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In this paper we consider the form of the eigenvalue counting function ρ for Laplacians on p.c.f. self-
similar sets, a class of self-similar fractal spaces. It is known that on a p.c.f. self-similar set K the function
ρ(x)¯O(xds/#) as x!¢, for some d

s
" 0. We show that if there exist localized eigenfunctions (that is, a

non-zero eigenfunction which vanishes on some open subset of the space) and K satisfies some additional
conditions (‘ the lattice case ’) then ρ(x)x−ds/# does not converge as x!¢. We next establish a number of
sufficient conditions for the existence of a localized eigenfunction in terms of the symmetries of the space
K. In particular, we show that any nested fractal with more than two essential fixed points has localized
eigenfunctions.

1. Introduction

Since the construction of Brownian motion on the Sierpinski gasket by Kusuoka

[9] and Goldstein [3], analysis on fractals has been developed from both probabilistic

and analytical points of view. This work has focused on constructing analytical

structures such as diffusion processes, Laplacians and Dirichlet forms of self-similar

sets. In particular, for finitely ramified self-similar sets, there are now numerous

results – see, for example, [1, 4, 11, 10, 8].

In [5], it was shown how one can define natural Laplacians on post critically finite

self-similar sets (for short, p.c.f. self-similar sets), which are abstract ‘finitely ramified

fractals ’. We review the results in [5] in §2. The essential idea is that the Laplacian can

be defined as the scaled limit of discrete Laplacians on a sequence of finite graphs

which approximate the given p.c.f. self-similar set. If the discrete Laplacians are

invariant under a certain kind of renormalization, we can construct a natural

Dirichlet form and an associated Laplacian, which is denoted by ∆ in this section, on

the p.c.f. self-similar set. We shall study eigenvalues and eigenfunctions of ®∆ with

Dirichlet or Neumann boundary conditions. (See §3 for the precise definitions.)

In [7] it is proved that there exists d
s
" 0 such that

0! lim inf
x!¢

ρ(x)x−ds/#% lim sup
x!¢

ρ(x)x−ds/#!¢, (1.1)

where ρ(x)¯g ²eigenvalues of ®∆ which are at most x´ is called the eigenvalue

counting function, or integrated density of states. This result had already been proved

for various more restricted classes of fractals in [14, 13] etc. In [15] and [2] it was

shown by Fukushima and Shima that for the Sierpinski gasket, a strict inequality

holds in (1.1), so that one has

lim inf
x!¢

ρ(x)x−ds/#! lim sup
x!¢

ρ(x)x−ds/#. (1.2)
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Their proof uses a particular property of the Sierpinski gasket, that of spectral

decimation. More precisely, if V
n

is in the nth approximation to the Sierpinski gasket,

and H
n

is the discrete Laplacian on V
n
, then if f

n
is an eigenfunction of H

n
with

eigenvalue k, so that
H

n
f
n
¯kf

n
,

then f
n−"

¯ f
n
r
Vn−"

satisfies H
n−"

f
n−"

¯Ψ(k) f
n−"

, where Ψ(t)¯ t(5®t). Thus f
n−"

is an

eigenfunction of H
n−"

. Under these circumstances, it is possible to obtain quite

detailed information on the behaviour of ρ.

More recently, Shima [16] has extended these results to more general p.c.f. self-

similar sets which admit spectral decimation. However problems with this approach

are, first, that it is hard to check spectral decimation in all but very simple cases, and

second, that it seems likely that spectral decimation holds only under rather

exceptional circumstances.

In this paper we give a number of sufficient conditions under which (1.2) holds.

In particular we prove that (1.2) holds for all nested fractals ; see [11]. Our approach

also provides an intuitive explanation for the oscillation phenomenon (1.2). A

localized eigenfunction is one which is zero outside some open subset OZK, with

OfV
!
¯W. Given a localized eigenfunction ψ we can use scaling to define other

localized eigenfunctions, and in particular we prove that in any open set U there exists

an eigenfunction which is zero outside U. Under additional conditions on the p.c.f.

self-similar set, and the measure µ (the ‘ lattice case’) we find that there exists ε" 0

and eigenvalues k
n
!¢ with multiplicity greater than εkds/#

n
for all n& 1. Hence

x−ds/#ρ(x) cannot converge as x!¢.

In Sections 5 and 6 we then investigate sufficient conditions for a p.c.f. self-similar

set to have localized eigenfunctions. We introduce the group ' of symmetries of a

p.c.f. self-similar set (which preserve the measure µ and the harmonic structure), and

prove that, if ' is large enough, then K has localized eigenfunctions. Nested fractals

have a very large symmetry group ', and in Section 6 we show that any nested fractal

with more than 2 boundary points has localized eigenfunctions.

2. The p.c.f. self-similar sets

In this section, we shall briefly recall results from [5, 7] on the construction and

properties of Dirichlet forms and Laplacians on post critically finite self-similar sets.

A more detailed summary is found in [7].

First, we introduce the notion of a self-similar structure, which provides a purely

topological description of self-similarity.

D 2.1. Let K be a compact metrizable topological space, let S be a finite

set, and let F
i
for i `S be continuous injections from K to itself. Then, (K,S, ²F

i
´
i`S

) is

called a self-similar structure if there exists a continuous surjection π :Σ!K such that

F
i
aπ¯πa i for every i `S, where Σ¯S. is the one-sided shift space and i :Σ!Σ is

defined by i(w
"
w
#
w
$
I)¯ iw

"
w
#
w
$
I for each w

"
w
#
w
$
I `Σ.

N. Let W
m

¯Sm be the collection of words with length m. For w¯
w
"
w
#
Iw

m
`W

m
, we define F

w
:K!K by F

w
¯F

w
"

aF
w
#

aIaF
wm

, and set K
w
¯F

w
(K ).

Also we define

Wk¯ 5
m&

!

W
m
.
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Post critically finite self-similar sets are finitely ramified self-similar sets.

D 2.2. Let (K,S, ²F
i
´
i`S

) be a self-similar structure. We define the critical

set #ZΣ and the post critical set 0ZΣ by

#¯π−"05
i1j

(K
i
fK

j
)1 and 0¯ 5

n&
"

σn(# ),

where σ is the shift map from Σ to itself defined by σ(w
"
w
#
w
$
I)¯w

#
w
$
w
%
I. A self-

similar structure is called post critically finite (p.c.f. for short) if and only if g(0 ) is

finite ; we then say that K is a post critically finite self-similar set.

From now on, we shall fix a p.c.f. self-similar structure (K,S, ²F
i
´
i`S

) with S¯
²1, 2,I,N ´.

N. Let V
!
¯π(0 ). For m& 1, set

V
m

¯ 5
w`Wm

F
m
(π(0 )) and Vk¯ 5

m&
!

V
m
.

It is easy to see that V
m

ZV
m+"

and that K is the closure of Vk. In particular, V
!

is thought of as the ‘boundary’ of K.

To construct the theory of harmonic calculus on p.c.f. self-similar sets, we shall

use some concepts from the theory of electrical networks.

D 2.3. For a finite set V, we denote the collection of real-valued

functions on V by l(V ). For a symmetric linear map H : l(V )! l(V ), we define a

symmetric bilinear form %
H

by %
H
(u, �)¯®tuH� for u, � ` l(V ). Then (V,H ) is called

a resistance network (r-network for short) if H
pq

% 0 for p1 q, %
H
(u, u)& 0, and

equality holds if and only if u is constant on V.

D 2.4. If (V,H ) and (V «,H «) are r-networks, then write (V,H )%
(V «,H «) if and only if VZV « and, for every � ` l(V ), we have

%
H
(�, �)¯min²%

H «(u, u) : u ` l(V «), u r
V
¯ �´.

R. This electrical network formulation was not used in [5], but was

introduced subsequently in [6].

Given an r-network (V
!
,D) we define a sequence of r-networks ²(V

m
,H

m
)´

m&
!
.

D 2.5. Let (V
!
,D) be an r-network and let r¯ (r

"
, r

#
,…, r

N
), where

r
i
" 0 for i¯ 1, 2,I,N. We define H

m
: l(V

m
)! l(V

m
) by H

m
¯Σ

w`Wm

r−"
w

tR
w
DR

w
,

where r
w
¯ r

w
"

r
w
#

I r
wm

for w¯w
"
w
#
…w

m
`W

m
, and R

w
: l(V

m
)! l(V

!
) is defined by

R
w
f¯ f aF

w
.

It is shown in [5, Proposition 4.3] that (V
m
,H

m
) is an r-network.

D 2.6. The pair (D, r) is called a harmonic structure if and only if

(V
!
,D)% (V

"
, λH

"
) for some λ" 0. Moreover, if r

i
! λ for all i¯ 1, 2,I,N, then

(D, r) is called a regular harmonic structure.
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Replacing r¯ (r
"
, r

#
,I, r

N
) by (r

"
}λ, r

#
}λ,I, r

N
}λ) for a harmonic structure

(D, r), we have (V
!
,D)% (V

"
,H

"
). Thus we can always renormalize r so that λ¯ 1.

Note that we then have (V
m
,H

m
)% (V

m+"
,H

m+"
) for all m& 0.

T 2.7 [5, Theorem 7.4]. Let (D, r) be a regular harmonic structure with

λ¯ 1 and write %
m
(u, �)¯%

Hm

(u, �). We define

&¯²u ` l(Vk) : lim
m!¢

%
m
(ur

Vm

, ur
Vm

)!¢´ and %(u, �)¯ lim
m!¢

%
m
(ur

Vm

, �r
Vm

)

for u, � `&. Then,

(1) & is naturally embedded in C(K ), which is the collection of all continuous

functions on K;

(2) let µ be a finite Borel measure on K which satisfies µ(O)" 0 for e�ery non-empty

open subset OZK, then (%,& ) is a local regular Dirichlet form on L#(K,µ).

Furthermore (%,& ) has the following scaling property.

L 2.8 [7, Lemma 6.1]. For any u, � `& and all i¯ 1, 2,I,N we ha�e uaF
i
,

� aF
i
`&, and

%(u, �)¯3
N

i="

r−"
i

%(uaF
i
, � aF

i
).

Let µ be a measure on K satisfying property (2) of Theorem 2.7. We now give a

direct definition of the Laplacian associated with (%,&,µ), as a scaling limit of the

discrete Laplacians H
m

on V
m
.

D 2.9. For p `V
m
, let ψ

m,p
be the unique function in & that attains

the following minimum: min²%(u, u) : u `&, ur
Vm

¯ 1²p´´. For u `C(K ), if there exists

f `C(K ) such that

lim
m!¢

max
p`Vm

cV
!

rµ−"
m,p

(H
m

u) (p)®f(p)r¯ 0,

where µ
m,p

¯!
K

ψ
m,p

dµ, then we define the µ-Laplacian ∆µ by ∆µ u¯ f. The domain

of ∆µ is denoted by $µ.

T 2.10 (Gauss–Green formula). (a) The domain $µ Z&, and the

Neumann deri�ati�e on the boundary, defined by (d�)
p
¯ lim

m!¢®(H
m

�) (p), exists for

� `$µ, p `V
!
.

(b) For u `& and � `$µ, we ha�e

%(u, �)¯ 3
p`V

!

u(p) (d�)
p
®&

K

u∆µ � dµ.

We may also define the Green’s function g(x, y) associated with (%,& ).

T 2.11. There exists a non-negati�e continuous function g :K¬K!2, with

g(x, y)¯ g(y,x) for all x, y `K, that satisfies %(gx, f )¯ f(x) for all f `& with f r
V
!

¯ 0,

where gx(y)¯ g(x, y). Also for gi�en φ `C(K ), there exists a unique f `$µ which

satisfies (∆µ f¯φ,

f r
V
!

¯ 0.

Furthermore, f is gi�en by f(x)¯®!
K

g(x, y)φ(y)µ(dy).
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3. Eigenfunctions

D 3.1. For u `$µ and k `2, if

(∆µ u¯®ku,

ur
Vo

¯ 0,

then k is called a Dirichlet eigen�alue (D-eigen�alue for short) of ®∆µ and u is said to

be a Dirichlet eigenfunction (D-eigenfunction for short) belonging to the D-eigenvalue

k. Also, if (∆µ u¯®ku,

(du)
p
¯ 0 for all p `V

!
,

then k is called a Neumann eigen�alue (N-eigen�alue for short) of ®∆µ and u is

said to be a Neumann eigenfunction (N-eigenfunction for short) belonging to the

N-eigenvalue k.

The eigenvalue problems above are equivalent to the following variational

problems involving the Dirichlet form (%,& ). Write (u, �)µ for the inner product on

L#(K,µ).

P 3.2 [7, Proposition 5.1 and 5.2]. With the abo�e notation k is a D-

eigen�alue of ®∆µ and u `&
!
¯²u `& : ur

V
!

¯ 0´ is an associated D-eigenfunction if and

only if %(u, �)¯k(u, �)µ for all � `&
!
. Also k is an N-eigen�alue of ®∆µ and u `& is an

associated N-eigenfunction if and only if %(u, �)¯k(u, �)µ for all � `&.

It is known that the D-eigenvalues (and also the N-eigenvalues) are non-negative,

of finite multiplicity and that their only accumulation point is ­¢. See [7, §4 and §5].

D 3.3. For n¯D,N, let ²k$
i
(µ)´

i=",#,
…, where k$

i
(µ)%k$

i+"
(µ) for all

i ¯ 1, 2,I, be the set of n-eigenvalues of ®∆µ, taking the multiplicity into account.

The eigen�alue counting function ρk(x,µ) is defined by ρk(x,µ)¯g ²i :k$
i
(µ)%x´.

Note that ρk is right-continuous and non-decreasing, and set ρk(x®,µ)¯
lim

y!z,y!x
ρk(y,µ).

Combining Theorem 2.11 and the Proposition 3.2, a D-eigenvalue k and a

D-eigenfunction u are characterized by

u(x)¯k&
K

g(x, y)u(y)µ(dy).

Hence, applying the classical theory of integral operators, we have the following.

P 3.4. If φ
i
is the normalized D-eigenfunction (that is, (φ

i,
φ

i
)µ ¯ 1)

belonging to the D-eigen�alue kD

i
(µ), then ²φ

i
´
i=",#,

I is a complete orthonormal basis of

L# (K,µ).

Kigami and Lapidus [7] studied the behaviour of ρk(x,µ) as x!¢ when µ is a

Bernoulli measure. (A Bernoulli measure µ is characterized by µ(K
w
)¯µ

w
"

µ
w
#

Iµ
wm

for all w¯w
"
w
#
Iw

m
`Wk, where µ

i
¯µ(K

i
) for i¯ 1, 2,I,N ).
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T 3.5 [7, Theorem 2.4]. Let d
s
be the unique real number d that satisfies

ΣN

i="
γd

i
¯ 1, where γ

i
¯ (r

i
µ
i
)"/#. Then

0! lim inf
x!¢

ρk(x,µ)}xds/#% lim sup
x!¢

ρk(x,µ)}xds/#!¢

for n¯D,N. Here d
s
is called the spectral exponent of (%,&,µ). Moreo�er, we ha�e

the following.

(1) Non-lattice case: if ΣN

i="
: log γ

i
is a dense subgroup of 2, then the limit

lim
x!¢ ρk(x,µ)}xds/# exists.

(2) Lattice case: if ΣN

i="
: log γ

i
is a discrete subgroup of 2, let T" 0 be its

generator. Then, ρk(x,µ)¯ (G(logx}2)­o(1))xds/#, where G is a (right-continuous)

T-periodic function with 0! infG(x)% supG(x)!¢ and o(1) is a term which �anishes

as x!¢.

Remark. More concrete expressions for the value of the limit in the non-lattice

case and the function G in the lattice case are obtained in [7]. In particular, these limits

are independent of n¯D or N.

4. Localized eigenfunctions and oscillations

In the following sections, we shall assume that µ is a Bernoulli measure on K.

D 4.1. The function u `$µ is called a pre-localized eigenfunction of ®∆µ

if u is both a Neumann and a Dirichlet eigenfunction for a (Neumann and Dirichlet)

eigenvalue k.

R. By using the variational expression in Proposition 3.2, it is easily seen

that u is a pre-localized eigenfunction if and only if u `&
!
and %(u, �)¯k(u, �)µ for all

� `&.

L 4.2. Let u be a pre-localized eigenfunction. For w `Wk define u
w

by

u
w
(x)¯ (x(F−"

w
(x))

0

if x `K
w
,

otherwise.

Then u
w

is a pre-localized eigenfunction belonging to the eigen�alue k}r
w
µ
w
, where

µ
w
¯µ(K

w
)¯µ

w
"

µ
w
#

Iµ
wm

for w¯w
"
w
#
Iw

m
.

Proof. Applying Lemma 2.8 and Proposition 3.2, we have

%(u
w
, �)¯ 3

w«`Wm

(r
w«)−"%(u

w
aF

w«, � aF
w«)¯ (r

w
)−"%(u, � aF

w
)¯

k

r
w

(u, � aF
w
)µ.

for any � `&. On the other hand,

(u
w
, �)µ ¯ 3

w«`Wm

µ
w«(uw

aF
w«, � aF

w«)µ ¯µ
w
(u, � aF

w
)µ.

Hence for all � `&, we have %(u
w
, �)¯ (k}(r

w
µ
w
)) (u

w
, �)µ.

R. Note also that the function u
w

is a localized eigenfunction in the sense

that u¯ 0 outside the set K
w
.
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The following proposition is an immediate consequence of Lemma 4.2.

P 4.3. There exists a pre-localized eigenfunction of ®∆µ if and only if

for any non-empty open subset OZK, there exists a pre-localized eigenfunction u such

that supp uZO.

Proof. For any non-empty open subset OZK, there exists w `Wk such that

K
w
ZO. If there exists a pre-localized eigenfunction u, then u

w
is a pre-localized

eigenfunction with supp u
w
ZK

w
ZO. The converse direction is obvious.

We now consider the lattice case in Theorem 3.5. Our main result is the following.

T 4.4. For the lattice case, the following four conditions are equi�alent:

(1) there exists a pre-localized eigenfunction of ®∆µ ;

(2) G has a discontinuous point;

(3) for any M `., there exists a (Neumann or Dirichlet) eigen�alue of ®∆µ whose

multiplicity is greater than M;

(4) there exists a (Neumann or Dirichlet) eigen�alue of ®∆µ whose multiplicity is

greater than g(V
!
).

C 4.5. For the lattice case, if there does exist a pre-localized

eigenfunction, then ρk(x,µ)}xds/# does not con�erge as x!¢.

The rest of this section is devoted to proving the above theorem. First we

recall and introduce some notation for the lattice case. As T is the positive generator

of ΣN

i="
: log γ

i
, where γ

i
¯ (r

i
µ
i
)"/#, we can write ®log γ

i
¯m

i
T for i¯ 1, 2,I,N,

where the m
i

are positive integers whose largest common divisor is 1. Note that

k}r
w
µ
w
¯k}γ#

w
¯k exp (2T Σl

i="
m

wi

) for any w¯w
"
w
#
Iw

l
`Wk, where γ

w
¯

γ
w
"

γ
w
#

I γ
wl

. Hence if

M(n)¯g (w¯w
"
w
#
Iw

l
`Wk :

k

r
w
µ
w

¯k e#nT* ,
for n `., then M(n)¯g ²w¯w

"
w
#
Iw

l
`Wk :Σl

i="
m

wi

¯ n´. We also define M(0)¯ 1

and M(n)¯ 0 for any negative integer n.

L 4.6. If p¯ eTd, then lim
n!¢ M(n)}pn ¯ (ΣN

i="
m

i
p−mi)−".

Proof. For n `., we have M(n)¯ΣN

i="
M(n®m

i
). Hence defining Z(x) for x `2

by Z(x)¯M(x)}px for x `:, and Z(x)¯ 0 otherwise, we have Z(x)®
ΣN

i="
Z(x®m

i
)}pmi ¯U(x),whereU(x)¯ 0 ifx1 0andU(0)¯ 1.Thereforewehave the

following renewal equation

Z(x)¯U(x)­&¢

!

Z(x®t) ν(dt) for all x `2,

where ν¯ΣN

i="
p−miδ

mi

and δ
x

is the Dirac point mass at x. Note that ΣN

i="
p−mi ¯

ΣN

i="
γds
i

¯ 1. By the renewal theorem we have

lim
n!¢

Z(n)¯ 0&¢

!

xν(dx)1−" 3
+¢

n=−¢

U(n)¯ 03N
i="

m
i
p−mi1−".
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Proof of Theorem 4.4. (1) implies (2). Let u be a pre-localized eigenfunction

belonging to the eigenvalue k. Then by Lemma 4.6, k
n
¯k e#nT is a (Dirichlet and

Neumann) eigenvalue with multiplicity at least M(n). Hence ρk(k
n
,µ)®ρk(k

n
®,µ)&

M(n). As lim
x!¢rρk(x,µ)}xds/#®G(logx}2)r¯ 0 and logk

n
¯ (logk}2)­nT, by

Lemma 4.6, we have that

lim
t!α+!

G(t)® lim
t!α−!

G(t)& lim
n!¢

M(n)

kds/# enTds

¯ 03N
i="

m
i

pmi
1−"k−d

#
/#" 0,

where α¯ logk}2. Hence G is discontinuous at α¯ logk}2.

(2) implies (3). Let G
n
(t)¯ ρk(e#(t+nT),µ)}et+nTds, and ε

n
¯ sup

!
%t%"

rG
n
(t)®G(t)r.

Then, by Theorem 3.4, ε
n
! 0 as n!¢. Now if G is discontinuous at α, then

we can choose a
m

" 0 and b
m

" 0 so that lim
m!¢ a

m
¯ lim

m!¢ b
m

¯ 0 and

L¯ lim inf
m!¢ rG(α­a

m
)®G(α®b

m
)r" 0. It follows that

lim inf
m!¢

rG
n
(α­a

m
)®G

n
(α®b

m
)r&L®2ε

n
.

This implies that e#(α+nT) is an eigenvalue whose multiplicity is no less than eα+nTds.

This implies (3).

(3) implies (4). This is obvious.

(4) implies (1). Let k be an N-eigenvalue whose multiplicity is greater than g(V
!
)

and let E
k

be the collection of N-eigenfunctions belonging to k. Define a linear map

τ :E
k
! l(V

!
) by τ(u) (x)¯ u(x) for x `V

!
. As dimE

k
"dim l(V

!
)¯g(V

!
), the kernel of

τ is not trivial. Hence there exists non-trivial u `E
k

that satisfies ur
V
!

¯ 0, and so u is

a pre-localized eigenfunction.

The same argument works for the case of D-eigenvalues.

5. Symmetry and the existence of pre-localized eigenfunctions

We now give some sufficient conditions, in terms of the geometry of K, for the

existence of localized eigenfunctions.

Let (K,S, ²F
i
´
i`S

) be a p.c.f. self-similar set, and µ be a Bernoulli measure on K. If

g :K!K is a bijection, and f :K!2, define T
g
f :K!2 by T

g
f(x)¯ f(g−"(x)).

D 5.1. A function g :K!K is a p.c.f. morphism if

(i) g is bijective,

(ii) g is a homeomorphism of K,

(iii) g :V
!
!V

!
,

(iv) µa g−"¯µ,

(v) if φ `& then T
g
φ `&, and %(φ,ψ)¯%(T

g
φ,T

g
ψ) for all ψ `&.

Let ' be the group of p.c.f. morphisms, and write ι for the identity element of '.

Let E be the collection of Dirichlet eigenfunctions of ®∆µ, and for φ `E write ε(φ) for

the associated eigenvalue. Set Λ¯²Σn

i−"
α
i
T
gi

,α
i
`2, g

i
`' ´.

L 5.2. Let R¯Σn

i="
α
i
T
gi

`Λ. If Ru1 0 for some u `L#(K,µ) and R*� `&
!

for all � `&, where R*¯Σn

i="
α
i
T

g
−"
i

, then there exists a pre-localized eigenfunction.

Proof. By Proposition 3.4, the set of normalized D-eigenfunctions ²φ :φ `E ´ is

a complete orthonormal base of L#(K,µ). So if Rφ¯ 0 for all φ `E, then Ru¯ 0 for
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any u `L#(K,µ). Hence there exists φ `E such that Rφ1 0. Let ψ¯Rφ, and note

that ψ `&
!
. Now for all � `&, as R*� `&

!
, using Proposition 3.2,

%(ψ, �)¯%(φ,R*�)¯ ε(φ) (φ,R*�)µ ¯ ε(φ) (ψ, �)µ.

Hence by the variational formulation of pre-localized eigenfunctions (see the remark

after Definition 4.1) ψ is a pre-localized eigenfunction.

For g `' set 3(g)¯²x `K : g(x)¯x´.

P 5.3. (a) If there exists h `'c²ι´ such that V
!
Z3(h), then there exist

pre-localized eigenfunctions.

(b) If ' is infinite then there exist pre-localized eigenfunctions.

Proof. (a) Let R¯ I®T
h
`Λ. As h1 ι, there exists x `K such that h(x)1x. Since

h is continuous there exists a neighbourhood A of x such that h(A)fA¯W. Set

u¯ 1
A
: we have Ru1 0.

As V
!
Z3(h), it follows that h−"(x)¯x for all x `V

!
. Hence �®T

h
−"

�¯R*� `&
!

for all � `&. Now using Lemma 5.2, we can complete the proof.

(b) If ' is infinite then, since V
!

is finite, a counting argument shows that there

exist distinct elements g
"
, g

#
of ' with the same action on V

!
. Hence V

!
Z3(g−"

"
g
#
),

and the result is immediate from (a).

There do exist p.c.f. self-similar sets for which ' is infinite (the Vicsek set is one),

but this is a little exceptional. We now turn to the more complicated situation when

' is finite.

T 5.4. Suppose that G is a finite subgroup of ' which is �ertex transiti�e

on V
!
, and that there exists h `' with h aG, such that

3
G
(h)¯ 5

g`G

3(h−"g)1K. (5.1)

Then there exist pre-localized eigenfunctions.

Proof. Set R
G
¯Σ

g`G
T
g
¯Σ

g`G
T
g
−"
, and R¯R

G
(T

h
−"
®I ) `Λ. Let x `Kc3

G
(h).

Then ²g(x) : g `G´ is finite and does not contain h(x). Hence there exists a

neighbourhood A of x such that h(A)f g(A)¯W for all g `G. Set u¯ 1
h(A)

. If y `A,

then u(g( y))¯ 0 for g `G, and so

Ru(y)¯ 3
g`G

u(h(g(y)))®3
g`G

u(g(y))& u(h(y))®3
g`G

u(g(y))¯ u(h(y))¯ 1,

proving that Ru1 0.

Let � `&. As G is vertex transitive, if y `V
!

then

R
G
�(y)¯ 3

g`G

�(g(y))¯
g(G)

g(V
!
)

3
p`V

!

�(p),

which is independent of y. If x `V
!

then h−"(x) `V
!
, and therefore R*�¯

(T
h
®I )R

G
� `&

!
.

Now using Lemma 5.2, we can complete the proof.
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R 1. As the condition (5.1) is a little troublesome to verify, one might

hope that this symmetry argument would work under the weaker condition that

' contains a vertex transitive subgroup G and there exists h `'cG. (5.2)

However, it is easy to see that (5.1) is equivalent to the statement that R
G
(T

h
−"
®I )1 0,

and in Section 6 we give an example of a p.c.f. self-similar set K which satisfies (5.1)

but not (5.2).

On the other hand, note that if (5.1) fails, then 3(h−"g) has an interior point for

some g `G. Hence (5.2) along with

3(h−"g) has no interior point for any g `G (5.3)

implies (5.1). In fact we shall see below (Lemma 6.3) that for nested fractals (5.3)

always holds, so that (5.2) is all that needs to be verified.

R 2. While the two results in this section prove the existence of pre-

localized eigenfunctions for a variety of p.c.f. self-similar sets, there are many cases

they do not cover. It is possible that every p.c.f. self-similar set with g(V
!
)" 2 has

pre-localized eigenfunctions. (See the remark following Theorem 6.6 for the case

g (V
!
)¯ 2.)

6. Nested fractals and other examples

In this section we shall discuss the case where K is a subset of 2d for some d and

the F
i
are restrictions of similitudes of 2d ; the map F :2d!2d is called a similitude if

F(x)¯αTx­b, where α ` (0, 1),T `O(d ) and b `2d. In such a case, we can assume,

without loss of generality, that

3
M

i="

p
i
¯ 0, (6.1)

where V
!
¯²p

"
, p

#
,I, p

M
´ and that

²x®y :x, y `K ´ spans 2d. (6.2)

Under these assumptions we have the following lemma.

L 6.1. (1) If f is an affine map from 2d to itself with f(V
!
)¯V

!
, then

f(0)¯ 0.

(2) Let f
i
:2d!2d be linear for i¯ 1, 2. If f

"
r
K

¯ f
#
r
K
, then f

"
(x)¯ f

#
(x) for all

x `2d.

(3) If f :2d!2d is a linear map with f(K )¯K, then f `O(d ). Moreo�er, if f is not

the identity map, then 3( f )¯²x `K : f(x)¯x´ contains no interior point in the intrinsic

topology K.

Proof. (1) Let f(x)¯Ax­b where A is a d¬d-matrix and b `2d. As

ΣM

i="
f(p

i
)¯ΣM

i="
p
i
¯ 0, we have A(ΣM

i="
p
i
)­Mb¯ 0. Hence b¯ 0.

(2) This is immediate from (6.2).

(3) As KZ Im f and (6.2) holds, it follows that f is invertible. Note that K is

bounded. We can easily see that f n(x) and f −n(x) remain bounded as n!¢ for any

x `2d. Hence if we extend f to a map from #d to itself, f is semisimple and the absolute

values of its eigenvalues are all equal to 1. Therefore f `O(d ).

Next suppose there exists a non-empty open subset O of K such that f(x)¯x for

any x `O. By (6.2), there exist x
i
, y

i
`K for i¯ 1, 2,I, d such that (x

"
®y

"
,x

#
®y

#
,I,

x
d
®y

d
) is a base of 2d. Now choose w `Wk so that F

w
(K )ZO, and write z

i
¯
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F
w
(x

i
)®F

w
(y

i
) ; then (z

"
, z

#
,I, z

d
) is a base of 2d and f(z

i
)¯ z

i
for i¯ 1, 2,I, d. Thus

f is the identity map.

Hereafter, we consider a special subgroup of the group of p.c.f. morphisms '.

T 6.2. Define '
!
¯²g `' ; g¯ f r

K
for some linear map f :2d!2d´. If

there exists a proper subgroup G of '
!
which is �ertex transiti�e on V

!
, then there exists

a pre-localized eigenfunction.

R. By Lemma 6.1, we can consider '
!

to be a subgroup of O(d ).

Proof. As G is a proper subgroup of '
!
, there exists h `'

!
cG. By Lemma 6.1 (3),

we see that 3(h−"g) has no interior point for any g `G. Hence by Remark 1 following

Theorem 5.4, we deduce that there exists a pre-localized eigenfunction.

The corollary below is sometimes easier to apply to examples than Theorem 6.2.

Let P
V
!

be the group of permutations of V
!
. We can define a natural map χ :'!P

V
!

by χ(g)¯ gr
V
!

.

C 6.3. (1) If χ is not injecti�e then there exists a pre-localized

eigenfunction.

(2) Set G
!
¯ χ('

!
). If there exists a proper subgroup of G

!
which is �ertex transiti�e

on V
!
, then there exists a pre-localized eigenfunction.

Proof. (1) If χ is not injective then there exists g1 ι `' with g(x)¯x for all

x `V
!
. The result is now immediate from Proposition 5.3 (a).

(2) We can find a proper subgroup of '
!
which is vertex transitive on V

!
by using

χ−". Then use Theorem 6.2.

Here are some cases where we can apply Corollary 6.3 (2).

E 6.4. (1) If G
!
¯P

V
!

and g (V
!
)& 3, then the group of even permutations

is a proper subgroup of P
V
!

which is vertex transitive on V
!
.

(2) Let V
!
be a regular n-sided polygon for n" 2 and suppose that G

!
contains D

n
,

where D
n

is the symmetry group of the regular n-sided polygon. We may write V
!
¯

²(cos (2πj}n), sin (2πj}n)) : j¯ 1, 2,I, n´. Let g be the rotation by 2π}n around (0, 0).

Then ²gj for j¯ 1, 2,I, n´ is a proper subgroup of D
n

and is vertex transitive on V
!
.

(3) Let V
!

be a cube. In this case, we may write

V
!
¯²((®1)i, (®1)j, (®1)k) : i, j,k ` ²0, 1´´.

Suppose G
!

contains the symmetry group of the cube. Let g
"

be rotation by π}2

around the z-axis and g
#
be reflection in the xy-plane. The group generated by g

"
and

g
#

is a proper subgroup of G
!

which is vertex transitive on V
!
.

Next we give an example where we can apply Corollary 6.3 (1).

E 6.5. Set F
"
(z)¯ "

#
(z­1),F

#
(z)¯ "

#
(z®1),F

$
(z)¯ "

%
(®1)"/#(z­1) and

F
%
(z)¯ "

%
(®1)"/#(z®1) for z `#. Let K be the unique non-empty compact subset of #

that satisfies K¯V
i=",#,$,%

F
i
(K ). It is easy to see that (K,S, ²F

i
´
i`S

) where S¯²1, 2, 3, 4´
is a p.c.f. self-similar structure. In fact, V

i1j
(K

i
fK

j
)¯²0´, #¯π−"(0)¯²210 , 120 ,
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320 , 410 ´ and 0¯²10 , 20 ´, where kd ¯kkkI. As π(10 )¯ 1 and π(20 )¯®1, it follows that

V
!
¯²®1, 1´.
Let t ` (0, 1), and set

D¯ 0®1

1

1

®11 and r¯ ("
#
, "
#
, t, t).

Then (D, r) is a regular harmonic structure with λ¯ 1. Also let µ be a Bernoulli

measure on K that satisfies µ
"
¯µ

#
and µ

$
¯µ

%
.

The reflections in the real axis and the imaginary axis, denoted by g
"

and g
#

respectively, are p.c.f.-morphisms with respect to (D, r) and µ, and '
!

is the group

generated by ²g
"
, g

#
´. Obviously χ(g

#
) is the identity map on V

!
. Hence by Corollary 6.3

(1), there exists a pre-localized eigenfunction of ®∆µ. (Note also that ' contains

infinitely many elements, and so the existence of a pre-localized eigenfunction also

follows from Proposition 5.3 (b).)

Now let G¯²ι, g
"
´, and let h :K!K be defined by h(x)¯x for x `K

"
eK

#
and

h(x)¯ g
#
(x) for x `K

$
eK

%
. It is not hard to check that h is a p.c.f.-morphism. Then

G and h satisfy (5.2) but R
G
(T

h
−"
®I )¯ 0. So this example shows that (5.1) and (5.2)

are not equivalent ; recall Remark 1 of Theorem 5.4.

In the rest of this section, we shall consider the case of nested fractals.

N. For x, y `2# with x1 y, let H
xy

be the hyperplane bisecting the line

segment [x, y], and let g[xy] :2d!2d be reflection in H
xy

.

Nested fractals, defined in [11], are a subset of the class of p.c.f. self-similar sets,

and may be described by saying that a nested fractal is a p.c.f. self-similar set

(K,S, ²F
i
´N
i="

) such that for some α ` (0, 1), we have

(N1) KZ2d,

(N2) each F
i
is a similitude with a contraction factor α,

(N3) g[xy] (V
n
)ZV

n
for all x, y `V

!
.

We may also assume that (6.1) and (6.2) hold. It is shown in [11] that

a nested fractal has a (non-degenerate) harmonic structure (D, r), with r
i
¯ 1

for i¯ 1, 2,I,N. Let µ be the Bernoulli measure on K obtained by setting µ
i
¯ 1}N

for i¯ 1, 2,I,N, and let λ" 1 be the scaling factor given by Definition 2.6. After

normalization (see the discussion following Definition 2.6), we may write r
i
¯ 1}λ

for i¯ 1, 2,I,N.

The description of the harmonic structure (D, r) given in [11] shows that g[xy]r
K

satisfies property (v) of Definition 5.1 for each x, y `V
!
. Since the other properties are

evident, g[xy]r
K

is a p.c.f. morphism belonging to '
!
. Let '

"
be the subgroup of '

!

generated by ²g[xy]r
K
:x, y `V

!
,x1 y´.

T 6.6. Let K be a nested fractal with u (V
!
)& 3. Then K has a pre-

localized eigenfunction.

Proof In view of Lemma 6.1 (2) we may identify g[xy] and g[xy]r
K
, and so regard

'
"
as a subgroup of O(d ). Note that, as g[xy] is a reflection, det(g[xy])¯®1. Let '

#

be the set of g `'
"
which are the product of an even number of the g[xy]. Then every

element g of '
#

has det(g)¯ 1, and so '
#

is a proper subgroup of '
"

Furthermore,
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if g (V
!
)& 3 then '

#
is vertex transitive. For, if x, y `V

!
, let z `V

!
c²x, y´ : then

g[yz]g[xz] (x)¯ y. The result now follows from Theorem 6.2.

R. If g (V
!
)¯ 2 then examples show that both possibilities (that is,

existence or non-existence of localized eigenfunctions) can arise. The unit interval

[0, 1] is a nested fractal, with V
!
¯²0, 1´, and of course has no localized eigenfunctions.

On the other hand, it is shown in [12] that the modified Koch graph does have

localized eigenfunctions.

For a nested fractal, we have γ
i
¯ (r

i
µ
i
)"/#¯ (λN )−"/# for i¯ 1, 2,I,N. So the

lattice case of Theorem 3.5 holds and, using Theorem 4.4, we deduce the following

corollary.

C 6.7. Let K be a nested fractal with g(V
!
)& 3. Then ρk(x,µ)}xds/# does

not con�erge as x!¢.
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