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Abstract. We consider natural Laplace operators on random recursive affine nested fractals
based on the Sierpinski gasket and prove an analogue of Weyl’s classical result on their
eigenvalue asymptotics. The eigenvalue counting functionN(λ) is shown to be of order
λds/2 asλ → ∞ where we can explicitly compute the spectral dimensionds . Moreover
the limit N(λ)λ−ds /2 will typically exist and can be expressed as a deterministic constant
multiplied by a random variable. This random variable is a power of the limiting random
variable in a suitable general branching process and has an interpretation as the volume of
the fractal.

1. Introduction

The eigenvalue counting function for the Laplacian on a bounded domain has
asymptotics that depend on geometric information about the domain. LetD ⊂ Rd

be a bounded open subset. The Laplacian onD has compact resolvent and hence
has a discrete spectrum consisting of an increasing sequence of eigenvalues whose
only accumulation point is infinity. If we letN(λ) denote the eigenvalue counting
function, the number of eigenvalues less thanλ, for either the Dirichlet or Neumann
Laplacian, then a classical result of Weyl states that

lim
λ→∞

N(λ)

λd/2
= Bd |D|
(2π)d

,

where|D| denotes thed-dimensional volume of the setD andBd the volume of
the unit ball inRd .

We will be concerned with the behaviour of the functionN(λ), when the bound-
ed domain is a fractal subset ofRd . In the case of the compact Sierpinski gasket,
it is shown in [7] how to use an exact description of the eigenvalues, as the back-
ward orbits of a renormalization map, to obtain the following analogue of Weyl’s
result,

0< lim inf
λ→∞

N(λ)

λds/2
< lim sup

λ→∞
N(λ)

λds/2
< ∞ , (1.1)
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where the exponentds = 2 log 3/ log 5 is called the spectral dimension of the frac-
tal. The non-existence of this limit is directly related to the existence of localized
eigenfunctions of the Laplacian on the Sierpinski gasket, [4]. Indeed it is possible to
show that for the Sierpinski gasket it is the eigenvalues corresponding to localized
eigenfunctions which grow at the rate determined by the spectral dimension. The
non-localized eigenfunctions have eigenvalues which grow at a slower rate [15].

For a large class of finitely ramified fractals, called p.c.f. self-similar sets, it
has been shown, [17], that for the Laplacian with respect to any Bernoulli measure,
µ, the existence of the limit in (1.1), for a suitably defined exponentds(µ), is the
generic case. The spectral dimension is then defined to be the maximal exponent
over these measures,ds = maxµ ds(µ). However, whenever there is a lot of sym-
metry in the fractal the limit in (1.1) will not necessarily exist as there can be many
eigenfunctions with the same eigenvalue, leading to large jumps in the eigenvalue
counting function. For conditions on p.c.f. self-similar sets for which this can occur
see [24]. Unlike the situation inRd , the constant which appears when the limit does
exist has no simple interpretation as a volume.

The question we will address here is the asymptotics of the eigenvalue counting
function for a bounded random fractal subset ofRd . The random fractals we con-
sider are obtained from affine nested fractals [6] based on the Sierpinski gasket in
arbitrary dimension. They are built from a finite family of possible configurations
but with a possibly uncountable set of scale factors. We will be able to construct a
natural Laplacian on such random fractals in the same way as [11] and obtain results
which provide analogues of those of [17] in this setting. The spectral dimension of
the Laplacian can be computed as the solution to a suitable expectation equation.
The lack of symmetry suggests that the limit in (1.1) will exist and indeed, this
is typically the case. Only if there are a finite number of constituent fractals is it
possible to have the non-existence of the limit in (1.1) and, as yet, there are no
known non-trivial examples.

As the fractals are random there is an underlying probability space and we will
see that the constant appearing, when the limit in (1.1) exists, is random. It can
be expressed as a deterministic constant multiplied by a positive power of a mean
one random variable. The deterministic constant is an extension of that obtained
in [17] and arises from a renewal equation for the mean behaviour of the eigenval-
ue counting function. The random variable is the limiting random variable for the
normalized population size of a general branching process and is a measure of the
volume of the fractal.

There is an alternative randomization for fractals which has been explored in
more detail in [10, 3, 12]. In this case the randomness appears in an environment
sequence and the spatial symmetry is preserved, however the fractal is not exactly
self-similar. Such fractals are called scale irregular in that there is no scaling factor
which leaves the set invariant. The asymptotics of the eigenvalue counting func-
tion have been derived from the trace of the heat kernel. This has shown that there
will be oscillation in the eigenvalue counting function asymptotics if there is suffi-
cient irregularity in the environment sequence. In particular, in the case where the
environment sequence is generated by a sequence of independent and identically
distributed random variables, the limit in (1.1) does not exist and
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0< lim sup
λ→∞

N(λ)

λds/2φ(λ)
< ∞ ,

whereφ(λ) = exp(
√

logλ log log logλ).
For the Laplacian on a bounded domainD ⊂ Rd , there has also been extensive

investigation of the effect of the boundary on the second term in the asymptotic
expansion ofN(λ). If the boundary isC∞ and a certain billiard condition is sat-
isfied, the second order term is determined by the(d − 1)-dimensional volume of
the boundary, [13]. In the case where the boundary is fractal there are a number of
results. We state just one; if the boundary has Minkowski dimensiondm > d − 1,
then fors > dm

N(λ) = Bd |D|
(2π)d

λd/2 +O(λs/2) .

For a discussion of this result and various conjectures about the behaviour of the ei-
genvalue counting function for fractals and domains with fractal boundary, see [18].

In order to demonstrate the main result we consider the following two random
fractals constructed from some simple affine nested fractals. We take the original
Sierpinski gasket, SG(2), the nested fractal SG(3), as defined initially in [10], and
a modified version MSG(l). These are illustrated in Figure 1. As can be seen SG(2)
is constructed from 3, 2-similitudes and SG(3) from 6, 3-similitudes. The fractal
MSG(l) as shown is just one fractal drawn from a whole class of fractals, con-
structed from 3,l-similitudes and 3, 2l/(l − 1)-similitudes. The scale factorl, for
the inverse of the side length of the small triangle on the middle of each side, can
take any value on [3,∞]. We can compute the Hausdorff dimension and spectral
dimension of each fractal, using standard approaches, [17].

We now construct two examples of random recursive Sierpinski gaskets. In
Section 2 we will define the full class of fractals in which we work. Firstly we
construct a random fractal from SG(2) and SG(3) by choosing independently for
each triangle which set of similitudes to apply within it. With probabilityp we use
the family of similitudes corresponding to SG(2) and with probability(1 − p) the
similitudes of SG(3). This fractal, shown in Figure 2, is an example of the fractals
discussed in [11]. For our second random fractal we take the modified version
MSG(l), which we extend to a random family of fractals by choosing the length
scale factorl according to a measure8 with support in [3,∞]. Thus, if8 is not

Fig. 1.The first level of SG(2), SG(3) and one possible MSG(l).
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Fig. 2.The graph approximation to the random recursive fractal built from SG(2) and SG(3).

Fig. 3. The graph approximation to the random recursive fractal built from the fractals
MSG(l) with randomly chosen length scalel.

supported on a countable set, there is an uncountable family of fractals used to
construct the random fractal. If we allow mass at∞, this would correspond to in-
cluding SG(2) in the family, mass at 3, would correspond to including SG(3). Later
we will restrict the measure to lie in(3,∞).

These sets are realizations of a random process and hence they are elements
in a space of random recursive fractals(�,F,P). In the first example the proba-
bility measureP is the measure on the path space of a Galton-Watson branching
process{Zn; n ≥ 0} in which each individual has either 3 offspring or 6 offspring
with probabilityp and 1− p respectively, at each generation. Each branch of the
resulting Galton-Watson tree determines a subset of the fractal as we associate the
similitudeψi1,...,in (a precise definition will be given on Section 2) with the branch
i1, . . . , in, where we also need the type of the individual (i.e. the type of map) at
each generation. The random recursive fractal can then be constructed as
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G =
∞⋂
n=0

⋃
(i1,...,in)∈Zn

ψi1,...,in (4) ,

where4 is the unit equilateral triangle. The second example can be constructed
from a hexary tree, which we could view as a trivial branching process. We will
extend this to a general branching process in order to incorporate all the informa-
tion about the fractal. In Section 3 we define and discuss the properties of general
branching processes.

The Laplace operator on this set is constructed in Section 4 and we give a brief
discussion here. Firstly we observe that if we associate a resistancera(i)with cell i
in the fractal of typea, there is a scale factorλa , which renormalizes the resistances.
Let ρa = λa/ra be the vector of conductances in a fractal of typea. We then take
the graph formed by the images of the edges of the initial triangle aftern iterations
and define a resistor network by setting a conductance

∏n
j=1 ρaij

(ij ) on each edge
in the triangle ati1, . . . , in. From the construction, and choice ofρa , it is easy to
define the Dirichlet form for the fractal and hence a diffusion process. This allows
us to define a Laplace operator as the generator of the diffusion or directly from the
Dirichlet form. The operator requires a choice of measureµ and we will work with
a random measure which is equivalent to the Hausdorff measure in the resistance
metric. The eigenvalue problem can be expressed in terms of the Dirichlet form
and, using a natural decomposition of the form, we may express the eigenfunctions
associated with one random fractal in terms of eigenfunctions for other random
fractals. This will lead to an expression for the eigenvalue counting function in
terms of a process closely associated with a general branching process, which we
will be able to describe in enough detail to prove the following result.

Theorem 1.1. For either of the two random recursive Sierpinski gaskets there exists
a constant0< C < ∞ and a strictly positive mean one random variableW , such
that

lim
λ→∞

N(λ)

λds/2
= CW1−ds/2, P − a.s.

In the case of our first random fractalds/2 = α/(α + 1), whereα satisfies

3p

(
5

3

)−α
+ 6(1 − p)

(
15

7

)−α
= 1 .

For the second random fractal, if the resistance of a triangle is proportional to its
side length and8 is a measure with a density on(3,∞), thends/2 = α/(α + 1),
where∫ ∞

3

(
3

(
5

3
+ 4

3(l − 1)

)−α
+ 3

(
2

3
+ 5(l − 1)

6

)−α)
8(dl) = 1 .

We will give an explicit expression for the constantC and the full statement of
our main result in Theorem 5.5. Note that the spectral dimensionds < 2 and hence
1 − ds/2> 0 for all the fractals in this class.
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2. Random recursive Sierpinski gaskets

As the building blocks for our scale irregular Sierpinski gaskets will all be affine
nested fractals, we begin by recalling from [19], [6] the definition of an affine nested
fractal.

For l > 1, anl-similitudeis a mapψ : Rd → Rd such that

ψ(x) = l−1U(x)+ x0 , (2.1)

whereU is a unitary, linear map andx0 ∈ Rd . Letψ = {ψ1, . . . , ψm} be a finite
family of maps whereψi is anli-similitude. ForB ⊂ Rd , define

9(B) = ∪mi=1ψi(B) ,

and let

9n(B) = 9 ◦ · · · ◦9(B) .
The map9 on the set of compact subsets ofRd has a unique fixed pointF , which
is a self-similar set satisfyingF = 9(F).

As eachψi is a contraction, it has a unique fixed point. LetF ′
0 be the set of fixed

points of the mappingsψi , 1 ≤ i ≤ m. A point x ∈ F ′
0 is called anessential fixed

point if there existi, j ∈ {1, . . . , m}, i 6= j andy ∈ F ′
0 such thatψi(x) = ψj (y).

We writeF0 for the set of essential fixed points. Now define

ψi1,...,in (B) = ψi1 ◦ · · · ◦ ψin(B), B ⊂ RD .

The setFi1,...,in = ψi1,...,in (F0) is called ann-celland the setEi1,...,in = ψi1,...,in (F )

ann-complex. The lattice of fixed pointsFn is defined by

Fn = 9n(F0) , (2.2)

and the setF can be recovered from the essential fixed points by setting

F = cl(∪∞
n=0Fn) .

We can now define an affine nested fractal as follows.

Definition 2.1. The setF is an affine nested fractal if{ψ1, . . . , ψm} satisfy:
(A1) (Connectivity) For any 1-cellsC andC′, there is a sequence{Ci : i =
0, . . . , n} of 1-cells such thatC0 = C,Cn = C′ andCi−1 ∩Ci 6= ∅, i = 1, . . . , n.
(A2) (Symmetry) If x, y ∈ F0, then reflection in the hyperplaneHxy = {z :
|z− x| = |z− y|} mapsFn to itself.
(A3) (Nesting) If {i1, . . . , in}, {j1, . . . , jn} are distinct sequences, then

ψi1,...,in (F )
⋂
ψj1,...,jn(F ) = ψi1,...,in (F0)

⋂
ψj1,...,jn(F0) .

(A4) (Open set condition) There is a non-empty, bounded, open setV such that the
ψi(V ) are disjoint and∪mi=1ψi(V ) ⊂ V .
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Note that the difference between nested and affine nested fractals is that affine
nested fractals can have similitudes with different scale factors. We define a size
class for an affine nested fractal to consist of those sets that can be mapped to
each other by composition of the reflection maps in (A2). An affine nested fractal
containsk size classes and, as each set in a size class must have the same length
scale factor, there arek different length scale factors.

We fix a dimensiond > 1 and define the family of affine nested random re-
cursive Sierpinski gaskets based on tetrahedra inRd . LetF0 = {z0, . . . , zd} be the
vertices of the unit equilateral tetrahedron inRd . LetA be a finite set and for each
a ∈ A, letBa be a bounded subset ofR

ka+ for someka ∈ N. For eacha ∈ A, b ∈ Ba ,
let

ψa,b = {ψa,bi ; i = 1, . . . , ma} ,

be a family ofma-similitudes onRd with d + 1 essential fixed points given byF0.
The similitudes can be divided intoka size classes and forj ∈ {1, . . . , ka} we write
ma(j) or sometimesm(a, j), for the number of similitudes in classj and write
la,b(j) or l(a, b, j) for the length scale factors of the similitudes. We only allow
a finite number of possible configurations of size classes but, for each possible
configuration, the set of length scale factors for the similitudes lies in the possibly
uncountable subsetBa (for restrictions on this set see Section 4). As above there is
a unique compact subsetKa,b of Rd which satisfies

Ka,b =
ma⋃
i=1

ψ
a,b
i (Ka,b) .

Under the open set condition (A4), this set will have Hausdorff dimension

df (Ka,b) =

α :

ka∑
j=1

ma(j)la,b(j)
−α = 1


 .

In order to construct our random fractals we require an address space. Let
In = ∪nk=0Nk and letI = ∪kIk be the space of arbitrary length sequences. We
will write i, j for concatenation of sequences. For a pointi ∈ I\In denote by [i]n
the sequence of lengthn such thati = [i]n, k for a sequencek. We write j ≤ i, if
i = j , k for somek, which provides a natural ordering on branches. Also denote
by |i| the length of the sequencei.

The infinite random tree,T , is a subset of the spaceI , defined as the sample path
of a Galton-Watson process. Let the root beT0 = I0 = ∅, the empty sequence. Let
Ui, i ∈ I be independent and identically distributedA-valued random variables,
indicating the type of nested fractal to be used, with probability distribution

P(Ui = a) = pa, a ∈ A, ∀i ∈ I .
Theni ∈ T if [ i]n ∈ Tn ⊂ In for each 1≤ n ≤ |i|, where [i]n ∈ Tn if

1. [i]n−1 ∈ Tn−1,
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2. there is aj : 1 ≤ j ≤ m(U[i]n−1) such that [i]n−1, j = [i]n.

Let s(i) be the projection map which allocates to each similitudei its size class.
We need another random variableV (a, i) ∈ R

ka+ , chosen according to8a , which
specifies the length scale factor. Thus the length scale factor for thei-th similitude
is thes(i)-th coordinate ofV , l(Ui, V (Ui, i), i) = Vs(i)(Ui, i) and this is a label
for each node in the tree. There is a natural probability space associated with these
labelled trees given by(�,B,P). We will now denote a random treeT as a sample
pointω ∈ �. Theσ -algebras are defined as

Bn = σ(Ui, V (Ui, i); i ∈ Tn−1(ω)), B =
∞⋃
n=1

Bn ,

and the probability measure,P, is determined by both a Galton-Watson process,
in which an individual hasma offspring with probabilitypa for a ∈ A, and a la-
belling process, in which each individual has a label according to8U . For random
recursive fractals which are connected, the branching process will be supercritical
with no possibility of extinction.

In the case of the first example discussed in the introduction and shown in Fig-
ure 2 we have generating function for the offspring distributionf (u) = pu3 +
(1 − p)u6 and the labels are completely determined by the number of offspring.
For the second example the generating function for the addresses of the sets is
trivial f (u) = u6, and the randomness come from choosing the labels. These two
examples can be embedded into suitable general branching processes.

The address and label of each branch in the tree is now used to specify a set in
our random fractal through the application of the maps determined by the address
and the label. LetE = E∅ be the unit equilateral tetrahedron. Then setEi, i ∈ Tn,
geometrically similar toE, to be

Ei = ψi(E) = ψ
U∅,Vs([i]1)(U∅,∅)
[i]1

(· · · (ψU[i]n−1,Vs([i]n)(U[i]n−1,[i]n−1)

[i]n
(E)) · · ·) .

We regardi as the address of the setEi and will use this notation for any sequence
i. A random gasket can then be defined by

Fω =
∞⋂
n=0

⋃
i∈Tn(ω)

Ei .

The Hausdorff dimension of the setFω can be found by applying the results of [5],
[21], [8] and is given by,

df (F
ω) = inf


α : E


m(U∅)∑

i=1

l(U∅, V (U∅,∅), i)−α

 = 1


 , for a.e.ω ∈ � .

(2.3)
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3. General branching processes

A natural probabilistic setting for the labelled trees introduced in the previous sec-
tion is that of general or C-M-J branching processes. These processes provide the
main tool for proving our results as we can use a limit theorem related to that de-
rived by Nerman [22] for the growth of the general branching process counted with
random characteristic.

In the general branching process each individual in the population has a repro-
duction point process,ξ which describes the birth events, as well as a life-length
L, and a functionφ, on [0,∞), called a random characteristic of the process. We
make no assumptions about the joint distributions of these quantities. We writeξ(t)

for theξ -measure of [0, t ] andν(t) = Eξ(t) for the mean reproduction measure.
The basic probability space is now

(�,B,P) =
∏
i∈I
(�i,Bi,Pi) ,

where the spaces(�i,Bi,Pi) are identical and contain independent copies of
(ξ, L, φ). We now denote a random tree byω ∈ � and we will writeθi(ω) for
the subtree ofω rooted at individuali. We denote the attributes of individuali by
(ξi, Li, φi) and its birth time byσi . Note that if individuals are always born at the
death of their parent, thenσi = ∑|i|−1

j=0 L[i]j .
Let {σ(n)} be the sequence of ordered birth times and write(ξ(n), L(n), φ(n))

when we refer to this time ordered sequence. As we can have multiple births,
{σ(n)} will not be strictly increasing. At time 0 we have an initial ancestor so that
σ(1) = σ∅ = 0. The process that we wish to consider can be written as

Zφ(t) =
∑

n:σ(n)≤t
φ(n)(t − σ(n)) .

That is the individuals in the population are counted according to the random
characteristicφ. By considering the offspring of the initial individual we have a
decomposition of the process as

Zφ(t) = φ(1)(t)+
ξ(1)(t)∑
i=1

Z
φ

(i)(t − σ(i)) = φ∅(t)+
ξ∅(t)∑
i=1

Z
φ
i (t − σi) , (3.1)

whereZφi , Z
φ

(i) are independent copies of the general branching process.
An example of a random characteristic is

φ(t) = I{L>t} ,

so thatZφ(t) is the total number of individuals alive at timet . If the characteristic
is ϕ(t) = 1 for all t , then the processZϕ(t) counts the total number of individuals
born up to timet . Later we will choose a characteristic which counts eigenvalues.
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We will assume thatν(0) = 0 and there exists a Malthusian parameterα > 0,
such that ∫ ∞

0
e−αtν(dt) = 1 and

∫ ∞

0
te−αtν(dt) < ∞.

Let ξα(t) = ∫ t
0 e

−αsξ(ds), and define the measureνα(dt) = E(ξα(dt)). We also
assume that each individual has at least two offspring so there is no possibility of
extinction and the process will be strictly supercritical. We will write

νφα (t) = E(e−αtZφ(t)) ,

for the discounted mean of the process with random characteristicφ. We now intro-
duce a martingale, analogous to the standard branching process martingale, which
will enable us to discuss the asymptotic growth of this process.

We define theσ -algebra determined by the firstn individuals and their charac-
teristics as

An = σ((ξ(k), L(k), φ(k)) : 1 ≤ k ≤ n) .

Observe that the birth time of an individual is determined by their parent’s repro-
duction process, so that the birth timesσ(k) areAk−1 measurable. Now define

Rn =
∞∑

l=n+1

e−ασ(l) I{l is a child of the firstn individuals} .

Then we have the following theorem.

Theorem 3.1. ([1] Chapter VI, Theorem 4.1) The quantity{Rn}∞n=1 is a non-neg-
ative martingale with respect toAn and

W = lim
n→∞Rn exists.

AlsoW > 0 if and only if

E
(
ξα(∞) log+ ξα(∞)

)
< ∞ ,

otherwiseW = 0, a.s..

There is also a continuous time martingale obtained by setting

Yt = RZϕ(t) .

In [22] it is shown thatYt is a martingale and it will converge ast → ∞ to the same
limit random variableW . We note that for all the general branching processes that
we will consider hereξα(∞) is bounded and henceW > 0 almost surely.

We will extend a result obtained by Nerman which shows that even when the
characteristic depends on the entire line of descent there is still an almost sure limit.
We state the extension of [22] Theorem 5.4 as discussed in [22] Section 7. We also
give the lattice version of the theorem.
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Theorem 3.2. LetD[0,∞) denote the set ofR+-valued cadlag paths and letφ be
aD[0,∞)-valued characteristic satisfying;
(1) There exists a non-increasing, bounded positive integrable functiong, such that

E sup
t≥0

(
ξα(∞)− ξα(t)

g(t)

)
< ∞ .

(2) There exists a non-increasing, bounded positive integrable functionh, such that

E sup
t>0

(
e−αtφ(t)
h(t)

)
< ∞ .

Then, if the mean reproduction measure is non-lattice,

lim
t→∞ e

−αtZφ(t) = Wνφα (∞), a.s. (3.2)

If the mean reproduction measure is lattice, then there exists a periodic function
G
φ
α , such that for larget ,

Zφ(t) = Weαt (Gφα(t)+ o(1)), a.s. (3.3)

At this stage it should be clear that there is an intimate connection between these
processes and the random recursive fractals. We assume that for each fractala ∈ A
the scale factors for the fractal are chosen according to a measure8a supported on
a suitable bounded subsetBa ⊂ R

ka+ . Now take the general branching process with
reproduction and lifelength given by

(ξ(ds), L)=
(
ka∑
i=1

ma(i)δlogxi (ds),max
i

logxi

)

with probability pa8a(dx1, . . . , dxk) ,

then, if we letφ denote the characteristic

φi(t) = ξi(∞)− ξi(t) , (3.4)

which counts the individuals born after timet to mothers born at or before timet ,
then the processZφ(t) is the number of sets in ae−t -cover for the fractal. From this
we easily obtain the upper box counting dimension of the fractal as the Malthusian
parameter of this general branching process and it is not difficult to establish that
it is also the Hausdorff dimension.

4. Laplacians on random recursive Sierpinski gaskets

We now define a Laplace operator on each possible random fractalω ∈ � and give
some properties. There is a question as to what is a natural Laplacian on this fractal,
as there are no symmetries. We use the idea that the movement of Brownian motion
through a medium is determined by the resistance of the medium.

Firstly we note that for affine nested fractals based upon the Sierpinski gasket
there is no difficulty in solving the fixed point problem of [19]. Recallthat there are
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ka size classes of set in the affine nested fractal (some of these could be the same
size). We extend the definition of the maps to the tree by lettings(i) ∈ {1, . . . , ka}
denote the size class of the set with addressi. We can allocate a fixed resistance
ra(j), j = 1, . . . , ka to all cells in a given class in the fractalKa . Let F0 denote
the complete graph on the essential fixed points and define

E0(f, g) = 1

2

∑
x,y∈F0

(f (x)− f (y))(g(x)− g(y)) ,

for f, g ∈ C(F0). If we let

Ẽ
(a)
1 (f, f ) =

ma∑
i=1

ra(s(i))
−1E0(f ◦ ψi, f ◦ ψi)

=
ka∑
j=1

m(a,j)∑
i=1

ra(j)
−1E0(f ◦ ψji, f ◦ ψji) ,

for f ∈ C(Fa1 ), then there is a constantλa such that

E0(f, f ) = λa inf {Ẽ(a)1 (g, g) : g = f |F0} .
This allows us to define the Dirichlet form for each fractal in our familyA, for
details see [2]. We will letρa(j) = ρ(a, j) = λa/ra(j) denote the conductance of
a cell of classj in the fractal.

Our aim is to construct a Dirichlet formE on an appropriateL2(F, µ) for the
random fractal for eachω ∈ �. As usual we build this up from a sequence of
approximating forms on the lattice approximations to the fractal. We define the
resistance of a cell with addressi, by

R(i)−1 =
|i|∏
i=1

ρ(U[i]i−1, s([i]i )) .

We can then write

Eωn (f, g) =
∑
i∈ωn

R(i)−1E0(f ◦ ψi, f ◦ ψi) .

By the construction of the conductances we see that the sequence of Dirichlet forms
is monotone increasing as, forf : F → R, we have the property that

Eωn (f |Fn, f |Fn) = inf {Eωn+1(g, g) : g ∈ C(Fn+1), g = f |Fn} .
Once we have such a sequence of Dirichlet forms we can clearly define the

limiting Dirichlet form as the limit of the sequence. However, in order to define
the associated Laplace operator, we need to put this Dirichlet form on an appro-
priateL2 space and hence need to define a measure. As in [11] we will choose
the measure to be the limit of the invariant measures of the Markov chains on the
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sequence of resistor networks,in which each edge has approximately the same re-
sistance. This measure is equivalent to the Hausdorff measure of the fractal in the
resistance metric, [11]. In the case of p.c.f. self-similar sets this measure is the one
which maximizes the spectral exponent, [17]. To do this we define a sequence of
approximations to the fractal determined by keeping the resistance of each edge in
the graph in the sequence of approximately the same resistance.

We can modify the general branching process description of the fractal, intro-
duced at the end of Section 3, to describe this new approximation to the fractal.
As it is the resistance of a set rather than its length that is crucial, from now on
we assume that it is the vector of conductancesρa = {ρa(i),1 ≤ i ≤ ka} that is
chosen according to the random variableV (a, i) with probability measure8a . We
now restrict the support of the measure with an assumption.

Assumption 4.1. For eacha ∈ A, the supportBa of the measure8a , for the distri-
bution of conductances on the cells in the fractalKa , has each coordinate bounded
away from 0 and∞ in R

ka+ .

This assumption ensures that conductance and resistance can be controlled uni-
formly. Note that the resistance of a component of the fractal does not have to
depend on its length scale. As in Section 2, where the length scale factor of the
similitude was chosen and one degree of freedom was lost as the side length must
be one, here the equation forλa fixes a coordinate. Let

(ξ(ds), L) =
(
ka∑
i=1

ma(i)δlogxi (ds),max
i

logxi

)

with probability pa8a(dx1, . . . , dxka ) ,

so that the offspring of an individual are born at times given by logρa(i). Let φ
denote the characteristic, defined in (3.4), which counts the number of individuals
in the population born after timet to mothers born before or at timet , and denote
the corresponding general branching process byz

φ
t = Zφ(t).

Let
3n = {i ∈ zφn } ,

where we identify an individual with their line of descent, and then define

F̃n =
⋃

i∈3n
ψi(F0) .

The graph based oñFn has approximately the same resistance for the edge of
each triangle, in that, by our assumption, there exists a constantc1 > 0 such that
c1e

−n ≤ R(i) ≤ e−n. We will refer to the setsEi for i ∈ 3n asn-cells.
We use the conductivity to define the measureµ, as this is the invariant measure

for the associated Markov chain. Firstly, for anm-cellEi ⊂ Fω, define

µωn (Ei) =
∑

j∈3n−m R(i, j)
−1∑

j∈3n R(j)
−1

. (4.1)
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As the fractalFω is compact, by tightness there is a subsequence of measuresµωn
which converges weakly to a limit measureµω on the fractalFω. We can then
define the Dirichlet form(Eω,Fω) onL2(Fω, µω) for eachω ∈ �.

However from now on we will work with a subset�′ ⊂ � with P(�′) = 1
where the general branching process converges. On this set we can describe the
limit measure using the general branching process. By Theorem 3.2 we have that
there exists�′ with P(�′) = 1 such that for allω ∈ �′,

e−αt zφt (ω) → νφα (∞)W(ω) ,

whereα satisfies the equation

E


ξ(1)(∞)∑

i=1

ρ(1)(s(i))
−α

 =

∑
a∈A

∫
Ba

ka∑
j=1

ma(j)x
−α
j d8a(x1, . . . , xka )pa = 1 .

(4.2)
Under Assumption 4.1 the branching process counted with random characteristic
φ can be written for a fixedm, by takingt large enough, as

z
φ
t =

∑
i∈3m

z
φ
t−σi

(i) ,

wherezφ(i) are iid copies ofzφ . Substituting the convergence result into the above,
and using the definition of3m we see that

W =
∑
i∈3m

R(i)αWi ,

where

Wi = W(θi(ω)) = lim
s→∞ e

−αszφs (i)/ν
φ
α (∞) .

Hence, for anm-cellEi in conductivity coordinates, we have

µ(Ei) = R(i)αW(θi(ω))

W(ω)
. (4.3)

By taking the characteristicφi(t) = R(i)−1 and using Theorem 3.2 we can see that
this is the behaviour of the limit of the sequence of measures defined by (4.1). Note
that we can decomposeW and hence the measure using any section of the treeω,
in particular, by looking at the offspring of the first born individual,

W =
ξ(1)(∞)∑
i=1

ρ−α
(1) (s(i))Wi, and

∫
E

f (x)µω(dx) =
ξ(1)(∞)∑
i=1

µ(Ei)

∫
Ei

f (ψi(x))µ
θi(ω)(dx), f ∈ C(E) . (4.4)
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For the rest of the section we omit reference to the sample pointω ∈ �′ when
it is not required. We define the Dirichlet form(E,F) on the spaceL2(F, µ) as

F = {f : sup
n

En(f, f ) < ∞} ,

and

E(f, f ) = lim
n→∞En(f, f ), ∀ f ∈ F .

The effective resistance between two points in the random fractalF is defined
by

r(x, y) = (inf {E(f, f ) : f (x) = 0, f (y) = 1})−1 .

As in [11] we have the following estimate on the effective resistance.

Lemma 4.2. There exist constantsc2, c3 such that for each edge(x, y) ∈ F̃n,

c2e
−n ≤ r(x, y) ≤ c3e

−n .

From this result it is not difficult to see that the measureµ is equivalent to the
α-dimensional Hausdorff measure in the effective resistance metric.

We note that using our conductivity coordinates, and the definition of effective
resistance, we can prove the following estimate on the continuity of functions in
the domainF.

Lemma 4.3. There exists a constantc4 such that

sup
x,y∈Ei

|f (x)− f (y)| ≤ c4R(i)E(f, f ), ∀ f ∈ F, ∀ i ∈ 3m .

By construction we havec1e
−m ≤ R(i) ≤ e−m for i ∈ 3m and this shows that

the domainF ⊂ C(F). The following theorem can be proved in our setting, in the
same way as [11].

Theorem 4.4. The bilinear form(E,F) is a local regular Dirichlet form on
L2(F, µ) and has the property that there exists a constantc4 such that

sup
x,y∈F

|f (x)− f (y)| ≤ c4E(f, f ), for all f ∈ F. (4.5)

We can also observe a scaling property of this Dirichlet form. We writeρ(1)(j)

for the conductance of the sets of size classj in the first division of the fractal.
This corresponds to the fact that the first individual hasm(U∅, j) offspring at times
logρ∅(j).

Lemma 4.5. We can write for allf, g ∈ Fω,

Eω(f, g) =
ξ(1)(∞)∑
i=1

ρ(1)(s(i))E
θi (ω)(f ◦ ψi, g ◦ ψi) .
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Proof.We write the version of this result for the approximating formEωn as

Eωn (f, g) =
ξ(1)(∞)∑
i=1

ρ(1)(s(i))E
θi (ω)
n−1 (f ◦ ψi, g ◦ ψi) .

Now letn → ∞. ut
LetPt denote the semigroup of positive operators associated with the Dirichlet

form (E,F) on L2(F, µ). The form is local and regular and hence there exists
a Feller diffusion{Xt ; t ≥ 0} with semigroupPt on F . By (4.5) we see that the
resolventGλ = ∫

exp(−λt)Ptdt will have a bounded symmetric density. As this
density will be continuous as in [2] we find thatPt will have a bounded symmet-
ric densitypt (x, y) with respect toµ and thatpt (x, y) will satisfy the Chapman-
Kolmogorov equations. Some estimates for the transition density of a subclass of
these fractals were obtained in [11].

Note that we can define the Laplacian1 with respect to the measureµ, for the
fractalF , by setting

E(f, g) = −(1f, g), ∀f, g ∈ F ,

where we have taken the inner product onL2(F, µ). As we are dealing with a com-
pact fractal we will also need to consider the boundary conditions. For Neumann
boundary conditions we need to define a normal derivative at the boundary for our
fractal. We follow [14] and set

(du)x = − lim
m→∞1mu(x) , (4.6)

where1m is the discrete Laplacian associated with the Dirichlet formEm. The
existence of this limit follows as in [14].

In order to show that the Laplacian has a discrete spectrum it is enough to show
that the natural inclusion map fromF into L2(F, µ) is compact. We follow [17]
in proving the following.

Lemma 4.6. The natural inclusion map from(F,E1/2 + ‖.‖2) to L2(F, µ) is a
compact operator.

Proof. Let U be a bounded set in(F,E1/2 + ‖.‖2). By (4.5) we have the equi-
continuity ofU .

We can also use this to show thatU is uniformly bounded. Lethp(x), x ∈ F, p ∈
∂F denote the harmonic function with boundary values 1 atp and 0 for all other
points of∂F . Letf ∈ U . It is easy to see by (4.5) that, if̄f = ∑

p∈∂F f (p)hp(x),
the harmonic function with the same boundary values asf , then

|f (x)− f̄ (x)| ≤
∑
p∈∂F

hp(x)|f (x)− f (p)| ≤ c
1/2
4 E(f, f )1/2 .

As the space of harmonic functions is finite dimensional, theL2 andL∞ norms are
equivalent and thus there is a constantC such that
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‖f ‖∞ ≤ ‖f − f̄ ‖∞ + ‖f̄ ‖∞
≤ ‖f − f̄ ‖∞ + C‖f̄ ‖2

≤ (1 + C)‖f − f̄ ‖∞ + C‖f ‖2

≤ (1 + C)c
1/2
4 E(f, f )1/2 + C‖f ‖2 .

Thus there exists a constantc5 such that, forf ∈ U , we have‖f ‖∞ ≤c5(E(f, f )
1/2

+ ‖f ‖2) and henceU is uniformly bounded.
We then apply the Arzela-Ascoli Theorem to see thatU is relatively compact

in C(F) and hence inL2(F, µ). ut

By this result the Laplacian will have a discrete spectrum consisting of eigen-
values. Our aim is to discuss the behaviour of the eigenvalue counting function for
this operator.

5. The eigenvalue counting function

We begin by defining the Dirichlet and Neumann eigenvalue problems for our ran-
dom fractals. Recall that for eachω ∈ �′ there is a random fractalFω and we have
a measureµω satisfying (4.3). We will prove results about the counting function for
all ω ∈ �′, giving almost sure statements on�. The techniques are based upon the
Dirichlet-Neumann bracketing idea developed by [17] for p.c.f. self-similar sets.
We will deduce a random version of the renewal equation which we can solve using
the connection with general branching processes.

Firstly the Dirichlet eigenvalues are defined to be the numbersλ, each with
eigenfunctionu, such that

1ωu = −λu,
u(x) = 0, x ∈ F0 .

(5.1)

Reformulating this eigenvalue problem for the Dirichlet form, we defineFω
0 =

{f ∈ Fω : f (x) = 0, x ∈ F0}, and setEω0 (f, f ) = Eω(f, f ) for f ∈ Fω
0 . Then

λ is a Dirichlet eigenvalue with eigenfunctionu if

Eω0 (u, v) = λ(u, v)ω ,

for all v ∈ Fω
0 , where(., .)ω denotes the inner product inL2(Fω, µω).

As the resolvent is compact we can write the spectrum as an increasing sequence
of eigenvalues given by 0< λ0 < λ1 ≤ . . .. We define the associated eigenvalue
counting function to be

Nω
0 (x) = max{i : λi ≤ x, λi solves (5.1)} .

Analogously we can define the Neumann eigenvalues to be the numbersλ, each
associated with an eigenfunctionu, such that

1ωu = −λu,
(du)x = 0, x ∈ F0,

(5.2)

where the derivativedu was defined in (4.6).
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This eigenvalue problem can be reformulated for the Dirichlet form asλ is a
Neumann eigenvalue with eigenfunctionu if

Eω(u, v) = λ(u, v)ω ,

for all v ∈ Fω.
Again, we write the spectrum as an increasing sequence of eigenvalues with

0 = λ0 < λ1 ≤ . . ., and define the associated eigenvalue counting function to be

Nω(x) = max{i : λi ≤ x, λi solves (5.2)} .
The technique that we will use is a decimation property of the eigenfunctions.

This is not the usual decimation property for exactly self-similar fractals [7], [17],
which expresses the eigenfunctions for the Laplacian in terms of other eigenfunc-
tions for the Laplacian. Instead we can build an eigenfunction for a particular
random Laplacian in terms of eigenfunctions for other random Laplacians. The key
relationship is provided by the following Lemma.

Lemma 5.1. For all x > 0 and eachω ∈ �′, we have

ξ(1)(∞)∑
i=1

N
θi(ω)
0 (xρ−1

(1) (s(i))µ(Ei)) ≤ Nω
0 (x) ≤ Nω(x)

≤
ξ(1)(∞)∑
i=1

Nθi(ω)(xρ−1
(1) (s(i))µ(Ei)) (5.3)

and there exists a constantM < ∞ such that for allω ∈ �,

Nω
0 (x) ≤ Nω(x) ≤ Nω

0 (x)+M . (5.4)

In order to establish this key result we begin by defining some closely related
Dirichlet forms. Let(Ẽω, F̃ω) be defined by setting

F̃ω = {f : F\F1 → R|f ◦ ψi = fi on F\F0, for somefi ∈ Fθi (ω)} ,
and

Ẽω(f, g) =
ξ(1)(∞)∑
i=1

ρ(1)(s(i))E
θi (ω)(f ◦ ψi, g ◦ ψi) .

As in [17] we can prove that

Proposition 5.2. (1)Fω ⊂ F̃ω andEω = Ẽω|F×F.

(2) (Ẽω, F̃ω) is a local regular Dirichlet form onL2(Fω, µω).
(3) F̃ω ↪→ L2(Fω, µω) is a compact operator.
(4) If Ñω(x) denotes the eigenvalue counting function for the eigenvalues ofẼω,
then

Ñω(x) =
ξ(1)(∞)∑
i=1

Nθi(ω)(xρ(1)(s(i))
−1µ(Ei)) .
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Proof. (1), (2), follow easily from the definitions. The proof of (3) will follow in
the same way as [17] Proposition 6.2. The one part that we need to prove is (4).
Assume that we have a Neumann eigenfunctionf of Eω with eigenvalueλ. By
using the decomposition of the Dirichlet form, Lemma 4.5 and the decomposition
of the random measureµ, (4.4), we have

ξ(1)(∞)∑
i=1

ρ(1)(s(i))E
θi (ω)(f ◦ ψi, g ◦ ψi) = Eω(f, g)

= λ(f, g)ω

= λ

ξ(1)(∞)∑
i=1

(f ◦ ψi, g ◦ ψi)θi (ω)µ(Ei) .

Thus for allh ∈ Fθi (ω) we have

Eθi (ω)(f ◦ ψi, h) = λρ−1
(1) (s(i))µ(Ei)(f ◦ ψi, h) ,

and we have thatλρ−1
1 (i)µ(Ei) is an eigenvalue of1θi(ω) with eigenfunction

fi = f ◦ ψi . Now we can construct from this an eigenfunction with eigenvalueλ

of (Ẽω, F̃ω). This is just done by setting

f̃ (x) =
{
fi(x), x ∈ int(Ei),
0, x ∈ int(Ej ), j 6= i.

It is easy to check that each of these functions is an eigenfunction of(Ẽω, F̃ω)

with eigenvalueλ and they form a basis for the corresponding eigenspace. Hence
it is clear that

Ñω(x) =
ξ(1)(∞)∑
i=1

N
θi(ω)
0 (xρ−1

(1) (s(i))µ(Ei)) ,

as required. ut

There is a similar proof to the following proposition. Let(Ẽω0 , F̃
ω
0 ) be defined

by setting
F̃ω

0 = {f : f ∈ Fω
0 , f |F1 = 0} ,

and
Ẽω0 (f, g) = Eω|Fω

0 ×Fω
0
.

Proposition 5.3. (1) F̃ω
0 ⊂ Fω

0 .

(2) (Ẽω0 , F̃
ω
0 ) is a local regular Dirichlet form onL2(Fω, µω).

(3) F̃ω
0 ↪→ L2(Fω, µω) is a compact operator.

(4) If Ñω
0 (x) denotes the eigenvalue counting function for the eigenvalues ofẼω0 ,

then

Ñω
0 (x) =

ξ(1)(∞)∑
i=1

N
θi(ω)
0 (xρ−1

(1) (s(i))µ(Ei)) .
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To conclude the proof of the key inequalities we require the Dirichlet-Neumann
bracketing results given in [17]. We give here a version of [17] Corollary 4.7.

Lemma 5.4. If (E, F ) and(E′, F ′) are two Dirichlet forms onL2(F, µ) andF ′
is a closed subspace ofF andE′ = E|F ′×F ′ , then

NE′(x) ≤ NE(x) ≤ NE′(x)+ Dim(F/F ′) .

Proof of Lemma 5.1.Using the left inequality of Lemma 5.4 twice with the two
propositions gives (5.3).

As the space of harmonic functions for finitely ramified fractals is finite dimen-
sional Lemma 5.4 gives Dim(F/F̃) = |F0| = d + 1 and hence we have (5.4) for
all ω ∈ �. ut

We can now state and prove our main theorem. In order to do this we define the
following function,

ηω0 (t) = Nω
0 (e

t )−
ξ(1)(∞)∑
i=1

N
θi(ω)
0 (etρ−1

(1) (s(i))µ(Ei)) ,

which will act as a characteristic for a process closely related to the general branch-
ing process.

Theorem 5.5. For the random recursive Sierpinski gasket the spectral dimension
ds is given by

ds = 2 lim
x→∞

logNω
0 (x)

logx
= 2α

α + 1
a.e. ω ∈ � ,

whereα satisfies the equation

E(

ξ(1)(∞)∑
i=1

ρ(1)(s(i))
−α) = 1 .

If the mean reproduction measureν is non-lattice, then

lim
x→∞N

ω
0 (x)x

−ds/2 = m(∞)W1/(1+α)(ω), a.e. ω ∈ � ,

where

m(∞) =
∫∞
−∞ e−tds/2Eη0(t)dt∫∞

0 te−tds/2ν(dt)
.

If the support of the measureν lies in a discrete subgroup ofR, then, ifT is the
generator of the support, then for a.e.ω ∈ �, for largex

Nω
0 (x) = (G(log(x/W(ω)))+ o(1)) xds/2W1/(1+α)(ω) ,

whereG is a positive periodic function with periodT given by

G(t) =
∑∞
j=−∞ e−ds(t+jT )/2Eη0(t + jT )∫∞

0 te−tds/2ν(dt)
.
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The technique used to prove this result is to express the problem of finding
the spectral dimension and determining the asymptotics of the eigenvalue counting
function as determining a characteristic, of a suitable, extended general branching
process. The spectral dimension will be the Malthusian parameter for the process
and the limit result will be an extension of Theorem 3.2.

We begin by writing the left inequality in (5.3) in the same way as the equation
for a general branching process. As in (4.4) we can extend the decomposition of
the measureµ to writeµ(Ei) = ρ−α

(1) (i)Wi/W , for i ∈ {1, . . . , ξ(1)(∞)}. We can
also write (5.3) as

ξ(1)(∞)∑
i=1

N
θi(ω)
0 (xρ−1−α(s(i))Wi/W) ≤ Nω

0 (x) .

We will make the substitutionXω
′

0 (t) = Nω′
0 (e

tW(ω′)) for allω′ ∈ �, and consider

ξ(1)(∞)∑
i=1

X0(t − logτ1(s(i))) ≤ X0(t) ,

where we writeτ1(j) = ρ1+α
(1) (j) and suppress theω dependence.

Define the functionη by

η(t) = X0(t)−
ξ(1)(∞)∑
i=1

X0(t − logτ1(s(i))) ,

and note thatη0(t) = η(t − logW). Clearly we have for allt ∈ R,

X0(t) = η(t)+
ξ(1)(∞)∑
i=1

X0(t − logτ1(s(i))) . (5.5)

This is a random version of the renewal equation derived in [17] and is almost the
equation for the evolution of a general branching process with characteristicη as
in (3.1). The time changed counting process{X0(t) : t ∈ R} considered here is
obtained by adding together a number of time shifted copies of itself. The time
shifts are the birth times of individuals in the general branching processzt which
starts from a single individual at time 0 and has a lifelength and reproduction point
process given by

(ξ(ds), L) =

 ka∑
j=1

ma(j)δ(1+α) logxj (ds),max
j
(1 + α) logxj




with probabilitypa8a(dx1, . . . , dxka ) .

Note that the first Dirichlet eigenvalue is someλDω > 0, and hence we see that
almost surelyt0 := inf {t : X0(t) = 1} > −∞.
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We now define a class of processes{Xφ(t) : −∞ < t < ∞} constructed from
a class of characteristics{φω(t) : −∞ < t < ∞}, which can be random but are
independent for offspring of the same parent and whereφω(t) = 0 for t < t0(ω).
We define

Xφ(t) =
∑

i∈T (ω)
φθi (ω)(t − σi) ,

where we sum over the entire treeT . Note that the existence of the process requires
that the sum is finite for allt ∈ R. This is clear for the case ofX0 = Xη by its
construction. It is also easy to see that the process satisfies the evolution equation

Xφ(t) = φ(t)+
ξ(1)(∞)∑
i=1

X
φ
i (t − σi) , (5.6)

where theXφi are iid copies ofXφ . We will writemφ(t) = Ee−γ tXφ(t).
To determine the almost sure limiting behaviour of the processX0 we will fol-

low the argument of [22] for the non-lattice case; the extension to the lattice case
will be clear. We begin by examining the mean behaviour for the processesXφ .
Multiplying (5.6) by e−γ t , taking expectations and lettinguφ(t) = E(e−γ tφ(t)),
we have a renewal equation

mφ(t) = uφ(t)+
∫ ∞

0
e−γ smφ(t − s)ν(ds) = uφ(t)+

∫ ∞

0
mφ(t − s)νγ (ds) ,

(5.7)
provided the Malthusian parameterγ is a solution to the equation

E

∫ ∞

0
e−γ t ξ(dt) = 1 .

Thus, with this choice ofγ , we have

1 =
∑
a∈A

∫
Ba

ka∑
j=1

ma(j)x
−γ (1+α)
j 8(dx1, . . . , dxka )pa .

By the definition ofα in (4.2) we see thatα = γ (1 + α), giving γ = α/(α + 1).
Equation (5.7) is the renewal equation of [17] and hence we can conclude from

a version of the classical renewal theorem (see [16] for a discussion of this type of
renewal theorem), that

Lemma 5.6. If ν is not lattice, then

mφ(∞) =
∫∞
−∞ uφ(x)dx∫∞

0 xν(dx)
.

Otherwise, if the support ofν lies in some discrete subgroup ofR, then ifT is the
greatest common divisor of the support ofν, thenG(t) = limn→∞mφ(t + nT )

exists for everyt and

G(t) =
∑∞
j=−∞ uφ(t + jT )∫∞

0 xν(dx)
.
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This determines the mean behaviour of the limits in Theorem 5.5. In order to
prove the existence of the almost sure limit we will try to establish a similar result
to the general branching process result from Theorem 3.2. For this we set up a little
more notation. Let

It = {i = (j , i) : σj < t, σi > t},
It,c = {i = (j , i) : σj < t, σi > t + c} .

The proof of Theorem 5.5 will be established by showing the almost sure conver-
gence on certain lattices which we define as follows. Letc > 0, taket0 ∈ [0, c] and
settk = t0 + kc for k ∈ Z. Also we writetk,n = kc/n for k ∈ Z andn = 1,2, . . ..
We will now work withX0 and follow closely the proof of the main result in [22],
omitting details where the proofs are essentially the same.

Lemma 5.7. For eachc > 0, t0 ∈ [0, c] we have

e−γ tkX0(tk) → m(∞)W, a.s.

ask → ∞.

Proof.We follow the proof of [22] Lemma 5.10. Firstly truncateη to ηc where

ηc(t) =
{
η(t), t < n0c,

0, t ≥ n0c.

Then, forn ≥ n0, we have from (5.6), writingXc0 for Xη
c
,mc for mη

c
andai(t) =

e−γ (t−σi )Xc0(t − σi)−mc(t − σi), that

|e−γ tk+nXc0(tk+n)−mc(∞)W | ≤

∣∣∣∣∣∣∣
∑

i∈Itk
\Itk ,nc

e−γ σiai(tk+n)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

 ∑

i∈Itk
\Itk ,nc

e−γ σimc(tk+n − σi)


−mc(∞)W

∣∣∣∣∣∣∣
= S1(tk)+ S2(tk) . (5.8)

The behaviour of the second termS2(tk) depends purely on the general branching
process and by [22] (5.53) we can prove that for anyε > 0, there is ann ≥ n0 such
that

lim sup
k→∞

S2(tk) ≤ Wε .

The first term in (5.8) can be writtenS1(tk) = S11(tk)S12(tk) where

S11(tk) = e−γ tk |Itk\Itk,nc|,

S12(tk) = 1

|Itk\Itk,nc|

∣∣∣∣∣∣∣
∑

i∈Itk
\Itk ,nc

e−γ (σi−tk)ai(tk+n)

∣∣∣∣∣∣∣ .
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It is clear thatS11(tk) ≤ e−γ tkZϕ(tk) and hence is almost surely bounded by a con-
stant. For the final termS12(tk) we note thatai are mean 0 random variables and
we can apply the version of the strong law of large numbers proved as Lemma 4.1
in [22]. For this we use boundedness ofη, finiteness of the total population at fixed
times and exponential growth of|Itk\Itk,nc|. Using [22] Proposition 4.3 we have

S1(tk) → 0, a.s. ask → ∞ .

Both parts obtain results which are independent ofc. We then use the fact that
X0 = Xc0 +X′

0, whereX′
0 satisfies

X′
0(t) = η(t)I{t>n0c} +

ξ(1)(∞)∑
i=1

X′
0(t − σi) .

Now from this equation, there exists a constantC1 such that

lim sup
t→∞

e−γ (t+c)X′
0(t + c) = lim sup

t→∞
e−γ (t+c)

Zϕ(t)∑
i=1

η(t + c − σi)

≤ lim sup
t→∞

e−γ (t+c)Zϕ(t)M

≤ e−γ cC1W, a.s.

From this we use dominated convergence to show that we can takec → ∞ and
remove the truncation to get the result forη. ut
Corollary 5.8. For each fixedn

e−γ tk,nX0(tk,n) → m(∞)W, a.s.

Proof.This follows from the previous Lemma as in [22] Corollary 5.11. ut
Lemma 5.9. The process{X0(t) : t ∈ R} has Malthusian parameterγ = α/(α +
1) whereα satisfies the equation

E(

ξ(1)(∞)∑
i=1

ρ(1)(s(i))
−α) = 1 .

If the mean reproduction measureν is non-lattice, then

lim
t→∞X0(t)e

−γ t = m(∞)W, a.s. ,

where

m(∞) =
∫∞
−∞ e−γ tEη(t)dt∫∞

0 te−γ t ν(dt)
.

If the support of the measureν lies in a discrete subgroup ofR, then, ifT is the
generator of the support, then for larget ,

X0(t) = (G(t)+ o(1)) eγ tW, a.s.
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whereG is a positive periodic function with periodT given by

G(t) =
∑∞
j=−∞ e−γ (t+jT )Eη(t + jT )∫∞

0 te−γ t ν(dt)
.

Proof. The discussion prior to Lemma 5.6 shows that the Malthusian parameter
is γ and the expression form(∞) comes from Lemma 5.6. Thus we just need to
demonstrate convergence as in Corollary 5.8. We begin by defining

ηε(t) = sup
|s−t |<ε

η(s)

ηε(t) = inf
|s−t |<ε

η(s) .

As the paths ofη(t) are bounded and cadlag we see thatEη(t) is continuous and,
asε → 0, we have

Eηε(t) ↓ Eη(t), Eηε(t) ↑ Eη(t) ,
for almost everyt . ThusEηc/n(t), Eηc/n(t) are continuous for almost everyt . It

is clear that the processesXηc/n, Xη
c/n

will exist and by definition

Xηc/n(t) ≤ X0(t) ≤ Xη
c/n

(t) .

Again using the boundedness of the functionη we have

e−γ c/nmηc/n(∞)W ≤ lim inf
t→∞ e−γ tX0(t)

≤ lim sup
t→∞

e−γ tX0(t) ≤ eγ c/nmη
c/n

(∞)W .

Using dominated convergence and the renewal equation we can deduce thatmη
c/n
,

mηc/n → m(∞) and hence we have the result on lettingn → ∞. ut

Proof of Theorem 5.5.We can now complete the proof of the theorem by replacing
X0 in the almost sure convergence result given in Lemma 5.9, by the counting
functionN0(x),

lim
t→∞ e

−γ tN0(e
tW) = m(∞)W .

Finally substitutingt = log(x/W) we see thatγ = ds/2 and the results of Lem-
ma 5.9 complete the proof. ut

By (5.4) we know that the spectral asymptotics for both the Dirichlet and Neu-
mann Laplacians will be the same.

Corollary 5.10. For the random recursive Sierpinski gaskets of the introduction
we have

lim
x→∞N

ω(x)x−ds/2 = m(∞)W1/(1+α)(ω), a.e. ω ∈ � .



246 B. M. Hambly

Remark 5.11. (1) It is clear that the only way it is possible to get the lattice case is
if the family of fractals is at most countably infinite. In this case we would need to
find say two affine nested fractals with conductance scale factors which are related
via their logarithms, in that logρ1/ logρ2 ∈ Q. Even if we could find such a pair,
we would still need to prove that the periodic functionGwas non-constant. It would
be interesting to find a non-trivial example.
(2) The random variableW determines the growth rate of the tree describing the
fractal and can thus be interpreted as a measure of the volume of the fractal. In [20]
it was shown that, under some conditions, the Hausdorff measure (with respect to
the exact Hausdorff measure function) of the boundary of a Galton-Watson tree
was proportional toW .
(3) The deterministic case can be recovered if we take our probability distribution
to be a point mass on a particular fractal in the family. As the limiting distribution
will become degenerate we haveW = 1 and the value ofm(∞) will be the same
as that for the p.c.f. case discussed in [17].
(4) Using the fact that the trace of the heat kernel is the Laplace transform of the
eigenvalue counting function, as in [3] Section 7, we can apply a Tauberian theorem
to obtain a constant limit result for the quantity

∫
F
pt (x, x)µ(dx) as

lim
t→0

∫
F

tds/2pt (x, x)µ(dx) = m(∞)W1−ds/20(1 + ds/2), P − a.s.

From the results in [11], for the first random recursive fractal mentioned in the
introduction, there are pointwise bounds on the on-diagonal heat kernel, of the
form

c6t
−ds/2| log t |−β ′ ≤ pt (x, x) ≤ c7t

−ds/2| log t |β, 0< t < 1, ∀ x ∈ G, P−a.s.

wherec6, c7, β, β
′ are constants. The logarithmic terms are believed to be neces-

sary.
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