)P,{Ty > 1 — s} dx

0o V218

© 1 > 1
= 2/ exp(—z2/2s / ——zexp(—2z2/2r)drdc
s (—27/2s) Y o (—2/2r)
1/°° 1 /°° 9
= — zexp(—z“(r + s)/2rs) dz dr
= [ et a2
1 />~ 1 s

= — dr
T Ji—s Vsr3r+s

1 [ /(r+8)2\1/2 s
- = d
7r/1_s< rs ) (r+s)? "
1 /s 1 d
T Jo z(l —x)

substituting x = s/(r + s) with dz = —s/(r + s)?dr. This proves the claim.

It remains to calculate one more integral.

E\/I-T 1/1 v Ly 1/1 L gp = Larcsin(1) = 1/2
—_ S T = — ————dz = — arcsin(1) = .
*Trlo Vita Vel —x) T Jo V1—x? T

We have now shown the the dimension of the zero set of a Brownian bridge is 1/2 and can infer
the desired result from this.

Theorem 5.18 If X is a Brownian motion and t > 0 we have, almost surely,

dim {s € [0,¢] : X(s) =0} = %

Proof: The arguments we have produced so far show this for £ = 1. We can use the scaling
invariance of Lemma 5.2 to get the result for every ¢ > 0. Indeed, for every a > 0 and Y (s) :=
a Y2X (sa),

Z[t] = {s €[0,t] : X(s) :0} 2 {s €[0,t] : Y(s) :0} = {s €1[0,t] : X(sa) :0} = Z[at]/a.

Because x — z/a and its inverse are both Lipschitz, we have dim Z[at]/a = dim Z[at]. We infer
that

dim Z[t] £ dim Z[at],

which implies the statement by choosing a = 1/¢. [ |
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5.4 Intersections of independent Brownian motions

The range of Brownian motion is not a Galton-Watson fractal in any obvious way. However
there is a fascinating link between the range of a Brownian motion in R? and percolation fractals,
which was first discovered by Yuval Peres in 1996. Pictures show that percolation fractals and
the range of a Brownian motion look quite different. The connection is given by the notion of
intersection equivalence.

Definition 5.19 Two random sets A and B in R? are intersection equivalent in the open set
U C R?, if there are constants 0 < ¢ < C < 0o, such that for any Borel set A C U,

P{ANA#0} <P{BNA#0} <CP{ANA #0}. (5.5)

Peres showed that the range of a Brownian motion and certain percolation fractals are actually
intersection equivalent. We focus our attention on the case of dimension d = 3. For dimension
d > 4 and d = 2 similar results are available.

We now recall the definition of a percolation fractal. Suppose a parameter p € (0,1) is given.
We consider the natural tiling of [0, 1]* by 23 nonoverlapping closed cubes of sidelength 1/2. Let
S1 be a random subcollection of these cubes, where each cube has probability p of belonging to
S1 and these events are mutually independent. Note that the cardinality of S; is binomial with
parameters n = 23 and p.

In general, if S is a (random) collection of cubes of sidelength 27 we tile each of them by
23 nonoverlapping closed cubes of sidelength (1/2)¥*! and include each of them independently
with probability p into S11. Finally, define

e = U @

k=1QESg

the percolation fractal with retention parameter p. Note the following:

Lemma 5.20 If Q(p) and Q(q) are independent percolation fractals, then Q(p) N Q(q) is a
percolation fractal with retention parameter pq.

To find the right parameter p for a percolation fractal equivalent to the range of a Brownian
motion we compare the number of dyadic subcubes of sidelength 27" in the unit cube which
intersect Q(p) and X0, 1].

Let N(n) be the number of dyadic subcubes of [0, 1]* of sidelength 2", which intersect X [0, 1].
Recall the definition of Minkowski dimension,

dimyy X[0,1] = lim 28N
n—oo mlog2

Because X [0, 1] has Minkowski dimension two, if we start the Brownian motion at a point in
[0,1]3, we have
log N(n)

n—oo mlog2
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If M(n) be the number of dyadic subcubes of sidelength 27", which intersect Q(p), then

log p
log2 "

log N (n)

A gz~ dimar Qp) =3+

by Example 4.26. Hence
logp _
log2

1
—1 hence p = 2

This means that for large n the sets Q(1/2) and X|[0, 1] hit a similar number of subcubes. Of
course, such a calculation is still pretty far from intersection equivalence. Still, Peres proved the
following result.

Theorem 5.21 Let X be a Brownian motion and € > 0. Then the range X[e,00) and Q(1/2)
are intersection-equivalent in the unit cube (0,1)3.

Remarks:

e In order to avoid problems related to the deterministic starting point of Brownian motion,
we take the range only after a small waiting time ¢ > 0.

e The proof, which is too complicated to be included here, does not establish a direct link
between percolation fractal and Brownian motion, but uses estimates of the hitting prob-
abilities

P{Q(p) N A # 0} and P{X[e,00) N A # 0}

obtained from potential theory.

This link between Brownian motion and percolation fractals can be used to answer the following
question:

Do the ranges of n independent Brownian motions have a common point? In other words, do n
independent Brownian motions intersect each other?

This problem was originally solved by Dvoretzky, Erdos, Kakutani and Taylor in the 1950s with
a completely different approach, in the 1980s Kahane gave a fractal geometric proof. The present
proof of Peres uses intersection equivalence reduces the problem to the problem of intersection
of independent percolation fractals, which is much easier.

Theorem 5.22 Suppose that X1 and Xo are two independent Brownian motions. Then the
sets X1(0,00) N X5(0,00) # O with positive probability. If X3 is a third independent Brownian
motion, then X1(0,00) N X5(0,00) N X3(0,00) = () almost surely.

Remarks:

e Using a 0l-law one can show that the event X;(0,00) N X2(0,00) # @ holds even almost
surely.
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e This result is special to dimension three. In dimension four and bigger we have X (0, 00)N
X3(0,00) = () almost surely, whereas in dimension two,

Xl(0,00) ﬂXQ(0,00) n... ﬂXk(0,00) 7&@

almost surely, for all £ € N. Proofs of these statements, which are similar to our proof in
the case of dimension three, can be given.

Proof of Theorem 5.22: Fix ¢ > 0. Then X[e, o0) is intersection equivalent to Q(1/2) and
Xsle, 00) is independent of X[e,00) and intersection equivalent to ()(1/2). It is not hard to
show that this implies that Xi[e,00) N X2[e,00) is intersection equivalent to Q(1/2) N Q'(1/2),
where Q(1/2) and Q'(1/2) are independent percolation fractals with retention parameter 1/2.
Hence

P{Xi[e,00) N Xa[e,00) # 0} > cP{Q(1/2) N Q'(1/2) # 0}.

Now note that @Q(1/2) N Q'(1/2) is again a percolation fractal, but this time with retention
parameter 1/4. Hence the probability on the right is the survival probability of a Galton-
Watson tree with binomial offspring distribution with parameters n = 23 and p = 1/4. The
expectation of such a random variable is np = 2%/4 = 2 > 1 and hence, the survival probability
is positive by the survival theorem. Hence

P{X1(0,00) N X2(0,00) # 0} > P{X;[e,00) N Xa[e,00) # B} > 0.
This proves the first part of the statement. To see that second part we first note that

P{X:(0,00) N X2(0,00) N X5(0,00) # 0} = IEILI)I P{Xi[e,00) N X[e,00) N X3[e, 00) # 0}.

It thus suffices to show that the latter probability is zero. As above X|[e, 00)NX2[e, 00)NX3][e, 00)
is intersection equivalent to Q(1/2) N Q'(1/2) N Q"(1/2), where Q(1/2),Q'(1/2) and Q"(1/2)
are all independent percolation fractals with retention parameter 1/2. Their intersection is a
percolation fractal with retention parameter (1/2)3 and

P{Q(1/2) NQ'(1/2) N Q"(1/2) # 0}

is the survival probability of a Galton Watson tree with binomial offspring distribution for
n =23 and p = (1/2)%. The expected offspring number is then np = 1 and this implies, by the
survival theorem, that the survival probability is 0. [ |

The issue of intersections of Brownian motions and also of random walks is one of the most
fascinating areas of probability theory, which continues to pose challenging problems. A good
introductory text by a protagonist of the field is Lawler’s book Intersections of random walks.
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