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Abstract: Our main goal in this paper is to obtain a precise analogue of Weyl's asymp-
totic formula for the eigenvalue distribution of Laplacians on a certain class of “finitely
ramified” (or p.c.f.) self-similar fractals, building, in particular, on the work of [7, 9,
22, 24]. Our main result consists in precisely identifying (for the class of “decimable
fractals”) the volume measures constructed by the second author in [24] for general p.c.f.
fractals and showing that they are self-similar.

From a physical point of view, our results should be relevant to the study of the
density of states for diffusions and wave propagation in fractal media.

1. Introduction

In this paper, we will obtain a refined version of Weyl's formula for the eigenvalue
distribution of Laplacians on certain self-similar fractals. There is now a well-developed
theory of Laplacians and diffusions on “finitely ramified” self-similar sets. (See, for
example, Kusuoka [23], Goldstein [14], Barlow and Perkins [4].) Before discussing our
results, we first recall Weyl's classical formula for Laplacians on Riemannian manifolds.
(See, for example, Hormander [17] and in the Euclidean case, Reed and Simon [31].)

Let —A be the positive Laplacian (or Laplace—Beltrami operator) on a closed, com-
pactd-dimensional smooth (connected) Riemannian maniféld hen it is well-known
that—A has a discrete spectru{inj}‘,?i1 which can be written in non-decreasing order
according to multiplicity as follows:

O<sM=hr=--=A;<--— 00

Forx > 0O, letp(x) = #{j > 1: 1; < x} denote the eigenvalue counting function of
—A. Then Weyl's asymptotic formula in this context states that

p(x) = caVOl (M)x?2(1 + 0(1)) (1.1)
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asx — oo, Wherec, is a positive constant depending only érand where ValM)
denotes the Riemannian volumeMt Henceforthp (1) stands for a function that tends

to zero asx — oo. We note that ifM is a compact manifold with smooth boundary,
an entirely analogous formula holds for the Dirichlet LaplacianMn(See also, for
example, [2 and 31] for various physical applications of Weyl's formula in the case
whereM is a bounded smooth domain in Euclidean space.)

If, in addition, M is a (closed) spin manifold, Connes ([7, 8, 8VI.1]) has used the
notion of Dixmier trace (a suitable scale-invariant trace which is well-suited for dealing
with logarithmic divergences) to reconstruct the Riemannian volume measifend
hence to reinterpret Weyl's formula within the framework of noncommutative geometry.

In the case of a “finitely ramified” (that is, p.c.f.) self-similar frac#linstead
of a smooth manifold, Kigami and Lapidus [22] have obtained a partial analogue of
Weyl's formula for the Dirichlet Laplacian oK. WhenK is in “general position” (the
“non-lattice case”), the counterpart of (1.1) is then given by

p(x) = Cx™/2(1+ o(1)) (1.2)

asx — oo, whereC is a positive constant depending &andds > O is a suitable
“spectral exponent” defined in Theorem 3.2 below. On the other hand, in the “lattice
case” (also called the “arithmetic case” in probability theory), the analogue of (1.1) is
given by

p(x) = (G(logx/2) + o(1))x9s/? (1.3)

asx — oo, wheregG is a positive periodic function that is bounded away from zero and
infinity; so thatp (x) = x%/2, (See Theorem 3.2 below.)

Motivated by the above mentioned work of Connes [7] and using, in particular, the
results of [22], Lapidus [24] has constructetivalume measure™ on the p. c. f. self-
similar setK, associated with the Dirichlet Laplacian & (See Theorem 4.1 below.)
Moreover, he has shown that the total mass ofamelyy (K), is given by the constaiit
appearing in (1.2) in the non-lattice case, and by the mean-value of the periodic function
G occurring in (1.3) in the lattice case.

In part by analogy with the work of Connes and Sullivan on the “quantized calculus”
on limit sets of quasi-Fuchsian groups ([9, 8, 8IV.3]), such as certain hyperbolic Julia
sets, the second author has also conjectured that this volume measure (or rather, the
associated probability measurgv(K)) is “approximately self-similar”. (See [24, 85.1
and 25, §6.)

In the present paper, under a certain hypothesis, we will identify the volume measure
v constructed in [24] and show that it is equal to a constant multiple of a self-similar
measure orK . (See Theorem 4.7 in conjunction with Hypothesis 4.6.) Moreover, we
will verify that this hypothesis holds for the class of p. c. f. self-similar sets satisfying the
eigenvalue decimation property, which was firstintroduced by the physicists Rammal and
Toulouse [30] and Rammal [29] for the case of the Sierpinski gasket. Several examples
of such “decimable fractals” are provided in Sect. 5 below.

A sample of physics papers studying finitely ramified fractals includes Dhar [11],
Alexander and Orbach [1], Berry [5, 6], Hattori et al. [15], along with the survey articles
by Liu [26], Havlin and Bunde [16] and by Nakayama et al. [28]. We note that in the
mathematics literature, the eigenvalue decimation method — which provides an explicit
algorithm to compute the eigenvalues and the eigenfunctions of the Laplacian — has
been justified rigorously by Fukushima and Shima 13] for the Sierpinski gasket and
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later on, by Shima [33] for the more general class of p.c.f. self-similar sets considered
here. (See also the recent work by Teplyaev [34].) We believe that Hypothesis 4.6 under
which our main result is established should hold more generally than for “decimable
fractals”, but unfortunately, we cannot prove it at this point. We also remark that under
our hypothesis, the normalized volume measyig K ) coincides with the original self-
similar measure defining the mass distributionkoff (and only if) ds coincides with

the spectral dimension &, as defined in [22]. In that casewas proposed in [24, 25]

to be thought of as an analogue of Riemannian volum& on

As an immediate consequence of our results (combined with the earlier works in [22]
and [24]), one obtains a more precise version of Weyl’s classical formula in the present
context of Laplacians on (certain) self-similar fractals.

Part of our present joint results was announced in Sect. 6 of [25]. The interested reader
can find in [24, 25] further discussion of the possible connections between aspects of
noncommutative geometry [8] and of spectral and fractal geometry.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the analytic
definition of Laplacians on p.c.f. self-similar fractals. In Sect. 3, we recall the main
result of [22] concerning the eigenvalue distribution of Laplacians on p.c.f. fractals and
provide some preparatory lemmas and definitions. In Sect. 4, we recall the main result
of [24] concerning the construction of volume measures on fractals. We also briefly
discuss the notion of Dixmier trace and introduce Hypothesis 4.6 as well as derive its
main consequence, Theorem 4.7, which proves the self-similarity\afk). Finally,
in Sect. 5, we establish a sufficient condition for the self-similarity of volume measures
(that is, for Hypothesis 4.6 to be satisfied); see Theorem 5.2. We also provide several
examples illustrating our results.

2. Laplacianson P.C.F. Sef-Similar Sets

In this section, we will define post critically finite self-similar sets and construct Lapla-
cians on them. See [18, 19] for details.

Definition 2.1. Let K be a compact metrizable topological space andSdde a finite
set. In this papetS = {1, 2, --- , N}. Also, letF;, fori € S, be a continuous injection
from K to itself. Then(K, S, {F;};cs) is called a self-similar structure if there exists
a continuous surjectiom : ¥ — K such thatF; or = 7 o i for everyi € S, where
> = SN is the one-sided shift space and © — ¥ is defined by (wiwowsz---) =
iwiwows - -- for eachwiwowsz--- € X.

Note that if (K, S, {F;};es) is a self-similar structure, thek is self-similar in the
following sense:

K = JFx). (2.1)
ieS

Notation. W,, = S™ isthe collection of words with length. Forw = wy - - - w,,, € Wy,
we defineF,, : K — K by F, = F, o--- 0o F,,, andK,, = F,,(K). In particular,
Wo = {#} and Fy is the identity map. Also we defin, = U,,>oW,,.
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Definition 2.2. Let(K, S, {F;}ics) be a self-similar structure. We define the critical set
C C X and the post critical seP C X by

c=rYJkink;) and P=|Jo"©).
i#j n>1

whereo is the shift map fronk to itself defined by (w1w2---) = wowz---. A self-
similar structure is called post critically finite (p. c.f. for short) if and onlyifP) is
finite.

Now, we fix a p. c. f. self-similar structur, S, {F;}ics)-

Definition 2.3. Let Vo = 7 (P). Form > 1. Also set

Va=|J Fu@®) and V, =] V.

weWw,, m>0

Itis easy to see that,, c V,,+1 and thatk is the closure oV,. In particular,Vy is
thought of as the “boundary” o€ . Next we explain how to construct Laplacians on a
p. c.f. self-similar set. First we define a Laplacian on a finite set.

Definition 2.4. Let V be a finite set. We denote the collection of real-valued functions
onV by £(V). The space (V) is equipped with the standard inner produat, v) =

Y ey u(pv(p) foru, v € £(V). A symmetric linear operato : £(V) — £(V) is
caﬁed a Laplacian orv if it satisfies

(L1) H is non-positive definite,

(L2) Hu = 0if and only ifu is a constant or¥/, and

(L3) H,;, = Oforall p #q € V.

We useC (V) to denote the collection of Laplacians bnFor H € L(V),Ex (-, -)isa
non-negative symmetric bilinear form definedby(u, v) = —(Hu, v) foru, v € £(V).

Proposition 2.5. Let D € £(Vp) and letr = (r1,--- ,ry), Wherer; > Ofori € S.
Define a symmetric bilinear for@™ on £(V,,) by £ (u, v) = 3", ey, rw *Epuo
Fy,v o Fy), wherery, = ry, -1y, for w = wy---w, € W,. Then there exists
H,, € L(V,,) that satisfie€™ = &y

Definition 2.6. (D, r) is said to be a harmonic structure if and only if
EM (u, u) = min{E™ D (v, v) 1 v € L(Vyuy1), vly, = u} (2.2)
for all m > O and for anyu € £(V,,).
It is known that (2.2) holds for alk > 0 if and only if it holds form = 0.
Definition 2.7. If (D, r) is a harmonic structure, then we define

F={u:uelVy, |Lmooe<m>(u|vm,u|v ) < o0}

and&(u, v) = iMoo E™ (uly,,, vly,) foru, v € F. AlsoFo = {u € F : uly, = 0}.

Since£™ is defined in a self-similar fashiod, naturally satisfies the following self-
similarity property.
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Proposition 2.8. u € Fifand only ifu o F; € F forall i € S. Also
Ew,v) =Y ri o Fvok)
=
foranyu, v € F.

Proposition 2.9 (Self-similar measure). If 4; > 0for eachi € Sand) ;g ui = 1,
then there exists a unique Borel regular probability meagu@n K such that

/fdu guz/foqu

for any continuous function oK . u is called a self-similar measure dk with weight
(/-'Lls ] /-‘LN)

If w is a self-similar measure, then(K,,) = ., Wherep,, = py, - - - t,, forw =

w1 - wy € W, Nowwe give a direct definition of the Laplacian associated wéthF)
and a measurg. Let C(K) be the collection of all real-valued continuous functions on
K.

Definition 2.10. For p € V,,, lety) be the unique function irF that attains the fol-
lowing minimum:

min{€u,u) :u € F,u(p) =1 u(g) =0forqg € V,,\{p}}.
For u € C(K), if there existsf € C(K) such that

lim max, |Mm L (Huu)(p) — f(p)| =0,

m—00 peVy\Vt

wherep,, , = [i ¥, du, then we define the-LaplacianA, by A,u = f. The domain
of A, is denoted by)ﬂ

Proposition 2.11. Foru € D, andp € Vg,

= lim (Hyu)(p) = —(Du)(p) + /K UpAuudp.

The above limit is denoted lggu), and is called the Neumann derivativeat
There is a natural relation betweav),, (£, 7) and Neumann derivatives.

Proposition 2.12 (Gauss-Green’sformula). For u € F andv € D,

Eu,v) = Z u(p)(dv), — /K ulvdp.

PeVo

Theorem 2.13. Let (D, r) be a harmonic structure on a p.c.f. self-similar structure
(K, S, {F;}ies). Also letu be a self-similar measure okl with weight(u, - -+, un).

If wir;, < 1forall i € S, thenF is naturally embedded iL2(K, w). (£, F) and
(€, Fo) are local regular Dirichlet forms orL?(K, 1). Moreover, letHy and Hp be
non-negative self-adjoint operators dif(K, 1) associated with&, F) and (£, Fo)
respectively, then botHy and Hp have compact resolvent.
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The operatorgly andHp are defined through the abstract theory of closed quadratic
forms on a Hilbert space. See [10, 32] for the general theory. For exampleetf be
in L?(K, ), u € Dom(Hy) andHyu = f ifand only ifu € F and&(v, u) = (v, ),
for all v € 7, where(u, v),, is the inner product of2(K, ).

The operator—Hy is thought to be a Laplacian ok with Neumann boundary
conditions while—Hp is thought to be a Laplacian ok with Dirichlet boundary
conditions. In fact, if

Dy ={ueD,:(du), =0 foranyp e Vp},

then the above characterization@§; along with Proposition 2.12 implies th&ty C
Dom(Hy) andA,, = —Hy onDy. Similarly, if

DDZ{MEDﬂ2M|Vo=0},

thenDp C Dom(Hp) andA,, = —Hp onDp. Moreover we can verify the following
theorem.

Theorem 2.14. The operators- Hy and—Hp are the Friedrichs extensions o, |p,,
andA,|p,, respectively.
3. Eigenvalue Distribution of Laplacians

In this section, we will discuss results concerning the eigenvalue distributions of Lapla-
cians on p. c.f. self-similar sets. Throughout the rest of this p&pers, {F;};cs) is

a p. c. f. self-similar structure witl§ = {1,2,--- , N} and(D, r) is a harmonic struc-
ture, wherer = (r1, --- , ry). Further,u is a self-similar measure oki with weight
(p1, -+, uy) that satisfies; u; < 1foralli € S. Inthe following, the symbot always

representd or N.
Definition 3.1 (Eigenvalues and Eigenfunctions). For k € R, we define
E (k) ={u :u € Dom(H,), Hu = ku}.

If dimE,(k) > 1, thenk is called ax-eigenvalue and: € E,(k) is said to be a
x-eigenfunction belonging to theeigenvalue.

Itis known that ifu € E,(k), thenu € D, andA,u = —ku. See [22, 28]. Sincél,
has compact resolvent, theeigenvalues are non-negative, of finite multiplicity and the
only accumulation point iso. Precisely, there exist a complete orthonormal system of
2
L4(K, ), {QB;}-J'E]_ C Dy and{kj}jzl such thatH*<p;f = k;f(p;f andk;‘ < kf+1 for all
j > 1. Hence if we let

pix, ) =) dim Ey(k) = #{j : K} < x),

k<x

px(x, w) is well-defined anc, (x, u) — oo asx — oo. We call p,(x, u) the eigen-
value counting function. The following theorem gives an analogue of Weyl's asymptotic
formula for the eigenvalue counting functions.
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Theorem 3.2 ([22]). Letds be the unique positive numbeétthat satisfies

Z Vid =1,

ieS
wherey; = . /rij; fori € S. Then
0 < liminf p (x, w)/x%/% < lim supp.(x, ) /x%/? < oo
X—>00

X—> 00

for x = D, N. The positive numbedy is called the spectral exponent &f, F, ).
Moreover, we have the following dichotomy:

(1) Non-lattice case: If) ;_sZlogy; is a dense subgroup dR, then the limit

iMoo o (x, 1) /x95/2 exists.
(2) Lattice case: Ify ;. s Zlog y; is adiscrete subgroup @, let7 > Obe its generator.
Then

pi(x, 1) = (G(logx/2) 4 o(1))x?/2,

where G is a right-continuousT -periodic function such tha® < inf G(x) <
supG (x) < oo ando(1) denotes a term which vanishes.as> oc.

It is known that 0< pn(x, u) — pp(x, n) < #(Vp). See [22, 18]. Hence the limit
lim,_ o0 o« (x, ) /x95/2 (or the periodic functiorG) is independent of the boundary
conditions. In fact, ifR(x) = pp(x, 1) — Y ;cs pp (2%, 1), then

-1 00
lim p.(x, M)/de/2 = (— Z v; log v,-) ds/ U(t)dt (3.1)
e ieS -

in the non-lattice case and

G(t) = (—Zvi Iogv,-)ildST i Ut+jT) (3.2)

ieS Jj=—00
in the lattice case, wheng = yids fori € SandU(r) = e~%'R(¢%). In light of (3.2),
we immediately deduce the following lemma.

Lemma 3.3. In the lattice case, we have

1 T 1 [e'e)
7/0 G(t)dr = (—Zvi Iogvi) ds fm Ul(t)dt. (3.3)

ieS

By analogy with Weyl's classical theorem (see (1.1) or [22, Theorem 0.1] for exam-
ple), the limit (3.1) may represent a kind of volume of the space in the non-lattice case.
Even in the lattice case, we may use the integral average (3.3) as a substitute for the
value of the limit.

Definition 3.4 (Spectral Volume). The spectral volumeol(K, ) is defined by

Vol(K, ju) = (— 3 v log v,-)_lds /oo Ut)dt. (3.4)
ieS -
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Note that O< vol(K, u) < oo by (3.1) and (3.3). To justify this analogy, we need some
kind of natural measuredefined ork that satisfies (K) = vol(K, ). Such a measure
was in fact defined by Lapidus in [24]. We will introduce it in the next section. In the
meantime, we derive a formula for the spectral volume.d;edenote the/™ Dirichlet

eigenvaluek]l? for j > 1.

Proposition 3.5.

VOKK,M)=:(—E:VHOQW)_lJngqOO—-E:VNﬂVfXD

ieS ieS
= <— évi |09Vi)_l[|i_f;ﬂo(67(l) — gvic}(t/vi)),

whereq(x) =Y, kj_dS/2 andg(t) = Zt<k.—ds/2 k;
’ —J

J

Proof. We need to show that

o0
ds [ e REdn = lim () = Y v 720
- e ieS

AlthoughR(x) = pp(x, ) — D ics pD(inx, W) is a step function, we can still use the
formula of integration by parts. Then

o0 o
dy / e BIR(e®)dt = / e~ BHR(e?)) dt.
—00 —00

Now pp(e?, ) = Zj 8:;» wheret; = logk;/2 andé, is the Dirac point mass at
Hence we have

t
_ —ds/2
/ S (pp (@ w)'d =y kM
-0 tj<t
Therefore it follows that
t
ety = a) - Y vae®
-0 ieS
By lettingt — oo, we deduce the propositiono

4. VVolume M easures

First we will recall the notion of volume measures introduced by Lapidus in [24]. Com-
bining [24, Theorem 4.41] and [24, Corollary 4.45], we obtain the following result.

Theorem 4.1. There exists a unique positive Borel regular measuom K such that

/ fdv =Try(Mg o Hy™'?)
K

for any f € C(K), whereTry(-) is the Dixmier trace of operator&s explained just
below) and M is the multiplication operator oiL?(K, ) defined byM¢(u) = fu.
Moreover, the total mass & with respect ta is equal to the spectral volume. In other
words,vol(K, u) = v(K).
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The Borel regular measune in the above theorem is called thelume measure
associated witi€, F, n) and is denoted by,,.

Next, we briefly recall the notion of Dixmier trace ([12, 8, 8IV.2]), which is a very
useful tool in Connes’ noncommutative geometry and quantized calculus. (See, for ex-
ample, [8, Chapters IV and VI].) Given a compact (nonnegative and self-adjoint) operator
R on a Hilbert spacé{, with eigenvalues%/c](R)}C>O 1 4 0, we say thalR e L (the

“Matsaev ideal” [8]) if the sequenaén J)~1 ijl k;(R) is bounded. (In Theorem 4.1,

the Hilbert spacé is equal toL?(K, «).) Then, roughly speaking, thixmier trace
of R is defined by

J
Trw(R) = Lim (InJ) Y kiR, (4.1)
j=1
where “Lim," is a suitable notion of limit of (bounded sequences) with nice scale-
invariance (i. e., renormalization) properties. See, e.g., [7, 8, §IV.2] and [24, §4.1] for
more details and additional relevant references. (Intuitively( ) captures the “semi-
classical information” contained iR.) Further, Ty, extends to a finite, positive (non-
normal and unitary) trace of't. The following proposition summarizes some of the
basic properties of Ty.

Proposition 4.2. Let A and B belong to£'+.

(1) Trw(A o B) = Trw(B o A).
(2) If A belongs to the trace class, thény(A) =
(3) If A is non-negative, thefiry(A) > 0.

Our main interest in this paper is to determine the nature of the volume measure.
In particular, we conjecture that the normalized volume measyfe, (K) is the self-
similar measure with weight1, - - - , vy). Recall that; = y;95 fori € S. In the next
section, we will prove this conjecture for a class including the standard Laplacians on
the Sierpinski gaskets.

SetFo = {u € F :uly, =0} It is easy to see thdt, ]-"o) becomes a local regular
Dirichlet form onL%(K, ). Let Hp be a non-negative self-adjoint operator associated
with (&, ]—"o) Note that (u, v) = (u, HDv),L forallv € F. Then Proposition 2.8 implies
the following lemma.

Lemma 4.3. Lety; denote theg/™ Dirichlet eigenfunctionojp forall j > 1. Setp;; =
(wi)"Y2Sip;, where

FETYx)  ifx € Ky,

Si(fHx) = 0 otherwise.

Then{g; ;};>1es is acomplete orthonormal systemicf(K , ). Moreover,ﬁDgoj,i =
k.

it Pii

Lemma4.4. Forall f € C(K),

My o Hy®? =3 " viSi 0 Myor, o Hp ™/ 0 R,
ieS

whereR; (u) = u o F;.
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Remark.For alli € S, R; o §; is the identity andS; o Rju = xx,u, whereyg, is the
characteristic function ok;.

Proof. Letu =}, a;i¢;, then
o —ds/2
Hp™/Pu =3 "v Y a;ik; )i
ieS j=1

This implies Hp 95/ = 3", _sv;S; o Hp~%/2 o R;. Now we can easily obtain the
proposed equality. O

Proposition 4.5. For all f € C(K),
vu(f) = Y vivu(f o Fy) = Trw(M o (Hp™%/2 — Hp~9/2)).
ieS
Proof. By Lemma 4.4,
Trw(My o ﬁEdS/Z) = Z Vi Trw(S; o MgoF; © I‘ID_dS/2 oR;)
ieS

= > viTrw(Myor, o Hp~%/?),
ieS

where we also use Proposition 4.2 (1). This immediately implies the proposition.

The following hypothesis is a key to show self-similarity of volume measures in the
present approach. We believe that it is always satisfied but unfortunately, so far, we do
not know how to verify it in general.

Hypothesis 4.6. The operatorH, ~%/? — Hp~%/2 belongs to the trace class and
-1 -
Vol(K, 1) = (=" vilog v,») tr(Hp /2 — Hp=4/2), (42)
ieS

In the next section, we will show that the above hypothesis holds for the Laplacians
associated with strong harmonic structures in the sense of Shima [33], where the eigen-
value decimation method can be applied. This class includes the standard Laplacians on
the Sierpinski gaskets. We give several examples in the next section.

Theorem 4.7. Define the normalized volume meastijgby v, = v, /v, (K). If Hy-
pothesis 4.6 is true, then the normalized volume measuigthe self-similar measure
with weight(v1, - - - , vy).

Proof. AssumeH~9s/2 — Hj,~4s/2 pelongs to the trace class. Then, since the trace
class is an ideal in the algebra of all bounded linear operators (see Reed & Simon [32]
for example)M s o (Hp /2 — Hp~95/2) also belongs to the trace class. Hence, by (2)
of Proposition 4.2, (M o (Hp /% — Hp~9s/2)) = 0. So Proposition 4.5 implies

v (f) =) jes vivu(f o F;) forany f € C(K). Using Proposition 2.9, we see thgt

is the self-similar measure with weighty, - -- , vy). O
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Remark.If Hypothesis 4.6 is true, then

Vol(K, 1) = v, (K) = Try(Hp%/2)
-1 ~
= (—Zvi |Ogvl-) tr(HD_dS/Z—HD_dS/Z)

ieS
= (- X witogu) " lim (g — Y ug (2.
ieS ieS

In the rest of this section, we discuss properties of volume measures assuming Hy-
pothesis 4.6. Note that in general the self-similar meaguteas a different weight from
that of the original self-similar measure More preciselyu = v, if and only if the
harmonic structuréD, r) is regular (i.e., 0< r; < 1foralli € S) andu; = rid” for
alli € S, wheredy is defined as the uniqué> 0 that satisfied", g ¢ = 1. Assume
that the harmonic structur@, r) is regular. Letu* be the self-similar measure which
satisfiesu* = v,+. Then by the appendix of Kigami—Lapidus [22{; is the unique
self-similar measure that attains the following maximum

max{ds : u is a self-similar measure oki}

andds = dZ:fl.AIso, Kigami[20] has shown thaly is equal to the Hausdorff dimension
of K with respect to the effective resistance metriqul# p*, v, andu are mutually
singular.

In [24], the measure, - = vol(K, u*)u* is called the “natural volume measure” on
K (associated with the harmonic structgr, r)) and is suggested to be a counterpart of
the usual Riemannian volume measure for this class of self-similar fractals, by analogy
with the work of Connes in [7] for smooth Riemannian (spin) manifolds. In general,
the value of the Dixmier trace may depend on the choice of the mean w used to define
Trw in (4.1); see [8, 8IV.23]. It follows from [24] that the total mass of, namely,
v(K) = vol(K, w), is always independent of w. (See Theorem 4.1 above.) Moreover,
Theorem 4.7 implies that the measuréself is independent of the choice of w under
Hypothesis 4.6.

5. A Sufficient Condition for Self-Similarity and Examples

In this section, we will give a sufficient condition related to localized eigenfunctions
for Hypothesis 4.6 to be satisfied. To state our sufficient condition, we need to recall
some notions about localized (and non-localized) eigenfunctions and corresponding
eigenvalue counting functions.

Definition 5.1. We defineE" (k) = Ep(k) N Ey (k) and EF (k) = Ep(k) N EW (k)™
We also define corresponding eigenvalue counting functions as follows:

oW (x, ) = ZdimEW(k) and pf(x, ) =ZdimEF(k).

k<x k=<x

Obviously,pp (x, n) = p% (x, w) + pF (x, w). If u € EV (k) for somek > 0, then
u is called a pre-localized eigenfunction.
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Theorem 5.2. Suppose that there exists a pre-localized eigenfunction. If

. log p¥ (x, d
kp = lim supM < —S,

then Hypothesis 4.6 is satisfied.

Recall Theorem 3.2, where we obtain that(x, 1) = x9/2 asx — oco. Hence
the above condition requires that the counting function of non-localized eigenfunctions
oF (x, n) is asymptotically much smaller than that of localized eigenfunciidheé, ).
In[21], (5.1)is conjectured to be true whenever there exists a pre-localized eigenfunction.
In particular, itwas shownin [21, Theorem 4.5] that (5.1) is true if the harmonic structure
is a strong harmonic structure in the sense of Shima [33]. In this paper, we will not go
into the details. Instead, we will give examples where (5.1) has been verified in [21].

Example 5.3 (Sierpinski gaskebet {p1, p2, ps} C C satisfy|p; — p;| = 1 for any

i # j.DefineF; : C— Chy F;(z) = (z— p;)/2+ p; fori € S, whereS = {1, 2, 3}.
The Sierpinski gasket is the unique non-empty compadt shat satisfies (2.1). Clearly
(K, S, {F;};es) is ap.c.f. self-similar structure arfi¢h = {p1, p2, p3}. Now if

-21 1
333
D=|1-21 and r =(=, =, =),
1 1 -2 555

then(D, r) is a harmonic structure. Also let be the self-similar measure da with
weight(1/3, 1/3, 1/3). The Laplacian associated witP, r) andy is called the standard
Laplacian on the Sierpinski gask&t By Theorem 4.4 of [21], we can verify (5.1). In
fact,kr = log2/log5 < ds/2 = log 3/log5. Hence Hypothesis 4.6 is true. So the
normalized volume measufg, is a self-similar measure. Singer; = 1/5 for all

i € §, it follows thatv, is the self-similar measure with weight/3, 1/3, 1/3) and
hence it coincides witlx. Analogous results are also valid for the higher-dimensional
Sierpinski gaskets. We have discussed only the above case for simplicity.

Example 5.4 (Vicsek set, [21, Example 4.6]pr 1 < j < 5, defineF; : C — C

by Fj = (z — pj)/3+ pj, Wherepy = 1,p2 = /=1, p3 = =1, ps = —/-1
and ps = 0. The Vicsek seiK is the uniqgue non-empty compact set that satisfies
(2.2), whereS = {1, 2,3,4,5}. (K, S, {Fi}ies) is a p.c.f. self-similar structure and
Vo = {p1, p2, p3, pa}. DefineD € L(Vo) by Dp,p, = Lforl < j # k < 4 and
Dyip; = =3 for all j and letr = (s,s,s,s,7), wheret > 0,s > 0and 2 +r = 1.

Then(D, r) is aregular harmonic structure. Moreover,get= 2 = uz = ugq = ﬁ
andus = z%=. Then in [21], it was shown thats/2 = I'(?ggni andkp = I:;Jggni’ where

np = %+ 3o by Theorem 5.2 and Theorem 4.1, the normalized volume meggsige
st

a self-similar measure. As;r; = ngl foralli € S,v; = 1/5foralli € S. Therefore,
w=rv,ifandonlyifs =r=1/3.

Example 5.5 (modified Koch curve, [2], [21, Example 4.LBt f, 4(z) = (¢ —p)z+p
for p,q € C. Define F1 = fo1/3, F2 = f2/31, F3 = f1/3.2/3, F4 = f1/3 and
Fs = fc2/3, Wherec = % + % The modified Koch curve is the unique compact
set K that satisfies (2.1), wher8 = {1, 2, 3, 4, 5}. Obviously, (K, S, {F;}ics) IS a
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p. c. f. self-similar structure antly = {0, 1}. SetD = (7 %) andr = (s, 5,1, h, h)
with 25 + jiz’h = 1fors, t,h > 0. Then(D, r) is a harmonic structure. Note that one of
the numbersor i can be arbitrarily large. In such a cagb, r) is not a regular harmonic
structure. Now set1 = 2 = (nos) L, 3 = (nor) "t andus = us = (noh) 1, where
no = 2s~t++r~1+2h~1 Thenitwas shown in [21] thats /2 = &Lﬂi andicp = &%.

So by Theorem 5.2 and Theorem 4.1, the normalized volume megsisra self-similar

measure. Agi;r; = nalfor alli e S,v; =1/5foralli € S. Henceu = v, if and only
ifs=t=h=3/8.

In the rest of this section, we will prove Theorem 5.2. First we will introduce some
properties of pre-localized eigenfunctions. A pre-localized eigenfunction can generate
a sequence of infinitely many pre-localized eigenfunctions as follows.

Proposition 5.6 ([3, Lemma 4.2]). Let u be a pre-localized eigenfunction with €
EVY (k). Defineu,, = Swy 008y, ) foranyw = wy - - - wy, € W,. Thenu,, is also
a pre-localized eigenfunction belonging to the eigenv%%.

Note thatS; (EY (ur;k)) C EV (k).

Naturally, the eigenfunctions iGj(EW(p.jrjk)) are thought to be offsprings of
the preceding eigenfunctions E]W(ujrjk). From such an observation, we can divide
EV (k) into offspringsE}’ (k) and generatorg} (k).

Definition 5.7.

EY () =P Si(EY (kpwiri))  and  EY (k) = (EY (k) N EY (k).
ieS

+
is a complete orthonormal system Ef" = eakEf"(k). Then{¢; wlj = L w € W}
is a complete orthonormal system BYY = @ EW (k), whereg; ,, = (1) %Sy, o
-0 Sy, (¢;) forw = w1 w, € W,. Note thatp; , € EY (k)Y /(nwry)) if w ¢ Wo

and{¢; )} j>1,wew,\wo iS @ complete orthonormal system Bf = @EY (k). The
following proposition was obtained in [21].

Now we can choosla]W andg; € E) (k]W) for j > 1so thaﬂcJW < kjW and{$;}52,

Proposition 5.8 ([21, Theorem 3.5]). Suppose that there exists a pre-localized eigen-
function.

(1) In the lattice casep" (x, u) = (GV (logx/2) + 0(1))x%/2 asx — oo, whereGW
is a discontinuoud’-periodic function with < inf G < supG" < oo.

(2) In the non-lattice case, the limim ,_, o, p" (x, )/x9s/2 exists and is positive.

(3) Zj>1(k;’")*d5/2 < oo and

cwy = (—Zvi |Ogl)i)712(k;)v)_d5/2, (52)
ieS j=1
where

S L6V @war in the lattice case,
W limy oo 0 (x, 0)/x%/2 in the non-lattice case.
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By the above proposition, we have the following lemma.
Lemma5.9. If (5.1)is satisfied, then

-1
Vol(K, ) = cw = (— Zvi log v,-) Z(k;,’V)—ds/Z.
ieS j=1
Proof. If (5.1) is satisfied, then we see th& = GV in the lattice case and

liMy— o0 pF (x, w)/x%/2 = 0 in the non-lattice case. Hence comparing the definitions
of vol(K, ) andcy, we obtain volK, ) = cw. 0O

Next we choosekj.F > 0 andé; € EF(kf) for j > 1so thath < kF ., and

{£j}j>1 is a complete orthonormal systemBf = @ EF (k). It foIIows |mmed|ately
thatL2(K, n) = EF @ EYY @ EY and{£;, ¢; 1) j>1,wew, iS @ complete orthonormal
system ofL2(K, ).

Lemma5.10. If (5.1)is satisfied, thetijzl(kf)—dS/2 < 0.

Proof. Choosex so thatkr < « < dg/2. Note thato? (x, ) = #{j : kf < x}. So by
(5.1), we obtain that there exists> 0 such thatjl/“ < kf foranyj > 1. Therefore
(kF) ds/2 < ¢j—ds/(22) Now as 1< dg/(2a), Z dS/(Z“) <o00. O

Lemmab5.11. Let&;; = S;(§;) forany j > 1 andi € S. Then{;;}j>1cs is @
complete orthonormal system bf @ E/" .

Proof. Applying the same argumentasin Lemma 4.80 ¢; .} j>1,wew,, We see that
{€j.ir ®jw)j>1ies,wew,\Ww, IS @ complete orthonormal systemiof(K, n). Recall that
{¢j.w}j=1wew,\w, iS @ complete orthonormal system B}’ . Hence{¢; };>1cs is a
complete orthonormal system of the orthogonal complemeBfafwhichisE” & E; .
o

Proof of Theorem 5.2Let Pr, P1 and P, be the orthogonal projection df2(K, )
onto EX, EJY and EYY, respectively. Also led = Hp~9s/2 and B = Hp~9s/2. By
Proposmon 5.6 and Lemma 4.3¢,., = Bdjw = (Uwlw )dS/Z(kJW) ds/2g,; , for
j > 1landw € W,\Wp. HenceA o P, = B o P,. Therefore,

A—B=A1+AFr —Bpr1
whereAr = Ao Pr, Ay = Ao Py andBry = B o (Pr + P1). Note thatAré; =
(kFY~ds/2g;, Arg; = (k)V)~95/2¢; and Bp1gji = vi(kf)~45/2%;,;. So it is easy to

see thatAr, A1 and Bpy are bounded non-negative self-adjoint operators. Now by
Lemma 5.9 and Lemma 5.10, it follows thatArr) = Zpl(kf)*dS/z < 00, tr(Aq) =

Y1k 7472 < oo and tBr1) = 3 g es vitk]) T2 = 30 ()2 <
oo. HenceAr, A1 and Bp1 belong to the trace class Therefote- B belongs to the
trace class. Moreover,

tr(A— B) =1tr(Afr) +1tr(A1) —tr(Bry) =tr(Ay)

D3GR

j=1

This along with Lemma 5.9 implies (4.2).0
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