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multifractal functions and we determine their spectrum of singularities.

Mathematics Subject Classification (1991):28A80, 60G17, 60G30, 60J30

A Lévy process Xt (t ≥ 0) valued in Rd is, by definition, a stochastic pro-
cess with stationary independent increments: Xt+s − Xt is independent of
the (Xv)0≤v≤t and has the same law as Xs . Brownian motion and Poisson
processes are examples of Lévy processes that can be qualified as monofrac-
tal; for instance the Hölder exponent of the Brownian motion is everywhere
1/2 (the variations of its regularity are only of a logarithmic order of mag-
nitude). These two examples are not typical: we will see that the other Lévy
processes are multifractal provided that their Lévy measure is neither too
small nor too large near zero. Furthermore their spectrum of singularities
depends precisely on the growth of the Lévy measure near the origin. Be-
fore stating our main result, we need to recall some basic definitions and
properties of Lévy processes and multifractal functions.

The characteristic function of a Lévy processXt (valued in Rd) satisfies
E(ei〈λ|Xt 〉) = e−tψ(λ) where

ψ(λ) = i〈a|λ〉 + 1

2
Q(λ)+

∫
Rd

(
1 − ei〈λ|x〉 + i〈λ|x〉1|x|<1

)
π(dx) ; (1)

Keywords: Lévy processes, multifractals, Hölder singularities, Hausdorff dimensions, spec-
trum of singularities.
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Q is a positive quadratic form and π(dx) is the Lévy measure of Xt , i.e. a
positive Radon measure defined on Rd − {0} satisfying∫

(1 ∧ |x|2)π(dx) < ∞ . (2)

The Lévy measure is usually not integrable in the neighbourhood of the
origin; this is in particular the case for stable Lévy processes of index β
which satisfy (in polar coordinates) π(dr, dθ) = r−β−1drν(dθ) where ν is
a finite measure on the unit sphere. When π(Rd) = +∞, the growth of the
Lévy measure near the origin can be estimated using the upper index

β = inf

{
γ ≥ 0 :

∫
|x|≤1

|x|γ π(dx) < ∞
}
.

This index was introduced by R. Blumenthal and R. Getoor in [3].
W. Pruitt in [14] showed that the Hölder exponent of Lévy processes (with-
out Brownian component) at t = 0 is 1/β. Condition (2) implies that
0 ≤ β ≤ 2, and when Xt is a stable process, this definition coincides
with the definition of the stability index.

Let us recall the basic definitions concerning multifractal functions. The
starting point is the definition of pointwise regularity Cl(t0). Let t0 ∈ R
and let l be a positive real number. A function f (t) is Cl(t0) if there exists
a constant C > 0 and a polynomial Pt0 of degree at most [l] such that in a
neighbourhood of t0,

|f (t)− Pt0(t)| ≤ C|t − t0|l .
Note that this definition is local and involves no uniform regularity; further-
more, f can beCl(t0) for a large l without being continuously differentiable
at t0: Indeed continuous differentiability at t0 implies differentiabilty in a
neighbourhhod of t0 which is not implied by this definition. The Hölder
exponent of f at t0 is

hf (t0) = sup{l : f ∈ Cl(t0)}
(we emphasize that this definition is not sensitive to logarithmic corrections
in the modulus of continuity so that, for instance, with probability 1 the
Hölder exponent of a sample path of the Brownian motion is everywhere
1/2).

The multifractal analysis is concerned in the study of the (usually fractal)
sets Sh where a function f has a given Hölder exponent h and in particular
in the determination of the Hausdorff dimension d(h) of Sh. (Recall that
dim(∅) = −∞, so that, for instance, d(h) = 0 implies that there exists
at least one point of Hölder exponent h.) The function d(h) is called the
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spectrum of singularities of f . The notion of ‘multifractal functions’ was
first introduced by physicists in the context of fully developed turbulence,
see [8]. Since then several mathematical functions were shown to be mul-
tifractal, i.e. were shown to have a spectrum of singularities supported on
an interval of non empty interior, see for instance [9] and references therein.

We can determine immediately the spectrum of singularities of Lévy
processes in four cases:

• Xt is deterministic; then Xt = Ct and d(h) = −∞ ∀h.
• Xt is a compound Poisson process with drift; thenXt is piecewise linear,

with a finite number of jumps on any bounded interval, so that d(0) = 0
and d(h) = −∞ else.

• Xt is a Brownian motion; then d(1/2) = 1 and d(h) = −∞ else (see
[4], [6] and [13]).

• Xt is the superposition of a Brownian motion and a compound Poisson
process with drift; one easily checks that d(0) = 0, d(1/2) = 1 and
d(h) = −∞ else.

Let

dβ(h) = βh if h ∈ [0, 1/β]
= −∞ else;

dβ(h) = βh if h ∈ [0, 1/2]
= 1 if h = 1/2
= −∞ else.

Let

Cj =
∫

2−j−1≤|x|≤2−j
π(dx) ;

the exponent β can also be defined using the Cj ’s by

β = sup

(
0, lim sup

j→∞

logCj
j log 2

)
.

Our purpose in this paper is to prove the following theorem.

Theorem 1. LetXt be a Lévy process of L´evy measureπ(dx) satisfying
β > 0 and

∑
2−j√Cj log(1 + Cj) < ∞ . (3)



210 S. Jaffard

• If Xt has no Brownian component(Q ≡ 0), the spectrum of singularities
of almost every sample path ofXt is dβ(h).

• If Xt has a Brownian component(Q 6≡ 0), the spectrum of singularities
of almost every sample path ofXt is dβ(h).

If β = 0 butπ(Rd) = +∞, for eachh, with probability1, d(h) = 0.

Remarks.

1. If Condition (3) fails, there exists a subsequence jn such that

2−jn√Cjn log(1 + Cjn) ≥ 1/j 2
n .

Since π is a Lévy measure, Cjn ≤ 22jn for n large enough, so that

2−jn√Cjn2jn ≥ 1/j 2
n ,

hence Cjn ≥ 22jn/2j 3
n , so that β = 2; thus all Lévy processes of upper

index β < 2 satisfy the assumptions of Theorem 1, or fall into one of the
cases we already considered. In fact Condition (3) is slightly stronger
than stating that π is a Lévy measure (which, near 0, is equivalent to the
requirement

∑
Cj2−2j < ∞). In particular all stable Lévy processes

are covered by this theorem.
2. In [13], S. Orey and S.J. Taylor proved that if Xt is a stable symetric

Lévy process, the Hausdorff dimension of the set of points where the
Hölder exponent of Xt is at most h is βh. Note however that their
method cannot give regularity results at these points.

3. When β > 0, the assertion expressed in the theorem is stronger than
stating that, for each h, d(h) has almost surely a given value, which
would not be sufficient to determine the spectrum of singularities of
almost every sample path.

4. The almost everywhere Hölder exponent of Lévy processes without
Brownian component is 1/β, see [14], which of course agrees with the
theorem (case where h = 1/β).

5. Many results have been proved concerning the fractal nature of the range
of Lévy processes, see for instance [15], or [12] for references concern-
ing ‘Lévy flights’, or [1] for results concerning the range of subordina-
tors.

At the end of the paper we will also answer a question of Jean Bertoin
concerning the existence of moduli of continuity for Lévy processes outside
the jump points.
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1. Preliminaries

Since Lévy processes have independent increments, we can restrict our
study to the interval [0, 1]; indeed, if Theorem 1 is proved for t ∈ [0, 1], the
spectrum on any other interval [k, k + 1] will be the same, and it will thus
also be the spectrum on R+.

Any Lévy process can be decomposed as a sum of three independent
processes:

• A Brownian motion with drift of covariance matrix Q.
• A compound Poisson process, of Lévy measure 1|x|>1π(dx)

• A Lévy process of Lévy measure 1|x|≤1π(dx).

We can clearly forget the second term, since it is piecewise linear, and
won’t affect the spectra given by Theorem 1. We will momentarily forget
the Brownian component, and we will see at the very end of this paper how
adding this component affects the spectrum. Thus, we now focus on the
study of the last term, that we also denote by Xt .

Up to a linear term (which does not affect the regularity), these Lévy
processes can be constructed as a superposition of independent compensated
Poisson processes Xjt which have jumps the size of which belongs to

0j = {x: 2−j−1 < |x| ≤ 2−j } .

Let Y jt be the compound Poisson process of Lévy measure

πj(dx) = 10j (x)π(dx)

and let Xjt be the compound compensated Poisson process

X
j
t = Y

j
t − t

∫
Rd

xπj (dx) ;

the Xjt are independent processes and Xt = ∑∞
j=1X

j
t .

Denote by Nj the number of jumps of Y jt (hence of Xjt ) in [0, 1]. It is
a Poisson variable of intensity Cj (and thus of expectation Cj ):

P(Nj = N) = e−CjCjN/N !

We will use repeatedly the following lemma.

Lemma 1. There existsC ′ such that, if N is a Poisson variable of intensity
C ≥ C ′,

P
(
|N − C| ≥

√
C(logC)2

)
≤ e−(logC)3 , (4)
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P
(
|N − C| ≥ 4

√
C logC

)
≤ 1/C7 , (5)

and there existsD > 0 such that

P (|N − C| ≥ C/2) ≤ e−DC logC . (6)

This lemma is a direct consequence of Stirling’s formula, however we sketch
its proof for the sake of completeness; (6) is derived by summing the proba-
bilities for |N−C| ≥ C/2 which is straightforward to bound because these
probabilities decay geometrically.

Suppose now that |N − C| < C/2; by Stirling’s formula,

P(N = n) = en−C+n(logC−log n)

√
n

(1 + o(1)) ,

thus, if |N − C| ≤ √
C(logC)2,

P(N − C = a) = e−a
2/2C

√
C

(1 + o(1)) . (7)

Since P(N = n) decays with |n−C|, P(√C(logC)2 ≤ |N −C| ≤ |C|/2)
is bounded by 2 C√

C
e−(logC)4/2, hence (4) holds.

Similarly, the sum of the probabilities for 4
√
C logC ≤ |N − C| ≤√

C(logC)2 is bounded by

3
√
C(logC)2

e−(4
√
C logC)2/2C

√
C

≤ 1

C7

hence (5) holds.
It follows immediately from Lemma 1 that, for every given j ,

P(Nj ≥ 2Cj + j) ≤ e−5j (8)

(consider separately the cases 2Cj ≥ j and 2Cj < j ); and similarly,

P
(
|Nj − Cj | ≥ 4

(√
Cj logCj + j

))
≤ 1/j 7 . (9)

We now define the random fractal sets on which the Hölder singularities of
Xt will be situated. Let Fj be the set of the jumps of Xjt , and let δ > 0;
denote by Ajδ the union of the intervals of length 2 · 2−δj centered at the
points of Fj and by Eδ the random set

Eδ = lim sup
j→∞

A
j

δ .
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Lemma 2. Almost surely, ∀δ < β, every point of[0, 1] belongs toEδ.

This is a consequence of a result of Shepp concerning random coverings
of the circle, see [16]. We will actually rather use the following equivalent
formulation given by Lemma 3 (see [2], where Bertoin uses this lemma in
order to determine which Lévy processes with unbounded variation have
exceptional points of differentiability).

Denote by λ the Lebesgue measure on R and let µ be an arbitrary
measure on (0, 1). We consider a Poisson point process P with intensity
λ ⊗ µ. Corresponding to each point (x, y) in P we associate the interval
(x − y, x + y) of the real line, and we consider the set of points covered by
these intervals

V =
⋃

(x,y)∈P
(x − y, x + y) .

Lemma 3. If the integral∫ 1

0
exp

{
2
∫ 1

t

µ((y, 1)) dy

}
dt

diverges, V = R almost surely.

Let us now prove Lemma 2. The process of the jumps of a Lévy process
Yt of Lévy measureµ is a Poisson point process with intensityλ⊗µ. We now
consider the Poisson point process of intensity λ⊗ πJδ , where πJδ denotes
the image of π1|x|<2−J by the mapping y → |y|δ. The corresponding set V
is contained in

⋃
j≥J A

j

δ . Thus, in order to prove Lemma 2, it is sufficient
to prove the divergence of the integral∫ 1

0
exp

{
2
∫ 1

t

πJδ ((y, 1)) dy

}
dt . (10)

Note that∫ 1

t

πJδ ((y, 1)) dy =
∫ 1

t1/δ

(∫
u<|x|<2−J

π(dx)

)
δuδ−1 du .

Let us now prove that (10) is divergent when δ < β. Let ω(u)
= ∫

u<|x|<2−J π(dx); ω is decreasing and if u ∈ [2−j−2, 2−j−1], ω(u) ≥ Cj .
Denote by j (t) the largest integer j such that t1/δ ≤ 2−j (t)−2;∫ 1

t1/δ
ω(u)δuδ−1 du ≥

∫ 2−j (t)−1

2−j (t)−2
ω(u)δuδ−1 du

≥ Cjδ
(
2−j (t)−2

)δ−1
2−j (t)−2

= Cjδ2−δ(j (t)+2) .
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Thus the function 2
∫ 1
t
πJδ ((y, 1))dy is larger than Cj δ

2 2−δj on the interval
[(2−j−3)δ, (2−j−2)δ]. Let r be such that δ < r < β. If j is such thatCj ≥ 2rj ,∫ (2−j−2)δ

(2−j−3)δ
exp

{
2
∫ 1

t

πJδ ((y, 1)) dy

}
≥ 2−(j+3)δ exp

{
δ

2
2(r−δ)j

}
.

Since there exists an infinite number of such js, the integral (10) is divergent;
hence Lemma 2 holds for a fixed value of δ picked smaller than β, hence
for a sequence δn → β. The result follows for any δ smaller than β because
the Eδ are decreasing.

The following lemma of [9] yields an upper bound for the Hölder expo-
nent of Xt .

Lemma 4. Letf be a function discontinuous on a dense set of points, t ∈ R
and letrn be a sequence of points of discontinuity off converging tot such
that, at each pointrn, f has a right limit and a left limit; denote by1(f )(rn)
the jump off at rn. Then

hf (t) ≤ lim inf
log |1(f )(rn)|

log |rn − t | .

Since Lévy processes are right-continuous with left limits, this lemma can
be applied toXt and yields the following bound for the Hölder exponent of
Xt :

If t ∈ Eδ then hX(t) ≤ 1/δ . (11)

Note that (11) together with Lemma 2 implies that almost surely

∀t ∈ R+ h(t) ≤ 1/β . (12)

Denote by Rδ (δ > 0) the set of t ∈ [0, 1] such that the Hölder exponent
h(t) ofXt satisfies h(t) = 1/δ. The following proposition (which is a direct
consequence of (11) and of Proposition 2 below) compares the Rδ with the
Eδ.

Proposition 1. LetS be the countable set of all jumps ofXt ; if 0 < δ < ∞,

Rδ =
(⋂
a<δ

Ea

)
−
(⋃
b>δ

Eb

)
− S . (13)

If δ = ∞,

R∞ =
(⋂
a>0

Ea

)⋃
S . (14)



The multifractal nature of Lévy processes 215

Note that, since the Eδ are decreasing (in δ), the a and b in (13) and (14)
can be chosen to belong to a fixed countable set.

Let us first obtain an upper bound for the dimension of Rδ. Using (8),
with probability at least 1−2e−5j , ∀δ > β,Ajδ is a union of at most 2Cj +j
intervals of length 2 · 2−δj ; using these intervals for j ≥ J as a covering,
we obtain that, with probability 1, ∀δ > β, the Hausdorff dimension of Eδ
is bounded by β/δ. This implies that with probability 1,

∀δ > β dimH(Rδ) ≤ β/δ .

In order to obtain a lower bound for the dimension of Rδ when β > 0, we
will show Section 3 that a certain β/δ-dimensional measure µδ supported
by Eδ satisfies

0 < µδ(Eδ) < +∞
and

∀δ′ > δ, µδ(Eδ′) = 0 ;
this implies that µδ(Rδ) > 0, hence that dimH(Rδ) ≥ β/δ. The case β = 0
will be treated separately at the end of Section 3. Thus the proof of the first
part of the theorem is reduced to proving Proposition 1, which will be done
in Section 2, and to obtaining a Hausdorff β/δ-dimensional function for the
Eδ, which is done in Section 3.

2. A lower bound of pointwise regularity

Our purpose in this section is to show that the apparently crude upper bound
of regularity given by Lemma 4 is actually optimal for Lévy processes.

Proposition 2. Suppose that(3) holds, and letδ > β be a fixed number.
For almost every sample path ofXt , if t0 is not a jump point ofXt ,

t0 /∈ Eδ H⇒ hX(t0) ≥ 1/δ . (15)

Note that Proposition 1 immediately follows from Proposition 2. We will
prove the regularity of Xt by estimating the increments of the Xjt on inter-
vals of length between 2−m and 2−m+1(= l). We will first prove uniform
(i.e. independent of t) bounds on such increments. Two cases have to be
considered depending on whether many or few points of jump fall in such
an interval. The first case will be considered in Lemma 5, and the second
case in Lemma 8.

The constant C ′
1 which appears in the following lemma is a universal

constant which will be defined in Lemma 6.
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Lemma 5. There existsJ0 ≥ 0 such that∀j ≥ J0, the following event
holds with probability at least1 − 2/j 7:

∀m satisfying

Cj ≥ (32)2

C ′
1

2 2mj
√
m , (16)

with probability larger than1 − e−2j
√
m, ∀s, t ∈ [0, 1] such that2−m ≤

|s − t | ≤ 2−m+1,

|Xjt −Xjs | ≤ 16(d + 2)2−jm
(√
Cj lj + |t − s|√Cj logCj

)
. (17)

Note that, if m and Cj satisfy (16), there exists D > 0 such that

Cj ≥ Dj, (18)

and Lemma 1 implies that, for j large enough,

P(|Nj − Cj | ≥ Cj/2) ≤ e−j . (19)

Note also that (16) implies that, if j is large enough, m ≤ 3j .

Proof of Lemma 5.The process Xjt can be written as the sum of two (de-
pendent) compound compensated Poisson processes

X
j
t = Q

j
t + R

j
t

whereQj
t andRjt have their jumps at the same time asXjt , butQj

t has jumps
of constant size

Aj = 1

Cj

∫
xπj (dx)

while the expectation of the jumps of Rjt vanishes. (Note that |Aj | ≤ 2−j .)

Let us first estimate the increments of Qj
t :

Q
j
t = Aj(P

j
t − Cj t) (20)

where P jt is a Poisson process (with jumps of size 1). Since Cj ≥ Dj ,
Lemma 1 can be applied.

We condition the Poisson process P jt by the event{
P
j
t has exactly N jumps on [0, 1]

}
,
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and we pick N in the interval [Cj −√
Cj logCj, Cj +√

Cj logCj ], which
holds with probability 1 − C ′/j 7 by (5) and (18). The N times of jump are
now N independent uniformly distributed random variables on [0, 1], and
thus the process

α
j,N
t =

√
N

(
P
j,N
t

N
− t

)
(21)

is an empirical process on [0, 1] (the letter N in the notation P j,Nt is a
reminder of the conditioning). The increments of the empirical process can
be estimated using the following result which is a particular case of Lemma
2.4 of Stute [17].

Lemma 6. There exist two positive constantsC ′
1 andC ′

2 such that, if 0 <
l < 1/8, Nl ≥ 1 and8 ≤ A ≤ C ′

1

√
Nl,

P

(
sup

|t−s|≤l
|αj,Nt − αj,Ns | > A

√
l

)
≤ C ′

2

l
e−A

2/64 . (22)

Using the definition of αj,Nt ,

|Qj,N
t −Q

j,N
s | ≤ |Aj ||P j,Nt − P

j,N
s − Cj(t − s)|

≤ |Aj |(
√
N |αj,Nt − α

j,N
s | + |t − s||Cj −N |) .

We apply Lemma 6 with A = 16j 1/2m1/4 and l = 2−m+1 in (22). Since
N ≥ Cj/2, Condition A ≤ C ′

1

√
Nl holds for j large enough because

C ′
1

√
Nl ≥ C ′

1

√
Cj

2
l ≥ 16j 1/2m1/4

(using (16)), and Nl ≥ 1 also holds because of (16); so that, with a proba-
bility larger than 1 − e−4j

√
m, ∀t, s such that |t − s| ≤ l,

|Qj,N
t −Qj,N

s | ≤ 32 ·m1/42−j
(√
Cj lj + |t − s|√Cj logCj

)
. (23)

We now estimate the increments of Rj,Nt . Recall that Rjt is a compound
Poisson process; denote byZn the size of its jumps. TheZn are independent
centered variables and |Zn| ≤ 2−j . In order to bound the increments of
R
j,N
t , we have to bound partial sums of the Zn. We will use the following

lemma (see [11] Lemma 1.5, Chap. 1).



218 S. Jaffard

Lemma 7. Let theui be independent centered real random variables sat-
isfying|ui | ≤ 1. For all n ≥ 1 and allλ > 0

P(|u1 + · · · + un| ≥ λ
√
n) ≤ 2e−λ

2/2 .

Thus if the ui are independent centered random variables in Rd satisfying
|ui | ≤ 1, for all n ≥ 1 and all λ > 0,

P(|u1 + · · · + un| ≥ λ
√
n) ≤ 2de−λ

2/2d2
. (24)

We have estimated above the increments of Qj,N
t ; an estimate for the in-

crements of P j,Nt , hence for the number of jumps of Rj,Nt , immediately
follows: Uniformly on all dyadic intervals of length l, with a probability
larger than 1 − e−4j

√
m, ∀t, s such that |t − s| ≤ l,

|P j,Nt − P j,Ns | ≤ 32m1/4
(√
Cj lj + |t − s|√Cj logCj + |t − s|Cj

)
which is bounded by 3Cj l because of (16).

Let now I be any dyadic interval of length 2−m+1; let us estimate the
increments of Rj,Nt between the beginning of I and another point of I . We
must estimate the maximum of |Zp + · · · + Zq |, where tp is the first jump
in I and tq is another jump in I , so that q − p ≤ 3Cj l. We use (24) with
λ = 4dm

√
j , which yields

P
(
|Zp + · · · + Zq | ≥ 8dm

√
Cj lj

)
≤ 2de−8jm2

.

We now add the unfavorable probabilities corresponding to all possible
values of q, and to all possible locations of the dyadic interval [k2−m+1,

(k + 1)2−m+1] in [0, 1], which yields

P

(
sup

|t−s|≤l
|Rj,Nt − Rj,Ns | ≥ 16dm2−j√Cj lj

)

≤ 2m+13Cj l · 2de−8jm2 ≤ e−2jm2

(because Cj ≤ 22j ). Thus, with a probability larger than 1 − e−2jm2
,

sup
|t−s|≤l

|Rj,Nt − Rj,Ns | ≤ 16dm2−j√Cj lj . (25)

Note that the bounds (23) and (25) are independent of N . Since the only
asumption we made on N is |Cj − N | ≤ √

Cj logCj which holds with
probability at least 1 − C ′/j 7, finally, with probability at least 1 − C ′/j 7:
∀m, with probability 1 − e−2j

√
m,
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sup
|t−s|≤l

|Qj
t −Qj

s | + sup
|t−s|≤l

|Rjt − Rjs |

≤ 16(d + 2)m · 2−j
(√
Cj lj + |t − s|√Cj logCj

)
;

hence Lemma 5 holds.
We now consider the case of few jumps in each interval of length l.

Lemma 8. There existsJ0 such that∀j ≥ J0 and∀m ≥ 0 satisfying

Cj ≤ (32)2

C ′
1

2 2mj
√
m , (26)

the probability thatY jt has on any of the2m dyadic intervals of length2−m+1

more thanmj 2 jumps is bounded bye−mj
2
, and therefore, if this event does

not happen, ∀s, t such that2−m ≤ |s − t | ≤ 2−m+1,

|Y jt − Y js | ≤ 2mj 22−j . (27)

Proof of Lemma 8.The number of jumps ofY jt on an interval of length 2−m+1

is a Poisson variable of parameter λj = Cj2−m+1 ≤ Dj
√
m. We split the

interval [0, 1] into 2m−1 dyadic intervals of length 2−m+1. The probability
that Y jt has on any of these 2m−1 intervals more thanmj 2 jumps is bounded
by

2m−1
∞∑

k=mj 2

λkj

k!
≤ 2m−1

∞∑
k=mj 2

(Dj
√
m)k

k!
≤ e−mj

2
.

Thus, if t and s belong to the same dyadic interval of length 2−m,

P(|Y jt − Y js | ≤ mj 22−j ) ≥ 1 − e−mj
2
.

If t and s belong to two adjacent intervals, since there are at most j 2 jumps
on each interval, with probability at least 1 − e−mj 2

, |Y jt −Y js | ≤ 2mj 22−j .

Proof of Proposition 2.Let t0 be such that t0 /∈ Eδ and t0 /∈ S. Since t0 /∈ Eδ,
there exists J0 such that ∀j ≥ J0, t0 belongs to no set Ajδ . Since t0 /∈ S,∑

j≤J0
X
j
t is linear in a neighbourhood of t0, and, in order to estimate the

regularity of Xt = ∑
X
j
t at t0, we only have to consider the values of j

larger than J0.
From Lemma 5 and Lemma 8, we deduce that (17) and (27) hold ∀j ≥ J

and ∀m ≥ M with probability at least
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1 −
∑
j≥J

C ′

j 7

(∑
m≥M

2e−2j
√
m

)
;

since this series is convergent and since the event we consider in Proposition
2 do not depend on the first values of j and m, we can suppose in the
following that the uniform estimates (17) and (27) hold with probability 1.

Let γ be such that β < γ < 1 if β < 1, β < γ < 2 if 1 ≤ β < 2, and
γ = 2 if β = 2. Letm ≥ 1 and t be such that 2−m ≤ |t − t0| < 2−m+1, and
let j1 = [m

δ
].

First case:β ≥ 1.

If j ≤ j1, Xjt has no jump between t0 and t , so that

|Xjt −X
j
t0 | = |(t − t0)

∫
xπj (dx)| ≤ |t − t0|2−jCj

and the sum on the corresponding js is bounded by

C|t − t0|2(γ−1)j1 ≤ C|t − t0|1− γ

δ
+ 1
δ (28)

(we sum geometrically decreasing series if β 6= 2, and the result holds also
for β = 2 because of (3)).

If j ≥ j1 and (26) holds,

|Xjt −X
j
t0 | ≤ |Y jt − Y

j
t0 | + |t − t0|2−jCj

≤ 2mj 22−j + C|t − t0|2−j2mj
√
m

(using (26) and (27)); and the sum for j ≥ j1 is bounded by

Cmj 2
1 2−j1 ≤ C|t − t0| 1

δ | log(|t − t0|)|3 . (29)

If j ≥ j1 and (16) holds, we use (17): If γ < 2, the sum of the |Xjt − X
j
t0 |

taken on the corresponding js is bounded by

C2−j1 | log(|t − t0|)|2(γ /2)j1
√
j1

√
|t − t0|

+C2−j1 | log(|t − t0|)||t − t0|2(γ /2)j1
√
j1

≤ C|t − t0| 1
δ
− γ

2δ+ 1
2 | log(|t − t0|)|2

+C|t − t0| 1
δ
+1− γ

2 | log(|t − t0|)|3/2 ; (30)
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if γ = 2, using (3), the sum is bounded by
√|t − t0|. Since δ ≥ β and since

γ can be chosen arbitrarily close to β, Proposition 2 follows in this case
follows from these estimates.

Second case:β < 1.
In this case, we rather estimate the increments of Yt = ∑

Y
j
t (i.e. we do not

compensate the compound Poisson processes).
We separate the subcases as above: If j ≤ j1, eachY jt is constant between

t and t0, so that |Y jt − Y
j
t0 | = 0.

If j ≥ j1,

|Y jt − Y
j
t0 | ≤ |Xjt −X

j
t0 | + |t − t0|Cj2−j .

The sum of the |Xjt −Xjt0 | is estimated as in the first case; and, since γ < 1,∑
j≥j1

|t − t0|Cj2−j ≤ |t − t0|2(γ−1)j1 ≤ C|t − t0|1+ 1
δ
− γ

δ

hence Proposition 2 in that case.

3. The Hausdorff measure ofRd

We suppose now that β > 0; the case β = 0 (where the spectrum of
singularities vanishes everywhere) will be treated separately at the end of
this section.

Deriving a lower bound for the Hausdorff dimension of Rδ will be the
consequence of Theorem 2 proved in [10] concerning a rather general type of
fractal sets. Let us first recall the statement of this result in its full generality.

Let λn be a sequence of points in [0, 1] and εn > 0. We define

Ga = lim sup
N→∞

⋃
n≥N

[λn − εan, λn + εan ] ;

(Ga is the set of points that belong to an infinite number of intervals [λn −
εan, λn + εan ]). The function which associates to every a the Hausdorff
dimension of Ga (denoted in the following by dimH(Ga)) is decreasing.
We may know that for an a small enough, almost every point of [0, 1]
belongs to Ga . This sole information yields a lower bound on dimH(Gb)

for b > a.
We start we a few classical notions and results related with Hausdorff di-

mensions. Let h(x) be a continuous increasing function defined on [0,+∞)

such that
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h(0) = 0
x/h(x) is increasing
lim
x→0

x/h(x) = 0;


 (31)

define, if E is a subset of R,

mesh(E) = lim
ε→0

inf

{ ∞∑
n=0

h(|In|), (In)n∈N ∈ Pε

}
(32)

where Pε is the set of all coverings de E by intervals In of length at most ε.

Theorem 2. Lethd be the dimension functionhd(x) = (log x)2|x|d , and let
Hd be the Hausdorff measure constructed with the help of this dimension
function. If almost everyx belongs toGa ,

∀b > a Ha/b(Gb) > 0 .

(In particular, the Hausdorff dimension ofGb is larger thana/b.)

Suppose that β > 0. There exists jn → ∞ such that Cjn is increasing
and

logCjn
log 2jn

→ β (33)

By the Borel-Cantelli lemma, almost evry point of [0, 1] belongs to

lim sup
n→∞

⋃
t∈Fjn

[
t − 1

Cjn
, t + 1

Cjn

]
.

We can thus apply Theorem 2 to almost every sample path, choosing for
sequence λk the union of the Fjn , and εk = 1/Cjn if λk ∈ Fjn ; we also
choose a = 1. Thus for any b larger than 1, the setHb of points covered by
an infinite number of the intervals[

t −
(

1

Cjn

)b
, t +

(
1

Cjn

)b]
, t ∈ Fjn

satisfies H1/b(Hb) > 0. By (33), Hb ⊂ ⋂
a<βb Ea; furthermore,

since H1/b(Ea) = 0 ∀a > βb, it follows that H1/b(Rβb) > 0 so that
dimH(Rδ) ≥ β/δ.

We consider now the case where β = 0. In that case we have to prove
that D(h) = 0 ∀h. Since we already know that D(h) ≤ 0, we only have
to prove that for each h there exists at least one point where the Hölder
exponent is h (so that D(h) 6= −∞). This point will be obtained as an
intersection of compact intervals.
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Lemma 9. If β = 0 butπ(Rd) = +∞, ∀δ > 0, with probability1, the set
Rδ is not empty.

Proof of Lemma 9.Let Dj be a non-decreasing sequence such that
j∑
i=1

(Ci + i) = o(Dj) when j → +∞ (34)

and

∀ε > 0 ∃C Dj ≤ C exp(εj) (35)

(such a sequenceDj exists because β = 0). Let δ > 0. We will construct an
increasing sequence of integers jn and a decreasing sequence of intervals

I δjn = [S + 2−δjn, S +Djn2
−δjn]

or

I δjn = [S −Djn2
−δjn, S − 2−δjn]

such that

if n ≥ 2, S is one of the jump points of
jn∑

j=jn−1

X
j
t . (36)

Let j0 be a (large enough) integer that will be fixed later. Let j1 be an integer
larger than j0 and which satisfies simultaneously the following conditions:

• I δj1
⊂ [0, 1]

• The sets Fj of jumps of Xj satisfy

∀j ∈ {1, . . . , j0} ∀S ∈ Fj [S − 2−δj0, S + 2−δj0 ] ∩ I δj1
= ∅ . (37)

and

∀j ∈ {j0 + 1, . . . , j1} ∀S ∈ Fj [S − 2−δj , S + 2−δj ] ∩ I δj1
= ∅ .

Once the a.s. existence of such an interval I δj1
will have been proved,

the construction will be continued as follows: We now look for an integer
j2 > j1 such that Xj2 has a jump at a point Sj2 and satisfies the conditions:

• I δj2
⊂ I δj1• The set Fj of jumps of Xj satisfies

∀j ∈ {j1 + 1, . . . , j2} ∀S ∈ Fj [S − 2−δj , S + 2−δj ] ∩ I δj1
= ∅ .
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Let us suppose for the moment that a whole sequence of imbedded intervals
I δjn is thus constructed and let us prove that the Hölder exponent ofXt is 1/δ
at the point t0 which is the intersection of the I δjn . First note that, if Sjn is the

jump of
∑

j ′≤jn X
j ′
t used in the definition of I δjn , dist (t0, Sjn) ≤ Djn2

−δjn ,
so that, using (36), (35) and Lemma 4, the Hölder exponent of Xt at t0 is
at most 1/δ. The proof of the regularity of Xt at t0 follows the proof of
Proposition 2, so we just sketch it.

As in the case β < 1 above, we do not compensate the jumps of Xjt ;∑
j≤j0

X
j
t is C∞ at t0 by (37), so we estimate the increments ofXjt only for

j ≥ j0. Let t 6= t0 and let J be defined by 2−δJ ≤ |t − t0| ≤ 2−δ(J+1). If
j0 < j < J , |Xjt −X

j
t0 | = 0. If j ≥ sup(J, j0), using (8), with probability

at least 1−2e−5j ,Xjt jumps at most 2Cj |t − t0|+ j times on [t0, t]; so that,
with probability at least 1 − 2 · e−5j0 ,∑
j≥J

|Xjt −Xjt0 | ≤ C
∑
j≥J

2.2−j (Cj |t− t0|+j) ≤ C|t− t0|1/δ| log(|t− t0|)| .

The result holds almost surely because j0 can be chosen large enough.
We now come back to the construction of j1. Let us consider an integer

j ′ ≥ j0 such that Xj
′
t has a jump on [0, 1/2]. By (8), with probability at

least 1 − 2e−5j ′
,
∑

j≤j ′ X
j
t has at most

∑
j≤j ′(2Cj + j) jumps on [0, 1]. If

j < j0, we exclude around each of jump of Xjt an interval of length 2−δj0 ,
and if j ≥ j0, we exclude an interval of length 2−δj . There remains in [0, 1]
at least one interval of length at least

1 − 2
∑j0−1

1
(2Cj + j)2−δj0 − 2

∑j ′

j0
(2Cj + j)2−δj

∑j ′

1
2Cj + j

≥ 1

2
(∑j ′

1
2Cj + j

)
because of (34) and (35). For each j ′ we have thus obtained a random
interval Lj ′ of length at least

lj ′ = 1

2
∑j ′

j0
2Cj + j

.

Let us show that we can insert an interval I δj ′ of length Dj ′2−δj ′
inside Lj ′ ;

this is possible if Dj ′2−δj ′ ≤ lj ′ , i.e. if

Dj ′ ≤ 2δ(j
′−j0)

2
∑j ′

j0
2Cj + j
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which will hold for j ′ large enough because the sequences Dj and Cj do
not increase at an exponential rate; we pick for j1 the first j ′ such that the
above properties hold.

Let us now construct j2. If j2 is large enough, using (8), with probability
at least 1 − 2e−5j2 , the number of jumps of the (Xjt )j∈[j1,j2] which belong to
I δj1

is bounded by
∑j2

j1
2Cj + j . Let us exclude around each of these jumps

an interval of length 2−δj . There remains in Ij1 at least one interval of length
at least

(Dj1 − 1)2−δj1 − 2
∑j2

j1
(2Cj + j)2−δj

∑j2

j1
2Cj + j

≥ Dj12
−δj1

2
(∑j2

j1
2Cj + j

)
because of (34). For each j2 we have thus obtained a random interval Lj2

of length at least

lj2 = Dj12
−δj1

2
(∑j2

j1
2Cj + j

) .

Since
∑

j≥j1
X
j
t has a dense set of jumps, if j2 is large enough, at least one

new jump has appeared in I δj1
so that (36) will hold. Thus, we can insert an

interval I δj2
inside Lj2 if Dj22

−δj2 ≤ lj2 , i.e. if

Dj2

Dj1

≤ 2δ(j2−j1)

2
∑j2

j1
2Cj + j

which will hold for j2 large enough; the jn and the corresponding I δjn are
constructed as j2; hence Lemma 9 holds, and the first part of Theorem 1 is
proved.

The second part of Theorem 1 (case with a Brownian component) is
a direct consequence of the following remark: the Hölder exponent of the
sum of two functions is the infimum of the exponents, except perhaps when
the two exponents coincide, in which case the exponent of the sum may be
larger. In the case of the sum of a Brownian motion Bt and a Lévy process
Xt without Brownian component, Xt + Bt has the same jumps as Xt , and
Lemma 4 thus gives the same upper bound for the Hölder exponents of Xt
and Xt + Bt ; thus

∀t, hX+B(t) = inf(hX(t), hB(t)) ,

and the second part of Theorem 1 follows.
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Remark. The methods we introduced in this paper allow to answer a problem
posed by Jean Bertoin. If Xt is a composed Poisson process, and t0 is not
a time of jump, Xt is C∞ at t0. The problem is to determine if a similar
property holds for Lévy processes satisfying π(Rd) = +∞. Does there
exist in this case a modulus of continuity which holds apart from all points
of jump? We will prove that the answer is negative.

A function ω : R+ → R+ is a modulus of continuity at t0 if ω is a
continuous strictly increasing function satisfying ω(0) = 0 and, for |t − t0|
small enough,

|Xt −Xt0 | ≤ ω(|t − t0|) .

Proposition 3. LetXt be a Ĺevy process satisfyingπ(Rd) = +∞. For any
continuous strictly increasing function satisfyingω(0) = 0, there existst0
which is not a jump point ofXt , and is such thatω is not a modulus of
continuity att0.

We can suppose thatXt has no Brownian part (since the Brownian motion
is, say, C1/3 at every point, subtracting this part won’t change the muduli of
continuity larger than t1/3. Let ω be a modulus of continuity and let ω′ be a
continuous strictly increasing function satisfying ω′(0) = 0 and ω = o(ω′)
near 0. Let η be the invert of ω′. The function η is also continuous strictly
increasing and satisfies η(0) = 0. We consider as usual the decomposition
Xt = ∑

X
j
t where theXjt are independent compensated compound Poisson

processes with jumps of size satisfying

2−j+1 ≤ |x| < 2−j+2 .

Let j1 be the first positive j such that (Xjt )j≥0 has a jump at (at least) one
point t1 ∈ [0, 1]. Note that j1 < +∞ a.s.; let

I1 =
[
t1 − η(2−j1)

2
, t1 + η(2−j1)

2

]
.

Let now j2 be the first j larger than j1 such that (Xjt ) has a jump at (at
least) one point t1 ∈ I1; j2 < +∞ a.s. We continue this procedure, thus
constructing a decreasing sequence of imbedded closed intervals. Let now
t0 = ∩In; Xjnt (hence Xt ) has a jump of amplitude larger than 2 · 2−jn , at a
distance at mostη(2−jn)/2 from t0. Thus we can pickun arbitrarily close to tn
such that |t0−un| ≤ η(2−jn) and |Xt0 −Xun | ≥ 2−jn (pick tn immediately on
the left or on the right hand side of the jump). Thus |Xt0 −Xtn | ≥ ω′(|t0−tn|),
and |Xt0 −Xtn | cannot be bounded by ω(|t0 − tn|), since ω = o(ω′).
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