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Abstract

We consider a class of random recursive Sierpinski gaskets and examine the short-time asymp-
totics of the on-diagonal transition density for a natural Brownian motion. In contrast to the case
of divergence form operators in Rn or regular fractals we show that there are unbounded 
uc-
tuations in the leading order term. Using the resolvent density we are able to explicitly describe
the 
uctuations in time at typical points in the fractal and, by considering the supremum and
in�mum of the on-diagonal transition density over all points in the fractal, we can also describe
the 
uctuations in space. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The fundamental work of Aronson (1967), established upper and lower estimates
on the heat kernel for an elliptic operator in Rn. There is now a substantial literature
on the behaviour of the heat kernel for elliptic operators on manifolds, and that of
the transition kernel for random walks on groups or graphs (see for instance Coulhon
and Grigoryan, 1998; Davies, 1991). There are two components to the estimate, an on
diagonal term, which is usually determined by the volume growth of the space, and
the o� diagonal term, where there is Gaussian decay.
The study of fractals has shown that the behaviour may be di�erent when the

geometry is not smooth. We state here the results for regular fractals F such as the
Sierpinski gasket or the Sierpinski carpet. If pt(x; y) denotes the transition density for
the natural Brownian motion on the fractal F (or the heat kernel for the corresponding
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Laplace operator on F), then there exist constants c1:1; c1:2 such that

pt(x; y)6c1:1t−ds=2 exp

(
−c1:2

(
d(x; y)dw

t

)1=(dw−1))
; ∀x; y ∈ F; 0¡t¡ 1:

(1.1)

The exponent ds is called the spectral dimension and governs the asymptotics of the
spectral counting function, dw is called the walk dimension and is determined by the
time to distance scaling in the fractal, and d(·; ·) is an intrinsic shortest path metric
(in the case of Sierpinski carpet or gasket it is equivalent to the Euclidean distance).
There is a corresponding lower bound of the same form but di�erent constants. Note
that if ds = n and dw = 2 we recover the usual Gaussian bounds of Rn. We will call
such upper and lower bounds Aronson-type estimates on the transition density (or heat
kernel). For a discussion of these estimates and background results concerning di�usion
on fractals see Barlow (1998).
We will be interested in the situation where the geometry of the fractal is generated

in a random way, and to determine the e�ect this has on the on-diagonal transition
density. In a previous paper (Hambly, 1997), a natural Brownian motion on a random
recursive Sierpinski gasket was constructed and relatively crude estimates obtained on
its transition density. The estimates were not tight and indicated that it might not be
possible to obtain the uniform Aronson type estimates of (1.1) in this setting.
One situation where fractals with irregular geometry were analysed in detail is the

case of scale irregular fractals, discussed in Barlow and Hambly (1997) and Hambly
et al. (2000b). These fractals are spatially homogeneous but not scale invariant with
the irregularity given by an environment sequence. It is known that there is typically

uctuation in the short-time asymptotics of the heat kernel and, in the Sierpinski gasket
case, if the environment is generated by an iid sequence, an explicit description of the

uctuation can be established. Using the relationship between the spectral counting
function and the trace of the heat semigroup it can be shown that the spectral counting
function also exhibits 
uctuation in its asymptotics.
The spectral counting function for random recursive Sierpinski gaskets was the sub-

ject of Hambly (2000). It was shown that if N (�) denotes the number of eigenvalues
of the Laplacian (Dirichlet or Neumann), then under a certain non-lattice assumption,
there exists a non-zero mean one random variable W , and a constant c1:3 such that

lim
�→∞

N (�)
�ds=2

= c1:3W 1−ds=2; P-a:s:

This raises the question of whether there really are 
uctuations in the short-time asymp-
totics of the heat kernel. In this paper we will show that there are 
uctuations and we
identify their functional form (which is determined by the tails of the random vari-
able W ). As the spectral counting function can be recovered from the trace of the heat
semigroup, this shows that integrating over the fractal leads to the cancellation of these

uctuations.
We will consider the class of random recursive Sierpinski gaskets of Hambly (2000)

and state our main result here for a particular example. For random recursive fractals
generated from fractals SG(2) and SG(3) (SG(2) is the Sierpinski gasket and SG(3)
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Fig. 1. A graph approximation to a random recursive Sierpinski gasket.

is a triangular fractal with generator consisting of 6 upward pointing triangles and 3
downward ones which are removed, for de�nitions see Hambly (2000)) we describe
explicitly the 
uctuations in time and space. Let (
;F;P) denote the probability space
of random recursive fractals F(!) built from the two fractals as in Hambly (1997)
(a realization is shown in Fig. 1), where we choose type SG(2) with probability p and
SG(3) with probability 1− p. The spectral dimension for the random fractal is given
by ds=2 = �=(�+ 1), almost surely, where

� := {s: p3(3=5)s + (1− p)6(7=15)s = 1}:
Note that if we de�ne �2 = log 3=log(5=3) and �3 = log 6=log(15=7) the spectral dimen-
sion of SG(2) is given by �2=(�2 + 1) = 2 log 3=log 5 and for SG(3) is �3=(�3 + 1) =
2 log 6=log(90=7). We also need two correction exponents, �′= �=�2− 1; �=1− �=�3.
The Laplace operator is de�ned with respect to a measure � induced by a suitable
general branching process. This measure is equivalent to the Hausdor� measure in the
resistance metric (see Sections 3 and 4 for details).

Theorem 1.1. (1) There exists a jointly continuous transition density pt(x; y) for
x; y ∈ F and t ¿ 0.
(2) There exist constants c1:4; c1:5 such that

c1:46 lim sup
t→0

pt(x; x)
t−�=(�+1)(log|log t|)�=(�+1)6c1:5; �-a:e: x ∈ F; P-a:s:

(3) There exist constants c1:6; c1:7 such that

c1:66 lim
t→0

sup
x∈F

pt(x; x)
t−�=(�+1)(|log t|)�=(�+1)6c1:7; P-a:s:

(4) There exists a constant c1:8 such that

lim inf
t→0

pt(x; x)
t−�=(�+1)(log|log t|)�′=(�+1)6c1:8; �-a:e: x ∈ F; P-a:s:

(5) There exists a constant c1:9 such that

lim
t→0

inf
x∈F

pt(x; x)
t−�=(�+1)(|log t|)�′=(�+1)6c1:9; P-a:s:
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It is possible to obtain lower bounds in cases (4) and (5) but, though they have the
same number of logarithms, we require a further assumption on the class of fractals
and the exponent in the logarithmic terms di�ers.
This result is quite di�erent to that for elliptic operators in divergence form on a

bounded domain D⊂Rn, where

c1:126 lim
t→0

pt(x; x)
tn=2

6c1:13; ∀x ∈ D:

In the case of regular fractals F such as nested fractals (LindstrHm, 1990), or Sierpinski
carpets we have

c1:106 lim
t→0

pt(x; x)
tds=2

6c1:11; ∀x ∈ F:

In these settings any 
uctuations for the leading order term in the transition density
must be bounded.
We note here that extending these 
uctuation results to a wider class of random

fractals, such as random recursive nested fractals not based on d-dimensional tetrahedra,
is a non-trivial problem. The main di�culty lies in establishing the existence of a
Brownian motion on such fractals. It can be shown that there is no uniform Harnack
inequality in that setting and hence the existence of the process is a serious di�culty.
The outline of the paper is as follows. In Sections 2 and 3 we introduce the random

recursive Sierpinski gaskets and give a description of these sets via general branching
processes. In Section 4 we introduce the natural Laplace operator on these fractals
via its Dirichlet form and a natural measure. We also derive the crucial properties of
these quantities. In Section 5 we show 
uctuations in the limiting random variable of
the general branching process. Section 6 will show the 
uctuation in the on-diagonal
transition density via a corresponding 
uctuation in the Green density. Throughout the
paper we will label the ith �xed constant in Section n by cn:i, other constants ci may
be used in di�erent proofs but will be �xed within a given proof.

2. Random recursive Sierpinski gaskets

We construct our random recursive fractals from the class of a�ne nested Sierpinski
gaskets and begin by recalling the de�nitions of such fractals (Fitzsimmons et al., 1994;
LindstrHm, 1990). For l¿ 1, an l-similitude is a map  :Rd → Rd such that

 (x) = l−1U (x) + x0; (2.1)

where U is a unitary, linear map and x0 ∈ Rd. Let  = { 1; : : : ;  m} be a �nite family
of maps where  i is an li-similitude. For B⊂Rd, de�ne

	(B) =
m⋃
i=1

 i(B);

and let

	n(B) =	 ◦ · · · ◦	(B):

The map 	 on the set of compact subsets of Rd has a unique �xed point F , which is
a self-similar set satisfying F =	(F).
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As each  i is a contraction, it has a unique �xed point. Let F ′
0 be the set of �xed

points of the mappings  i, 16i6m. A point x ∈ F ′
0 is called an essential �xed point

if there exist i; j ∈ {1; : : : ; m}; i 6= j and y ∈ F ′
0 such that  i(x) =  j(y). We write F0

for the set of essential �xed points. Now de�ne

 i1 ;:::;in(B) =  i1 ◦ · · · ◦  in(B); B⊂RD:

The set Fi1 ;:::;in =  i1 ;:::; in(F0) is called an n-cell and the set Ei1 ;:::; in =  i1 ;:::; in(F) an
n-complex. The lattice of �xed points Fn is de�ned by

Fn =	n(F0) (2.2)

and the set F can be recovered from the essential �xed points by setting

F = cl

( ∞⋃
n=0

Fn

)
:

We can now de�ne an a�ne nested fractal as follows.

De�nition 2.1. The set F is an a�ne nested fractal if { 1; : : : ;  m} satisfy:
(A1) (Connectivity) For any 1-cells C and C′, there is a sequence {Ci: i = 0; : : : ; n}

of 1-cells such that C0 = C; Cn = C′ and Ci−1 ∩ Ci 6= ∅; i = 1; : : : ; n.
(A2) (Symmetry) If x; y ∈ F0, then re
ection in the hyperplane Hxy = {z: |z − x| =

|z − y|} maps Fn to itself.
(A3) (Nesting) If {i1; : : : ; in}; {j1; : : : ; jn} are distinct sequences, then

 i1 ;:::; in(F) ∩  j1 ;:::; jn(F) =  i1 ;:::; in(F0) ∩  j1 ;:::; jn(F0):

(A4) (Open set condition) There is a non-empty, bounded, open set V such that the
 i(V ) are disjoint and

⋃m
i=1  i(V )⊂V .

Note that the di�erence between nested and a�ne nested fractals is that a�ne nested
fractals can have similitudes with di�erent scale factors. We de�ne a size class for an
a�ne nested fractal to consist of those sets that can be mapped to each other by
composition of the re
ection maps in (A2). An a�ne nested fractal contains k size
classes and, as each set in a size class must have the same length scale factor, there
are k length scale factors (not necessarily di�erent).
We �x a dimension d¿ 1 and de�ne the family of a�ne nested random recursive

Sierpinski gaskets based on tetrahedra in Rd. Let F0 = {z0; : : : ; zd} be the vertices of
the unit equilateral tetrahedron in Rd. Let A be a �nite set and for each a ∈ A, let Ba

be a bounded subset of Rka
+ for some ka ∈ N. For each a ∈ A; b ∈ Ba, let

 a;b = { a;b
i ; i = 1; : : : ; ma}

be a family of similitudes on Rd containing the d+ 1 essential �xed points given by
F0. The similitudes can be divided into ka size classes and for j ∈ {1; : : : ; ka} we write
ma(j) or sometimes m(a; j), for the number of similitudes in class j and write la;b(j) or
l(a; b; j) for the length scale factors of the similitudes. We only allow a �nite number
of possible con�gurations of size classes but, for each possible con�guration, the set
of length scale factors for the similitudes lies in the possibly uncountable subset Ba



66 B.M. Hambly, T. Kumagai / Stochastic Processes and their Applications 92 (2001) 61–85

(which must be compatible with the geometry). As above there is a unique compact
subset Ka;b of Rd which satis�es

Ka;b =
ma⋃
i=1

 a;b
i (Ka;b):

Under the open set condition (A4), this set will have Hausdor� dimension

df(Ka;b) =


�:

ka∑
j=1

ma(j)la;b(j)−� = 1


 :

We will now set up our class of random recursive Sierpinski gaskets, which is the
same as that of Hambly (2000). Let In =

⋃n
k=0 Nk and let I =

⋃
k Ik be the space of

arbitrary length sequences. We will write i; j for concatenation of sequences. For a
point i ∈ I\In denote by i|n the sequence of length n such that i= i|n; k for a sequence
k. We write j6i, if i= j; k for some k, which provides a natural ordering on branches.
Also denote by |i| the length of the sequence i.
The in�nite random tree, T , is a subset of the space I , de�ned as the sample path of a

Galton–Watson process. Let the root be T0 = I0 = ∅, the empty sequence. Let Ui ; i ∈ I
be independent and identically distributed A-valued random variables, indicating the
type of a�ne nested fractal to be used, with probability distribution

P(Ui = a) = pa; a ∈ A; ∀i ∈ I:

Then i ∈ T if i|n ∈ Tn ⊂ In for each 16n6|i|, where i|n ∈ Tn if

1. i|n− 1 ∈ Tn−1,
2. there is a j: 16j6m(Ui|n−1) such that i|n− 1; j = i|n.
Let s(i) be the projection map which allocates to each address i the size class of the
similitude i||i|. We need another random variable V (a; i) ∈ Rka

+, chosen according to
�a, which speci�es the length scale factor. Thus the length scale factor for the ith
similitude is the s(i)th coordinate of V; l(Ui ; V (Ui ; i); i)=Vs(i)(Ui ; i) and this is a label
for each node in the tree. Let (
;B;P) be a probability space. We will now denote a
random tree T as a sample point ! ∈ 
. The �-algebras are de�ned as

Bn = �(Ui ; V (Ui ; i); i ∈ Tn−1(!)); B=
∞⋃
n=1

Bn

and the probability measure, P, is determined by both a Galton–Watson process, in
which an individual has ma o�spring with probability pa for a ∈ A, and a labelling
process, in which each individual has a label according to �U .
Let E = E∅ be the unit equilateral tetrahedron. Then set Ei ; i ∈ Tn, geometrically

similar to E, to be

Ei =  i(E) =  
U∅ ;Vs(i|1)(U∅ ;∅)
i|1 (· · · ( Ui|n−1 ;Vs(i|n)(Ui|n−1 ; i|n−1)

i|n (E))):

We regard i as the address of the set Ei and will use this notation for any sequence
i. A random gasket can then be de�ned by

F! =
∞⋂
n=0

⋃
i∈Tn(!)

Ei :
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The Hausdor� dimension of the set F! can be found by applying the results of Falconer
(1986), Mauldin and Williams (1986) and Graf (1987) and is given by

df(F!) = inf

{
�: E

(m(U∅)∑
i=1

l(U∅; V (U∅; ∅); i)−�

)
= 1

}
for a:e: ! ∈ 
: (2.3)

We conclude this section with some more notation. Firstly, we note that there is a
natural projection map � : T → F given by �(i)=

⋂|i|
j=1 Ei|j. We will write En(x)=Ei|n,

for �(i) = x and i ∈T∞. We also denote a neighbourhood for a point x by

Dn(x) = En(x) ∪
⋃

En(y)∩En(x)6=∅
En(y):

When on the address space we write Nn(i) = { j|n: �( j|n) ∈ Dn(x); �(i) = x}.
It will be convenient for us to approximate the fractal with a sequence of graphs

and we will write Fn for the nth graph approximation, where

Fn =
⋃
i|n∈Tn

 i(F0):

In the next section we will construct a general branching process with ancestry de-
scribed by T and such that the resistance of each edge in the graph Fn is of resistance
approximately e−n.

3. General branching processes

We introduce brie
y C–M–J branching processes as it is the behaviour of the nor-
malized limit of their growth rate which will provide the 
uctuation of the transition
density of the Brownian motion on the random fractal.
Let � be a point process which describes the birth events, L the life-length and

�, a function on [0;∞), called a random characteristic of the process. We make no
assumptions about the joint distributions of these quantities. We write �(t) for the
�-measure of [0; t] and �(t) = E�(t) for the mean reproduction measure. The basic
probability space is now

(
;B;P) =
∏
i∈I

(
i ;Bi ;Pi);

where the spaces (
i ;Bi ;Pi) are identical and contain independent copies of (�; L; �).
We now denote a random tree by ! ∈ 
 and we will write �i(!) for the subtree of
! rooted at individual i. The attributes of the individual i are denoted by (�i ; Li ; �i)
and the birth time of the individual is denoted by �i .
Let {�(n)} be the sequence of ordered birth times and write (�(n); L(n); �(n)) when we

refer to this time-ordered sequence. Note {�(n)} is not a strictly increasing sequence.
Let �(1) = �∅ = 0. We consider the process

Z�(t) =
∑

n:�(n)6t

�(n)(t − �(n)):

That is the individuals in the population are counted according to the random charac-
teristic �.
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We will assume that �(0) = 0 and there exists a Malthusian parameter �¿ 0, such
that ∫ ∞

0
e−�t�(dt) = 1 and

∫ ∞

0
te−�t�(dt)¡∞:

Let ��(t) =
∫ t
0 e

−�s�(ds), and de�ne the probability measure ��(dt) = E(��(dt)). We
also assume that each individual has at least two o�spring so there is no possibility of
extinction and the process will be strictly supercritical. We will write

��� (t) = E(e−�tZ�(t))

for the discounted mean of the process with random characteristic �.
We de�ne the �-algebra determined by the �rst n individuals and their characteristics

as

An = �((�(k); L(k); �(k)): 16k6n):

The birth times �(k) are Ak−1 measurable. Now de�ne

Rn =
∞∑

l=n+1

e−��(l) I{l is a child of the �rst n individuals}:

Then, in our setting, {Rn}∞n=1 is a non-negative martingale with respect to An and
hence limn→∞ Rn = W ¿ 0 exists. We also state a Theorem concerning the limiting
behaviour of Z�(t) which is a version of Nerman (1981) Theorem 5:4.

Theorem 3.1. Let D[0;∞) denote the set of R+-valued cadlag paths and let � be a
D[0;∞)-valued characteristic. We assume that
(1) There exists a non-increasing; bounded positive integrable function g; such that

E sup
t≥0

(
��(∞)− ��(t)

g(t)

)
¡∞:

(2) There exists a non-increasing; bounded positive integrable function h; such that

E sup
t¿0

(
e−�t�(t)

h(t)

)
¡∞:

Then; if the reproduction process is non-lattice;

lim
t→∞ e−�tZ�(t) =W��� (∞) a:s: (3.1)

If the lifelength distribution is lattice; then there exists a periodic function G�
� ; such

that for large t;

Z�(t) =W e�t(G�
� (t) + o(1)) a:s: (3.2)

We de�ne a speci�c general branching process to describe the fractal. Let the re-
production and lifelength be given by

(�(ds); L)=

(
ka∑
i=1

ma(i)�logxi(ds);maxi
log xi

)
with probability pa�a(dx1; : : : ; dxk);
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then, if we let � denote the characteristic

�i(t) = �i(∞)− �i(t); (3.3)

which counts the individuals born after time t to mothers born at or before time t, then
the process Z�(t) is the number of sets in a e−t-cover for the fractal.

4. Laplacians on random recursive Sierpinski gaskets

We de�ne a natural Laplace operator on each possible random fractal ! ∈ 
 and
give some properties. For more discussion see Hambly (2000). Note that for a�ne
nested fractals based upon the Sierpinski gasket there is no di�culty in solving the
�xed point problem of LindstrHm (1990). Recall that there are ka size classes of set
in the a�ne nested fractal (some of these could be the same size) and recall that
s(i) ∈ {1; : : : ; ka} denotes the size class of the set with address i. We can allocate a
�xed resistance ra(j); j = 1; : : : ; ka to all cells in a given class in the fractal Ka. Let
F0 denote the complete graph on the essential �xed points and de�ne

E0(f; g) =
1
2

∑
x;y∈F0

(f(x)− f(y))(g(x)− g(y))

for f; g ∈ C(F0). If we let

Ẽ
(a)
1 (f;f) =

ma∑
i=1

ra(s(i))−1E0(f ◦  i; f ◦  i) =
ka∑
j=1

m(a; j)∑
i=1

ra(j)−1E0(f ◦  i; f ◦  i)

for f ∈ C(Fa
1 ), then there is a constant �a such that

E0(f;f) = �a inf{Ẽ(a)1 (g; g): g= f|F0}:
This allows us to de�ne the Dirichlet form for each fractal in our family A, for details
see Barlow (1998). We will let �a(j) = �(a; j) = �a=ra(j) denote the conductance of a
cell of class j in the fractal.
We can de�ne a Dirichlet form (E;F) on an appropriate L2(F; �) for the random

fractal for each ! ∈ 
. As usual we build this up from a sequence of approximating
Dirichlet forms on the lattice approximations to the fractal. We de�ne the resistance
of a cell with address i, by

R(i)−1 =
|i|∏
i=1

�(Ui|i−1; s(i|i)):

We can then write

E!
n (f; g) =

∑
i∈!n

R(i)−1E0(f ◦  i ; f ◦  i):

By the construction of the conductances the sequence of Dirichlet forms is monotone
increasing as, for f : F → R, we have the property that

E!
n (f|Fn ; f|Fn) = inf{E!

n+1(g; g): g ∈ C(Fn+1); g= f|Fn}:
Once we have such a sequence of Dirichlet forms we can clearly de�ne the limiting
Dirichlet form as the limit of the sequence.
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To de�ne the associated Laplace operator, we need a measure. As in Hambly (1997,
2000) we choose a measure, equivalent to the Hausdor� measure of the fractal in the
resistance metric, as the limit of the invariant measures for the Markov chains on the
sequence of lattice approximations in which each edge has roughly the same resistance.
We modify the general branching process description of the fractal to describe this new
approximation to the fractal and to obtain the measure. Let the vector of conductances
�a = {�a(i); 16i6ka} be chosen according to the random variable V (a; i) with prob-
ability measure �a. As in Hambly (2000) we restrict the support of the measure to
ensure that the resistance and conductance can be controlled uniformly.

Assumption 4.1. For each a ∈ A, the support Ba of the measure �a, for the distribution
of conductances on the cells in the fractal Ka, has each coordinate bounded away from
0 and ∞ in Rka

+.

Note that the resistance of a component of the fractal does not have to depend on
its length scale. Let

(�(ds); L)=

(
ka∑
i=1

ma(i)�log xi(ds);maxi
log xi

)
with probability pa�a(dx1; : : : ; dxka);

so that the o�spring of an individual are born at times given by log �a(i). Let �
denote the characteristic, de�ned in (3.3), which counts the number of individuals in
the population born after time t to mothers born before or at time t, and denote the
corresponding general branching process by z�t = Z�(t).
Let

�n = {i ∈ z�n };

identify an individual with their line of descent, and then de�ne

F̃n =
⋃
i∈�n

 i(F0):

The graph based on F̃n has approximately the same resistance for the edge of each
tetrahedron, in that there exists a constant c4:1¿ 0 such that c4:1e−n6R(i)6e−n. We
will refer to the sets Ei for i ∈ �n as n-cells.
We now de�ne the measure �! as a limit of a sequence of measures �!

n . We specify
the measure �!

n on each m-complex Ei as

�!
n (Ei) =

∑
j∈�n−m

R(i; j)−1∑
j∈�n

R( j)−1
: (4.1)

As the fractal F! is compact, by tightness there is a subsequence of the measures �!
n

which converges weakly to a limit measure �! on the fractal F!. We can then de�ne
the Dirichlet form (E!;F!) on L2(F!; �!) for each ! ∈ 
. Note that this measure
could be de�ned as the projection onto the fractal of a natural measure on the boundary
of the tree T .
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We de�ne the Dirichlet form (E!;F!) on the space L2(F!; �!) as

F! =
{
f: sup

n
E!

n (f;f)¡∞
}

and

E!(f;f) = lim
n→∞E!

n (f;f); ∀f ∈ F!:

The e�ective resistance between two points in the random fractal F is de�ned by

r!(x; y) = (inf{E!(f;f): f(x) = 0; f(y) = 1; f ∈ F!})−1 :
As in Hambly (1997) we have the following estimate on the e�ective resistance.

Lemma 4.2. There exist constants c4:2; c4:3 such that for each edge (x; y) ∈ F̃
!
n ,

c4:2e−n6r!(x; y)6c4:3e−n; ∀! ∈ 
:

From this result it is not di�cult to see that the measure �! is equivalent to the
�-dimensional Hausdor� measure in the e�ective resistance metric.
We note that using our conductivity coordinates, and the de�nition of e�ective re-

sistance, we can prove the following estimate on the continuity of functions in the
domain F!.

Lemma 4.3. There exists a constant c4:4 such that

sup
x;y∈Ei

|f(x)− f(y)|6c4:4R(i)E!(f;f); ∀f ∈ F!; ∀i ∈ �m; ∀! ∈ 
:

By construction we have c4:1e−m6R(i)6e−m for i ∈ �m and this shows that the
domain F! ⊂C(F!). The �rst part of the following theorem follows from Lemma 4.3
and the second from the proof of Hambly (2000) Lemma 4.6.

Theorem 4.4. The bilinear form (E!;F!) is a local regular Dirichlet form on
L2(F!; �!) and has the property that there exist constants c4:5; c4:6 such that for
all ! ∈ 
; we have

sup
x;y∈F!

|f(x)− f(y)|6c4:5E!(f;f) for all f ∈ F!; (4.2)

||f||∞6c4:6
(
E!(f;f) + ||f||22

)
for all f ∈ F!: (4.3)

We can also observe a scaling property of the Dirichlet form. We write �(1)(j) for
the conductance of the sets of size class j in the �rst division of the fractal. In the
corresponding branching process the �rst individual has m(U∅; j) o�spring at times
log �∅(j).

Lemma 4.5. We can write for all f; g ∈ F!;

E!(f; g) =
�(1)(∞)∑

i=1

�(1)(s(i))E�i(!)(f ◦  i; g ◦  i):
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5. Fluctuations in the branching process limit

We now work on 
′ ⊂
 with P(
′) = 1 where the general branching process
converges. By Theorem 3.1 we have that for all ! ∈ 
′,

e−�tz�t (!)→ ��� (∞)W (!);
where � satis�es the equation

E


�(1)(∞)∑

i=1

�(1)(s(i))−�


=∑

a∈A

ka∑
j=1

ma(j)�−�
j pa = 1: (5.1)

The branching process with characteristic � can be written, for a �xed m, by taking t
large enough (using our Assumption 4.1), as

z�t =
∑
i∈�m

z�t−�i (i);

where z�(i) are iid copies of z�. Substituting the convergence result into the above,
and using the de�nition of �m we see that

W =
∑
i∈�m

R(i)�Wi ;

where

Wi =W (�i(!)) = lim
s→∞ e−�sz�s (i)=�

�
� (∞):

Hence, for an m-complex Ei in conductivity coordinates, we have

�!(Ei) =
R(i)�W (�i(!))

W (!)
: (5.2)

By taking the characteristic �i(t) = R(i)−1 and using Theorem 3.1 we can see that
this is the behaviour of the limit of the sequence of measures de�ned by (4.1). Note
that we can decompose W and hence the measure using any section of the tree !, in
particular, by looking at the o�spring of the �rst born individual,

W =
�(1)(∞)∑

i=1

�−�
(1) (s(i))Wi; (5.3)

∫
F!

f(x)�!(dx) =
�(1)(∞)∑

i=1

�!( i(F�i(!)))
∫
F�i (!)

f( i(x))��i(!)(dx);

f ∈ C(F!): (5.4)

We now note some bounds on the random variable W that are essential for estab-
lishing the results of Section 6. Let �a= {x: ∑ma

i=1(�
(a)
i )

−x =1} and set ��=maxa∈A �a

and �=mina∈A �a. As the set A is �nite we have 0¡�6 ��¡∞. De�ne
�′ =

�
�
− 1 and � = 1− �

��
:

Note that 0¡�′ ¡∞ and 0¡�¡ 1.



B.M. Hambly, T. Kumagai / Stochastic Processes and their Applications 92 (2001) 61–85 73

Theorem 5.1. There exist constants c5:i ¿ 0; i = 1; : : : ; 8 such that

c5:1 exp(−c5:2�−1=�
′
)6P(W ¡�)6c5:3 exp(−c5:4�−1=�

′
); ∀�¿ 0 (5.5)

and

c5:5 exp(−c5:6�1=�)6P(W ¿�)6c5:7 exp(−c5:8�1=�); ∀�¿ 0: (5.6)

Proof. The upper bounds on both tails were given for a subclass of these fractals
in Hambly (1997). The arguments used there are easily extended to the a�ne nested
fractals discussed here.
For the lower bounds we can bound the right tail using (Liu, 1996) where exactly

this problem is analysed using characteristic functions and the above lower bound
obtained.
For the lower bound on the left tail we begin by estimating the Laplace transform

for W , �(u)=E(exp(−uW )). Using the worst case behaviour of the possible o�spring
distribution, in the same way as in the proof of Hambly (1997) Lemma 3.6 we have
the existence of constants c1; c2 such that

�(u) ≥ c1exp(−c2u�=�):

Now observe that

�(u) = E(exp(−uW )I{W≥x}) + E(exp(−uW )I{W¡x})

6 e−ux + P(W ¡x)

and hence

P(W ¡x) ≥ c1exp(−c2u�=�)− e−ux = (c1 exp(−c2u�=� + ux)− 1)e−ux ∀u¿ 0:

Choosing u= c3x�=(�−�) and making suitable adjustments to the constants we have the
result.

Using these estimates we will prove bounds on the 
uctuation in W ; more precise
estimates on the tails of W and �ner results for this 
uctuation (and that of the measure)
can be found in Hambly and Jones (2000).
Firstly, we require two preliminary lemmas. Let Tk;k−1(i)=Tnk−nk−1 be the tree with

the root at i|nk−1 for any subsequence {nk} and write PTk for the probability measure
P conditioned on the tree Tk;k−1(i) and ETk the corresponding expectation.

Lemma 5.2. There exist constants c5:9; c5:10 and M ∈ N such that if xk = c5:9(log k)�

and nk =Mk for each k ∈ N ; then

PTk (Wi|nk ¿ xk ;Wi|nk−1 ¡xk−1) ≥ c5:10k−1:

Proof. This is proved using our tail estimates on W . De�ne i(k; k − 1) = j : i|nk =
i|nk−1; j, then

PTk (Wi|nk ¿ xk ;Wi|nk−16xk−1)

=PTk


Wi|nk ¿ xk ;

∑
j∈Tk; k−1(i)

R(j)�Wi|nk−1 ;j6xk−1






74 B.M. Hambly, T. Kumagai / Stochastic Processes and their Applications 92 (2001) 61–85

=
∫ ∞

xk

PTk


 ∑
j 6=i(k;k−1)

R( j)�Wi|nk−1 ;j + R(i(k; k − 1))�y6xk−1


P(Wi|nk ∈ dy)

≥ P(Wi|nk ∈ [xk ; c1R(i(k; k − 1))−�xk−1])

×PTk


 ∑
j 6=i(k;k−1)

R( j)�Wi|nk−1 ;j6(1− c1)xk−1




for some constant c1¡ 1. Observing that the second term in the product will be
bounded below by a constant c2, setting c3 = (c1R(i(k; k − 1))−�)1=� and applying
the tail estimates in (5.6), gives

PTk (Wi|nk ¿ xk ;Wi|nk−16xk−1)

¿c2(c5:5 exp(−c5:6x
1=�
k )− c5:7 exp(−c5:8c3x

1=�
k−1))

= c4k−c5 (1− c6 exp(−(c5:8c3 log(k − 1)− c5:6 log k))):

We can choose c5:9 in order that c5 = 1, and also M large so that c3 is su�ciently
large to make c6 exp(−(c5:8c3 log(k − 1)− c5:6 log k))6 1

2 for all k, and hence we have
the result.

Lemma 5.3. There exist constants c5:11; c5:12 and M ∈ N such that if
yk = c5:11(log k)−�′

and nk =Mk for each k ∈ N ; then

ETk (Wi|nk I({Wi|nk ¡yk ;Wi|nk−1 ¿yk−1})):¿c5:12ykk−1:

Proof. We begin by estimating the conditional distribution of W, for 0¡x¡yk ,

PTk (Wi|nk ∈ dx|Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)

=
PTk (Wi|nk ∈ dx;Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)

PTk (Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)

=
PTk (Wi|nk ∈ dx;

∑
j∈Tk; k−1(i) R(j)

�Wi|nk−1 ; j ¿yk−1)

PTk (Wi|nk ¡yk ;
∑

j∈Tk; k−1(i) R(j)
�Wi|nk−1 ; j ¿yk−1)

¿
P(Wi|nk ∈ dx)
P(Wi|nk ¡yk)

PTk (
∑

j 6=i(k;k−1) R(j)
�Wi|nk−1 ; j ¿yk−1)

PTk (
∑

j∈Tk; k−1(i) R(j)
�Wi|nk−1 ; j ¿yk−1|Wi|nk ¡ xk)

:

As PTk (
∑

j 6=i(k;k−1) R(j)
�Wi|nk−1 ; j ¿yk−1) → 1 as k → ∞ there is a constant c1 such

that for 0¡x¡yk , for all k ¿ 0,

PTk (Wi|nk ∈ dx|Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)¿c1P(Wi|nk ∈ dx|Wi|nk ¡yk)

and thus

ETk (Wi|nk |Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)¿c1E(Wi|nk |Wi|nk ¡yk): (5.7)
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Now

E(Wi|nk |Wi|nk ¡yk) =
∫ yk

0
P(Wi|nk ¿ x|Wi|nk ¡yk) dx;

¿ c2ykP(Wi|nk ¿ c2yk |Wi|nk ¡yk):

Finally, using the left tail estimates on W in (5.5), we see that if c2¡ (c5:4=c5:2)�
′
,

then there exists a constant c3 such that

E(Wi|nk |Wi|nk ¡yk)¿c3yk : (5.8)

To complete the proof we follow the same arguments as in Lemma 5.2 and hence
choose the constants c5:11 and M to obtain the estimate

PTk (Wi|nk ¡yk ;Wi|nk−1 ¿yk−1)¿c4k−1:

Putting this, (5.7) and (5.8) together gives the result.

Theorem 5.4. There exist constants c5:i ¿ 0; i = 13; : : : ; 16 such that P-a.s.

c5:136 lim inf
n→∞

Wi|n
(log n)−�′6c5:14; �-a:e: i ∈ T

and

c5:156 lim sup
n→∞

Wi|n
(log n)�

6c5:16; �-a:e: i ∈ T:

Proof. We begin with the lim sup case. Recall that we have assumed that we are
working in 
′ in which the Wi exist and are non-zero.
For the upper bound we use the �rst Borel–Cantelli lemma and need to show that

almost surely under P there is a constant c1 such that∑
n

�
(

Wi|n
(log n)�

¿c1

)
¡∞:

By de�nition of the measure it is enough to show that

E
∑
n

∑
i∈Tn

R(i|n)�Wi|nI{Wi|n¿c1(log n)�} ¡∞:

By construction we have an upper bound on R(i|n)6c2e−�n. Now, conditioning on the
tree Tn and using the independence of Tn and Wi|n, we have

E
∑
n

∑
i∈Tn

R(i|n)�Wi|nI{Wi|n¿c1(log n)�}6
∑
n

e−n�E(z�n )E(WI{W¿c1(log n)�}):

As e−n�E(z�n )6c3, we just require an estimate on E(WI{W¿c1(log n)�}). Using an inte-
gration by parts and the estimate given in Theorem 5.1, we have

E(WI{W¿c1(log n)�})6c4(log n)1−1=�n−c5 :

Thus by a suitable adjustment of the constant c5 we have the result.
For the lower bound, it is enough to prove that almost surely under P,

�(Wi|nk¿c5:15(log k)� i:o:) = 1;
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where {nk} is the subsequence which appeared in Lemma 5.2. Using the proof of the
second Borel–Cantelli lemma, if Fn is a sequence of events, then

�(lim supFn) = 1; if
∑
n

�(Fn|Fcn−1; : : : ; Fc1) =∞;

where A1; : : : ; An ≡ A1 ∩ · · · ∩ An. Let the events Fk = {i ∈ Tnk : Wi|nk¿c1(log k)�)}.
We can write

�(Fk |Fck−1; : : : ; Fc1) =
(
1 +

�(Fck−1; : : : ; F
c
1 |Fck )�(Fck )

�(Fck−1; : : : ; F
c
1 |Fk)�(Fk)

)−1
: (5.9)

As the sequence Wi|n has a Markov structure, in that

Wi|nk−1 =
∑

j∈Tk; k−1(i)

R( j)�Wi|nk−1 ; j ;

we can estimate the term
�(Fck−1; : : : ; F

c
1 |Fck )�(Fck )

�(Fck−1; : : : ; F
c
1 |Fk)�(Fk)

: (5.10)

This gives, for 16i6k − 2,
�(Fci |Fci+1; : : : ; Fck ) = �(Fci |Fci+1; : : : ; Fk) = �(Fci |Fci+1):

Substituting this into (5.10) and cancelling leaves

�(Fck−1; : : : ; F
c
1 |Fck )�(Fck )

�(Fck−1; : : : ; F
c
1 |Fk)�(Fk)

=
�(Fck ; F

c
k−1)

�(Fk; Fck−1)
:

Note that the top term is bounded above by 1. For the bottom term we will write
xk = c1(log k)�, and observe that

�(Fk; Fck−1) =
∑
i∈Tnk

e−��i|nk Wi|nk I({Wi|nk ¿ xk ;Wi|nk−16xk−1}): (5.11)

We will prove that there exists a constant c6 such that

�(Fk; Fck−1)¿c6k−1; ∀k ∈ N; P-a:s: (5.12)

With this bound we have that∑
k

�(Fk |Fck−1; : : : ; Fc1) =∞; P-a:s:;

which gives the result.
Thus all we need to establish is (5.12). Rewriting (5.11), we have

�(Fk; Fck−1)¿xk |Tnk−1 |e−�nk Bk ;

where |Tn| denotes the size of the tree Tn and

Bk =
1

|Tnk−1 |
∑
i∈Tnk

I({Wi|nk ¿ xk ;Wi|nk−16xk−1}):

By the convergence of the general branching process we have |Tnk−1 |e−�nk−1 → c7 as
k → ∞. We will use the independence of the Wi|n for �xed n and a straightforward
large deviation approach to estimate the behaviour of Bk . Let

Xi|nk−1 = e
−�(nk−nk−1)

∑
j∈Tk; k−1(i)

I{Wi|nk−1 ;j
¿xk ;Wi|nk−1

6xk−1}
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and also let X̃ i|nk−1=Xi|nk−1−E(Xi|nk−1 ) and B̃k=
∑

i∈Tnk−1
X̃ i|nk−1 . With these de�nitions

we have

Bk =
B̃k

|Tnk−1 |
+ E(Xi|nk−1 ): (5.13)

Now, using Markov’s inequality and the independence,

P(B̃k ¡− x) = P(e−�B̃k ¿ e�x);

6 e−�xE(e−�B̃k )

= e−�x�k(�)
|Tnk−1 |;

where �k(�) = E exp(−�X̃ i|nk−1 ) (which exists as X̃ i|nk−1 is bounded below). We now
recall the elementary inequalities that 1− x6e−x for x ∈ R and e−x61− x + 1

2x
2 for

x ∈ R+. Applying the upper bound we have
�k(�) = Ee−�(Xi|nk−1

−E(Xi|nk−1
))

6 E
(
1− �(Xi|nk−1 − E(Xi|nk−1 )) +

1
2�

2(Xi|nk−1 − E(Xi|nk−1 ))
2)

6 1 + 1
2�

2var (Xi|nk−1 )

and then the lower bound,

P(B̃k ¡− x)6 exp(−�x + 1
2�

2 var(Xi|nk−1 )|Tnk−1 |):
Optimizing over � we have

P(B̃k ¡− x)6exp
(
−1
2

x2

var(Xi|nk−1 )|Tnk−1 |
)

:

Hence, choosing x= c8EXi|nk−1 |Tnk−1 | for some constant c8¡ 1, and using the relation-
ship in (5.13), we have a constant c9 = 1

2 (1− c8)2¿ 0, such that

P(Bk ¡ (1− c8)EXi|nk−1 )6exp

(
−c9|Tnk−1 |

(EXi|nk−1 )
2

var(Xi|nk−1 )

)
: (5.14)

We estimate EXi|nk−1 by conditioning on the tree to get

EXi|nk−1¿E(Tk;k−1(i))e−�(nk−nk−1)PTk (Wi|nk ¿ xk ;Wi|nk−1 ¡xk−1):

Thus, using Lemma 5.2, there is a subsequence such that

EXi|nk−1¿c10k−1:

As var (Xi|nk−1 ) is bounded above by a constant we see that there is exponential con-
vergence in (5.14) and hence Bk¿c11k−1 almost surely. Thus we have established
(5.12) which concludes the proof for the lim sup result.
We now turn to the lim inf case, which is similar but requires some modi�ca-

tion. For the lower bound on the lim inf we use the same argument as for the up-
per bound in the lim sup case. For the upper bound we can argue as in the lim sup
case and hence we need to establish (5.12) for the appropriate choice of events
Fk = {Wi|nk ¡yk ;Wi|nk−1 ¿yk−1} where yk = c12(log k)−�′

.
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However, if we write (5.11) in this case, we only have

�(Fk; Fck−1)¿|Tnk−1 |e−�nk B′
k ;

where

B′
k =

1
|Tnk−1 |

∑
i∈Tnk

Wi|nk I({Wi|nk ¿yk ;Wi|nk−16yk−1}):

To apply the large deviation argument we write

X ′
i|nk−1

= e−�(nk−nk−1)
∑

j∈Tk; k−1(i)

Wi|nk−1 ;jI{Wi|nk−1 ;j
¿yk ;Wi|nk−1

6yk−1}

and X̃
′
i|nk−1

= X ′
i|nk−1

− E(X ′
i|nk−1

) and B̃
′
k =

∑
i∈Tnk−1

X̃
′
i|nk−1

. Now, as before we can

show using elementary inequalities and optimizing over �, that

P(B̃′
k ¡− x)6exp

(
−1
2

x2

var(X ′
i|nk−1

)|Tnk−1 |

)
: (5.15)

Hence, choosing x=c13EX ′
i|nk−1

|Tnk−1 | for some constant c13, we have a constant c14¿ 0,
such that

P(B′
k ¡ (1− c13)EX ′

i|nk−1
)6exp

(
−c14

(EX ′
i|nk−1

)2

var(X ′
i|nk−1

)|Tnk−1 |

)
:

We condition on the tree and on this occasion use Lemma 5.3 to show that there is
a constant c15 and a subsequence such that

EX ′
i|nk−1

¿c15ykk−1:

Thus ∑
k

P(B′
k ¡ (1− c13)ykk−1)¡∞

and B′
k¿(1− c13)ykk−1 eventually almost surely. As yk decreases as a logarithm, we

can adjust the constants to ensure that
∑

k �(Fk; Fck−1) diverges and hence we have the
lim inf result.

For the spatial 
uctuation we can prove the following result in a similar but much
more straightforward manner, see Liu (1999) and Hambly and Jones (2000).

Theorem 5.5. There exist constants c5:i ¿ 0; i = 17; : : : ; 20 such that P-a.s.

c5:176 lim
n→∞ inf

i|n∈Tn

Wi|n
n−�′6c5:18
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and

c5:196 lim
n→∞ sup

i|n∈Tn

Wi|n
n� 6c5:20:

6. Fluctuation in the transition density

In this section we will omit reference to the underlying probability space unless
required. There is a transition semigroup associated with the Dirichlet form (E;F)
and it will have a transition density pt(x; y) with respect to the measure �. As the
Dirichlet form is local and regular there is also an associated Feller di�usion process
({Xt}t¿0; Px; x ∈ F). In Hambly (1997) bounds were found on pt(x; y) which were
not tight and indicated that there might be 
uctuation in the heat kernel in space. Here
we will show that this 
uctuation occurs in both time and space.
We will take our �rst step toward uncovering the temporal 
uctuation in the heat

kernel by proving that there is some 
uctuation in the on-diagonal Green density. The
results for the heat kernel will then follow from Tauberian theorems.
Let gA(x; y) denote the Green density for the process killed upon leaving the set

A, and g�(x; y) denote the �-Green density. Let TDn(x) = inf{t¿0: Xt 6∈ Dn(x)} be the
exit time for the set Dn(x). Observe that from Hambly (1997) we have the following
estimate on the �-Green density in terms of the killed Green density,

g�(x; x)¿gDn(x)(x; x)P
x(TDn(x)¡��);

where �� is an independent exponentially distributed random variable with mean 1=�.
As it is possible to estimate the Green density for the process killed on exiting the set
Dn(x) we have a constant c6:1 such that

g�(x; x)¿c6:1e−n if Px(TDn ¿��)6 1
2 : (6.1)

By an elementary modi�cation in the proof of Lemma 7.9 of Hambly (1997) we have
the following.

Lemma 6.1. There exists a constant c6:2¿ 0 such that

Px(TDn ¿��)6 1
2 if �ExTDn(x)6c6:2: (6.2)

The following lemma gives control on the exit time from a neighbourhood.

Lemma 6.2. There exist constants c6:3; c6:4¿ 0 such that

c6:3e−(�+1)nWi|n6ExTDn(x)6c6:4e−(�+1)n


 ∑
j∈Nn(i)

Wj|n


 ; ∀x ∈ F:

Proof. From Hambly (1997) Section 6 we can control the supremum of the exit times
from a cell. Observe that there exists a �xed constant c1 such that

sup
y; z∈Dn(x)

gDn(x)(y; z)6 sup
z∈Dn(x)

gDn(x)(z; z)6c1e−n:
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Thus, for the upper bound, we have

sup
y∈Dn(x)

EyTDn(x) = sup
y∈Dn(x)

∫
Dn(x)

gDn(x)(y; z)�(dz)

6
∫
Dn(x)

sup
y∈Dn(x)

gDn(x)(y; y)�(dz)

6 c1e−n�(Dn(x)):

By using the results of Section 6 of Hambly (1997) it can be shown that there exists
a constant c2 such that

gDn(x)(x; y)¿c2e−n; ∀x; y ∈ En(x):

Using this there is a lower bound on the exit time,

ExTDn(x)¿c3e−n�(En(x)); ∀x ∈ F;

and using (5.2) gives the result.

We prove our 
uctuation result in two parts, the upper and the lower bounds.

Proposition 6.3. There exist constants c6:5; c6:6¿ 0 such that P-a.s.

c6:56 lim inf
�→∞

g�(x; x)
�−1=(�+1)(log log �)−�′=(�+1) ; �-a:e: x ∈ F (6.3)

and

c6:66 lim sup
�→∞

g�(x; x)
�−1=(�+1)(log log �)�=(�+1)

; �-a:e: x ∈ F; (6.4)

Proof. We �rst prove (6.4). Using (6.2) in (6.1), we see that

g�(x; x)¿c6:1e−n if �ExTDn(x)6c6:2: (6.5)

Now, from applying Theorem 5.4 in Lemma 6.2, for �-a.e. x ∈ F we can take a
subsequence mk such that

Ex(TDmk
)¿c1(logmk)� exp(−(�+ 1)mk):

Further, if we de�ne the sequence {�k} by
�k6c−11 (logmk)−� exp((�+ 1)mk);

we have

e−mk¿�−1=(�+1)k (log log �k)�=(�+1):

Replacing this in (6.5) we have (6.4), the lower bound on the lim sup.
For the lower bound on the lim inf we take the full sequence Wi|n so that

Ex(TDn)¿c2(log n)−�′
exp(−(�+ 1)n) for �-a:e: x ∈ F:

Then, if

�n6c−12 (log n)
�′
exp((�+ 1)n);



B.M. Hambly, T. Kumagai / Stochastic Processes and their Applications 92 (2001) 61–85 81

we have

e−n¿�−1=(�+1)n (log log �n)−�′=(�+1):

Replacing this in (6.5) we have (6.3).

We can also tackle the upper bound using the scaling argument of Hambly et al.
(2000a). Let

F!
0 = {f ∈ F!: f|F0 = 0}; F

�i(!)
i = {f ∈ F!: f ◦ Fi ∈ F!};

F̂
!
= {f ∈ L2(F; �): ∃fi ∈ F

�i(!)
i ; f| i(F)\F1 = fi};

F̂
!
0 = {f ∈ F!: f|F1 = 0}:

Set Ê
!
(f; g) =

∑
i �∅E�i(!)(fi; gi) for f; g ∈ F̂

!
. Then, (Ê

!
; F̂

!
) is a regular local

Dirichlet form on L2(F; �). Note that

F̂
!
0 ⊂F!

0 ⊂F! ⊂ F̂
!
: (6.6)

Let g0;!� ; g!
� be the �-order reproducing kernels for (E!;F!

0 ); (E
!;F!); respectively.

Also, let ĝ 0;!� ; ĝ !
� be the �-order reproducing kernels for (E!; F̂

!
0 ); (Ê

!
; F̂

!
); respec-

tively. Note that by the same proof as that of Lemma 4.3, the former kernels are
continuous on F × F and the latter are continuous on

⋃N∅
i=1  i(F)×  i(F).

Lemma 6.4. For each x ∈ F\F1;
ĝ 0;!� (x; x)6g0;!� (x; x)6g!

� (x; x)6ĝ !
� (x; x):

Proof. Noting that
1

g!
� (x; x)

= inf
u∈Lx

E!
� (u; u); (6.7)

where Lx={u ∈ F!: u(x)¿1} and E!
� (u; u)=E!(u; u)+�||u||22 (similar formulae also

hold for ĝ 0;!� ; g0;!� ; ĝ !
� ), we obtain the result using (6.6) (see Hambly et al., 2000a).

Lemma 6.5. For x ∈ F\F1, we have
g0;!� (x; x) = �∅ĝ

0;!
�∅�(Ei)−1�( i(x);  i(x));

g!
� (x; x) = �∅ĝ

!
�∅�(Ei)−1�( i(x);  i(x)):

Proof. This can be proved by an application of the decomposition of the Dirichlet
form in Lemma 4.5, the decomposition of the L2 norm of functions in domain (5.4),
with the de�nition of the �-Green density in (6.7).

Iterating Lemma 6.4 using Lemma 6.5 and setting �i|n = �i|n�( i|n(F))−1, we have
for �xn ∈ F\F0,

g0;!� ( �xn; �xn)6 �i|ng
0;!
�i|n�
( i|n( �xn);  i|n( �xn))

6 �i|ng!
�i|n�( i|n( �xn);  i|n( �xn))6g!

� ( �xn; �xn): (6.8)
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Now for x ∈ F\F∞ and �¿ 1 we can choose n such that �i|n−16�¡�i|n. By our
choice of �, and the fact that g� is decreasing in �, we have that

�i|n−1g!
�i|n(x; x)6�i|ng!

� (x; x)6�i|ng!
�i|n−1

(x; x):

If we write x= i|n( �xn) and apply (6.8) with �=1 to both sides of the above inequality,
there are constants c6:7; c6:8 such that

g0;!1 ( �xn; �xn)6�i|ng!
� (x; x)6c6:7g!

1 ( in( �xn);  in( �xn))6c6:8; (6.9)

where c6:8 = c6:7 maxx∈F! g!
1 (x; x). We can check that this constant is deterministic

following the proof of Fitzsimmons et al. (1994) Theorem 4.1. As, applying (4.3), we
see

sup
x∈F!

√
g!
1 (x; x)6 sup

x∈F!

supy∈F! g!
1 (x; y)√

g!
1 (x; x)

6 sup
f∈F!

supy∈F! |f(y)|√
E!(f;f) + ||f||22

6c4:6:

We summarize in the following lemma.

Lemma 6.6. If �i|n−1 = e(�+1)nW
−1
i|n 6�, then there exists a constant c6:9 such that

g!
� (x; x)6c6:9�−1

i|n .

Proposition 6.7. There are constants c6:10; c6:11¿ 0 such that P-a.s.

lim inf
�→∞

g�(x; x)
�−1=(�+1)(log log �)−�′=(�+1)6c6:10; �-a:e: x ∈ F

and

lim sup
�→∞

g�(x; x)
�−1=(�+1)(log log �)�=(�+1)

6c6:11; �-a:e: x ∈ F:

Proof. Observe that due to the estimates we have on �i|n and �, there exist constants
such that

c1W−1
i|n e

(�+1)n6�i|n6c2W−1
i|n e

(�+1)n; ∀i; ∀n:
By Theorem 5.4, for �-a.e. x ∈ F we can choose a subsequence {nk} such that

W−1
i|nk¿c3(log nk)�

′
:

Thus, if

�k¿c−13 (log nk)�
′
exp(−(�+ 1)nk);

we have for �-a.e. x ∈ F ,

g�k (x; x)6�−1
i|nk6e

−nk6�−1=(�+1)k (log log �k)−�′=(�+1):

Replacing this in the above we have the bound on the lim inf. If we just use the
worst-case bound for W−1

i|n in Theorem 5.4, as in the demonstration of (6.3), we have
the lim sup upper bound.

We combine the above bounds in order to state a theorem for the 
uctuation in the
Green density.



B.M. Hambly, T. Kumagai / Stochastic Processes and their Applications 92 (2001) 61–85 83

Theorem 6.8. There exist constants c6:i ¿ 0; i = 5; 6; 10; 11 such that P-a.s.

c6:56 lim inf
�→∞

g�(x; x)
�−1=(�+1)(log log �)−�′=(�+1)6c6:10; �-a:e: x ∈ F (6.10)

and

c6:66 lim sup
�→∞

g�(x; x)
�−1=(�+1)(log log �)�=(�+1)

6c6:11; �-a:e: x ∈ F: (6.11)

We now need Tauberian-type arguments to obtain the limit result for the transition
density. The 
uctuation prevents us from using Karamata’s Tauberian theorem and we
thus take a bare hands approach.

Theorem 6.9. There exist constants c6:12; c6:13¿ 0 such that P-a.s.

c6:126 lim sup
t→0

pt(x; x)
t−�=(�+1)(log|log t|)�=(�+1)6c6:13; �-a:e: x ∈ F:

Proof. The upper bound is easy. As pt(x; x) is non-increasing w.r.t. t, we have

g�(x; x)¿pt(x; x)
∫ t

0
e−�s ds= pt(x; x)(1− e−�t)=�:

Taking t=1=�, the result easily follows using (6.11). For the lower bound, as pt(x; x)
is non-increasing w.r.t. t, using the upper bound just obtained, we have for small t ¿ 0,

g�(x; x)6
∫ t

0
ps(x; x)e−�s ds+ pt(x; x)e−�t=�

6 c1

∫ t

0
s−
l(s)e−�s ds+ pt(x; x)e−�t=�

for some c1¿ 0 where we set 
= �=(�+1) ∈ (0; 1) and l(s)= (log|log s|)�=(�+1). Note
that l(s)=l(1=s) for s¿ 0 and l is a slowly varying function, i.e. limx→∞ l(cx)=l(x)=1
for all c¿ 0. Now,∫ t

0
s−
l(s)e−�s ds = �−(1−
)

∫ �t

0
s−
l(s=�)e−s ds

6 �−(1−
)l(�)
∫ �t

0
s−
−�e−s ds ≡ �−(1−
)l(�)h(�t)

for all �¿ 0 where we use the fact l(s=�)6l(s)l(�)6t−�l(�) for s small and � large.
As h(∞) = �(1 − 
 − �), h(�t) → 0 as �t → 0. Take c2¿ 0 small enough so that
c1h(c2)¡c6:6=2 and take t so that �t = c2. By the above, we then have

pt(x; x)
�
l(�)

=
pt(x; x)

(c2=t)
l(c2=t)
¿ec2

{
g�(x; x)

�−(1−
)l(�)
− c1h(c2)

}
:

By taking the lim sup as � → ∞, we obtain the desired lower bound.

For the lim inf behaviour we do not yet have a completely sharp result. The following
is obtained in the same way as the upper bound of the above theorem using (6.10).
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Theorem 6.10. There exists c6:14¿ 0 such that P-a.s.

lim inf
t→0

pt(x; x)
t−�=(�+1)(log|log t|)−�′=(�+1)6c6:14; �-a:e: x ∈ F:

We remark that it is possible to get the following lower bound: if �′ ¡ 1, then there
exist constants c6:15¿ 0; �′′ such that

c6:156 lim inf
t→0

pt(x; x)
t−�=(�+1)(log|log t|)−�′′=(�+1) :

This requires the use of a sharper estimate on the tail of the hitting time distribution
than that found in Hambly (1997) Lemma 7.7 and we do not give the argument here.
Note that the exponent for the iterated logarithm correction term are di�erent in the
two bounds. We anticipate that it is the upper bound which is tight.
We now discuss the spatial 
uctuation. From the results of Hambly (1997) there are

upper and lower bounds on the lim sup and lim inf, respectively. In order to establish
the corresponding lower bounds we follow the same approach as above. We have an
expression for the local Green density in terms of the sequence of random variables
Wi|n. If we choose a subsequence which approaches the worst-case behaviour of this
sequence it will demonstrate the required worst-case behaviour of the Green density.

Theorem 6.11. There exist constants c6:16; : : : ; c6:19¿ 0 such that P-a.s.

c6:166 lim
�→∞

inf
x∈F

g�(x; x)
�−1=(�+1)(log �)−�′=(�+1)6c6:17 (6.12)

and

c6:186 lim
�→∞

sup
x∈F

g�(x; x)
�−1=(�+1)(log �)�=(�+1)

6c6:19: (6.13)

As before we can apply Tauberian theorems to obtain the spatial 
uctuation in the
heat kernel.

Theorem 6.12. There exist constants c6:20; c6:21¿ 0 such that P-a.s.

c6:206 lim
t→0

sup
x∈F

pt(x; x)
t−�=(�+1)(|log t|)�=(�+1)6c6:21:

For the lim inf result we can use (Hambly, 1997) Lemma 8.3 to get control on the
lower bound.

Theorem 6.13. There exists a constant c6:22¿ 0 such that P-a.s.

lim
t→0

inf
x∈F

pt(x; x)
t−�=(�+1)(|log t|)−�′=(�+1)6c6:22

and constants c6:23; �′′′ ¿ 0 such that

c6:236 lim
t→0

inf
x∈F

pt(x; x)
t−�=(�+1)(|log t|)−�′′′=(�+1) :
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