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1. Introduction

The recent development of analysis on fractal spaces is physically motivated by
the study of diffusion in disordered media. The natural questions that arise
concern the existence and uniqueness of a suitable Laplace operator, and the
behaviour of the associated heat semigroup, on a space which is fractal. The
classes of fractals for which these questions were ®rst answered were classes of
exactly self-similar fractals, with strong spatial symmetry, such as nested or af®ne
nested fractals (see, for example, [2, 8]). The existence of a Laplacian and
estimates on the heat kernel were obtained by considering the associated diffusion
process and using the symmetry of the space. The uniqueness of the Laplacian for
nested and af®ne nested fractals has recently been solved through consideration of
their Dirichlet forms [23].

In [15] the framework of post critically ®nite (which we abbreviate to p.c.f.)
self-similar sets was introduced in order to capture the notion of exactly self-
similar ®nitely rami®ed fractals as used in the physics literature. Finitely rami®ed
fractals have the property that the intersection of any connected subset of the
fractal with the rest of the set should occur only at a ®nite number of points. This
makes these structures much easier to analyse than in®nitely rami®ed sets such as
the Sierpinski carpet [5]. The p.c.f. self-similar sets do not have spatial symmetry
in general and have provided a mathematical test bed for analysis on fractals. In
this paper we will obtain uniform short time estimates on the heat kernel
associated with a natural Laplacian on the fractal.

A Laplacian can be constructed on a p.c.f. self-similar fractal as a limit of
discrete Laplacians on graph approximations to the fractal based on the
rami®cation points. We construct these operators via their Dirichlet forms, which
can be set on any L2-space with a full measure, n. In [23], criteria are given
which give a partial answer to the existence and uniqueness of Laplace type
operators on p.c.f. self-similar sets.

In a series of papers [16, 17, 18, 20, 25, 7] some of the interesting spectral
properties of p.c.f. sets have been elucidated. It has been shown that there can
exist localized eigenfunctions if there is a high degree of symmetry in the set and
corresponding Laplace operator. This corresponds to oscillation in the leading
order term for the asymptotics of the eigenvalue counting function. Such
behaviour occurs for nested fractals [7] and p.c.f. sets with strong harmonic
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structure [25]. However, for general p.c.f. sets with an arbitrary Bernoulli measure
the oscillation only occurs under a certain condition [18].

From [17], [18] and [10] it has become clear that the analytic properties of
these sets are best discussed in terms of an effective resistance metric. If we write
d n

s for the spectral exponent which describes the asymptotic scaling of the
eigenvalue counting function for the Laplacian de®ned with respect to the measure
n, then the spectral dimension ds is de®ned to be the number which maximizes d n

s

over all measures n. The maximizing measure is equivalent to the Hausdorff
measure in the effective resistance metric and the spectral dimension
ds � 2S=�S� 1�, where S is the Hausdorff dimension of the set in the effective
resistance metric [16]. We will be concerned here with the behaviour of the heat
kernel associated with the Laplacian with respect to the maximizing measure.

The heat kernel associated with the Laplace operator on fractals has been
considered probabilistically for some sub-classes of p.c.f. sets, such as nested and
af®ne nested fractals [19, 8], as it is the transition density of the diffusion process
generated by the operator. We will extend this work to general p.c.f. self-similar
sets by obtaining best possible heat kernel estimates in terms of the effective
resistance metric.

By applying the results to some examples we show that uniform Aronson type
estimates do not hold in general on fractals. This is a situation in which we have a
PoincareÂ inequality and a doubling condition for the measure, but Aronson type
estimates do not hold. For the Laplace±Beltrami operator on a Riemannian manifold,
it was shown independently in [24, 9] that a PoincareÂ inequality and a doubling
condition are equivalent to a parabolic Harnack inequality. Using this result one
can obtain upper and lower bounds on the heat kernel of Aronson type. In order
to get sharp off-diagonal estimates we need to investigate the relationship between
the short paths on the fractal and the effective resistance metric. The results show
that in general, given a time and two points in the set, the heat kernel estimate is
not in¯uenced by structure in the fractal below a certain scale, determined by the
relationship between the time and effective resistance between the points.

The plan of the paper is as follows. In § 2 we will introduce p.c.f. self-similar
sets, their Dirichlet forms and the effective resistance metric R�x; y�. This will be
followed by some preliminary results in § 3, which will be used to obtain the
estimates. In particular, we introduce the shortest path counting function, Nm�x; y�,
for the effective resistance metric and give a version of the Einstein relation for
p.c.f. self-similar sets; expressing the random walk dimension in the effective
resistance metric as dw � S� 1. In §§ 4 and 5 we will deduce the following
upper and lower uniform short time estimates on the heat kernel for the p.c.f.
self-similar set K.

Theorem 1.1. There exist constants c1:1; c1:2; c1:3; c1:4 > 0 such that for all
x; y 2 K and 0 < t < 1, if

eÿmÿ1 < R�x; y�< eÿm

and

k�m; t� :� inff j : Nm� j�x; y�eÿ�S�1��m�j� < tg;
then

pt�x; y�< c1:1tÿds =2 exp�ÿc1:2 Nm� k�m; t��x; y��;
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and

pt�x; y�> c1:3tÿds =2 exp�ÿc1:4 Nm�k�m; t��x; y��:

Note that this theorem contains the diagonal estimate as Nm� k�m; t��x; x� � 0 for all
m 2N, 0 < t < 1 and x 2 K. We can write this in terms of the effective resistance and
a chemical exponent for this metric, d c

k �x; y� � log N�log R�x; y��� k�x; y�=k as follows.

Corollary 1.2. There exist constants c1:5; c1:6; c1:7; c1:8 such that, for x; y 2 K
and 0 < t < 1, with m and k as above,

pt�x; y�< c1:5tÿds = 2 exp ÿc1:6

R�x; y�S�1

t

� �d c
k�m; t��x; y�= �S�1ÿd c

k�m; t��x; y��
 !

;

and

pt�x; y�> c1:7tÿds = 2 exp ÿc1:8

R�x; y�S�1

t

� �d c
k�m; t��x; y�= �S�1ÿd c

k�m; t��x; y��
 !

:

In the ®nal section we will show how Theorem 1.1 can be used in several examples.
The ®rst will be the af®ne nested fractals of [8], where Aronson type estimates can be
obtained. We then consider a one-parameter family of diffusions on the Sierpinski
gasket which are not spatially symmetric and have a multifractal Bernoulli
measure for invariant measure. The heat kernel estimates in this case are not of
Aronson type. We will also discuss the non-unique diffusion on the Vicsek set and
show that each diffusion can be controlled by estimates of the same functional form but
different constants. The abc-gaskets of [12] present a family of p.c.f. self-similar
sets with no spatial symmetry. We can obtain heat kernel estimates in this case.
We will conclude with two conjectures concerning the chemical exponent.

2. P.C.F. self-similar fractals and their Dirichlet forms

In this section we brie¯y introduce post critically ®nite (p.c.f. for short) self-
similar sets and summarize known results about their Dirichlet forms. This class
was introduced in [15] and a detailed discussion can be found in [2]. At the end
of the de®nitions we will describe the Sierpinski gasket (see Fig. 1) as a p.c.f.
fractal. First, we introduce the one-sided shift space and give some notation.
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Notation. (1) Let S � f1; 2; . . . ;Ng. The one-sided shift space S is de®ned
by S � SN. Also, let Wn � Sn.

(2) For w 2 S, we denote the i th element in the sequence by wi and write
w � w1w2w3 . . . .

(3) If w 2Wn, we de®ne jw j � n.

(4) We denote Çi � iiii . . . for i 2 S.

(5) Let j: S! S be the shift map, that is, jw � w2w3 . . . if w � w1w2 . . . .
De®ne Äjs: S! S as Äjs w � sw for s 2 S.

We now introduce the notion of self-similar structures and p.c.f. self-similar sets.

De®nition 2.1. Let K be a compact metrizable space and for each s 2 S, let
Fs: K ! K be a continuous injection. Then, �K; S; fFsgs2 S� is said to be a self-
similar structure on K if there exists a continuous surjection p: S! K such that
p±Äjs � Fs±p for every s 2 S.

For w 2Wn , we denote Fw � Fw1
±Fw2

± . . . ±Fwn
and Kw � Fw�K�. In particular,

Ks � Fs�K� for s 2 S. Note that Hutchinson's self-similar set, as de®ned in [14], is
a self similar structure in the sense of De®nition 2.1 by taking

p�w� �
\
n > 1

Fw1
±Fw2

± . . . ±Fwn
�K�:

De®nition 2.2. Let L � �K; S; fFsgs2 S� be a self-similar structure on K.
Then the critical set of L is de®ned by

C�L� � pÿ1

� [
s; t2 S; s 6� t

�Ks Ç Kt�
�
;

and the post critical set of L is de®ned by

P�L� �
[

n > 1

j n�C�L��:

We say that L is post critically ®nite ( p.c.f.) if P � P�L� is a ®nite set.

In the following, we only consider a connected p.c.f. self-similar set �K; S; fFsgs2 S�.

Notation. (1) For m > 0, let

P �m� �
[

w2Wm

wP; Vm � p�P �m��; V� �
[

m > 0

Vm and V
±

m � Vm ÿ V0:

Moreover, Bw � Fw�p�P�� for w 2Wm for any m > 0.

(2) For the ®nite sets V ;V 0, we de®ne

l�V� � f f j f : V ! Rg;
L�V ;V 0� � fAj A: l�V� ! l�V 0� and A is linearg;

L�V� � L�V ;V�:
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De®nition 2.3. A pair �D; r� 2 L�V0� ´ l�S� is called a quasi-harmonic
structure on K if it satis®es the following:

(1) rs > 0 for each s 2 S,

(2) D � tD,

(3) D is irreducible,

(4) Dpp < 0,
P

q2V0
Dpq � 0 for each p 2 V0,

(5) Dpq > 0 if p 6� q.

From the quasi-harmonic structure �D; r�, we have a difference operator Hm on Vm.

De®nition 2.4. A difference operator Hm 2 L�Vm� is de®ned by

Hm �
X

w2Wm

rÿ1
w

tRw DRw;

where Rw: l�Vm� ! l�V0� is de®ned by Rw�u� � u±Fw and rw � rw1
. . . rwm

.

We decompose Hm into

Hm f � Tm
tJm

Jm Xm

� �
?

� f jV0

f j
V
±

m

�
;

where Tm 2 L�V0�, Jm 2 L�V0;V
±

m�, Xm 2 L�V±m�. We will write T � T1, J � J1, and
X � X1.

We now give the notion of the harmonic structure, under which harmonic
functions on Vm (with respect to Hm) automatically become harmonic functions on
Vmÿ1 (with respect to Hmÿ1).

De®nition 2.5. A quasi-harmonic structure �D; r� is called a harmonic
structure if there exists l > 0 such that

T ÿ tJXÿ1J � lÿ1D: �2:1�
Furthermore, a harmonic structure �D; r� is said to be regular if rs < l for each
s 2 S.

Let ri � l=ri �1 < i < N �, which is greater than 1 if the harmonic structure is
regular. Note that regularity of the harmonic structure is a condition for the
reproducing kernel of the following quadratic form �E;F� to be bounded
continuous. Throughout this paper, we treat a regular harmonic structure �D; r�.

The uninitiated reader is advised to think of the above de®nitions in the context
of the 2-dimensional Sierpinski gasket, Fig. 1. This can be considered as a p.c.f.
self-similar set by setting

S � f1; 2; 3g;
p�C� � fq1; q2; q3g; pÿ1�q1� � f2Ç3; 3Ç2g;

pÿ1�q2� � f1Ç3; 3Ç1g; pÿ1�q3� � f1Ç2; 2Ç1g;
p�P� � f p1; p2; p3g; pÿ1� pi� � fÇig for i � 1; 2; 3:
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The set V0 is then the vertices of the largest triangle and Vm denotes the set of
vertices of all triangles of size 2ÿm.

The natural Laplace operator on the Sierpinski gasket can be constructed from a
quasi-harmonic structure given by

D �
ÿ2 1 1

1 ÿ2 1

1 1 ÿ2

0B@
1CA; r � �1; 1; 1�:

The matrix D is the generator of a continuous time random walk on the complete
graph formed by the vertices V0 with unit conductors on each edge. The equation
(2.1) is satis®ed with l � 5

3
and there exists a unique regular harmonic structure.

Thus the difference operator Hm is the generator of the continuous time nearest
neighbour random walk on the graph formed from Vm with edges which are
images of the edges of V0 and of conductivity

ÿ
5
3

�n
. The fact that the structure is

harmonic means that the random walk on Vm is decimation invariant in that, if it
is stopped when it hits V0, it has the same probabilistic structure as the random
walk on V0. Another way to view the existence of a harmonic structure is that it
ensures that the networks �V0;H0� and �Vm;Hm� are electrically equivalent.

De®nition 2.6. We say that f 2 C�K� � f f : f is a continuous function on Kg
is m-harmonic if and only if Hn f jVnnVm

� 0 for all n > m. A 0-harmonic function
is called a harmonic function.

Proposition 2.7 [15, Theorem 4.12]. Let �D; r� be a harmonic structure. For
any r 2 l�Vm�, there exists a unique m-harmonic function f with f jVm

� r.

De®nition 2.8. For f 2 l�V�� , we de®ne Pm f to be a continuous function on
K satisfying the following:

(1) Pm f jVm
� f jVm

,

(2) Hn�Pm f �jVnnVm
� 0 for all n > m.

By Proposition 2.7, if �D; r� is a harmonic structure, Pm f exists uniquely for all
f 2 l�V�� and m > 1.

For u; v 2 l�Vm� , de®ne

Em�u; v� � ÿlm tuHmv:

By Corollary 6.14 in [15], we see that Em�u; u�< Em�1�u; u� for u 2 l�Vm�1�
(equality holds if and only if Pm u jVm� 1

� u). Using this fact, let

F � f f 2 l�V��: lim
m!1Em� f ; f � < 1g; E� f ; g� � lim

m!1Em� f ; g� for all f ; g 2F:

In order to embed F into some L2-space, we de®ne the following effective
resistance between p; q 2 V�:

R� p; q�ÿ1 � inffE� f ; f �: f 2 l�V��; f � p� � 1; f �q� � 0g:

Proposition 2.9 [16, 17]. (1) The function R� ? ; ? � is a metric on V�. It can
be extended to a metric on K (which will be denoted by the same symbol R), and
it induces the same topology as the original one on K.
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(2) For p; q 2 V� with p 6� q,

R� p; q� � supfj f � p� ÿ f �q�j2=E� f ; f �: f 2F; f � p� 6� f �q�g:

We remark that the regularity condition for �D; r� is needed for R� ? ; ? � to be a
metric on K. By Proposition 2.9(2), we know that j f � p� ÿ f �q�j2 < R� p; q�E� f ; f �
for all f 2F and p; q 2 V�, so that f 2F can be extended uniquely to a
continuous function on K (we thus consider F Ì C�E�). Now, let m be a Bernoulli
measure on K such that m�Fi�K�� � mi > 0 (note that

PN
i�1 mi � 1). Then,

F Ì C�E� Ì L2�K; m� and we have the following theorem [15, 16, 18].

Theorem 2.10. The form �E;F� is a local regular Dirichlet form on L2�K; m�
which has the following property:

j f � p� ÿ f �q�j2 < R� p; q�E� f ; f � for all f 2F and all p; q 2 K; �2:2�

E� f ; g� �
XN

i�1

riE� f ±Fi; g±Fi� for all f ; g 2F: �2:3�

Further, if we set Eb� ? ; ? � � E� ? ; ? � � b� ? ; ? �L2�K;m� for b > 0, then, Eb admits

a positive symmetric continuous reproducing kernel gK
b � ? ; ? �.

If we let Dm be the generator for �E;F� on L2�K; m�, then, by the above
theorem, we know that ÿDm has a compact resolvent and hence the spectrum of
ÿDm consists of eigenvalues. We will call the operator associated with any of the
harmonic structures a Laplacian on the fractal. Our interest here is to obtain
estimates on the heat kernel for the corresponding diffusion process. For this
purpose, we need a `natural' measure, which is suggested by the following
theorem from [18].

Theorem 2.11. (1) Let nm�x� � ]flj l is an eigenvalue of ÿDm < xg. Then,

for the unique positive number ds�m� satisfying
PN

i�1�mi =ri�ds�m�=2 � 1, the
following inequality holds:

0 < lim inf
x!1 nm�x�=xds�m�= 2 < lim sup

x!1
nm�x�=xds�m�=2 < 1:

(2) Let S be the unique constant which satis®es
PN

i�1 rÿS
i � 1. Then,

maxfds�m�: m is a Bernoulli measure on Kg � 2S

S� 1
�� ds�; �2:4�

where the maximum is attained only at the Bernoulli measure m satisfying

mi � rÿS
i for 1 < i < N:

In the following we de®ne mi � rÿS
i for 1 < i < N and consider this measure

unless otherwise stated. We note that, using Lemma 3.4, this measure is
equivalent to the Hausdorff measure with respect to the effective resistance
metric R� ? ; ? �.

The harmonic structure for the Sierpinski gasket is regular and we have a
regular local Dirichlet form corresponding to the Brownian motion on the
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Sierpinski gasket. The Hausdorff dimension of this set is log 3= log 2, while the
Hausdorff dimension in the resistance metric is S � log 3= log�5=3�. Thus the
spectral dimension is 2 log 3= log 5.

3. Preliminary results

In this section we establish some of the results that we will use in order to
prove our heat kernel estimates. To begin we set up a new sequence of graph
approximations to the p.c.f. self-similar set. This sequence will have the property
that the resistance of any edge in the nth graph approximation will be within
constants of eÿn. We will call this approximation conductivity coordinates.

Let Ln be de®ned by

Ln �
�

w � w1 . . . wk 2
[
i > 0

Si: r1 . . . rkÿ1 < en < r1 . . . rk

�
:

For typographical reasons we will sometimes write L�n� instead of Ln. The
approximation that we use for the fractal will be denoted by VLn

and is the graph
obtained from the vertex set

VLn
� p

� [
w2Ln

wP

�
;

where we include an edge whenever Dpq > 0. We can think of this as taking a
sequence of cross-sections of the tree associated with the shift space, determined
by the conductivity of the corresponding cells.

The conductance of the Ln-cell at w when w � w1 . . . wk 2 VLn
is given by

rw �
Qk

i�1 rwi
. From the approximation we have, by de®nition, that there exist

constants c3:1; c3:2; c3:3; c3:4 > 0 such that for w 2 Ln ,

c3:1en < rw < c3:2 en;

c3:3 eÿSn < mw < c3:4 eÿSn:
�3:1�

We need some further properties of the Dirichlet form E, which are essentially
corollaries of earlier results. We have a PoincareÂ inequality and a decomposition
of the Dirichlet form. For u 2 C�F� we write u � RF u dm.

Lemma 3.1. There exists c3:5 > 0 such that for f 2F and n > 0,

E� f ; f �> c3:5k f ÿ f k2
2; �3:2�

E� f ; f � �
X

w2Ln

rwE� f ±Fw; f ±Fw�: �3:3�

Proof. Let g � f ÿ Åf . Then from Theorem 2.10, for x; y 2 F ,

�g�x� ÿ g�y��2 � � f �x� ÿ f �y��2 < R�x; y�E� f ; f �:
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So, as the harmonic structure is regular, R�x; y�< c1 and

E� f ; f � �
Z Z

E� f ; f �m�dx� m�dy�>
1

c1

Z Z
�g�x� ÿ g�y��2 m�dx� m�dy�

� 2

c1

Z
g�x�2 m�dx�:

Equation (3.3) follows from the repeated application of (2.3).

Lemma 3.2. There exist constants c3:6; c3:7 such that if x; y 2 VLn
and are

neighbours, then

c3:6 eÿn < R�x; y�< c3:7 eÿn:

Proof. This follows from the construction of the Dirichlet form. By de®nition
we have for all f with f �x� � 0, f �y� � 1 with x; y 2 ¶Kw, w 2 Ln,

c3:1 en < rw < En� f ; f �< E� f ; f �:
Thus there is a constant such that

�inffE� f ; f �: f �x� � 0; f �y� � 1g�ÿ1 < c1eÿn:

For the lower bound we take the Ln-harmonic function f1 which is 1 at y and 0 at
all other points of VLn

. Then

inffE� f ; f �: f �x� � 0; f �y� � 1g< E� f1; f1� � ELn
� f1; f1�< c2 en;

where ELn
� f ; f � �Pw2Ln

rw� f �x� ÿ f �y��2, and we have the lower bound.

We will also need to de®ne a means of determining the behaviour of the
shortest paths on the fractal in the effective resistance metric. For x; y 2 K de®ne
the set of paths between them on VLm

to be

Pm�x; y� � fp � � pi; pi�1�jp ji�1: p1 � x; pjp j�1 � y; pk 2 VLm
�2 < k < jp j�;

pk; pk�1 are in the same Lm-complex �1< k < jp j�g;
where jp j is the cardinality of the steps in the path p. The number of steps in the
shortest path is de®ned to be

Nm�x; y� � inffjp j: p 2 Pm�x; y�g:
This shortest path counting function will determine the off-diagonal behaviour of
the heat kernel. As we are using the sequence of approximations determined by
the resistance there may not be geodesics in the effective resistance metric. Indeed
for the ordinary Sierpinski gasket we see that there is no point x 2 Int�K� for
which R�0; x� � R�x; 1� � R�0; 1�. This means that we must determine the
behaviour of the short paths in the effective resistance metric.

We de®ne a chemical exponent in the effective resistance metric for the fractal
by setting d c

k �x; y� � kÿ1 log Nm� k�x; y�, when eÿmÿ1 < R�x; y�< eÿm. Note that
we have the following upper bound on the length of the shortest path.

Lemma 3.3. There exist constants c3:8 such that for all x; y 2 K and m > 0,

Nm�x; y�< c3:8 e�S�1�m =2:
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Proof. First we prove the theorem when x; y 2 V0. For z0 2 V0 , let

f �y� � min 1;
Nm�z0; y�

maxz2V0
Nm�z0; z�

� �
:

Then observe that

1 < E0� f ; f �< ELm
� f ; f �< c1

X
x; y2VL�m�

� f �x� ÿ f �y��2em:

The increments of f are bounded above by �maxz2V0
fNm�z0; z�g�ÿ1 and, as there

are of the order of eSm vertices in VLm
, we have

1 < c2

emeSm

maxz2V0
fNm�z0; z�g2

:

Rearranging gives the result for V0 . For y 2 K , take a sequence fyigM
i�0 such that

yi 2 VL i
, yi and yi�1 are in the same Li-complex �0 < i < M ÿ 1�, and yM�1 � y.

Using the above result and self-similarity, we ®nd that Nm�yi; yi�1�<
c3 e�S�1��mÿ i �=2 (for all i with 0 < i < M ÿ 1). Thus,

Nm�z0; y�<
XMÿ1

i�0

Nm�yi; yi�1�< c4 e�S�1�m=2:

Using the triangle inequality, we see that the result follows.

Thus the chemical exponent d c
k �x; y� satis®es

d c
k �x; y�< c3:9

�S� 1��log R�x; y� � k�
2k

; for all x; y 2 K:

Now, we will obtain estimates of the mean hitting times for the diffusion. In
order to do this, we introduce some more notation and prove some lemmas. For
x 2 K, let Br�x� � fy 2 K: R�x; y� < rg. Also, for x 2 K and l > 0, let

D0
L l
�x� � fC: C is a Ll-complex which contains xg;

D1
L l
�x� � D0

L l
�x�È fC: C is a Ll-complex which is connected to D0

L l
�x�g;

and ¶Di
L l
�x� � Cl�K nDi

L l
�x��Ç Di

L l
�x� for i � 0; 1.

Lemma 3.4. There exists k0 2N such that

D1
L�l� k0��x� Ì Br�x� Ì D1

L�lÿ k0��x�
for all x 2 K, r > 0 such that eÿ�l�1� < r < eÿl.

Proof. Using Lemma 3.2, we can show that the ®rst inclusion holds, by taking
k 00 to be such that

max
w2L�l� k0

0 �
max

x; y2Kw

R�x; y� < 1
2
rÿ1

w :

For the second inequality, it is enough to prove that there exists c1 > 0 such that
for all k > 0 and for all y 62 D1

Lk
�x�, c1 eÿk < R�x; y�. This is because, by choosing

k000 so that c1 eÿ�lÿk000� > r and taking k � lÿ k000 , we obtain the desired inclusion.
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Now, take f 2 l�K� so that f �x� � 1 for x 2 ¶D0
Lk

, f �x� � 0 for x 2 ¶D1
Lk

, and f is
harmonic inside VLk

. Then,

E� f ; f � �
X

w 0 2Lk ;
K

w 0 Ì DL�k�1 n DL�k�0

rw 0E0� f ±Ww 0 ; f ±Ww 0 �< c2 ek;

where c2 depends only on the shape of the fractal we treat. Thus, for y 62 D1
Lk
�x� ,

we have R�x; y�> E� f ; f �ÿ1 > cÿ1
2 eÿk, and by taking k0 � maxfk00; k000g we

complete the proof.

For the diffusion fXtgt > 0 associated with the Dirichlet form �E;F�, de®ne the
hitting time for a set A Ì K by TA � infft > 0: Xt 2 Ag.

Lemma 3.5. (1) There exist c3:10, c3:11 > 0 such that for all r > 0 and for all
z 2 VLr

,

c3:10 eÿr�1�S � < E z�T¶DL�r�
0 �z��< c3:11 eÿr�1�S �:

(2) There exist c3:12 > 0 such that for all 0 < r < m and for all z 2 VLm
,

E z�T¶ DL�r�
0 �z��< c3:12 eÿr�1�S �:

Proof. First, we take n q m > r and consider the continuous-time Markov
chain Xn on VLn

associated with ELn
. By construction of the Markov chain, the

mean holding time for Xn at each vertex is a constant multiplied by eÿ�S�1�n.
Denote by E z

Xn
the mean with respect to the probability measure for Xn starting at

z. Then, by the same argument as in the proof of Theorem 2.5 in [1],
E z

Xn
�T¶ DL�r�

0 �z�� is estimated from above and below by constants multiplied by

g�z; n�
g�z; r� E z

Xn
�infft > 0: Xn�t� 2 VLr

; $s < t; Xn�s� 6� Xn�0�g�;

where g�z; i� � fsum of conductances on Li-bonds containing zg. Now, the ®rst
term can be estimated from above and below by e�nÿ r�. Using the ergodic

theorem, one can estimate the second term by eÿ�S�1�nÿ R
VL�n� 1VL�r� �x� dmn�x��ÿ1,

where mn is an invariant measure for Xn . This value is estimated from above and

below by eÿ�S�1�neS�nÿ r� so that we have

c1 eÿr�1�S � < E z
Xn
�T¶DL�r�

0 �z��< c2 eÿr�1�S � �3:4�
for all n q r.

We next calculate E z
Xn

T¶DL�r�
0 �z� by conditioning on the exit from a series of

domains about the point z. First, condition on the exit place on ¶D0
Lr� 1
�z�, to get

E z
Xn

T¶DL�r�
0 �z� � E z

Xn
T¶DL�r� 1�

0 �z� �
X

x2 ¶DL�r� 1�
0 �z�

Pz
Xn

ÿ
XT

¶DL�r� 1�
0 �z�

� x
�
E x

Xn
�T¶DL�r�

0 �z��:

Thus

E z
Xn

T¶DL�r�
0 �z� < E z

Xn
T¶DL�r� 1�

0 �z� � max
x2 ¶ DL�r� 1�

0 �z�
E x

Xn
�T¶DL�r�

0 �z��:

Repeating this procedure gives

E z
Xn

T¶DL�r�
0 �z� <

X1
i� r

max
xi 2 ¶DL�i� 1�

0 �z�
E

xi

Xn
�T¶DL�i �

0 �z��:
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From (3.4) and an easy Markov chain calculation we have an upper bound

E
xi

Xn
�T¶DL�i�

0 �z��< c3 eÿi �1�S �:

Summing these terms, we have

E z
Xn
�T¶DL�r�

0 �z��< c4 eÿr �1�S � �3:5�
for all z 2 VLm

, n q m > r.
Using Theorem 3.7 below, we have the results from (3.4) and (3.5).

We need estimates for the tail of the crossing time distribution. De®ne for
i > 1,

T
�0�
Lr
� infft > 0: Xt 2 VLr

g;

T
�i �
Lr
� infft > T

�iÿ1�
Lr

: Xt 2 VLr
nfX

T
�iÿ 1�
L�r�
gg;

W
�i �
Lr
� T

�i �
Lr
ÿ T

�iÿ1�
Lr

:

Lemma 3.6. (1) There exist c3:13 > 0, 0 < c3:14 < 1 such that for all 0 < r < m,

Pz�W �i �
Lr

< t�< c3:13 e�1�S � rt � c3:14 for all 0 < t < 1; z 2 VLr
:

(2) There exist c3:15, c3:16 > 0 such that for all 0 < r < m,

Pz�W �i �
Lr

< t �< c3:15 expfÿc3:16 Nr� k�z�g; for all 0 < t < 1; z 2 K; �3:6�
where

Nr; j�z� � inf
x1; x2 2VL�r� Ç DL�r�

1 �z�
x1 6� x2

Nr� j�x1; x2�; k � inf j:
Nr� j�z�

e�r� j ��S�1� < t

� �
:

Remark. Note that from Lemma 3.3, k < 1 for each r > 0, 0 < t < 1, z 2 K.

Proof. As in the last lemma, we ®rst take n q m > r and consider the
continuous-time Markov chain Xn on VLn

associated with ELn
. The random

variables W
�i �
Lr
�i 2N� are i.i.d. so that it is enough to show the result for i � 1.

Then, following [3], we have

T¶DL�r�
0 �z� < t � 1�T

¶DL�r�
0 �z� > t� ? �T¶DL�r�

0 �z� ÿ t�:

Thus, by the Markov property,

E z
Xn
�T¶DL�r�

0 �z��< t � E z
Xn
�1�T

¶DL�r�
0 �z� > t�E

Xn�t�
Xn
�T¶DL�r�

0 �z���: �3:7�

On the other hand, by Lemma 3.5(1), c3:10 eÿ�1�S� r < E z
Xn
�T¶DL�r�

0 �z��. Also, using

Lemma 3.5(2), one can easily see that E x
Xn
�T¶DL�r�

0 �z��< c1 eÿ�1�S � r for x 2 D0
Lr
�z�.

Substituting these results into (3.7) and calculating, we have

Pz
Xn
�W �1�

Lr
< t�<

1

c1

e�1�S � rt � 1ÿ c3:10

c1

(as z 2 VLr
, T¶DL�r�

0 �z� � W
�1�
Lr

) so that the Pz
Xn

version of (1) is proved.
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Next, we prove that for all z 2 VLm
�m > r�,

Pz
Xn
�W �i �

Lr
< t�< c3:15 exp�ÿc3:16 Nr; k�z��; for tn < t < 1; �3:8�

where tn ! 0 as n! 1. For Ãc > 0, let

kÃc � inf j:
Nr; j�z�

e�r� j ��S�1� < Ãct

� �
; �3:9�

and k�Ãc� � kÃc. Then, provided kÃc < n, that is, t > tn � Nn�z�eÿn�S�1� Ãcÿ1, we have

Pz
Xn
�W �i �

Lr
< t�< Pz

Xn

 XNr; k�Ãc��z�

i�1

W
�i �
Lr� kÃc

< t

!

< exp�c2�Nr; kÃc
�z�e�1�S ��r� kÃc�t�1=2 ÿ c3 Nr; kÃc

�z��
� exp�ÿc4 Nr; kÃc

�z��;
where we use Lemma 1.1 of [3] and Lemma 3.6 in the second inequality, and
(3.9) in the last equality (we choose Ãc so that c2 < Ãcc3). On the other hand, note
that there exists c5 > 0 such that

Nl� l 0 �x; y�< c5 eSl 0Nl�x; y� for all x; y 2 K; l; l 0 > 0: �3:10�
This is because, when we add vertices and construct VLl� l 0 from VLl

, then there
are at most c5 eSl 0 Ll� l 0-cells inside each Ll-cell. Using this fact and by the
de®nition of k and kÃc, we easily see that there exists c6 > 0 such that
Nr� kÃc

> c6 Nr� k so that (3.8) is proved. Using the following Theorem 3.7, we
can prove the lemma.

We now prove that Xn ! X in law.

Theorem 3.7. We have

E
xn

Xn
� f �w� ? ��� ! E x

X� f �w� ? ��� as n! 1
for any f 2 Cb�D��0;1� : K� ! R� and any sequence xn 2 VLn

with xn ! x 2 K as
n! 1. Here the expectations are taken over w 2 D��0;1� : K�.

Proof. The idea of the proof is the same as that of Theorem 6.1 in [11], so we
just sketch the proof. We need tightness and convergence of the ®nite-dimensional
distributions. The latter is deduced from the general theory as ELn

is a monotone
increasing sequence of quadratic forms which converges to E. To prove the
former, we ®rst show that there exist c1; c2 > 0 such that for all x 2 K, m; j 2N,

c1e j < Nm; j�x�< c2 e�S�1��m� j �=2: �3:11�
The upper bound is proved in Lemma 3.3. Let xm and ym be elements of
D1

Lm
�x�Ç VLm

such that Nm; j�x� � Nm� j�xm; ym�. The lower bound uses the
observation that

R�xm; ym�<
XNm; j�x�

i�1

R�zi; zi�1�< Nm; j�x�c3:7 eÿ�m� j �;
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where fzig is a minimum Lm� j -walk from xm to ym. As R�xm; ym�> c3:6 eÿm, we
have (3.11). Using this and (3.8), with the de®nition of k, we have for each t > tn,

Px
Xn
�W �i �

Lm
< t�< c3:15 exp�ÿc3:16 Nm� k�x��< c3:15 eÿc3 e k

:

As 1 < Nm; k�x�< te�m� k��S�1�, we have ek > eÿmtÿ1= �S�1�. Thus,

lim sup
n!1

sup
xn 2VL�n�

P
xn

Xn
�W �i �

Lm
< t�< c3:15 eÿc3 eÿmtÿ1 = �S� 1�

:

The right-hand side converges to 0 as t! 0 and the tightness of P
xn

Xn
is proved.

This result also completes the proof of Lemma 3.5 and Lemma 3.6. Note that
this argument shows that the result of Lemma 3.5(2) holds for all z 2 K.

Theorem 3.8. There exist c3:17, c3:18 > 0 such that for all z 2 K,

c3:17 r1�S < E z�T¶Br�z��< c3:18r1�S:

Proof. First, by Lemma 3.4,

E z�T¶DL�l� k�0��
1 �z��< E z�T¶Br�z��< E z�T¶DL�lÿ k�0��

1 �z��
if eÿ�l�1� < r < eÿl. By Lemma 3.5(1), the left-hand side can be estimated from below
by c1eÿl �1�S � > c1r1�S. By Lemma 3.5(1), (2) and simple Markov chain arguments,
the right-hand side can be estimated from above by c2eÿl �1�S � < c3r1�S.

We remark that S is the Hausdorff dimension of K with respect to the resistance
metric and it coincides with the box dimension (due to Theorem 3.2 of [16] and
Lemma 7.3 of [17], as we have Lemma 3.2). We call

dw � lim
r! 0

log E x�T¶Br�x��
log r

the random walk dimension, if the limit exists. Thus, Theorem 3.8 states that
dw � 1� S. This relationship is called the Einstein relation in the physics
literature. It states that the walk dimension should be given by the sum of the
resistance dimension and the `fractal' dimension, which reduces to 1� df where
df denotes the Hausdorff dimension of K in the resistance metric. The Einstein
relation occurs in a variety of physical models (see, for example [13]). We also
remark that, with the formula (2.4), we have the relation ds =2 � df =dw which is
a generalization of the formula given in [5, 8, 19].

4. Transition density estimates: upper bounds

Let Pt be the semigroup of positive operators associated with the Dirichlet form
�E;F� on L2�K;m�. As �E;F� is local and regular, there exists a Feller diffusion
�fXtgt > 0; fPxgx2K� with semigroup Pt, on K. As in [8, Lemma 2.9] the existence
of a reproducing kernel ensures that the transition function has a density pt�x; y�
with respect to m which satis®es the Chapman±Kolmogorov equations.

We will obtain upper bounds on pt�x; y�, beginning with the on-diagonal upper
bound, where we follow closely the argument of [21, 6].
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Lemma 4.1. (1) There is a constant c4:1 such that

kPt k1!1 � sup
x; y2K

pt�x; y�< c4:1tÿds =2; for 0 < t < 1: �4:1�

(2) The transition density pt�x; y� is jointly continuous in �t; x; y� 2 �0; 1� ´ K ´ K.

Proof. (1) For w 2 Ln write fw � f ±Fw and

f w �
Z

K
fw�x�m�dx�:

Note that for v 2 C�K� , v � R v dm �Pw2Ln
vw mw.

Let u0 2D�D� with u0 > 0 and ku0k1 � 1. Set ut�x� � �Pt u0��x� and g�t� �
kutk2

2. We remark that g is continuous and decreasing. As the semigroup is
conservative, kutk1 � 1, and using Lemma 3.1 and (3.1) we have

d

dt
g�t� � ÿ2E�ut; ut�

� ÿ2
X

w2Ln

rwE�ut±Fw; ut±Fw� (by (3.3))

<ÿ2c1 en
X

w

Z
�ut;w ÿ ut;w�2 dm

<ÿ2c2 eneSn

Z
u2

t dm� 2c1 en
X

w

�ut;w�2

<ÿ2c2 e�S�1�nkut k2
2 � 2c3 e�2S�1�n: �4:2�

Thus g 0�t�<ÿc2 e�S�1�n�g�t� ÿ c4 eSn�, for all n > 0. Therefore

ÿ d

dt
log�g�t� ÿ c4 eSn�> c2 e�S�1�n; if g�t� > c4 eSn: �4:3�

Let sn � infft > 0: g�t�< c4 eSng for n 2N. Thus (4.3) holds for 0 < t < sn .
Integrating (4.3) from sn�2 to sn�1 we obtain

c2 e�S�1�n�sn�1 ÿ sn�2�<ÿ log�g�sn�1� ÿ c4 eSn� � log�g�sn�2� ÿ c4 eSn�
� log�eS�n�2� ÿ c4 eSn�=�eS�n�1� ÿ c4 eSn�< c5:

Thus sn�1 ÿ sn�2 < c6 eÿ�S�1�n, and iterating this we have

sn < c6

X1
k�nÿ1

eÿ�S�1� k < c7 eÿ�S�1�n:

This implies that g�c7 =e�S�1�n�< g�sn� � c4 eSn. It follows that there exists

c6 < 1 such that if eÿ�S�1�n < t < eÿ�S�1��nÿ1� then

g�t�< c8 eSn � c9 tÿS= �S�1�:

Using the fact that kPt k1!1 � kPt k2
1! 2, we deduce that pt�x; y�< c4:1tÿS= �S�1�

for all x; y 2 K.
For (2), the joint continuity will follow from the upper bound on the heat

kernel, as in [8, Lemma 4.6].
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We next prove an off-diagonal upper bound for pt�x; y�.

Theorem 4.2. There exist constants c4:2; c4:3 > 0 such that for x; y in K,
t 2 �0; 1�, with

eÿmÿ1 < R�x; y�< eÿm

and

k � inf j:
Nm� j�x; y�
e�m� j ��S�1� < t

� �
;

then

pt�x; y�< c4:2tÿds =2 exp ÿc4:3

R�x; y�S�1

t

� �d c
k �x; y�= �S�1ÿd c

k �x; y��
 !

: �4:4�

Proof. Fix x 6� y and t as above and let « > 0 be suf®ciently small. Let
nx � m jB«�x�, ny � m jB«�y�,

Ai�x� � fz 2 K: Nm� k�x; z�> iÿ1Nm� k�x; y�g;
and Ci�x� � K nAi�x�. Then

P nx�Xt 2 B«�y�� � P nx�Xt 2 B«�y�; Xt =2 2 A2�x�� � P nx�Xt 2 B«�y�; Xt =2 2 C2�x��
� I1 � I2:

Choose « small enough such that B«�x� Ì C6�x�. By the same argument as in the
proof of Lemma 3.6(2),

P nx�Xt =2 2 A2�x��< max
z2B«�x�

Pz�Xt =2 2 A2�x��m�B«�x��

< max
z2B«�x�

Pz
ÿ
T¶ A2�x� < 1

2
t
�
m�B«�x��

< max
z2B«�x�

Pz

 X1
3
Nm� k�Ãc��x; y�

i�1

W
�i �
L�m� kÃc� < 1

2
t

!
m�B«�x��

< expfc1�Nm� kÃc
�x; y�e�1�S ��m� kÃc�t�1 =2 ÿ c2 Nm� kÃc

�x; y�gm�B«�x��
� exp�ÿc3 Nm� kÃc

�x; y��m�B«�x��
< exp�ÿc4 Nm� k�x; y��m�B«�x��;

where kÃc is de®ned in the same way as in (3.9).
On the other hand, if q�z� � P�Xt 2 B«�y�j Xt = 2 � z�, then by Lemma 4.1,

q�z� �
Z

B«�y�
pt =2�z;w� m�dw�< c5 tÿds =2m�B«�y��:

Thus

I1 � E nx�q�Xt =2�: Xt =2 2 A2�x��

< c6 m�B«�x��m�B«�y�� tÿds =2 exp�ÿc7 Nm� k�x; y��:
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For I2 , by the symmetry of pt�x; y�,
P nx�Xt 2 B«�y�; Xt =2 2 C2�x�� � P ny�Xt 2 B«�x�; Xt =2 2 C2�x��

which is bounded in exactly the same way as I1.
Adding the bounds for I1 and I2, we have

P nx�Xt 2 B«�y��< 2c6 m�B«�x��m�B«�y�� tÿds =2 exp�ÿc7 Nm� k�x; y��: �4:5�
We remark that, from the de®nitions, it is easy to check that there are constants c8

and c9 such that

c8 Nm� k�x; y�<
R�x; y�S�1

t

� �d c
k �x; y�= �S�1ÿd c

k �x; y��
<c9 Nm� k�x; y�: �4:6�

Dividing both sides of (4.5) by m�B«�x��, m�B«�y�� and using the continuity of
pt�x; y� in �x; y� proves the theorem.

5. Lower bounds

In this section we use techniques developed in [5, 8] to obtain lower bounds on
pt�x; y� which will be identical, apart from the constants, to the upper bound.

Lemma 5.1. There exists a constant c5:1 > 0 such that

pt�x; x�> c5:1tÿds =2 for all x 2 F; 0 < t < 1: �5:1�
Proof. Note that from (3.6), we have

Px�Xt 62 D1
Lr
�x��< Px�W 1

Lr
< t�< c1 expfÿc2 Nr; kÿ1�x�g; �5:2�

for all x 2 K, r > 0, 0 < t < 1. Let a > 0 satisfy c1 exp�ÿc2 a�< 1
2
. And take

1 > t > aeÿr �S�1� (we choose r large enough so that aeÿr �S�1� < 1). Then,
Nr;kÿ1�x�> te�r� kÿ1��S�1� > ae�kÿ1��S�1� > a so that the right-hand side of (5.2)
is less than 1

2
. Thus, Px�Xt 2 D1

Lr
�x��> 1

2
. On the other hand, by (3.1),

m�D1
Lr
�x��< c2eÿrS < c3 t S= �S�1�. Now, using the Cauchy±Schwarz inequality, we

have

1
4

< Px�Xt 2 D1
Lr
�x��2 �

�Z
DL�r�

1 �x�
pt�x; y� m�dy�

�2

< m�D1
Lr
�x��

Z
DL�r�

1 �x�
pt�x; y�2m�dy�

< c3 t S= �S�1�p2t�x; x�:
Hence we deduce that pt�x; x�> c4 tÿS = �S�1�.

We need to extend this `on-diagonal lower bound' to a `near-diagonal lower
bound', which we do via an estimate on the HoÈlder continuity of the heat kernel.

Lemma 5.2. There exists a constant c5:2 > 0 such that

j pt�x; y� ÿ pt�x 0; y�j< c5:2 R�x; x 0�1=2tÿ�2S�1�=2�S�1�; for all x; x 0; y 2 K; 0 < t < 1:

�5:3�
In particular, pt� ? ; ? � is uniformly continuous on K ´ K for each t > 0.
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Proof. By (2.2), we have

j pt�x; y� ÿ pt�x 0; y�j2 < R�x; x 0�E� pt� ? ; y�; pt� ? ; y��: �5:4�
As in [8, Lemma 6.4], we have, writing u�x� � pt =2�x; y�,

E�Pt =2 u;Pt = 2 u�< c1

ÿ
1
2
t
�ÿ1kuk2

2

< 2c1 tÿ1pt�y; y�< c2 tÿ1ÿS= �S�1�;
so that (5.3) holds.

Lemma 5.3. There exist c5:3; c5:4 > 0 such that for all x; y 2 K, 0 < t < 1,

pt�x; y�> c5:3 tÿds = 2 whenever R�x; y�< c5:4 t 1 = �S�1�: �5:5�
Proof. If R�x; y�< c5:4 t 1= �S�1� then by Lemmas 5.1 and 5.2,

pt�x; y�> pt�x; x� ÿ j pt�x; y� ÿ pt�x; x�j
> tÿds =2�c5:1 ÿ c5:2 R�x; y�1= 2tÿ1=2�S�1��
> 1

2
c1tÿds =2;

where c5:4 is chosen such that c5:1 ÿ c1=2
5:4 c5:2 > c1.

We can now use a standard chaining argument to obtain general lower bounds
on pt from Lemma 5.3.

Theorem 5.4. There exist constants c5:5; c5:6 > 0 such that for x; y in K,
t 2 �0; 1�, with

eÿmÿ1 < R�x; y�< eÿm

and

k � inf j:
Nm� j�x; y�
e�m� j ��S�1� < t

� �
;

then

pt�x; y�> c5:5tÿds =2 exp ÿc5:6

R�x; y�S�1

t

� �d c
k �x;y�= �S�1ÿd c

k �x; y��
 !

: �5:6�

Proof. Fix x, y and t. Using (5.5) we see that the bound is satis®ed if

R�x; y�S�1= t < cS�1
5:4 . Thus we assume that D � R�x; y�S�1 = t > cS�1

5:4 . As in (3.9),
for Ãc > 0, let

k 0 � kÃc � inf j:
Nm� j�x; y�
e�m� j ��S�1� < Ãct

� �
: �5:7�

By our choice of k 0 there is a c1 > 0 such that

c1Nm� k 0 �x; y�ÿ1e�S�1�k 0 < D < ÃcNm� k 0 �x; y�ÿ1e�S�1�k 0 : �5:8�
Thus we have

R�x; y�
ek 0 < Ãc1= �S�1� t

Nm� k 0 �x; y�
� �1= �S�1�

:
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Now choose a minimum Lm� k 0-walk p 2 Pm� k 0 �x; y� with p � fxigjp ji�0 where
x0 � x, xjp j � y and jp j � Nm� k 0 �x; y�. Then

R�xi; xi�1�< c2 eÿmÿk 0 < c2 e
R�x; y�

ek 0 < c2 eÃc1= �S�1� t

Nm� k 0 �x; y�
� �1= �S�1�

:

For « � eÿmÿ k 0ÿ1 , write Gi � B«�xi�. If zi 2 Gi and zi�1 2 Gi�1, we have

R�zi; zi�1�< 2«� R�xi; xi�1�< �2� c2 e�Ãc1= �S�1� t

Nm� k 0 �x; y�
� �1= �S�1�

:

Choose Ãc small enough so that �2� c2 e�Ãc1= �S�1� < cS�1
5:4 . We can then apply the

chaining argument with N � Nm� k 0 �x; y�, s � t=N,

pt�x; y�>

Z
G1

. . .

Z
GN ÿ 1

ps�x; x1� . . . ps�xNÿ1; y� m�dx1� . . . m�dxNÿ1�

>

�YNÿ1

i�1

m�Gi�
�
�c3sÿS= �S�1��N

> c4sÿS= �S�1� exp�ÿc5 N �:
In the last inequality, we use the fact that m�Gi�sÿS= �S�1� is bounded from above
and below, which comes from Lemma 3.4 and the de®nition of k 0. As in (3.10),
Nm� k 0 > c6 Nm� k and using (4.6) completes the proof.

Theorem 1.1 and Corollary 1.2 then follow as a consequence of (4.4), (5.6) and
(4.6) with appropriate identi®cation of constants.

6. Examples

In this section, we discuss some examples for which more exact estimates can
be obtained.

1. Af®ne nested fractals
The ®rst examples are af®ne nested fractals. This is a subclass of p.c.f. self-

similar sets which consists of fractals with strong symmetries. Speci®cally, a
connected p.c.f. self-similar fractal L � �K; S; fFigi2 S� is called an af®ne nested
fractal if the following hold:

(A1) Fi: R
D ! RD is a contraction such that

jFi�x� ÿ Fi�y�j � aÿ1
i jxÿ y j for all x; y 2 RD;

for some ai > 1 and fFigi2 S satis®es the open set condition;

(A2) if x; y 2 V0, then re¯ection in the hyperplane Hxy � fz 2 RD: kzÿ xk �
kzÿ ykg maps Vn to itself.

For the heat kernel pt�x; y� of the Dirichlet form constructed by a regular
harmonic structure with the measure mentioned in Theorem 2.11(2), we have the
following Aronson type estimates [8].

Theorem 6.1. There exist constants c6:1, c6:2, c6:3, c6:4 > 0 and 0 < g 0 < S� 1
such that

W�c6:1 R�x; y�; c6:2 t�< pt�x; y�< W�c6:3 R�x; y�; c6:4 t�;
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for all 0 < t < 1, x; y 2 E where

W�z; t � � tÿds = 2 exp ÿ zS�1

t

� �g 0 = �S�1ÿg 0� !
:

The symmetry condition (A2) is essential for such an estimate. Under this
symmetry, the exact chemical exponent g 0 can be found as the solution to an
optimization problem.

2. Sierpinski gasket
Another example is provided by the operator on the Sierpinski gasket

mentioned in [20, § 6]. In § 2, it was shown how to view the 2-dimensional
Sierpinski gasket as a p.c.f. self-similar fractal. Instead of constructing the
Brownian motion, we let

D �
ÿ2p p p

p ÿ1 1ÿ p

p 1ÿ p ÿ1

0B@
1CA; r � �sÿ1; 1; 1�:

Straightforward calculations show that the equation (2.1) is equivalent to the
following:

� pÿ 1�� pÿ 3�s2 ÿ 2� pÿ 1�2s� p� pÿ 2� � 0; l � 2� sÿ p

s�2ÿ p� :

As this equation has a unique positive solution s for each 0 < p < 1, we know that
there exists a unique harmonic structure for each 0 < p < 1. It is easy to check
that this harmonic structure is regular. Thus we have a regular local Dirichlet
form for each 0 < p < 1. Note that when p � 1

2
, it is the Brownian motion on the

Sierpinski gasket.

In order to estimate the heat kernel of the corresponding Dirichlet form, we
prepare a lemma.

Lemma 6.2. For p1; p2; p3 2 V0, labelled as above, there exist c6:5; c6:6; c6:7,
c6:8 > 0 and

d h
c �

log 2

log r2

; d v
c � fs: rÿs

1 � rÿs
2 � 1g;
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such that

c6:5 ed v
c n < Nn� p1; pi�< c6:6 ed v

c n; for i � 2; 3;

and for 0 < p < 1
2

,

c6:7 ed h
c n < Nn� p2; p3�< c6:8ed h

c n;

while for 1
2

< p < 1,

c6:5 ed v
c n < Nn� p2; p3�< c6:6 ed v

c n;

for all n > 0.

Proof. By symmetry Nn� p1; p2� � Nn� p1; p3�. For each case we can prove that

c1Nl Nm < Nl�m < c2 Nl Nm for all n;m > 0:

Thus, by an argument using super-(sub-)additive sequences (see, for example, [4,
Theorem 5.1]), we see that

c3a
l
ij < Nl� pi; pj�< c4 al

ij for all l > 0; �6:1�
for some aij > 0.

In order to compute the values for the scale factors we observe that on the
Sierpinski gasket the shortest paths consist of straight lines. The chemical
exponent is then the box dimension of the shortest path in the resistance metric.
To see this, note that the box dimension dB, when it exists, is given by

dB � lim
«! 0

log N R
«

ÿ log «
;

where N R
« is the minimum number of sets of radius « in the resistance metric

required to cover the path. For « � eÿk this is Nk� pi; pj�. Hence, by (6.1), we see
that the limit exists for the sequence (and it is easy to show dB exists), giving

dB � lim
k!1

log Nk�x; y�
k

� lim
k!1

d c
k �x; y�:

We thus see that the scaling in the length of the shortest path will be determined
by the box dimension.

Next, we calculate the exact values. We ®rst consider the horizontal direction p2 p3

for p < 1
2

. In this case, we can easily calculate the dimension of the straight line path
as the resistance of each triangle on a given level is the same. Thus Nk� p2; p3� � 2l

where l is the number of maps applied in order that the resistance of a piece is of

order eÿk . Hence we see that d h
c � limk!1 log Nk� p2; p3�=k � log 2= log r2. For

p > 1
2

, as it is possible to make a horizontal step via two diagonal ones, this becomes
the shortest path, and we see that the horizontal estimate coincides with the diagonal
one. For the diagonal walk each step in the path on VLk

is of resistance eÿk and the
box dimension of the straight line is required. By comparing with the calculation of
the dimension for self-similar fractals with different scale factors, which was
remarked on after Theorem 3.8, we obtain the result.

Let dc � d v
c ^ d h

c . Also, for x 2 K , « > 0, set

L�x� � fy 2 K: $ l horizontal line, x; y 2 l; l Ì Kg;
L«�x� � fy 2 K: R�L�x�; y� < «g;

where a horizontal line is a line in R2 which is parallel to p2 p3.
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Theorem 6.3. Set

W�z; t : d � � tÿds =2 exp ÿ zS�1

t

� �d = �S�1ÿd � !
:

Then, there exist constants c6:9; c6:10; c6:11; c6:12; c6:9:«; c6:11:« > 0 (c6:9:« and c6:11:«

depend on «) such that the following hold.

(1) For the case 1
2

< p < 1,

W�c6:9 R�x; y�; c6:10 t : dc�< pt�x; y�< W�c6:11 R�x; y�; c6:12t : dc�;
for all 0 < t < 1, x; y 2 K.

(2) For the case 0 < p < 1
2
, we have for all x 2 K, y 2 K nL«�x�, that there exists

a function f �x; y; «� > 0 such that

W�c6:9:« R�x; y�; c6:10 t : d h
c �< pt�x; y�< W�c6:11:« R�x; y�; c6:12 t : d h

c �; �6:2�
if f �x; y; «� < t < 1, while

W�c6:9:« R�x; y�; c6:10 t : d v
c �< pt�x; y�< W�c6:11:« R�x; y�; c6:12 t : d v

c �; �6:3�
for all 0 < t < f �x; y; «�. For x 2 K, y 2 L�x�, (6.2) with c6:9 and c6:11 instead of
c6:9:« and c6:11:« holds for all 0 < t < 1.

Proof. Observe that if p > 1
2

, then s > 1 and r1 > r2 � r3 so that Nn� p1; pj�<
Nn� p2; p3� � j � 2; 3� and d v

c < d h
c . On the other hand, when p < 1

2
, d v

c > d h
c . Thus,

we see that dc � d v
c in Case (1), while dc � d h

c in (2).
In order to obtain the result we apply Theorem 1.1. We will compute the

shortest path in the effective resistance metric as above.
For Case (1) the shortest paths between all points involve diagonal steps so that

the result is easily deduced from Theorem 1.1 and Lemma 6.2.
For Case (2), choose m so that eÿmÿ1 < R�x; y�< eÿm and decompose the

shortest path p � fxigjp ji�1 between x and y in the following way. For each
m� 1 < j < m� k �k � k�m; t��, let x1

ij
denote the ®rst point in the path when it

hits a vertex of VLj
, and let x2

ij
denote the last such vertex. We regard our path p

as consisting of the pairs �x1
ij
; x1

ijÿ 1
�, �x2

ijÿ 1
; x2

ij
�, which each consist of a path

containing a certain number of horizontal and diagonal steps on VLj
. Thus, using

Lemma 6.2, we can write

Nm� k�x; y� �
X2

l�1

Xm� k

j�m�2

Nm� k�xl
ij
; xl

ijÿ 1
� � Nm� k�x1

im� 1
; x2

im� 1
�

,
Xm� k

j�m�1

ch
j �x; y�ed h

c �m� kÿ j � � cv
j �x; y�ed v

c �m� kÿ j �;

where the coef®cients c
h�v�
j �x; y� give the number of horizontal (diagonal) steps of

the j size between x and y. (Here f , g means that g= f is bounded from above
and below by some positive constant which is independent of the choice of x, y,
k.) By the construction of the path we see that these are bounded above by 2 for
m� 2 < j < m� k. For j � m� 1, we see from Lemma 3.4 that it is also
bounded from above and below by some uniform constant.
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For y 2 L�x� , we have cv
j �x; y� � 0 for all j so that

c1 ed h
c k < Nm� k�x; y�< c2 ed h

c k; for all k > 0:

We now ®x a constant M > 0. By examining the coef®cients ch
j �x; y�, cv

j �x; y�, we
see that for each x; y 2 K with y 62 L«�x� there exists a k�« < 1 (independent of x
and y) such that

c3 ed h
c k < Nm� k�x; y�< Med h

c k; for all k < k�«;

M 0ed v
c k < Nm� k�x; y�< c4 ed v

c k; for all k > k�«;

where M 0 � M exp�k�«�d h
c ÿ d v

c �� (note that M 0 depends on «). By the de®nition of
k�m; t� if k�m; t�< k�«, then for all x 2 K, y 62 L«�x�,

Nm� k�x; y�, ed h
c k ,

R�x; y�S�1

t

� �d h
c = �S�1ÿd h

c �
:

However if k�m; t�> k�«, then we get

Nm� k�x; y�, ed v
c k ,

R�x; y�S�1

t

� �d v
c = �S�1ÿd v

c �
:

(Here f , g has the same meaning as above, but this time the constants depend on
«.) Using the fact that k�m; t� % 1 as t # 0, we have the existence of the function
f �x; y; «� � ft: k�m; t� � k�«g ^ 1 with the desired properties.

This example suggests that without strong symmetry in the operator on the
fractal the Aronson type uniform estimates do not hold. By rearranging this result
and using the fact that for each «, the function f �x; y; «� > 0 for y 62 L«�x�, we
have the following result.

Corollary 6.4. For all x; y 2 K, the following hold.

(1) For the case 1
2

< p < 1,

lim
t! 0

log�ÿ log�t ds =2pt�x; y���
log�R�x; y�S�1= t� � d v

c =�S� 1ÿ d v
c �:

(2) For the case 0 < p < 1
2

,

lim
t! 0

log�ÿ log�t ds =2pt�x; y���
log�R�x; y�S�1= t� � d h

c =�S� 1ÿ d h
c � if y 2 L�x�;

d v
c =�S� 1ÿ d v

c � if y 62 L�x�:

(

3. Vicsek sets
We consider brie¯y the Vicsek set as discussed in [22]. It was shown that if the

operator is not invariant under the complete symmetry group, there can exist a
family of non-unique ®xed points for this particular fractal. We show that if we
think of this set as a p.c.f. self-similar set, then this non-uniqueness can be
extended to symmetric resistances on the set. If we write the Vicsek set as a p.c.f.
self-similar set with S � f1; . . . ; 5g, where the index 5 refers to the central square,
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we have

D �

ÿ�2� b� 1 b 1

1 ÿ�2� 1=b� 1 1=b

b 1 ÿ�2� b� 1

1 1=b 1 ÿ�2� 1=b�

0BBBBB@

1CCCCCA;

r � �1=s; 1=s; 1=s; 1=s; 1�:
For each s > 0, this D is a ®xed point for all b 2 R� with l � 1� 2s (note that
s � 1 is the case considered in [22]). Using the results derived here it is easy to
see that, for each s, the heat kernel estimates are of the same form for each
diffusion on the Vicsek set de®ned by a ®xed point from this one-parameter
family of ®xed points.

From the symmetry of the fractal and the resistances, and the essentially tree-
like structure of this set, we see that for the vertices of the unit square pi, for
i � 1; 2; 3; 4, the number of steps in the shortest path N� pi; pj�, with
i; j � 1; 2; 3; 4, will be the same. By sub and super additivity arguments there
will be a unique exponent for all paths. As the values of r are given and these
determine the behaviour of the shortest path, we see by calculation that for s � 1
the effective resistance metric is equivalent to the Euclidean. Thus dc�x; y� � 1 for
all x; y. The result for nested fractals �s � 1�, derived in [19] holds for each b.

Further, our results show that for each s, we have S � log�1� 4s�= log�1� 2s�,
and for each pair of points the chemical exponent dc � dc�x; y� will be given by

dc � fd: �1� 2sÿd��1� 2s�ÿd � 1g:
Thus for the Vicsek set F with harmonic structure �D; r� as above, we ®nd that,
for each b > 0, there exist constants c1; c2; c3; c4 > 0 such that

W�c1R�x; y�; c2 t�< pt�x; y�< W�c3 R�x; y�; c4 t�;
for all 0 < t < 1, x; y 2 F where

W�z; t� � tÿds =2 exp ÿ zS�1

t

� �dc = �S�1ÿdc� !
:

4. abc-gaskets
Finally, we consider fractals which are not symmetric. These are the abc-

gaskets of [12]. It was shown that for these fractals there may not be a ®xed point
corresponding to the `natural' choice of resistance. The sets are constructed by
setting a number a� 1 of triangles on the bottom side, b� 1 on the left side and
c� 1 on the right side. Thus there are a� b� c triangles in total; we always
assume that a < b < c. The Sierpinski gasket is the case a � b � c � 1.

We write this as a p.c.f. set by setting

S � f1; . . . ; a� b� cg;
p�C � � fq1; . . . ; qa�b� c�3g;
p�P� � f p1; p2; p3g; pÿ1� pi� � fÇig for i � 1; 2; 3:
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There are several possible ways to construct a natural Laplace operator on this
set. In the paper [12], the resistance vector r is assumed to be a vector of unit
resistances and then the ®xed point equation can be solved to ®nd a matrix D,
with positive elements, under the condition that 1=a < 1=b� 1=c. In this case
the scale factor l � �2bac� ab� ac� cb�=�ac� ab� cb� and hence, as each
ri � 1, we have ri � l for each i. To ®nd the dimension of the straight line paths
across the triangle in the resistance metric is then straightforward. Let

d 23
c �

log�a� 1�
log l

; d 12
c �

log�b� 1�
log l

; d 13
c �

log�c� 1�
log l

;

so that d 23
c < d 12

c < d 13
c .

For all pairs of points in K we can either move directly along a horizontal line
between them, or move along a horizontal line and a �60 diagonal. This leads to
the following result, proved by calculating the behaviour of the shortest path as in
the Sierpinski gasket example. As the proof is essentially the same, we omit it.

Theorem 6.5. For the abc gasket there exist constants and a function
f �x; y; «� > 0 such that the following holds for all x 2 K, y 2 K nL«�x�:

W�c6:13:« R�x; y�; c6:14 t : d 23
c �< pt�x; y�< W�c6:15:« R�x; y�; c6:16 t : d 23

c �; �6:4�
for all f �x; y; «� < t < 1, while

W�c6:17:« R�x; y�; c6:18 t : d 12
c �< pt�x; y�< W�c6:19:« R�x; y�; c6:20 t : d 12

c �; �6:5�
for all 0 < t < f �x; y; «�.

For x 2 K, y 2 L�x�, (6.4) with c6:13; c6:15 instead of c6:13:«; c6:15:« holds for all
0 < t < 1.

Corollary 6.6. For all x; y 2 K, the following holds:

lim
t! 0

log�ÿ log�t ds =2pt�x; y���
log�R�x; y�S�1= t� � d 23

c =�S� 1ÿ d 23
c � if y 2 L�x�;

d 12
c =�S� 1ÿ d 12

c � if y 62 L�x�:

(

It is interesting to note that for each x 2 K, the estimates are determined by the
middle exponent d 12

c for almost all y 2 K.
The other natural approach to this particular p.c.f. set is to consider the matrix

D to consist of unit conductors and then scale this by a resistance factor which
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depends on the size of the mapping on the triangle. Thus we will need three
factors to correspond to the three different sizes of triangle. Our operator is
de®ned by

D �
ÿ2 1 1

1 ÿ2 1

1 1 ÿ2

0B@
1CA; r � �r1; r2; r3�:

Then there exist a l and a vector r which makes D a ®xed point of the
conductivity map, and the values of the conductivities ri are given by

r1 �
ÿ2a� 2abÿ 3� 4b� 2B

3�2bÿ 1� ;

r2 �
�ÿ2a� 2abÿ 3� 4b� 2B��2b� 1�

3�2abÿ 2aÿ 1� 2B� ;

r3 �
�ÿ2a� 2abÿ 3� 4b� 2B��2b� 1��cÿ 1�

3�1� 2aÿ bÿ 4ba� 2ab2 � 2�bÿ 1�B� ;

where B � ����������������������������������������������������������������������
a2 ÿ 2ba2 ÿ ab� b2a2 � 4ab2 � b2
p

. Note that by the choice of r we
obtain a set of ri with 1 < r1 < r2 < r3 for all a, b, c for this matrix D, unlike
the previous case of the operator from [12].

To calculate the heat kernel estimates we return to our basic result and
determine the shortest paths in the resistance metric. For this we need three
different exponents corresponding to the three possible directions in this fractal.
By calculating the dimension of the straight paths between points in the resistance
metric, we obtain the following where the upper indices refer to the direction:

d 23
c �

log�a� 1�
log r1

; d 12
c � fs: rÿs

1 � brÿs
2 � 1g;

d 13
c � fs: rÿs

1 � rÿs
2 � �cÿ 1�rÿs

3 � 1g:
Again there will be a particular direction which has the shortest path. We write

d 1
c for the smallest element of the set fd 12

c ; d 13
c ; d 23

c g, and d 2
c for the next smallest.

In this case, the result is the following. Here, for the pair i; j 2 f1; 2; 3g such that
d ij

c � d 1
c , we denote by L1�x� a line which is parallel to pi pj and contains the

point x 2 K (L1
«�x� is de®ned in the same way as before).

Theorem 6.7. For the abc gasket with harmonic structure �D; r� there exist
constants and a function f �x; y; «� > 0 such that the following holds for all x 2 K,
y 2 K nL1

«�x�:
W�c6:21:« R�x; y�; c6:22 t : d 1

c �< pt�x; y�< W�c6:23:« R�x; y�; c6:24 t : d 1
c �; �6:6�

for all f �x; y; «� < t < 1, while

W�c6:25:« R�x; y�; c6:26 t : d 2
c �< pt�x; y�< W�c6:27:« R�x; y�; c6:28 t : d 2

c �; �6:7�
for all 0 < t < f �x; y; «�.

For x 2 K, y 2 L1�x�, (6.6) with c6:21; c6:23 instead of c6:21:«; c6:23:« holds for all
0 < t < 1.
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Corollary 6.8. For all x; y 2 K, the following holds:

lim
t! 0

log�ÿ log�t ds =2pt�x; y���
log�R�x; y�S�1= t� � d 1

c =�S� 1ÿ d 1
c � if y 2 L1�x�;

d 2
c =�S� 1ÿ d 2

c � if y 62 L1�x�:

(

Finally, we conjecture that Corollaries 6.4, 6.6, 6.8 could be generalized as follows.

Conjecture 6.9. There exists a function dc�x; y� � limk!1 d c
k �x; y� so that

the following holds for all x; y 2 K:

lim
t! 0

log�ÿ log t ds =2pt�x; y��
log�R�x; y�S�1= t� � dc�x; y�=�S� 1ÿ dc�x; y��:

We further conjecture that the chemical exponent can be expressed in terms of
the box counting dimension of the path in the effective resistance metric. Let
P�x; y� be the set of all paths from x to y and d R

B �p� be the box dimension of
path p 2 P, in the effective resistance metric.

Conjecture 6.10. The limiting chemical exponent dc�x; y� for the shortest
path between x; y exists, and can be expressed in terms of the box counting
dimension of the path in the resistance metric as

dc�x; y� � inf
p2P�x; y�

d R
B �p� � lim

k!1
d c

k �x; y�;

for all x; y 2 K.
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