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Kigami has defined an analog of the Laplacian on a class of self-similar fractals,
including the familiar Sierpinski gasket. We study properties of this operator. We
show that there is a maximal principle for solutions of certain nonlinear equations
of the form 2u(x)=F(x, u(x)). We discuss the extension of the Laplacian to non-
compact fractal blow-ups, and show that it is essentially self-adjoint, and we prove an
analog of Liouville's theorem in some cases. We also give an explicit algorithm for
solving the Dirichlet problem for certain domains in the Sierpinski gasket and give
a characterization of all harmonic functions on those domains. � 1999 Academic Press

1. INTRODUCTION

Analysis on fractals has been made possible by the definition of
operators that play the role of the Laplacian. Originally produced as a by-
product of the construction of the analog of Brownian motion ([BP, G,
Ku1, Ku2, L1]), these Laplacians have been given by direct limit-of-dif-
ference-quotient definitions in the work of Kigami ([Ki1�6]), for a class of
self-similar fractals that includes the Sierpinski gasket. In this paper we will
explore some properties of these Laplace operators that are natural analogs
of results that are known for the usual Laplacian. Since so much is known
about the Laplacian, we can only scratch the surface in attempting the
generalization to fractal Laplacians. For related works see [BK, BST,
DSV, Fa, FS, KL, La, M, SU, T].

The first topic we discuss, in Section 2, is the maximum principle for
solutions of a nonlinear equation 2u(x)=F(x, u(x)). Assuming that F is
continuous and nonnegative for nonnegative values of u, we show that a
positive maximum of u can only be attained on a boundary point, unless
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u is constant. This is a general result that holds without essential restric-
tions on the fractal. It is used to prove uniqueness results, and plays an
essential role in some of the other proofs in this paper.

In addition to considering the usual self-similar fractals K, which are
compact sets with a largest scale, it is also important to consider noncom-
pact blow-ups K� , which have the same structure at all large scales as they
have at small scales ([S2]). Suppose that K is defined by the self-similar
identity

K= .
m

j=1

SjK (1.1)

where [Sj] is an iterated function system of contractive similarities on Rn.
Then we may define K� by

K�= .
�

N=1

S &1
j1

} } } S &1
jN

K (1.2)

for some sequence j1 , j2 , ... of indices. It is easy to extend the definition of
a Laplacian 2 on K to K� . For a generic choice of the sequence of indices,
K� will have no boundary and plays the role of a noncompact complete
Riemannian manifold. An important fact in the classical context is that the
Laplacian is essentially self-adjoint (see [C] or [S1] for a proof). In
Section 3 we prove the analogous result, under some additional assump-
tions. In Section 4 we take up the analog of the Liouville theorems. We
show that if K is the Sierpinski gasket, nonconstant harmonic functions
cannot be bounded, or even nonnegative, on K� . In the classical theorem
there needs to be an assumption of nonnegative curvature. This result can
thus be taken as another small piece of evidence that fractals tend to
behave like Riemannian manifolds of positive curvature. At present this is
only a heuristic principle, however. Although the results in Sections 3 and 4
are only proved under special assumptions, we conjecture that they are
generally valid.

In Section 5 we return to the context of the fractal K, and specifically the
Sierpinski gasket, and we study the Dirichlet problem for certain domains
in K. The goal here is to find algorithmic formulas for solving 2u=0 in an
open set 0 with the boundary values of u on �0 given. These are the
analogs of the classical Poisson integral formulas for domains in Rn. We
are able to get an essentially complete solution when the domain 0 is a tri-
angle obtained by cutting the Sierpinski gasket with a horizontal line at
any vertical height below the top vertex. We also show how to generate all
harmonic functions on these domains as Poisson integrals involving
boundary values that are measures or more generally finitely additive set
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functions. For some reason, the Dirichlet problem for domains that are the
complements of the above triangular domains is much harder. We show
how to solve it in only a very special case.

We now briefly review the definitions and properties of the Laplacian
that we will use. We assume that K is a self-similar fractal in Rn given by
(1.1), and that it is post-critically finite (p.c.f.), meaning that K is connec-
ted, the intersections SjK & SkK are finite sets, and the pre-images of the
intersection points under all iterated mappings (the post-critical set) also
form a finite set. (The Sierpinski gasket is the example in R2 with each Sj

being a dilation with factor 1�2 centered at a vertex of a triangle.) We use
multiindex notation J=( j1 , ..., jm) with |J |=m the length of J, and write
SJ=Sj1

...S jm
for iterations of the mappings. We call SJ K the images of K

of order m. It is possible to construct a similar theory in an abstract
setting, but all known examples can be realized in Rn, and we will use this
embedding to define the fractal blow-ups.

We approximate K by a sequence of graphs G0 , G1 , ..., where G0 is the
complete graph with vertices the post-critical set, and Gm is obtained from
Gm&1 by applying the mappings S j to Gm&1 and identifying points that are
identical in K. The vertices of G0 form the boundary of K in this theory (see
the discussion at the end of Section 2 on how to delete boundary points).

The Laplacian on K is obtained as a limit of graph Laplacians on Gm .
We begin with a symmetric matrix D with row sums zero, and entries that
are positive off the diagonal and negative on the diagonal (we could
assume merely that the off diagonal entries are nonnegative and D is
irreducible, but this does not yield any new examples), that provides a dif-
ference operator on G0 . We also choose positive weights (r1 , ..., rm) and use
r&1

j to weight the difference operator when we move to a smaller scale by
applying Sj . The matrix and weights must satisfy a consistency condition
which says that a harmonic function Gm&1 has a unique harmonic exten-
sion to Gm . See [Ki2] for the details. We will assume that the renormaliza-
tion constant * in Definition 4.4 of [Ki2] is one, which can always be
achieved by rescaling the weights. When the consistency condition is
satisfied, the result is called a harmonic structure on K, which allows us to
define a sequence of Dirichlet forms Em on Gm and a Dirichlet form E on
K in the limit. This gives rise to a space (of dimension *G0) of harmonic
functions on K, each determined uniquely by boundary data, and each
restricting to a harmonic function on Gm . The Dirichlet form is the analog
of � |{f |2 dx in the classical case. We will consider only regular harmonic
structures, which are defined by the condition that rj <1 for all j. This
implies that points have positive capacity, and so the domain of the
Dirichlet form consists of only continuous functions. In the case of the
Sierpinski gasket, each vertex in Gm that is not a boundary point has
exactly four neighbors, and the standard harmonic structure has the property
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that a function on Gm is harmonic if and only if the value at every nonboundary
point is the average of the values at the 4 neighboring points.

To define a Laplacian we need to choose a harmonic structure on K and
a measure +. We will always take + to be a self-similar measure, meaning
that

+= :
m

j=1

pj+ b S &1
j (1.3)

for certain probability weights pj . This uniquely determines + if we nor-
malize it to be a probability measure. We will call + the balanced measure
on K if all pj are equal. The equation that relates the Laplacian to measure
and the Dirichlet form is the analog of

| {f } {g dx=&| f 2g dx+boundary terms

where the measure plays the role of dx on the right side, but not the left.
Thus we will have

E( f, g)=&|
K

f 2g d+ (1.4)

if f vanishes at the boundary points. The definition of 2g is given as a limit
of 2m g, where 2m is a graph Laplacian on Gm . See [Ki2] for the details
in the general case. For the example of the Sierpinski gasket with the
standard harmonic structure and the balanced measure, the formula for 2m

is

2m g(x)=&5m(g(x)& 1
4 (g( y1)+ g( y2)+ g( y3)+ g( y4))) (1.5)

for x a nonboundary vertex of Gm and y1 , y2 , y3 , y4 the four neighboring
points in Gm . In this paper we always mean this Laplacian when we say
``the Laplacian on the Sierpinski gasket.'' The definition of the domain of
the Laplacian requires that both g and 2g be continuous functions on K,
and 2m g � 2g uniformly.

We also note that there is a notion of a normal derivative �n u at bound-
ary points, defined in terms of the harmonic structure (the measure is not
involved in the definition), and the analog of the Gauss�Green formula
holds:

|
K

( f 2g& g 2f ) d+=:
�K

( f (x) �n g(x)& g(x) �n f (x)). (1.6)
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For the example of the Sierpinski gasket,

�n u(x)= lim
m � �

(5�3)m ( f (x)&1�2( f (am)+ f (bm))) (1.7)

where x is a boundary point and am and bm are the two neighboring points
of x in Gm . Note that the factors in (1.5) and (1.7) are different. For a har-
monic function, the limit is unnecessary since all the terms on the right side
of (1.7) are equal. The notion of a normal derivative can be localized to a
boundary point of any image SJK. We have the following important
criterion for patching together functions on different images SJK. Suppose
u is harmonic on SJK and on Sj $K, and they intersect at a point x. Then
u is harmonic at x if and only if it is continuous at x and the sum of the
normal derivatives localized to SJK and SJ$K is zero. It is not necessary
that |J |= |J$| for this to hold, so SJK and SJ$K may have quite different
sizes.

When considering harmonic functions on general domains 0 in K or in
the blow-ups K� , we note that the problems are more combinatoric than
analytic. For any image SJK contained in 0, a harmonic function is deter-
mined on SJK by its values on the boundary points of SJK. In fact, there
is a simple algorithm, which we call the harmonic algorithm, for doing this.
Since every domain is just a finite or countable union of such images SJK,
the only question is how to patch together the pieces. For this we will use
the normal derivative criterion.

2. THE MAXIMAL PRINCIPLE

Let F(x, u) denote a continuous function from K_R to R. We are inter-
ested in solutions of the fractal differential equation

2u=F(x, u). (2.1)

This means that u is in the domain of 2, and 2u(x) and F(x, u(x)) are
equal as continuous functions on K. The Dirichlet problem is the equation
(2.1) together with the boundary conditions

u(qj)=aj (2.2)

at the boundary points qj , j=1, ..., N. We observe that under the uniform
Lipschitz condition

|F(x, u)&F(x, v)|�M |u&v| (2.3)

for all u, v # R, x # K, we have local existence and uniqueness for the
Dirichlet problem, where ``local'' means either that M is sufficiently small

185LAPLACIANS ON FRACTALS



or that we restrict to a small image of K. (Global uniqueness may fail if F
is negative, according to a recent preprint of Falconer [Fa].) The proof is
essentially the same as for ordinary differential equations. We first reduce
to the case of zero boundary conditions by subtracting a harmonic function
with the boundary conditions (2.2). Then (2.1) is equivalent to the integral
equation

u(x)=|
K

G(x, y) F( y, u( y)) d+( y), (2.4)

where G denotes the Green's function [Ki2]. The assumption that the har-
monic structure is regular implies that G is bounded, and we can apply the
Picard iteration method.

We can also localize (2.1) to any open set 0�K. The equation now is
interpreted to mean that the restriction of u to any small copy SJ K of K
contained in 0 belongs to the domain of the Laplacian on SJK. In par-
ticular, we do not necessarily assume that it has a continuous extension up
to the boundary of 0

We will say that F is nonnegative if

F(x, u)�0 whenever u�0. (2.5)

Theorem 2.1 (Maximum Principle). Let u be a solution of (2.1) on 0
for nonnegative F. If u is continuous up to the boundary and

sup
x # 0

u(x)>0, (2.6)

then
sup
x # 0

u(x)� sup
y # �0

u( y) (2.7)

with equality in (2.7) only if u is constant on a component of 0.

For the proof we will need the following fact, which is essentially
Theorem 5.8(2) in [Ki2]:

Lemma 2.2. For any nonboundary point y in Gm , let �m, y denote the
continuous function that is harmonic on the complement of the vertices of
Gm , and is equal to the delta function at y on the vertices of Gm . Then

| �m, y (x) 2u(x) d+(x)=2m u( y) (2.8)

for any u in the domain of the Laplacian. Also, �m, y is a nonnegative
function.
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Proof of Theorem 2.1. Suppose there were an interior maximum point
x� . Then by (2.6) and continuity there exists a neighborhood 01 of x� on
which u is positive. If �m, y has support in 01 , then the left side of (2.8) is
nonnegative, and in fact strictly positive unless 2u#0 on the support of
�m, y . Then (2.8) implies 2mu( y)�0, hence u( y) is bounded above by the
maximum of u on the points neighboring y in Gm .

Suppose first that x� # SJK�01 and x� is not a boundary point of SJK,
where |J |=m&1. Let u� denote the maximum value of u at the boundary
points of SJK. Among all the vertices of Gm interior to SJK, let y� be the
one where u achieves its maximum. Then by the above u( y� )�u� , and so
u( y)�u� for all Gm vertices in SJ K. We can repeat the argument on smaller
scales to obtain u( y)�u� on a dense subset of SJ K, hence throughout SJK
by continuity. Moreover, we can only have equality at the first step if
2u=0 in SJK and u attains the same value u� at all the boundary points,
which implies that u is constant on SJK. But once we have strict inequality
at the first step, we contradict the possibility that u attains its maximum at
an interior point of SJK.

Next we consider the possibility that u attains its maximum at a bound-
ary point of some SJ K. By taking m large enough we have 2m u(x� )�0, and
so u must assume the same value at all neighboring points to x� in Gm , and
must be harmonic in a neighborhood of x� . Again this implies that u is
constant in that neighborhood.

So in either case, the only way u can attain its maximum at an interior
point x� of 0 is for u to be constant in a neighborhood of x� . By repeating
the argument we can show that u must be constant in the connected
component of 0 containing x� . Q.E.D.

Corollary 2.3. The linear equation

2u(x)=a(x) u(x)+b(x) on K, (2.9)

where a(x) and b(x) are continuous and a(x) is non-negative, with given
Dirichlet data

u |�K= f, (2.10)

has at most one solution.

Proof. Suppose there were two distinct solutions u and v. Then we may
assume without loss of generality that u&v attains positive values. But
u&v satisfies 2(u&v)=a(u&v) and has zero Dirichlet data, and this
contradicts the Maximal Principle. Q.E.D.

The construction of the Laplacian on K given in [Ki2] assumes that the
points in the initial graph G0 will be treated as boundary points. This is
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natural in some examples, such as the unit interval or the Sierpinski gasket,
but not so natural in other examples, where the local geometry of the
boundary points is no different than at other nonboundary points. In fact
it is always possible to delete points from the boundary, and this is equiv-
alent to imposing Neumann conditions at the boundary points. This gives
rise to a different Laplacian with a different domain. Let us denote by 20

the Laplacian on K treated as having no boundary points. Then u is in the
domain of 20 if and only if u is in the domain of 2 and the normal
derivatives �nu vanish at all boundary points; in that case 20 u=2u. This
idea is implicit in [Ki2], and will be explained in detail in the forthcoming
book [Ki6].

Corollary 2.4. Let u belong to the domain of 20 on K and satisfy
20u(x)=F(x, u(x)) on K, where F is nonnegative. Then if u assumes a
positive value, u is constant.

Proof. By the theorem, u attains its maximum at a boundary point.
Suppose v0 is a boundary point where u attains its maximum. We also
know, �nu(v0)=0. Choose m large enough that u is positive on SJK for
|J |=m, with v0 # SJ K. Then by the analog of (2.8) at the boundary point
v0 , we have 2mu(v0)�0. By the same reasoning as before, u must be
constant on all the boundary points of SJK. This implies that u is constant
as before. Q.E.D.

3. ESSENTIAL SELF-ADJOINTNESS

We begin with some results about the Laplacian on K that will be
needed for the analysis on K� . These results appear to be of independent
interest and include the equality of weak and strong forms of 2. One defini-
tion of the domain of the Laplacian, dom 2(K), is that g belongs to
dom E(K) and (1.4) holds for a continuous function 2g and all
f # dom E(K) with f vanishing on the boundary. This is a ``semi-weak''
formulation, which is shown to be equivalent to the strong (pointwise) for-
mulation in [Ki2]. For the full weak formulation we define D(K) to be the
subset of dom 2(K) of functions v such that both v and its normal
derivatives �nv vanish on the boundary.

Definition 3.1. We say u # dom 2*(K) and 2*u= f for u and f in
L2 if

|
K

u 2v d+=|
K

fv d+ for all v # D(K). (3.1)
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Note that this is essentially (1.6) in view of the vanishing of the boundary
terms. Clearly, strong implies weak: if u # dom 2(K) with 2u= f then
u # dom 2*(K) with 2*u= f. We will prove the converse under the assump-
tion that f is continuous. Because we are assuming that the harmonic struc-
ture is regular, the assumption u # dom E(K) already implies that u is con-
tinuous.

It is also possible to consider the adjoint of 2 defined on the smaller
domain D0 (K), defined to be the function in dom 2(K) that vanishes in a
neighborhood of the boundary. In fact, D0 (K) is dense in D(K) in an
appropriate sense so that the same adjoint arises. We will not need this fact
here. A proof will be given in [SU].

Theorem 3.2 (Weak=Strong). If u # dom 2*(K) with 2*u= f, then
there exists a harmonic function h such that

u(x)=&|
K

G(x, y) f ( y) d++h(x), (3.2)

where G(x, y) denotes the Green's function. In particular, u # dom E(K) and

E(u, v)=&|
K

fv d+ (3.3)

for every v # dom E(K) vanishing on the boundary. If in addition f is con-
tinuous, then u # dom 2(K) and 2u= f.

Proof. Consider any continuous function w that is orthogonal to all
harmonic functions,

|
K

wh d+=0 for h harmonic. (3.4)

We claim

v(x)=|
K

G(x, y) w( y) d+( y) (3.5)

belongs to D(K). The basic properties of the Green function imply that
v # dom 2(K) with 2v=&w and v vanishes on the boundary, so it remains
to check the vanishing of �nv. For x # �K, �n v(x) is the inner product of w
with �nG(x, } ). But �nG(x, } ) is a harmonic function, in fact the one assum-
ing boundary value 1 at x and 0 otherwise. This follows from Lemma 5.8.2
in [Ki2], and in fact is part of the general folklore relating Poisson kernels
and Green's functions. Thus �nv(x)=0 by (3.4).
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Now we apply (3.1) to this v, obtaining

&|
K

uw d+=|
K
|

K
f (x) G(x, y) w( y) d+( y) d+(x).

Since the Green's function is continuous and symmetric, this means

u(x)+|
K

G(x, y) f ( y) d+( y)

is orthogonal to w. By adding an appropriate harmonic function it becomes
orthogonal to all continuous functions, proving (3.2). If f is continuous
then (3.2) gives u # dom 2(K) and 2u= f, and (3.3) holds. If f is only in L2,
approximate it by continuous functions, then pass to the limit in (3.3).

Q.E.D.

Corollary 3.3. If u # dom 2*(K) and 2*u=*u for *{0, then
u # dom 2(K) and 2u=*u.

Proof. By the theorem, (3.2) holds with f =*u. This implies that u is
continuous, hence f is continuous, and the result follows by the last state-
ment of the theorem. Q.E.D.

Now let K� denote any fractal blow-up of K (see [S2]). That is,

K�= .
�

n=0

S &1
j1

S &1
j2

} } } S &1
jn

K (3.6)

for some sequences, j1 , j2 , ... of indices. The union in (3.6) is increasing.
The space K� is noncompact, and for a generic choice of the sequence of
indices it will have no boundary. Any compact subset of K� will lie in one
of the sets in the union (3.6), and so will be similar to a subset of K. This
enables us to extend the definition of 2 to functions on K� . More
precisely, let x # S &1

j1
} } } S &1

jn
K and let u be defined in a neighborhood of x.

Then u b (S &1
j1

} } } S &1
jn

) is defined in a neighborhood of S jn
} } } Sj1

x in K, so
we may set

2u(x)=(rJ pJ)(2(u b S &1
j1

} } } S &1
jn

))(S jn
} } } Sj1

x), (3.7)

where

rJ=rj1
} } } rjn

and pJ= pj1
} } } p jn

.
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This definition is easily seen to be independent of the choice of n (provided
n is large enough) because of the dilation property of 2. In a similar way,
we can extend the self-similar measure + to K� .

Let D0 (K�) denote the space of functions of compact support on K� ,
vanishing in a neighborhood of the boundary, that are in the domain of the
Laplacian. The statement that 2 is essentially self-adjoint on D0 (K�) means
that 2 has a unique extension to an unbounded self-adjoint operator on
L2 (K� , d+). It is the uniqueness that is in question here; there is always a
Friedrichs extension since 2 is a nonpositive operator. If K� has a bound-
ary point then essential self-adjointness will fail, since there can be both
Dirichlet and Neumann boundary conditions at the boundary point, lead-
ing to distinct self-adjoint extensions. To describe essential self-adjointness
when K� has no boundary points we will appeal to the following well-
known criterion [RS].

Theorem 3.4. Let A be a nonpositive symmetric operator defined on a
dense domain in a Hilbert space. Then A is essentially self-adjoint if there are
no nonzero solutions to the eigenvalue equation

A*u=u.

Given a harmonic structure on K, there is a natural choice of self-similar
measure + satisfying (1.3) where the weights are chosen so that

pj=rs
j , (3.8)

where s is the unique positive value that makes 7j pj=1. In [KL], s is
called the similarity dimension of the harmonic structure, and it is shown
that the Laplacian associated with + maximizes the Weyl asymptotic
growth rates for the eigenvalues of the Laplacian over all choices of self-
similar measure. Roughly speaking, the choice (3.8) means that if we sort
the sets SJ K according to either the size of +(SJK) or the strength of the
Dirichlet form on SJ K, we obtain the same result.

Now the dilation property (3.7) implies that if 2u=*u, then

u b (S &1
j1

} } } S &1
jn

Sj $1
} } } Sj $m

) (3.9)

is an eigenfunction with eigenvalue

( pJrJ)&1 pJ$rJ$*.

Under the assumption (3.8) this becomes

( pJ$ �pJ)1+1�s *. (3.10)
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We will be choosing the indices so that pJ$ �pJ is bounded above and below.
This will mean that if we take an eigenfunction on K� and restrict it to

S &1
j1

} } } S &1
jn

S j $1
} } } S j $m

K,

we can pull it back to K via (3.9) without substantially distorting either the
measure of the set or the eigenvalue.

Lemma 3.5. Let u be a solution of 2*u=u on K� . If K� has no bound-
ary, then u # dom 2(K�) and 2u=u.

Proof. Suppose v # D(K), and denote by v~ the extension of v to K�

obtained by setting v~ =0 outside K. Because v and �nv vanish at the bound-
ary of K, v~ # dom(K�) and 2v~ is the extension of 2v also equal to 0 outside
K. Now if 2*u=u on K� we have

|
K�

u 2v~ d+=|
K�

uv~ d+

hence

|
K

u 2v d+=|
K

uv d+.

This means u |K # dom 2*(K) with 2*(u |K)=u |K . By Corollary 3.3, u | K #
dom 2(K) with 2u |K=u |K . We can apply the same argument to any of the
images of K on the right side of (3.6) that make up K� , and the result
follows. Q.E.D.

Theorem 3.6. Assume 2 is defined in terms of + satisfying (3.8). If K�

has no boundary points, then 2 on K� is essentially self-adjoint on D.

Proof. To apply Theorem 3.4 we consider solutions of 2*u=u. By
Lemma 3.5, u is in the domain of 2 and 2u=u. If u is not identically zero,
we may assume without loss of generality that it assumes a positive value
(if not, multiply by &1). Then by the maximum principle it assumes a
value at least =>0 on at least one of the boundary points of S &1

j1
} } } S &1

jn
K

for all large n. Altogether there are an infinite number of distinct points
such as this, because if the sets S &1

j1
} } } S &1

jn
K had a common boundary

point for all large n, this point would be a boundary point of K� .
Now each boundary point of S &1

k1
} } } S &1

jn
K is a boundary point of

S &1
j1

} } } S &1
jn

S j $1
} } } S j $m

K for some sequence j $1 , ..., j $m and each m. Choose m
to be the smallest value that makes pJ$ �pJ�1. Then we also have
pJ$ �pJ�pmin , where pmin is the minimum value of [ p j]. By passing to a
subsequence if necessary, we can arrange for all these sets to be disjoint.
Again this is a compactness argument based on the fact that K� has no
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boundary, and each time we apply a blow-up we increase the measure by
a fixed amount. So we have an infinite collection of disjoint sets whose
measures are bounded above and below, and when we pull back u to K via
(3.9), we obtain an eigenfunction with eigenvalue bounded above and
below. Now on K we have the estimate

max
�K

|u |�c1 (c2 |*|+1) &u&2 if 2u=*u, (3.11)

for positive constants c1 and c2 [Ki6]. We apply (3.11) to the pullback
function (3.9). We have the lower bound = for the maximum on the bound-
ary, and the L2 norm is only changed by a constant if we pass from K to
S &1

j1
} } } S &1

jn
S j $1

} } } S j $m
K, hence

\|Sj1
&1 } } } Sjn

&1Sj $1
} } } Sj $m

K
|u |2 d++

1�2

�c=

for some fixed c>0. Thus we have a uniform lower bound for the L2 norm
on an infinite number of disjoint sets, so u cannot be in L2 on K� . Q.E.D.

Another situation in which we have essential self-adjointness is if we con-
sider the Laplacian 20 on K considered to be a compact space with no
boundary. In this case there is no need to assume that + satisfies (3.8). The
statement is that 20 defined on its domain is essentially self-adjoint. The
proof is similar, using Corollary 2.4 to show that 20u=u has no solutions.
Of course, the essential self-adjointness of 20 is the same as the essential
self-adjointness of the Neumann Laplacian, which is known from [Ki2].

4. LIOUVILLE THEOREMS

In this section we assume that K� is a fractal blow-up of the standard
Sierpinski gasket. It is likely that similar results hold in more general set-
tings, but our arguments are based on specific information about harmonic
functions on SG from [Ki1] or [DSV]. Suppose T is any triangle in the
graph Gm , and let T1 , T2 , T3 be the three triangles in Gm+1 that make up
T. For any function on the vertices of such triangles we denote the values
by a 3-vector w, going counterclockwise from the top vertex (all triangles
have the same orientation). Let u be a harmonic function, and let w, w1 ,
w2 , w3 denote the 3-vectors of the values of u on the vertices of triangles
T, T1 , T2 , T3 . The result we need is the following.

Lemma 4.1. We have

wj=Mjw (4.1)
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where

5 0 0 2 2 1 2 1 2

M1=
1
5 \2 2 1+ , M1=

1
5 \0 5 0+ , M3=

1
5 \1 2 2+ .

(4.2)
2 1 2 1 2 2 0 0 5

We observe that all these matrices preserve the constant 3-vectors, which
just corresponds to the fact that a harmonic function constant on the
boundary vertices of K is constant. The important observation is that once
we factor out by the constant vectors we obtain contractive mappings on
the two-dimensional quotient space. For example, if we take (1, &1, 0) and
(0, 1, &1) as a basis for the quotient space, then the action of M1 is
represented by the matrix 1

5(
3
0

1
1) with eigenvalues 3�5 and 1�5, and similarly

for M2 and M3 . It follows that the inverse matrices are expansive. This
leads easily to our first Liouville theorem.

Theorem 4.2. A bounded harmonic function on K� is constant.

Proof. Let u be a nonconstant harmonic function. Then on some copy
of K in K� it is nonconstant, so the 3-vector of boundary values is non-
constant. As we extend u to larger expansions of K we successively multiply
by matrices M &1

j , the choice of j depending on the relative positions of
each triangle in the next larger one. Since these matrices are expansive in
the quotient 2-space, the boundary values grow without bound, so u is not
bounded. Q.E.D.

The corresponding fact for nonnegative harmonic functions is more sub-
tle, since it is not true if K� has a boundary point. Indeed, we observe that
M1 has a nonnegative eigenvector (0, 1, 1) with eigenvalue 3�5, so this is
also a nonnegative eigenvector for M &1

1 with eigenvalue 5�3. Thus if K� is
the blow-up with all indices jk=1, we can take the harmonic function with
boundary data (0, 1, 1) on K and extend it to K� so that it has boundary
data (5�3)n (0, 1, 1) on S &n

1 K. The result is a nonnegative harmonic func-
tion on K� that is not constant. The next theorem shows that this cannot
happen if K� has no boundary point, which is equivalent to the statement
that the sequence of indices j1 , j2 , ... is not eventually constant.

Theorem 4.3. Suppose K� has no boundary points. Then any non-
negative harmonic function is constant.

Proof. Let u be a nonnegative harmonic function, and let w be the vec-
tor of boundary values of u on K. Then M &1

jn
} } } M &1

j1
w is the vector of
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boundary values on Sj1
} } } Sjn

K, and hence must be nonnegative. We will
show that this is impossible unless w is constant. We will study the dynami-
cal system obtained by multiplying by the matrices Mj and renormalizing
the length. A convenient normalization is the l1 condition x+ y+z=3.
With this choice the induced action of multiplication by M1 is

M� 1 (x, y, z)=\ 5x
3x+ y+z

,
2x+2y+z
3x+ y+z

,
2x+ y+2z
3x+ y+z + , (4.2)

and similarly for M� 2 and M� 3 . Note that M� 1 has two fixed-points, (1, 1, 1)
and (0, 3�2, 3�2). The key technical observation is that M� j does not increase
distances to the common fixed-point (1, 1, 1), measured in the Euclidean
metric on the plane triangle

x+ y+z=3, x�0, y�0, z�0. (4.4)

Lemma 4.4. For any vector (x, y, z) satisfying (4.4), we have

&M� 1 (x, y, z)&(1, 1, 1)&�&(x, y, z)&(1, 1, 1)& (4.5)

with equality only if (x, y, z) is (1, 1, 1) or (0, 3�2, 3�2).

Proof. Introduce coordinates u= y+z&2 and v= y&z, and similarly
u$, v$ for M� 1 (x, y, z). Note that &2�u�1 and (x, y, z)=(1&u,
1+(u+v)�2, 1+(u&v)�2) so that

&(x, y, z)&(1, 1, 1)&2=(3�2) u2+(1�2) v2.

Also (u$, v$)=(3u�(5&2u), v�(5&2u)). Thus (4.5) is equivalent to

(3�2)(3u�(5&2u))2+(1�2)(v�(5&2u))2�(3�2) u2+(1�2) v2. (4.6)

But 1�(5&2u)�1�3 for &2�u�1 with equality only at u=1, so (4.6)
follows, with equality only at (u, v)=(1, 0) or (u, v)=(0, 0). Q.E.D.

Returning to the proof of Theorem 4.3, we observe that the analog of
(4.5) holds for M� 2 and M� 3 , and that aside from the common fixed point
(1, 1, 1), the other point for which equality holds is different for each of the
maps M� 1 , M� 2 , M� 3 . This means that if we compose two distinct maps
M� j M� k . for j{k, then we have strict inequality, and by compactness we
may conclude that there exists r<1 with

&M� j M� k (x, y, z)&(1, 1, 1)&�r &(x, y, z)&(1, 1, 1)& (4.7)

if (x, y, z) satisfies (4.4), using (4.6) for the estimate near (x, y, z)=(1, 1, 1).
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We may now easily derive a contradiction. If the vectors M &1
jn

} } } M &1
j1

w
are all nonnegative, then M� &1

jn
} } } M� &1

j1
w all satisfy (4.4), and by applying

(4.5) and (4.7) we can make w arbitrarily close to (1, 1, 1) since there will
eventually be arbitrarily many consecutive indices that are distinct. Taking
the limit, w is constant. Q.E.D.

Another interesting related question concerns the rate of growth of
unbounded harmonic functions on K� . Furstenberg's theorem [Fu] on
products of random matrices gives some information about this in the
generic case. To make a more precise statement would require in particular
the computation of the top Lyapanov index the family of matrices M1 , M2 ,
M3 , with equal probability.

5. DIRICHLET PROBLEMS

In this section we give explicit solutions to the Dirichlet problem for har-
monic functions on certain domains in the Sierpinski gasket. Since exist-
ence and uniqueness is known, the issue here is the explicit formulas, which
should be thought of as analogs of explicit Poisson integral formulas in
Euclidean domains. But what should we mean by an explicit formula for
a function defined on a self-similar fractal? Since points on the fractal are
defined as limits of iterations of transformations from the defining i.f.s., or
equivalently, as images of infinite sequences from a coding space under a
coding map, it would seem reasonable to define an explicit function as one
that can be computed by iterating some algorithm based on the coding
sequence of the point. We will not attempt a formal definition of these
ideas here. The explicit formulas that enter into our solutions of the
Dirichlet problem will easily be seen to possess the required iterative
descriptions. They will not be easily described in terms of restriction to the
Sierpinski gasket of elementary analytic functions on the ambient
Euclidean plane; such a description would be implausible in this context.
On the other hand, the domains we consider will have a simple description
in terms of the standard embedding of the Sierpinski gasket in the plane.

For 0�x�1, we let Tx denote an open triangular domain of height x.
The boundary of Tx consists of a single vertex v0 , which we take to be the
top vertex of G0 , and a horizontal section Sx at vertical distance x to v0

(we normalize the total vertical distance from the bottom vertices to the
top to be 1, so the closure of T1 is all of K). Thus Sx will be a Cantor set
for generic x, and a union of intervals if x is a dyadic rational. We may
assume without loss of generality that 1

2<x<1, for if not we may first
solve the Dirichlet problem for T2x , and then simply dilate the solution
to Tx .
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FIGURE 1

The Dirichlet problem for Tx we consider first is

2u=0 on Tx (5.1)

u(v0)=a0 (5.2)

u= f on Sx , (5.3)

where f is a given continuous function on Sx , and u is assumed to be con-
tinuous on the closure of Tx (Tx _ Sx _ [v0]). Let v1 and v2 denote the two
other vertices of the triangle in G1 with top vertex v0 , and let S1 (x) and
S2 (x) denote the portions of Sx lying below v1 and v2 (see Fig. 1). We
claim that it suffices to find a formula for u(v1) and u(v2) in terms of the
data a0 and f. For if we can do this, then the value of u inside the
(v0 , v1 , v2) triangle is determined from the values u(v0), u(v1), u(v2), by
the harmonic algorithm, and then the problem of finding the values of u in
the remaining triangular regions, between v1 and S1 (x), and v2 and S2 (x),
is essentially the same, after dilation. We also know that the solution must
have the form

u(v1)=m0 (x) u(v0)+m1 (x) |
S1(x)

f d+1+m2 (x) |
S2(x)

f d+2 (5.4)
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where +1 and +2 are the balanced probability measures on S1 (x) and
S2 (x), and m0 (x), m1 (x), and m2 (x) are positive numbers satisfying

m0 (x)+m1 (x)+m2 (x)=1, (5.5)

with a similar formula for u(v2) with m1 (x) and m2 (x) interchanged. Here
we are using symmetry conditions to force +1 and +2 to be balanced, and
to argue that the formula for u(v2) is symmetric with the formula for u(v1).
Thus our problem is reduced to finding explicitly the functions m0 (x),
m1 (x), m2 (x). To do this we introduce the following notation for the
unique binary representation of a number in 0<x<1.

Definition 5.1. For 0<x�1, let 0<n1<n2< } } } be the unique
increasing sequence of positive integers such that

x= :
�

k=1

2&nk. (5.6)

Also define

Rx= :
�

k=2

2&nk=x&2&n1. (5.7)

Theorem 5.2. The function m0 (x) is characterized by the identity

m0 (x)=
1

1+2( 5
3)n2&n1 (1&m0 (Rx))

(5.8)

which leads to a variant of a continued fraction representation

m0 (x)= lim
k � �

m (k)
0 (x) (5.9)

for

m (k)
0 =

1

1+2( 5
3)n2&n1 \1&

.
1

1+2( 5
3)n3&n2 \1&

1

. . .
1+2( 5

3)nk&nk&1

(5.10)
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FIGURE 2

We also have

m1 (x)=
1&m0 (x)2

2m0 (x)+1
, m2 (x)=

m0 (x)&m0 (x)2

2m0 (x)+1
. (5.11)

Proof. We have n1=1 by the assumption x> 1
2. We write b1=

�S1(x) f d+1 and b2=�S2(x) f d+2 . We compute the normal derivative of u at
v1 with respect to the upper triangle (v0 , v1 , v2) to be

( 5
3)n1 (u(v1)& 1

2u(v0)& 1
2u(v2))

=( 5
3)n1 ( 1

2 (m0 (x)&1) a0+(m1 (x)& 1
2 m2 (x))b1

+(m2 (x)& 1
2 m1 (x))b2 ) . (5.12)

Next we pass to a smaller triangle in the graph Gn2
with upper vertex v1 .

We label the other vertices v3 and v4 , and we split the section S1 (x) into
S3 (x) _ S4 (x), with Sj (x) lying below vj for j=3, 4 (see Fig. 2). Then
+1= 1

2+3+ 1
2+4 where +3 and +4 are the balanced probability measures on

S3 (x) and S4 (x). We write b3=�S3(x) f d+3 , and b4=�S4(x) f d+4 , so that
b1= 1

2(b3+b4). The analog of (5.4) is then

u(v3)=m0 (Rx) u(v1)+m1 (Rx) b3+m2 (Rx) b4
(5.13)

u(v4)=m0 (Rx) u(v1)+m2 (Rx) b3+m1 (Rx) b4
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because Rx is the vertical distance between v1 and S1 (x). Using (5.13) we
compute the normal derivative of u at v1 with respect to the lower triangle
(v1 , v2 , v3) to be

( 5
3)n2 (u(v1)& 1

2 u(v3)& 1
2 (v4))

=( 5
3)n2 ((m0 (x) a0)+m1 (x) b1+m2 (x) b2)(1&m0 (Rx))

&(m1 (Rx)+m2 (Rx) b1)

=( 5
3)n2 (m0 (x)(1&m0 (Rx))) a0

+(m1 (x)&1)(1&m0 (Rx)) b1+m1 (x)(1&m0 (Rx)) b2 (5.14)

since m1 (Rx)+m2 (Rx)=(1&m0 (Rx)). Now u will be harmonic at v1 , if
and only if the sum of the two normal derivatives (5.12) and (5.14)
vanishes. This yields an identity that must be valid for all choices of
a0 , b1 , b2 . Thus we may equate to zero the coefficient of a0 , obtaining an
equation involving m0 alone,

( 5
3)n2 m0 (x)(1&m0 (Rx))+( 5

3)n1 1
2 (m0 (x)&1)=0,

which is equivalent to (5.8). By iterating (5.8) we obtain (5.9) and (5.10).
When we equate to zero the coefficients of b1 and b2 we obtain

( 5
3)n2 (m1 (x)&1)(1&m0 (Rx))+( 5

3)n1 (m1 (x)& 1
2 m2 (x))=0

(5.15)( 5
3)n2 m1 (x)(1&m0 (Rx))+( 5

3)n1 (m2 (x)& 1
2m1 (x))=0.

We use (5.8) in the form

\5
3+

n2&n1

(1&m0 (Rx))=
1
2 \

1
m0 (x)

&1+ (5.16)

to simplify (5.15) to

1
2

(m1 (x)&1) \ 1
m0 (x)

&1++m1 (x)&
1
2

m2 (x)=0

(5.17)
1
2

m1 (x) \ 1
m0 (x)

&1++m2 (x)&
1
2

m1 (x)=0.

But with m0 (x) known, (5.17) is just a pair of linear equations for m1 (x)
and m2 (x), whose solution is (5.11). Q.E.D.

Note that the function m0 (x) depends only on the sequence of differences
n1&n2 , n2&n3 , ... . When x=1 we have (n1 , n2 , n3 , ...)=(1, 2, 3, ...) so that

200 ROBERT S. STRICHARTZ



m0 (1)=m0 (R1), and so m0 (1)=3�10 since this is the unique fixed point of
.(t)=1�(1+2(5�3)(1&t)). Also, m0 (x) is increasing on 1

2<x�1, so 3�10
is its maximum value. It has jump discontinuities at dyadic nationals, but
it is continuous from below.

We consider next the problem of describing all harmonic functions on
Tx , without any requirement about boundary values. We will do this by
extending the recipe (5.4). To begin with, we will assume that u is con-
tinuous up to the vertex v0 . This will certainly be true when we pass to
smaller triangles in the iteration argument. If & is any measure (real-valued)
on Sx , we consider the algorithm

u(v1)=m0 (x) u(v0)+m1 (x) &(S1 (x))+m2 (x) &(S2 (x))
(5.18)

u(v2)=m0 (x) u(v0)+m2 (x) &(S1 (x))+m1 (x) &(S2 (x))

and its iteration to smaller scales. In fact, we may even allow & to be a
finite-valued, finitely additive function on the field of subsets of Sx obtained
by repeated division. (When x is a dyadic rational, it is necessary to inter-
pret Sx as a coding space rather than a union of intervals. This will be dis-
cussed more thoroughly in the proof of Theorem 5.3.) The arguments in
the proof of Theorem 5.2 may be run in reverse to show that the function
u obtained is harmonic on Tx . Indeed, the construction makes u harmonic
on the interior of each of the triangles that make up Tx , so the only issue
is whether u is also harmonic at the junction points where the triangles
meet. But this is equivalent to the vanishing of the sum of the normal
derivatives (5.12) and (5.14), and so it holds because of the construction of
the functions m0 (x), m1 (x), m2 (x). If & is positive (this implies that it is a
finite positive measure) then u is nonnegative. We will show that conversely
all nonnegative harmonic functions on Tx arise from this construction.

To obtain all harmonic functions on Tx without the nonnegativity
assumption we must allow for functions with a pole at v0 . If we restrict u
to the (v0 , v1 , v2) triangle and dilate we obtain a harmonic function on the
interior of K. In [DSV] we showed that this is a six-dimensional space,
and since u is continuous at two of the three boundary points, the space
is reduced to four dimensions, the spanned by the three-dimensional space
of continuous harmonic functions, and a single function u~ which has a pole
at v0 . This function, shown in Fig. 3, extends to all of K, hence to Tx . So
if u is harmonic in Tx , there must exist a constant c such that u&cu~ is con-
tinuous at v0 . The claim is that this function arises from our construction.
Then the general harmonic function is a sum of cu~ and one of these. Note
that for c{0 these functions cannot be nonnegative.

Theorem 5.3. (a) Every nonnegative harmonic function on Tx is con-
structed by (5.18) for some choice of u(v0)�0 and a finite positive measure
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FIGURE 3

& on Sx . (b) Every harmonic function on Tx is the sum of cu~ and a function
constructed by (5.18) for some choice of u(v0) and a finite-valued finitely
additive function & on the field of subsets of Sx generated by repeated division.

Proof. For simplicity we consider first the case when x is not a dyadic
rational. As we have seen, we may assume without loss of generality that
u is continuous at v0 . We follow the notation in Figs. 1 and 2. As before,
the condition that u be harmonic at v1 is expressible as the vanishing of the
sum of normal derivatives:

( 5
3)n1 (u(v1)& 1

2 u(v0)& 1
2 u(v2))

+( 5
3)n2 (u(v1)& 1

2u(v3)& 1
2u(v4))=0.

We have a similar equation holding at v2 . We add these equations and
simplify to obtain

I2=I1+ 1
2 ( 3

5)n2&n1 A (5.19)

with the abbreviations

A=u(v0)& 1
2 u(v1)& 1

2u(v2)

I1= 1
2 (u(v1)+u(v2))

I2= 1
2(u(v3)+u(v4)+u(v5)+u(v6))
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where v5 and v6 are situated below v2 in the same way v3 and v4 are
below v1 .

We now iterate the argument. We consider the sequence of horizontal
sections of vertical distance 2&n1+ } } } +2&nk from v0 . These sections inter-
sect K in 2k&1 intervals with a total of 2k endpoints (these were v1 , v2 for
k=1, and v3 , v4 , v5 , v6 for k=2). Denote these points now by vkj ,
j=1, ..., 2k. We let Ik denote the average value of u(vkj),

Ik=2&k (u(vk1)+ } } } +u(vk2k)). (5.20)

The analog of (5.19) is

Ik=I1+ 1
2A( 5

3)n1 (( 3
5)n2+ } } } +( 3

5)nk) . (5.21)

It is clear that Ik is uniformly bounded and converges to a finite limit as
k � �.

Assume u is nonnegative. We now construct a sequence of functions fk

on Sx such that the measures fk d+, where + is the balanced measure on Sx ,
converge weakly to the desired measure &. We simply take fk to be
piecewise constant on each of the 2k pieces of Sx lying below each point vkj ,
and let fk take on the value u(vkj) on the corresponding piece of Sx . Note
that Ik is exactly the measure norm of fk d+, since the balanced measure of
each piece is 2&k. The uniform boundedness of Ik and the local version of
(5.19) shows that the measures fk d+ converge weakly to a finite positive
measure &. We claim that the harmonic function constructed by (5.18) from
u(v0) and this measure & is equal to u. It suffices to do this at the points
v1 and v2 , for then the same argument works for all the points vkj .

Let uk denote the harmonic function constructed by (5.18) from u(v0)
and the measure fk d+. By (5.18) and the weak convergence of fk d+ to & we
know that uk converges to the constructed harmonic function. Thus we
need to show that uk also converges to the original harmonic function u.
Now u is harmonic on the smaller domain Txk , where

xk= :
k

j=1

2&nj,

and so (5.4) holds on Txk . But in fact u is harmonic below the bottom seg-
ment of Txk , so there is a discrete analog of (5.4) where the integrals are
replaced by averages of u over the points vkj . By symmetry we know this
must have the form

u(v1)=m~ 0 (xk) u(v0)+m~ 1 (xk) I� 1 (u)+m~ 2 (xk) I� 2 (u), (5.22)
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where

{
I� 1 (u)=2&k+1 :

2k&1

j=1

u(vkj)

(5.23)

I� 2 (u)=2&k+1 :
2k

j=2k&1+1

u(vkj),

and u(v2) is obtained by interchanging m~ 1 and m~ 2 . We use the same
reasoning as in the proof of Theorem 5.2 to determine the coefficients m~ 0 ,
m~ 1 , m~ 2 . This time the process terminates after a finite number of iterations,
and we find

m~ 0 (xk)=m (k)
0 (x)

where m (k)
0 (x) is defined by (5.10), and the analog of (5.11) gives m~ 1 (xk)

and m~ 2 (xk) in terms of m~ 0 (xk).
Comparing (5.22) with (5.18) for the measure fk d+, the only difference

is that m0 (x), m1 (x), m2 (x) are replaced by m~ 0 (xk), m~ 1 (xk), m~ 2 (xk). But
by (5.9) the difference goes to zero as k � �, so uk (v1) � u(v1) as required.

If we drop the assumption that u is nonnegative, the argument is very
similar, except we do not obtain a measure as the limit of fk d+. The only
thing that we can assert is that limk � � �J fk d+ converges for every inter-
val J that lies below one of the points vkj . We use this to define &(J), and
extend it by additivity to the field of sets generated by such intervals. The
rest of the proof is the same.

Finally, we discuss the situation when x is a dyadic rational. In that case
the section Sx is a finite union of intervals, and the pieces denoted S1 (x)
and S2 (x) in (5.18) may overlap at a common point. Since this point may
have nonzero measure, we have to allow the mass to be split among the
two pieces. When we iterate (5.18) this overlapping will occur infinitely
often. The easiest way to remedy this problem is to identify the measure
space Sx not with the finite union of intervals but with a Cantor set that
contains two distinct points for each overlap. This allows a larger class of
set functions &, and the algorithm (5.18), with the correct interpretation of
the splitting Sx=S1 (x) _ S2 (x), defines a harmonic function for such &.
The proof of the theorem is then essentially the same, since the sequence
of measures fk d+ will converge when evaluated on each interval J. Q.E.D.

So far we have considered only domains that could be described as lying
above a linear section Sx . If we consider domains lying below Sx , the
problem becomes much harder. We will only give one example of a domain
of this type, where the boundary is a finite set. If T� x denotes the comple-
ment of the closure of Tx , the domain 0k we consider is essentially the
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interior of T� x for the value x=1&2&k. Thus 0k is made up of 2k adjacent
triangles of size 2&k joining the bottom boundary points of K. The bound-
ary of 0k consists of these two boundary points of K together with the 2k

top vertices of the triangles. We label the top vertices b1 , b2 , ..., b2k and the
bottom vertices of the triangle a0 , a1 , ..., a2k , so that the boundary of 0k is
a0 , a2k , b1 , b2 , ..., b2k . Figure 4 shows 03 . Given a harmonic function on
0k , we need to find the values of u(aj) in terms of the data u(a0), u(a2k),
u(b1), ..., u(b2k), for then u is determined on each of the triangles. In fact it
suffices to do this for j=2k&1, for then we may iterate the algorithm to find
the other values.

Theorem 5.4. Let u be harmonic on 0k . Then

u(a2k&1)=
*1 (u(a0)+u(a2k))+�2k&1

j=1 *j (u(bj)+u(b2k& j+1))

2*1+�2k&1

j=1 *j

(5.24)

where *1=1, *2=5 and

*j+1=4*j&*j&1. (5.25)

Proof. The result is obvious when k=1, for then it is just u(a1)=
1�4(u(a0)+u(a2)+u(b1)+u(b2)), which is just the statement that u is har-
monic at a1 . For k=2, we obtain three equations for u to be harmonic at
a1 , a2 , a3 :

FIGURE 4
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4u(a1)=u(a0)+u(a2)+u(b1)+u(b2)

4u(a2)=u(a1)+u(a3)+u(b2)+u(b3)

4u(a3)=u(a2)+u(a4)+u(b3)+u(b4).

We add the first and third,

4(u(a1)+u(a3))

=u(a0)+2u(a2)+u(a4)+u(b1)+u(b2)+u(b3)+a(b4)),

and use the second to eliminate u(a1)+u(a3), to obtain

14u(a2)=u(a0)+u(a4)+u(b1)+u(b4)+5(u(b2)+u(b3)).

This is (5.24) for k=2 with *1=1, *2=5.
We now consider the general case. We have 2k&1 equations that express

the fact that u is harmonic at aj , namely

4u(aj)=u(aj&1)+u(aj+1)+u(b j)+u(b j+1) (5.26)

for j=1, 2, ..., 2k&1. To simplify the discussion we introduce the abbrevia-
tions

cj =u(aj)+u(a2k& j)
(5.27)

dj =u(bj)+u(b2k+1& j)

(note that c2k&1=2u(a2k&1)). We add the equations (5.26) for j and 2k& j
to obtain

4cj&cj&1&c j+1=d j+dj+1 (5.28)

for j=1, ..., 2k&1&1. We also note that (5.26) for j=2k&1 becomes

2c2k&1&c2k&1&1=d2k&1 . (5.29)

Now let 4j=*j&*j&1+*j&2& } } } . Multiply each equation (5.28),
(5.29) by the corresponding 4j and add to obtain

:
2k&1&1

j=1

(4c j&c j&1&cj+1) 4j+(2c2k&1&c2k&1&1) 42k&1

= :
2k&1&1

j=1

(dj+d j+1) 4j+d2k&1 42k&1 . (5.30)

Now the right side of (5.30) is easily seen to be �2k&1

j=1 d j*j , because the coef-
ficient of dj is 4j+4j&1 for j=2, ..., 2k&1, and the coefficient of d1 is 41 .
On the left side, the coefficient of cj is 44j&4j+1&4 j&1 for j=
2, ..., 2k&1&1, and this vanishes by (5.25). The coefficient of c1 is 441&42
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and this vanishes since *1=1, *2=5. The coefficient of c0 is &41=&1,
and the coefficient of c2k&1 is 242k&1&42k&1&1=2*1+2 �2k&1

j=1 *j . Altogether
(5.30) becomes

\2*1+2 :
2k&1

j=1

*j+ c2k&1&c0= :
2k&1

j=1

dj*j ,

which is equivalent to (5.24). Q.E.D.

ACKNOWLEDGMENT

The author is grateful to Jun Kigami for many useful discussions.

REFERENCES

[BK] M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p. c.f.
self-similar sets, J. London Math. Soc. (2) 56 (1997), 320�332.

[BP] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab.
Theory Related Fields 79 (1988), 543�623.

[BST] O. Ben-Bassat, R. Strichartz, and A. Teplyaev, What is not in the domain of the
Laplacian on a Sierpinski gasket type fractal, J. Funct. Anal., to appear.

[C] P. Chernoff, Essential self-adjointness of powers of generators of hyperbolic
equations, J. Funct. Anal. 12 (1973), 401�414.

[Fa] K. J. Falconer, Semilinear PDEs on self-similar fractals, preprint.
[FS] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket,

Potential Anal. 1 (1992), 1�35.
[Fu] H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108

(1963), 377�428.
[DSV] K. Dalrymple, R. S. Strichartz, and J. P. Vinson, Fractal differential equations on the

Sierpinski gasket, J. Fourier Anal. Appl., to appear.
[G] S. Goldstein, Random walks and diffusions on fractals, in ``Percolation Theory and

Ergodic Theory of Infinite Particle Systems'' (H. Kesten, Ed.), IMA Math. Appl.,
Vol. 8, pp. 121�129, Springer, New York, 1987.

[Ki1] J. Kigami, A harmonic calculus on the Sierpinski spaces, Jpn. J. Appl. Math. 6 (1989),
259�290.

[Ki2] J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335
(1993), 721�755.

[Ki3] J. Kigami, Laplacians on self-similar sets and their spectral distributions, in ``Fractal
Geometry and Stochastics, Finsterbergen, 1994,'' Progress in Probability, Vol. 37,
pp. 221�238, Birkha� user, Basel, 1995.

[Ki4] J. Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets,
Math. Proc. Cambridge Philos. Soc. 115 (1994), 291�303.

[Ki5] J. Kigami, Distributions of localized eigenvalues of Laplacian on p.c.f. self-similar
sets, J. Funct. Anal. 156 (198), 170�198.

[Ki6] J. Kigami, ``Analysis on Fractals,'' book in preparation.

207LAPLACIANS ON FRACTALS



[KL] J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of
Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys. 158 (1993), 93�125.

[Ku1] S. Kusuoka, A diffusion process on a fractal, in ``Probabilistic Methods in Mathe-
matical Physics, Katata�Kyoto, 1985,'' pp. 251�274, Academic Press, Boston, MA,
1987.

[Ku2] S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ.
RIMS 25 (1989), 659�680.

[La] M. L. Lapidus, Analysis on fractals, Laplacians on self-similar sets, noncommutative
geometry and spectral dimensions, Topolog. Methods in Nonlinear Anal. 4 (1994),
137�195.

[Li] T. Lindstrom, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 420
(1989).

[M] U. Mosco, Dirichlet forms and self-similarity, in ``New Directions in Dirichlet
Forms,'' AMS�IP Studies in Advanced Math., Vol. 8, pp. 117�155, American Math.
Society, Providence, RI, 1988.

[RS] M. Reed and B. Simon, ``Methods of Modern Mathematical Physics. II. Fourier
Analysis, Self-Adjointness,'' Academic Press, New York, 1975.

[S1] R. Strichartz, Analysis of the Laplacian on a complete Riemannian manifold,
J. Funct. Anal. 52 (1983), 48�79.

[S2] R. Strichartz, Fractals in the large, Can. J. Math. 50 (1998), 638�657.
[SU] R. Strichartz and M. Usher, Splines on fractals, preprint.
[T] A. Teplyaev, Spectral analysis on infinite Sierpinski gaskets, J. Funct. Anal. 159

(1998), 537�567.

208 ROBERT S. STRICHARTZ


	1. INTRODUCTION 
	2. THE MAXIMAL PRINCIPLE 
	3. ESSENTIAL SELF-ADJOINTNESS 
	4. LIOUVILLE THEOREMS 
	5. DIRICHLET PROBLEMS 
	FIGURE 1 
	FIGURE 2 
	FIGURE 3 
	FIGURE 4 

	ACKNOWLEDGMENT 
	REFERENCES 

