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Analysis on Fractals
Robert S. Strichartz

From Manifolds to Fractals
Analysis on manifolds has been one of the central
areas of mathematical research in the twentieth
century. Rooted in the foundational work of the
nineteenth century, with its rigorous theory of
multidimensional calculus and the visionary ideas
of Riemann, it has flowered into a richly layered
mathematical tapestry. It has attracted mathe-
maticians with diverse expertise and points of
view, including topology, differential equations,
differential geometry, functional and harmonic
analysis, and probability theory. This heady mix of
ideas has produced a vast body of work and a
seemingly endless supply of challenging problems
that should keep mathematicians busy well into the
next century.

At the same time it has become apparent that
many phenomena in the real world are best mod-
eled by geometric structures that are much more
irregular. The theory of fractals, as B. Mandelbrot
[Ma] has so forcefully argued, seeks to provide the
mathematical framework for such development. A
theory of analysis on fractals is now emerging and
is perhaps poised for the kind of explosive and mul-
tilayered expansion that has characterized analy-
sis on manifolds. This article will explain some of
what has been accomplished and where it might
lead.

The central character in the theory of analysis
on manifolds is the Laplacian. Thus the starting

point for analysis on fractals will be the con-
struction of an analogous operator on a class of
fractals. This will not be a genuine differential 
operator, of course, but it will have quite a few of
the features we have come to expect from anything
labeled “Laplacian”. It will be a local operator, and
in fact ∆f (x) will be a limit in a suitable renor-
malized sense of the difference between an
average value of f in a neighborhood of x and f (x).
We will be imitating the weak formulation of the
Laplacian, so that ∆u = f will be interpreted to
mean

(1) E(u, v) = −
∫
fv dµ

for a suitable test class of functions v , vanishing
on the boundary, where µ is a measure and E(u, v)
is a bilinear form called a Dirichlet form. In the man-
ifold case,

(2)
E(u, v) =

∫
∇u · ∇v dµ =∫

gjk(x)
∂u
∂xj

∂v
∂xk

√
g(x)dx

and dµ(x) =
√
g(x)dx in local coordinates, where

{gjk(x)} is a given Riemannian metric,
g(x) = det{gjk(x)}, and {gjk(x)} is the inverse of
the matrix {gjk(x)} . In the fractal case the Dirich-
let form will come to play the leading role. There
does not seem to be any canonical measure, and
the measure on the right side of (1) may be different
from the one on the right side of (2). There is cer-
tainly no analog of the Riemannian metric. It is
interesting to ask in the manifold case whether or
not the Dirichlet form determines the metric. The
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answer is yes
when the dimen-
sion n 6= 2. When
n = 2, conformal
metrics yield the
same Dirichlet
form, and there
is an obstruction
in passing from
a positive defi-
nite form in the
gradient to a Rie-
mannian metric,
not present
when n 6= 2.

This article
will describe the
approach intro-

duced by J. Kigami, which is direct, constructive,
and easy to explain. It is also possible to use prob-
abilistic methods that will indirectly yield the same
Laplacians. For this approach see M. Barlow [Ba],
which is also a good source for references in this
area. Later references to the probabilistic literature
are found in [HK]. The forthcoming book [Ki3] will
have an extensive bibliography. Other mathemat-
ical developments that might also be described as
“analysis on fractals” are not described here; for
example, the function spaces of A. Jonsson and
H. Wallin [JW] and the work of J. Harrison [H] and
U. Mosco [Mo].

Laplacian on the Sierpinski Gasket
In order to keep the discussion on a concrete level,
I will concentrate on the construction of the fully
symmetric Laplacian on the Sierpinski gasket SG
(Figure 1), the familiar self-similar fractal generated
by three contractions Fi in the plane with con-
traction ratio 1/2 and fixed points at the vertices
of an equilateral triangle. Its construction will be
described in more detail below. This was the first
example considered by J. Kigami [Ki1], who later
extended the method to a class of fractals called
“p.c.f.” (post-critically finite) [Ki2]. The SG is typi-
cal for p.c.f. fractals, but this class is certainly very
special, and other methods (nonconstructive) for
producing Laplacians have been presented for
other fractals.

Kigami’s idea is to approximate the fractal from
within by a sequence of finite graphs. The Lapla-
cian on the fractal is then the renormalized limit
of graph Laplacians. The same method works on
the unit interval or the unit square, but we will see
that there are features of the construction on SG
that are more reminiscent of the interval than the
square. In particular, points will have positive ca-
pacity.

In order to figure out the correct renormaliza-
tion for the limit, we will construct the Dirichlet
form first. The sequence of graphs {Γm} is easy to
describe inductively (see Figure 2). Γ0 is just the
complete graph on the three vertices V0 of the tri-
angle, and Γm with vertices Vm is obtained from
Γm−1 by applying the contractions Fi to the vertices
Vm−1, with the edge relation x ∼

m
y holding if and

only if x and y are vertices of the same cell
Fi1 · · ·Fim (SG) of order m. It is clear that the union
of the vertices Vm is dense in SG, so a continuous
function is determined by its restriction to vertex
points. It turns out that we can work entirely within
the class of continuous functions on SG.

The unit interval can also be obtained as a limit
of graphs by taking Vm to be the dyadic points
{j2−m : 0 ≤ j ≤ 2m} with edges between consec-
utive points. The constructions that follow are
closely modeled on this example.

On each graph Γm there is a naive Dirichlet form

Em(f , g) =
∑
x∼
m
y
(f (x)− f (y))(g(x)− g(y))

but these forms are not related to each other un-
less we multiply by the appropriate constants.
That is, for

(3) Em(f , g) = cm
∑
x∼
m
y
(f (x)− f (y))(g(x)− g(y)),

we would like the following consistency condition
to hold: given a real-valued function f defined on
Vm−1, we want

(4) Em−1(f , f ) = Em(f̃ , f̃ ),

where ̃f is the extension of f to Vm that minimizes
Em. We call f̃ the harmonic extension. If we work
this out for m = 1, we find that c1 = (5/3)c0, and
the harmonic extension ̃f is given by the (2/5,1/5)

law: the value of f at a vertex of V1 \ V0
is the weighted average of f at the ver-
tices of V0 with weights 2/5 for the ad-
jacent vertices and 1/5 for the oppo-
site vertex. In the general case the
harmonic extension problem is seen to
be local, so the same (2/5,1/5) law ap-
plies on each cell of order m− 1, and
the same relationship cm = (5/3)cm−1
holds for the renormalization con-
stants. Thus we must have
cm = (5/3)mc0, and for simplicity we

Figure 1. The Sierpinski gasket.

Figure 2. The first three graphs Γ0 , Γ1 , Γ2 approximating the Sierpinski gasket.
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definition for proving theorems, but a more explicit
definition is the pointwise formula

(9) ∆u(x) = lim
m→∞(3/2)5m

∑
y∼
m
x
(u(y)− u(x))

for any nonboundary vertex point x . The renor-
malization factor 5m in (9) is just the product of
(5/3)m in (3) divided by the factor (1/3)m from the
measure µ. The relatively unimportant constant
3/2 arises because vertices in Vm do not corre-
spond exactly to sets of measure (1/3)m . The exact
theorem [Ki1] is that u ∈ dom∆ if and only if the
limit in (9) exists uniformly. Note that (9) is, as
promised, a renormalized limit of graph Lapla-
cians, but the renormalization constant 5m cannot
be explained by any superficial dimension argu-
ments. Of course (9) exhibits ∆u as a limit of dif-
ference quotients and shows the local nature of this
Laplacian: ∆u(x) depends only on the values of u
in any neighborhood of x . But (9) is valid only for
vertex points, and although these points are dense
in SG, they are a set of measure zero for µ and are
far from being typical points. From (9) it is not hard
to show that a function h is harmonic if and only
if ∆h = 0.

There is a version of the Gauss-Green formula
valid for this Laplacian. Not only is this an inter-
esting result in itself, but also it is an important
technical tool. To state the result we need to de-
fine normal derivatives at the boundary points
x ∈ V0:

(10) ∂nf (x) = lim
m→∞(5/3)m

∑
y∼
m
x
(f (y)− f (x)).

take c0 = 1. Note that the local harmonic extension
law is the analog of the fact that a linear function
on an interval takes on the average value of its end-
point values at the midpoint; no such result holds
for harmonic functions on a square.

The consistency condition (4) means that for any
continuous function f on SG, Em(f , f ) is a mono-
tone increasing function of m, so

(5) E(f , f ) = lim
m→∞Em(f , f )

is always defined (in [0,∞]). We let domE be the
set of functions f for which E(f , f ) is finite. The con-
stants, and only the constants, have zero energy,
and it is not hard to see that domE modulo con-
stants is a Hilbert space with inner product E(f , g)
defined by the same sort of limit as in (5). The en-
ergy form satisfies the self-similar identity

(6) E(f , g) =
3∑
i=1

(5/3)E(f ◦ Fi, g ◦ Fi)

and is symmetric under the 6-element symmetry
group of the equilateral triangle.

The three vertices in V0 are, by definition, the
boundary of SG. Note that every nonboundary ver-
tex in Vm has exactly four neighbors in Vm. We de-
fine a harmonic function on Γm to be one that as-
sumes the value at a nonboundary vertex x equal
to the average of the values at the neighboring ver-
tices. A harmonic function on SG is just a contin-
uous function whose restrictions to Γm are all har-
monic. It is uniquely determined by its values on
the boundary, and its values on Vm are obtained
from its values on Vm−1 by the harmonic extension
(2/5,1/5) law. Thus the space of harmonic func-
tions is 3-dimensional. Figure 3 shows the graph
of a harmonic function.

To define a Laplacian from the Dirichlet form
via the weak formulation (1) requires that we
choose a measure µ for the right side of (1). There
is certainly a natural measure on SG, namely the
self-similar probability measure satisfying

(7) µ =
3∑
i=1

1
3
µ ◦ F−1

i ,

or equivalently

(8)
∫

SG
f dµ =

3∑
i=1

1
3

∫
SG
f ◦ Fi dµ.

In fact, such an identity determines µ, and µ is the
normalized Hausdorff measure of dimension
log 3/ log 2 restricted to SG. The measure of each
of the 3m cells of order m is just 3−m. The iden-
tity (8) makes it possible to evaluate many integrals
exactly (for example, inner products of harmonic
functions). With this choice of µ we define
u ∈ dom∆ and ∆u = f if u ∈ domE , f is continu-
ous, and (1) holds for all v ∈ domE with v van-
ishing on the boundary V0. This is in fact a useful

Figure 3. The graph of a harmonic function on the
Sierpinski gasket, with boundary values 0, 0, 1 at the
vertices (0,0), (1,0), (1/2,

√
3/4) . The function was

actually plotted just at the points of V7 .
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Note that there are exactly two neighboring points
when x ∈ V0. The limit exists when f is in dom∆ .

Theorem 1. (Gauss-Green Formula). If u and v are
in dom∆ ,

(11)

∫
SG

(u∆v − v∆u)dµ =∑
x∈V0

(
u(x)∂nv(x)− v(x)∂nu(x)

)
.

There is also a Green’s function G(x, y) for solv-
ing

(12) ∆u = f , u
∣∣∣
V0

= 0

uniquely via

(13) u(x) =
∫
SG
G(x, y)f (y)dµ(y).

The Green’s function is continuous, symptomatic
of the fact that points have positive capacity. There
is an explicit formula for G that we omit here.

Eigenfunctions and Spectral Decimation
With the definition of the Laplacian in place, it is
possible to consider analogs of the classical equa-
tions involving the Laplacian. We have already
mentioned harmonic functions, for which there ex-
ists a simple and effective local extension algo-
rithm. The harmonic functions are the analogs of
linear functions on an interval. Similarly, the eigen-
functions of the Laplacian

(14) −∆f = λf

are the analogs of sines, cosines, and exponentials.
By imposing either Dirichlet (f |V0 = 0) or Neumann
(∂nf |V0 = 0) boundary conditions on solutions of
(14), we obtain a discrete family of Dirichlet (or Neu-
mann) eigenfunctions, with eigenvalues forming a

discrete Dirichlet (or Neumann) spectrum. More-
over, arbitrary functions may be expanded in
infinite series of either type of eigenfunctions,
giving the analog of Fourier sine and cosine series.
The spectrum was first studied by the physicists
R. Rammal and G. Toulouse in 1983 and 1984. In
1992 M. Fukushima and T. Shima gave a mathe-
matical description of eigenvalues and eigenfunc-
tions. Many illustrations can be found in [DSV].

The eigenfunctions may in fact be computed via
an effective local extension algorithm. To see what
this should be like, we observe that the function
sinπkx on the unit interval is an eigenfunction not
only of the differential operator d2/dx2 but also
of the symmetric second difference operator

(15) ∆2
hf (x) = h−2(f (x + h) + f (x− h)− 2f (x)),

with eigenvalue 2h−2(cosπkh− 1) that tends to
−(πk)2 as h→ 0. Thus, if we let Vm denote the
dyadic points j2−m in the unit interval, the eigen-
functions of ∆2

h with h = 2−m on Vm are restrictions
to Vm of eigenfunctions of d2/dx2 , and we obtain
the whole Dirichlet spectrum (with the correct
eigenvalues) in the limit as m →∞. Moreover, there
is a bifurcation of eigenfunctions as we extend
from Vm to Vm+1. If we start with f (x) = sinπkx on
Vm with 1 ≤ k < 2m − 1, we can extend f to Vm+1
as either sinπkx or sinπ (k + 2m)x , giving differ-
ent eigenfunctions with different eigenvalues. Here
we can begin the whole process with the single
Dirichlet eigenfunction sinπx on V1.

The story is quite similar on SG. Aside from a
few complications, every eigenfunction

(16) −∆mfm = λmfm

of the graph Laplacian

(17) ∆mfm(x) =
∑
y∼
m
x
(f (y)− f (x))

on Γm can be extended by an explicit local algorithm
in two distinct ways to an eigenfunction fm+1 on
Γm+1 with eigenvalue λm+1, where the eigenvalues
are related by the quadratic equation

(18) λm = λm+1(5− λm+1).

Furthermore, eigenfunctions of ∆ on SG arise by
taking limits as m →∞. What is new is that the
process needs to be started at different levels.
Eigenvalues can have high multiplicity (much higher
than is suggested by the 6-element symmetry
group), and the eigenfunctions can be completely
localized. For example, Figure 4 shows the values
of an eigenfunction on Γ3 with eigenvalue λ3 = 5.
By extending this function and passing to the limit,
we obtain a Dirichlet eigenfunction on SG that van-
ishes identically on two of the three cells of order
1. This means that there are solutions to the heat
equation or wave equation on SG for which the heat

0
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0

−1

0

1

0

0

0 0

0

0 0

00

1 −1

Figure 4. The values of an eigenfunction on Γ3 with
eigenvalue λ3 = 5, identically zero on two of the three

cells of order 1.
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(or vibration) never escapes from a small cell. This
is perhaps not so surprising in view of the topo-
logical structure of SG, where single junction points
(the vertices in Vm) control the connection be-
tween neighboring cells, and any signal with an odd
symmetry in a neighborhood of such a junction
point will not get past. Another peculiar feature of
the eigenfunctions on SG is that they may assume
a constant value along a line segment. For exam-
ple, the ground state Dirichlet eigenfunction (Fig-
ure 5) assumes its maximum value along the whole
inverted triangle connecting the nonboundary ver-
tices in V1.

As a consequence of this description of eigen-
values called the spectral decimation method, the
spectrum (Dirichlet or Neumann) satisfies a Weyl
asymptotic law with a dimension dS = 2 log 3/ log 5
known as the spectral dimension. The example of
SG is a bit special, since the spectral decimation
method works only for a very limited class of frac-
tals. J. Kigami and M. Lapidus established the Weyl
asymptotic law in full generality using different
methods in 1993.

Heat and Wave Equation
Using the Laplacian ∆ on SG for the space part, we
can consider space-time heat and wave equations
ut = ∆u and utt = ∆u for u(x, t) a function on
SG× [0,∞) . The heat equation may also be con-
sidered as the diffusion equation for a stochastic
process that may be described as Brownian motion
on SG, with ∆ as its infinitesimal generator. It is
possible to give an independent description of
this Brownian motion, and in fact this predates the
explicit constuction of the Laplacian we have de-
scribed. The heat kernel then describes the tran-
sition probabilities for the process.

Estimates for the heat kernel of the expected
Gaussian type have been obtained by B. Hambly and
T. Kumagai [HK], and there are some interesting
features. The dimension that appears in the on-
diagonal estimates is the spectral dimension dS.
The distance that appears in the off-diagonal es-
timates is not the Euclidean distance. This should
not be too surprising, since the geometry that
comes from the embedding of SG in the plane
plays no role in the construction of the Laplacian.
The distance that is relevant is the intrinsic resis-
tance metric. If we regard the graphs Γm as elec-
tric circuits, with the edges consisting of resistors
whose resistance is the reciprocal of the conduc-
tance constant cm , then the effective resistance be-
tween vertices is independent of m and by conti-
nuity yields a metric on SG. Another way to describe
this metric dR(x, y) is as the infimum of the energy
of a function f that satisfies f (x) = 0 and f (y) = 1.
The intrinsic resistance metric is not exactly self-
similar, but asymptotically it scales by a ratio of
3/5 with each contraction. Thus cells of order m
have diameter approximately (3/5)m .

An interesting connection between the intrinsic
resistance metric and the spectral dimension is the
formula

dS = 2dH/(dH + 1),

where dH denotes the Hausdorff dimension in this
metric.

The wave equation presents another surprise:
there is no finite propagation speed. This can be
explained in terms of a mismatch between the
scaling properties of the second time derivative
(factor of 4) and the Laplacian (factor of 5). If we
were to construct a “Sierpinski harp” by wiring
strings along the edges of Γm and coupling the
strings appropriately at the vertices in Vm, we
would need to increase the tension on the strings
as m increases in order to obtain in the limit a
model for wave propagation on SG. As every mu-
sician knows, increasing tension increases pitch,
but the reason behind the increase in pitch is that
the speed of propagation increases. Thus, for large
m a vibration can travel along the edge of the harp
at high speed. However, most of the energy of the
vibration will not discover this potential super-
highway but instead will get snarled in the local
traffic of the convoluted connections in the graph
Γm. In the limit, small amounts of energy can travel
at arbitrarily large speed. From a scaling perspec-
tive, vibrations appear to travel faster on a smaller
scale.

Figure 5. The graph of the ground-state Dirichlet
eigenfunction on the Sierpinski gasket. This function
is strictly positive on the interior and achieves its
maximum value of 1 everywhere on the principal
interior triangle. The function has λ1 = 2. For m ≥ 1,
λm+1 is (1/2)(5− √25− 4λm), the negative square root
being chosen at each stage.
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The unbounded propagation speed seems to
defy basic physical principles, but the resolution
of this problem is simply that true fractals do not
exist in nature. Once one gets to the molecular level,
a different model is needed. Nevertheless, objects
that have a fractal structure at several scales may
often still be profitably modeled by fractals.

Numerical Analysis
Where exact solutions to fractal differential equa-
tions are unavailable, a number of techniques for
finding approximate solutions are known. One
rather obvious method, the analog of the finite-
difference method, is to use 5m∆m on Γm as an ap-
proximation to ∆ on SG. This method was used for
the space components in the heat and wave equa-
tions in [DSV]. It is also possible to develop an ana-
log of the finite-element method by constructing
spline spaces [SU]. The analog of the space of poly-
nomials of degree at most 2j + 1 on an interval is
the space Hj of multiharmonic functions satisfy-
ing ∆j+1u = 0. By using the Green’s function rep-
resentation (13) it is possible to give effective local
algorithms for computing multiharmonic func-
tions, starting from the boundary data

(19)


∆kf

∣∣∣
V0

k ≤ j/2,
∂n∆kf

∣∣∣
V0

k < j/2.

We then define spline spaces SmHj of functions
that are piecewise in Hj on each of the 3m cells
of order m and that satisfy matching conditions
at the nonboundary vertices in Vm corresponding
to the data (19). The spline space SmH0 is just the
space of continuous piecewise harmonic functions
at level m. By taking higher values of j we allow
the splines to be “smoother”.

To find the finite-element approximation to the
solution of (12), for example, we choose values for
j and m and take the subspace of SmHj satisfy-
ing the boundary condition u|V0 = 0 . The approx-
imate solution is the function in this space satis-
fying the integrated equation (1) for all v in this
space. By choosing a natural basis for this space
we obtain a sparse system of linear equations. The
values of E(u, v) can be computed theoretically, but
the right side of (1) requires numerical integration.
The spline spaces may be used also to develop ef-
ficient numerical integration methods analogous
to Simpson’s method. They are also useful for cut-
ting and pasting operations on functions. A ver-
sion of the finite-element method implemented
by M. Gibbons and A. Raj may be found at
http://mathlab.cit.cornell.edu/~gibbons/.

Taylor Approximations
It would be difficult to convince a calculus student
that the second derivative is the more basic con-
cept and the first derivative is a subordinate no-

tion. Yet that is the situation we are in at this stage
of the development of calculus on SG. In fact, there
is no completely satisfactory analog of the gradi-
ent, although I will describe two distinct ap-
proaches to the problem. On an interval the tan-
gent line is defined by the local approximation of
a differentiable function by linear functions. This
is the first of the sequence of Taylor polynomial
approximations, involving higher derivatives, for
functions with greater smoothness. The first de-
rivative and also the higher derivatives appear as
coefficients of the Taylor polynomials. On SG the
analogs of linear functions are harmonic func-
tions, and the analogs of polynomials are the mul-
tiharmonic functions. These are the functions that
should serve as local approximations to a general
“differentiable” function, and the coefficients iden-
tifying the approximation should serve as com-
ponents of various derivatives of the function.
With some luck, one may also compute the deriv-
atives as limits of difference quotients.

The situation turns out to be more complicated
for three reasons. First, the results are different at
the special vertex points in Vm and at generic
points, where the theory is somewhat incomplete.
Second, at a vertex point the approximation rate
that characterizes the Taylor approximation must
be described by two different estimates, a faster
rate for the odd part and a slower rate for the
even part (hence overall). Third, the region where
the approximation takes place is limited by the
geometry of the point regardless of the function.

To describe the situation in more detail, we
begin by defining a tangential derivative ∂T f (x) at
boundary points x ∈ V0 to go along with the nor-
mal derivative defined by (10):

(20) ∂T f (x) = lim
m→∞5m(f (am)− f (bm)),

where am and bm are the two neighbors of x in Vm.
The limit exists if f is in dom∆ . Next we localize
both derivatives to the cells of order m whose
boundary points are the vertices in Vm. Each non-
boundary vertex x0 is a boundary point for two
such cells, and so there are four derivatives defined
at x0. However, under reasonable assumptions,
such as f ∈ dom∆ , the two normal derivatives are
related: in fact, they sum to 0. The two tangential
derivatives are independent however. So we can de-
fine a gradient of f at x0 consisting of three com-
ponent derivatives. This leads to an embarrassing
dimensional miscount, since we have four numbers
(the value of the function at x0 plus the three de-
rivatives) to match a harmonic function, and the
space of harmonic functions is only 3-dimensional.
The resolution of this paradox is that we should
try to match only a local harmonic function, not a
global harmonic function. The point x0 has a nat-
ural system of neighborhoods Um(x0) consisting
of pairs of adjacent cells of order mmeeting at x0.
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Here we must require that m be sufficiently large
so that x0 ∈ Vm . Each of these neighborhoods has
exactly four boundary points, and there is a 4-di-
mensional space of local harmonic functions on
Um(x0). The first Taylor approximation to f at x0
is defined to be the local harmonic function h that
matches the values of f and its three derivatives
at x0. Note that the domain of definition of h is lim-
ited by the geometry of x0 alone.

Next we describe the local approximation prop-
erties of h. We define a reflection symmetry R in
Um(x0) that fixes x0 and reflects each cell to itself
through the angle bisector of x0. (Here R does not
permute the two cells.) The overall estimate takes
the form

(21) |f (x)− h(x)| = o((3/5)m) for x ∈ Um(x0),

while the estimate for the odd part is

(22) |(f (x)− f (Rx))− (h(x)− h(Rx))| = o((1/5)m)

for x ∈ Um(x0) . It is not hard to show that at most
one local harmonic function can satisfy (21) and
(22) and that if such a local harmonic function ex-
ists, then its derivatives at x0 must match the cor-
responding derivatives of f at x0. In addition,
f (x0) = h(x0). The following existence theorem is
proved in [S]:

Theorem 2. Suppose f is in dom(∆) and ∆f satis-
fies a Hölder condition of any positive order. Then
for each vertex point x0 there exists a local harmonic
function h satisfying (21) and (22).

There are analogous statements involving
higher-order Taylor approximations by local mul-
tiharmonic functions with better estimates, under
assumptions that f belongs to the domain of a
power of ∆. The occurrence of a power of 3/5 in
(21) and (10) is a consequence of the fact that
cm = (5/3)m in (3). However, the power of 5 that ap-
pears in (22) and (20) is just coincidentally the
same as the power of 5 that appears in (9). This
coincidence is related to the additional hypothe-
sis of Hölder continuity required in Theorem 2.

The story for local approximation at a generic
point x0 is quite different. If we specifically assume
that x0 does not belong to any Vm, then x0 belongs
to a unique cell U ′m(x0) of order m, and this gives
a natural system of neighborhoods of x0. Each cell
has three boundary points, and local harmonic
functions on the cell are determined by the values
at these boundary points. In fact, each local har-
monic function is the restriction of a unique global
harmonic function, and the extension and restric-
tion are easily described in terms of three matri-
ces Mi and their inverses M−1

i . The restriction from
SG to Fi(SG) of a harmonic h is given by

(23) h ◦ Fi
∣∣∣
V0

=Mih
∣∣∣
V0
,

where

(24) M1 =

 1 0 0
2/5 2/5 1/5
2/5 1/5 2/5


and M2 and M3 are obtained from M1 by cyclic per-
mutations of indices. The restriction to the cell
Fi1 · · ·Fim (SG) is then given by

(25) h ◦ (Fi1 · · ·Fim )
∣∣∣
V0

=Mim · · ·Mi1h
∣∣∣
V0
,

and the extension is the inverse relation

(26) h
∣∣∣
V0

=M−1
i1 · · ·M−1

im h ◦ (Fi1 · · ·Fim )
∣∣∣
V0
.

Now if a nonvertex point x0 is given, the neigh-
borhood system U ′m(x0) corresponds to a unique
sequence {ij}. We let hm denote the harmonic
function that matches f at the three boundary
points of U ′m(x0). By (26) this means

(27) hm
∣∣∣
V0

=M−1
i1 · · ·M−1

im f ◦ (Fi1 · · ·Fim )
∣∣∣
V0
.

If the limit exists as m →∞, we call the harmonic
function h = lim

m→∞hm the first-order Taylor ap-
proximation to f at x0. Using H. Furstenberg’s 1963
theory of products of random matrices, [S] shows
that for µ-almost every point x0, the first-order Tay-
lor approximations at x0 exist for every f ∈ dom∆ ,
and the estimate

(28) |f (x)− h(x)| = O(βm) for x ∈ U ′m(x0)

holds for β > β0. Moreover, the estimate (28)
uniquely characterizes the harmonic function h.
The value of the constant β0 in (28) can only be
estimated.

Energy Measures
Since the Dirichlet form E(u, v) is the analog of∫ ∇u · ∇v dµ, it is tempting to look for the analogs
of both ∇u · ∇v and dx within it. In fact, there is
a standard procedure for associating a measure
νu,v to every u, v ∈ domE (positive when u = v)
such that

(29) E(u, v) =
∫
dνu,v .

In this case the simplest way to describe νu,v is to
take for νu,v (A) , when A is any simple set, the same
limit that defines E(u, v) , but restricting the sums
in Em(u, v) to points in A . If we can find a posi-
tive measure ν with the property that νu,v is ab-
solutely continuous with respect to ν for all
u, v ∈ domE , then we can write

(30) νu,v = Γ (u, v)dν

for the appropriate Radon-Nikodym derivative
Γ (u, v). Here Γ is called the carré du champs oper-
ator. S. Kusuoka in 1989 showed that (30) holds
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with the choice of
ν = νh1,h1 + νh2,h2 ,
where {h1, h2} is an
orthonormal basis
for the harmonic
functions mod con-
stants in the energy
inner product. We
refer to νf ,g as en-
ergy measures and
ν as the Kusuoka
measure. A perhaps
surprising observa-
tion is that the
Kusuoka measure
and hence all the
energy measures
are singular with re-
spect to the self-
similar measure µ
defined by (7) and
(8) that we used in
the construction of
the Laplacian! We
can think of Γ (u, v)
as the analog of
∇u · ∇v ,  but we
must keep in mind
that Γ (u, v) is de-
fined only almost
everywhere with re-
spect to ν. It is not
clear whether there
is any meaningful
way to define ∇u
so that Γ (u, v) =
∇u · ∇v .

The singularity
of the Kusuoka
measure has an-
other disquieting
consequence: mul-
tiplication is for-
bidden in dom(∆) .
Specifically, if
u ∈ dom(∆) is not
constant, then u2 is
not in dom(∆) . This
can be explained by
the putative identity

(31) ∆u2 = 2u∆u +∇u · ∇u,
which can be interpreted correctly only in terms
of measures [BST]. A different explanation can be
based on the incommensurability of the different
approximation rates in the local Taylor approxi-
mation. If f is in dom(∆) and x0 is a vertex point
where ∂nf (x0) 6= 0, then the rate of convergence of
f (x) to f (x0) is bounded above and below by a mul-
tiple of (3/5)m on Um(x0) \Um+1(x0) . Then

(f (x)− f (x0))2 converges to 0 too rapidly to have
nonzero normal derivative. But it also converges
to 0 too slowly to have normal derivative equal to
0, for that implies a rate of at least m(1/5)m .

The impossibility of multiplication is a serious
obstacle to the interpretation of the domains of ∆
and powers of ∆ as spaces of smooth functions.
Perhaps that is just the nature of things. Another
possible response is to study a different Laplacian,
constructed by taking the Kusuoka measure on the
right side of (1). This eliminates the problem of mul-
tiplication and enables us to make perfect sense
out of (31). But it has the disadvantage that ν is
not self-similar, so computations with this Lapla-
cian will not be independent of scale. Certainly
when dealing with physical models, one will not
have the luxury of choosing a measure at will if the
measure is to have the interpretation of mass dis-
tribution.

Here is an entertaining diversion concerning
the Kusuoka measure. Suppose we carry out the
same procedure for the standard Dirichlet form∫ |∇u|2 dx on the unit disc. In this case there is an
infinite orthonormal basis {hi} of harmonic func-
tions modulo constants in this inner product, and
we would take

(32) ν =
∞∑
i=1

|∇hi(x)|2 dx,

the sum being independent of the choice of or-
thonormal basis. The computation of ν is straight-
forward but lengthy, and the result is a multiple
of the Riemannian measure associated to the hy-
perbolic metric on the disc. This should come as
no surprise, since we have already observed that
the Dirichlet form in two dimensions is a confor-
mal invariant, so we might as well start out by work-
ing in the hyperbolic metric. Then the Möbius
transformations of the disc are isometries, and ν
must be Möbius invariant (because composing the
orthonormal basis with a Möbius transform pro-
duces another orthonormal basis). Up to a constant
multiple, there is a unique σ-finite Möbius invari-
ant measure.

P.C.F. Self-Similar Fractals
Kigami [Ki2] has described a class of fractals called
post-critically finite (p.c.f.), for which a similar the-
ory of Dirichlet forms and Laplacians may be con-
structed, provided a certain algebraic problem can
be solved. In the interest of simplicity I will describe
a more limited class of fractals that seems to con-
tain all the interesting examples. The key property
of SG that we want to maintain is that it is con-
nected, but just barely: the removal of a finite
number of points makes it disconnected, so these
junction points control all access from one point
of the set to another. These fractals are often re-
ferred to as finitely ramified.

Figure 6. The pentagasket (top),
hexagasket (middle), and octagasket

(bottom).
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We will work within the class of self-similar
sets in Rn. A self-similar set is defined to be the
unique nonempty compact set K satisfying

(33) K =
N⋃
i=1

FiK

for a family {Fi} of contractive similarities. The crit-
ical set C is defined to be the set of all intersec-
tion points FiK ∩ FjK for i 6= j , and the post-criti-
cal set P is defined to be the pre-images of C under
the mappings Fi and their iterates. The p.c.f. as-
sumption we make is that P is a finite set, and by
definition it is the boundary of K.

To get a feeling for what is and is not in a p.c.f.
fractal, consider the class of polygaskets, which are
constructed from a regular N-gon in the same way
that SG is constructed from a triangle. We adjust
the contraction ratio for Fi (with fixed points the
vertices of the N-gon) so that the images just
touch. When N is not divisible by 4, the image N-
gons touch at single vertices, and we obtain a p.c.f.
fractal with P equal to the N vertices of the origi-
nal N-gon. But when 4 divides N, the intersections
are infinite (for N = 4 we obtain a square). Figure
6 shows the pentagasket and hexagasket, which are
p.c.f., and the octagasket, which is not.

For a p.c.f. fractal K we define cells of order m
to be images Fi1 · · ·FimK, and we define graphs Γm
by taking V0 = P,

Vm =
N⋃
i=1

FiVm−1,

and the edge relation x ∼
m
y if x and y belong to

the same cell. The intersections of distinct cells con-
sist of vertices in Vm, but not all nonboundary
vertices are such junction points (see the penta-
gasket and hexagasket, for example). We want to
construct a Dirichlet form E on K that is again the
limit of Dirichlet forms Em on Γm, but we can no
longer rely on the simple formula (3). For Em, the
expression

(34) Em(f , f ) =
∑
x∼
m
y
c(x, y)(f (x)− f (y))2

with rather arbitrary positive coefficients c(x, y)
would be allowable, but this is too general. What
we want is a self-similarity condition on the se-
quence {Em},

(35) Em(f , f ) =
N∑
i=1

r−1
i Em−1(f ◦ Fi, f ◦ Fi)

for certain positive coefficients {ri}, that will trans-
late into the self-similarity identity

(36) E(f , f ) =
N∑
i=1

r−1
i E(f ◦ Fi, f ◦ Fi)

in the limit. We will continue to require the con-
sistency condition (4) as well. The following theo-
rem is proved in [Ki2].

Theorem 3. Suppose there exist E0 on Γ0 of the form
(34) and coefficients {ri} such that if we use (35) to
define E1 , then (4) holds for m = 1. Then if we use
(35) to define Em inductively, the consistency con-
dition (4) holds for all m. In the case that ri < 1 for
all i, the limit E defines a local Dirichlet form whose
domain is contained in the continuous functions on
K, and (36) holds.

In other words, the whole construction suc-
ceeds provided it succeeds at the first step. Of
course, the algebraic problem of finding the coef-
ficients for E0 and the coefficients {ri} is
nontrivial, and there is still no general existence
theorem, although C. Sabot in 1997 and T. Lind-
strøm in 1989 have resolved the problem in some
cases. Generally speaking, one expects that there
is a continuum of solutions.

For the construction of a Laplacian from the
Dirichlet form via (1), it is not necessary to choose
a self-similar measure for µ. It is enough to have
a finite measure that gives positive values to all
nonempty open sets. Many of the results discussed
above for SG extend to p.c.f. fractals, with appro-
priate modifications and hypotheses. One new fea-
ture that does not show up in the SG example is
that the matrices Mi that occur in the analog of (23)
for restricting harmonic functions are not always
invertible, so that the extension of harmonic func-
tions given by (27) is not always possible. In par-
ticular, harmonic functions may be locally con-
stant but not globally constant.

Challenges for the Future
This article has described some of the develop-
ments that have taken us quite far for a relatively
narrow class of fractals, and further progress can
be expected. There are some hints that these frac-
tals have something in common with manifolds of
positive curvature, although there is no obvious
candidate for curvature in this context. A Liouville
theorem holds for certain noncompact “blow-ups”
of these fractals, and in the manifold case this re-
quires a nonnegative curvature assumption.

However, an important challenge for the future
is to extend the theory beyond the finitely rami-
fied context. There are Brownian-motion-type
processes on other fractals, notably some “Sier-
pinski carpets”, and the infinitesimal generators
give, indirectly, Laplacians. It is not clear what the
natural class of fractals is for which this approach
will succeed, and it is also not clear how much fur-
ther information can be obtained in this mainly
nonconstructive setting.

It should also be possible to go beyond the self-
similar context. Of course, it is easier to work with
structures obtained by iterating the same
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construction, but it is the hierarchical structure on
different scales that seems to be essential to the
current theory. Perhaps what is needed is a con-
cept of fractafold, the fractal analog of the concept
of manifold.
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About the Cover
The Sierpinski gasket is the connected sub-

set of the plane obtained from an equilateral
triangle by removing the open middle inscribed
equilateral triangle of 1/4 the area, removing
the corresponding open triangle from each of
the three constituent triangles, and continuing
this way. The gasket can also be obtained as
the closure of the set of vertices arising in this
construction. The cover shows the vertices of
the constituent triangles through seven itera-
tions of constructing midpoints. The vertices
are color coded according to the stage at which
they first appear, the last three stages being
red, orange, and yellow. The vertices have been
increased in size from points to small disks to
give the illusion of connectedness for the dis-
played finite set of vertices.

—Peter Sykes
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