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Abstract: Our main goal in this paper is to obtain a precise analogue of Weyl’s asymp-
totic formula for the eigenvalue distribution of Laplacians on a certain class of “finitely
ramified” (or p.c.f.) self-similar fractals, building, in particular, on the work of [7, 9,
22, 24]. Our main result consists in precisely identifying (for the class of “decimable
fractals”) the volume measures constructed by the second author in [24] for general p.c.f.
fractals and showing that they are self-similar.

From a physical point of view, our results should be relevant to the study of the
density of states for diffusions and wave propagation in fractal media.

1. Introduction

In this paper, we will obtain a refined version of Weyl’s formula for the eigenvalue
distribution of Laplacians on certain self-similar fractals. There is now a well-developed
theory of Laplacians and diffusions on “finitely ramified” self-similar sets. (See, for
example, Kusuoka [23], Goldstein [14], Barlow and Perkins [4].) Before discussing our
results, we first recall Weyl’s classical formula for Laplacians on Riemannian manifolds.
(See, for example, Hörmander [17] and in the Euclidean case, Reed and Simon [31].)

Let −� be the positive Laplacian (or Laplace–Beltrami operator) on a closed, com-
pactd-dimensional smooth (connected) Riemannian manifoldM. Then it is well-known
that−� has a discrete spectrum{λj }∞j=1 which can be written in non-decreasing order
according to multiplicity as follows:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · → ∞.

For x > 0, letρ(x) = #{j ≥ 1 : λj ≤ x} denote the eigenvalue counting function of
−�. Then Weyl’s asymptotic formula in this context states that

ρ(x) = cdVol(M)xd/2(1 + o(1)) (1.1)
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asx → ∞, wherecd is a positive constant depending only ond and where Vol(M)

denotes the Riemannian volume ofM. Henceforth,o(1) stands for a function that tends
to zero asx → ∞. We note that ifM is a compact manifold with smooth boundary,
an entirely analogous formula holds for the Dirichlet Laplacian onM. (See also, for
example, [2 and 31] for various physical applications of Weyl’s formula in the case
whereM is a bounded smooth domain in Euclidean space.)

If, in addition,M is a (closed) spin manifold, Connes ([7, 8, §VI.1]) has used the
notion of Dixmier trace (a suitable scale-invariant trace which is well-suited for dealing
with logarithmic divergences) to reconstruct the Riemannian volume measure ofM and
hence to reinterpret Weyl’s formula within the framework of noncommutative geometry.

In the case of a “finitely ramified” (that is, p. c. f. ) self-similar fractalK instead
of a smooth manifold, Kigami and Lapidus [22] have obtained a partial analogue of
Weyl’s formula for the Dirichlet Laplacian onK. WhenK is in “general position” (the
“non-lattice case”), the counterpart of (1.1) is then given by

ρ(x) = CxdS/2(1 + o(1)) (1.2)

asx → ∞, whereC is a positive constant depending onK anddS > 0 is a suitable
“spectral exponent” defined in Theorem 3.2 below. On the other hand, in the “lattice
case” (also called the “arithmetic case” in probability theory), the analogue of (1.1) is
given by

ρ(x) = (G(logx/2)+ o(1))xdS/2 (1.3)

asx → ∞, whereG is a positive periodic function that is bounded away from zero and
infinity; so thatρ(x) � xdS/2. (See Theorem 3.2 below.)

Motivated by the above mentioned work of Connes [7] and using, in particular, the
results of [22], Lapidus [24] has constructed a“volume measure”ν on the p. c. f. self-
similar setK, associated with the Dirichlet Laplacian onK. (See Theorem 4.1 below.)
Moreover, he has shown that the total mass ofν, namely,ν(K), is given by the constantC
appearing in (1.2) in the non-lattice case, and by the mean-value of the periodic function
G occurring in (1.3) in the lattice case.

In part by analogy with the work of Connes and Sullivan on the “quantized calculus”
on limit sets of quasi-Fuchsian groups ([9, 8, §IV.3]), such as certain hyperbolic Julia
sets, the second author has also conjectured that this volume measure (or rather, the
associated probability measureν/ν(K)) is “approximately self-similar”. (See [24, §5.1
and 25, §6.)

In the present paper, under a certain hypothesis, we will identify the volume measure
ν constructed in [24] and show that it is equal to a constant multiple of a self-similar
measure onK. (See Theorem 4.7 in conjunction with Hypothesis 4.6.) Moreover, we
will verify that this hypothesis holds for the class of p. c. f. self-similar sets satisfying the
eigenvalue decimation property, which was first introduced by the physicists Rammal and
Toulouse [30] and Rammal [29] for the case of the Sierpinski gasket. Several examples
of such “decimable fractals” are provided in Sect. 5 below.

A sample of physics papers studying finitely ramified fractals includes Dhar [11],
Alexander and Orbach [1], Berry [5, 6], Hattori et al. [15], along with the survey articles
by Liu [26], Havlin and Bunde [16] and by Nakayama et al. [28]. We note that in the
mathematics literature, the eigenvalue decimation method – which provides an explicit
algorithm to compute the eigenvalues and the eigenfunctions of the Laplacian – has
been justified rigorously by Fukushima and Shima 13] for the Sierpinski gasket and
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later on, by Shima [33] for the more general class of p.c.f. self-similar sets considered
here. (See also the recent work by Teplyaev [34].) We believe that Hypothesis 4.6 under
which our main result is established should hold more generally than for “decimable
fractals”, but unfortunately, we cannot prove it at this point. We also remark that under
our hypothesis, the normalized volume measureν/ν(K) coincides with the original self-
similar measure defining the mass distribution ofK if (and only if) dS coincides with
the spectral dimension ofK, as defined in [22]. In that case,ν was proposed in [24, 25]
to be thought of as an analogue of Riemannian volume onK.

As an immediate consequence of our results (combined with the earlier works in [22]
and [24]), one obtains a more precise version of Weyl’s classical formula in the present
context of Laplacians on (certain) self-similar fractals.

Part of our present joint results was announced in Sect. 6 of [25]. The interested reader
can find in [24, 25] further discussion of the possible connections between aspects of
noncommutative geometry [8] and of spectral and fractal geometry.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the analytic
definition of Laplacians on p. c. f. self-similar fractals. In Sect. 3, we recall the main
result of [22] concerning the eigenvalue distribution of Laplacians on p.c.f. fractals and
provide some preparatory lemmas and definitions. In Sect. 4, we recall the main result
of [24] concerning the construction of volume measures on fractals. We also briefly
discuss the notion of Dixmier trace and introduce Hypothesis 4.6 as well as derive its
main consequence, Theorem 4.7, which proves the self-similarity ofν/ν(K). Finally,
in Sect. 5, we establish a sufficient condition for the self-similarity of volume measures
(that is, for Hypothesis 4.6 to be satisfied); see Theorem 5.2. We also provide several
examples illustrating our results.

2. Laplacians on P. C. F. Self-Similar Sets

In this section, we will define post critically finite self-similar sets and construct Lapla-
cians on them. See [18, 19] for details.

Definition 2.1. LetK be a compact metrizable topological space and letS be a finite
set. In this paper,S = {1,2, · · · , N}. Also, letFi , for i ∈ S, be a continuous injection
fromK to itself. Then,(K,S, {Fi}i∈S) is called a self-similar structure if there exists
a continuous surjectionπ : � → K such thatFi ◦ π = π ◦ i for everyi ∈ S, where
� = SN is the one-sided shift space andi : � → � is defined byi(w1w2w3 · · · ) =
iw1w2w3 · · · for eachw1w2w3 · · · ∈ �.

Note that if(K,S, {Fi}i∈S) is a self-similar structure, thenK is self-similar in the
following sense:

K =
⋃
i∈S

Fi(K). (2.1)

Notation. Wm = Sm is the collection of words with lengthm. Forw = w1 · · ·wm ∈ Wm,
we defineFw : K → K by Fw = Fw1 ◦ · · · ◦ Fwm andKw = Fw(K). In particular,
W0 = {∅} andF∅ is the identity map. Also we defineW∗ = ∪m≥0Wm.
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Definition 2.2. Let (K,S, {Fi}i∈S) be a self-similar structure. We define the critical set
C ⊂ � and the post critical setP ⊂ � by

C = π−1(
⋃
i �=j
(Ki ∩Kj)) and P =

⋃
n≥1

σn(C),

whereσ is the shift map from� to itself defined byσ(ω1ω2 · · · ) = ω2ω3 · · · . A self-
similar structure is called post critically finite (p. c. f. for short) if and only if#(P) is
finite.

Now, we fix a p. c. f. self-similar structure(K,S, {Fi}i∈S).

Definition 2.3. LetV0 = π(P). Form ≥ 1. Also set

Vm =
⋃

w∈Wm

Fw(π(P)) and V∗ =
⋃
m≥0

Vm.

It is easy to see thatVm ⊂ Vm+1 and thatK is the closure ofV∗. In particular,V0 is
thought of as the “boundary” ofK. Next we explain how to construct Laplacians on a
p. c. f. self-similar set. First we define a Laplacian on a finite set.

Definition 2.4. Let V be a finite set. We denote the collection of real-valued functions
on V by "(V ). The space"(V ) is equipped with the standard inner product(u, v) =∑

p∈V u(p)v(p) for u, v ∈ "(V ). A symmetric linear operatorH : "(V ) → "(V ) is
called a Laplacian onV if it satisfies

(L1) H is non-positive definite,
(L2) Hu = 0 if and only ifu is a constant onV , and
(L3) Hpq ≥ 0 for all p �= q ∈ V .

We useL(V ) to denote the collection of Laplacians onV . ForH ∈ L(V ),EH (·, ·) is a
non-negative symmetric bilinear form defined byEH (u, v) = −(Hu, v) for u, v ∈ "(V ).

Proposition 2.5. LetD ∈ L(V0) and letr = (r1, · · · , rN ), whereri > 0 for i ∈ S.
Define a symmetric bilinear formE (m) on "(Vm) byE (m)(u, v) = ∑

w∈Wm
rw

−1ED(u ◦
Fw, v ◦ Fw), whererw = rw1 · · · rwm for w = w1 · · ·wm ∈ Wm. Then there exists
Hm ∈ L(Vm) that satisfiesE (m) = EHm .

Definition 2.6. (D, r) is said to be a harmonic structure if and only if

E (m)(u, u) = min{E (m+1)(v, v) : v ∈ "(Vm+1), v|Vm = u} (2.2)

for all m ≥ 0 and for anyu ∈ "(Vm).

It is known that (2.2) holds for allm ≥ 0 if and only if it holds form = 0.

Definition 2.7. If (D, r) is a harmonic structure, then we define

F = {u : u ∈ "(V∗), lim
m→∞ E (m)(u|Vm, u|Vm) < ∞}

andE(u, v) = limm→∞ E (m)(u|Vm, v|Vm) for u, v ∈ F . AlsoF0 = {u ∈ F : u|V0 = 0}.
SinceE (m) is defined in a self-similar fashion,E naturally satisfies the following self-
similarity property.
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Proposition 2.8. u ∈ F if and only ifu ◦ Fi ∈ F for all i ∈ S. Also

E(u, v) =
∑
i∈S

ri
−1E(u ◦ Fi, v ◦ Fi)

for anyu, v ∈ F .

Proposition 2.9 (Self-similar measure). If µi > 0 for eachi ∈ S and
∑

i∈S µi = 1,
then there exists a unique Borel regular probability measureµ onK such that∫

K

f dµ =
∑
i∈S

µi

∫
K

f ◦ Fidµ

for any continuous function onK. µ is called a self-similar measure onK with weight
(µ1, · · · , µN).
If µ is a self-similar measure, thenµ(Kw) = µw, whereµw = µw1 · · ·µwm for w =
w1 · · ·wm ∈ Wm. Now we give a direct definition of the Laplacian associated with(E,F)
and a measureµ. LetC(K) be the collection of all real-valued continuous functions on
K.

Definition 2.10. For p ∈ Vm, let ψm
p be the unique function inF that attains the fol-

lowing minimum:

min{E(u, u) : u ∈ F, u(p) = 1, u(q) = 0 for q ∈ Vm\{p}}.
For u ∈ C(K), if there existsf ∈ C(K) such that

lim
m→∞ max

p∈Vm\V0
|µ−1
m,p(Hmu)(p)− f (p)| = 0,

whereµm,p = ∫
K
ψm
p dµ, then we define theµ-Laplacian�µ by�µu = f . The domain

of�µ is denoted byDµ.

Proposition 2.11. For u ∈ Dµ andp ∈ V0,

− lim
m→∞(Hmu)(p) = −(Du)(p)+

∫
K

ψ0
p�µudµ.

The above limit is denoted by(du)p and is called the Neumann derivative atp.

There is a natural relation between�µ, (E,F) and Neumann derivatives.

Proposition 2.12 (Gauss-Green’s formula). For u ∈ F andv ∈ Dµ,

E(u, v) =
∑
p∈V0

u(p)(dv)p −
∫
K

u�µvdµ.

Theorem 2.13. Let (D, r) be a harmonic structure on a p. c. f. self-similar structure
(K,S, {Fi}i∈S). Also letµ be a self-similar measure onK with weight(µ1, · · · , µN).
If µiri < 1 for all i ∈ S, thenF is naturally embedded inL2(K,µ). (E,F) and
(E,F0) are local regular Dirichlet forms onL2(K,µ). Moreover, letHN andHD be
non-negative self-adjoint operators onL2(K,µ) associated with(E,F) and (E,F0)

respectively, then bothHN andHD have compact resolvent.
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The operatorsHN andHD are defined through the abstract theory of closed quadratic
forms on a Hilbert space. See [10, 32] for the general theory. For example, letu andf be
in L2(K,µ), u ∈ Dom(HN) andHNu = f if and only if u ∈ F andE(v, u) = (v, f )µ
for all v ∈ F , where(u, v)µ is the inner product ofL2(K,µ).

The operator−HN is thought to be a Laplacian onK with Neumann boundary
conditions while−HD is thought to be a Laplacian onK with Dirichlet boundary
conditions. In fact, if

DN = {u ∈ Dµ : (du)p = 0 for anyp ∈ V0},
then the above characterization ofHN along with Proposition 2.12 implies thatDN ⊂
Dom(HN) and�µ = −HN onDN . Similarly, if

DD = {u ∈ Dµ : u|V0 = 0},
thenDD ⊂ Dom(HD) and�µ = −HD onDD. Moreover we can verify the following
theorem.

Theorem 2.14. The operators−HN and−HD are the Friedrichs extensions of�µ|DN

and�µ|DD
, respectively.

3. Eigenvalue Distribution of Laplacians

In this section, we will discuss results concerning the eigenvalue distributions of Lapla-
cians on p. c. f. self-similar sets. Throughout the rest of this paper,(K,S, {Fi}i∈S) is
a p. c. f. self-similar structure withS = {1,2, · · · , N} and(D, r) is a harmonic struc-
ture, wherer = (r1, · · · , rN ). Further,µ is a self-similar measure onK with weight
(µ1, · · · , µN) that satisfiesriµi < 1 for all i ∈ S. In the following, the symbol∗ always
representsD orN .

Definition 3.1 (Eigenvalues and Eigenfunctions). For k ∈ R, we define

E∗(k) = {u : u ∈ Dom(H∗),H∗u = ku}.
If dimE∗(k) ≥ 1, then k is called a∗-eigenvalue andu ∈ E∗(k) is said to be a
∗-eigenfunction belonging to the∗-eigenvaluek.

It is known that ifu ∈ E∗(k), thenu ∈ D∗ and�µu = −ku. See [22, 28]. SinceH∗
has compact resolvent, the∗-eigenvalues are non-negative, of finite multiplicity and the
only accumulation point is∞. Precisely, there exist a complete orthonormal system of
L2(K,µ), {ϕ∗

j }j≥1 ⊂ D∗ and{k∗
j }j≥1 such thatH∗ϕ∗

j = k∗
j ϕ

∗
j andk∗

j ≤ k∗
j+1 for all

j ≥ 1. Hence if we let

ρ∗(x, µ) =
∑
k≤x

dimE∗(k) = #{j : k∗
j ≤ x},

ρ∗(x, µ) is well-defined andρ∗(x, µ) → ∞ asx → ∞. We callρ∗(x, µ) the eigen-
value counting function. The following theorem gives an analogue of Weyl’s asymptotic
formula for the eigenvalue counting functions.
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Theorem 3.2 ([22]). LetdS be the unique positive numberd that satisfies∑
i∈S

γ di = 1,

whereγi = √
riµi for i ∈ S. Then

0< lim inf
x→∞ ρ∗(x, µ)/xdS/2 ≤ lim sup

x→∞
ρ∗(x, µ)/xdS/2 < ∞

for ∗ = D,N . The positive numberdS is called the spectral exponent of(E,F, µ).
Moreover, we have the following dichotomy:

(1) Non-lattice case : If
∑

i∈S Z logγi is a dense subgroup ofR, then the limit
limx→∞ ρ∗(x, µ)/xdS/2 exists.

(2) Lattice case : If
∑

i∈S Z logγi is a discrete subgroup ofR, letT > 0be its generator.
Then

ρ∗(x, µ) = (G(logx/2)+ o(1))xdS/2,

whereG is a right-continuousT -periodic function such that0 < inf G(x) ≤
supG(x) < ∞ ando(1) denotes a term which vanishes asx → ∞.

It is known that 0≤ ρN(x, µ) − ρD(x, µ) ≤ #(V0). See [22, 18]. Hence the limit
limx→∞ ρ∗(x, µ)/xdS/2 (or the periodic functionG) is independent of the boundary
conditions. In fact, ifR(x) = ρD(x, µ)− ∑

i∈S ρD(γ 2
i x, µ), then

lim
x→∞ ρ∗(x, µ)/xdS/2 =

(
−

∑
i∈S

νi logνi
)−1

dS

∫ ∞

−∞
U(t)dt (3.1)

in the non-lattice case and

G(t) =
(
−

∑
i∈S

νi logνi
)−1

dST

∞∑
j=−∞

U(t + jT ) (3.2)

in the lattice case, whereνi = γ
dS
i for i ∈ S andU(t) = e−dS tR(e2t ). In light of (3.2),

we immediately deduce the following lemma.

Lemma 3.3. In the lattice case, we have

1

T

∫ T

0
G(t)dt =

(
−

∑
i∈S

νi logνi
)−1

dS

∫ ∞

−∞
U(t)dt. (3.3)

By analogy with Weyl’s classical theorem (see (1.1) or [22, Theorem 0.1] for exam-
ple), the limit (3.1) may represent a kind of volume of the space in the non-lattice case.
Even in the lattice case, we may use the integral average (3.3) as a substitute for the
value of the limit.

Definition 3.4 (Spectral Volume). The spectral volumevol(K,µ) is defined by

vol(K,µ) =
(
−

∑
i∈S

νi logνi
)−1

dS

∫ ∞

−∞
U(t)dt. (3.4)
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Note that 0< vol(K,µ) < ∞ by (3.1) and (3.3). To justify this analogy, we need some
kind of natural measureν defined onK that satisfiesν(K) = vol(K,µ). Such a measure
was in fact defined by Lapidus in [24]. We will introduce it in the next section. In the
meantime, we derive a formula for the spectral volume. Letkj denote thej th Dirichlet
eigenvaluekDj for j ≥ 1.

Proposition 3.5.

vol(K,µ) =
(
−

∑
i∈S

νi logνi
)−1

lim
x→∞(q(x)−

∑
i∈S

νiq(γ
2
i x))

=
(
−

∑
i∈S

νi logνi
)−1

lim
t→0

(q̃(t)−
∑
i∈S

νi q̃(t/νi)),

whereq(x) = ∑
kj≤x k

−dS/2
j and q̃(t) = ∑

t≤k−dS/2
j

k
−dS/2
j .

Proof. We need to show that

dS

∫ ∞

−∞
e−dS tR(e2t )dt = lim

x→∞(q(x)−
∑
i∈S

νiq(γ
2
i x)).

AlthoughR(x) = ρD(x, µ)− ∑
i∈S ρD(γ 2

i x, µ) is a step function, we can still use the
formula of integration by parts. Then

dS

∫ ∞

−∞
e−dS tR(e2t )dt =

∫ ∞

−∞
e−dS t (R(e2t ))′dt.

Now ρD(e
2t , µ)′ = ∑

j δtj , wheretj = logkj /2 andδx is the Dirac point mass atx.
Hence we have ∫ t

−∞
e−dS t (ρD(e2t , µ))′dt =

∑
tj≤t

k
−dS/2
j .

Therefore it follows that∫ t

−∞
e−dS t (R(e2t ))′dt = q(e2t )−

∑
i∈S

νiq(γ
2
i e

2t ).

By letting t → ∞, we deduce the proposition.��

4. Volume Measures

First we will recall the notion of volume measures introduced by Lapidus in [24]. Com-
bining [24, Theorem 4.41] and [24, Corollary 4.45], we obtain the following result.

Theorem 4.1. There exists a unique positive Borel regular measureν onK such that∫
K

f dν = Trw(Mf ◦H−dS/2
D )

for anyf ∈ C(K), whereTrw(·) is the Dixmier trace of operators(as explained just
below) andMf is the multiplication operator onL2(K,µ) defined byMf (u) = f u.
Moreover, the total mass ofK with respect toν is equal to the spectral volume. In other
words,vol(K,µ) = ν(K).
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The Borel regular measureν in the above theorem is called thevolume measure
associated with(E,F, µ) and is denoted byνµ.

Next, we briefly recall the notion of Dixmier trace ([12, 8, §IV.2]), which is a very
useful tool in Connes’ noncommutative geometry and quantized calculus. (See, for ex-
ample, [8, Chapters IV andVI].) Given a compact (nonnegative and self-adjoint) operator
R on a Hilbert spaceH, with eigenvalues{κj (R)}∞j=1 ↓ 0, we say thatR ∈ L1+ (the

“Matsaev ideal” [8]) if the sequence(ln J )−1 ∑J
j=1 κj (R) is bounded. (In Theorem 4.1,

the Hilbert spaceH is equal toL2(K,µ).) Then, roughly speaking, theDixmier trace
of R is defined by

Trw(R) = Lim
w

(ln J )−1
J∑
j=1

κj (R), (4.1)

where “Limw” is a suitable notion of limit of (bounded sequences) with nice scale-
invariance (i. e., renormalization) properties. See, e.g., [7, 8, §IV.2] and [24, §4.1] for
more details and additional relevant references. (Intuitively, Trw(R) captures the “semi-
classical information” contained inR.) Further, Trw extends to a finite, positive (non-
normal and unitary) trace onL1+. The following proposition summarizes some of the
basic properties of Trw.

Proposition 4.2. LetA andB belong toL1+.

(1) Trw(A ◦ B) = Trw(B ◦ A).
(2) If A belongs to the trace class, thenTrw(A) = 0.
(3) If A is non-negative, thenTrw(A) ≥ 0.

Our main interest in this paper is to determine the nature of the volume measure.
In particular, we conjecture that the normalized volume measureνµ/νµ(K) is the self-
similar measure with weight(ν1, · · · , νN). Recall thatνi = γi

dS for i ∈ S. In the next
section, we will prove this conjecture for a class including the standard Laplacians on
the Sierpinski gaskets.

SetF̃0 = {u ∈ F : u|V1 = 0}. It is easy to see that(E, F̃0) becomes a local regular
Dirichlet form onL2(K,µ). Let H̃D be a non-negative self-adjoint operator associated
with (E, F̃0). Note thatE(u, v) = (u, H̃Dv)µ for all v ∈ F̃ . Then Proposition 2.8 implies
the following lemma.

Lemma 4.3. Letϕj denote thej th Dirichlet eigenfunctionϕDj for all j ≥ 1. Setϕj,i =
(µi)

−1/2Siϕj , where

Si(f )(x) =
{

f (F−1
i (x)) if x ∈ Kw,

0 otherwise.

Then{ϕj,i}j≥1,i∈S is a complete orthonormal system ofL2(K,µ). Moreover,H̃Dϕj,i =
kj
riµi

ϕj,i .

Lemma 4.4. For all f ∈ C(K),

Mf ◦ H̃−dS/2
D =

∑
i∈S

νiSi ◦Mf ◦Fi ◦HD−dS/2 ◦ Ri,

whereRi(u) = u ◦ Fi .
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Remark.For all i ∈ S, Ri ◦ Si is the identity andSi ◦ Riu = χKiu, whereχKi is the
characteristic function ofKi .

Proof. Let u = ∑
j,i αj,iϕj,i , then

H̃D
−dS/2u =

∑
i∈S

νi
∑
j≥1

αj,ik
−dS/2
j ϕj,i .

This impliesH̃D−dS/2 = ∑
i∈S νiSi ◦ HD−dS/2 ◦ Ri . Now we can easily obtain the

proposed equality. ��
Proposition 4.5. For all f ∈ C(K),

νµ(f )−
∑
i∈S

νiνµ(f ◦ Fi) = Trw(Mf ◦ (HD−dS/2 − H̃D
−dS/2)).

Proof. By Lemma 4.4,

Trw(Mf ◦ H̃−dS/2
D ) =

∑
i∈S

νiTrw(Si ◦Mf ◦Fi ◦HD−dS/2 ◦ Ri)

=
∑
i∈S

νiTrw(Mf ◦Fi ◦HD−dS/2),

where we also use Proposition 4.2 (1). This immediately implies the proposition.��
The following hypothesis is a key to show self-similarity of volume measures in the

present approach. We believe that it is always satisfied but unfortunately, so far, we do
not know how to verify it in general.

Hypothesis 4.6. The operatorHD−dS/2 − H̃D
−dS/2 belongs to the trace class and

vol(K,µ) =
(
−

∑
i∈S

νi logνi
)−1

tr(HD
−dS/2 − H̃D

−dS/2). (4.2)

In the next section, we will show that the above hypothesis holds for the Laplacians
associated with strong harmonic structures in the sense of Shima [33], where the eigen-
value decimation method can be applied. This class includes the standard Laplacians on
the Sierpinski gaskets. We give several examples in the next section.

Theorem 4.7. Define the normalized volume measureν̃µ by ν̃µ = νµ/νµ(K). If Hy-
pothesis 4.6 is true, then the normalized volume measureν̃µ is the self-similar measure
with weight(ν1, · · · , νN).
Proof. AssumeHD−dS/2 − H̃D

−dS/2 belongs to the trace class. Then, since the trace
class is an ideal in the algebra of all bounded linear operators (see Reed & Simon [32]
for example),Mf ◦ (HD−dS/2 − H̃D

−dS/2) also belongs to the trace class. Hence, by (2)
of Proposition 4.2, Trw(Mf ◦ (HD−dS/2 − H̃D

−dS/2)) = 0. So Proposition 4.5 implies
νµ(f ) = ∑

i∈S νiνµ(f ◦ Fi) for anyf ∈ C(K). Using Proposition 2.9, we see thatν̃µ
is the self-similar measure with weight(ν1, · · · , νN). ��
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Remark.If Hypothesis 4.6 is true, then

vol(K,µ) = νµ(K) = Trw(HD
−dS/2)

=
(
−

∑
i∈S

νi logνi
)−1

tr(HD
−dS/2 − H̃D

−dS/2)

=
(
−

∑
i∈S

νi logνi
)−1

lim
x→∞(q(x)−

∑
i∈S

νiq(γ
2
i x)).

In the rest of this section, we discuss properties of volume measures assuming Hy-
pothesis 4.6. Note that in general the self-similar measureν̃µ has a different weight from
that of the original self-similar measureµ. More precisely,µ = ν̃µ if and only if the
harmonic structure(D, r) is regular (i. e., 0< ri < 1 for all i ∈ S) andµi = r

dH
i for

all i ∈ S, wheredH is defined as the uniqued > 0 that satisfies
∑

i∈S rdi = 1. Assume
that the harmonic structure(D, r) is regular. Letµ∗ be the self-similar measure which
satisfiesµ∗ = ν̃µ∗ . Then by the appendix of Kigami–Lapidus [22],µ∗ is the unique
self-similar measure that attains the following maximum

max{dS : µ is a self-similar measure onK}
anddS = 2dH

dH+1.Also, Kigami [20] has shown thatdH is equal to the Hausdorff dimension
of K with respect to the effective resistance metric. Ifµ �= µ∗, νµ andµ are mutually
singular.

In [24], the measureνµ∗ = vol(K,µ∗)µ∗ is called the “natural volume measure” on
K (associated with the harmonic structure(D, r)) and is suggested to be a counterpart of
the usual Riemannian volume measure for this class of self-similar fractals, by analogy
with the work of Connes in [7] for smooth Riemannian (spin) manifolds. In general,
the value of the Dixmier trace may depend on the choice of the mean w used to define
Trw in (4.1); see [8, §IV.2.β]. It follows from [24] that the total mass ofν, namely,
ν(K) = vol(K,µ), is always independent of w. (See Theorem 4.1 above.) Moreover,
Theorem 4.7 implies that the measureν itself is independent of the choice of w under
Hypothesis 4.6.

5. A Sufficient Condition for Self-Similarity and Examples

In this section, we will give a sufficient condition related to localized eigenfunctions
for Hypothesis 4.6 to be satisfied. To state our sufficient condition, we need to recall
some notions about localized (and non-localized) eigenfunctions and corresponding
eigenvalue counting functions.

Definition 5.1. We defineEW(k) = ED(k) ∩ EN(k) andEF (k) = ED(k) ∩ EW(k)
⊥

.
We also define corresponding eigenvalue counting functions as follows:

ρW(x, µ) =
∑
k≤x

dimEW(k) and ρF (x, µ) =
∑
k≤x

dimEF (k).

Obviously,ρD(x, µ) = ρW(x, µ) + ρF (x, µ). If u ∈ EW(k) for somek > 0, then
u is called a pre-localized eigenfunction.
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Theorem 5.2. Suppose that there exists a pre-localized eigenfunction. If

κF = lim sup
x→∞

logρF (x, µ)

logx
<
dS

2
, (5.1)

then Hypothesis 4.6 is satisfied.

Recall Theorem 3.2, where we obtain thatρD(x, µ) � xdS/2 asx → ∞. Hence
the above condition requires that the counting function of non-localized eigenfunctions
ρF (x, µ) is asymptotically much smaller than that of localized eigenfunctionsρW(x, µ).
In [21], (5.1) is conjectured to be true whenever there exists a pre-localized eigenfunction.
In particular, it was shown in [21, Theorem 4.5] that (5.1) is true if the harmonic structure
is a strong harmonic structure in the sense of Shima [33]. In this paper, we will not go
into the details. Instead, we will give examples where (5.1) has been verified in [21].

Example 5.3 (Sierpinski gasket).Let {p1, p2, p3} ⊂ C satisfy |pi − pj | = 1 for any
i �= j . DefineFi : C → C by Fi(z) = (z− pi)/2 + pi for i ∈ S, whereS = {1,2,3}.
The Sierpinski gasket is the unique non-empty compact setK that satisfies (2.1). Clearly
(K,S, {Fi}i∈S) is a p. c. f. self-similar structure andV0 = {p1, p2, p3}. Now if

D =
−2 1 1

1 −2 1
1 1 −2

 and r = (
3

5
,

3

5
,

3

5
),

then(D, r) is a harmonic structure. Also letµ be the self-similar measure onK with
weight(1/3,1/3,1/3). The Laplacian associated with(D, r)andµ is called the standard
Laplacian on the Sierpinski gasketK. By Theorem 4.4 of [21], we can verify (5.1). In
fact, κF = log 2/ log 5 < dS/2 = log 3/ log 5. Hence Hypothesis 4.6 is true. So the
normalized volume measurẽνµ is a self-similar measure. Sinceµiri = 1/5 for all
i ∈ S, it follows that ν̃µ is the self-similar measure with weight(1/3,1/3,1/3) and
hence it coincides withµ. Analogous results are also valid for the higher-dimensional
Sierpinski gaskets. We have discussed only the above case for simplicity.

Example 5.4 (Vicsek set, [21, Example 4.6]).For 1 ≤ j ≤ 5, defineFj : C → C

by Fj = (z − pj )/3 + pj , wherep1 = 1, p2 = √−1, p3 = −1, p4 = −√−1
andp5 = 0. The Vicsek setK is the unique non-empty compact set that satisfies
(2.2), whereS = {1,2,3,4,5}. (K,S, {Fi}i∈S) is a p. c. f. self-similar structure and
V0 = {p1, p2, p3, p4}. DefineD ∈ L(V0) by Dpjpk = 1 for 1 ≤ j �= k ≤ 4 and
Dpjpj = −3 for all j and letr = (s, s, s, s, t), wheret > 0, s > 0 and 2s + t = 1.
Then(D, r) is a regular harmonic structure. Moreover, setµ1 = µ2 = µ3 = µ4 = t

4t+s
andµ5 = s

4t+s . Then in [21], it was shown thatdS/2 = log 5
logn0

andκF = log 3
logn0

, where

n0 = 4t+s
st

. So by Theorem 5.2 and Theorem 4.1, the normalized volume measureν̃µ is

a self-similar measure. Asµiri = n−1
0 for all i ∈ S, νi = 1/5 for all i ∈ S. Therefore,

µ = ν̃µ if and only if s = t = 1/3.

Example 5.5 (modified Koch curve, [2], [21, Example 4.7]).Letfp,q(z) = (q−p)z+p
for p, q ∈ C. DefineF1 = f0,1/3, F2 = f2/3,1, F3 = f1/3,2/3, F4 = f1/3,c and

F5 = fc,2/3, wherec = 1
2 +

√−1
2
√

3
. The modified Koch curve is the unique compact

setK that satisfies (2.1), whereS = {1,2,3,4,5}. Obviously,(K,S, {Fi}i∈S) is a
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p. c. f. self-similar structure andV0 = {0,1}. SetD = ( −1 1
1 −1

)
andr = (s, s, t, h, h)

with 2s+ 2ht
t+2h = 1 for s, t, h > 0. Then(D, r) is a harmonic structure. Note that one of

the numberst orh can be arbitrarily large. In such a case,(D, r) is not a regular harmonic
structure. Now setµ1 = µ2 = (n0s)

−1, µ3 = (n0t)
−1 andµ4 = µ5 = (n0h)

−1, where
n0 = 2s−1 + t−1 + 2h−1. Then it was shown in [21] thatdS/2 = log 5

logn0
andκF = log 4

logn0
.

So by Theorem 5.2 and Theorem 4.1, the normalized volume measureν̃µ is a self-similar
measure. Asµiri = n−1

0 for all i ∈ S, νi = 1/5 for all i ∈ S. Henceµ = ν̃µ if and only
if s = t = h = 3/8.

In the rest of this section, we will prove Theorem 5.2. First we will introduce some
properties of pre-localized eigenfunctions. A pre-localized eigenfunction can generate
a sequence of infinitely many pre-localized eigenfunctions as follows.

Proposition 5.6 ([3, Lemma 4.2]). Let u be a pre-localized eigenfunction withu ∈
EW(k). Defineuw = Sw1 ◦ · · · ◦ Swm(u) for anyw = w1 · · ·wm ∈ W∗. Thenuw is also
a pre-localized eigenfunction belonging to the eigenvaluek

rwµw
.

Note thatSj (EW(µj rj k)) ⊂ EW(k).
Naturally, the eigenfunctions inSj (EW(µj rj k)) are thought to be offsprings of

the preceding eigenfunctions inEW(µj rj k). From such an observation, we can divide
EW(k) into offspringsEW2 (k) and generatorsEW1 (k).

Definition 5.7.

EW2 (k) =
⊕
i∈S

Si(E
W(kµiri)) and EW1 (k) = (EW2 (k))

⊥ ∩ EW(k).

Now we can choosekWj andφj ∈ EW1 (k
W
j ) for j ≥ 1 so thatkWj ≤ kWj+1 and{φj }∞j=1

is a complete orthonormal system ofEW1 = ⊕kE
W
1 (k). Then{φj,w|j ≥ 1, w ∈ W∗}

is a complete orthonormal system ofEW = ⊕kEW(k), whereφj,w = (µw)
−1/2Sw1 ◦

· · · ◦ Swm(φj ) for w = w1 · · ·wm ∈ W∗. Note thatφj,w ∈ EW2 (k
W
i /(µwrw)) if w /∈ W0

and {φj,w}j≥1,w∈W∗\W0 is a complete orthonormal system ofEW2 = ⊕kE
W
2 (k). The

following proposition was obtained in [21].

Proposition 5.8 ([21, Theorem 3.5]). Suppose that there exists a pre-localized eigen-
function.

(1) In the lattice case,ρW(x, µ) = (GW(logx/2)+ o(1))xdS/2 asx → ∞, whereGW

is a discontinuousT -periodic function with0< inf GW ≤ supGW < ∞.
(2) In the non-lattice case, the limitlimx→∞ ρW(x, µ)/xdS/2 exists and is positive.
(3)

∑
j≥1(k

W
j )

−dS/2 < ∞ and

cW =
(
−

∑
i∈S

νi logνi
)−1 ∑

j≥1

(kWj )
−dS/2, (5.2)

where

cW =
{

1
T

∫ T
0 GW(t)dt in the lattice case,

limx→∞ ρW(x, µ)/xdS/2 in the non-lattice case.
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By the above proposition, we have the following lemma.

Lemma 5.9. If (5.1) is satisfied, then

vol(K,µ) = cW =
(
−

∑
i∈S

νi logνi
)−1 ∑

j≥1

(kWj )
−dS/2.

Proof. If (5.1) is satisfied, then we see thatG = GW in the lattice case and
limx→∞ ρF (x, µ)/xdS/2 = 0 in the non-lattice case. Hence comparing the definitions
of vol(K,µ) andcW , we obtain vol(K,µ) = cW . ��

Next we choosekFj > 0 andξj ∈ EF (kFj ) for j ≥ 1 so thatkFj ≤ kFj+1 and

{ξj }j≥1 is a complete orthonormal system ofEF = ⊕kEF (k). It follows immediately
thatL2(K,µ) = EF ⊕ EW1 ⊕ EW2 and{ξj , φj,w}j≥1,w∈W∗ is a complete orthonormal
system ofL2(K,µ).

Lemma 5.10. If (5.1) is satisfied, then
∑

j≥1(k
F
j )

−dS/2 < ∞.

Proof. Chooseα so thatκF < α < dS/2. Note thatρF (x, µ) = #{j : kFj ≤ x}. So by

(5.1), we obtain that there existsc > 0 such thatcj1/α ≤ kFj for anyj ≥ 1. Therefore

(kFj )
−dS/2 ≤ cj−dS/(2α). Now as 1< dS/(2α),

∑
j≥1 j

−dS/(2α) < ∞. ��
Lemma 5.11. Let ξj,i = Si(ξj ) for any j ≥ 1 and i ∈ S. Then{ξj,i}j≥1,i∈S is a
complete orthonormal system ofEF ⊕ EW1 .

Proof. Applying the same argument as in Lemma 4.3 to{ξj , φj,w}j≥1,w∈W∗ , we see that
{ξj,i , φj,w}j≥1,i∈S,w∈W∗\W0 is a complete orthonormal system ofL2(K,µ). Recall that
{φj,w}j≥1,w∈W∗\W0 is a complete orthonormal system ofEW2 . Hence{ξj,i}j≥1,i∈S is a
complete orthonormal system of the orthogonal complement ofEW2 , which isEF ⊕EW1 .
��
Proof of Theorem 5.2.Let PF , P1 andP2 be the orthogonal projection ofL2(K,µ)

ontoEF ,EW1 andEW2 , respectively. Also letA = HD
−dS/2 andB = H̃D

−dS/2. By
Proposition 5.6 and Lemma 4.3,Aφj,w = Bφj,w = (µwrw)

dS/2(kWj )
−dS/2φj,w for

j ≥ 1 andw ∈ W∗\W0. HenceA ◦ P2 = B ◦ P2. Therefore,

A− B = A1 + AF − BF1

whereAF = A ◦ PF ,A1 = A ◦ P1 andBF1 = B ◦ (PF + P1). Note thatAF ξj =
(kFj )

−dS/2ξj , A1φj = (kWj )
−dS/2φj andBF1ξj,i = νi(k

F
j )

−dS/2ξj,i . So it is easy to
see thatAF ,A1 andBF1 are bounded non-negative self-adjoint operators. Now by
Lemma 5.9 and Lemma 5.10, it follows that tr(AF ) = ∑

j≥1(k
F
j )

−dS/2 < ∞, tr(A1) =∑
j≥1(k

W
j )

−dS/2 < ∞ and tr(BF1) = ∑
j≥1,i∈S νi(kFj )−dS/2 = ∑

j≥1(k
F
j )

−dS/2 <

∞. HenceAF ,A1 andBF1 belong to the trace class. ThereforeA − B belongs to the
trace class. Moreover,

tr(A− B) = tr(AF )+ tr(A1)− tr(BF1) = tr(A1)

=
∑
j≥1

(kWj )
−dS/2.

This along with Lemma 5.9 implies (4.2).��
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