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Abstract

We study large deviations for Brownian motion on the Sierpinski gasket in the short time limit.
Because of the subtle oscillation of hitting times of the process, no large deviation principle can
hold. In fact, our result shows that there is an in�nity of di�erent large deviation principles
for di�erent subsequences, with di�erent (good) rate functions. Thus, instead of taking the time
scaling � → 0, we prove that the large deviations hold for �zn ≡ ( 25 )

nz as n → ∞ using one
parameter family of rate functions I z (z ∈ [ 25 ; 1)). As a corollary, we obtain Strassen-type laws
of the iterated logarithm. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we obtain some large deviation results in the short-time regime
(Schilder-type large deviations) for Brownian motion on the Sierpinski gasket. Let
E be the Sierpinski gasket on R2 with an intrinsic geodesic metric d, called a shortest
path metric, and let X x(t) be Brownian motion on E starting at x ∈ E. This process
exhibits sub-di�usive behavior in the sense that Ex[d(X (t); x)] � t1=dw for small t ¿ 0
where dw=log 5=log 2¿ 2 and f(t) � g(t) means f(t)=g(t) is bounded from above and
below by some positive constants. For �xed T ¿ 0, let 
x ≡ Cx([0; T ] → E) = {� ∈
C([0; T ]→ E): �(0) = x} with uniformly continuous topology. Let Px

� be the law for
X x(�t). Then, our main theorem is the following.

Theorem 1.1. For each z ∈ [ 25 ; 1); A⊂
x;

− inf
�∈IntA

I zx (�)6 lim inf
n→∞ (( 25 )

nz)1=(dw−1)logPx
(2=5)nz(A)

6 lim sup
n→∞

(( 25 )
nz)1=(dw−1)logPx

(2=5)nz(A)6− inf
�∈ClA

I zx (�):
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Here {I zx}z∈[ 25 ;1) is a sequence of rate functions de�ned as follows for each � ∈ 
x,

I zx (�) =



∫ T

0
(�̇(t))dw=(dw−1)F(z=�̇(t)) dt � is absolutely continuous;

∞ otherwise;
(1.1)

where F is a periodic non-constant positive continuous function with period 5
2 and

�̇(t) ≡ lims→t d(�(s); �(t))=|s − t| for t ∈ [0; T ]. This result tells us that the large
deviation result does not hold when one takes the time scaling � to 0. Instead, for each
�xed z, it holds via the sequence �zn ≡ ( 25 )

nz as n → ∞. This result is closely related
to the following estimate for the transition probability density pt(x; y) of X obtained
in Kumagai (1997):

− lim
n→∞((

2
5 )

nz)1=(dw−1)logp( 25 )nz(x; y) = d(x; y)dw=(dw−1)F
(

z
d(x; y)

)
;

for x; y ∈ E where F is the same periodic function as above. This F is de�ned as a
Legendre transform of some limiting function of a Laplace transform of some hitting
time of X and a “tiny” oscillation of the hitting times makes F non-constant. When
A = {f ∈ 
x : f(T ) = y}, inf{I zx (�) : � ∈ A} is attained independently of z by the
path(s) which moves on the geodesic(s) between x and y homogeneously. Thus “the
most probable path” should be this path, but the energy (action functional) of the path
depends on time sequences determined by z.
For Brownian motion on a smooth Riemannian manifold, it is well known (see

Varadhan, 1967) that Schilder-type large deviations hold with Ix(�) = 1
2

∫ T
0 |�̇(t)|2 dt

(this rate function is recovered from (1.1) by taking dw =2, F ≡ constant). Our result
shows an interesting contrast to this fact.
In Section 2, we will brie
y present Brownian motion on the Sierpinski gasket and

the apriori estimates on its hitting times and transition probabilities. In Section 3, we
will show some properties of our rate functions and sketch the proof of our main
theorem. The corresponding large deviation results for pinned Brownian motion is also
introduced. In Section 4 we will obtain a Strassen-type law of the iterated logarithm
as an application of our main theorem.

2. Brownian motion on the Sierpinski gasket

2.1. The Sierpinski gasket and its Dirichlet form

Let {	i}3i=1 be a family of a�ne maps on R2 with contraction rate 1
2 where the

�xed point of 	i (16i63) is (0; 0); (1; 0) and ( 12 ;
√

3
2 ), respectively. Then, there ex-

ists unique non-void compact set E such that E =
⋃3

i=1 	i(E) which is called the
(two-dimensional) Sierpinski gasket. Let F (0) = {(0; 0); (1; 0); ( 12 ;

√
3
2 )}. For A⊂R2,

de�ne 	i1 ; :::; in(A) = 	i1 ◦ · · · ◦ 	in(A). We will call the set 	i1 ; :::; in(F
(0)) an n-cell

and 	i1 ; :::; in(E) an n-complex. Set

F (n) =
N⋃

i1 ; :::; in=1

	i1 ; :::; in(F
(0)); F (∞) =

∞⋃
n=0

F (n):

Taking closure, E can be recovered: E = Cl(F (∞)):



G. Ben Arous, T. Kumagai / Stochastic Processes and their Applications 85 (2000) 225–235 227

We next introduce an intrinsic metric on the gasket which we call a shortest path
metric. For x; y ∈ F (m), let

�m(x; y) = {�m: �m is an m-walk in E from x to y which

does not contain multiple points}: (2.1)

Here �m = {pk; pk+1}lk=1 is an m-walk if l ∈ N; pk ∈ F (m) for 16k6l and pk and
pk+1 are in the same m-cell for 16k6l − 1. For �m = {pk; pk+1}lk=1 ∈ �m(x; y), we
say the length of �m is l and denotes it by |�m| = l. Now we de�ne the distance on
F (m) as follows:

dF (m) (x; y) = min
�∈�m(x;y);�={(pk ;pk+1)}|�|

k=1

|�|∑
k=1

2−m:

Then, we can easily prove the following (see Fitzsimmons et al., 1994 for the proof
under more general situations).

Lemma 2.1. (1) dF (m) (x; y) = dF (m+1) (x; y) if x; y ∈ F (m).
(2) For any choice of p; q ∈ E; de�ne d(p; q) by d(p; q)=limn→∞ d(pn; qn); where

pn; qn ∈ F (∞) and pn → p; qn → q as n → ∞. Then d is well de�ned and d is a
metric on E.

We now de�ne the Dirichlet form on the gasket. Let f; g ∈ l(F (∞)) = {f : F (∞) →
R} and de�ne

En(f; g) =
1
2

∑
16k1 ;:::; kn63

∑
x;y∈F (0)

(
5
3

)n
(f(	k1 ;:::; kn(x))− f(	k1 ;:::; kn(y)))

× (g(	k1 ;:::; kn(x))− g(	k1 ;:::; kn(y))): (2.2)

This is the energy of the network on F (n) with conductance ( 53 )
n on each n-complex.

The sequence of quadratic forms has the following consistency:

inf{En(f;f): f|F (n−1) = v}= En−1(v; v) for all v ∈ l(F (n−1)):

By this,

En(f|F (n) ; f|F (n) )6En+1(f|F (n+1) ; f|F (n+1)) for all f ∈ l(F (∞)):

For f ∈ l(F (∞)), de�ne F={f: supn En(f;f)¡∞} and E(f;f)=limn→∞ En(f;f)
for f ∈ F. Then, from Fukushima (1992), Kigami (1993), Kusuoka (1993), we have
the following.

Theorem 2.2. (1) Any function in F can be extended uniquely to a continuous func-
tion on E (thus we can consider F⊂C(E) = {f: f is a continuous function on E}).
Further; (E;F) is a local regular Dirichlet form on L2(E; �) (� is a normalized
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Hausdor� measure) which has the following properties:

E(f; g) =
3∑

i=1

5
3E(f ◦	i; g ◦	i) for all f; g ∈ F; (2.3)

sup
x∈E

|f(x)|6c2:1 · E(1)(f;f) for all f ∈ F; (2.4)

where E(�)(·; ·) ≡ E(·; ·) + �(·; ·)L2(E;�) for �¿ 0 and c2:1¿ 0 is a constant.
(2) E(�) admits a positive symmetric continuous reproducing kernel g�(·; ·) which is

bounded and equi-uniform continuous w.r.t. �¿ 0 on E. The corresponding di�usion
is point recurrent.

As we have a local regular Dirichlet form, there is a corresponding di�usion process
X (t). Because of the geometric characterization of this process in Section 8 of Barlow
and Perkins (1988), we will call this process Brownian motion on the gasket.

2.2. A priori estimates

In the following, we will explain estimates for Brownian motion on E which are
already obtained in Barlow and Perkins (1988), Kumagai (1997).

2.2.1. Hitting time estimates
Let X (t) be Brownian motion on E and let

Wn = inf{t¿0: X (t) ∈ F (n) \ {X (0)}}:
In this case, W0 is a limit random variable of a supercritical branching process divided
by its mean. Setting �(s) = E0[exp(−sW0)], the following equation holds (see Barlow
and Perkins, 1988, Section 2):

�(5z) =
�(z)2

4− 3�(z) : (2.5)

Using this fact, we have the following:

Proposition 2.3 (Barlow and Perkins, 1988, Section 3). There exist positive constants
c2:2 ∼ c2:9 such that

c2:2exp(−c2:3s1=dw)6�(s)6c2:4exp(−c2:5s1=dw) (2.6)

c2:6exp(−c2:7s−1=(dw−1))6P0(W06s)6c2:8exp(−c2:9s−1=(dw−1)) (2.7)

for all s¿ 0.

Let L(s) =−s1=dw log�(s). Then, we further have the following.

Proposition 2.4 (Barlow and Perkins, 1988, Section 3; Kumagai, 1997, Section 4).
k(s) ≡ limn→∞ L(s · 5n)¿0 exists and it is not a constant. Moreover; s1=dwk(s)
is strictly concave and real analytic on R+.



G. Ben Arous, T. Kumagai / Stochastic Processes and their Applications 85 (2000) 225–235 229

This proposition means that there is an oscillation of hitting times so that one cannot
take c2:3 = c2:5 in (2.6).

2.2.2. Heat kernel estimates
Let �F(y)=sups{k(s)s1=dw−ys} and F(y)=y1=(dw−1) �F(y). Remark that by Proposition

2.4 and by the properties of the Legendre transform, we see that �F(y) is monotone
decreasing and strictly convex. Also F( 52y) = F(y) and F is not constant.

Theorem 2.5 (Barlow and Perkins, 1988, Theorem 1:5; Kumagai, 1997, Theorem 1:2).
(1) There exists a jointly continuous transition density pt(x; y) for X (t) w.r.t. the
Hausdor� measure � on E which satis�es the following:

c2:10t−ds=2exp(−c2:11	(d(x; y); t))6pt(x; y)6c2:12t−ds=2exp(−c2:13	(d(x; y); t))

for all 0¡t¡ 1; x; y ∈ E; where 	(z; t) = (zdw t−1)1=(dw−1); ds = 2 log 3=log 5 and
c2:10 ∼ c2:13 are positive constants.
(2) The following holds for all z¿ 0; x; y ∈ E. (The right-hand side is 0 when

d(x; y) = 0:):

− lim
n→∞((2=5)

nz)1=(dw−1)logp(2=5)nz(x; y) = d(x; y)dw=(dw−1)F
(

z
d(x; y)

)
: (2.8)

For each �xed z; this convergence is compact uniform for x; y w.r.t. d.

As a corollary to this theorem, we see that Varadhan-type estimates do not hold for
the heat kernel of Brownian motion on the gasket.

Corollary 2.6 (Kumagai, 1997, Corollary 4:1). There is no function f : E × E → R+
which satis�es the following for some bounded function G:

− lim
t→0

G(t)t1=(dw−1)logpt(x; y) = f(x; y); ∀x; y ∈ E: (2.9)

3. Large deviations for Brownian motion on the Sierpinski gasket

For � ∈ 
x, we say � is absolutely continuous if for each �¿ 0, there exists �¿ 0
such that

∑n
i=1 d(�(ti); �(ti−1))¡� for any n and any disjoint collection of intervals

{(ti−1; ti)}ni=1 in [0; T ] whose lengths satisfy
∑

i(ti− ti−1)¡�. It can be proved by rou-
tine arguments that if � is absolutely continuous, then �̇(t) ≡ lims→t d(�(s); �(t))=|s−t|
exists for a.e. t ∈ [0; T ], �̇ ∈ L1([0; T ]; dt) and

∫ T
0 �̇(t) dt is a length of the path

{�(s): 06s6T}. Now, for z¿ 0 and � ∈ 
x, de�ne I zx (�) as (1.1) where we con-
sider 01=(dw−1)F(∞)=0. When � ∈ C([0; T ]→ E) (no restriction for �(0)), we denote
the corresponding rate function as I z(�).

Remark 3.1. The de�nition of the rate function in p. 226 of Kumagai (1997) was
wrong unless E is a line. But the results in the paper hold using the rate function
introduced here.
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We next give some notation. For � : 0=t0¡t1¡t2¡ · · ·¡tm=T and � ∈ 
x, we set
���= {�(t1); : : : ; �(tm)}. Also, de�ne �� ∈ 
x by taking points {�(tj)} and joining
the successive ones by geodesics with natural parametrization. If there are more than
one geodesics between two such points, it is immaterial which one is chosen. Thus,
�� is piecewise geodesic and ��(tj) = �(tj) (06j6m). We then have the following:

Lemma 3.2. (a) On C([0; T ]→ E); it holds that

inf
�(�)=a;
�(�)=b

I z(�) =
(
d(a; b)dw

� − �

)1=(dw−1)
F
(
z(� − �)
d(a; b)

)
;

where the in�mum is attained by the geodesic on the gasket.
(b) On Cx([0; T ]→ E); it holds that

inf
�(ti)=xi ;
i=1;:::;m

I zx (�) = I zx (��) =
m∑
i=1

(
d(xi; xi−1)dw

ti − ti−1

)1=(dw−1)
F
(
z(ti − ti−1)
d(xi; xi−1)

)
;

where � : 0 = t06t16 · · ·6tm6T; x0 = x; x1; : : : ; xm ∈ E and �� is piecewise geodesic
with ��(tj) = xj(06j6m).

Proof. Note that (b) is an obvious extension of (a). For (a), it is enough to prove
for the case �= 0; �= T as otherwise the in�mum is attained by the path which does
not move in the intervals [0; �] and [�; T ]. Now, for each � ∈ 
x which is absolutely
continuous, set D(�) =

∫ T
0 �̇(t) dt. Then,

∫ T

0
(�̇(t))dw=(dw−1)F

(
z

�̇(t)

)
dt =

∫ T

0
(�̇(t))dw=(dw−1)

(
z

�̇(t)

)1=(dw−1)
�F
(

z

�̇(t)

)
dt

= z1=(dw−1)D(�)
∫ T

0

�F
(

z

�̇(t)

)
�̇(t)

dt
D(�)

¿ z1=(dw−1)D(�) �F
(

1
D(�)

∫ T

0

z

�̇(t)
�̇(t) dt

)

= z1=(dw−1)D(�) �F
(

zT
D(�)

)

¿ z1=(dw−1)d(a; b) �F(zT=d(a; b))

=
(
d(a; b)dw

T

)1=(dw−1)
F(zT=d(a; b)):

Here we use Jensen’s inequality in the �rst inequality and the second inequality is
because D(�)¿d(a; b) and �F is monotone decreasing. As �F is strictly convex, the
equalities hold if and only if �̇(t) = constant and D(�) = d(a; b). That is the geodesic
with natural parametrization. We thus obtain the result.
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Using the results, we see for � ∈ 
x and 06�6�6T

Izx (�)¿
(
d(�(�); x)dw

�

)1=(dw−1)
F
(

z�
d(�(�); x)

)

+
(
d(�(�); �(�))dw

� − �

)1=(dw−1)
F
(

z(� − �)
d(�(�); �(�))

)

¿M
(
d(�(�); �(�))dw

� − �

)1=(dw−1)
;

where M ≡ min2=56x61F(x)¿ 0. Thus,

d(�(�); �(�))6M ′I zx (�)
(dw−1)=dw(� − �)1=dw (3.1)

for some M ′ ¿ 0.
For  ; � ∈ 
x, de�ne || − �||= sup06t6T d( (t); �(t)).

Lemma 3.3. (1) The function I zx (�) is lower semi-continuous. Further; for every
N ¿ 0; {�: I zx (�)6N} is compact.
(2) If C ⊂
x is closed in 
x; then

lim
�→0

inf
�∈C�

I zx (�) = inf
�∈C

I zx (�);

where C� = {� ∈ 
x: ||�−  ||¡� for some  ∈ C}.

Proof. For the lower semi-continuity, it is enough to show that if I zx (�n)6N and
||�n − �|| → 0, then I zx (�)6N . But this can be proved similarly to Varadhan (1980,
p. 157), noting that x 7→ xdw=(dw−1)F(z=x) = z1=(dw−1)x �F(z=x) is monotone increasing
and strictly convex. Next, (3.1) shows that {� : I zx (�)6N} is uniformly bounded and
equi-continuous. As it is closed by the lower semi-continuity of I zx , (1) follows from
Ascoli–Arz�ela’s theorem. (2) can be proved in the same way as in Varadhan (1980,
p. 159), using (3.1) and (1).

We are now ready to prove Theorem 1.1. In fact, it can be proved following the
argument of the corresponding proof in Varadhan (1967). In the following, we state
key lemmas of the proof for readers’ convenience. Set �zn = (2=5)

nz.

Lemma 3.4. Let C ⊂
x be a closed set of the form �−1
� A; where A⊂Em is closed.

Then

lim sup
n→∞

(�zn)
1=(dw−1)logPx

�zn
(C)6− inf

�∈C
I zx (�):

Proof. Using Theorem 2.5 and Lemma 3.2, this can be proved in the same way as
Lemma 3:1 of Varadhan (1967).

For m ∈ N, let �m: 0 = t0¡t1¡t2¡ · · ·¡tm = T be an equally spaced partition, i.e.
tj = jT=m (06j6m).
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Lemma 3.5. For every �¿ 0;

lim sup
m→∞

lim sup
n→∞

(�zn)
1=(dw−1)logPx

�zn
(||�− ��m ||¿�)) =−∞:

Proof. Remark that Wn=W0=5n, where Wn;W0 are hitting times appeared in Section 2.
By this, one has the corresponding estimates of (2.6), (2.7) for Wn. Using this, the
proof is the same as Lemma 3.2 of Varadhan (1967).

By these lemmas, we can prove the third inequality of Theorem 1.1. Indeed, it is
enough to prove the inequality when A is closed. Let I z;�x (!) = inf!′:||!′−!||¡�I zx (!

′)
and de�ne T� = inf!∈C�I

z
x (!). If ! ∈ C then I z;�x (!)¿T� and therefore

Px
�zn
[C]6Px

�zn
[I z;�x (!)¿T�]6Px

�zn
[||!− !�m ||¿�] + Px

�zn
[I zx (!�m)¿T�]:

From Lemma 3.5,

lim sup
m→∞

lim sup
n→∞

(�zn)
1=(dw−1)logPx

�zn
[||!− !�m ||¿�] =−∞:

As the set (C ⊂){I zx (!�m)¿T�} is equal to{
!:

m∑
i=1

(
d(!(ti); !(ti−1))dw

ti − ti−1

)1=(dw−1)
F
(

z(ti − ti−1)
d(!(ti); !(ti−1))

)
¿T�

}
;

we see from Lemma 3.4 that

lim sup
m→∞

lim sup
n→∞

(�zn)
1=(dw−1)logPx

�zn
[I zx (!�m)¿T�]6− T�:

Combined these facts with lim�→0 T�=inf�∈A I zx (�); which comes from Lemma 3:3(2);
we obtain the third inequality of Theorem 1.1.
Next, comes the lemma for the lower bound.

Lemma 3.6. Let f ∈ 
x; V = {� ∈ 
x:||�− f||¡�}; where �¿ 0. Then

lim inf
n→∞ (�zn)

1=(dw−1)logPx
�zn
(V )¿− I zx (f):

Proof. Using Theorem 2.5, Lemma 3.2 and the third inequality of Theorem 1.1, this
can be proved in the same way as Lemma 3.4 of Varadhan (1967).

By this lemma, we can prove the �rst inequality of Theorem 1.1. Indeed, it is enough
to prove the inequality when A is open. For f ∈ A, take a sphere V around f contained
in A. Then, by the above lemma,

lim inf
n→∞ (�zn)

1=(dw−1)logPx
�zn
(A)¿ lim inf

n→∞ (�zn)
1=(dw−1)logPx

�zn
(V )¿− I zx (f):

As this is true for all f ∈ A, we have the result. This concludes the proof of
Theorem 1.1.
Finally in this section, we mention the large deviations for pinned Brownian motion

(cf. Hsu, 1990; Fujita and Watanabe, 1989). For x 6= y ∈ E, let Px;y
� be the pinned

measure Px
� [ · |X x(�T ) = y]. We set �zn = (2=5)

nz as before and de�ne fz
T (x; y) =

(d(x; y)dw =T )1=(dw−1)F(zT=d(x; y)).
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Theorem 3.7. For each z ∈ [ 25 ; 1); A⊂
x;

− inf
�∈Int A
�(T )=y

{I zx (�)− fz
T (x; y)}6 lim inf

n→∞ (�zn)
1=(dw−1)logPx;y

�zn
(A)

6 lim sup
n→∞

(�zn)
1=(dw−1)logPx

�zn
(A)6− inf

�∈Cl A
�(T )=y

{I zx (�)− fz
T (x; y)}:

Let p̂(u; v; z1; z2) be the probability density of the pinned process under P·( |X (T )=y)=
P·;y; i.e.

p̂(u; v; z1; z2) = P·;y(X (v) ∈ dz2|X (u) = z1)=�(dz2)

for 06u¡v6T; z1; z2 ∈ E. Then

p̂(u; v; z1; z2) = pv−u(z1; z2)pT−v(z2; y)=pT−u(z1; y):

Replacing pt(x; y) by p̂(u; v; z1; z2) in the proof of Theorem 1.1 with suitable modi�-
cations of the lemmas, the proof of Theorem 3.7 can be given in the same way. We
thus omit it.

4. Law of the iterated logarithm

In this section, we will mention the Strassen-type law of the iterated logarithm.
De�ne Ê =

⋃∞
n=1 2

nE and call it the unbounded Sierpinski gasket. As is mentioned in
Fukushima (1992), Fitzsimmons et al. (1994), we can construct Brownian motion on
Ê via Dirichlet forms. By the same argument mentioned in the last section, we can
show that Theorem 1.1 holds for Brownian motion on Ê. For Brownian motion starting
at 0, set

�n(t; !) = 2−nX (5n(log n)1−dw t; !)L∼X ((log n)1−dw t; !):

Then, we can prove the following theorem using Theorem 1.1 by a simple modi�cation
of the proof of Theorem 1:17 in Stroock (1984).

Theorem 4.1. For P0-a.a. !; the sequence {�n(·; !)}∞2 has the following properties:

(1) {�n(·; !)}∞2 is precompact in C0([0; T ]→ Ê).
(2) If {�n′(·; !)}∞2 is a convergent subsequence of {�n(·; !)}∞2 and  is its limit;

then minz I z0( )61.
(3) If  ∈ C0([0; T ] → Ê) with maxz I z0( )61; then there is a subsequence of

{�n(·; !)}∞2 which converges to  .
In particular; if � :C0([0; T )→ Ê)→ R is a continuous function; then

P0
(
sup
 ∈K∗

�( )6 lim sup
n→∞

�(�n(·))6 sup
 ∈K∗

�( )

)
= 1; (4.1)

where K∗= {� ∈ C0([0; T ]→ Ê): maxz I z0(�)61} and K∗= {� ∈ C0([0; T ]→ Ê):
minzI z0(�)61}.
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Taking �(�) = sup06s61 d(�(s); 0) in (4.1), we can easily see 0¡ sup ∈K∗�( )6
sup ∈K∗�( )¡∞ using (3.1). Thus, we have for some c4:1; c4:2¿ 0;

P0
(
c4:16 lim sup

n→∞
sup
06s61

d(�n(s; !); 0)6c4:2

)
= 1: (4.2)

Now we quote a powerful 0− 1 law due to Barlow and Bass (1999, Theorem 8:4).

Theorem 4.2 (Barlow and Bass, 1999). Suppose � is a tail event: � ∈ ⋂t �{Xu:u¿t}.
Then; either Px(�) is 0 for all x or else it is 1 for all x.

Using this, we have the classical law of the iterated logarithm.

Theorem 4.3. There exists C ¿ 0 such that

lim sup
t→∞

sup06s6td(Xs; X0)
t1=dw(log log t)1−1=dw

= C; Px-a:s:; x ∈ Ê:

Proof. Note that d(�n(s; !); 0) = d(X (5n(log n)1−dws); 0)=2n and t � 5n(log n)1−dw if
and only if 2n � t1=dw(log log t)1−1=dw . Then the result is an immediate consequence of
(4.2) and Theorem 4.2.

Remark 4.4. (1) Theorem 4.3 can be obtained more directly and easily using hitting
time estimates in Barlow and Perkins (1988) and Theorem 4.2. In fact, the following
was already mentioned by Fukushima and Shima (unpublished).

c4:36 lim sup
t→∞

sup06s6t |Xs − X0|
t1=dw(log log t)1−1=dw

6c4:4; Px-a:s:; x ∈ Ê

for some c4:3; c4:4¿ 0.
(2) In Bass and Kumagai (1998), the result of this section is generalized to di�usion

processes whose heat kernels have Aronson-type estimates. In Fukushima et al. (1998),
and Bass and Kumagai (1998), several laws of the iterated logarithm for di�usion
processes on fractals are studied.

5. For Further Reading

The following reference is also of interest to the reader: Schilder, 1966.
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