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Abstract.

Let X be the compact symmetric space of rank one, i.e., the sphere Sn, n ≥ 1, the real
projective space RP n, n ≥ 2, the complex projective space CP 2n, n ≥ 2, the quaternion
projective space HP 4n, n ≥ 2, or the projective plane over Cayley numbers CaP 16. Let
(Ω, F, P) be a probability space, let ξ(x) = ξ(x, ω):X ×Ω �→ Rd be the separable and mea-
surable random field on X with independent and identically distributed Gaussian isotropic

components.
Three kinds of random sets are connected with such a field:

(1) the image set ξ(X ) ⊂ Rd;
(2) the level set ξ−1(x) ⊂ X , x ∈ Rd;

(3) the graph Gr ξ = { (x, ξ(x)): x ∈ X } ⊂ X × Rd.

For every kind of a random set under some restrictions concerning the correlation func-
tion of the random field ξ(x), we calculate the function ϕ, for which the Hausdorff measure
of the corresponding random set is positive and finite P-almost surely.

1. Introduction

Let X be the metric space. Let F be a family of subsets of the space X and let
ϕ: F �→ [0, +∞]. Let ∪F denotes the union of all sets of the family F. For any t ∈ (0, +∞]
we define an auxiliary measure µt as

µt(A) = inf
cardG≤ℵ0

G⊂{S:diam S≤t }
A⊂∪G

∑
S∈G

ϕ(S),

where card denotes the cardinal number of the set, and diam denotes the diameter of the
set. If 0 < t < s ≤ +∞, then µt ≥ µs. That’s why the limit measure

µϕ(A) = lim
t↓0

µt(A)

exists. In what follows only the case when F is the family of all closed balls in X and
the function ϕ depends only on the diameter of the ball will be considered. We restrict
attention to the class Φ of functions ϕ: (0, δ) �→ [0, +∞) which are right continuous,
monotone increasing with limt↓0 ϕ(t) = 0 and smooth in the sense that there is a finite
constant K with

ϕ(2t)
ϕ(t)

≤ K, 0 < t <
δ

2
.
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We will say that the function ϕ is the exact Hausdorff measure of the set S, if 0 <
µϕ(S) < +∞.

Let dim S be the topological dimension of the set S.

Definition 1 [1]. A non-countable bounded set S of the metric space (X, ρ) is called a
fractal, if the function tdim S is not an exact Hausdorff measure of the set S.

We are interested in fractal properties of random sets connected with isotropic Gauss-
ian random fields on compact rank one symmetric spaces. A full list of such spaces X is
[2]: the sphere Sn, n ≥ 1, the real projective space RPn, n ≥ 2, the complex projective
space CP 2n, n ≥ 2, the quaternion projective space HP 4n, n ≥ 2, and the projective
plane over Cayley numbers CaP 16. Here n denotes the dimension of the space over
the corresponding algebra. In all the subsequent we will denote by N the topological
dimension of the corresponding space. Let ξ(x), x ∈ X be the second order mean square
continuous real valued zero mean random field with the correlation function

B(x, y) = Eξ(x)ξ(y), x, y ∈ X .

Let G be the group of isometries of the space X . The next two definitions are equivalent:

Definition 2′. A random field ξ(x) is called isotropic, if for any g ∈ G

B(gx, gy) = B(x, y).

Definition 2′′. A random field ξ(x) is called isotropic, if its correlation function B(x, y)
depends only on the distance between the points x and y.

In the classical case of X = RN [3] such a field is called homogeneous and isotropic,
because the corresponding group of isometries is the semi-direct product of the group of
shifts by the group of rotations. The term homogeneous corresponds to shifts and the
term isotropic corresponds to rotations. In our case the group of isometries is a simple
Lie group. That’s why we use only one term “isotropic random field”. Such fields were
firstly defined in [4].

Let (Ω, F, P) be a probability space, let ξ(x) = ξ(x, ω):X × Ω �→ Rd be the separable
and measurable random field on X with independent and identically distributed Gaussian
isotropic components. Three kinds of random sets are connected with such a field:

(1) the image set ξ(X ) ⊂ Rd;
(2) the level set ξ−1(x) ⊂ X , x ∈ Rd;
(3) the graph Gr ξ = { (x, ξ(x)): x ∈ X } ⊂ X × R

d.
An excellent survey of the developments in the area of calculating the Hausdorff mea-

sure for such sets before 1987 is published in [5]. Later M.Talagrand proposed new
method in [6]. His ideas were recently developed by Y.Xiao ([7–9]). We follow their ideas
in our proofs.

2. Formulation of theorems

In order to formulate our results we need more definitions. Let µ denotes the proba-
bility G-invariant measure on the space X . The natural unitary representation

(U(g)f)(x) = f(g−1x), g ∈ G
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in the space L2(G, µ) is the direct sum of the irreducible unitary representations Un,
n ≥ 0. Let h(X , n) denotes the dimension of the representation Un. According to [10]
we have:

h(SN , n) =
(n + 2N − 1)(n + N − 2)!

(n − 1)!N !
,

h(RPN , n) =
(2n + 2N − 1)(2n + N − 2)!

(2n − 1)!N !
,

h(CPN , n) =
(2n + N/2)[(n + N/2 − 1)!]2

[n!]2(N/2)!(N/2 − 1)!
,

h(HPN , n) =
(2n + N/2 + 1)(n + N/2 + 4)!(n + N/2 − 1)!

(n + 1)!n!(N/2 + 1)!(N/2 − 1)!
,

h(CaP 16, n) =
(2n + 7)(n + 6)!

7!
.

Let ρ be the G-invariant metrics on X satisfying the condition diamX = π. Let o

denotes some fixed point in X . Let θxy = ρ(x, y), θx = ρ(x, o). Let P
(α,β)
n (cos θ) denotes

Jacobi polynomial. According to [4] the correlation function of the isotropic random field
on the space X has the form

B(x, y) =
∞∑

n=0

bnh(X , n)P̂ (α,β)
n (cos θxy),

where

P̂ (α,β)
n (cos θ) =

P
(α,β)
n (cos θ)

P
(α,β)
n (1)

and {bn, n ≥ 0} is the sequence of non-negative real numbers satisfying the condition

∞∑
n=0

bnh(X , n) < ∞.

The coefficients α and β depend on X . In any case α(X ) = (N − 2)/2. The coefficient β
can be calculated as: β(SN ) = (N − 2)/2, β(RPN ) = −1/2, β(CPN ) = 0, β(HPN ) = 1,
β(CaP 16) = 3.

Let σ2(θ) = Var(ξ(x) − ξ(o)) be the incremental variance of the random field ξ(x).
Here x is an arbitrary point in X satisfying the condition θx = θ. Let ψ denotes the
inverse function of σ. Let

B(o, ε) = { x ∈ X : θx < ε }

be the open ball with center at o and radius ε. Let [X \ B(o, ε)]n	= denotes the subset
of points (x1, . . . , xn) in the nth Cartesian power of the set X \ B(o, ε) satisfying the
condition xj 	= xk for j 	= k. Denote

σ̂2
n(ε) = inf

(x1,...,xn)∈[X\B(o,ε)]n�=

Var(ξ(o)|ξ(x1), . . . , ξ(xn)).

This quantity is essentially the infimum of the mean square error of the optimal linear
prediction using n observations at points outside of sphere B(o, ε).
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Definition 3 [11]. A random field ξ(x) is called locally nondeterministic, if for any n ≥ 1

lim inf
ε↓0

σ̂2
n(ε)

σ2(ε)
> 0.

We will call a d-dimensional random field ξ(x) with independent components locally
nondeterministic, if any of its component is locally nondeterministic.

Let f(t) be a measurable positive function defined on some interval (0, δ), let γ ∈ R

be some fixed number.

Definition 4 [12]. A function f(t) is called regularly varying of index γ, if for any λ > 0
it satisfies the condition

lim
t↓0

f(λt)
f(t)

= λγ .

Now we are ready to formulate our results.

Theorem 1. Let ξ(x):X �→ Rd be the separable and measurable locally nondetermin-
istic random field on X with independent and identically distributed Gaussian isotropic
components satisfying the next conditions:

(1) the function σ(θ) is regularly varying of index γ > 0;
(2) the function θσ(θ−1) is monotone non-increasing for all sufficiently large θ;
(3) N < γd;
(4)

∑∞
n=1 bnh(X , n)σ−2(n−1) < ∞;

Then we have
P{0 < µϕ1(ξ(X )) < ∞} = 1,

where ϕ1(θ) = ψN (θ) log log(θ−1).

Theorem 2. Let ξ(x):X �→ Rd be the separable and measurable locally nondetermin-
istic random field on X with independent and identically distributed Gaussian isotropic
components satisfying the next conditions:

(1) the function σ(θ) is regularly varying of index γ > 0;
(2) N > γd.

Then for any x ∈ ξ(X ) we have

P{0 < µϕ2(ξ
−1(x)) < ∞} = 1,

where ϕ2(θ) = θN (σ(θ(log log θ−1)−1/N ))−d.

Theorem 3. Let ξ(x):X �→ Rd be the separable and measurable locally nondetermin-
istic random field on X with independent and identically distributed Gaussian isotropic
components satisfying the next conditions:

(1) the function σ(θ) is regularly varying of index γ > 0;
(2) N > γd.

Then we have
P{0 < µϕ3(Gr ξ) < ∞} = 1,

where ϕ3(θ) = θN+d(σ(θ(log log θ−1)−1/N ))−d.
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Theorem 4. Let ξ(x):X �→ Rd be the separable and measurable locally nondetermin-
istic random field on X with independent and identically distributed Gaussian isotropic
components satisfying the next conditions:

(1) the function σ(θ) is regularly varying of index γ > 0;
(2) the function θσ(θ−1) is monotone non-increasing for all sufficiently large θ;
(3) N < γd;
(4)

∑∞
n=1 bnh(X , n)σ−2(n−1) < ∞;

Then we have
P{0 < µϕ1(Gr ξ) < ∞} = 1.

These theorems were proved in [13–15].

3. Sketch of proofs

We will use the letter K to denote an unspecified positive constant which may be
different in different appearances. Proofs of Theorems 1–4 can be naturally divided into
two parts. Let Ξ denotes any of the mentioned above random sets. In the first part of
the proof one should prove that

P{0 < µϕj (Ξ)} = 1.

In order to prove this equality one can use the density theorem of Rogers and Taylor
[16], see also [17], theorem 2.10.17(2). For any finite Borel measure ν on the metric space
(X, ρ) and any function ϕ ∈ Φ consider the upper spherical density at the point x ∈ X
defined as

Dϕ(ν, x) = lim sup
ε↓0

ν(B(x, ε))
ϕ(2ε)

.

The density theorem suggests that there exist constants c1 and c2, depending only on ϕ
and X , such that for any Borel set E ⊂ X and any finite Borel measure ν one has

c1 inf
x∈E

Dϕ(ν, x)ν(E) ≤ µϕ(E) ≤ c2 sup
x∈E

Dϕ(ν, x)ν(E).

This theorem allows us to prove positiveness of measure by defining a suitable Borel
measure concentrated on Ξ for which the upper spherical density is bounded below at
all points of some subset Ξ1 ⊂ Ξ of positive ν-measure. For example, in the case of
Theorem 1 we define the measure ν as

ν(E) = µ(ξ−1(E)).

This measure is concentrated on the set Ξ = ξ(X ). Now it is enough to prove that there
exists such a constant b > 0 that for any fixed point x ∈ X the next equality holds with
probability 1:

(1) lim sup
ε↓0

ν(B(ξ(x), ε))
ϕ1(ε)

≤ b−1.

Indeed, let Ξ1(ω) be the random subset in Ξ defined as

Ξ1(ω) = { ξ(x): (1) is true for x }.
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According to Fubini’s theorem we have ν(Ξ1(ω)) = 1 P-almost surely. By density theorem
µϕ1(Ξ1(ω)) ≥ c1b and we are done. We omit technical details of proof of (1).

In the second part of the proof one should prove that

P{µϕj(Ξ) < ∞} = 1.

At a first glance it is enough to prove an inequality opposite to (1), namely

lim sup
ε↓0

ν(B(ξ(x), ε))
ϕ1(ε)

≥ c−1.

We have no ideas how to prove this inequality. But even in the case of having such
a proof this inequality does not give a technique for finding a finite upper bound for
µϕ1(Ξ). It is not enough to show that Dϕ1(ν, x) ≤ K ν-almost everywhere on Ξ since the
ν-exceptional set may well contribute to µϕ1(Ξ). A different method is needed to attack
the set { x ∈ Ξ: Dϕ1(ν, x) > K }. The corresponding calculations are very complicated.
See, for example, the cases of Brownian motion in Rd, d ≥ 3 in [18], Brownian motion in
R

2 in [19] or multiparameter Brownian motion in [20].
A key estimate which simplified calculations was proved by M.Talagrand in [6] for

the case of multiparameter fractional Brownian motion. Its main ingredient was proved
earlier in [21]. Namely, let ζ(t) be the Gaussian random function defined on an arbitrary
set S. Let ρ denotes the Dudley distance ρ(s, t) =

√
E(ζ(s) − ζ(t))2. Let Nρ(S, ε)

denotes the smallest number of balls of radius ε needed to cover the set S. Let D be the
diameter of S. In most cases the quantity Nρ(S, ε) can not be exactly calculated. But
suppose, that one can prove an estimate

Nρ(S, ε) ≤ Ψ(ε), ε > 0,

and there exists a constant C > 0 such that for any ε > 0 the following inequality holds
true:

C−1Ψ(ε) ≤ Ψ(ε/2) ≤ CΨ(ε).

Then there exists such a constant K = K(C) > 0 that

P{ sup
s,t∈S

|ζ(s) − ζ(t)| ≤ u} ≥ exp(−KΨ(u)).

Using the last estimate and Talagrand’s technique, one can prove that there exist such
constants δ > 0 and K > 0, that for any 0 < ε0 < δ the inequality

(2) P

{
∃ε ∈ [ε2

0, ε0]: sup
θxy≤ε

‖ξ(x) − ξ(y)‖ ≤ Kσ(r(log log ε−1)−1/N )

}

≥ 1 − exp(−(log ε−1
0 )1/2).

holds true. Once more we omit the details.
Now we can prove the second part of Theorem 1. For such natural k that 2−k < δ,

consider the random set Rk(ω) ⊂ X :

Rk(ω) =

{
x ∈ M: ∃ε ∈ [2−2k, 2−k]: sup

θxy≤ε
‖ξ(x) − ξ(y)‖ ≤ Kσ(ε(log log ε−1)−1/N )

}
.
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By (2) we have
P{x ∈ Rk(ω)} ≥ 1 − exp(−k/2).

Denote by Ω0 the event

Ω0 = {ω ∈ Ω: µ(Rk(ω)) ≥ 1 − exp(−k/4) infinitely often }.

It follows from Fubini’s theorem that P(Ω0) = 1.
Now we build some special construction. For any natural number k consider a covering

of the space X by various closed balls of radius 2−k. According to Theorem 2.8.14 from
[17] there exists a natural number M and M families of disjoint balls which cover the
space X . Let

V (ε) = µ(B(x, ε)).

Due to the invariance of the measure µ this quantity does not depend on x ∈ X . Ac-
cording to [2] we have

V (ε) =
∫ ε

0

A(θ) dθ,

where A(θ) denotes the surface measure of the sphere of radius θ induced by the standard
Riemann metric on the space X . According to Lemma 4.10 from [2]

A(θ) = K sinN−1(θ/2) cosq(θ/2),

and q ≥ 0 for any space X . Using inequalities sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2 and
cos θ ≥ cos(1/2) for 0 ≤ θ ≤ 2−k, we obtain the inequality

V (θ) ≥ KθN .

That’s why any family consists of no more then K−12Nk balls, and the constructed
covering contains no more than K · 2Nk balls. We will call these balls the dyadic balls of
the kth order and denote them by Ckj , 1 ≤ j ≤ K · 2Nk.

Let the event Ω1 consists of elementary events ω ∈ Ω, for which there exists a number
n1 = n1(ω) large enough such that for all n ≥ n1(ω) and any dyadic ball Cn of order n
in X , we have

sup
x,y∈Cn

‖ξ(x) − ξ(y)‖ ≤ Kσ(2−n)
√

n.

According to [22], p. 174 the function σ(t)
√

log t−1 is a uniform modulus of the random
field ξ(x). It means that there exists such a constant c that the inequality

lim
ε↓0

sup
θxy≤ε

‖ξ(x) − ξ(y)‖
σ(ε)

√
2c log ε−1

≤ 1

hold true almost surely. Consequently we obtain P(Ω1) = 1.
Now fix an ω ∈ Ω0 ∩ Ω1, we show that µϕ1(ξ(X , ω)) < ∞. Consider k ≥ 1 such that

µ(Rk(ω)) ≥ 1 − exp(−
√

k/4).

Let z ∈ Rk(ω) be some fixed point. Fix some number ε which proves that z belongs to
the set Rk(ω). Let n be the smallest natural number for which any dyadic ball Cnj of
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order n containing z lies inside the ball B(z, ε). Let Cn(z) denotes the union of all these
balls. By construction we can a number k0 = k0(X ) with k ≤ n ≤ 2k + k0 and

(3) sup
x,y∈Cn(z)

‖ξ(x) − ξ(y)‖ ≤ Kσ(2−n(log log 2n)−1/N ).

Let Vn denotes the union of all dyadic balls of order n for which (3) holds. Thus we have

Rk ⊆ V = ∪2k+k0
n=k Vk.

Clearly ξ(Cn) can be covered by a ball of radius

ρn = Kσ(2−n(log log 2n)−1/N ).

Since ϕ1(2ρn) ≤ K · 2−Nn ≤ Kµ(Cn), we have

(4)
∑

n

∑
Cn∈Vn

ϕ1(2ρn) ≤
∑

n

∑
Cn∈Vn

Kµ(Cn) = Kµ(V) < ∞.

On the other hand, X \V is contained in a union of dyadic balls of order q = 2k + k0,
none of which meets Rk. For k large enough there can be at most

K · 2Nqµ(X \ V) ≤ K · 2Nq exp(−
√

k/4)

of such balls. For each of these balls, ξ(Cq) is contained in a ball of radius ρ = Kσ(2−q)
√

q.
Thus for any δ > 0 and for k large enough

(5)
∑

ϕ1(2ρ) ≤ K · 2Nq exp(−
√

k/4)2−NqqN/(2γ)+δ ≤ 1.

Since k can be arbitrarily large, the upper bound follows from (4) and (5).

4. Some problems

We note two interesting problems. The first one is connected with the so called critical
case N = γd. The answer is known only for planar Brownian motion [19] and the answer
is

ϕ(t) = t2 log t−1 log log log t−1.

In order to formulate the second problem consider the spectral representation of the
random field ξ(x). Let Hn be the space of the representation Un. It consists of the
real-valued eigenfunctions of the self-adjoint Laplace–Beltrami operator ∆ on X [2]. Let
ψl, 1 ≤ l ≤ h(X , n) be some fixed orthonormal basis in the space Hn. According to
Peter–Weyl theorem [2] the functions

Sl
n(x) =

√
h(X , n)ψl(x)

form the orthonormal basis of the space L2(X , µ). Using Kahrunen’s theorem, we obtain

ξ(x) =
∞∑

n=0

√
bn

h(X ,n)∑
l=1

Sl
n(x)ξl

n,

where ξl
n is the sequence of independent standard Gaussian random variables. In the case

X = S1 this is the ordinary Fourier random series. That’s why our investigation can be
considered as studying of local properties of sample functions of generalized Gaussian
Fourier series. It would be interesting to prove analogous results for sub-Gaussian series
[23].
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