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Chapter 1

Geometry of Self 8imilar
Sets

In this chapter, we will review basics on geometry of self-similar sets which will
be needed later. Namely, we will explain what is a self-similar set (in §1.1),
how we can understand the structure of a self-similar set (in §1.2 and §1.3) and
how to calculate the Hausdorff dimension of a self-similar set (in §1.5). The key
notion is “self-similar structure” introduced in §1.3, which is a description of a
self-similar set from a purely topological viewpoint. As we will explain in §1.3,
topological structure of a self-similar set is essential in constructing analytical
structure like Laplacians and Dirichlet forms. More precisely, if two self-similar
sets are topologically same (i.e. homeomorphic), then analytical structure on
one self-similar set can be transferred to another self-similar set through the
homeomorphism.

§1.1 Construction of self Bimilar sets

In this section, we will formulate self-similar sets on a metric space and show an
existence and uniqueness theorem for self-similar sets. First we will introduce
the notion of contractions on a metric space.

Notation. Let (X, d) be a metric space. For x € X and r > 0,

By(z)={y:y e X,d(z,y) <r}

Definition 1.1.1. Let (X, dx) and (Y, dy ) be metric spaces. Amap f: X - Y
is said to be (uniformly) Lipschitz continuous on X with respect to dx,dy if
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The above constant L is called the Lipschitz constant of f and denoted by
L = Lip(f).

Obviously by the above definition, a Lipschitz continuous map is continuous.

Definition 1.1.2 (Contraction). Let (X, d) be a metric space. If f: X — X
is Lipschitz continuous on X with respect to d, d and Lip(f) < 1, then f is called
a contraction with respect to the metric d with a contraction ratio Lip(f). In
particular, a contraction f with a contraction ratio r is called a similitude if

d(f (), f(y)) = rd(z,y) for all 2,y € X.

Remark. If f is a similitude on (R™,dg), then there exist a € R™, U € O(n)
and 7 > 0 such that f(z) = rUx + a for all € R™. (Exercise 1.1)

The following theorem is called the ”contractive mapping theorem”.

Theorem 1.1.3. Let (X,d) be a complete metric space and let f : X — X be a
contraction with respect to the metric d. Then there exists a unique fized point
of f, in other words, there exists a unique solution of an equation f(z) = x.
Moreover if . is the fized point of f, then {f™(a)}n>0 converges to . for all
a € X where f™ is the n-th iteration of f.

Proof. If r is the ratio of contraction of f, then for m > n,

d(f"(a), f™(a)) < d(f"(a), f" (@) + - +d(f" " (a), [ (a)

n
< ("™ Dl (@) < (e S (@)
Hence {f™(a)}n>0 is a Cauchy sequence. As (X,d) is complete, there exists
r, € X such that f"(a) — x. as n — oo. Using the fact that f("*Y(a) =
f(f™(a)), we can easily deduce that x, = f(z.).

Now, if f(z) = « and f(y) = y, then d(z,y) = d(f(z), f(y)) < rd(z,y).
Therefore d(z,y) = 0 and = = y. So we have uniqueness of fixed points. O

Remark. In general, for a self mapping f from an set to itself, a solution of
f(z) =z is called a fixed point or an equilibrium point of f.

We now state the main theorem of this section, which ensures uniqueness
and existence of self-similar sets.

Theorem 1.1.4. Let (X,d) be a complete metric space. If f; : X — X is a
contraction with respect to the metric d for i = 1,2,---, N, then there exists a
unique non-empty compact subset K of X that satisfies

K= fl(K) U~--UfN(K).
K is called the self-similar set with respect to {f1, fa,-+, fn}-

Remark. In other literature, the word ”self-similar set” is used in a more re-
stricted sense. For example, Huchinson [57] uses the word ”self-similar set”
only if all the contractions are similitudes. Also, in case all the contractions are
affine function on R™, the associated set may be called a self-affine set.



The contractive mapping theorem is a special case of Theorem 1.1.4 where
N =1
In the rest of this section, we will give a proof to Theorem 1.1.4. Define

FA) = |J rw

1<j<N

for A C X. The main idea is to show existence of a fixed point of F. In order
to do so, first we choose a good domain for F', which is defined by

C(X)={A: Ais anon-empty compact subset of X}.

Obviously F' is a mapping from C(X) to itself. Next we define a metric 6 on
C(X), which is called the Hausdorff metric on C(X).

Proposition 1.1.5. For A, B € C(X), define
d(A,B) =inf{r >0:U,(A) D B and U,(B) 2 A},

where U, (A) = {z € X : d(z,y) <r for somey € A} = UyeaB,(y). Then
is a metric on C(X). Moreover if (X,d) is complete, then (C(X),0) is also
complete.

Before giving a proof of the above proposition, we recall some standard
definitions in general topology.

Definition 1.1.6. Let (X, d) be a metric space and let K be a subset of X.

(1) A finiteset A C K is called an r-net of K for » > 0 if and only if Upea B, (x) 2
K.

(2) K is said to be totally bounded if and only if there exists an r-net of K for
any r > 0

It is well-known that a metric space is compact if and only if it is complete
and totally bounded.

Proof of Proposition 1.1.5. Obviously 6(A, B) = §(B, A) > 0 and §(A,A) = 0.

0(A,B)=0= A= B : For any n, U;/,(B) 2 A. Therefore for any z € A, we
can choose x,, € B such that d(z,z,) <1/n. As B is closed, € B. Hence we
have A C B. One can obtain B C A in exactly the same way.

Triangle inequality : If » > (A, B) and s > §(B, (), then U,;5(4) 2 C and
Ur+s(C) 2 A. Hence r+s > 6(A,C). This implies § (4, B)+0(B,C) > §(A,C).
Next we proof that (C(X), d) is complete if (X, d) is complete. For a Cauchy
sequence {A,},>1 in (C(X),0), define B,, = Ug>pAg. First we will show that
B,, is compact. As B, is a monotonically decreasing sequence of closed sets, it
is enough to show that B; is compact. For any r > 0, we can choose m so that
Urj2(Am) 2 Ay for all k > m. As A, is compact, there exists a r/2-net P of
Ay, We can immediately verify that UzepBr(2) 2 Upj2(Am) 2 UrsmAr. As
UgzepBr(z) is closed, it is easy to see that P is a r-net of B,,. Adding r-nets



of Ay, As, -+, Apyn_1 to P, we can obtain an r-net of By. Hence B; is totally
bounded. Also, B; is complete because it is a closed subset of the complete
metric space X. Thus it follows that B,, is compact.

Now as {By} is a monotonically decreasing sequence of non-empty compact
sets, A = N,>1 B, is compact and non-empty. For any r > 0, we can choose
m so that U.(Ay) 2 Ay for all K > m. Then U.(4,,) 2 By 2 A. On the
other hand, we see that U.(4) 2 B, 2 A,, for sufficiently large m. Thus we
have §(A, Ay,) < r for sufficiently large m. Hence A,, — A as m — oo in the
Hausdorff metric. So we can see that (C(X),d) is complete. O

Now, Theorem 1.1.4 can be stated in the following way using the Hausdorff
metric (C(X), ).
Theorem 1.1.7. Let (X,d) be a complete metric space. Define F : C(X) —
C(X) by F(A) = Ui<i<n fi(A), where f; : X — X is a contraction for every i =
1,2,--- ,N. Then F has a unique fized point K. Moreover, for any A € C(X),
F™(A) converges to K as n — oo in the sense of the Hausdor(f metric.

Lemma 1.1.8. For A, Ay, By, By € C(X),
5(A1 U AQ,Bl U BQ) S max{&(Al,Bl),5(A2,Bg)}

P?”OOf. If r > max{é(Al,Bl),é(Ag,Bg)}, then Ur(Al) D B; and UT(AQ) 2 Bs.
Hence U, (A1UA3) D B1UBs. A similar argument implies U, (B1UB2) 2 A1UAs.
Hence r > §(A; U Az, By U Bg). This completes the proof. O

Lemma 1.1.9. If f is a contraction with a contraction ratio r, then §( f(A), f(B)) <
rd(A, B) for any A, B € C(X).

Proof. If Us(A) D B and U4(B) 2 A, Us(f(A)) D f(Us(A)) 2 f(B). Also the
same discussion implies Ug,(f(B)) 2 f(A). Therefore, 6(f(A), f(B)) < rs and
this completes the proof. O

Proof of Theorem 1.1.7. Using Lemma 1.1.8 repeatedly, we obtain
0(F(A), F(B)) = 0(U<jen f(A), Ui<jan f5(B)) < max 0(f;(A), f;(B)).

By Lemma 1.1.9, 6(f;(A), fi(B)) < r;6(A, B), where r; is the contraction ratio
of fi. Define r = maxi<;<n 1, it follows that §(F(A), F(B)) < ré(A,B).
Therefore F' turns out to be a contraction with respect to the Hausdorff metric.
By Proposition 1.1.5, we see that (C(X),d) is complete. Now the contractive
mapping theorem (Theorem 1.1.3) implies Theorem 1.1.7 immediately. |

§1.2 Shift space and self Bimilar sets

In this section, we will introduce the shift space, which is the key to understand
topological structures of self-similar sets. In fact, Theorem 1.2.3 will show that
every self-similar set is a quotient space of a shift space.



Definition 1.2.1. Let N be a natural number.
(1) For m > 1, we define

WY ={1,2,--- ,N}" = {wiwa - -~ wp, : w; € {1,2,--- ,N}}.

w = wiws - - wy, € WA is called a word of length m with symbols {1,2,--- | N}.
Also, for m = 0, we define W = {0} and call () the empty word. Moreover, set
WY = UpnsoW)Y and denote the length of w € W by |w].

(2) The collection of one-sided infinite sequence of symbols {1,2,--- N} is de-
noted by £V, which is called the shift space with N-symbols. More precisely,
N ={1,2,--- N} = {wjwowz -~ 1 w; € {1,--- , N} for i € N}.

For k € {1,2,---,N}, define a map o} : ¥ — XV by op(wijwawsz--+) =
kwiwows - -. Also define o : XN — BV by o(wjwows -+ ) = wowswy - +. o is
called the shift map.
Remark. The two sided infinite sequence of {1,2, -+, N},

{1,2,-~- ,N}Z = {--~w,2w,1w0w1w2~~- Wy € {1,2,“- ,N} for ¢ GZ}

may also called the shift space with N-symbols. If one want to distinguish those
two, the above ¥ should be called the one-sided shift space with N-symbols.
In this book, however, we will not treat the two-sided symbol space.

For ease of notation, we write W,,,, W, and ¥ instead of W, W/ and £V

Tt is obvious that oy, is a branch of the inverse of o for any k € {1,2,--- | N}.
If we take an adequate distance, it turns out that oy is a contraction and the
shift space X is the self-similar set with respect to {01,092, -+ ,o0n}.

Theorem 1.2.2. For w,7 € ¥ with w # 7 and 0 < r < 1, define 0, (w,7) =
@7 where s(w,T) = min{m : wy, # Tm} — 1. (i.e. n = s(w,7) if and only
ifwi =1 for 1 <i<n and wpy1 # Thy1.) Also define 0,.(w,7) =0 if w = 7.
d, is a metric on X and (X,6,) is a compact metric space. Furthermore, oy,
is a similitude with Lip(og) = r and X is the self-similar set with respect to
(01,02, 0N}

Proof. Tt is obvious by the definition that 6, (w,7) > 0 and 6, (w,7) = 0 implies
w = 7. As min{s(w,7),s(1,k)} < s(w,k) for w, 7,k € ¥, we can see that
Jr(wa T) + 57‘(7—7 ”) > 57“(”7 H)'

Now for every w = wiws - - - wy, € Wy, we define

Yo ={w=wjwows -+ € X :wiwa Wy = W1W2 * ** Wiy }-

Let {w™},>1 be a sequence in ¥. By using an induction on m, we can choose
T € ¥sothat {n > 1: (w"); =7; for j =1,2,--- ,m} becomes a infinite set
for any m > 1. So there exists a subsequence of {w™} that converges to 7 as
n — oo. Hence (X, §,) is compact.

Finally it is obvious that oy is a similitude with Lip(o) = r. Also we can
easily see that ¥ = 01 (X) U--- Uon(X). This implies that X is the self-similar
set with respect to {01,090, - ,o0Nn}. a



¥ is called the (topological) Cantor set with N-symbols. See Example 1.2.6.

For the rest of this section, we assume that (X, d) is a complete metric space,
fi : X — X is a contraction with respect to (X,d) for every ¢ € {1,2,--- ,N}
and that K is the self-similar set with respect to {f1, fo, -, fn}-

The following theorem shows that every self-similar set is a quotient space
of a shift space by a certain equivalence relation.

Theorem 1.2.3. For w = wiws - - Wy, € Wy, set fu, = fuw, 0 fuwy 00 fu,, and
Ky = fu(K). Then for any w = wiwows -+ € X, Ny>1Kwws-w,,, CONtains only
one point. If we define m: % — K by {m(w)} = Nm>1Kuw,wsw,,, then T is a
continuous surjective map. Moreover, for anyi € {1,2,--- ,N}, moo; = fiom.

Proof. Note that

KWIWQ“‘wnLWm+1 = fw1w2~~~wm(fwm+1(K)) C fw1w2~~wm(K) = Koywsewn, -

As Koy wy-w,, 18 compact, Np>1K4,w,--w, 18 a non-empty compact set. For A C
X, the diameter of A, diam(A), is defined by diam(A) = sup,, ,c d(,y). Set
R = maxj<;<n Lip(f;). Then it follows that diam(f;(4)) < Rdiam(A). Hence
diam( Ky, s oy, ) < RM™Mdiam(K). So diam(Ny>1Kwywsw,,) = 0. Therefore
Nm>1Kwws--w,, should contain only one point.

If §,(w,7) < r™, then m(w),n(7) € Kuywswm = Krirg-r,. Therefore
d(m(w),n(7)) < R™diam(K). This immediately implies that 7 is continuous.

By using

{W(Gi(w))} = mleKiwlwzmwm = mmzlfi(lemewm) = {fz(ﬂ-(w))}v

we can easily verify that 7o g; = f; o 7.

Finally we would show that 7 is surjective. Note that 7(X) = 7(01(X)U---U
on(®)) =n(c1(X)U---Un(on(X)) = fi(m(X)U---U fn(m(2)). As () is a
non-empty compact set, uniqueness of self-similar sets (Theorem 1.1.4) implies
that 7(X) = K. a

Proposition 1.2.4. Define v = www --- if w € W, and w # 0. Then w(w) is
the unique fized point of fy.

Proof. As f,, is a contraction, it has a unique fixed point. By Theorem 1.2.3,
m(w) = w(w - w) = fi,(w(w)). Hence 7(w) is the fixed point of f,. O

By using the above proposition, we can see that m(vive - vpw) = fu(Pw)
where w € W, w # 0, v = v1vs - - - v, € W, and py, is the fixed point of f,,. This
relation helps us to understand 7 in many examples. Moreover, since periodic
sequences are dense in Y, we have

K ={py, :weW,,w# 0}
In fact, 7 determines a topological structure on a self-similar sets.

Proposition 1.2.5. Suppose f; is injective for every i € {1,2,--- ,N}. Then,
m(w) =7(7) forw # 7 € ¥ if and only if 1(c™w) = w(c™7), where m = s(w, ).



Proof. If w = wiwy -+ Wy, = T1T2 - Ty, then m(w) = fi,(7(0™w)) and 7(7) =
fw(mw(c™T)). As f,, is injective, we have 7(w) = m(7) for w, 7 € ¥ if and only if
m(6™w) = w(c™7). The other direction is obvious. O

Note that if m(w) = 7(7), then m(c™(w)) = 7(c™(7)) € Cx, where m =
s(w,7) and Ck = U1§i<j§N(Ki ﬂKj).

Example 1.2.6 (Cantor set). Let X = [0,1]. Choose positive real numbers
a and b so that a + b < 1. Define fi(z) = az and fa(z) = bz — 1)+ 1. If K
is the self-similar set with respect to {f1, f2}, K1 C [0,a] and K5 C [1 —b,1].
Hence Cx = K1NKs = (. Therefore 7 : ¥ — K is injective. By Theorem 1.2.3,
7 is also surjective and hence it is a homeomorphism between ¥ and K. In
particular, if a = b= 1/3, K is called the Cantor’s ternary set or the Cantor’s
middle third set.

Example 1.2.7 (Koch curve). Let X = C. Suppose that a € {z : |2]? +
|1 — 2] < 1}. Set fi(2) = az and fa(2) = (1 —a)(z— 1)+ 1. Let D be a
triangle domain with vertices {0, «, 1}, including the boundary. Then it follows
that f1(D) U fo(D) € D and f1(D) N fo(D) = {a}. Hence K(a) C D, where
K () is the self-similar set with respect to {f1, f2}. Also note that f1(0) = 0,
f2(1) =1 and f2(0) = f1(1) = a. These facts imply that 74 (1) = 0,7, (2) = 1
and 7,(12) = 74(21) = a. Moreover, Cx = K, N Ky = {a}. Hence we can
deduce that 7 (w) = 7 (7) and w # 7 if and only if there exists w € W, such
that {w,7} = {w12,w21}. In particular, K(1/2) = [0,1] and K () is called the
Koch curve if a = % + 2%/5 Note that m, 0 /2’1 is a homeomorphism between
[0,1] and K(«).

Example 1.2.8 (Sierpinski gasket). Let X = C and let {p1, p2, p3} be a set
of vertices of a regular triangle. Define f;(z) = 1/2(z —p;) + p; for j =1,2,3.
The self-similar set with respect to {f1, f2, f3} is called the Sierpinski gasket. It
is easy to see that m(j) = p;j for 7 =1,2,3. Let T be the regular triangle with
vertices {p1,p2, ps}, including the boundary. Then f1(T) U fo(T) U f3(T) C T.
Hence K C T. Also f1(K) N f2(K) = f1(T) N fo(T) and this set contains only
one point, which is denoted by {g3}. Then 771(¢g3) = {21,12}. In the same
way, if fo(K)N f3(K) = {q1} and f3(K)N f1(K) = {g2} then 7" (¢1) = {23, 32}
and 77 1(q2) = {31, 13}. By those facts, if 7(w) = (1) and w # 7, there exists
w € W, such that {w, 7} = {wl2, w21} or {w23,w32} or {w31,w13}.

Example 1.2.9 (Hata’s tree-like set). Let X = C. Set f1(2) = ¢z, f2(2) =
(1 —|e|*)z + |c|?, where |c|, |1 —¢| € (0,1). The self-similar set with respect to
{f1, f2} is called Hata’s tree-like set. Let A= {t: 0 <t <1} U{tc,0 <t <1}.
Then it follows that f1(A) U f2(A) D A. Hence if A,, = Uyew,, fuw(A), then
{A;}m>0 is an increasing sequence and K = Up,>0A4,,. Also we can ecasily
observe that f1(K) N fo(K) = {2}, f1(0) = 0, f>(1) = 1 and f1(fo(1)) =
f2(0) = |c|?>. Hence 7=1(0) = {1}, 7= 1(1) = {2}, n~1(¢) = {12} and 7~ 1(|c|?) =
{112,21}. Moreover, if m(w) = 7(7) and w # T, there exists w € W, such that
{w, 7} = {wl12,w2i}.



§1.3 Self Bimilar structure

From the viewpoint of analysis, only the topological structure of a self-similar
set is important. For example, suppose you want to know what is analysis on
the Koch curve. Recall Example 1.2.7, there exists a natural homeomorphism
between [0, 1] and the Koch curve. Through this homeomorphism, any kind of
analytical structure on [0, 1] can be translated to its counterpart on the Koch
curve. So it is easy to construct analysis on the Koch curve.

The notion of self-similar structure has been introduced to give a topological
description of self-similar sets.

Definition 1.3.1. Let K be a compact metrizable topological space and let S
be a finite set. Also, let F; be a continuous injection from K to itself for any
i € S. Then, (K,S,{F;}ics) is called a self-similar structure if there exists a
continuous surjection 7 : 3 — K such that F; om = 7o g; for every i € S,
where ¥ = S¥ is the one-sided shift space and o; : ¥ — X is defined by
oi(wiwows - -+ ) = twywaws - - - for each wyjwsws -+ - € 3.

> is called the shift space with symbols S. We will define W,, = S™,
Wi = Up>oWp, 0 : ¥ — X and so on in exactly the same way as in §1.2. Also
the topology of ¥ is given by exactly the same way as in §1.2. If we need to
specify the symbols S, we use X(S), W,,(S) and W, (S) in place of 3, W,,, and
W, respectively. In many cases, we think of S = {1,2,--- , N}.

Obviously if K is the self-similar set with respect to injective contractions
{f1, fay--+, fn}, then (K,{1,2,--- ,N},{f;}) is a self-similar structure. It is
possible that two different self-similar sets have same topological structure. For
example, the self-similar structures corresponding to the self-similar sets K(«)
in Example 1.2.7 are all essentially same. More precisely, they are isomorphic
in the following sense.

Definition 1.3.2. Let £; = (K1, 51, {Fi}ies,) and Lo = (K2, S2, {Gi}ics,) be
self-similar structures. Also let m; : ¥(S;) — K, be the continuous surjection
associated with £; for ¢ = 1,2. We say that £, and L5 are isomorphic if there
exists a bijective map p : S1 — Sz such that w3 0¢, 0 w1 becomes a well-
defined homeomorphism between K> and K;, where ¢, is the natural bijective
map induced by 7, i.e. ((wiwa- ) = p(wi)p(wa)---.

We say that two self-similar structures are same if they are isomorphic.

Proposition 1.3.3. If (K, S, {F;}ics) is a self-similar structure, then m is unique.
In fact,

{r(w)} = m Forwy o, (K)

m>0
for any w = wiws - -+ € X.

Proof. By the above definition, we have F, yy...w,, © T = T O Oy wy--w,, fOr any
w € W,. Hence, 7(w) € Nim>0Furwywn (K). For £ € Ny>oFiuwywm (K),
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there exists Z, € Y, wy--w,, such that m(z,,) = x. Note that 7 is continuous.
Since z,, — w as m — oo, it follows that = m(x,,) — 7(w) as m — oco. Hence
x =m(w). O

Definition 1.3.4. Let £ = (K, S, {Fi}ics) be a self-similar structure. We de-
fine C£ = Ui,jGS,iyéj(Fi(K) N FJ(K)), C/; = 7T_1(C£) and ,Pg = Unzlgn(C£).
Cr is called the critical set of £ and P, is called the post critical set of £. Also
we define Vo(L) = n(Pe).

For ease of notations, we use C, P and Vj instead of Cr, P, and Vp(L) as
far as it may not cause any confusion.

The critical set and the post critical set play an important role in determining
the topological structure of a self-similar set. For example, if C = ), (and hence
P, Vi are all empty sets), then K is homeomorphic to the (topological) Cantor
set 2.

Also Vj is thought as a ”boundary” of K. For example, define Fy(z) = %x
and Fy(z) = 2z + } and recall Example 1.2.7. Then we find that C = {12,21}

and P = {1,2}. Hence Vy = {0,1}. See also Exercise 1.3 for another example.

Proposition 1.3.5. Let L = (K, S,{F;}ics) be a self-similar structure. Then
(1) == (Vo) =P.

2) If 2y N3y, = 0 for w,v € Wy, then K, N K, = F,(Vy) N F,(Vo), where
K, = F,(K).

(8) C =0 if and only if w is injective.

Proof. (1) If w(w) € Vj, then there exist 7 € C and m > 1 such that ™7 = w.
Set w' =TTy Ty - w, then (W) = Friryor,, (M(W)) = Fryryoror, (w(0™7)) =
7(7) € Cr. Hence o’ € C and w € P.

(2) Tt is obvious that F,(Vp) N F,(Vp) € Ky N K,,. For z € K, N K,,, we can
choose w, 7 € ¥ so that z = m(ww) = w(vr). As ¥, N X, = 0, there exists
k < min{|w|, |v|} such that wiws---wp = vive-- v and w41 # Vgp1. As
Foy oy, 18 injective, it follows that 7(o*(ww)) = w(o*(vr)) Hence we can
conclude that o (ww), o*(v7) € C and therefore w, T € P.

(3) If 7 is injective, then K is homeomorphic to 3 and hence C = (. Conversely,
if 7 is not injective, we can use the same discussion as in Proposition 1.2.5 to

show that C # 0. O

A self-similar structure (K, .S, {F;};cs) may contain an unnecessary symbol.
For example, let K = [0,1] and define S = {1,2,3}, Fi(z) = iz, Fao(z) = jz+1
and F3(z) = 1z4 1. Then obviously K = Fy(K)UF5(K) and we don’t need Fj
to describe K. This example may be a little artificial but there are more natural
examples. To explain such examples, we need to introduce some notations.

Let £ = (K,S,{Fi}ics) be a self-similar structure. Let W be a finite subset
of W,\Wy. Then (W) = W can be identified as a subset of ¥(S) = S¥ in the
natural manner. Set K(W) = w(XZ(W)). Then (K(W),W,{F,}wew) becomes
a new self-similar structure. We denote this self-similar structure by £(W).
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By using these notations, we can rephrase the above example as K ({1,2}) =
K(S). The following is a more natural example.

Example 1.3.6. Let K = [0,1] and define S = {1, 2}, Fi(z) = 22 and Fy(z) =
3z+1. Then £ = (K, S, {F, F»}) is a self-similar structure. Set W = {11, 22},
then K(W) = K because K = F11(K) U F3(K). This means that to describe
K, we don’t need the words {12,21}.

You may notice that this kind of unnecessary symbols (or words) occurs
when the overlap set C (or equivalently C ) is "large”. The following theorem
justifies such an intuition.

Theorem 1.3.7. Let £ = (K, S,{F;}ics) be a self-similar structure. The fol-
lowing conditions are equivalent. If L satisfies one of the following conditions,
we say that L is minimal.

) If 1(A) = K for a closed set A CX, then A =1X.

=

1

Mi2) For any w € Wy, K, is not contained in Uyew, \ {w} Ko, where m = |w|.

(

(Mi2)

(Mi3) If K(W) =K for W CW,,, then W =W,,.
(Mi4) K,, does not contained in Cr for any w € Wi.
(Mi5) int(Cz) = 0.

(Mi6) int(Pz) = 0. (Mi6*) Pr #X.

(Mi7) int(Vp) = 0.  (Mi7*) Vp # K.

As we can see from (Mi3), a minimal self-similar structure does not have any
unnecessary symbol (or word). It is easy to see that the self-similar structures
corresponding to the self-similar sets in §1.2 are all minimal.

Proof.

(Mil) = (Mi4) Assume that C D K,, for some w € W,. Let k € S be the first
symbol of w. Then for any = € K, there exists some j # k such that z € K;.
If m = |w| and A = U,ew,,\{w} Zv, then A is closed and 7(A) = K.

(Mi4) = (Mi5) Assume that int(C) # (). Then C D %, for some w € W,. Hence
CD Ky.

(Mi5) = (Mi6*) Assume that P = X. Then as P = U,,>10™C, Baire’s category
argument shows that int(c™C) # 0 for some m. (See, for example, [147] about
Baire’s category argument.) Hence, 0™C 2 ¥, for some w € W.,. Therefore
o*C =3 for k = m + |w|. Now 0*C = Uyew, 0%(2, N C). Again using Baire’s
category argument, it follows that o%(X, N C) 2 ¥, for some v € W} and
u € W,. Therefore C D X,

(Mi6*)= (Mi6) Assume that int(P) # (). Then P D X, for some w € W,.. Since
o™P C P for m = |w|, we have ¥ = P.

(Mi6) = (Mi7) As 7=1(Vp) = P, we have 7~ (int(Vp)) C int(P).

(Mi7) = (Mi7*) = (Mi6*) This is obvious by the fact that 7=(Vp) = P.

12



(Mi6*) = (Mi2) Assume that K. C Uyew,,\{w}Ko for some m and w € W,,.
Then for any w € ¥, there exist v € W, \{w} and 7 € ¥ such that m(ww) =
m(vT). As w # v, we can choose k < m so that wyws - wg_1 = V1V VE_1
and wg # vg. Since Fuyw,.-w,_, 1S injective, we see that ok (ww) € C. Therefore
weP.SoP =23

(Mi2) = (Mil) If there exists a closed subset A C ¥ with m(A) = K, then A°
is a non-empty open set and so it should contain ¥, for some w € W,. Since
A D Upew,,\{w} v, Where m = |wl|, we have K, € Uyew,,\ {w} Ko

(Mi2) = (Mi3) Let W be a proper subset of Wi, and assume K (W) = K. Then
for w e W,,\W, K, C K = Uyew K,,. Hence (Mi2) does not hold.

(Mi3) = (Mi2) If Ky C Uyew,,\{w}Kv, where m = |w|, then K = Uyew F,,(K),
where W = W,,,\{w}. Hence, for any x € K, there exists w € 3(W) such that
m(w) = x. Therefore K(W) = K. |

Remark. Tt seems quite possible that the condition int(Cr) = () is also equivalent
to those conditions in Theorem 1.3.7 as well. Unfortunately this is not true. In
fact, there is an example where int(Cz) = 0 but int(Cz) # 0. See Exercise 1.5.

Definition 1.3.8. Let S be a finite set. We say that a finite subset A C W, (S)
is a partition of 3(S) if X, N2, =0 for any w # v € A and ¥ = UyepXew.
A partition A is said to be a refinement of a partition As if and only if either
Y €Yy or X, NY, =0 for any (w,v) € Ay x As.

W, is a partition for any m > 0 and W, is a refinement of W, if (and only
if) n > m.

Lemma 1.3.9. Let L = (K,S,{F;}ics) be a self-similar structure. Define
V(A L) = UpeaFw (Vo) if A is a partition of ¥. Then V (A1, L) D V(Ag, L)
if A1 is a refinement of As.

Proof. Assume that A; is a refinement of Ay. Set x = m(ww) for w € Ay and
w € P. Then there exists v € A; such that v = wwy « - - w. ASwrt1Wkt2 -+ € P,
we can see that z = m(ww) € V(Aq, L). O

Lemma 1.3.10. Let £L = (K, S,{F;}ics) be a self-similar structure. Define
Vi (L) =V (W, £). Then Vi (L) C Viypy1 (L) and

Vint1(£) = Uies Fi(Vin(£)).
Furthermore, set Vi(L) = Up>oVin(L). If Vo # 0, then V.. (L) is dense in K.

Proof. The proof of the first statement is straight forward from Lemma 1.3.9.
If v = m(w) € K, then for 7 € P, z,, = m(wy - - -w,T) converges to x as n — oo.
Hence V(L) is dense in K. a

We write V,,, instead of V,,,(£) if no confusion may occur.
Let A be a partition of ¥(S). If £ = (K, S, {F;}ics) is a self-similar structure,
then we can define a self-similar structure £(A) = (K(A), A, {Fy }wen) as before
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except A = Wy. Immediately by Definition 1.3.8, it follows that K(A) = K and
%(S) = X(A). Of course, the topological structures of K and K(A) should be
same since they are virtually the same self-similar structures.

Proposition 1.3.11. Let A be a partition of 3(S) and let L = (K, S,{F}ics)
be a self-similar structure. Then Pz 2 Py, where we identify X(S) and X(A)
through the natural mapping. Furthermore, if A = W,,(S) for m > 1, then
Pr =Prn)-

Proof. Let a = ajag - -+ € Pr(a), where o € A. Then there exists 3182 - -+ By, €
W (AM\Wo(A) and v = 172 -+ € X(A) such that 7n(8) = w(v) and By # 7,
where 8 = (182 Bna € X(A). Hence, if f1 = wiws - w, € W, (S) and
Y1 = v1vg - v, € Wi (S), we can find k so that wiwsg - w, = vive -+ - v and
Wry1 # Vkp1. Therefore as elements in %(S), n(c%3) = n(c%y) and hence
0% € Cy. This implies that o € Pp.

Next let A = W, for m > 1. For w = wiws -+ € P, there exists w €
W.(S)\Wo(S) and 7 € X(S) such that m(ww) = 7(7) and wy # 7. Now
we can choose v € W, (S) so that vw = £182---5; and vT = ~1y2--- with
Bi,vi € A and B # 11. If w = ajan -+, where o; € A, then it follows that
G106z - - ~ﬂj0410[2 cee € Cﬁ(,\). Therefore w = avjag - -+ € PC(A). O

Even if A # Wp,,(S), Pr(a) often coincides with Pz. In general, however, this is
not true. See Exercise 1.6 and 1.7 for examples.

Finally, we will give the definition of post critically finite (p. c. f. for short)
self-similar structure, which is one of the key notions in this book.

Definition 1.3.12. Let £ = (K, S,{F;}ics) be a self-similar structure. L is
said to be post critically finite or p. c¢. f. in short if and only if the post critical
set P, is a finite set.

If £L = (K, S,{F;}ics) is post critically finite, V,, is a finite set for all m. In
particular, K, N K, is a finite set for any w # v € W,,,. Such a self-similar set is
often called a finitely ramified self-similar set. Obviously, a p. c. f. self-similar
set is finitely ramified. The converse is, however, not true.

Later in Chapter 3, we will mainly study analysis on post critically finite
self-similar sets.

Example 1.3.13 (Sierpinski gasket). Let K be the Sierpinski gasket defined
in Example 1.2.8. Then £ = (K, S, {fi}ics), where S = {1,2,3} and f; are the
same maps as in Example 1.2.8, is a post critically finite self-similar structure.
In fact, Cr = {q1,q2,q3}, Cc = {12,21,23,32,31,13} and P, = {1,2,3}. Also
Vo = {p1,p2,p3}

Example 1.3.14 (Hata’s tree-like set). Let f; and f5 be the same as in Ex-
ample 1.2.9. Also let K be the Hata’s tree-like set. Then £ = (K, {1,2}, {f1, f2})
is a p. c. f. self-similar structure. In fact, Cr = {|c?[}, Cr = {112,21} and
Pr = {12,2,1}. Hence Vy = {c,0,1}. Note that self-similar structures are
isomorphic for all ¢ with ¢, |1 — ¢| € (0,1).
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Of course there are numerous examples of non-p. c. f. self-similar structure.
One easy example is the unit square. (See Exercise 1.3.) Another famous
example is the Sierpinski carpet, which may be thought of as the simplest non-
trivial non-p. c. f. self-similar structure.

Example 1.3.15 (Sierpinski carpet). Let p; = 0,ps = 1/2,p3 = 1,p4 =
14+ vV=1/2,p5s = 14+ /~1,ps = 1/2+/~1,p7 = /=1 and pg = /—1/2. Set
fi(z) = (z—pi)/3+p; for i =1,2,--- 8. The self-similar set K with respect
to {fi}i=1,2,.. 8 is called the Sierpinski carpet. Let £ be the corresponding self-
similar structure. The L is not post critically finite. In fact, Cz, Cz and P
are infinite sets. In particular, V equals to the boundary of the unit square
[0,1] x [0, 1].

§1.4 Self Bimilar measure

In this section, we will introduce an important class of measures on a self-similar
structure, that is, self-similar measures. First we will recall some of fundamental
definitions in measure theory.

(X, M) is called a measurable space if X is a set and M is a o-algebra
whose elements are subsets of X. A measure p on a measurable space (X, M)
is a non-negative o-additive function defined on M.

Definition 1.4.1. Let (X,d) be a metric space and let 4 be a measure on a
measurable space (X, M).

(1) The Borel o-algebra, B(X,d), is the minimal o-algebra which contains all
open subset of X. An element of B(X,d) is called a Borel set. If no confusion
may occur, we write B(X) instead of B(X, d).

(2) w is called a Borel measure if M contains B(X).

(3) w is called a Borel regular measure if it is a Borel measure and, for any
A € M, there exists B € B(X) such that u(A) = u(B) and A C B.

(4) We say that p is complete if any subset of a null set is measurable, i.e.
BeMif BCAeMand u(A)=0.

(5) w is called a probability measure if and only if pu(X) = 1.

The following proposition is one of the most important fact about a Borel
regular measures.

Proposition 1.4.2. Let (X,d) be a metric space and let p be a Borel regular
measure on (X, M). Assume that u(X) < co. Then for any A € M,

w(A) =inf{p(U) : U is a open set that contains A}
=sup{u(F) : F is a closed set that is contained in A}

Proposition 1.4.3 (Bernoulli measure). Let S be a finite set. If p = (p;)ics
satisfies that ) ;cqpi = 1 and that 0 < p; < 1 for any i € S, then there
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exists a unique complete Borel regular measure P on (X, MP), where ¥ = ST,
that satisfies P (Xy) = PwyPwy *** Pw,, JOT any w = wiws -« wy, € Wi. This
measure uP is called the Bernoulli measure on ¥ with weight p.

Remark. In this book, all the measures we will encounter are supposed to be
complete unless otherwise stated.

Also the Bernoulli measure with weight p is characterized as the unique Borel
regular probability measure on ¥ that satisfies

p(A) = piplo; ' (A))
€S
for any Borel set A C X.

Proposition 1.4.4 (Self-similar measures). Let L = (K,S,{Fi}ics) be a
self-similar structure and let ™ be the natural map from 3 to K associated with
L. If p= (pi)ies € R satisfies > ;cqpi =1 and 0 < p; < 1 for any i € S, then
we define VP by vP(A) = pP(n=1(A)) for Ae NP ={A: AC K,7~}(A) € MP}.
Then, vP is a Borel reqular measure on (K, NP). vP is called the self-similar
measure on K with weight p.

It is known that P is the unique Borel regular probability measure on K
that satisfies

v(A) =Y pw(F;'(A))
icS
for any Borel set A C K.
By definition, we see that

Vp(Kw) Z PwiPws * " Pwp, (141)

for any w = wyws - -wy,, € W,. Intuitively, it seems that equality holds in
(1.4.1) rather than inequality if the overlapping set C is small enough. Precisely
we have the following theorem.

Theorem 1.4.5. Let £L = (K,S,{F;}ics) be a self-similar structure and let ©
be the natural map from X to K associated with L. Also let p = (p;)ics satisfy
YiesPi=1and 0 <p; <1 for anyi€ S. Then

VP (Kw) = puyPws *** Pu,,
for any w = wiwg -+ - wy, € Wy if and only if uP(Zs) = 0, where T, = {w €
2 g(nH(m(w))) = +oo}.
Remark. We will show that Z,, € MP.
Lemma 1.4.6. For any A € MP, define
As ={w € X:0™w € A for infinitely many m € N.}.

Then Ay € MP and uP(A,) > pP(A). In particular, if A € B(X) then A, €
B(%).
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Proof. Set Ay, = Uyew,, 0w (A), where oy = 04y, 0+ - - 0y, fOr w = wwsg - - wy, €
Win. Then A, = limsup,, .., Am. Hence A, € MP and by the Fatou’s lemma,
we have pP(As) > limsup,,,_, o 4P (An). (Note that u? is a finite measure.) On

the other hand, u?(Am) = > ew, #P(0w(A)) = D ew, PubP (A) = pP(A),
where Dy, = Py Puws * * * Pu,,, - Hence it follows that p? (A4o) > uP(A). O

Lemma 1.4.7. Define T = {w € ¥ : #(r 1 (n(w))) > 1}. Then I € B(L),
Zoo € MP, T, C T CT and pP(Lo) = pP(Zoo) = (P (2).

Proof. Set I, = Uysvew,, (KwNK,). Then I, is closed set and Z = Up,>17 1 (1,).
Hence Z € B(X). Now if w € Z,, by using inductive argument, we can choose
{mk}kzl, {nk}kzl and {w(k)}kzl, {T(k)}kzl C ¥ so that

1§m1<n1<m2<n2<~~<mk<nk<mk+1<--~,

o™w € T, 0™ w # 17 1(c™w) = 7(7®), w®) = wiws - W, TF) Wrwe W, =
wk k), .. -w(k)nkfl and wy, # w(k)nk. This implies that W(w(k)) = 7(w) and
hence w € Z,,. Thus we have shown that Z, C 7., C Z. By Lemma 1.4.6,
wP(Z) < pP(Z,), we can see that uP(Z) = pP(Z,). As p? is complete, Zo, € MP
and pP(Zoo) = pP(2). O

Proof of Theorem 1.4.5. By the definition of Z, we can easily see that uP(Z) =0
if and only if uP(3,) = vP(K,) = py for any w € W,. This along with
Lemma 1.4.7 implies the theorem. O

Remark. It is well-known that p? is ergodic with respect to the shift map o.
This means that if A € MP and 0= *(A) = A then puP(A) = 0 or 1. Since
0 (T,) = Toy pP(Te) = pP(Tow) = uP(T) = O o1 1.

Corollary 1.4.8. If 71 (z) is a finite set for any x € K, then vP(K,) = pu
for all w e W,.

Since T = Uyew, 0w(Cr), pP(Cz) > 0 implies pP(Z) > 0. Hence by Theo-
rem 1.3.7, we have the following corollary.

Corollary 1.4.9. If v?(K,,) = py for any w € Wy, then L is minimal.

Although the next theorem does not directly related to self-similar measures,
it tells us a useful fact: two Borel regular measures on a self-similar sets are
comparable if they are comparable on K, for all w € W,.

Theorem 1.4.10. Let £ = (K, S,{F;}ics) be a self-similar structure. Let p
and v be Borel reqular measures on (K, M(u)) and (K, M(v)) respectively. As-
sume that v(K) < oo and v(Z) = 0. If there exists ¢ > 0 such that u(K,) <
cv(Ky) for any w € Wy, then u(A) < cv(A) for any A € M(p) "N M(v). In
particular, p(Z) = 0.
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Proof. Let U be an open subset of K. Set W(U) = {w € W, : K,, C U}. For
w,v € W(U), we define w > v if and only if ¥,, O ¥,. Then > is a partial order
on W(U). If WH(U) is the collection of maximal elements in W (U) with respect
to this order, then U = Uyew+)Kw and Ky N Ky C T for w # v € WH(U).
Therefore

pU) < Y pKw)<e Y v(Ky)=a(U).

weW+(U) weW+(U)

Now by Proposition 1.4.2, for any A € M(u) N M(v), there exists a decreasing
sequence of open sets {Of }>1 such that A C Oy, for any k, u(Ng>10k) = p(A)
and v(Nk>10%) = v(A). As p(Og) < cv(Oy), we have u(A) < cv(A). |

§1.5 Dimension of self Bmilar sets

In this section, we will introduce the notion of Hausdorff dimension of metric
spaces and show how to calculate a Hausdorff dimension of self-similar sets.

Definition 1.5.1. Let (X, d) be a metric space. For any bounded set A C X,
we define

H5(A) = inf{) _ diam(E;)* : A C Ujz1 E;, diam(E;) < 6},
i>1

where diam(E) is a diameter of a set £ defined by diam(E) = sup, ,cp d(z,y).
Also, we define H*(A) = limsupg o H5(A).

It is well-known that H® become a complete Borel regular measure for any
s> 0. H® is called the s-dimensional Hausdorff measure of (X, d).

Lemma 1.5.2. Let (X,d) be a metric space. For 0 < s < t,
H5(E) < 6" H3(B)
forany E C X.

Proof. If E C U;>1E; and diam(E;) < 4 for any ¢, then

Z diam(E;)* < Z diam(E;) " *diam(E;)* < §'* Z diam(E;)*.

i>1 i>1 i>1
|
By Lemma 1.5.2, we can see the following proposition.
Proposition 1.5.3. For any E C X,
sup{s: H*(E) = oo} = inf{s: H*(E) = 0}. (1.5.1)
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Proof. By Lemma 1.5.2, if s < ¢, then H*(E) < oo implies H*(E) = 0 and also
H'(E) > 0 implies H*(E) = co. Now it is easy to see (1.5.1). O

Definition 1.5.4 (Hausdorff dimension). The value given by (1.5.1) is called
the Hausdorff dimension of E, which is denoted by dimyFE.

Remark. The Hausdorff measures and the Hausdorff dimension depend on a
metric d. In this sense, if one should specify which metric we are looking at, we
would use the notation of dimyg(FE,d) instead of dimyFE.

The following lemma is often useful to calculate a Hausdorff dimension of
a metric space. It is often called ”Frostman’s lemma”. See, for example, Mat-
tila [99]. It is also called the "mass distribution principle” in Falconer [28].

Lemma 1.5.5. Let (K,d) be a compact metric space. If H*(K) < oo and there
exist positive constants ¢, lg and a probability measure p on K such that

w(Bi(z)) < cl®
for all x € K and any 1 € (0,ly), then
pu(A) < cH*(A)
for any Borel set A C K. In particular, 0 < H*(K) < 0.

Remark. According to the discussion of Moran [107], the converse of the above
lemma is true : If 0 < H¥(K) < oo, then there exists a probability measure y
on K such that, for some ¢ > 0,

u(By(x)) < cl®

for all z € K and I > 0. Moran proved this fact if K was a compact subset of
Eudlidean space. His argument, however, can be easily extended to this case.

Proof. For U C K and = € U, note that U C Bgjamu) (7). Hence, if A C U;U;,
then

n(A) < ZM(Bdiam(U,-)(xi)) < CZ diam(U;)“,

where x; € U;. Therefore u(A) < cH{*(A). Letting [ — 0, it follows that
1(A) < cH(A). 0

Now let (K,{1,2,--- ,N},{F;}1<i<n} be aself-similar structure and let d be
a metric on K which is compatible with the original topology of K. In general,
it is not easy to evaluate the Hausdorff dimension dimpy(K,d). Moran [107]
introduced what is now called ”the open set condition”, which ensures that the
intersections K;NK fori # j € {1,2,--- , N} are "small”. Under this condition,
he gave a formula for the Hausdorff dimension of K when K is a subset of R¥,
d is the Euclidean metric on R* and F; are similitudes with respect to d. See
Proposition 1.5.8 and Corollary 1.5.9 for the Moran’s result. His result is useful
to calculate Hausdorff dimensions of many well-known examples of self-similar
sets. See Exercise 1.9.
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Remark. It was well before the notion of ”fractal” when Moran published his
paper [107]. Of course, he didn’t use the terminology ”self-similar set” but he
had exactly the same notion of self-similar sets as we have today. Hutchinson [57]
rediscovered Moran’s result about 40 years later and introduced the name ”open
set condition”.

Unfortunately we can apply Moran’s result only when K is a subset of R¥,
d is the Euclidean metric on R* and Fj are similitudes with respect to d. Later,
a metric called an effective resistance metric, which satisfies none of those re-
quirements, will become important from the analytical point of view. Here, we
will introduce an extended version of Moran’s theorem (Theorem 1.5.7) that
can be applied in more general situations.

Definition 1.5.6. Forr = (ry,79, -+ ,rn) where 0 < r; < 1 and for 0 < a < 1,
A(r,a) ={w:w=wiwa - W € Wi, "wrwswnm_1 > 0> Twhs
where r, = 1y, 7y, -+ Ty, for v="2viv2-- v € Wy

Remark. A(r,a) becomes a partition of 3.

The following is our main theorem. This theorem was introduced in Kigami [68].
The essential ideas are, however, essentially the same as in Moran [107].

Theorem 1.5.7. Assume that there existr = (r1,7r9, -+ ,rn) where 0 < r; <1
and positive constants cy, ca, ¢y and M such that

diam(K,) < e17w (1.5.2)
for allw e W, and
#{w:we Alr,a),d(z, K,) < coa} <M (1.5.3)

for any v € K and any a € (0,c,), where d(z, K,,) = infyck, d(z,y). Then
there exist constants cz,cy > 0 such that for all A € B(K,d),

cav(A) < HY(A) < cqv(4), (1.5.4)

where v is a self-similar measure on K with weight (r;*)1<i<n and « is the
unique positive number that satisfies

N
> ot =1. (1.5.5)
=1

In particular, 0 < H*(K) < oo and dimy (K, d) = a.

Remark. Under the assumption (1.5.3), it is easy to see that #(r~1(z)) < M
for any z € K. Hence by Corollary 1.4.8,

V(Ky) = 14"

for any w € W,. Also v(Z) = 0.
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Proof. We write A, = A(r,a). First we will show that HY(K,,) < (¢1)*v(Kyw)
for all w € W,.. For w = wiws - - - Wy, € Wi, we define A, (w) = {v =vjvy--- vy :
wv € Ay}, where wv = wiws -+ - WV V2 - - - V. Then we can see that Ag(w) is
a partition for sufficiently small a. Hence

re® = Y Tu™. (1.5.6)

vEAL(w)

By (1.5.2), it follows that diam(K,.,) < 17wy < c1a for v € A, (w). Also note
that Ky = Uyep, (w)Kwyo- Then we see that

Hgla(Kw) <a“ Z Twe® = (Clrw)a~
VEAG (w)

Letting a — 0, we obtain
HY(Kw) < (c1)%rw® = (c1)v(Kyw).

Next we show that v(K,) < Mey *HY(Ky,). Let p be the Bernoulli measure
on X with weight (7;%)1<i<n. For every z € K,

7 (Bua(@) € | S

WEN, 2

where Ay, = {w:w € Ay, d(z, Ky,) < coa}. Hence it follows that

V(Beya()) < Z p(Xw)-

WEA o
Since u(Xy,) =18 < a® and #(Aq ) < M by (1.5.3), we have
V(Beya()) < Meg™*(coa)®.
Lemma 1.5.5 implies that
V(A) < Mca™“HY(A).
for any A € B(K,d). Hence there exist c3,cq > 0 such that
esV(Ky) < HY(Ky) < cav(Ky)
By Theorem 1.4.10, we can verify (1.5.4). a

In the rest of this section, we show that the open set condition implies (1.5.2)
and (1.5.3) of Theorem 1.5.7.

Proposition 1.5.8. Suppose K is a subset of R¥, d is the Euclidean metric of
R* and F; : R* — RF is an r;-similitude for i = 1,2,--- , N with respect to
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d. If the open set condition holds: there exists an bounded nmon-empty open set
O C R* such that

N
UJF©)cO and F(O)NF;(0)=0 fori#j,
=1

then there exist constants c1,co, M > 0 such that
diam(Ky) < e17y
for allw e W, and
#{w:w e Ar,a),d(z, K,) < cpa} <M
forall0<a<1andx € K.

Proof. We can see that K, C O, for any w € W,, where O, = F,(0). (By
Exercise 1.2, it follows that O D K.) Without loss of generality, we may assume
that diam(O) < 1. Then, for all w € W,, diam(K,) < diam(O,) < 7.
Let m be the k-dimensional Lebesgue measure and let A,, = {w : w €
A(r,a),d(x, K,) < a}. Then Uyen, ,Ow C Bao(z). Since O, are mutu-
ally disjoint, we have ZweAa,w m(O,) < m(Bgy(z)). Hence it follows that
#(Aoo)rw™m(0) < 28Ca”, where C = m(unit ball). Since r,, > aR where
R =min{ry,re, - ,rn}, we see that #(A, ) < 28CR=*m(0)~ 1. O

Corollary 1.5.9 (Moran’s theorem). If K satisfies the open set condition,
then dimy (K, d) = o, where o is given by (1.5.5) with r; = Lip(F}).

§1.6 Connectivity of self Bimilar sets

Let (K,S,{F;}ics) be a self-similar structure. In this section we will give a
simple condition for connectivity of K and also show that K is connected if and
only if it is arcwise connected. For a reminder, the definition of connectivity is
as follows.

Definition 1.6.1. Let (X,d) be a metric space.

(1) (X,d) is said to be connected if and only if any closed and open subset of X
is X or the empty set. Also a subset A of X is said to be connected if and only
if the metric space (A, d|4) is connected.

(2) A subset A of X is said to be arcwise connected if and only if there exists
a path between x and y for any x,y € A: there exists a continuous map p :
[0,1] — A such that p(0) = z and p(1) = y.

Of course, arcwise connectivity implies connectivity, but the converse is not
true in general. Now we come to the main theorem of this section.

Theorem 1.6.2. The followings are equivalent.
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(1) For anyi,j € S, there exists {ir}r=0,1,...n € S such that ig =i, i, = j and
Ky NK; , #0 forany k=0,1,--- ,n—1.

(2) K is arcwise connected.
(3) K is connected.

Proof. Obviously (2) = (3). So let us show (3) = (1). Choose i € S and define
AC S by

A ={j € S : there exists {iy}x=0,1,...n C S such that
io =1, ip, = j and K;, N K, # 0 forany k=0,1,--- ,n—1}
If U =UjeaKj and V = Ujg 4 K, then UNV = and UUV = K. Also both
U and V are closed sets because Kj; is closed and A is a finite set. Hence U is
an open and closed set. Hence U = K or U = (). Obviously K; C U and hence

U = K. Therefore V = () and hence A = S.
To prove (1) = (2), we need the following lemma.

Lemma 1.6.3. For a map u:[0,1] — K and for t € [0,1], we define

D(u,t) = sup{lim sup d(u(t,),u(s,)) : lim ¢, = lim s, =t}

n—00 n—o00 n—oo

If fn : ]0,1] — K is uniformly convergent to f : [0,1] — K as n — oo and
lim, oo D(fn,s) =0, then f is continuous at s.

Proof of Lemma 1.6.53. Let d be a metric on K that is compatible with the
original topology of K. If ¢t,, — s and s,, — s as n — oo, then

d(f(tn), f(sn)) < d(f(tn), fm(tn)) + d(fm(tn), fm(sn)) + d(fm(sn), f(sn))-

Set 1, = sup{d(fm(¢), f(t)) : 0 < ¢ < 1}. Then the above inequality implies
D(f,s) < 2ry, + D(fm,s). Now letting m — oo, we can see that D(f,s) = 0.
Hence f is continuous at s. O

Now we return to the proof of (1) = (2).
Define

P= {f:K2 x [0,1] = K : f(p,q,0) = p and f(p,q,1) = ¢ for any (p, q) EK2}.
Also for f,g € P, set

dp(f,g9) =sup{d(f(p,q,t),9(p,q,1)) : (p,q,t) € K* x [0,1]}.

Then (P,d,) is a complete metric space. By (1), for any (p,q) € K?, we
can choose n(p,q), {ir(p, @) }o<k<np.g—1 S S and {zx(p, @) }o<k<n(pg) S K
so that 2o(p,q) = D, Tupq P q) = ¢ and zx(p, @), Trt1(p, q) € K, (p,q) for
k=0,---,n(p,q) — 1. For f € P, define Gf € P by, for % <t< %,

(G, t) = Fyy (oo (f (s @), 26(p, @), n(p; ) — k),
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where yi(p,q) = F; (, (zx(p,q)) and 2(p,q) = F; (o (zr+1(p,q)). Then it
follows that dp(G™f,G™g) < 7y, where r, = maxyew,, diam(K,,). Since
rm — 0 as m — oo, we see that there exists f, € P such that G™f — f, as
m — oo in P. Alsoset D(f) = sup{D(f(p.q),t) : (p,q,t) € K*x[0,1]} for f € P,
where f, (1) = f(p,q,t). Then D(G™f) < r,, D(f). Hence by Lemma 1.6.3,
f«(p,q,t) is continuous with respect to t. As fi(p,q,t) is a continuous path

between p and ¢, we see that K is arcwise connected. O

Corollary 1.6.4. If (K,S,{F;}ics) is post critically finite, then K is connected
if and only if, for any p,q € Vi, there exist {p;}o<i<m C Vi and {k;}o<i<m-1 C
S such that po = p, pm = q and p;,piv1 € Fi, (Vo) for i=0,---,m — 1.

In the rest of this section, we show a proposition which will be used in the
following sections.

Proposition 1.6.5. Let (K, S, {F;}ics) be a connected post critically finite self-
similar structure. Let p be the fized point of F;. If J is a connected component
of K\{p}, then JNVy # 0. In particular, the number of connected components
of K\{p} is finite. Moreover, let {J;}j=1.... m be the collection of all connected
components of K\{p}. Then there exists a permutation of {1,--- ,m}, p, such

that FZ(Jk) = Jp(k) NnK;.

Proof. Suppose that Uj,---,U; are connected components of K\{p}. Then,
we may choose n so that U; is not contained in F;"(K) for all j = 1,--- 1.
By Proposition 1.3.5-(2), U; N F;"(Vy) # 0 for any j = 1,---,l. Therefore
I < #(Vp). This implies that the number of connected components of K\{p} is
finite.

Now, let Jy,- -+, Jn, be the collection of all connected components of K\{p}.
Note that F;(J;) is connected and UTL, F;(J;) = K;\{p}. Therefore, there exits
p(j) such that F;(J;) C J,;). Since Ji, N K; # 0 for any k, we may find j that
satisfies J;NF; ~1(Jy,) # 0. This implies that p is a permutation of {1,2,--- ,m}.
As Ki\{p} = UT, (K; N J;), we see that K; N J,;) = Fi(J;) for any j.

Next choose n so that J; is not contained in F;"(K) for any j. Then, it
follows that J,» 1y NE;" (Vo) # 0 for any k. Since Jpn ) NE;" (Vo) = F"(VoNJy),
we see that J, NV, # 0 for any k. O

Next proposition also concerns a connected p. c. f. self-similar structure. It
gives an sufficient condition for K\V{ being connected.

Proposition 1.6.6. Let (K, S,{F;}ics) be a connected post critically finite self-
similar structure. Assume that, for any p,q € Vy, there exists a homeomorphism
g: K — K such that g(Vo) = Vo and g(p) = q. Then K\V; is connected.

If a connected p.c.f.self-similar structure satisfies the assumption of the
above proposition, we say that the self-similar structure is weakly symmetric.
To prove the above proposition, we need the following lemmas.

Lemma 1.6.7. Assume the conditions in Proposition 1.6.6. Let J be a con-
nected component of K\Vy. Then #(J N Vy) > 2.
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Proof. Suppose that there exists a connected component of K\Vj satisfying
#(JNVy) = 1. Let py be the unique py € Vo with py € J. Then by applying Jay
for x # y € Vp, we see that, for any p € V|, there exists a connected component
of J, of K\Vj such that J, N Vo = {p}. Then it follows that .J, is a connected
component of K\{p}.

Now, since L is post critically finite, there exits p € V{) such that p is a fixed
point of F,, for some w € W,\Wj. By exchanging the self-similar structure £
with L, = (K, Wi, {F,}vew,, ), we can use Proposition 1.6.5 and obtain that
J, N Vo # (). This contradicts to the fact that J, N Vo = {p}. O

Lemma 1.6.8. For p € V, Define
k(p, Vo) = #{C : C is a connected component of K\Vy,p € C}

and k(p) = the number of connected components of K\{p}. Then k(p, V) =
k(p)-

Proof. First we show that k(p,Vp) is finite. Let {C;};>1 be the connected
components of K\Vy with p € C;. Suppose that C; # C; if i # j. Set
a = min{|p —q| : ¢ € Vo,q # p}/2. Then by Lemma 1.6.7, there exists
x; € C; such that |x; — p| = a. Since K is compact, there exists a subsequence
{z4, }k>1 that converges to some z € K as k — oo. Note that z ¢ V. Therefore,
K, = Uyew, zek,, K is contained in K\V; for sufficiently large I. Moreover
K, is connected because K, is connected for any w € W,. Hence K, is a
subset of a connected component of K\V;. Since K, is a neighborhood of z,
it follows that x;, € K, for sufficiently large k. Hence Cj) equals to the
connected component of K\V containing x for sufficiently large k. This con-
tradicts to the fact that C; # C; if i # j. Thus we have show that k(p, Vp) is
finite.

Since L is an affine nested self-similar structure, we see that k(p) and k(p, Vo)
is independent of the choice of p € V. Hence, as in the proof of the last lemma,
we may assume that Fy,(p) = p for some w € W,\W,.

Now, let k = k(p, Vo) and let {C;}i=1,... x be the collection of all the con-
nected components of K'\V; whose closure contains p. Let U = (U;j=1,2,... xCk)U
{p}. Then U is a neighborhood of p. Hence, if w(n) = w---w, then Ky C U

n times
for sufficiently large n. Therefore if &’ is the number of connected components
of Ky(my\{p}, then k' > k. Since k(p) = k', we see that k(p) > k(p, Vo).

On the other hand, a connected component of K\{p} contains at least one
C;. Hence k(p) < k(p, V). a

Proof of Proposition 1.6.6. Let J be the collection of connected components of
K\Vy. Define V.= 1VyUJ and E = {(p,J) : p € Vo,J € T,p € J}. Let
G = (V, E) be the non-directed graph, where V is the set of vertices and FE is
the set of edges.

First we show that this graph G does not contain any loop. Suppose that
there exists a loop in G : there exist {p;}i=1,... » C Vo and {J;}i=12,... C T
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such that (p;, J;), (pit1,Js) € E for i = 1,2,--- ,n, where p,11 = p,. Then
J; and J;11 are connected components of K\Vy whose closures contain p;. On
the other hand, J; and J;;; are contained in the same connected component of
K\{p;}. This contradicts to Lemma 1.6.8.

Since G does not contain any loop, G is a tree : for any x,y € V, there exists
a unique sequence of edges from = to y. Hence G has an end point. Namely,
there exists x € V such that #{y € V : (z,y) € Eor (y,z) € E.} = 1. By
Lemma 1.6.7, we see that x € V. Hence k(z,Vh) = 1. Therefore, k(p, Vo) =
k(x,Vp) = 1 for any p € Vi. On the other hand, if #J > 2, then there exists
p € Vp such that k(p, Vo) > 2. Hence we see that #J = 1. O

Exercise

Exercise 1.1. Let f : R® — R" be a similitude with a Lipschitz constant r.
Show that there exist a € R™ and U € O(n) such that f(z) = rUx + a for all
xz eR™.

(Hint: If g(x) = (f(z) — f(0))/r, one can see that |g(x) — g(y)| = |z — y|.
This may imply that the natural inner product of R™ is invariant under g. Also
one should show that ¢ is a linear map.)

Exercise 1.2. Let (X, d) be a complete metric space and let f; : X — X be a
contraction for ¢ = 1,2,--- ,N. For A C X, define F'(4) = Ui<i<n fi(A4). Let
K be the self-similar set with respect to {f1, f2, -, fn}. Then

(1) Suppose A # (). Show that A D F(A) implies A D K.
(2) Show that for any x € X, B.(x) 2 F(B,(z)) for sufficiently large r.

Exercise 1.3. Define F;(z) = %(z —p;) +p; for i € {1,2,3,4}, where p; =
0,p2 =1,ps = (1++—1) and py = v/—1. Let K be the self-similar set with re-
spect to {F1, Fy, F3, F4}. Prove that Vj coincides with the topological boundary

of K.

Exercise 1.4. Let K = [0,1] and let S = {1,2,--- ,N}. Set F;(z) = a;x + b;
for i € S. Assume that 0 < a; < 1 for any ¢ € S and that K = U;csF;(K).
Prove that (K, S, {F;}ics) is minimal if and only if Zil a; = 1.

Exercise 1.5. Define fi(z) = z/3 and fa(z) = /3 +2/3. Let K be the self-
similar set with respect to {f1, f2}. (K is the Cantor’s middle third set.) Set
gi = fio fi for i = 1,2. Let K’ be the self-similar set with respect to {g1, g2}-
The natural map from ¥({1,2}) — K (resp. X(S) — K’) is denoted by 7 (resp.

7'). Note that both m and 7’ are homeomorphism. Set f3 = f; o7’ o7~ L.

(1) Show that f3 is a contraction on K.
(2) Let £ =(K,{1,2,3},{f1, f2, f3}). Show that int(C.) # @ and int(C,) = 0.

Exercise 1.6. Prove that P,y) = P, for any partition A for the self-similar
structures corresponding to Example 1.2.7, 1.2.8, 1.2.9 in the last section.

26



Exercise 1.7. Let S = {1,2,3}. Setw ~ 7 ifand only if {w, 7} C {w1212, w31}
for some w € W,(S) or w = 7.

(1) Let K = 3(S5)/~ with the quotient topology. Also define F; : K — K by
Fi(x) = w(o;(m~'(x))) for x € K. Then prove that £ = (K, S, {F;}ics) is a
self-similar structure.

(2) Let A ={1,21,22,23,3}. Prove that P, is a proper subset of P,.

Exercise 1.8. Let £ = (K, S, {F;}ics) is a self-similar structure and let A be
a partition of 3(S). Show that L is post critically finite if and only if £(A) is
post critically finite.

Exercise 1.9. Evaluate the Hausdorff dimensions of the self-similar sets intro-
duced in Examples 1.2.6-1.2.9 under Euclidean metrics.
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Chapter 2

Analysis on Limits of
Networks

In this chapter, we will discuss limits of discrete Laplacians (or equivalently
Dirichlet forms) on a increasing sequence of finite sets. The results in this
chapter will play a fundamental role in constructing a Laplacian (or equivalently
a Dirichlet form) on certain self-similar set in the next chapter, where we will
approximate a self-similar set by a increasing sequence of finite sets and then
construct a Laplacian on the self-similar set by taking a limit of Laplacians on
the finite sets.

More precisely, we will define a Dirichlet form and a Laplacian on a finite
set in §2.1. The key idea is that every Dirichlet form on a finite set can be
associated with a electrical network consisting of resistors. From such a point of
view, we will introduce an important notion of effective resistance. In §2.2, we
will study a limit of a “compatible” sequence of Dirichlet forms on increasing
finite sets. Roughly speaking, the word “compatible” means that Dirichlet forms
appearing in the sequence induce the same effective resistance on the union of
the increasing finite sets. In §2.3 and §2.4, we will present further properties of
limits of compatible sequences of Dirichlet forms.

§2.1 Dirichlet forms and Laplacians on a fhite
set

In this section, we give fundamental notions of analysis on a finite set, namely,
Dirichlet forms, Laplacians and effective resistance.

Notation. For a set V, we define (V) ={f : f:V — R}. If V is a finite set,
£(V) is thought to be equipped with a standard inner product (-,-) defined by
(u,v) =3 v ulp)v(p) for any u,v € (V).

First we give a definition of Dirichlet forms on a finite set V. In §A.4, one
can find a definition of Dirichlet forms for general locally compact metric space.
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Definition 2.1.1 (Dirichlet forms). Let V be a finite set. A symmetric bi-
linear form on £(V), £ is called a Dirichlet form on V if it satisfies

(DF1) &(u,u) > 0 for any u € £(V),
(DF2) &(u,u) = 0 if and only if u is a constant on V

and
(DF3) For any u € £(V), E(u,u) > E(4,a), where 4 is defined by
1 if u(p) > 1,
a(p) = s u(p) if 0 <u(p) <1,
0 if u(p) <0.

We use DF (V) to denote the collection of Dirichlet forms on V. Also we define

DF(V) = {£ : £ is a symmetric bilinear form on ¢(V) with (DF1) and (DF2)}.

Condition (DF3) is called the Markov property. Obviously DF (V') C 23./7-"(‘/)
This definition is a special case of Definition A.4.2 when X is a finite set V
and the measure p is the discrete measure on V.

Notation. Let V be a finite set. The characteristic function gy of a subset
1 ifqeU,
U C V is defined by xu(q) = na i
0 otherwise.

we write X, instead of x¢py. If H : £(V) — £(V) is a linear map, then we set
H,q = (Hxq)(p) for p,q e V. For f € &(V), (Hf)(p) = quv Hy,qf(q).

Definition 2.1.2 (Laplacians). A symmetric linear operator H : ¢(V) —
¢(V) is called a Laplacian on V if it satisfies

If U = {p} for a point p € V,

(L1) H is non-positive definite,

(L2) Hu = 0 if and only if u is a constant on V,
and

(L3) Hyy >0forallp#qgeV.
We use L(V) to denote the collection of Laplacians on V. Also

L(V)={H:H:{V)— (V) is symmetric and linear with (L1) and (L2)}.

Obviously L(V) c L(V).

There is a natural correspondence between DF (V') and L(V'). For a symmet-
ric linear operator H : £(V) — ¢(V'), we can define a symmetric quadratic form
Eu(-,)on L(V) by Eg (u,v) = —(u, Hv) for u,v € £(V). If we write n(H) = Ex,
it is easy to see that 7 is a bijective mapping between symmetric liner operators
and symmetric quadratic forms.

This correspondence between Dirichlet forms and non-negative symmetric
operators is a special case of the correspondence described in Theorem A.4.4.
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Proposition 2.1.3. 7 is a bijective mapping between E(V) and Z/D.VT(V) More-
over, m(L(V)) =DF (V).

Proof. 1t is routine to show w(L(V)) = DF(V). To show 7(L(V)) = DF(V),
first note that Ex (u,u) = 3 > pgev Hpg(u(p) — u(q))?. By this expression, it is
casy to see that w(L(V)) C DF(V). Now suppose H € L(V)\L(V). So there
exist p # ¢ € V with H,; < 0. We can assume that H,; = —1 without loss
of generality. Set u(p) = z,u(q) = y and u(a) = z for all a € V\{p,q}. Then
we have £ (u,u) = alr — 2)? + By — 2)? — (x — y)?. As Ey is non-negative
definite, o« and 3 should be non-negative. If z = 1, 2z = 0 and y < 0, then
Ex(u,u) =a—1+2y+(8—1)y? and Ex (4, u) = a — 1. If |y| is small, we have
En(u,u) < Ep(a,u). Hence £y ¢ DF(V). This shows that m(H) € DF(V) if
and only if H € L(V). O

Example 2.1.4. Let V be a set with three elements, say, p1,p2,p3. Set H =
—(1+¢ 1 €
1 -2 1 . Then Eg(u,u) = (z —y)? + (y — 2)% + e(x — 2)?,
€ 1 —(1+¢)
where = u(p1),y = u(p2) and z = u(ps). Letting X =z —yand Y =y — z,
we have

Er(u,u) = X2+ Y2+ (X +Y)?
=(142)(X2+Y?) —e(X —Y)?

So it is clear that if e > —3, then H € L(V) and if € > 0, then H € L(V).

If V is a finite set and H is a Laplacian on V, the pair (V, H) is called
a resistance network(an r-network, for short). In fact, we can relate an r-
network to an actual electrical network as follows. For an r-network (V, H), we
will attach a resistor of resistance rp, = Hp, ' to the terminals p and ¢ for
p,q € V. Also a plus-side of a battery is connected to every terminal p while
its minus-side is grounded so that we can put any electrical potential on each
terminal. For a given electric potential v € £(V'), the current i,, between p and
q is given by i,y = Hpq(v(p) — v(g)). So the total current i(p) from a terminal
p to the ground is obtained by i(p) = (Hv)(p).

Let (V,H) be an r-network and let U be a proper subset of V. We next
discuss what is the proper way of restricting H onto U from analytical point of
view.

Lemma 2.1.5. Let V be a finite set and let U be a proper subset of V. For
H e L(V), we define Ty : L(U) — LU),Ju : LU) — LV\U) and Xy :

LV\U) — £(V\U) by
Ty ty
n=(r %)

where Uy is the transpose matriz of Jy. (When no confusion may occur, we
use T, J and X instead of Ty, Ju and Xy.) Then, X = Xy is negative definite
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and
Eu(u,u) = Ex(ug + X Jug,uy + X_lJuo) + Er_tyx-15(ug,up), (2.1.1)
where ug = uly and uy = uly\y for u € L(V).

Proof. For v € £{(V\U), define © by 9|y = 0 and 0|y \y = v. Then Ex(v,v) =
En(0,0) > 0. By (L2), we see that if Ex(v,v) = 0 then ¥ should be a constant
on V. This implies v = 0. Hence Ex is positive definite. By the definition of £x,
X is negative definite. Now (2.1.1) can be obtained by an easy calculation. O

Theorem 2.1.6. Assume the same situation as in Lemma 2.1.5. For given
u € (U), define h(u) € L(V) by h(u)|y = v and h(u)|y\v = —X ' Ju. Then
h(u) is the unique element that attains min,eo(v)v|,—u Eu(v,v). Also define

Pyy(H) =T —'JX"'J. Then, Pyy : L(V) — L(U) and

Epyy ) (u,u) = Eg (h(u), h(u)) = Uee(‘rfr;iil‘U:ué’H(v,v) (2.1.2)

Moreover, if H € L(V), then Pyy(H) € L(U).

Proof. By (2.1.1), miny,eyvy,v|y—u Em(v,v) is attained if and only if v|y\y +
X~1Ju = 0. Hence we have the first part of the theorem.

Next we show that Py (H) =T—tJX~1J € L(V). By (2.1.1), we can verify
(2.1.2). Hence, Ep,, ,(m) is non-negative definite. By (2.1.2), Ep, , (ar)(u, u) = 0
implies that h(u) is a constant on V' and therefore u is a constant on U. Thus
we can show that Py g (H) € L(U).

Finally, if H € L(V), we have Ep,, ,, (mr)(u,u) = Em(h(u), h(w)) > Eu(h(u), h(u)).

As h(u)|y = u, we obtain Eg (h(u), h(u)) > Epy, () (U, w). Hence Ep,, ,(m) has
the Markov property. By Proposition 2.1.3, Py.y(H) € L(U). O

The linear operator Py y(H) is thought of as the proper restriction of H
onto U for the viewpoint of electrical circuits. In fact, V' and Py give exactly
the same effective resistance (which will be defined in Definition 2.1.9) on U.
When no confusion may occur, we write [H]y in place of Py (H).

Remark. In general, Py y is not injective. For example, set V' = {p1, p2, ps} and
—(14¢€¢ 1 €
U= {p1,p2}. If H. = 1 —1 0 | for e > 0, then H. € L(V) and

€ 0 —e
=7 4)

Note that h(u) is the unique solution of (Hv)|y\y = 0 and v|y = u. There-
fore if we think U as a boundary of V', h(u) may be called the harmonic function
with a boundary value u € £(U). For a Laplacian H on V', we have the following
maximum principle for harmonic functions.
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Proposition 2.1.7 (Maximum Principle). Let V be a finite set and let H €
L(V). Also let U be a subset of V. Forp € V\U, set

U, ={q € U : There exist p1,p2,- -+ ,pm € V\U with p1 =p

such that Hy,p, ., >0 fori=1,2,--- ,m—1 and Hy, ,>0.}.

Then if (Hu)|y\v =0,

min u <u < maxu
ﬁ%<m_<m_&%(w
for any p € VA\U. Moreover, u(p) = maxsey, u(q) (or u(p) = mingey, u(q)) if
and only if u is constant on U,.

Proof. Forp € V, set N, = {q : Hpy > 0}. Also define

W, ={q € V\U : There exist p1,ps, - ,pm € V\U with p1 =p and p,,, = ¢
such that Hy,,, , >0fori=1,2,--- m—1}

and V, = W, UU,. First assume u(p.) = maxgey, u(q) for p. € W,. Then
Np. € Vp and (Hu)(ps) = X yen, Hp.q(u(q) —u(ps)) = 0. Since Hy, ¢ > 0 and
u(q) —u(ps) <0 for any ¢ € N, , we have u(q) = u(p,) for all ¢ € N,,_. Iterating
this argument, we see that v is constant on V,,. Using the same discussion, it
follows that if there exists p. € W), such that u(p.) = mingey, u(q), then w is
constant on V),. Hence,

i = mi < u(p) < ma = maxu(q).
gﬁmw ggw@_mm_géw@ géwm

The rest of the statement is now obvious. O

The following corollary of the maximum principle is called the Harnack in-
equality.

Corollary 2.1.8 (Harnack inequality). Let V be a finite set and let H €
L(V). Also let U be a subset of V. Assume that A C V\U and that V, =V, for

any p,q € A. Then there exists a positive constant ¢ such that

< emi
maxu(p) < cminu(p)

for any non-negative u € £(V) with (Hu)|y\v = 0. The above inequality is

called the Harnack inequality.

Proof. Let V' = V), for some p € A. (Note that V' is independent of a choice
of pe A.) Set A= {u: (Hu)y\v = 0,minyey u(p) > 0, maxpey: u(p) = 1}. By
Proposition2.1.7, we see that minpea u(p) > 0 for u € A. If A9 = {u|y/ : u €
A}, then A is a compact subset of £(V'). Therefore, ¢ = inf{min,ec 4 u(p) : u €
Ao} > 0. By the definition of Ay, it follows that ¢ = inf{miny,ec 4 u(p) : u € A}.
This immediately implies the Harnack inequality. O

32



Next, we define effective resistances associated with a Laplacian or, equiva-
lently, a Dirichlet form. From the viewpoint of electrical circuits, the effective
resistance between two terminals is an actual resistance considering all the re-
sistors in the circuit.

Definition 2.1.9 (effective resistance). Let V be a finite set and let H €

L(V). For p # q € V, we define

Ri(p,q) = (min{Ex(u,u) : u € ((V),ulp) = 1,u(g) = 0}) " (2.1.3)

Also we define Ry(p,p) = 0 for all p € V. Rpg(p,q) is called the effective
resistance between p and ¢ with respect to H.

By Theorem 2.1.6, if U = {p, ¢}, then it follows that
1 -1 1
Hy = ——— < . _1> . (2.1.4)

Definition 2.1.10. Let V; be a finite set and let H; € [,N(V;) fori =1,2. We
write (VhHl) S (VQ,HQ) if and only if V1 Q V2 and PVZ,Vl (HQ) = Hl.

The next proposition is obvious by the above definitions.

Proposition 2.1.11. Let V; be a finite set and let H; € L(V;) for i =1,2. If
(Vi,Hy) < (Va, Hz), then Ry, (p,q) = Ru,(p, q) for any p,q € V1.

In fact, the converse of the above proposition is also true if both H; and Ho
satisfies (L3). This fact is a corollary of the following theorem, which says that
a Laplacian is completely determined by associated effective resistances.

Theorem 2.1.12. Let V be a finite set. Suppose Hyi,Hy € L(V). Then Hy =
Hy Zf and Only ZfRH1 (p7 Q) = RH2 (p7 Q) fOT any p,q € V.

Proof. We need to show the “if” part. We use an induction on #(V). When
#(V) = 2, the theorem follows immediately by (2.1.4). Now suppose the state-
ment holds if #(V) < n. Let V = {p1,p2,--- ,pn}. We write hy; = (H1)p,p,
and H;j = (Ha)p,p,- Also let Vi = V\{p;} and let

D=1t~ Ui}

for k = 1,2, where T} : {(V;) — £(V;), Ji - £(V;) — £({p:}) and X} : (({p:i}) —
£({p;}) are defined by
(T
= (3 3)

As (V;, D}) < (V, Hy), we have Rpi(p,q) = Rp;(p,q) for all p,q € V;. By the
induction hypothesis, D} = Dj. Now define D* = D} = D} and di; = (D), p, -
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Calculating directly and then using the fact that h;x = hy; and H;x = Hy;, we
obtain

diy = byt — hirhir/hii = Hy — Hig Hy [ Hy.
In particular,
die = hik — h3/hii = Hiw — H3/Hii. (2.1.5)

Exchanging k and 4, we can show that dfz/d}gk = hji/hgr = Hyi;/Hg. Therefore,
there exists t > 0 such that H;; = thy; for i =1,2,--- | N. Again by (2.1.5), we
have

(hik)? = hirhii — dighi;
and

(Hix)? = HypHi; — dj Hii = £ hyehi; — tdjhii.
As —hie = 352, hik and —thye = —Hy = 32,4y, Hir, we have

~hie = 3 ki — dighi = >\ b — dighai/t

PREDS ii#k

As a function of ¢, the right-hand side of the above equation is monotonically
increasing. Hence the above equality holds only for ¢ = 1. Therefore we obtain
H; = Hs. a

Corollary 2.1.13. Let V; be a finite set and let H; € L(V;) for i =1,2. Then
(Vi, Hy) < (Va, Hz) if and only if Ry, (p,q) = Ru,(p,q) for any p,q € V.

Remark. Tt is reasonable to expect that Theorem 2.1.12 remains true even if
we only assume Hp, Hy € L(V). However, the above proof cannot be extended
to such a case, because it uses the fact that Hp, > 0. Unfortunately, we don’t
know whether such an extension is true or not.

One reason why effective resistance is important is that it becomes a metric
on V if H € L(V). This metric called the effective resistance metric will play
a crucial roll in the theory of Laplacians and Dirichlet forms on (post critically
finite) self-similar sets.

Theorem 2.1.14. Let V be a finite set and let H € L(V). Then Ry(-,-) is
a metric on V. This metric Ry is called the effective resistance metric on V
associated with H.

Remark. Not every metric on a finite set V' corresponds to an effective resistance
metric with respect to a Laplacian H € L£(V'). See Exercise 2.1 and Exercise 2.2.

We need the following well-known formula about electrical network to show
Theorem 2.1.14.
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Lemma 2.1.15 (A-Y transform). Let U = {p1,p2,p3} and let V = {po}UU.
Set R;; = Hp:}n]- for H € L(U), where we assume that Hy, ,. > 0. Define

RioR3y RosRy2 R31 Ra3

R: s = s = .
" R+ Rys+ Rs1 2 Rig+ Ros+ Rsi'° Rys + Ros + Rsy

If H' € L(V) is defined by

, {Rj‘l ifi=0,

Pibi 0 othewise,

fori < j, then [H'|ly = H.

A direct calculation shows this formula.

As we mentioned before, we can associate an actual electrical circuit to a
Laplacian. In the above lemma, the circuit associated with H € £(U) has three
terminals {p1, p2, p3} and the terminals p; and p; are connected by a resistor of
resistance R;;. Let us call this circuit a A-circuit, which reflects the triangular
shape of the circuit. At the same time,the circuit associated with H € £L(V)
consists of four terminals {pg, p1,p2, p3} and each terminal p; is only connected
to po by a resistor of resistance R; for i = 1,2,3. pg is a kind of a focal point
of the circuit. Let us call this circuit a Y-circuit because of it ”upside-down
Y” shape. The A-Y transform says that the A-circuit and the Y-circuit are
equivalent to each other as electrical networks.

Proof of Theorem 2.1.14. By Definition 2.1.9 and (2.1.4), it follows that Ry (p, ¢) >
0 and that Ry (p,q) = 0 if and only if p = gq. Next we should show the triangle
inequality. We may assume that #(V) > 3. For U = {p1,p2,p3} C V, let
H' = [H|y. By Proposition 2.1.11, we have Ry (pi,pj) = Ru(pi, pj)-

First assume that [}, , > 0 for any m # n. Then the A-Y transform shows

RZ(RZk‘FRk)
Ry (pi,p;) = =2 2 2.1.6
# (Pir ;) Riz + Ros + Ra (2.1.6)

where R, = (HIl]7npn)_1 and {i,7,k} = {1,2,3}. Hence we can easily see that

Ry (p1,p2) + Ru(p2,p3) > Ru(p1, p3)-

Next, if one of H,, ,, =0, say H), ,. =0, then Ry (p1,p2) = Ri2, R (p2,p3) =
Ry3 and Ry (p1,ps) = Ri2 + Res, where R;; = (Hz’,ipj)’l. So we can verify the
triangle inequality. O

Ry (-,-) is not a metric on V for general H € L£(V). In fact, if #(V) > 3,
there exists H ¢ L(V') such that Ry (-,-) is not a metric on V. (See Exercise 2.4
and Exercise 2.5.) As we will see, however, /Ry (+,-) always becomes a metric

on V for all H € L(V).
The following is an alternative expression of the effective resistance.
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Proposition 2.1.16. Let V be a finite set and let H € E(V) Then for any
pqgevV,

(p) —ulg)*

Ry (p, q) = max{ |u o ue l(V),Eq(u,u) #0)} (2.1.7)

Proof. Note that I"%’;Z;‘Sf))lz = |”(é’21?:(vq))|2 if v =au+ S for any a, 8 € R with
a # 0. For given u € ¢(V) with u(p) # u(q), there exist o and 3 such that
v(p) = 1 and v(q) = 0 where v = au + . Hence the right-hand side of (2.1.7)

equals

cv € 4(V),v(p) =1,v(g) = 0}.

max{

_
Eu(v,v)
Now by (2.1.3), we can verify (2.1.7). |

Applying (2.1.7), we can obtain an inequality between |u(p) —u(q)|, Ru(p, q)
and Ep(u,u).

Corollary 2.1.17. Let V' be a finite set and let H € Z(V) For any p,q € V
and any v € L(V),

lu(p) — u(q)|* < Ru(p, ¢)&m (u,u) (2.1.8)

This estimate will plays an important role when we will discuss the limit of
a sequence of r-networks in the following sections.

As another application of Proposition 2.1.16, we can easily show that /Ry (-, )
is a metric on V.

Theorem 2.1.18. Let V be a finite set and let H € Z(V) Set R}J/z(p, q) =
V Ru(p,q). Then RZQ(-, \) is a metric on V.

Proof. We only need to show the triangle inequality. By (2.1.7), we see that

R}f( ,q) = maux{M cu € b(V),Eu(u,u) # 0}
SH (’LL, u)
This immediately imply the triangle inequality for R}{/Q(o7 ). |

§2.2 Sequence of discrete Laplacians

In this section, we will discuss the limit of r-networks on a increasing sequence
of finite sets that satisfied certain compatible condition, namely ;

Definition 2.2.1. Let V,, be a finite set and let H,, € E(V) for each m > 0.
{(Vins Hm) }m>o is called a compatible sequence if (Vy, Hy) < (Vins1, Hm+1) for
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all m > 0. For a compatible sequence S = {(Vin, Hpn) bm>0, set Vi = Up>oVi
and define

F(S)={u:uetVy), im Enu, (ulv, , ulv,) < +oo} (2.2.1)
Es(u,v) = lim &g, (ulv,,,v|v, ), (2.2.2)

for u,v € F(S). Also, for p,q € Vi, define the effective resistance associated
with S by

where m is chosen so that p,q € V,,.

In the next chapter, we will approximate a self-similar set by a sequence of
increasing finite sets. Then we will construct Dirichlet forms and Laplacians on
the self-similar set by taking a limit of a compatible sequence of r-networks.

Throughout this section, S = {(V;,, Hm) }m>0 is assumed to be a compatible
sequence.

Let us regard V,,, as a boundary of V. Then for any u € ¢(V,,,), we consider
a minimizing problem of Es(-, -) under the fixed boundary value u as follows.

Lemma 2.2.2. There exists a linear map hy, : £(Vy,) — F(S) such that hy, (u)|v,, =
u and

En,, (u,u) = Es(hpm (u), hm(u)) = min Es(v,v) (2.2.4)
veF(S)v|v,,=u

Moreover ifv € F(S) with v]y, = u attains the above minimum then v = hy,(u).

Proof. As [H,]v, = H,, for n > m, we can apply Theorem 2.1.6 with V =
Vo, U =V, and H = H,. Set hy,,, = h where h is the linear map ¢(U) — ¢(V)
defined in Theorem 2.1.6. Then define hy,(u)|y, = hpm(u). For any n > m,
this definition is compatible and h,,(u) € ¢(V,) is well-defined. By (2.1.2), we
have

En,, (u,u) = Ex, (b (u)lv, B (u)]v;, )

for all n > m. Therefore hp,(u) € F(S). Also (2.1.2) implies (2.2.4) immedi-
ately. O

Let us fix m. Then h,,(u) is also characterized by the unique solution of

{(ann)

vy, = u,

Vi\Vin = 0 for all n > m,

where v € £(V,) and v, = vl|y,. So hm,(u) may be thought of as a harmonic
function with boundary values u € V,,,. If H,,, € L(V};,) for all m > 0, we can
show the following maximum principal for harmonic functions.

We will sometimes think £(V,,) as a subset of F(S) by identifying £(V;,)
with hy, (6(Vi,)) through the injective map hy,. By this identification, one can
write Ex, (v, u) = Es(u, u) for any u € £(V,,) C F(S).
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Lemma 2.2.3 (Maximum principle). Assume H,, € L(V,,) for all m > 0.
If v € £(Vs) satisfies (Hpvn)|v,\v,, =0 for all n > m, where v, = vly,, then

i < < ma
g@dw_ﬁm_gédw

for any p € V.

Proof. This follows immediately by the maximum principle for harmonic func-
tions on a finite set, Proposition 2.1.7. O

Next we discuss the effective resistance Rs(+,-). As in the case for finite sets,

/ Rs(+,-) becomes a metric on V.

Proposition 2.2.4. If R;/Q(-,) = /Rs(+,-), then R}S./2 is a metric on V.
Moreover if H,, € L(V,,) for all m > 0, then Rs is a metric on V.

Proof. This is an easy corollary of Theorem 2.1.14 and Theorem 2.1.18 along
with Proposition 2.1.11 O

The following lemma follows immediately from its counterpart, Proposi-
tion 2.1.16.

Lemma 2.2.5. For any p,q € V,,

Rs(p.q) = (min{&s(u,u) : u € F(S),u(p) = 1,u(q) =0})
1 (2.2.5)

|u(p) — u(q)

= max{

This lemma implies that
lu(p) — u(q)|* < Rs(p, q)€s(u,u) (2.2.6)

for any u € F(S) and p, ¢ € V.. By (2.2.6), we can see that F(S) C C(V,, R‘ls/Q).
For a metric space (X, d), C'(X,d) is the collection of real-valued functions on X
that are uniformly continuous on (X, d) and bounded on every bounded subset
of (X,d).

Next we present important results of the limit of compatible sequence. In
the following chapter, the results will be applied in constructing Dirichlet forms
and Laplacians on a self-similar set.

Theorem 2.2.6. (1) F(S) C C(V., RY?)

(2) Es is a non-negative symmetric form on F(S). Moreover Es(u,u) = 0 if and
only if u is a constant on V.

(3) Define an equivalence relation ~ on F(S) by letting u ~ v if and only if u—v
is a constant on Vi. Then Es is naturally defined positive definite symmetric
form on F(S)/~ and (F(S)/~,Es) is a Hilbert space.

(4) Assume that Hy, € L(V) for all m > 0. If @ is defined as in (DF3) for any
u € F(S), then u € F(S) and Es(u,w) < Es(u,u).
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Proof. Every statement but (3) follows easily from the results and discussions
in this and the previous section. We will use £ and F in place of s and F(S)
respectively. To show (3), first note that £(u,u) = E(v,v) if u ~ v. Hence &
is a well-defined positive definite symmetric form on F/~. Choose any p € Vi
and set F, = {u : v € F,u(p) = 0}. Then (F/~,E&) is naturally isomorphic
to (Fp,E). Hence it suffices to show that (F,,&) is a Hilbert space. Now let
{vn}n>0 be a Cauchy sequence in (F,,€&) and let v* = hy,(vy|y,,). Then by
Lemma 2.2.2

Evp! — oot — o) < E(vk — vp, vk — 1)

Note that, p € V,,, for sufficiently large m. Hence £ becomes an inner product
on F, N4(Vy,), where €(V,,,) is identified with hp,(€(V;). So there exists v™ €
Fp N L(Vy,) such that v — v™ as n — oo. As v™Tl|y, = v™, there exists
v € (V) such that v|y,, =v™.

On the other hand, let C' = sup,,> E(vn,vy). Then we have E(v™,v™) <
sup,, ,, E(uI,v) = C. Hence v € F.

Now, we fix € > 0. Then, we can choose n so that &(v, — vg, v, — v) < €
for all £ > n. Also, we can choose m so that

|E(vy, — v, v —v) = E(WN — v 0 —0™)| < e

Furthermore, we can choose k so that £ > n and

[E(on" —vi'sop" —og") = E(v" =™, vt =™ <e

As EI —vt, v — o) < E(vp —vg, v —vg) < €, we have E(v, —v, v, —v) < 3e.
Thus we have completed the proof of (3). d

Finally we show two examples. The first one is related to one of the most
basic examples in probability.

Example 2.2.7 (Simple random walk on Z). LetV,, = {-m,—m+1,---,0,---

1, m} and let H,, € E(Vm) be defined by (Hm)z] =1if |Z—j| =1, (Hm)z] =0if
|i —j| > 1. Then S = {(Vin, Him) }m>1 is a compatible sequence. We can easily
see that V. = Z, Rg(i,j) = |i — j| and

Es(u,v) = (uli+1) —u(@)(v(i+ 1) — v(i)).
i€Z
Also we can see that (s, F(S) N L?(Z, i) becomes a regular Dirichlet form on
L?(Z, ) for every Borel measure p on Z that satisfies 0 < u({i}) < oo for all
i € Z. (See Definition A.4.2 for the definition of regular Dirichlet form.)
Define a linear operator A, on L?(Z, u) by

(Au)(@) = p(6) " (uli + 1) + uli - 1) - 2u(i)).

Then A, is a non-positive self-adjoint operator on L*(Z, u). Also Dom(A,) C
F(8)N L*(Z, p) and

Es(u,v) = —/ uA udp
2
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for any uw,v € Dom(A,). From this fact, A, is identified as the self-adjoin
operator associated with the closed form (Es, F(S) N L*(Z, 1)) on L%(Z, ).
(See §A.2 about a closed form and an associated self-adjoint operator.)

Now if v(i) =1 for all 4 € Z, then A, is the self-adjoint operator associated
with the simple random walk on Z in the following sense. Let ug € Dom(A,) and
think about the following evolution equation with discrete time n =0,1,2,---;

Upt1 — Up = Apu/2.

One can easily see that u, = (I + A, /2)"ug for any n. For i € Z, if ug(i) =1
and ug(k) = 0 for any k # 4, then u,(j) is the transition probability from 4 at
time 0 to j at time n under the simple random walk on Z.

Next example is an extreme case where Rs becomes a trivial metric on V.

Example 2.2.8 (Discrete topology). Let V,,, = {1,2,--- ,m} and let H,, €
L(V;,) be defined by (Hy,)i; = 2/m for i # j. Then & = {(Vin, Hn)}m>2 is a
compatible sequence. We can easily see that V, = N and Rs(i, ) = 1 for ¢ # j.
This metric Rs induces the discrete topology on N. As x; € F(S) for all 7 € N,
(€s,F(8S)) is a regular Dirichlet form on L?(N,u) for every Borel measure u
on N that satisfies 0 < u({i}) < oo for all i € N. See Definition A.4.2 for the
definition of a regular Dirichlet form. In particular, let p({i}) =1 for all ¢ € N,
then LZ(N,pu) = 2(N). We can see that ¢2(N) N F(S) = ¢?(N) and, for all
u,v € £2(N),

Es(u,v) = 2/ uvdp.
N

§2.3 Resistance Form and Resistance Metric

In the previous section, we constructed a quadratic form (Es, F(S)) and a metric
Rs from a compatible sequence of r-networks S = {(Vi,, Hy)}m>0. In this
section, we will give characterizations of the form (£g, F(S)) and the metric Rg
and show that there is an one-to-one correspondence between such forms and
metrics.

First we give a characterization of quadratic forms.

Definition 2.3.1 (Resistance form). Let X be a set. A pair (£, F) is called
a resistance form on X if it satisfies the following conditions (RF1) through
(RF5).

(RF1) F is alinear subspace of £(X') containing constants and £ is a non-negative
symmetric quadratic form on F. &(u,u) = 0 if and only if u is a constant on
X.

(RF2) Let ~ be an equivalent relation on F defined by v ~ v if and only if u —v
is a constant on X. Then (F/~, &) is a Hilbert space.

(RF3) For any finite subset V' C X and for any v € £(V), there exists u € F
such that u|y = v.
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(RF4) For any p,q € X,

lu(p) — u(q)|?

£(u) cu € F,E(u,u) > 0}

sup{

is finite. The above supremum is denoted by M(p, q).

(RF5) If w € F, then @ € F and &(u,u) < &(u,u), where @ is defined in the
same way as (DF3) in Definition 2.1.1.

We use RF(X) to denote the collection of resistance forms on X. Also we
define

RF(X) = {(E,F): (£, F) satisfies the condtions (RF1) through (RF4).}

The condition (RF5) is called the Markov property.
Let V be a finite set. Then (€,£(V)) € RF(V) (or (£,4(V)) € RF(V))
if and only if £ € DF(V) (or £ € DF(V) respectively.) Also immediately

from Theorem 2.2.6, (€5, F(S)) belongs to RF (V) for any compatible sequence
S = {(Vin, Hn)}tm>0. Moreover, if H,, € L(V,,) for all m, then (£s,F(S))
becomes a resistance form on V.

Next we consider a characterization of metrics.

Definition 2.3.2 (Resistance Metric). Let X be a set. A function R: X x
X — Ry is called a resistance metric on X if and only if, for any finite subset
V C X, there exists Hy € L£(V) such that R|yxy = Ry, , where Ry, is the
effective resistance with respect to Hy . The collection of resistance metrics on
X is denoted by RM(X). Also we define

RIM(X)={R: X x X — R, : For any finite subset V C X, there exists
Hy € L(V) with Rlyxy = Ry, and Hy, = [Hy,lv, if Vi C Va}

Remark. Recall that [Hy, |y, = Py, v, (Hy,) by definition. Notice that by Corol-
lary 2.1.13, the condition Hy, = [Hy,]v, is satisfied for a resistance metric R.

If we could extend Theorem 2.1.12 to £(V'), which is quite likely, then we could
remove the assumption Hy, = [Hy,]y, from the definition of REM(X).

Since Ry, is a metric on V, a resistance metric R is a distance on X. Also,
for R e RM(X), \/R(,") is a distance on X.

Let V be a finite set. Then R € RIM(V) (or R € RM(V)) if and only if
R = Ry for some H € L(V) (or H € L(V) respectively). Also it is natural

to expect that Rg is a resistance metric. More precisely, we have the following
proposition.
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Proposition 2.3.3. If S = {(Vin, Hn)}m>o0 s a compatible sequence, then
Rs € RM(V,). In particular, if H,, € L(V) for all m, then Rs is a resis-

tance metric.

Proof. Let V be a finite subset of V... Then V C V,, for sufficiently large m. If
Hy = [Hp)v, then Ry, = Rs|vxv. The rest of the conditions are obvious. O

There is a natural one-to-one correspondence between resistance forms and
resistance metrics. First we will construct a resistance metric from a resistance
form.

Theorem 2.3.4. If (£, F) € RF(X), then
min{&(u,u) : u € F,u(p) = 1,u(q) = 0}

exists for any p,q € X with p # q. If we define R(p,q)~" to be equal to the
minimum value, then R € RIM(X) and

Rl =220

Moreover, if (£,F) € RF(X), then R € RM(X).

cu € F,E(u,u) > 0}, (2.3.1)

To prove the above theorem, we need the following lemma.

Lemma 2.3.5. If (£,F) € 757-"(X) and V is a finite subset of X, then there
exists a linear map hy : (V) — F such that hy (u)|y = u and

E(hy (u),hy(uw)) = min E(v,v). (2.3.2)
vEF vy =u

Furthermore hy (u) is the unique element that attains the above minimum. Also
set EV (uy,uz) = E(hy (w1), hy (uz)). Then EY € DF(V). Moreover if (€, F) is
a resistance form, then EY € DF(V).
Proof. Forp € V, let 7P = {u : u € F,uly\(p} = 0}. Then by (RF.3), 7P is not
trivial. By (RF.2), (FP,€&) is a Hilbert space. Define ®, F? — R by ®,(u) =
u(p). Then by (RF.4) we have, for ¢ € V\{p}, |®,(u)]* < M(p,q)€(u,u) for
all u € FP. Hence ®, is a continuous linear functional on (F?,£). Therefore
there exists g, € FP such that for all u € FP, E(gp,u) = Pp(u) = u(p). As
E(gp,9p) = gp(p) > 0, we can define wz‘)/ = gp/9p(p)-

Now for any u € £(V'), define hy (u) = 35 oy u(p)iy . Ifv € Fwitholy = u,
set ¥ = v — hy(u). Then

E,v) =E0+ hy(u), 0+ hy(u)) = E(0,0) + 260, hy (uw)) + E(hy (u), hy (u)).
As E(0,hy (u) = 3 ey u(p)D(p)/gp(p) = 0, we have
E(v,v) = E(0,0) + E(hy (u), hy (w)) > E(hy (u), hy (u)).

Equality holds only when ¢ is constant on X and so ¥ = 0 on X. It is easy to
see that £V € DF(V). Also the Markov property (RF5) of (€, F) implies the
Markov property (DF3) of €Y. Thus we have completed the proof. O
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Proof of Theorem 2.3.4. By Lemma 2.3.5,
min{€(u,u) : v € F,u(p) = 1,u(q) = 0}

exists for any p,q € X with p # ¢q. Now define Hy € E(V) by &V = &g, If
Vi C Vs, then

S[HVQ]VI (u7 u) - UEZ(VI;)liiI)llv :ug(hV'z (1)), hV2 (U))

= min SW)=¢ .
v’efr,r}}?vl =u ('U v ) Hv, (U7 U)

Hence [Hy,lv, = Hy,. This fact also implies Ry, = R|yxv. Therefore R €

RMM(X). If (£, F) € RF(X), then Hy € DF(V) and hence R € RM(X). The
same argument as the proof of Proposition 2.1.16 implies (2.3.1). O

Theorem 2.3.4 says that each (£,F) € ﬁ(X) is associated with R €
RIU(X). So we can define a map FMy : RF(X) — RIM(X), which is called
the “form to metric” map, by R = FMx((€,F)). This form to metric map is,
in fact, bijective. Namely, we can construct the inverse of FMx.

Theorem 2.3.6. For R € RIMM(X), there exists a unique (€, F) € RF(X) that
satisfies (2.3.1). Moreover if R € RM(X), then (£,F) € RF(X).

Assuming the above theorem, we can define the “metric to form” map M Fx :
RIU(X) — RF(X). It is easy to see that M Fy is the inverse of FMx.

We will only present the proof of a special case of Theorem 2.3.6, namely
Theorem 2.3.7. Theorem 2.3.6 can proven by using routine and tedious discus-
sions about limiting procedure from the special case.

If R e RM(X), RV2(.,-) = /R(-,") is a metric on X. Assume that the
metric space (X, R'/?) is separable. Equivalently, there exists a family of finite
subsets {V,, }m>0 of X that satisfies V,,, C V1 for m > 0 and Vi = Up>0Vin
is dense in X. Set H,, = Hy, . Then H,, € L(Vy,) and [Hpi1ly, = Hpm
by definition. Hence (Vp,, Hp) < (Ving1, Hmt1) and so S = {(Vin, Him) }m>o0
is a compatible sequence. We know that (s, F(S)) € ﬁ(V*) Also it is
obvious that R = Rs on V.. Now as F(S) € C’(V*,R}S/Q)7 u € F(S) has a
natural extension to a function in C'(X, R'/?). We will think F(S) as a subset
of C(X, R'/?) in this way. Then it is easy to see that (s, F(S)) satisfies (RF1)
and (RF2). This (s, F(S)) is the candidate for (£, F) in Theorem 2.3.6. The
problem is to show (RF3) and (2.3.1) for any p,q € X. (We already know that
(2.3.1) holds for p,q € Vi by Lemma 2.2.5.) We do this in the next theorem.

Theorem 2.3.7. For R € RM(X), assume that (X, RY/?) is separable. Let
{Vintm>0 be a family of finite subsets of X such that Vi, C Vg1 for any
m > 0 and that Vi, = Uy>0 Vi, is dense in X. Set S = {(Vin, Hpn) bm>0 where
H,, = Hy, . Then (£s,F(S)) € RF(X) and

u(p) — u(q)|?
R(p,q) = max{% cu € F(S), Es(u,u) > 0} (2.3.3)
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for allp,q € X. Moreover, (Es, F(S)) is independent of the choice of {Vi, }m>0-
Also if R € RM(X), then (Es,F(S)) € RF(X).

Before proving the theorem, we need two lemmas.

Lemma 2.3.8. Let (£,F) € RF(X) and let {V,,} be a sequence of finite sub-
sets of X such that Vi, C Vyq1 for m > 0 and that V, = Up,>0V,y, is dense in
(X, RY?), where R= FMx((£,F)). If S = {(Von, Hp) }m>0 where H,, = Hy,,,
then (Es,F(S)) = (€, F).

Remark. In this lemma, again we think 7 (S) as a subset of C'(X, R'/?) because
R =Rs on V, and F(S) C C’(V*,R}Sm).

Proof. First we show that F(S) C F and Es(u,u) = E(u,u) for u € F(S).
Let u € F(S). Set w,, = hy,, (u]y,,), where hy,, is defined in Lemma 2.3.5.
As &n,, (ulv,,,ulv,,) = E(Um,um), we obtain &(um, Uum) < EUmy1, Ums1) <
Es(u,u). Now without loss of generality we may assume that u(p) = 0 for some
p € Vh. (We can just replace u by u — u(p).) Note that (u;, — up)|y, = 0 for
m > n. Then recalling the definition of hy in the proof of Lemma 2.3.5, it
follows that

E(um = tnyun) = Y (um(p) — wn(p))u(p)/g5(p) = 0

PEVL

for m > n. Hence E(Um — Un, Um — Un) = EUm, tm) — E(Un,u,) — 0 as
m,n — oo. Therefore {wu,, }m>0 is a Cauchy sequence in (F,, E). As (Fp, &) is
complete by (RF2), there exists u, € F, such that &(us — U, Us — Up,) — 0 a8
m — 00. S0 & (Us, us) = limyy— 00 (U, U ) = Es(u, u). For ¢ € V., we have

[us(q) = um(@)]* < R(p, )& (ts — U, s — Upy).

Letting m — oo, we obtain that uly, = u.|y,. As v and wu, is continuous on X
with respect to R1/2, we can see that v = u,. Thus we have shown that ©v € F
and E(u,u) = Es(u,u).

Secondly, for u € F, define u,, exactly same as before. Then &(up, tm) =
minger ofy, —uly,, €(V,v) < E(u,u). Hence u € F(S). Now use the discussion
of the latter half of this proof, we can see that £s(u,u) = £ (u, u). |

Lemma 2.3.9. Let (£, F) € RF(Y). Let (7,?_1/2) be the completion of (Y, R*/?),
where R = FMy ((€,F)). Then for any p,q €Y,

i) = a2 10

cu € F,E(u,u) > 0},

Proof. First we will show that

i) = o 2220

cu € F,E(u,u) > 0}. (2.3.4)
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We will denote the right-hand side of (2.3.4) by M (p, ¢). Choose {p,},{qgn} C Y
so that p, — p and ¢, — ¢ as n — oo. Note that,

R(Pn, qn) = Hlax{%

cu € F,E(u,u) > 0}. (2.3.5)

Hence, we have |[u(pn) — u(qn)|* < R(Pn,qn)E(u,u) for any u € F. Letting

n — 00, we obtain |u(p) —u(q)|* < R(p,q)&(u,u). Hence M(p,q) < R(p,q).
Suppose M (p,q) < R(p,q). Then we can choose € so that for all u € F,

lu(p) —u(@)] < (\/ R(p,q) = 5¢)v/E(u, u).

On the other hand, since R(pn,q,) — R(p,q) as n — oo, using (2.3.5), there
exists {un } such that & (u,,u,) = 1 and |u, (pn) —un(gn)|*> — R(p, q) as n — oo.
For sufficiently large n, we have

[tn (Pn) — tn(@n)| > (\/ R(p,q) — €)

and R(pn,pm), R(qn,qm) < € for all m > n. Furthermore we can choose m so
that m > n and

[t (Pm) — un(p)| < e and  |up(gm) — un(q)| < e
Now we have

[Un(Pn) = Un(qn)| < [un(pn) = wn(pm)| + [tun(pm) — un(P)| + [un(p) — un(g)| +
[un(q) — un(qm)| + [tn(gm) — un(gn)l

< Jun(pn) = wn(pm)| + [tn(gn) = un(gm)| + (1 B(p, q) — 3¢).

Hence |ty (pn) — tn(pm )| > € or |un(gn) — un(gm)| > €. This contradicts the fact
that R(pn, pm), R(qn, gm) < €2. Therefore we have shown (2.3.4).

Now using the same argument as in the proof of Lemma 2.3.5, it follows that
there exists 1) € F such that ¥(p) =1, ¢¥(q) = 0 and % attains the supremum
in (2.3.4). O

Proof of Theorem 2.3.7. As we mentioned before, (Es,F(S)) (recall that we
think F(S) as a subset of C(X,RY?)) satisfies (RF1) and (RF2). To show
(RF3), set V,;, = V;,, UV for a finite set V' C X. Let H,, = Hy; and let
S = {(V},H],)}. Then for any u € £(V), there exists v € F(S’) such that
vly = u. As (Vin, Hn) < (Vi Hy), En,, (vlv,,,vlv,) < Ewy, (vlvy, vl ) <
Es/(v,v). Hence limy, oo &, (Vlv,,,v|v,,) < Es/(v,v). Therefore v € F(S).
This shows (RF3).

Next, applying Lemma 2.3.9 for the case that Y = V,, we obtain (2.3.3)
because X C Y. This implies (RF4). Thus we have shown (s, F(S)) € RF(X).
Furthermore, (2.3.3) also implies R = FMx((£s, F(S))).

Let {U,,} be a sequence of finite subsets of X that satisfies the same con-
dition as {V;,} and let S&; be the compatible sequence associated with U,,.
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Then applying Lemma 2.3.8, we can see that (s, F(S)) = (€s,, F(S1)). Hence
(Es,F(S)) is independent of the choice of {V,,}.

Finally if R € RM(X), then Hy, € L(V,,). Hence (s, F(S)) has the
Markov property. O

Using the discussions in this section, we can show another important fact
about resistance forms and resistance metrics. If S = {(Vin, Hn)}m>o is a
compatible sequence, then (€s, F(S)) € RF(V.) and Rs € RIMM(V.). The space
V. is merely a countable set. So if we would construct analytical objects like
Laplacians or Dirichlet forms from (s, F(S)), we would end up with an analysis
on a countable set. That is hardly what we want! One way of overcoming
this difficulty is to consider the completion of V, with respect to the metric
R§/2. Let (QS,R}S/z) be the completion of (V*,R‘lsn). Then (Qg,Ré/Q) could
be an interesting uncountable infinite set. As we mentioned before, F(S) can

be naturally thought of as a subset of C'(Qs, Ré/z). Hence (s, F(S)) can be

considered as a quadratic form on (Qs, R}S/ 2). There is, however, a little delicate

question about this completion procedure. Is the extended Rs in EI/I(QS)?
Equivalently, do we have (Es, F(S)) € ﬁ(X )? This is not an trivial problem.
In fact, this is not true in general. See Exercise 2.7 for a counter example.
Fortunately, if we assume the Markov property, i.e. H,, € L(V,,) for all m > 0,
then it follows that RY? € RM(Qs) and (Es, F(S)) € RF(Qs) by virtue of
the next theorem.

Theorem 2.3.10. Let (£,F) € RF(X). If (X, R) is the completion of (X, R),
where R = FMx((E,F)), then (§,F) € RF(X) and R € RM(X).

Proof. (RF1), (RF2) and (RF5) follow immediately. Also (RF4) is an obvious
consequence of Lemma 2.3.9. Instead of (RF3), we may show the following
(RF3%).

(RF3*) For each finite subset V' C X and for each p € V, there exists u € F
such that u|y = x,, where x,, is the characteristic function of the one point set
{p}.

We use an induction on # (V') to prove (RF3*). If #(V) = 2, say V = {p, ¢},
then by Lemma 2.3.9, there exists u € F such that u(p) # u(q). If we set
f=(u—ul(q))/(u(p) —u(g)), we have fly = xp.

Next suppose (RF3*) holds for #(V) < n. Let V.= {p1,p2,--- ,pn}, then by
the induction hypothesis, there exists v € F such that u(p;) = 1 and u(p;) =0
for i > 3.

Case 1 If u(p2) < u(p1), then for some o, § € R, v = au + 0 satisfies v(p;) =1
and v(p;) <0 for j > 2. Define © as in (DF3) of Definition 2.1.1. Then by the
Markov property (RF5), we have o € F. Obviously o]y = Xp, -

Case 2 If u(ps) = u(p1), then choose f € F that satisfies f(p1) > f(p2) and
|f(pi)] <1/2 for all 4 = 1,2,--- ,n. For some «o,3 € R, v = a(u + f) + 3 has
the same properties as v in Case 1.
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Case 3 If u(p1) < u(p2), then using the same discussion as in Case 1, we can find
v € F that satisfies v|y = xp,. Thus if f = u — u(p2)v, then f|y = xp, -
Thus we have shown that (RF3*) holds for #(V) = n. O

§2.4 Dirichlet forms and Laplacians on limits of
networks

In the last section, we have studied relations between a compatible sequence of
r-networks, a resistance form and a resistance metric. In this section, we will
take a first step to establish an “analysis” on limits of networks. In particular,
we are interested in constructing a counterpart of the Laplacian defined as a
differential operator in the classical calculus. By the results in the last section, it
is reasonable to start from a compatible sequence of r-networks S = {(V,,, Hn) }-
(We do not concern how to obtain a compatible sequence of r-networks in this
section.) Then we obtain a resistance form (£,F) and a resistance metric R
by taking a limit of S. Naturally, the resistance form (€, F) and the resistance
metric R are important elements in our “analysis”. However, those are not
enough. We need to introduce an integration, namely, a measure on the space.
The following is a general result concerning a resistance form, a resistance metric
and a measure.

Theorem 2.4.1. Let R € RMM(X) and suppose that (X, RY/?) is separable. Set
(£, F) = MFx(R). Also let i be a o-finite Borel measure on (X, R'/?). Define

&1 (u,v) = E(u,v) + / u(z)v(x)p(dx)
X
for u,v € L3(X, ) N F. Then (L*(X,u) N F, &) is a Hilbert space. Moreover,
if (X)) < oo and [y R(p, p«)u(dp) < oo for some p. € X, then the identity
map from L*(X,u) N F with E-norm to L*(X, u) with L?>-norm is a compact
operator.

Proof. Let {uy}n>0 be a Cauchy sequence in (L?(X,pu) N F, &) and let v, =
Up, — Up(p) for p € X. Then by (RF.2), there exists v € F, such that E(v,, —
v, v, —v) — 0 as n — oo. By (RF4), we have

lvn(q) — v(@)|* < R(p, Q)& (vn — v,v — v). (2.4.1)

Since p is o-finite, there exists { K, }m>o0 such that K, C X is bounded, 0 <
w(Kpy) < oo and Upy>0K,, = X. By (2.4.1), we see that v, — v as n — oo in
L*(Kp, plk,,). Also {un|k,, }n>0 is a Cauchy sequence in L?(K,, pu|k,,). As
Un(p) = (Un, — vn)|k,,, there exists ¢ € R such that u,(p) — ¢ as n — oco. If we
let w = v+ ¢, then £(u — up,u — uy) — 0 as n — oo. Also, u,|k,, — u|k,, as
n — 0o in L?(Kp, pi|x,,)-

On the other hand, {u,},>0 is a Cauchy sequence in L?(X, u) and so there
exists u* € L?(X, p) such that u, — u* as n — oo in L3(X,u). As u*|k,, =

47



ulg, in L2(Km,plk, ), v = u* in L?(X,u). Hence u, — u as n — oo in
(LA(X, p) N F, &).

Now suppose (X ) < co. Let U be a bounded subset of (L*(X, ) N F,&1).
If C = sup,cy &1(u,u), then

lu(p) — u(q)|* < C R(p,q) (2.4.2)

for all w € U and all p,q € X. Let V be a countable dense subset of X. Note
that {u(p) }ucy is bounded for any p € V by (2.4.2). Hence by standard diagonal
construction, we can find v € ¢(V) and {v,} C U satisying v, (p) — v(p) as
n — oo for all p € V. Using (2.4.2), we see that v satisfies (2.4.2) for p,q € V.
Therefore v extends naturally to a function v € C(X,R'?) and it satisfies
(2.4.2) for all p,q € X as well. For any p € X, choose {p,} C V so that p, — p
as n — oco. Then

lvg (p) —v(p)| < [vk(p) — vi(pn)| + [vk(Pn) — v(pn)| + [v(pn) — v(P)]
C R(p, pn) + vk (pn) — v(pn)l-

Hence we see that v, (p) — v(p) as n — oo for all p € X. By (RF4),

[(vk(p) — v (p)) — (Vk(ps) — vi(pe))|* < E(vr — v1, v — V1) R(p, ps).-

As E(vp, vy,) < C, the above inequality implies

[ok(p) — vi(p)] < VAC R(p, ps) + vk(p«) — vi(ps)]-

Letting | — oo, we have |vk(p) — v(p)|*> < 4C R(p,p.) + 1 for large k. Since
Jx R(p, p)pu(dp) < oo, it follows that vy, — v in L*(X,u) as k — oo by
Lebesgue’s dominate convergence theorem. O

Now, we have collected enough facts to use an abstract theory in functional
analysis. In fact, by Theorem 2.4.1, we can apply the well-developed theory of
closed forms and self-adjoint operators, which is introduced in Appendix §A.2.

Theorem 2.4.2. Let R € RMM(X) and suppose that (X, RY/?) is separable. Set
(£, F) = MFx(R). Also let u be a o-finite Borel measure on (X, R'/?). Also
assume that L*(X,u) N F is dense in L*(X, u) with respect to the L*-norm.
Then there exists a non-negative self-adjoint operator H on L*(K,u) such that
Dom(H'?) = F and E(u,v) = (HY?u, H/?v) for all u,v € F. Moreover if
w(X) < oo and [y R(p,p.)p(dp) < oo for some p. € X, then H has compact
resolvent.

Proof. Set H = L*(X, u), Q(+,-) = & and Dom(Q) = F. Then Theorem 2.4.1
along with Theorem A.2.6 immediately imply the required results. O

Assume that R € RM(X). Also in addition to the assumptions of The-
orem 2.4.2, we assume that X is a locally compact metric space. Then we
see that (£, F N L?(X,pu)) is a Dirichlet form on L?(X,u). Moreover if F N
L?(X, ) N Co(X) is dense in Co(X) with respect to the supremum norm, then
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(E,F N L?(X, p)) is a regular Dirichlet forms. (See §A.3 for the definition of
Dirichlet forms and Cp(X).) In fact, if (£, F) comes from a regular harmonic
structure, which is defined in §3.1, we can verify all the conditions above and
get a Dirichlet forms and a Laplacian immediately from the theorems in this
section. See the next chapter for details.

Form an abstract point of view, the self-adjoint operator —H should be our
Laplacian. However, this abstract construction is too general to study detailed
information on our Laplacian. For example, it is quite difficult to get concrete
expressions of harmonic functions and Green’s function only from this abstract
definition. So, we also need to construct a Laplacian on a self-similar set in a
classical way, namely, as a direct limit of discrete Laplacians. See Chapter 3, in
particular §3.7.

Example 2.4.3. Let K be any closed subset of R. We can always find an in-
creasing sequence of finite sets {V,,, }.m>0 that satisfies V;,, C Vi1 and Uy, >0 Vi, =
K. If Vi, = {pm.i}imy and pri < Dmit1 for all 4, then we define H,, € L(V,,)
by

(Hm)p P = {lpm7i _pm7j|71 if |Z _J‘ =1
e 0 otherwise,

for ¢ # j. Then {(Vin, Him ) }m>0 becomes a compatible sequence. Also if R is the
effective resistance defined on U,,>0V}, then R coincides with the restriction of
the Euclidean metric. Let (£, F) be the corresponding resistance form and let
i be a o-finite Borel regular measure on K. First note that f|x belongs to F
for any piecewise linear function f on R with supp(f) compact. By this fact,
it follows that F N L?(K, i) is dense in L?(K, u) with respect to the L?-norm.
Set F; = FN L?*(K,pu). Then (€,F;) becomes a local regular Dirichlet form
on L%(K, p).

This example contains many interesting cases. The most obvious one is
the case where K = R. In this case, F; coincides with H'(R), which is the
completion of

{ue C'(R): / u'(x)?dx < oo, supp(f) is compact.}
R

with respect to the H'-norm || - ||; defined by

|ul|r = \//]K(u(x)2 +u/(2)?)dz.

Also E(u,v) = [ u'(x)v'(x)dz. If ju is the Lebesgue measure on R, then the non-
negative self-adjoint operator H coincides with the standard —A = —d?/dx?.
One of other interesting cases is the Cantor set. Let K be the Cantor set
defined in Example 1.2.6. Let p be a self-similar measure on K. (See §1.4 for
the definition of self-similar measures.) Then (€, F) becomes a local regular
Dirichlet form on L?(K, ). By using Theorem 2.4.2, we obtain a non-negative

49



self-adjoint operator H. Set A, = —H. Then A, is though of as a Laplacian
on the Cantor set K. In [32, 33], Fujita studied the spectrum of A, and the
asymptotic behavior of the associated (generalized) diffusion process on the
Cantor set.

Exercise

Exercise 2.1. Show that every metric on V coincides with an effective resis-
tance metric associated with a Laplacian H € L(V) if #(V) = 3.

Exercise 2.2. Let V = {p1,p2,p3,pa} and let d be a metric on V defined by,
for

1 if (i,7) # (1,2) and 4 # j,
d(pi,pj) = qz if (i,5) = (1,2),
0 ifi=j,

for some x with 0 < z < 2. Show that there exists a Laplacian H € L(V) such
that Ry = d if and only if z < 3/2.
Exercise 2.3. Verify that the A-Y transform remains true even if H € Z(V)

Exercise 2.4. Show that if #(V) = 3, H € L(V) if and only if Ry (-,-) is a

metric on V.
Exercise 2.5. Let V = {p1, pa2,ps,pa}. For i # j, set
a1 DA,
—e (1,4)

Pibj

where € > 0. Show that if € is sufficiently small, H € £(V) and Ry (-, -) becomes
a metric on V.

Exercise 2.6. Let V = {p1, p2, p3}. Define

—(1+m) 1+2m —-m
H,=1| 1+2m -2(142m) 142m
—-m 142m —(14+m)

Show that R, (pi,p;) converges as m — oo. Also show that there exists no
H € L(V) such that R = Ry, where R(p;,p;) = limy,—oo Ra,, (Pi0;)-

Exercise 2.7. Let X = {a,b} U {pm}m>1. Define R(a,b) = 2,R(a,pm) =
m k—j
R(b,pm) = 52 and R(p;,pr) = Tramcry
(1) Show that R € RIM(X).

(2) Let (X, RY/2) be the completion of (X, R*/?). Show that R ¢ RIM(X).
(Hint: See Exercise 2.6.)
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Chapter 3

Construction of Laplacians
on P.C.F. Self 8imilar
Structures

In this chapter, we will construct analysis associated with Laplacians on con-
nected post critically finite self-similar structure. Precisely, in this chapter,
L = (K,S,{F;}ics) is a post critically finite (p. c. f. for short) self-similar
structure and K is assumed to be connected. (Also in this chapter, we always
set S ={1,2,---,N}.) Recall that a condition for K being connected was given
in §1.6.

The key idea of constructing a Laplacian (or a Dirichlet form) on K is finding
a “self-similar” compatible sequence of r-networks on {V,,}m>0, where V;,, =
V(L) defined in Lemma 1.3.10. Note that {V,, }mm>0 is a monotone increasing
sequence of finite sets. We will formulate such a self-similar compatible sequence
in §3.1. Once we get such a sequence, we can use the general theory in the last
chapter and construct a resistance form (€, F) and a resistance metric R on Vi,
where V, = Up>0Vin

If the closure of V, with respect to the metric R were always identified with
K, then we could apply Theorem 2.4.2 and see that (£,F) is a regular local
Dirichlet form on L?(K, i) for any self-similar measure p on K. Consequently
we could immediately obtain a Laplacian associated with the Dirichlet form
(€,F) on L?(K, ). Unfortunately, as we will see in §3.3, the closure of V, with
respect to R is merely a proper subset of K for certain case. In spite of this
difficulty, we will show a condition on a probability measure p which is sufficient
for (€, F) to be a regular local Dirichlet form on L?(K, ) in §3.4

As is mentioned in §2.4, there is an abstract way of constructing Laplacian
from a Dirichlet form (€, F) on L*(K, p). (See §A.2 for details.) However, we
will develop our analysis on a p. c. f. self-similar set K in a classical and explicit
way like the ordinary Laplacian d?/dz? on the unit interval. In §3.5, Green’s
function will be given in a constructive manner. In the following sections, we
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will study counterparts of classical analysis on Euclidean spaces, for example,
Green’s operator in §3.6 and Gauss-Green’s formula in Theorem 3.7.8. Finally
we will define a Laplacian as a scaling limit of discrete Laplacians on V,, in §3.7.
Throughout this chapter, d is a metric on K which gives the original topology
of K as a compact metric space. Also we write C'(K) = C(K,d). Since (K, d) is
compact, C(K) is the collection of all real-valued continuous functions on K.

§3.1 Harmonic structures

In this section, we start constructing Dirichlet forms and Laplacians on K. Asis
mentioned above, the basic idea is finding a ”self-similar” compatible sequence
of r-networks on {V;;,};m>0 and taking a limit of it. (Recall that V,,, C V41 by
Lemma 1.3.10.)

For any initial D € £(V}), we can construct a sequence of self-similar Lapla-
clans H,, € L(V,;,) as follows.

Definition 3.1.1. If D € £(V}) and r = (ry,79,-+-,rN), where r; > 0 for
i € S, we define £™ € DF(V,,) by

1
g(m)(uvv): Z _gD(quwvvon)
wEWm, rw

for u,v € £(V,,), where ry, = 1y, -+ Ty, for w = wywe---wy, € Wy, Also
H,, € L(Vy,) is characterized by £(™) = £g .

It is easy to see that

N
1
EMHD (4, v) Z,TS ™ (uo Fy,vo F)) (3.1.1)

i=1

for u,v € £(V,,,). Also Hy = 3 e Tf“ ‘Ry DRy, where Ry, : (V) — £(Vo)

is defined by R, f = f o F, for w € W,,,. We write &, = E(m) hereafter.
Considering (3.1.1), we may think (V;,,, H,,) as a self-similar sequence of

r-networks. If it is also a compatible sequence, then it is possible to construct a

Laplacian on K using the theory in the previous chapter.

Definition 3.1.2 (Harmonic structures). (D,r) is called a harmonic struc-
ture if and only if {(V},,, Hp) }m>0 becomes a compatible sequence of r-networks.
Also a harmonic structure (D, r) is said to be regular if 0 < r; <1 foralli e S.

Once we get a harmonic structure, we can use the general framework in
Chapter 2 (in particular, Theorem 2.2.6, Theorem 2.4.1 and Theorem 2.4.2) to
construct a quadratic form (£, F) on Vx = Uy>oV;, and an associated non-
negative self-adjoint operator H on L2(£), u), where Q is completion of V, under
the resistance metric associated with (€, F) and p is a given o-finite Borel
regular measure. This H should be our Laplacian. It seems easy but there
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remains a ”slight” problem : the topology on V, given by the resistance metric
may be different from the original topology of K. In such a case, {2 does not
coincides with K. In fact, we will see in the next section that Q = K if and
only if the harmonic structure is regular.

Another important problem is whether there exists any harmonic structure
on a p. c. f. self-similar structure. By virtue of the self-similar construction of
H,,, we can simplify the condition for harmonic structures as follows.

Proposition 3.1.3. (D,r) is a harmonic structure if and only if (Vp,D) <
(Vi, Hy).

Proof. Assume that (V,—1, Hyn—1) < (Vi, Hp). Then, for any u € £(V,,), we
have &y—1(uo Fy,uo F;) = min{&,(vo Fj,vo F;) : v € {(Vipy1),vl|y, = ul.
Hence by (3.1.1), we have &, (u,u) = min{&y,11(v,v) : v € {(Vipy1), vlv,, = u}.
Therefore (Vin, Hpm) < (Vint1, Hmt1). So by induction, if (Vp, D) < (Vi, Hy),
then (Vin, Hp) < (Vint1, Hmy1) for any m > 0. The converse is obvious. d

For given r = (ry,r9, - ,7n), define R, : L(V) — L(Vp) by R.(D) =
[Hi]v,, where Hy € L£(V7) is given by Definition 3.1.1. R, is called a renor-
malization operator on L(Vp). By the above proposition, D is a harmonic
structure if and only if D is a fixed point of R,. Also it is easy to see that
Ror(aD) = (A)"1aR.(D) for any a, A > 0. Hence if D is an eigenvector of R,
i.e.Ry(D) = AD, then D is a fixed point of Ry,. So, the existence problem of
harmonic structures is reduced to a fixed point problem (or eigenvalue problem)
for the non-linear homogeneous map R,. In general, this problem is not easy
and we have not fully understand the situation yet. For example, it is not known
whether there exists at least one harmonic structure on a p.c.f. self-similar set.
The only one general result on existence of a harmonic structure is the theory
of nested fractals by Linstrgm [94]. The nested fractals are highly symmetric
self-similar structures. (See §3.8 for the definition.) We will present slightly
extended version of Lindstrgm’s result on existence of a harmonic structure on
nested fractals in §3.8.

Example 3.1.4 (Interval). Set Fy(x) = /2 and Fy(x) = x/2 + 1/2. Then
L = ([0,1],{1,2},{F1, Fo}) becomes a p. c. f. self-similar structure. We see
that Vi, = {i/2™}i=1,2,... om. Let us define D € £(Vp) by

p= (L)

Then (D, r) becomes a harmonic structure on £ if r = (ry,r3) satisfies that
ri+ro=1and 0 <r; <1fori=1,2 Alsoitis easy to see that those are all
the harmonic structures on L.

Example 3.1.5 (Sierpinski gasket). Recall Example 1.2.8 and 1.3.13. The
Sierpinski gasket is a p. c¢. f self-similar set with Vy = {p1,p2,p3}. Define
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D € L(Vy) by

Also set r = (3/5,3/5,3/5). Then we see that (D, r) is a harmonic structure on
the Sierpinski gasket. (D,r) is called the standard harmonic structure on the
Sierpinski gasket. There are other harmonic structures on the Sierpinski gasket
if we loosen the symmetry. See Exercise 3.1.

Example 3.1.6 (Hata’s tree-like set). Recall Example 1.2.9 and 1.3.14. Let
L be the self-similar structure associated with Hata’s tree-like set. Then Vi =
{¢,0,1} as in the previous example. Define D € L(V}) by

—h h 0
D=|h —(h+1) 1
0 1 ~1

and define r = (r,1 —7r2) for r € (0,1). If rh = 1, then (D, r) becomes a regular
harmonic structure on L.

So far we presented examples of regular harmonic structure. Of course, there
are many example of non-regular harmonic structure.

Example 3.1.7. Set Fy(z) = 2/2, Fa(z) = z/2 4+ 1/2 and F3(z) = /—12/3 +
1/2. Let K be the self-similar set with respect to {Fi, Fy, F3} and let £ =
(K,{1,2,3},{F1, F2,F3}). Then L is a p.c.f.self-similar structure. In fact,
Ce = {12,21,31}, Pz = {i,2} and Vp = 0,1. Tf D — (‘11 _11) and r —
(r,1 —r,s) for r € (0,1) and s > 0, then (D,r) is a harmonic structure on L.
Obviously, (D,r) is not regular for s > 1.

See Exercise 3.2 for a more natural example of non-regular harmonic struc-
tures.

Proposition 3.1.8. For w € W,, let w denote the periodic sequence in ¥ de-
fined by w = www---. Let (D,r) be a harmonic structure and let w € P for
w € W,. Then ry, < 1. In particular, there exists i € S such that r; < 1.

Remark. If (K, S,{F;}ics) is a p.c.f. self-similar structure,then the post critical
set P consists of eventually periodic points : for any w € P, there exist w € W,
and m > 0 such that ¢™w = w.

Corollary 3.1.9. Let (D,r) be a harmonic structure. If ry = --- = ry, then
r; <1 for any i € S. In particular, (D,r) is a regular harmonic structure.

To prove Proposition 3.1.8, we need the following lemma.
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Lemma 3.1.10. Let V be a finite set and let H € L(V). Suppose U CV and
p € U. If there exists g, € V\U such that Hpq, # 0 , then —hy, < —Hp,, where
(hiet)kgev = [Hlu.

¢
Proof. H can be expressed as J ;), where T : L(U) — LU),J : LU) —

(V\U) and X : 6(V\U) — £(V\U). Then [Hly = T — JX~'J. Now let
Py = fX_lJXg, where Xg(x) =1if z = p and Xg(x) =0ifz#AponU. It
follows that

hpp = Hpp + Z Hpqtbp(q)-
geV\U

As Hpq. # 0, the maximum principle (Proposition 2.1.7) implies that ¢, (g«) >
0. Therefore 3= i\ 7 Hpg¥p(q) > 0. O

Proof of Proposition 3.1.8. First we assume that

#(F;(Vo)NnVy) <1lforalliesS. (3.1.2)

As H = YN, +'RiDR;, we have (H1)pp = Y4 ievo.ri(qy=p - Paa- Set
p = 7w(w), where w = wiwy---w,;, € W, and w € P. As P is a finite set,
7~ (m(w)) = {w}. Hence, {(g,) : ¢ € Vo, Fi(q) = p} = {(n(o), w1)}. There-

fore, (Hi)pp = %qu, where ¢ = w(ow). So, let p; = w(o'"tw) for i =
wy

1,2, ,m+1, then (H1)p,p, = =—Dp,1pis1, Where we set wy,1 = wy. Now

by (3.1.2), we can apply Lemma 3.1.10 and obtain =Dy, p..; < —(H1)p,,1pies-

So we have [T/% | —(H1)ppi < 7w " [limy —(H1)pis1pis,- Hence we have ry, < 1.

If (3.1.2) is not satisfied, we will replace the original self-similar struc-
ture L = (K, S,{F;}ics) by Lm = (K, W, {Fu}wew,,)- Then by Proposi-
tion 1.3.11, we can see that Pr = Pg, . Also, it is easy to see that (D,r,,),
where r,;, = (ry)wew,,, becomes a harmonic structure on L,,. For sufficiently
large m, L,, satisfies (3.1.2) and hence we can apply the above argument to
the harmonic structure (D,r,,). Therefore (r,,)™ < 1. Thus we obtain that

Ty < 1. O

Exercise 3.1. Let £ be the harmonic structure associated with the Sierpinski
gasket. (See Example 3.1.5.) Set

—2 1 1
D=1 —(1+h) h
1 h —(1+h)

and r = (s, st,st), where h,s and ¢ are positive real numbers. Show that if
we fix h > 0, there exist unique s and ¢ such that (D,r) becomes a harmonic
structure on the Sierpinski gasket. Also prove that (D,r) is a regular harmonic
structure.
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Hint: let R = 1/h. Then calculate the effective resistances for D and H; by
using the A-Y transform (Lemma 2.1.15). Then apply Corollary 2.1.13. You
will find that the condition for (D,r) being a harmonic structure is

t(R+1t)

(R+t)?
1 —_—
s(1+3 tRLt+R

T E A

y=1

Exercise 3.2 (modified Sierpinski gasket). Let {p1,p2, p3} be the vertices
of a regular triangle in the complex plane C. Set py = (p2 + p3)/2,p5 = (p3 +
p1)/2 and pg = (p1 + p2)/2. Choose real numbers a and [ so that 2o+ 8 =1
and a > 8 > 0. We define Fj(z) = a(z — p;) +p; for i = 1,2,3 and Fi(z) =
B(z—pi)+p; fori = 4,5,6. Let K be the self-similar set with respect to {F; }ics,
where S ={1,2,--- ,6}.

(1) Prove that the self-similar structure £ associated with K is post critically
finite with Vo = {p1,p2,p3}.

(2) Define D € L(Vp) by

Let v = (r,r,7,7s,78,7s) where r,s > 0. Show that if we fix s, then there
exists an unique 7 such that (D, r) becomes a harmonic structure on £. Is this
harmonic structure regular?

Hint : use A-Y transform and calculate effective resistances as in Exer-
cise 3.1.

§3.2 Harmonic functions

Let (D, r) be a harmonic structure on £ = (K, S, {F; }ies), where S = {1,2,--- , N}.
Then {(Vy,, Hm)}m>o0 is a compatible sequence of r-networks. So we can con-
struct (€, F) as in (2.2.1) and (2.2.2). By Theorem 2.2.6, (£,F) € RF(V,),
where Vi, = Up,>0V,,. In this section, we consider harmonic functions associ-
ated with (£,F). Arguments in the last chapter, in particular Lemma 2.2.2,
imply the following result.

Proposition 3.2.1. For any p € £{(Vy), there exists a unique u € F such that
uly, = p and E(u,u) = min{E(v,v) : v € F,v|y, = p}. Furthermore, u is
characterized by the unique solution of

(Hm)lv,\vy, =0 forallm>1,
v|V0 =p-

The function u obtained in the above theorem is called a harmonic function
with boundary value p. Let R be the resistance metric on V, associated with
(€,F). Then by (2.2.6), u € C(V,, R).
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Note that V; is a countable subset of K and the topology of (Vi, R) may be
different from that of V, with the relative topology form the original metric on
K. We will see, however, that a harmonic function has a unique extension to a
continuous function on K.

Now recall that d is a metric on K which is compatible with the original
topology of K.

Theorem 3.2.2. Let u be a harmonic function. Then there exists a unique
€ C(K) such that uly, = Uy, .

Remark. As is shown in §3.3, the closure of (V,, R) equals K with the original
topology if and only if (D, r) is regular harmonic structure. In such a case, the
above theorem is obvious.

T U

J X))
where T : £(Vy) — (Vo),J : £(Vh) — £(V1\Vo) and X : £(V1\Vo) — £L(V1\W).
Then it follows that

Proof. Let u be a harmonic function with boundary value p. Set H; =

(wo Bl = Ritulv) = 7 (70 ,,)-

As F,, is bijective mapping between Vj and F,,(Vp) for w € W,, we will identify
¢(Vo) and ¢(F,,(Vp)) through Fy,. Define a linear map A; : £(Vy) — £(F;(Vp)) =2
(Vo) by

P
Aip = R; (—XlJp> , (3.2.1)
then

u

Fw(VO) = AwmA’LUm—1 e Awlp (322)

for w = wyws - - - w,, € W, and

(Ai)pg >0 foranyp,geVy and A;|:|=1|:]. (3.2.3)

First we prove the theorem assuming (3.1.2).

Claim 1 Set v(f) = max, qev;, |f(p) — f(g)] for f € £(Vy). Then v(A4;f) < v(f)

if u(f) # 0.

Proof of Claim 1: If Higly,\y, = 0 and g|y, = f, then A;f = g|p, v)-
Applying the maximum principle (Proposition 2.1.7) and taking (3.1.2) into
account, we can see that max,ecr,(v,) 9(q) — minger, (vy) 9(q) < v(f). Hence

v(Aif) <o(f).
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Claim 2 There exists ¢; such that 0 < ¢; < 1 and v(4;f) < ¢u(f) for any

fetW).
Proof of Claim 2: Define Q : (V) — £(Vp) by

@NH(p) = flp) = #(Vo) " D f(a),

q€Vo

then v(f) = v(Qf) and v(A; f) = v(4;Qf) for any f € £(V). Hence

o(Aif) | , A .
—sup{ 22 e 1), S lg) = 0,0(8) = 13-
o(f) 2

As {f € {(Vo) : 3o ev, f(@) = 0,0(f) = 1} is compact, the above supremum is
less than 1.

Now by Claim 2 and the maximum principle, we can see that v, (u) =
sup{|f(p) — f(qQ)] : p,q € Kw NV} < c™v(p) for any w € W,, where ¢ =
max;es ¢;. Hence, if {p;};>1 is a Cauchy sequence with respect to a metric
on K which is compatible with the original topology of K, then {u(p;)}i>1 is
convergent as ¢ — co. Using this limit, we can extend u to a continuous function
u on K.

Next if (3.1.2) is not satisfied, we can exchange the harmonic structure as
in the proof of Proposition 3.1.8. Then again we can use the result under a new
self-similar structure £,, and a harmonic structure (D, r,,). Note that harmonic
functions remain same after we replace the harmonic structure. O

Hereafter, we identify u with its extension % and think of a harmonic function
as a continuous function on K.

Example 3.2.3 (Sierpinski gasket). Let us calculate the probabilistic ma-
trices {4; }ies for the standard harmonic structure on the Sierpinski gasket given
in Example 3.1.5. Recall that Vo = {p1,p2,p3}. Set ¢1 = (p2+p3)/2,q2 = (p3s +
p1)/2 and g3 = (p1 + p2). Then Vi = {p;, ¢; }ies, where S = {1,2,3}. Now Let
f(p1) = a, f(p2) = b and f(ps) = ¢ and solve the linear equation (H;f)(g;) =0
for i € S. Then we get f(q1) = (2b+ 2¢ +a)/5, f(g2) = (2¢ + 2a + b)/5 and
f(g3) = (2a + 2b+ ¢)/5. By this result, we see that

1 0 0 2 2 1 2 1 2
Ay=1[2 2 LlAa=(0 1 0]A4;3= ; 2 é
3 1 3 12 2 0 0 1
It is easy to see that the eigenvalues of A; are 1, %, % Note that the second

eigenvalue % is equal to r;. In fact, this is not a coincidence. (Recall that
r = (3/5,3/5,3/5).) In §A.1, we will show a general result on the second
eigenvalue of A;.
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See Exercise 3.3 for more examples.

The probability matrices { A;};cs determine the harmonic functions through
(3.2.2). The behavior of a harmonic function around a point 7(w) for w €
3(S) is given by the asymptotic behavior of (3.2.2) for m — oco. This is the
problem of random iterations of matrices and, in general, it is very difficult.
Even in the above example, we don’t know how to calculate the behavior of
A, Aw, _, - Au, as m — oo unless the sequence w is (eventually) periodic.
Kusuoka used {A4;};cs to construct Dirichlet forms on finitely ramified self-
similar sets in Kusuoka [85] and got some result about almost sure behavior of
the random iteration of {4;}cs.

An important property of harmonic functions is the Harnack inequality,
which follows from the discrete version, Corollary 2.1.8.

Proposition 3.2.4 (the Harnack inequality). If X is a compact subset of
K that is contained in a connected component of K\Vy, then there exists a
constant ¢ > 0 such that mazyexu(x) < cmingex u(z) for any non-negative
harmonic function u on K.

Proof. Set X,;, = Uyew,,: Kk, nx0HKw. Then we can choose m so that X,,NVy =
. Nowset V =V,,, U =Vy, H = H,, and A = X,,, N V,,,. Applying the
Harnack inequality (Corollary 2.1.8), we see that there exists ¢ > 0 such that
maxpe4 u(p) < cminyea u(p) for any non-negative harmonic function v on K.
Using the maximum principle, maxzex u(z) < maxpea u(p) and minye 4 u(p) <
max,e x u(z). Hence we have shown the required inequality. a

As an corollary of Theorem 3.2.2, we can define piecewise harmonic functions
as follows.

Corollary 3.2.5. For p € £(V,,,), there exists a unique continuous function u
on K such that uly,, = p and E(uly,,uly,) = min{E(v,v) : v € F,v|y,, = p}.

u in the above corollary is called an m-harmonic function with boundary
value p. Another characterization of m-harmonic functions is that u is an m-
harmonic function if and only if w o F);, is a harmonic function for any w € W,,.
For p € Vi, define ;" to be the m-harmonic function with boundary value
Xp™- Then any m-harmonic function u is a linear combination of {¢7'}.
fact, u =3 oy, u(p)y,’'. Note that if u, =3\ u(p)yy" for u € £(V,), then

m(u|Vmau‘Vm) = 5(uma um)-

In the rest of this section, we will give an expansion of u € £(V;) in a
piecewise harmonic basis {1, }pev,, where v, = ¥ if p € Vi, \Vi 1.

Lemma 3.2.6. Let u be an m-harmonic function. Then E(u, f) =0 for f € F
if flv,

m

Proof. For n > m, we have ( H,u)(p) =
Hence &, (u, f) = =" cv. f(p)(Hnu)(p

Lemma 3.2.7. Foruc F, S(U— U, U — Up,) — 0 as m — co.

0if pe V,\Vi, and f(p) =01if p € V,,.
) =0. 0
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