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1. Introduction

The recent development of analysis on fractal spaces is physically motivated by
the study of diffusion in disordered media. The natural questions that arise
concern the existence and uniqueness of a suitable Laplace operator, and the
behaviour of the associated heat semigroup, on a space which is fractal. The
classes of fractals for which these questions were first answered were classes of
exactly self-similar fractals, with strong spatial symmetry, such as nested or affine
nested fractals (see, for example, [2, 8]). The existence of a Laplacian and
estimates on the heat kernel were obtained by considering the associated diffusion
process and using the symmetry of the space. The uniqueness of the Laplacian for
nested and affine nested fractals has recently been solved through consideration of
their Dirichlet forms [23].

In [15] the framework of post critically finite (which we abbreviate to p.c.f.)
self-similar sets was introduced in order to capture the notion of exactly self-
similar finitely ramified fractals as used in the physics literature. Finitely ramified
fractals have the property that the intersection of any connected subset of the
fractal with the rest of the set should occur only at a finite number of points. This
makes these structures much easier to analyse than infinitely ramified sets such as
the Sierpinski carpet [S]. The p.c.f. self-similar sets do not have spatial symmetry
in general and have provided a mathematical test bed for analysis on fractals. In
this paper we will obtain uniform short time estimates on the heat kernel
associated with a natural Laplacian on the fractal.

A Laplacian can be constructed on a p.c.f. self-similar fractal as a limit of
discrete Laplacians on graph approximations to the fractal based on the
ramification points. We construct these operators via their Dirichlet forms, which
can be set on any L2—space with a full measure, ». In [23], criteria are given
which give a partial answer to the existence and uniqueness of Laplace type
operators on p.c.f. self-similar sets.

In a series of papers [16, 17, 18, 20, 25, 7] some of the interesting spectral
properties of p.c.f. sets have been elucidated. It has been shown that there can
exist localized eigenfunctions if there is a high degree of symmetry in the set and
corresponding Laplace operator. This corresponds to oscillation in the leading
order term for the asymptotics of the eigenvalue counting function. Such
behaviour occurs for nested fractals [7] and p.c.f. sets with strong harmonic
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structure [25]. However, for general p.c.f. sets with an arbitrary Bernoulli measure
the oscillation only occurs under a certain condition [18].

From [17], [18] and [10] it has become clear that the analytic properties of
these sets are best discussed in terms of an effective resistance metric. If we write
d; for the spectral exponent which describes the asymptotic scaling of the
eigenvalue counting function for the Laplacian defined with respect to the measure
v, then the spectral dimension d, is defined to be the number which maximizes d,
over all measures ». The maximizing measure is equivalent to the Hausdorff
measure in the effective resistance metric and the spectral dimension
d, =25/(S+ 1), where S is the Hausdorff dimension of the set in the effective
resistance metric [16]. We will be concerned here with the behaviour of the heat
kernel associated with the Laplacian with respect to the maximizing measure.

The heat kernel associated with the Laplace operator on fractals has been
considered probabilistically for some sub-classes of p.c.f. sets, such as nested and
affine nested fractals [19, 8], as it is the transition density of the diffusion process
generated by the operator. We will extend this work to general p.c.f. self-similar
sets by obtaining best possible heat kernel estimates in terms of the effective
resistance metric.

By applying the results to some examples we show that uniform Aronson type
estimates do not hold in general on fractals. This is a situation in which we have a
Poincaré inequality and a doubling condition for the measure, but Aronson type
estimates do not hold. For the Laplace—Beltrami operator on a Riemannian manifold,
it was shown independently in [24, 9] that a Poincaré inequality and a doubling
condition are equivalent to a parabolic Harnack inequality. Using this result one
can obtain upper and lower bounds on the heat kernel of Aronson type. In order
to get sharp off-diagonal estimates we need to investigate the relationship between
the short paths on the fractal and the effective resistance metric. The results show
that in general, given a time and two points in the set, the heat kernel estimate is
not influenced by structure in the fractal below a certain scale, determined by the
relationship between the time and effective resistance between the points.

The plan of the paper is as follows. In §2 we will introduce p.c.f. self-similar
sets, their Dirichlet forms and the effective resistance metric R(x,y). This will be
followed by some preliminary results in § 3, which will be used to obtain the
estimates. In particular, we introduce the shortest path counting function, N, (x,y),
for the effective resistance metric and give a version of the Einstein relation for
p.c.f. self-similar sets; expressing the random walk dimension in the effective
resistance metric as d,, =S+ 1. In §§4 and 5 we will deduce the following
upper and lower uniform short time estimates on the heat kernel for the p.c.f.
self-similar set K.

THEOREM 1.1. There exist constants cy1,C12,C13,C14 >0 such that for all
x,yeK and 0<t<1, if

e <Rk y)<e™
and
k(m, 1) := inf{j: N,y (x,y)e” STV < 1y
then

ds/

pi(xy) scpt™® 2CXP(—Cl.szH(m,t)(x’y))»
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and

pi(x,y) = ciat ™/

g exp(_cl.4Nn1+k(m,t) (X))

Note that this theorem contains the diagonal estimate as Ny, ¢ i(m,) (x,x) = 0 for all
meN, 0<t<1andxe K. We can write this in terms of the effective resistance and
a chemical exponent for this metric, di (x,y) = 10g Njjog (x,y)] £ (¥, ¥) /k as follows.

COROLLARY 1.2. There exist constants cs,C16,C17,C18 Such that, for x,y € K
and 0 <t <1, with m and k as above,

t

R , S+1 dkp(m,:)(x’y>/(s+l7dkc(m,t)(x’y))
pi(x,y) < cist ™/ Fexp <—Cl.6 (&) )

and

R(x,y)S*! A,y (6. 3) / (S+ 1 =d,, o (x.3))
= (2522 |

In the final section we will show how Theorem 1.1 can be used in several examples.
The first will be the affine nested fractals of [8], where Aronson type estimates can be
obtained. We then consider a one-parameter family of diffusions on the Sierpinski
gasket which are not spatially symmetric and have a multifractal Bernoulli
measure for invariant measure. The heat kernel estimates in this case are not of
Aronson type. We will also discuss the non-unique diffusion on the Vicsek set and
show that each diffusion can be controlled by estimates of the same functional form but
different constants. The abc-gaskets of [12] present a family of p.c.f. self-similar
sets with no spatial symmetry. We can obtain heat kernel estimates in this case.
We will conclude with two conjectures concerning the chemical exponent.

2. P.C.F. self-similar fractals and their Dirichlet forms

In this section we briefly introduce post critically finite (p.c.f. for short) self-
similar sets and summarize known results about their Dirichlet forms. This class
was introduced in [15] and a detailed discussion can be found in [2]. At the end
of the definitions we will describe the Sierpinski gasket (see Fig. 1) as a p.c.f.
fractal. First, we introduce the one-sided shift space and give some notation.

14 1
l]3 q,

49
FiG. 1. The Sierpinski gasket.
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NotaTiON. (1) Let S ={1,2,...,N}. The one-sided shift space L is defined
by £ =SV, Also, let W, = S".

(2) For we X, we denote the ith element in the sequence by w; and write
W= WiWryWwsz....

3) If we W,, we define |w| = n.
(4) We denote i = iiii... for i € S.

(5) Let 0: ¥ — X be the shift map, that is, ow =wows... if w=ww,....
Define 6,: ¥ — X as o,w = sw for s € S.

We now introduce the notion of self-similar structures and p.c.f. self-similar sets.

DErFINITION 2.1. Let K be a compact metrizable space and for each s € S, let
F;: K — K be a continuous injection. Then, (K, S, {F,},cs) is said to be a self-
similar structure on K if there exists a continuous surjection w: ¥ — K such that
wog, = Fyom for every s € S.

For w € W,,, we denote F,, = F,, oF,, o...oF, and K,, = F,,(K). In particular,
K, = F(K) for s € S. Note that Hutchinson’s self-similar set, as defined in [14], is
a self similar structure in the sense of Definition 2.1 by taking

w(w) = ﬂ F, oF, o...oF, (K).

n=1

DEFINITION 2.2. Let & = (K,S,{F,};cs) be a self-similar structure on K.
Then the critical set of ¥ is defined by

(9= (U#<K nK))

and the post critical set of ¥ is defined by

P(2) =] o"(C(2)).

n=1

We say that & is post critically finite (p.c.f) if P = P(%) is a finite set.
In the following, we only consider a connected p.c.f. self-similar set (K, S, {F, },c5s)-

NotaTIiON. (1) For m =0, let

P =) wp, V,=x(P™), V,=|JV, and V, =V,
wew, m=0
Moreover, B,, = F,,(w(P)) for w e W,, for any m = 0.
(2) For the finite sets V,V’, we define
V) =A{f1f:V—-R}
L(V,V') = {A| A: (V) — (V') and A is linear},
L(V) =L(V, V).
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DEFINITION 2.3. A pair (D,r) € L(Vy) xI(S) is called a quasi-harmonic
structure on K if it satisfies the following:

(1) r,>0 for each s €S,

(2) D ="D,

(3) D is irreducible,

(4) Dy, <0, > ,cv, Dy = 0 for each p €V,
(5) D,, =0 if p#gq.

From the quasi-harmonic structure (D, r), we have a difference operator H,, on V,,.

DEFINITION 2.4. A difference operator H,, € L(V,,) is defined by
H,= Y r,/''R,DR,,

weWw,

where R,: I(V,,) — I(V}) is defined by R,,(u) = uoF,, and r,, =1, ...r1,

m

We decompose H,, into

H <Tm qm> _ (fvﬂ )
I X, fls
where T,, € L(Vy), J,, € L(Vo, V), X,n € L(V,,). We will write T = Ty, J = J,, and
X - Xl'
We now give the notion of the harmonic structure, under which harmonic
functions on V,, (with respect to H,,) automatically become harmonic functions on

Va1 (with respect to H,,_).

DEFINITION 2.5. A quasi-harmonic structure (D,r) is called a harmonic
structure if there exists N > 0 such that

T-"Jx'7=N\"D. (2.1)

Furthermore, a harmonic structure (D, r) is said to be regular if r; <\ for each
s€eS.

Let p;, =N/r; (1 <i<N), which is greater than 1 if the harmonic structure is
regular. Note that regularity of the harmonic structure is a condition for the
reproducing kernel of the following quadratic form (&,%) to be bounded
continuous. Throughout this paper, we treat a regular harmonic structure (D, r).

The uninitiated reader is advised to think of the above definitions in the context
of the 2-dimensional Sierpinski gasket, Fig. 1. This can be considered as a p.c.f.
self-similar set by setting

S=1{1,2,3},
7(C) = {41,492, 93} 7r_1(611) = {23’32}’
7 (g,) = {13,31}, 7 (gs) = {12,21},

(P) = {p1. po 3}, 7 '(p;) = {i} fori=1,2,3.
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The set V|, is then the vertices of the largest triangle and V,, denotes the set of
vertices of all triangles of size 27",

The natural Laplace operator on the Sierpinski gasket can be constructed from a
quasi-harmonic structure given by

2 1 1
p=|1 -2 1|, r=(,11).
11 =2

The matrix D is the generator of a continuous time random walk on the complete
graph formed by the vertices V|, with unit conductors on each edge. The equation
(2.1) is satisfied with A :§ and there exists a unique regular harmonic structure.
Thus the difference operator H,, is the generator of the continuous time nearest
neighbour random walk on the graph formed from V,, with edges which are
images of the edges of V,, and of conductivity (%)n The fact that the structure is
harmonic means that the random walk on V,, is decimation invariant in that, if it
is stopped when it hits V;, it has the same probabilistic structure as the random
walk on V,,. Another way to view the existence of a harmonic structure is that it
ensures that the networks (Vy, Hy) and (V,,, H,,) are electrically equivalent.

DEFINITION 2.6. We say that f € C(K) = {f: f is a continuous function on K}
is m-harmonic if and only if H, f|,\y =0 for all n=m. A 0-harmonic function
is called a harmonic function.

PrOPOSITION 2.7 [15, Theorem 4.12]. Let (D,r) be a harmonic structure. For
any p € I(V,,), there exists a unique m-harmonic function f with f|, = p.

DerINITION 2.8. For f € I(V,), we define P, f to be a continuous function on
K satisfying the following:

) Pufly, =flv,
(2) Hy(Pyf)lv\v, =0 for all n>m.

By Proposition 2.7, if (D, r) is a harmonic structure, P,,f exists uniquely for all
fel(V,) and m= 1.
For u,v €1(V,,), define
& m(u,v) = —N""uH,v.
By Corollary 6.14 in [15], we see that &, (u,u) <&, (u,u) for ucl(V, )
(equality holds if and only if P, uly, = u). Using this fact, let
F ={fel(v,): lim &,(f,f) <o}, &(f,g) = lim &,(f,g) forall f,ge F.

In order to embed Z into some L*-space, we define the following effective
resistance between p,q € V,:

R(p.q)~' =inf{&(f.f): f €U(V.), f(p) =1, f(q) = 0}.

ProposITION 2.9 [16, 17]. (1) The function R(-, *) is a metric on V,. It can
be extended to a metric on K (which will be denoted by the same symbol R), and
it induces the same topology as the original one on K.
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(2) For p,q €V, with p#gq,
R(p.q) = sup{|f(p) =@/ E(f. [): f € 7, F(p) #f (@)}

We remark that the regularity condition for (D, r) is needed for R(-, - ) to be a
metric on K. By Proposition 2.9(2), we know that |f(p) —f(¢q)|* <R(p,q)&(f. f)
for all fe€Z and p,qeV,, so that f €% can be extended uniquely to a
continuous function on K (we thus consider 7 c C(E)). Now, let u be a Bernoulli
measure on K such that u(F;(K)) =p; >0 (note that SV ,pu; =1). Then,
F c C(E) cL*(K,p) and we have the following theorem [15, 16, 18].

THEOREM 2.10. The form (&, ) is a local regular Dirichlet form on L*(K, u)
which has the following property:

lf(p) —f(q)|2 <R(p,q)6(f.f) forallfeF and all p,q €K, (2.2)

N
6(f.8) = pi6(foF,goF;) forallf,ge 7. (23)
i=1
Further, if we set &g(+, ) =6&(+, ) +B(*, * )ik, for B>0, then, &g admits
a positive symmetric continuous reproducing kernel gg (+, *).

If we let A, be the generator for (&,%) on L*(K, ), then, by the above
theorem, we know that —A, has a compact resolvent and hence the spectrum of
—A, consists of eigenvalues. We will call the operator associated with any of the
harmonic structures a Laplacian on the fractal. Our interest here is to obtain
estimates on the heat kernel for the corresponding diffusion process. For this
purpose, we need a ‘natural’ measure, which is suggested by the following
theorem from [18].

THEOREM 2.11. (1) Let n*(x) = #{\| N\ is an eigenvalue of —A, < x}. Then,
for the unique positive number dy(p) satisfying Z,»N:I(ui/p,-)d‘(”)/z =1, the
following inequality holds:

0 < liminf n*(x)/x*"/? < limsup n*(x) /x*®/? < 0.
X — 00

X — 00
(2) Let S be the unique constant which satisfies Z,NZI 0; S — 1. Then,

28
S+1

where the maximum is attained only at the Bernoulli measure p satisfying

max{d,(u): p is a Bernoulli measure on K} = (=d,), (2.4)

pi=p;° for 1 <i<N.

In the following we define yu; = pfS for 1 <i=<N and consider this measure
unless otherwise stated. We note that, using Lemma 3.4, this measure is
equivalent to the Hausdorff measure with respect to the effective resistance
metric R(-, *).

The harmonic structure for the Sierpinski gasket is regular and we have a
regular local Dirichlet form corresponding to the Brownian motion on the
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Sierpinski gasket. The Hausdorff dimension of this set is log3/log2, while the
Hausdorff dimension in the resistance metric is S =1log3/log(5/3). Thus the
spectral dimension is 2log3/log5.

3. Preliminary results

In this section we establish some of the results that we will use in order to
prove our heat kernel estimates. To begin we set up a new sequence of graph
approximations to the p.c.f. self-similar set. This sequence will have the property
that the resistance of any edge in the nth graph approximation will be within
constants of e™". We will call this approximation conductivity coordinates.

Let A, be defined by

An:{W:WI...WkG USIZpl...pk_1<e”<p1...pk}.

i=0

For typographical reasons we will sometimes write A(n) instead of A,. The
approximation that we use for the fractal will be denoted by V, and is the graph
obtained from the vertex set

Vy = 71'( U wP>,

weA,

where we include an edge whenever D,, > 0. We can think of this as taking a
sequence of cross-sections of the tree associated with the shift space, determined
by the conductivity of the corresponding cells.

The conductance of the A,-cell at w when w=w;...w, €V, is given by
Oy = H,-’;l py,- From the approximation we have, by definition, that there exist

constants ¢s ,C32,C33,C34 > 0 such that for w € A,,,

n n
C31€ S py, S c3ze,
(3.1)

_s _s
c33€ " Sy, Scyge "

We need some further properties of the Dirichlet form &, which are essentially
corollaries of earlier results. We have a Poincaré inequality and a decomposition
of the Dirichlet form. For u € C(F) we write u = [, udp.

LeEmmA 3.1.  There exists c35 >0 such that for f € # and n= 0,

E(f.f) = esslf =TIz (32)
E(fof) =D pub(foF,, foF,). (3.3)
weA,

Proof. Let g =f —f. Then from Theorem 2.10, for x,y € F,

(8(x) = 8(1))* = (f(x) = f())* S R E(S, f)-
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So, as the harmonic structure is regular, R(x,y) < ¢; and

6.0 = [[60.0n dX)udy/// ? u(dx) w(dy)

== [ g(x)” p(ax).

Cq

Equation (3.3) follows from the repeated application of (2.3).

LEMMA 3.2. There exist constants cs¢, c37 such that if x,y € V) and are
neighbours, then

czee " <R(x,y) S c37¢"

Proof. This follows from the construction of the Dirichlet form. By definition
we have for all f with f(x) =0, f(y) =1 with x,y €9dK,,, w € A,,
63.len $pw = (gn(f’f) $£’(f’f>

Thus there is a constant such that

(inf{&(f, f): f(x) = 0,f(y) = 1}) ' <cre™”

For the lower bound we take the A,-harmonic function f; which is 1 at y and 0O at
all other points of V, . Then

inf{&(f. f): f(x) =0, f(y) = 1} < E(fi, fi) = 6, (fis i) S 2,
where &y (f.f) = wen, pw(f(x) =f(y ))?, and we have the lower bound.

We will also need to define a means of determining the behaviour of the
shortest paths on the fractal in the effective resistance metric. For x,y € K define
the set of paths between them on V, to be

IL,(5,y) = {7 = (i Pis )i ThP1 = % Plrjs1 = 2o e € Va, 2 <K= |m]),
DisPrs1 are in the same A,,-complex (1<k<|x|)},

where || is the cardinality of the steps in the path w. The number of steps in the
shortest path is defined to be

N, (x,y) = inf{|7|: 7 €I, (x,y)}.

This shortest path counting function will determine the off-diagonal behaviour of
the heat kernel. As we are using the sequence of approximations determined by
the resistance there may not be geodesics in the effective resistance metric. Indeed
for the ordinary Sierpinski gasket we see that there is no point x € Int(K) for
which R(0,x) + R(x,1) = R(0,1). This means that we must determine the
behaviour of the short paths in the effective resistance metric.

We define a chemical exponent in the effective resistance metric for the fractal
by setting df(x,y) =k 'logN,,. «(x,y), when e ™ ' <R(x,y) <e ™. Note that
we have the following upper bound on the length of the shortest path.

LEMMA 3.3.  There exist constants c3g such that for all x,y € K and m >0,

N, (x,y) < czg eSTm/2,
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Proof. First we prove the theorem when x,y € V,,. For z5 € V), let

Nyu(20,) )

max_ ¢y, N,y (20, 2)

f(y) = min (1’
Then observe that

1<&(f f)<én(ff)<c Y, (fx) —f(y)e™

X,y € Vi)

The increments of f are bounded above by (mangVO{N,,l(zO,z)})_1 and, as there
are of the order of ¢*" vertices in Vy,» We have

emeSm

2 .

max. ¢ v, {N(20,2)}>
Rearranging gives the result for V,. For y € K, take a sequence { yi}?’io such that
yi €V, y; and y;,; are in the same A;-complex (0 <i<M — 1), and yy | = y.
Using the above result and self-similarity, we find that N, (y; yis1)s
38D =072 (gor all i with 0<i<M — 1). Thus,

M—1

Nin(20,¥) < Z Ny (Visyig1) < C4e(S+1)m/2.
i=0

1=c¢

Using the triangle inequality, we see that the result follows.

Thus the chemical exponent dj (x,y) satisfies

(S+ 1)(logR(x,y) + k)
2k ’

Now, we will obtain estimates of the mean hitting times for the diffusion. In

order to do this, we introduce some more notation and prove some lemmas. For
x €K, let B,(x) = {y € K: R(x,y) <r}. Also, for x€ K and [ =0, let

di (x,y) <39 for all x,y € K.

DY (x) = {C: C is a A;-complex which contains x},
D} (x) = D} ,(x) U{C: Cis a Aj-complex which is connected to Dgl(x)},

and 9D} (x) = CI(K\Dj(x)) " D} (x) for i =0, 1.
LEMMA 3.4. There exists ky € N such that

D11 1) (%) ©B,(x) €Dy g (%)

for all x € K, r =0 such that e ) <r<e

Proof. Using Lemma 3.2, we can show that the first inclusion holds, by taking
k{ to be such that
max max R(x,y) <41 -
weA(l+k) xy€EK, (x.3) <z

For the second inequality, it is enough to prove that there exists ¢; > 0 such that
for all k=0 and for all y §ZD,1\k (x), ;e < R(x,y). This is because, by choosing
ki so that ¢;e ™) = and taking k = [ — k{j, we obtain the desired inclusion.
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Now, take f € I(K) so that f(x) =1 for x € BD?\k, f(x) =0 for x e aD}\k, and f is
harmonic inside V, . Then,

g}(f’f) = Z pw’g()(fo\llw’a fo\I,w’) < C2€k,
w' €Ay,
K, D} \D{ (k)
where ¢, depends only on the shape of the fractal we treat. Thus, for y & DA (x),
we have R(x,y)=é&(f.f) ' =c;'e ™, and by taking k= max{kj,kj} we
complete the proof.

For the diffusion {X,},~ associated with the Dirichlet form (&, %), define the
hitting time for a set Ac K by Ty =inf{r=0: X, € A}.

LEMMA 3.5. (1) There exist c319, ¢31; >0 such that for all r =0 and for all
zE VAr’
cane Y S EX(Tyy ) < e
(2) There exist c315 >0 such that for all 0 <r <m and for all z€ V) ,

Ez(TaDXm(z)) < cappeY.

Proof. First, we take n>>m=r and consider the continuous-time Markov
chain X, on V, associated with &, . By construction of the Markov chain, the
mean holding time for X, at each vertex is a constant multiplied by e ~(s% 1)
Denote by Ex the mean with respect to the probability measure for X, starting at
z. Then, by the same argument as in the proof of Theorem 2.5 in [1],
Ey (T, ) (Z>) is estimated from above and below by constants multiplied by

v(zn)

v(zr)
where 7(z,i) = {sum of conductances on A;-bonds containing z}. Now, the first
term can be estimated from above and below by e, Using the ergodic
theorem, one can estimate the second term by e 1" ( fVA Vi (%) dia (X)) h
where p, is an invariant measure for X,,. This value is estlmated from above and
below by e~ TS =7) 5o that we have

Ex [inf{t>0: X, (1) € V, , s < 1, X,,(s) #X,(0)}],

cre ) < EZ <TBD° e )) < c,e 15 (3.4)
for all n>r.

We next calculate Ey TaD (@) by conditioning on the exit from a series of
domains about the point z. Flrst condition on the exit place on aDA (2), to get
Exn THDX(,) () = EXn TaDX(r+ 1 (2) + Z PXn (XTan£<y+ e = X) EXn (TBDXM (Z))

xXe aD/‘\)(r‘F ])(Z)
Thus

Z S Z X
Ey, TaDRm () Xn TBDX(Hr (@) + e ag]f)i ) Ex, (Tang <Z))'

Repeating this procedure gives

Tt =D, max EY(Tye o)

i=r xleaDAH»l)( )
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From (3.4) and an easy Markov chain calculation we have an upper bound

E;;(TaDX(_) (Z)) <c e—i(l +S)‘
Summing these terms, we have
E (Typg,, () < cye 1) (3.5)

forall zeVy ,n>m=r.
Using Theorem 3.7 below, we have the results from (3.4) and (3.5).

We need estimates for the tail of the crossing time distribution. Define for
i=1,

T\ = inf{r=0: X, € V, },

T =inf{r=T1{"": X, € Va \ (X, 1>}}

(i) _ ) _ -1
w =1 1Y

r r r

LeEmMmA 3.6. (1) There exist c313 >0, 0 < c314 <1 such that for all 0 < r < m,
Py <t)<cy3e" ey, forall0<i<1,z€ V.
(2) There exist ¢35, c3.16 > 0 such that for all 0 <r <m,

PZ(WX;) <t)<cj;sexp{—c316N,;(2)}, forall0<t<1,z€K, (3.6)

where

— Nr+'(z)
N, (z) = inf N, i(x, %), k= inf{j: <t
J xl,xzevA(,)ﬁDh,)(z) r+j ertis+1)
x| #xp

REMARK. Note that from Lemma 3.3, k<o for each r =0, 0<tr=<1, z€ K.

Proof. As in the last lemma, we first take n>m =r and consider the
continuous-time Markov chain X, on V, associated with &, . The random
variables W/§> (i € N) are i.i.d. so that it is enough to show the result for i = 1.
Then, followmg [3], we have

Tony <1+ 1<TaDR<r><z>>’) ' (TBDX(,.)(Z) —1).

Thus, by the Markov property,
Z Xf'l
Ex, (Topy, o) <1+ Ex, (o >nBx (”(Tang(,.) 9))- (3.7)

Dp(r) n
On the other hand, by Lemma 3.5(1), c30e T SE}Z{H(TBDR()(Z))‘ Also, using
Lemma 3.5(2), one can easily see that E))én(TaDR(,)(z)) <ce 597 for xe D%r (z).
Substituting these results into (3.7) and calculating, we have
1
P; (Wl <) <— 941 - 210
R 1 1

(as zeVy, T ) = W/S)) so that the P,Z(n version of (1) is proved.
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Next, we prove that for all z€ V, (m=r),

P, (W) < 1)< c3isexp(—c316N,4(2), for, <r<1, (3.8)
where 1, — 0 as n — oo, For ¢ >0, let
. .. Nr,j(z) ~
k@ = lnf{J. m = C[}, (39)

and k(&) = k.. Then, provided k; < n, that is, 1> t, = N, (z)e "S"D27!, we have

rk(é)Z
P < (z Wi, < )

i=1
<exp(cy(Ny i, (2)e PHTRINY2 e N, (2))

= exp(—c4 N, 1, (2)),

where we use Lemma 1.1 of [3] and Lemma 3.6 in the second inequality, and
(3.9) in the last equality (we choose ¢ so that ¢, < éc3). On the other hand, note
that there exists c¢s > 0 such that

Nip(x,y) <cs eSl/Nl(x,y) for all x,y €K, 1,I' = 0. (3.10)

This is because, when we add vertices and construct Vy o from V,,, then there
are at most c¢s eS[ Ay, p-cells inside each Aj-cell. Usmg this fact and by the
definition of k& and k;, we easily see that there exists cg >0 such that
N, yr, = 6N,y so that (3.8) is proved. Using the following Theorem 3.7, we
can prove the lemma.

We now prove that X, — X in law.

THEOREM 3.7. We have

Eg[f(w(+))] = Ex[f(w(+))] asn— oo

n

for any f € C,(D([0,00) : K) — R) and any sequence x, € Vy with x, — x €K as
n — oo, Here the expectations are taken over w € D([0, ) : K).

Proof. The idea of the proof is the same as that of Theorem 6.1 in [11], so we
just sketch the proof. We need tightness and convergence of the finite-dimensional
distributions. The latter is deduced from the general theory as &, is a monotone
increasing sequence of quadratic forms which converges to &. To prove the
former, we first show that there exist c¢;,c, >0 such that for all x € K, m, j € N,

ce/ <N, ;(x) < creSTHm+N/2, (3.11)

The upper bound is proved in Lemma 3.3. Let x, and y, be elements of
D}\m (x) "V, such that N, ;(x) =N, (X, y,). The lower bound uses the
observation that

m/(x

A —(m+j
xm’ym Z R Zl’ZH»l Nm,j(x)c3.7e ( j>’
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where {z;} is a minimum A, ;-walk from x,, to y,,. As R(x,,y,) =c3ee ", we
have (3.11). Using this and (3.8), with the definition of k, we have for each ¢ > 1,

i — ok
P;’E"(W/S;) <1) < c3y5exp(—c316N k(X)) S35 ¢

As 1< N, (x)< e+ we have ef = e MM/ (SHD), Thus,

. ; o m =1/ (S+1)
limsup sup P;;:(WX') <t)<cszse 3¢

n—o0  x, €Vyy) "

The right-hand side converges to 0 as t — 0 and the tightness of P; is proved.

This result also completes the proof of Lemma 3.5 and Lemma 3.6. Note that
this argument shows that the result of Lemma 3.5(2) holds for all z € K.

THEOREM 3.8. There exist c317, ¢33 >0 such that for all z € K,

1+S z 1+S
c3i7r 0 S EX(Top, ) S czasr

Proof. First, by Lemma 3.4,
EZ(TaDzl\(I+k(0))(Z)) = EZ(TaBr(Z)> = EZ(TaDzl\(lfk(o» (Z))

ife ") <r<e™ By Lemma 3.5(1), the left-hand side can be estimated from below
by clefl(HS) =t By Lemma 3.5(1), (2) and simple Markov chain arguments,
the right-hand side can be estimated from above by cze*’“*s ) < c3r1+S.

We remark that S is the Hausdorff dimension of K with respect to the resistance
metric and it coincides with the box dimension (due to Theorem 3.2 of [16] and
Lemma 7.3 of [17], as we have Lemma 3.2). We call

log E*(Typ
4. = lim gE (Typ,(x)
r—0 logr

the random walk dimension, if the limit exists. Thus, Theorem 3.8 states that
d,=1+S. This relationship is called the Einstein relation in the physics
literature. It states that the walk dimension should be given by the sum of the
resistance dimension and the ‘fractal’ dimension, which reduces to 1+ d; where
d; denotes the Hausdorff dimension of K in the resistance metric. The Einstein
relation occurs in a variety of physical models (see, for example [13]). We also
remark that, with the formula (2.4), we have the relation d,/2 = dy /d, which is
a generalization of the formula given in [5, 8, 19].

4. Transition density estimates: upper bounds

Let P, be the semigroup of positive operators associated with the Dirichlet form
(6,7) on L*(K, ). As (&, F) is local and regular, there exists a Feller diffusion
({X;}i=0,{P"}+ck) with semigroup P,, on K. As in [8, Lemma 2.9] the existence
of a reproducing kernel ensures that the transition function has a density p,(x,y)
with respect to pu which satisfies the Chapman—Kolmogorov equations.

We will obtain upper bounds on p,(x,y), beginning with the on-diagonal upper
bound, where we follow closely the argument of [21, 6].
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LEMMA 4.1. (1) There is a constant c, such that

—d,/2
9

1Pl = = supr,(x,y) < ¢yt for0<r<1. (4.1)

X,y €

(2) The transition density p,(x,y) is jointly continuous in (t,x,y) € (0,1] x K x K.

Proof. (1) For we A, write f,, =foF, and

o= [ Al n(@)

Note that for v € C(K), T= [vdpu =Y, ca, Dy -

Let ug € Z(A) with uy =0 and |lug|l; = 1. Set u;(x) = (P,up)(x) and g(r) =
llu,||5. We remark that g is continuous and decreasing. As the semigroup is
conservative, ||u||; = 1, and using Lemma 3.1 and (3.1) we have

= gl1) = ~26(u )

=2 )" p,E(uoF,,u0F,) (by (3.3))

weA,

—2cie" Z /(”z,w — 7, du

—2cye"e Sn /u,zdu+261€nz (ﬁt,w)2

w

—2¢,STDM |, |3 + 2¢5>5 ", (4.2)
Thus g'(1) < —c, ¢SV (g(t) — cqe™), for all n= 0. Therefore

d
——-log(g g(t) — ey = STV i (1) > cpe (4.3)

Let s, =inf{r=0: g(t) <c,e®} for ne€N. Thus (4.3) holds for 0<r<s,.

Integrating (4.3) from s,,, to s,,; we obtain

S (5pi1 = Spa2) < —log(g(s,+1) — cae™) +10g(8(s,12) — cae™)
10g(€ (n+2) —cy eSn)/(eS(nJrl) B C4€Sn) <cs.

, and iterating this we have

E —(S+1)k 7(S+1)n
A <C6 cre .

Cze(

Thus s, 1 — 8,12 S cge S+ )n

k=n—1
This implies that g(c;/ s le>”) <g(s,) = cse™. Tt follows that there exists
g < o0 such that if e V" <7< e TV hen
g(t) = CSeSn _ Cgth/(SJrl).

Using the fact that || P,||; _ s = || P, |7 _ >, we deduce that p,(x,y) < cqqt 7S/
for all x,y € K.

For (2), the joint continuity will follow from the upper bound on the heat
kernel, as in [8, Lemma 4.6].
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We next prove an off-diagonal upper bound for p,(x,y).

THEOREM 4.2. There exist constants c4,, c43 >0 such that for x,y in K,
t€(0,1), with

e <R, y)<e™
and
. . Nm+j(x’y)
k:lnf{.]mst N
then

pi(x,y) < cypt /2 exp <—C4.3 ( (4.4)

R(x, y)S+ l)di’(x,y)/(SﬂL 1 di’(XJ)))
— .

Proof. Fix x#y and t as above and let £ >0 be sufficiently small. Let
Vi = RIB.(x)s Py = KB, (y)>

Ai(x) = {2 € K: Nyii(:2) =i Ny (69) )
and C;(x) = K\A;(x). Then
P™(X, € By(y)) = P"(X, € Bo(y). X; /2 € Ay (x)) + P" (X, € Bo(y), X, /2 € Co(x))
=1 +D.

Choose & small enough such that B,(x) € C4(x). By the same argument as in the
proof of Lemma 3.6(2),

P*(X,/2 € Ay(x)) = max P(X, /5 € As(x))pu(Bs(x))

ZE€B,(x)

< max P (Tha,) < 31)n(B.(x))

ZEB,(x)
AN 4k () 0
z E i 1
= zrenBi)((X) P ( i=1 Waimes = it) B

< exp{er (N1, (%, )l T HRINT2 — e N (06 9) b n(Bo (%))
= exp(—C3Nm+kf, (%, ) (B (x))
< exp(—c4 Ny 41 (x, ) ) u(Bs(x)),

where k, is defined in the same way as in (3.9).
On the other hand, if ¢(z) = P(X, € B.(y)| X,/ = z), then by Lemma 4.1,

a(z) = / P uld) < est ™ (B, (1),
&€ y
Thus
I, =E™(q(X,/2): X, /2 € Ay(x))

< con(Bo (X)) (B ()t~ exp(—c7 Ny (1,7)).
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For I,, by the symmetry of p,(x,y),
P"(X, € Bo(y), Xi/2 € Co(x)) = P*(X, € B:(x), X, /5 € C5(x))

which is bounded in exactly the same way as I;.
Adding the bounds for /; and I,, we have

P"(X, € B,(y)) < 2c6 (B, (x) w(B ()t~ “/? exp(—c7 Ny 4 (x.¥)). (4.5)
We remark that, from the definitions, it is easy to check that there are constants cg
and cg such that

<C9lvm+k<x7y)' (46)

R(x, y)S+ 1)dk"(x,y)/(5+ 1-d{(x.y))
t

CSNm+k(x’y) = (

Dividing both sides of (4.5) by p(Bg(x)), u(B.(y)) and using the continuity of
pi(x,y) in (x,y) proves the theorem.

5. Lower bounds

In this section we use techniques developed in [5, 8] to obtain lower bounds on
p.(x,y) which will be identical, apart from the constants, to the upper bound.

LeEmmA 5.1.  There exists a constant csq >0 such that

p,(x,x)>c5_1t_dx/2 forallxeF, 0<r<1. (5.1)

Proof. Note that from (3.6), we have

P(X, ¢D11\,(x)) = PX(WI{, <1)<cexp{—cN, 1 ()}, (5.2)

for all x€K, r=0, 0<t<1. Let a>0 satisfy c,exp(—c,a)<1. And take

2
1>t= ae”"TY (we choose r large enough so that ae "®*V < 1). Then,
N1 (x) = 1T DED = gk =DEF) = 4 5o that the right-hand side of (5.2)
is less than 1. Thus, P*(X, EDkr(x)) =1 On the other hand, by (3.1),
p.(Djl\r (x)) < cre ™ <c35/5+ D, Now, using the Cauchy—Schwarz inequality, we

have

2
t=Penh @y = ([, pua)
A(r) (X

<uDh @) [ pxPul)

Dy (x

< ¢ ts/(s+1)

Hence we deduce that p,(x,x) = ¢yt ° /541,

pZZ(x’ x)'

We need to extend this ‘on-diagonal lower bound’ to a ‘near-diagonal lower
bound’, which we do via an estimate on the Holder continuity of the heat kernel.

LEMMA 5.2. There exists a constant cs, >0 such that

D2 for all x,x',y €K, 0<t< 1.

(5.3)

[P(5,3) = pi(x'sy)| < esa R x") ! /217

In particular, p,(+, *) is uniformly continuous on K XK for each t > 0.
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Proof. By (2.2), we have
|pi(x.y) = P 9)P < R(xx)E(pi(+.3), po(2))- (5.4)
As in [8, Lemma 6.4], we have, writing u(x) = p, /»(x,),
1
&Py, Pyyyu) < cy(36) " |ul3
<2c117'pi(y.y) S eyt I/ G,
so that (5.3) holds.

LEMMA 5.3. There exist cs3, c54 >0 such that for all x,y e K, 0<t<1,

pi(x,y) = c5.3t_d‘/2 whenever R(x,y) < c5_4t1/(5+1>. (5.5)

Proof. 1If R(x,y) < c544t1/<5+1) then by Lemmas 5.1 and 5.2,

Pi(x,y) = pi(x,x) — [ py(x, ) — py(x, %)

=174/ (cs5) — esoR(x,y)! 2/ HSED)

= %Cltids/z,

where cs4 is chosen such that ¢5; — 051'4{205‘2 >cy.

We can now use a standard chaining argument to obtain general lower bounds
on p, from Lemma 5.3.

THEOREM 5.4. There exist constants css, cs6 >0 such that for x,y in K,
t€(0,1), with
e <R y)<e™
and
k:inf{j: %m@},
then

R(x,y)S+1>di(x,y)/(5+1—d{(x,y))>‘ 56)

pi(x,y) = Cs.sfd“\/2 exp <_C5.6< t

Proof. Fix x, y and t. Using (5.5) we see that the bound is satisfied if
R(x,y)S"'/t< ¢S], Thus we assume that D = R(x,y)**'/t> ¢S ' As in (3.9),
for ¢ >0, let

] Nyii(x,y)
/ . m+j A
k' =k, = 1nf{1. S NED < ct}. (5.7)

By our choice of k' there is a ¢; >0 such that
cleH/(x,y)*le(SH)k/ sD< ENerk/(x,y)*le(SH)kl. (5.8)

Thus we have
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Now choose a minimum A, ;-walk 7 €Il, ;. (x,y) with 7= {x} ~o Where
Xo =X, X|r| =y and | 7| = N, (x,y). Then

, R , t /(S+l)
R(xi,xi+1) = Czeimik = cre (xk,y) = 0266‘1/(S+1) (—) .
e Nm+k ( y)

—m—k'—1

For e = e , write G; = B,(x;). If z; € G; and z; | € G, |, we have

AL/ (S+1) ! 5+
R(zizi1 1) <2& + R(x;,x; 2+ cye)e (7> .
(2 20s1) (53721) = @+ )t/ 0 (oL
Choose ¢ small enough so that (2 4 c,e)¢ <c3]'. We can then apply the
chaining argument with N = N,, _/(x,y), s =1t/N,

Pi() / / 611 - pyiy ) () - ey )

= (T wo )(o /sy

i=1

1/(S+1)

> C4s75/(5+1)

exp(—csN).

In the last inequality, we use the fact that ,u(Gi)sfs/ 5*+1 is bounded from above

and below, which comes from Lemma 3.4 and the definition of k’. As in (3.10),
N, .y = cgN,,; and using (4.6) completes the proof.

Theorem 1.1 and Corollary 1.2 then follow as a consequence of (4.4), (5.6) and
(4.6) with appropriate identification of constants.

6. Examples

In this section, we discuss some examples for which more exact estimates can
be obtained.

1. Affine nested fractals

The first examples are affine nested fractals. This is a subclass of p.c.f. self-
similar sets which consists of fractals with strong symmetries. Specifically, a
connected p.c.f. self-similar fractal ¥ = (K, S, {F;};cs) is called an affine nested
fractal if the following hold:

(Al) F;: R? — R is a contraction such that
|Fi(x) = Fi(y)| = o '|x = y| forall x,y € R”,
for some «; > 1 and {F;},c¢ satisfies the open set condition;
(A2) if x,y € Vy, then reflection in the hyperplane H,, = {z € R?: ||z —x| =
|z —yl|} maps V, to itself.
For the heat kernel p,(x,y) of the Dirichlet form constructed by a regular
harmonic structure with the measure mentioned in Theorem 2.11(2), we have the
following Aronson type estimates [8].

THEOREM 6.1. There exist constants gy, Cen Coz Coa >0 and 0 <y’ < S+ 1
such that

V(ce1R(x,y),c2t) < p(x,y) < ¥(cc3R(x,y),c4t),
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for all 0 <t <1, x,y € E where

LSt v/ (S+1-%")
V(zt) =1 exp —< ; ) |

The symmetry condition (A2) is essential for such an estimate. Under this
symmetry, the exact chemical exponent vy’ can be found as the solution to an
optimization problem.

2. Sierpinski gasket

Another example is provided by the operator on the Sierpinski gasket
mentioned in [20, §6]. In §2, it was shown how to view the 2-dimensional
Sierpinski gasket as a p.cf. self-similar fractal. Instead of constructing the
Brownian motion, we let

=2p p P
D=| p -1 1-p]|, r=(""11).
p 1-p -l

Straightforward calculations show that the equation (2.1) is equivalent to the
following:
24+s—p
(p=1(p=3)s"=2(p—1>s+p(p—2)=0, N="—+.
52 -p)

As this equation has a unique positive solution s for each 0 < p < 1, we know that
there exists a unique harmonic structure for each 0 <p < 1. It is easy to check
that this harmonic structure is regular. Thus we have a regular local Dirichlet
form for each 0 < p < 1. Note that when p = %, it is the Brownian motion on the
Sierpinski gasket.

F1G. 2. The Sierpinski gasket with different resistors.

In order to estimate the heat kernel of the corresponding Dirichlet form, we
prepare a lemma.

LEmmA 6.2. For pi,p),p3 €V, labelled as above, there exist cgs,Coq,Co7>
ceg >0 and

Jh = log2

= , d¥={s:p7 4+ 05 =1},
¢~ Togp, C=1{stp" + 0 }
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such that
Ces€ @n <N, WP pi) < Cﬁ.éed‘?n, Jori=23,
and for 0 <p <1,

d. dchn
C67‘3 < N,(p2. P3) < cege™”,

while for sp<l,

cos€”" <N, (P2, p3) < cgee™",
for all n= 0.

Proof. By symmetry N, (p;, p,) = N,(p1, p3)- For each case we can prove that
ClNan1<N1+mSC2Nle for all n,mBO.

Thus, by an argument using super-(sub-)additive sequences (see, for example, [4,
Theorem 5.1]), we see that

c3af-j <N(pipj) <c4 af-j for all [ =0, (6.1)

for some «;; > 0.
In order to compute the values for the scale factors we observe that on the
Sierpinski gasket the shortest paths consist of straight lines. The chemical

exponent is then the box dimension of the shortest path in the resistance metric.
To see this, note that the box dimension dp, when it exists, is given by

log NX
dg = lim o8
e—0 —loge’

where NX is the minimum number of sets of radius e in the resistance metric
required to cover the path. For ¢ = e * this is Ni(pi» p;). Hence, by (6.1), we see
that the limit exists for the sequence (and it is easy to show dp exists), giving

log Ni(x,y)
k

We thus see that the scaling in the length of the shortest path will be determined

by the box dimension.

Next, we calculate the exact values. We first consider the horizontal direction p; p3
for p < = . In this case, we can easily calculate the dimension of the straight line path
as the res1stance of each triangle on a given level is the same. Thus Ny(p,, p3) = 2!
where [ is the number of maps applied in order that the resistance of a piece is of
order ¢ *. Hence we see that dch = limy _, o log Ny (2, p3)/k = log2/ log p,. For
p =1, as it is possible to make a horizontal step via two diagonal ones, this becomes
the shortest path, and we see that the horizontal estimate coincides with the diagonal
one. For the diagonal walk each step in the path on V) is of resistance ¢ and the
box dimension of the straight line is required. By comparing with the calculation of
the dimension for self-similar fractals with different scale factors, which was
remarked on after Theorem 3.8, we obtain the result.

dg = klim = klim di (x,y).

Let d, =d? Ad". Also, for xe K, >0, set
L(x) = {y € K: 31 horizontal line, x,y €, [ c K},

L.(x) = {y € K: R(L(x),y) <&},
where a horizontal line is a line in R® which is parallel to p; ps.
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THEOREM 6.3. Set

ZS+1 d/(S+1-d)
V(zt:d) =14 %exp —( ; ) )

Then, there exist constants Cgg,Ce.10,Ce.11>C6.125 C69.65 Co.11.e > 0 (Ceo.c and cei1.6
depend on g) such that the following hold.

(1) For the case <p<1,
Y (cooR(x,Y), co10t : de) < pi(x,y) < ¥(c611 R(X,Y), Co.10t : d),
forall 0<t<1, x,yeK.

(2) For the case 0 < p <X, we have for all x € K, y € K\L,(x), that there exists
a function f(x,y,&) >0 such that

¥ (c69.5R(x,¥), 6101 : dch) <pi(x,y) < ¥(co11:R(x,Y), o1t : df% (6.2)
if f(x,y,e) <t <1, while

Y(coooR(x,Y),co10t 1 dl) < p(x,y) < ¥(co11.R(X,Y), Co12t 2 df), (6.3)

for all 0<t<f(x,y,e). For x€K, y€ L(x), (6.2) with cs9 and cg, instead of
Ce9.¢ and cg 11, holds for all 0 <t < 1.

Proof. Observe that if p = %, then s =1 and p; = p, = p3 so that N,,(py, p;) <
N,(ps, p3) (j=2,3) and d” < d". On the other hand, when p <1, d? > d!. Thus,
we see that d. = d? in Case (1), while d, = d" in (2).

In order to obtain the result we apply Theorem 1.1. We will compute the
shortest path in the effective resistance metric as above.

For Case (1) the shortest paths between all points involve diagonal steps so that
the result is easily deduced from Theorem 1.1 and Lemma 6.2.

For Case (2), choose m so that ¢ ™ ! <R(x,y) <e ™ and decompose the
shortest path 7 = {x,-}l.i‘, between x and y in the following way. For each
m+1<j<sm+k (k=k(m1)), let x}j denote the first point in the path when it
hits a vertex of Va,» and let xl-2, denote the last such vertex. We regard our path w
as consisting of the pairs (x,lj ,x}/_f s (x,-zjf l,x,-zj), which each consist of a path
containing a certain number of horizontal and diagonal steps on V- Thus, using
Lemma 6.2, we can write

2 m-+k
11 1 2

Ny yi(xy) = E E Ny (X xi, ) + Nogi(xi, 5%, )

I=1 j=m+2
m+k N .
h d; (m+k—j v d; (m+k—j
~ E cj(x,y)e‘( J>+cj(x’y)ec( 7,
j=m+1

(v)(

where the coefficients cjh x,y) give the number of horizontal (diagonal) steps of
the j size between x and y. (Here f ~ ¢ means that g/f is bounded from above
and below by some positive constant which is independent of the choice of x, y,
k.) By the construction of the path we see that these are bounded above by 2 for
m+2<jsm+k For j=m+1, we see from Lemma 3.4 that it is also
bounded from above and below by some uniform constant.
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For y € L(x), we have ¢/(x,y) = 0 for all j so that

dle <% forall k=0
c1e“" <N, (x,y) <cye*", forall k=0.

We now fix a constant M > 0. By examining the coefficients ¢/'(x,y), ¢/ (x,y), we
see that for each x,y € K with y & L (x) there exists a k, < o (independent of x
and y) such that

a'k < < Me“*.  forall k <k’
e = m+k(x’y)\ (5 s or a = Rg»

M'e%* < m+k(an) = c4ed"k, for all k >k,

where M' = Mexp(k:(d" — d?)) (note that M’ depends on &). By the definition of
k(m,t) if k(m,t) <k,, then for all x€ K, y & L.(x),

h _gh
R(x’y)5+l)dr/(s+l d;')
41‘ .

h
M) = e =
However if k(m,t) = k;, then we get

3 Rix. S+1\d./(S+1-d7)
Ny i (6, y) ~ e%h ~ (—(x i) ) .

(Here f ~ g has the same meaning as above, but this time the constants depend on
e.) Using the fact that k(m, ) / oo as t | 0, we have the existence of the function
f(x,y,e) = {r: k(m,t) = kg } A 1 with the desired properties.

This example suggests that without strong symmetry in the operator on the
fractal the Aronson type uniform estimates do not hold. By rearranging this result
and using the fact that for each &, the function f(x,y,e) >0 for y ¢ L,(x), we
have the following result.

COROLLARY 6.4. For all x,y € K, the following hold.
(1) For the case <p<1,

log(—log(td‘/zpz(xs)’))) =d?/(S+1—4dP).

0 Tog(R(ey) /1)
(2) For the case 0 <p < %
log(—log(r"/?p,(x.y))) _ [d!/(S+1—-d!) if yeL),
=0 log(R(x,y)**"!/1) a2/ (S+1-d7) if y&L(x).

3. Vicsek sets

We consider briefly the Vicsek set as discussed in [22]. It was shown that if the
operator is not invariant under the complete symmetry group, there can exist a
family of non-unique fixed points for this particular fractal. We show that if we
think of this set as a p.c.f. self-similar set, then this non-uniqueness can be
extended to symmetric resistances on the set. If we write the Vicsek set as a p.c.f.
self-similar set with S = {1,...,5}, where the index 5 refers to the central square,
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we have
—(2+8) 1 B 1
D— 1 -2+1/8) 1 1/8
B 1 ~(2+8) 1 ’
1 1/B 1 -2+1/8)

r=(1/s1/s1/51/s1).

For each s> 0, this D is a fixed point for all 3 € R, with A =1+ 2s (note that
s =1 is the case considered in [22]). Using the results derived here it is easy to
see that, for each s, the heat kernel estimates are of the same form for each
diffusion on the Vicsek set defined by a fixed point from this one-parameter
family of fixed points.

From the symmetry of the fractal and the resistances, and the essentially tree-
like structure of this set, we see that for the vertices of the unit square p;, for
i=1,2,3,4, the number of steps in the shortest path N(p;, p;), with
i,j=1,2,3,4, will be the same. By sub and super additivity arguments there
will be a unique exponent for all paths. As the values of r are given and these
determine the behaviour of the shortest path, we see by calculation that for s = 1
the effective resistance metric is equivalent to the Euclidean. Thus d,.(x,y) = 1 for
all x,y. The result for nested fractals (s = 1), derived in [19] holds for each .

Further, our results show that for each s, we have S = log(1 + 4s)/log(1 + 2s),
and for each pair of points the chemical exponent d. = d,(x,y) will be given by

d.={d: (1+2s (1 +2s) =1}

Thus for the Vicsek set F with harmonic structure (D,r) as above, we find that,
for each 8> 0, there exist constants ¢y, ¢,, c3,c4 >0 such that

Y(c\R(x,y), cat) < pi(x,y) < ¥(c3R(x,y), cat),
for all 0<t< 1, x,y € F where

ZS+1 d./(S+1—d,.)
V(z,1) :tdf/zexp<—< ; > )
4. abc-gaskets

Finally, we consider fractals which are not symmetric. These are the abc-
gaskets of [12]. It was shown that for these fractals there may not be a fixed point
corresponding to the ‘natural’ choice of resistance. The sets are constructed by
setting a number a + 1 of triangles on the bottom side, b + 1 on the left side and
¢+ 1 on the right side. Thus there are a + b + ¢ triangles in total; we always
assume that a < b < c. The Sierpinski gasket is the case a=b =c = 1.

We write this as a p.c.f. set by setting

S=A{l,...,a+b+c},
T(C) =141, Gasprct3)s
7(P) = {pi, po. p3}, 7 '(p;) ={i} fori=1,2,3.
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By

FiG. 3. An abc-gasket with a =2, b =3, c =4.

There are several possible ways to construct a natural Laplace operator on this
set. In the paper [12], the resistance vector r is assumed to be a vector of unit
resistances and then the fixed point equation can be solved to find a matrix D,
with positive elements, under the condition that 1/a<1/b+1/c. In this case
the scale factor N\ = (2bac + ab + ac + c¢b) /(ac + ab + cb) and hence, as each
r; =1, we have p; = N for each i. To find the dimension of the straight line paths
across the triangle in the resistance metric is then straightforward. Let

d23_10g(0+1) dlz_log(b—f—l) d13_10g(0+1)

¢ logh °~ ¢ logh  ~ ¢ log A

so that d? <d? <db.

For all pairs of points in K we can either move directly along a horizontal line
between them, or move along a horizontal line and a +60 diagonal. This leads to
the following result, proved by calculating the behaviour of the shortest path as in
the Sierpinski gasket example. As the proof is essentially the same, we omit it.

THEOREM 6.5. For the abc gasket there exist constants and a function
f(x,y,€) >0 such that the following holds for all x € K, y € K\L,(x):

V(co13:R(x.Y), 14t 1 A7) < p,(x,y) < ¥(cg15.R(x,Y), coist - ), (6.4)
for all f(x,y,e) <t <1, while
¥ (co17..R(X,Y), Co151 dclz) <pi(%,y) < ¥(cg19:R(x,¥), o201 dclz)s (6.5)

Sfor all 0 <t <f(x,y, ).
For x€ K, y € L(x), (6.4) with cg13,C615 instead of cg134,C.15. holds for all
O<r<l

COROLLARY 6.6. For all x,y € K, the following holds:

log(—log(t*/?p,(x,y))) [ dZ/(S+1—-dP) if yeL(x),
=0 log(R(x,y)* /1) dP/(S+1-d?) if y¢L(x).

It is interesting to note that for each x € K, the estimates are determined by the
middle exponent a’cl 2 for almost all yeK.

The other natural approach to this particular p.c.f. set is to consider the matrix
D to consist of unit conductors and then scale this by a resistance factor which
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depends on the size of the mapping on the triangle. Thus we will need three
factors to correspond to the three different sizes of triangle. Our operator is
defined by

D= 1 =2 1|, r=(r,rn,nm).

Then there exist a A and a vector r which makes D a fixed point of the
conductivity map, and the values of the conductivities p; are given by

_ —2a+2ab—3+4b+2B

Pr= 320 — 1) ’
_ (—2a+2ab—3+4b+2B)(2b + 1)
p2 = 3(2ab — 2a — 1 + 2B) :
(—2a+2ab—3+4b+2B)(2b+ 1)(c — 1)
p3 =

3(1+2a—b—4ba+2ab*+2(b—1)B) ’

where B = /a2 — 2ba? — ab + b2a? + 4ab? + b2. Note that by the choice of r we
obtain a set of p; with 1 < p; < p, < p; for all a, b, ¢ for this matrix D, unlike
the previous case of the operator from [12].

To calculate the heat kernel estimates we return to our basic result and
determine the shortest paths in the resistance metric. For this we need three
different exponents corresponding to the three possible directions in this fractal.
By calculating the dimension of the straight paths between points in the resistance
metric, we obtain the following where the upper indices refer to the direction:
g5 log(a+1)

— , d12 — : -5 b —S — 1 ,
© S T oge 0 % {s:p1" +bpy" =1}

d ={s:p1° +py* + (c— )p3° = 1}.

Again there will be a particular direction which has the shortest path. We write
d! for the smallest element of the set {d*,d?,d*}, and d? for the next smallest.
In this case, the result is the following. Here, for the pair i, j € {1,2,3} such that
dcij = dcl, we denote by Ll(x) a line which is parallel to p;p; and contains the
point x € K (L}(x) is defined in the same way as before).

THEOREM 6.7. For the abc gasket with harmonic structure (D,r) there exist
constants and a function f(x,y,€) >0 such that the following holds for all x € K,
y e K\LL(x):

V(coa1.R(0Y), comt :d}) < pi(x,y) < ¥(c23 . R(x,¥), Cooat : d.), (6.6)
Sor all f(x,y,e) <t<1, while
VY (coa5.5R(X,¥), Ccon6t dcz) <pi(x,y) < ¥(ce27.R(x,¥), co0st dcz) (6.7)

Sfor all 0 <t <f(x,y,¢).
For xe K, ye L' (x), (6.6) with cgay,cq03 instead of cgayenConse holds for all
O<t< 1.
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COROLLARY 6.8. For all x,y € K, the following holds:

(“pxy) _ [ dl/(s+1-dl) if yeL'w,

log(—log
=0 log(R(vy)* /1) | d2/(S+1-dl) if yEL' ().

Finally, we conjecture that Corollaries 6.4, 6.6, 6.8 could be generalized as follows.

CONJECTURE 6.9. There exists a function d,.(x,y) = limy_ » di(x,y) so that
the following holds for all x,y € K:

log(—log 1™/ ?p,(x,y))

=0 log(R(x,y)**'/1)

=d.(x,y)/(S+1—d.(x,y)).

We further conjecture that the chemical exponent can be expressed in terms of
the box counting dimension of the path in the effective resistance metric. Let
II(x,y) be the set of all paths from x to y and da(w) be the box dimension of
path w €II, in the effective resistance metric.

CONJECTURE 6.10. The limiting chemical exponent d,(x,y) for the shortest
path between x,y exists, and can be expressed in terms of the box counting
dimension of the path in the resistance metric as

d.(x,y) = inf dg(x)= lim df(x,y),
me(x,y) k— o0
for all x,y € K.
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