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Abstract. We consider natural Laplace operators on random recursive affine nested fractals
based on the Sierpinski gasket and prove an analogue of Weyl's classical result on their
eigenvalue asymptotics. The eigenvalue counting funci@n) is shown to be of order

A%b/2 as) — oo where we can explicitly compute the spectral dimensipnMoreover

the limit N (x)A~%/2 will typically exist and can be expressed as a deterministic constant
multiplied by a random variable. This random variable is a power of the limiting random
variable in a suitable general branching process and has an interpretation as the volume of
the fractal.

1. Introduction

The eigenvalue counting function for the Laplacian on a bounded domain has
asymptotics that depend on geometric information about the domait ke’

be a bounded open subset. The LaplaciarDdmas compact resolvent and hence

has a discrete spectrum consisting of an increasing sequence of eigenvalues whose
only accumulation point is infinity. If we leW (1) denote the eigenvalue counting
function, the number of eigenvalues less thafor either the Dirichlet or Neumann
Laplacian, then a classical result of Weyl states that

i N()  B4|D|
r—oo A2 (2m)d

where|D| denotes the/-dimensional volume of the sé& and B, the volume of
the unit ball inR?.

We will be concerned with the behaviour of the functiém.), when the bound-
ed domain is a fractal subset Bf . In the case of the compact Sierpinski gasket,
it is shown in [7] how to use an exact description of the eigenvalues, as the back-
ward orbits of a renormalization map, to obtain the following analogue of Weyl's
result,
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where the exponerl = 2log 3/log 5 is called the spectral dimension of the frac-
tal. The non-existence of this limit is directly related to the existence of localized
eigenfunctions of the Laplacian on the Sierpinski gasket, [4]. Indeed it is possible to
show that for the Sierpinski gasket it is the eigenvalues corresponding to localized
eigenfunctions which grow at the rate determined by the spectral dimension. The
non-localized eigenfunctions have eigenvalues which grow at a slower rate [15].

For a large class of finitely ramified fractals, called p.c.f. self-similar sets, it
has been shown, [17], that for the Laplacian with respect to any Bernoulli measure,
u, the existence of the limit in (1.1), for a suitably defined exporkat), is the
generic case. The spectral dimension is then defined to be the maximal exponent
over these measuras, = max, d; (). However, whenever there is a lot of sym-
metry in the fractal the limitin (1.1) will not necessarily exist as there can be many
eigenfunctions with the same eigenvalue, leading to large jumps in the eigenvalue
counting function. For conditions on p.c.f. self-similar sets for which this can occur
see [24]. Unlike the situation iR, the constant which appears when the limit does
exist has no simple interpretation as a volume.

The question we will address here is the asymptotics of the eigenvalue counting
function for a bounded random fractal subseR6f The random fractals we con-
sider are obtained from affine nested fractals [6] based on the Sierpinski gasket in
arbitrary dimension. They are built from a finite family of possible configurations
but with a possibly uncountable set of scale factors. We will be able to construct a
natural Laplacian on such random fractals in the same way as [11] and obtain results
which provide analogues of those of [17] in this setting. The spectral dimension of
the Laplacian can be computed as the solution to a suitable expectation equation.
The lack of symmetry suggests that the limit in (1.1) will exist and indeed, this
is typically the case. Only if there are a finite number of constituent fractals is it
possible to have the non-existence of the limit in (1.1) and, as yet, there are no
known non-trivial examples.

As the fractals are random there is an underlying probability space and we will
see that the constant appearing, when the limit in (1.1) exists, is random. It can
be expressed as a deterministic constant multiplied by a positive power of a mean
one random variable. The deterministic constant is an extension of that obtained
in [17] and arises from a renewal equation for the mean behaviour of the eigenval-
ue counting function. The random variable is the limiting random variable for the
normalized population size of a general branching process and is a measure of the
volume of the fractal.

There is an alternative randomization for fractals which has been explored in
more detail in [10, 3, 12]. In this case the randomness appears in an environment
sequence and the spatial symmetry is preserved, however the fractal is not exactly
self-similar. Such fractals are called scale irregular in that there is no scaling factor
which leaves the set invariant. The asymptotics of the eigenvalue counting func-
tion have been derived from the trace of the heat kernel. This has shown that there
will be oscillation in the eigenvalue counting function asymptotics if there is suffi-
cient irregularity in the environment sequence. In particular, in the case where the
environment sequence is generated by a sequence of independent and identically
distributed random variables, the limit in (1.1) does not exist and
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whereg (1) = exp(y/log A log loglogh).

For the Laplacian on a bounded domainc R?, there has also been extensive
investigation of the effect of the boundary on the second term in the asymptotic
expansion ofv (1). If the boundary iSC* and a certain billiard condition is sat-
isfied, the second order term is determined by(the- 1)-dimensional volume of
the boundary, [13]. In the case where the boundary is fractal there are a number of
results. We state just one; if the boundary has Minkowski dimensgjos d — 1,
then fors > d,

_ By|D| dj2 s/2
N = —(Zn)d’\ + 00 .
For a discussion of this result and various conjectures about the behaviour of the ei-
genvalue counting function for fractals and domains with fractal boundary, see [18].

In order to demonstrate the main result we consider the following two random
fractals constructed from some simple affine nested fractals. We take the original
Sierpinski gasket, SG(2), the nested fractal SG(3), as defined initially in [10], and
a modified version MS@J. These are illustrated in Figure 1. As can be seen SG(2)
is constructed from 3, 2-similitudes and SG(3) from 6, 3-similitudes. The fractal
MSG() as shown is just one fractal drawn from a whole class of fractals, con-
structed from 3/-similitudes and 3, 2/ (I — 1)-similitudes. The scale factay for
the inverse of the side length of the small triangle on the middle of each side, can
take any value on [30]. We can compute the Hausdorff dimension and spectral
dimension of each fractal, using standard approaches, [17].

We now construct two examples of random recursive Sierpinski gaskets. In
Section 2 we will define the full class of fractals in which we work. Firstly we
construct a random fractal from SG(2) and SG(3) by choosing independently for
each triangle which set of similitudes to apply within it. With probabilitye use
the family of similitudes corresponding to SG(2) and with probability- p) the
similitudes of SG(3). This fractal, shown in Figure 2, is an example of the fractals
discussed in [11]. For our second random fractal we take the modified version
MSG(), which we extend to a random family of fractals by choosing the length
scale factod according to a measure with support in [3 co]. Thus, if ® is not

A AL

Fig. 1. The first level of SG(2), SG(3) and one possible MG(
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Fig. 2. The graph approximation to the random recursive fractal built from SG(2) and SG(3).

Fig. 3. The graph approximation to the random recursive fractal built from the fractals
MSG() with randomly chosen length scdle

supported on a countable set, there is an uncountable family of fractals used to
construct the random fractal. If we allow massaf this would correspond to in-
cluding SG(2) in the family, mass at 3, would correspond to including SG(3). Later
we will restrict the measure to lie if8, c0).

These sets are realizations of a random process and hence they are elements
in a space of random recursive fracteds, &, P). In the first example the proba-
bility measureP is the measure on the path space of a Galton-Watson branching
procesqZ,; n > 0} in which each individual has either 3 offspring or 6 offspring
with probability p and 1— p respectively, at each generation. Each branch of the
resulting Galton-Watson tree determines a subset of the fractal as we associate the
similitudevy;, .. ;. (a precise definition will be given on Section 2) with the branch
i1, ..., i, where we also need the type of the individual (i.e. the type of map) at
each generation. The random recursive fractal can then be constructed as
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whereA is the unit equilateral triangle. The second example can be constructed
from a hexary tree, which we could view as a trivial branching process. We will
extend this to a general branching process in order to incorporate all the informa-
tion about the fractal. In Section 3 we define and discuss the properties of general
branching processes.

The Laplace operator on this set is constructed in Section 4 and we give a brief
discussion here. Firstly we observe that if we associate a resistaigwith cell i
in the fractal of type:, there is a scale factay,, which renormalizes the resistances.
Let p, = A4/ rq be the vector of conductances in a fractal of typ&Ve then take
the graph formed by the images of the edges of the initial trianglesafterations
and define a resistor network by setting a conduct;}frﬁﬁgl Pai; (i;) on each edge
in the triangle at1, ..., i,. From the construction, and choice @f, it is easy to
define the Dirichlet form for the fractal and hence a diffusion process. This allows
us to define a Laplace operator as the generator of the diffusion or directly from the
Dirichlet form. The operator requires a choice of meaguamd we will work with
a random measure which is equivalent to the Hausdorff measure in the resistance
metric. The eigenvalue problem can be expressed in terms of the Dirichlet form
and, using a natural decomposition of the form, we may express the eigenfunctions
associated with one random fractal in terms of eigenfunctions for other random
fractals. This will lead to an expression for the eigenvalue counting function in
terms of a process closely associated with a general branching process, which we
will be able to describe in enough detail to prove the following result.

Theorem 1.1. For either of the two random recursive Sierpinski gaskets there exists
a constanD < C < oo and a strictly positive mean one random varialile such
that

lim N

_ 1-ds/2 _
A_mokds/z—CW , P—a.s.

In the case of our first random fractdl /2 = «/(« + 1), wherex satisfies

5\ 15\ ¢

For the second random fractal, if the resistance of a triangle is proportional to its
side length andb is a measure with a density @8, co0), thend;/2 = o/(a + 1),
where

o ( 5 4 N\ 2 51—-1\“ B
/3<3<§+m) +3<§+ 5 ) )cb(dl)_l.

We will give an explicit expression for the constahtind the full statement of
our main result in Theorem 5.5. Note that the spectral dimengien2 and hence
1—d,/2 > 0 for all the fractals in this class.
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2. Random recursive Sierpinski gaskets

As the building blocks for our scale irregular Sierpinski gaskets will all be affine
nested fractals, we begin by recalling from [19], [6] the definition of an affine nested
fractal.

For! > 1, anl-similitudeis a mapy : RY — R? such that

vx) =1"Ux) +xo (2.1)

whereU is a unitary, linear map anth € R. Lety = {1, ..., ¥} be afinite
family of maps wherey; is an/;-similitude. ForB ¢ R?, define

V(B) = UL 1¥i(B) ,
and let
W,(B)=Wo---0W(B) .

The map¥ on the set of compact subsetsitsf has a unique fixed poirft, which
is a self-similar set satisfying = W (F).

As eachy; is a contraction, it has a unique fixed point. IEjtbe the set of fixed
points of the mappingg;, 1 < i < m. A pointx € F is called aressential fixed
pointif there existi, j € {1,...,m}, i # j andy € Fy such that; (x) = ¥;(y).
We write Fy for the set of essential fixed points. Now define

Vig,.in(B) =i, 00y, (B), BCRP .

ThesetF;,, i, = ¥i,,..i,(Fo)is called am-celland the seE;;, ;. = ¥i;,...i, (F)
ann-complex The lattice of fixed pointg, is defined by
F, = lI’n(FO) , (22)

and the sef’ can be recovered from the essential fixed points by setting
F =cl(UXoF) -
We can now define an affine nested fractal as follows.

Definition 2.1. The setF is an affine nested fractal {i/1, . . ., ¥, } satisfy:
(A1) (Connectivity) For any 1-cellsC and C’, there is a sequende’; : i =
0,...,n}ofl-cellssuchtha€g=C,C, = C'andC;_1NC; # 0, i =1,...,n.
(A2) (Symmetry) If x,y e Fy, then reflection in the hyperpland,, = {z :
|z — x| = |z — y|} mapsF, to itself.

(A3) (Nesting) If {i1, ..., i}, {j1,---, jn} are distinct sequences, then

(A4) (Open set condition) There is a non-empty, bounded, open8eiich that the
¥; (V) are disjoint andU_;y; (V) C V.
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Note that the difference between nested and affine nested fractals is that affine
nested fractals can have similitudes with different scale factors. We define a size
class for an affine nested fractal to consist of those sets that can be mapped to
each other by composition of the reflection maps in (A2). An affine nested fractal
containsk size classes and, as each set in a size class must have the same length
scale factor, there adedifferent length scale factors.

We fix a dimensiond > 1 and define the family of affine nested random re-
cursive Sierpinski gaskets based on tetrahedRfir_et Fo = {zo, . .., z4} be the
vertices of the unit equilateral tetrahedrorfifi. Let A be a finite set and for each
a € A, letB, beabounded subsetfﬁ forsomek, € N. Foreachu € A, b € B,
let

_lpa,b — {wla’b’l = 1,...,m(l} ’

be a family ofm,-similitudes onR¢ with d + 1 essential fixed points given .

The similitudes can be divided inkg size classes and fgre {1, ..., k,} we write

mq(j) or sometimesn(a, j), for the number of similitudes in clagsand write
la.p(j) orl(a, b, j) for the length scale factors of the similitudes. We only allow

a finite number of possible configurations of size classes but, for each possible
configuration, the set of length scale factors for the similitudes lies in the possibly
uncountable subsé, (for restrictions on this set see Section 4). As above there is
a unigue compact subsgt, , of R? which satisfies

Mmq
Kap =¥ (Kap) -

i=1

Under the open set condition (A4), this set will have Hausdorff dimension

ka
df(Kap) =Y ma(PDlap(H™* =1
j=1

In order to construct our random fractals we require an address space. Let
I, = UZ:ON" and letl = U1, be the space of arbitrary length sequences. We
will write i, j for concatenation of sequences. For a poiat/\ I, denote by ],
the sequence of lengthsuch thai = [i],, k for a sequenck. We writej < i, if
i = j, k for somek, which provides a natural ordering on branches. Also denote
by |i| the length of the sequence

The infinite random tred;, is a subset of the spaéedefined as the sample path
of a Galton-Watson process. Let the rootfige= Iy = ¥, the empty sequence. Let
Ui,i € I be independent and identically distributaevalued random variables,
indicating the type of nested fractal to be used, with probability distribution

PWUi=a)=p,, acA, Viel .
Theni e Tif[i], € T, C I, foreach 1< n < |i|, where [], € T, if
1. [i]h-1 € T,
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2. thereisg : 1 < j <m(Uj,_,) suchthatil,_1, j = [i],.

Let s(i) be the projection map which allocates to each similitiiits size class.

We need another random variatiféa, i) € [Rk“, chosen according t®,, which
specifies the length scale factor. Thus the length scale factor fostthgimilitude

is thes(i)-th coordinate oV, I[(Uj, V (Ui, 1), i) = Vi) (Ui, i) and this is a label

for each node in the tree. There is a natural probability space associated with these
labelled trees given b§e2, %, P). We will now denote a random trgeas a sample
pointw € Q. Theo-algebras are defined as

o
By =0 Ui, V(U;, ;i € Tya(), Z=|]%B .
n=1

and the probability measur®, is determined by both a Galton-Watson process,
in which an individual has:, offspring with probabilityp, for a € A, and a la-
belling process, in which each individual has a label accordirytoFor random
recursive fractals which are connected, the branching process will be supercritical
with no possibility of extinction.

In the case of the first example discussed in the introduction and shown in Fig-
ure 2 we have generating function for the offspring distributjtta) = pu® +
(1 — p)u® and the labels are completely determined by the number of offspring.
For the second example the generating function for the addresses of the sets is
trivial f(u) = u®, and the randomness come from choosing the labels. These two
examples can be embedded into suitable general branching processes.

The address and label of each branch in the tree is now used to specify a set in
our random fractal through the application of the maps determined by the address
and the label. LeE = Ey be the unit equilateral tetrahedron. Thenbgt i € T,
geometrically similar tc£, to be

Uti1,, 1+ Ys(iln) (Ui, — 1 -[111—-2)

o Wy (E))--) .

Uy, Vst (Up.9)
Ei = ¢i(E) = w[i]ﬁ (MY

We regard as the address of the sgtand will use this notation for any sequence
i. A random gasket can then be defined by

o]

=M U & .

n=0ieT, (®)

The Hausdorff dimension of the sét’ can be found by applying the results of [5],
[21], [8] and is given by,

m(Uy)

dp(F*)=inf Ja B[ Y I(Up, V(Us.9).i)" | =1}, foraewe .
i=1

(2.3)
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3. General branching processes

A natural probabilistic setting for the labelled trees introduced in the previous sec-
tion is that of general or C-M-J branching processes. These processes provide the
main tool for proving our results as we can use a limit theorem related to that de-
rived by Nerman [22] for the growth of the general branching process counted with
random characteristic.

In the general branching process each individual in the population has a repro-
duction point procesg;, which describes the birth events, as well as a life-length
L, and a functionp, on [0, co0), called a random characteristic of the process. We
make no assumptions about the joint distributions of these quantities. We wjite
for the&-measure of [0¢] andv(t) = E&(¢t) for the mean reproduction measure.
The basic probability space is now

(@, 2,P) =[]« %.P) ,

iel

where the space&?;, %i, P;) are identical and contain independent copies of
(&, L, ¢). We now denote a random tree biye Q and we will write 6, (w) for
the subtree ofv rooted at individual. We denote the attributes of individuaby
(&, Li, ¢i) and its birth time by;. Note that if individuals are always born at the
death of their parent, then = le”:_ol Lii;-

Let {o(,)} be the sequence of ordered birth times and Wi§tg), L), ¢(x))
when we refer to this time ordered sequence. As we can have multiple births,
{om)} will not be strictly increasing. At time 0 we have an initial ancestor so that
o1y = oy = 0. The process that we wish to consider can be written as

220 = Y bt —ow) -

niom =<t

That is the individuals in the population are counted according to the random
characteristiep. By considering the offspring of the initial individual we have a
decomposition of the process as

@) §p(t)
220 = ¢+ Y Zht—ow) =ds)+ Y Z{t—0) . (3.1)
i=1 i=1

wherezf’, Z?Z.) are independent copies of the general branching process.
An example of a random characteristic is

o) =IiL>n

so thatZ?(¢) is the total number of individuals alive at tinnelf the characteristic
is o(t) = 1 for all ¢, then the procesg? (¢) counts the total number of individuals
born up to time. Later we will choose a characteristic which counts eigenvalues.
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We will assume thab(0) = 0 and there exists a Malthusian parameter 0,

such that
o0

o
/ e v(dt) =1 and / te v (dt) < oo.
0 0
Let&,(r) = c;e“’f‘VS(ds), and define the measurg(dr) = E(&,(dr)). We also
assume that each individual has at least two offspring so there is no possibility of
extinction and the process will be strictly supercritical. We will write

vl = E@™Zz%@)) ,

for the discounted mean of the process with random charactefidtie now intro-
duce a martingale, analogous to the standard branching process martingale, which
will enable us to discuss the asymptotic growth of this process.

We define ther-algebra determined by the finstindividuals and their charac-
teristics as

Ay =0((Ew, Ly, day) - 1<k <n) .

Observe that the birth time of an individual is determined by their parent’s repro-
duction process, so that the birth timeg, are.c/;_; measurable. Now define

o
Ry= ) ¢ ““I is a child of the first individuals -
I=n+1

Then we have the following theorem.

Theorem 3.1. ([1] Chapter VI, Theorem 4.1) The quanti¢R,,}°>° ; is a non-neg-
ative martingale with respect t&/,, and

W = lim R, exists

n—o0

AlsoW > 0if and only if
E (£4(00) log" &, (00)) < 00 |
otherwiseW =0, a.s..

There is also a continuous time martingale obtained by setting
Y, = RZW(;) .

In[22] itis shown that; is a martingale and it will converge as> oo to the same
limit random variable’. We note that for all the general branching processes that
we will consider heré, (c0) is bounded and hend& > 0 almost surely.

We will extend a result obtained by Nerman which shows that even when the
characteristic depends on the entire line of descent there is still an almost sure limit.
We state the extension of [22] Theorem 5.4 as discussed in [22] Section 7. We also
give the lattice version of the theorem.
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Theorem 3.2. Let D[0, oo) denote the set &&,.-valued cadlag paths and létbe
a D0, co)-valued characteristic satisfying;
(1) There exists a non-increasing, bounded positive integrable fungtisuch that

§a(00) — Ea(t))

—_— | <X
g

(2) There exists a non-increasing, bounded positive integrable functisuch that

—ot
Esup(e—d)(t)) <0
>0\ h(t)

Esup<

>0

Then, if the mean reproduction measure is non-lattice,
lim e Z%(1t) = W (00), a.s. (3.2)
—00

If the mean reproduction measure is lattice, then there exists a periodic function
Gzﬂ, such that for large,

Z9(t) = We (G2 (1) + 0(L)), a.s. (3.3)

Atthis stage it should be clear that there is an intimate connection between these
processes and the random recursive fractals. We assume that for eaclafeactal
the scale factors for the fractal are chosen according to a meagsa@pported on
a suitable bounded subset C [R'j;’. Now take the general branching process with
reproduction and lifelength given by

ka
(E(ds). L)= (Z ma(i)Si0gy, (ds). miaxlogxi)

i=1
with probability p,®,(dx1, ..., dx;) ,

then, if we let¢ denote the characteristic

¢i(1) = &i(o0) = &i(1) (3.4)

which counts the individuals born after timéo mothers born at or before time

then the procesg? (1) is the number of sets in&’-cover for the fractal. From this

we easily obtain the upper box counting dimension of the fractal as the Malthusian
parameter of this general branching process and it is not difficult to establish that
it is also the Hausdorff dimension.

4. Laplacians on random recursive Sierpinski gaskets

We now define a Laplace operator on each possible random fraetat and give
some properties. There is a question as to what is a natural Laplacian on this fractal,
as there are no symmetries. We use the idea that the movement of Brownian motion
through a medium is determined by the resistance of the medium.

Firstly we note that for affine nested fractals based upon the Sierpinski gasket
there is no difficulty in solving the fixed point problem of [19]. Recallthat there are
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k, size classes of set in the affine nested fractal (some of these could be the same
size). We extend the definition of the mafo the tree by letting (i) € {1, ..., k;}

denote the size class of the set with addie$§e can allocate a fixed resistance
ra(j),j =1,...,k, to all cells in a given class in the fract&l,. Let Fp denote

the complete graph on the essential fixed points and define

1
do(f.8) =5 Z (fx) = fONEx) —gy) .

x,yekFp

for f, g € C(Fp). If we let

E 1) =D ra(s@) " o(f o Vi, f oY)
i=1
kq m(a,j)
=33 ra()Mo(f o i fov)

j=1 i=1

for f € C(F}), then there is a constany such that

Eolf, ) =2 inf{E (g, 8) 1 g = flRo) -

This allows us to define the Dirichlet form for each fractal in our familyfor
details see [2]. We will lep, (j) = p(a, j) = Aq/7r4(j) denote the conductance of
a cell of classj in the fractal.

Our aim is to construct a Dirichlet for@i on an appropriaté2(F, ) for the
random fractal for eachh € Q. As usual we build this up from a sequence of
approximating forms on the lattice approximations to the fractal. We define the
resistance of a cell with addresdy

lil
RO~ =[] rWi_y. s(il) -
i=1
We can then write
60(f.8) =Y RO 6o(foi. fovh) .

icwy

By the construction of the conductances we see that the sequence of Dirichlet forms
is monotone increasing as, fgr: F — R, we have the property that

& (flE, flp) =Inf{&)1(8.8) 1 g € C(Fus1), 8 = [} -

Once we have such a sequence of Dirichlet forms we can clearly define the
limiting Dirichlet form as the limit of the sequence. However, in order to define
the associated Laplace operator, we need to put this Dirichlet form on an appro-
priate L2 space and hence need to define a measure. As in [11] we will choose
the measure to be the limit of the invariant measures of the Markov chains on the
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sequence of resistor networks which each edge has approximately the same re-
sistance This measure is equivalent to the Hausdorff measure of the fractal in the
resistance metric, [11]. In the case of p.c.f. self-similar sets this measure is the one
which maximizes the spectral exponent, [17]. To do this we define a sequence of
approximations to the fractal determined by keeping the resistance of each edge in
the graph in the sequence of approximately the same resistance.

We can modify the general branching process description of the fractal, intro-
duced at the end of Section 3, to describe this new approximation to the fractal.
As it is the resistance of a set rather than its length that is crucial, from now on
we assume that it is the vector of conductanges= {p,(i),1 < i < k,} that is
chosen according to the random variablé:, i) with probability measur®,. We
now restrict the support of the measure with an assumption.

Assumption 4.1. For eacha € A, the suppori3, of the measuré,,, for the distri-
bution of conductances on the cells in the fradtal has each coordinate bounded
away from 0 andbo in R'jﬁ‘.

This assumption ensures that conductance and resistance can be controlled uni-
formly. Note that the resistance of a component of the fractal does not have to
depend on its length scale. As in Section 2, where the length scale factor of the
similitude was chosen and one degree of freedom was lost as the side length must
be one, here the equation foy fixes a coordinate. Let

k{l
éWds), L) = (Z mg(i)8logx; (ds), m_aX|ngi)
i=1 !

with probability p,®,(dx1, ..., dxk,) ,

so that the offspring of an individual are born at times given byola@). Let ¢
denote the characteristic, defined in (3.4), which counts the number of individuals
in the population born after timeto mothers born before or at timeand denote

the corresponding general branching process,‘z’byt Z%().

Let
where we identify an individual with their line of descent, and then define
Fo= | vitFo) -
ieA,

The graph based of), has approximately the same resistance for the edge of
each triangle, in that, by our assumption, there exists a constantO such that
c1e”™ < R(i) < e~ ". We will refer to the set&j fori € A, asn-cells.

We use the conductivity to define the measuyas this is the invariant measure
for the associated Markov chain. Firstly, for aacell E; C F®, define

ZJ ENp—m R(I ’ j)_l

OEY) = i
:un( I) ZjeAnR(J)_l

(4.1)
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As the fractalF® is compact, by tightness there is a subsequence of measfires
which converges weakly to a limit measyr& on the fractalF“. We can then
define the Dirichlet form&®, Z ) on L2(F®, u®) for eachw € Q.

However from now on we will work with a subs€f c Q with P(Q) = 1
where the general branching process converges. On this set we can describe the
limit measure using the general branching process. By Theorem 3.2 we have that
there exist€2’ with P(Q2") = 1 such that for allb € €/,

ez (@) > v ()W (@)
wherea satisfies the equation

) (c0) ka
E E p(l)(s(i))_"‘ = E [ E ma(j)xj_“dcba(xl, Xk )pa =1
‘ B, <
i=1 a4 j=1

acA
4.2)
Under Assumption 4.1 the branching process counted with random characteristic
¢ can be written for a fixed:, by takingr large enough, as

=340,

ieAn

wherez? (i) are iid copies of?. Substituting the convergence result into the above,
and using the definition of\,,, we see that

W= ROW ,
ieA,
where
Wi = W) = lim e*z0(i)/vg(00) .

Hence, for ann-cell E;j in conductivity coordinates, we have

R()*W (0i(w))
E)y= ——77——"-= 4.3
n(Ei) W(w) (4.3)
By taking the characteristif; (1) = R(i)~! and using Theorem 3.2 we can see that
this is the behaviour of the limit of the sequence of measures defined by (4.1). Note
that we can decompod€ and hence the measure using any section of theutree
in particular, by looking at the offspring of the first born individual,

1) (00)
W= ) pg @)W and
i=1

§(1)(c0)

/E fonsdx) = Y

i=1

(E;) /E | F@iep @ dx), feCE) . (4.4)
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For the rest of the section we omit reference to the sample point2’ when
itis not required. We define the Dirichlet for(#, %) on the spacé.2(F, 1) as

T =A{fsupéu(f, f) < oo},

and
S =M Eu(ff) VIeT .

The effective resistance between two points in the random fraciadefined
by
r(ey) = (nf{ECf £ f) =0, f =1~ .
As in [11] we have the following estimate on the effective resistance.
Lemma 4.2. There exist constants, c3 such that for each edge, y) € Fj,

cze”" <r(x,y) <cge”
From this result it is not difficult to see that the measurés equivalent to the
a-dimensional Hausdorff measure in the effective resistance metric.

We note that using our conductivity coordinates, and the definition of effective
resistance, we can prove the following estimate on the continuity of functions in
the domainz.

Lemma 4.3. There exists a constanj such that

SUI?E | f(x) = fOD)| <caRDES, f), YfeF, YieA, .
X,yEL|

By construction we haveie™ < R(i) < e ™ fori € A,, and this shows that
the domain# C C(F). The following theorem can be proved in our setting, in the
same way as [11].

Theorem 4.4. The bilinear form(&, %) is a local regular Dirichlet form on
L?(F, ) and has the property that there exists a constarguch that

sup | f(x) — fI < caé(f, f), forall f e 7. (4.5)

x,yeF

We can also observe a scaling property of this Dirichlet form. We vitg ;)
for the conductance of the sets of size clada the first division of the fractal.
This corresponds to the fact that the first individual h&®/y, j) offspring at times

log oy (j)-
Lemma 4.5. We can write for allf, g € #¢,

£(1)(00)

E°(f.8)= Y paysNET O (foyigov) .

i=1
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Proof. We write the version of this result for the approximating fofth as

£(1)(00)

UL )= Y paysOEND(Sf i go) .

i=1
Now letn — oo. O

Let P; denote the semigroup of positive operators associated with the Dirichlet
form (&, #) on L2(F, ). The form is local and regular and hence there exists
a Feller diffusion{X;; r > 0} with semigroupP; on F. By (4.5) we see that the
resolventG, = [ exp(—Ar)P,dt will have a bounded symmetric density. As this
density will be continuous as in [2] we find th&t will have a bounded symmet-
ric densityp; (x, y) with respect tqu and thatp; (x, y) will satisfy the Chapman-
Kolmogorov equations. Some estimates for the transition density of a subclass of
these fractals were obtained in [11].

Note that we can define the Laplaciarwith respect to the measuge for the
fractal F, by setting

é”(f,g):—(Af,g), Vf,gef,

where we have taken the inner producticiiF, u1). As we are dealing with a com-
pact fractal we will also need to consider the boundary conditions. For Neumann
boundary conditions we need to define a normal derivative at the boundary for our
fractal. We follow [14] and set

(du), = _mlinoo Apu(x) (46)

where A,, is the discrete Laplacian associated with the Dirichlet fafyn The
existence of this limit follows as in [14].

In order to show that the Laplacian has a discrete spectrum it is enough to show
that the natural inclusion map frod into L2(F, i) is compact. We follow [17]
in proving the following.

Lemma 4.6. The natural inclusion map frorZ, Y2 + |.|l2) to L(F, w) is a
compact operator.

Proof. Let U be a bounded set itZ7, §%/2 + ||.||2). By (4.5) we have the equi-
continuity ofU.

We can also use this to show tfiais uniformly bounded. L, (x), x € F, p €
d F denote the harmonic function with boundary values p and O for all other
points ofdF. Let f € U. Itis easy to see by (4.5) that, ff = ZpeBF F(P)hp(x),
the harmonic function with the same boundary valueg aben

1f) = F@I< Y. hp@If@) — F(p)l < e 26(f HY? .

pedF

As the space of harmonic functions is finite dimensional /thand L norms are
equivalent and thus there is a const@rguch that
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1 flloo < 11f = Flloe + Il Fllos
<IIf = Flloo + ClIfll2
< @+ OIf = floo + Cllfll2
< @+O%6f, P2+ Clifla -

Thus there exists a constagtsuch that, forf € U, we have| f || < cs(E(f, )12
+ 11 f1l2) and hencd/ is uniformly bounded.

We then apply the Arzela-Ascoli Theorem to see thas relatively compact
in C(F) and hence ilL.2(F, w). O

By this result the Laplacian will have a discrete spectrum consisting of eigen-
values. Our aim is to discuss the behaviour of the eigenvalue counting function for
this operator.

5. The eigenvalue counting function

We begin by defining the Dirichlet and Neumann eigenvalue problems for our ran-
dom fractals. Recall that for eacghe Q' there is a random fract#l® and we have
a measure® satisfying (4.3). We will prove results about the counting function for
all v € ', giving almost sure statements @nThe techniques are based upon the
Dirichlet-Neumann bracketing idea developed by [17] for p.c.f. self-similar sets.
We will deduce a random version of the renewal equation which we can solve using
the connection with general branching processes.

Firstly the Dirichlet eigenvalues are defined to be the numbeeach with
eigenfunctioru, such that

A®u = —Au,

u(x) =0, xe Fp . CRY

Reformulating this eigenvalue problem for the Dirichlet form, we deffifg =
(feF?:. f(x) =0, x € Fo}, and se¥q (f, f) = &°(f, f) for f € #§. Then
A is a Dirichlet eigenvalue with eigenfunctianif

50, v) = Au, v)y ,

for all v € 775, where(,, .),, denotes the inner product iiP(F®, u®).

Asthe resolventis compact we can write the spectrum as an increasing sequence
of eigenvalues given by & 1o < A1 < .... We define the associated eigenvalue
counting function to be

NG (x) =maxi : A; <x,A; solves (5.1) .

Analogously we can define the Neumann eigenvalues to be the numleach
associated with an eigenfunctiansuch that

Ay = —Au,

(du)x = 0, x € Fo, (5-2)

where the derivativdu was defined in (4.6).
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This eigenvalue problem can be reformulated for the Dirichlet forrh &sa
Neumann eigenvalue with eigenfunctiorif

ECu,v) =Au,v)y ,

forallv e #¢.
Again, we write the spectrum as an increasing sequence of eigenvalues with
0= < A1 < ..., and define the associated eigenvalue counting function to be

N®(x) =max{i : A; < x, A; solves (5.2) .

The technique that we will use is a decimation property of the eigenfunctions.
This is not the usual decimation property for exactly self-similar fractals [7], [17],
which expresses the eigenfunctions for the Laplacian in terms of other eigenfunc-
tions for the Laplacian. Instead we can build an eigenfunction for a particular
random Laplacian in terms of eigenfunctions for other random Laplacians. The key
relationship is provided by the following Lemma.

Lemma5.1. For all x > 0 and eachw € @/, we have

§(1)(00)
Y Ny g (s@)Ir(ED) < NE(x) < N”(x)
i=1
§(1)(00)
< D N pgy(s@)m(ED) (5.3)
i=1

and there exists a constaM < oo such that for allw € ,
N§(x) < N“(x) < Ng(x) +M . (5.4)

In order to establish this key result we begin by defining some closely related
Dirichlet forms. Let(6*, #®) be defined by setting

F®={f:F\F1— R|foy; = fi on F\Fo, forsomef; € 7%@)}
and
§1)(00)
L) =Y pays)NE" (foti,gov) .
i=1
As in [17] we can prove that

Proposition 5.2. (1) #* € #° andé® = &% | 7, 7.

(2) (&, 7 ) is a local regular Dirichlet form onL2(F©, u®).

(3) 7© — L2(F®, u®) is a compact operator.

(4) If N°(x) denotes the eigenvalue counting function for the eigenvalués of

then
£(1)(00)

N2@) = Y N (xpay(s @) T u(ED)
i=1
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Proof. (1), (2), follow easily from the definitions. The proof of (3) will follow in

the same way as [17] Proposition 6.2. The one part that we need to prove is (4).
Assume that we have a Neumann eigenfunctioof 6 with eigenvaluex. By

using the decomposition of the Dirichlet form, Lemma 4.5 and the decomposition
of the random measure, (4.4), we have

£(1)(c0)

D pays@ET O (f oy, govi) = E°(f. 8)

i=1
&1y (00)

=1 Y (fovi,govgwm(E) .
i=1
Thus for allh € 7% we have
EXO(f o i h) = hpy (sIEN(f o Wi h)

and we have thalpfl(i)u(E) is an eigenvalue of\% @ with eigenfunction
fi = f o ¥. Now we can construct from this an eigenfunction with eigenvalue
of (6, #®). This is just done by setting

fi(x), x e€int(E)),
f) = { 0, x €in(E}), j#i.

It is easy to check that each of these functions is an eigenfunctiofi“of# )
with eigenvaluer and they form a basis for the corresponding eigenspace. Hence

it is clear that
§1)(00)

No@)y = Y NG pg (s)n(ED)
i=1
as required. O

There is a similar proof to the following proposition. L(étg’, ,97‘6)) be defined
by setting

§e
og

={f:feFG fIn=0},
and ~
0(f.8) =" 707 -

Proposition 5.3. (1) 78 C 7.

(2) (5"” 0“") is a local regular Dirichlet form onL2(F®, u®).

)7 F“‘” L2(F®, 1) is a compact operator.

4) If Ng’(x) denotes the eigenvalue counting function for the eigenvaluég,of

then
&1y (00)

NgG)y = Y Ng'“pay(s@DED) .
i=1
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To conclude the proof of the key inequalities we require the Dirichlet-Neumann
bracketing results given in [17]. We give here a version of [17] Corollary 4.7.

Lemma 5.4. If (E, F) and(E’, F’) are two Dirichlet forms on.2(F, x) and F’
is a closed subspace éfandE’ = E|p/ 5/, then

Ng/(x) < Ng(x) < Ng/(x) + Dim(F/F') .

Proof of Lemma 5.1Using the left inequality of Lemma 5.4 twice with the two
propositions gives (5.3).

As the space of harmonic functions for finitely ramified fractals is finite dimen-
sional Lemma 5.4 gives Dit# /%) = |Fo| = d + 1 and hence we have (5.4) for
allw € Q. O

We can now state and prove our main theorem. In order to do this we define the

following function,
£(1)(00)
o, 1,
@) = NG — Y Ng'“ (e gy (s)(ED)
i=1

which will act as a characteristic for a process closely related to the general branch-
ing process.

Theorem 5.5. For the random recursive Sierpinski gasket the spectral dimension
d, is given by

log Ny 2
dy =2 lim g O(X): ¢ ae. weQ
x—oo  logx a+1

whereq satisfies the equation

§(1)(c0)

ECY pays@) ™) =1.

i=1
If the mean reproduction measurds non-lattice, then

lim NG )x™%/2 = m(co)y WY M (), ae.weq ,
X—> 00

where
2o €S2 Eno(n)dt
Jo~ te~t4s/2u(dr)

If the support of the measurelies in a discrete subgroup @&, then, ifT is the
generator of the support, then for ae.€ Q, for large x

NE(x) = (G(log (x/ W(@))) 4 o(1)) xb2wY 40 (4 |

m(o0) =

wheregG is a positive periodic function with peridt given by

Gy = D €MD Enolt + 7T
B fooo te—1ds/2y(dt) '
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The technique used to prove this result is to express the problem of finding
the spectral dimension and determining the asymptotics of the eigenvalue counting
function as determining a characteristic, of a suitable, extended general branching
process. The spectral dimension will be the Malthusian parameter for the process
and the limit result will be an extension of Theorem 3.2.

We begin by writing the left inequality in (5.3) in the same way as the equation
for a general branching process. As in (4.4) we can extend the decomposition of
the measure: to write w(E;) = p(‘l‘)"(i)W,-/W, fori e {1, ..., &) (c0)}. We can
also write (5.3) as

£(1)(00)

3 NGO p )W/ W) < NG ()
i=1

We will make the substitutiol &’ (1) = N§' (¢! W (o)) forall ' € £, and consider

§(1)(00)

D~ Xo(t —logTa(s(i)) < Xo() ,

i=1

where we writery (j) = p(lf)““ (j) and suppress the dependence.

Define the functiom by

£@1)(00)

n(t) = Xo(t) — Y Xo(t —logra(s(i))) .

i=1
and note thatio(r) = n(t — log W). Clearly we have for all € R,

&1y (00)

Xo() =n(t)+ Y Xolt —logri(s(i))) . (5.5)

i=1

This is a random version of the renewal equation derived in [17] and is almost the
equation for the evolution of a general branching process with characteriasic

in (3.1). The time changed counting proc¢&y(¢) : t € R} considered here is
obtained by adding together a number of time shifted copies of itself. The time
shifts are the birth times of individuals in the general branching prageskich
starts from a single individual at time 0 and has a lifelength and reproduction point
process given by

ka
E(ds). L) = | Y ma(/)8atalogy; (ds), max(1 -+ «)l0gx;
j=1
with probability p, ®,(dx1, ..., dxi,) .

Note that the first Dirichlet eigenvalue is somg > 0, and hence we see that
almost surelyg := inf{z : Xo(¢) = 1} > —o0.
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We now define a class of proces$é (r) : —oo < t < oo} constructed from
a class of characteristidg,, () : —o0 < t < oo}, which can be random but are
independent for offspring of the same parent and wigie) = 0 for r < fp(w).
We define
X0 =" $uwt—a)
ieT ()
where we sum over the entire tréeNote that the existence of the process requires
that the sum is finite for al € R. This is clear for the case dfp = X" by its
construction. It is also easy to see that the process satisfies the evolution equation

§(1)(00)
Xt =90+ Y. X'-o) . (5.6)
i=1

where theXf’ are iid copies ofx?. We will write m?(t) = Ee V' X?(1).

To determine the almost sure limiting behaviour of the prodgsae will fol-
low the argument of [22] for the non-lattice case; the extension to the lattice case
will be clear. We begin by examining the mean behaviour for the procestes
Multiplying (5.6) by e~7?, taking expectations and letting (1) = E(e "' ¢(1)),
we have a renewal equation

m%):u¢(r)+/ooe*“m¢(z—s)u(ds):u¢‘(r)+/oom¢(z—s)vy(ds) ,
0 0

(5.7)
provided the Malthusian parametelis a solution to the equation

E/OO e VEd) =1 .
0

Thus, with this choice of, we have

kq
.=y (L
122_/3 Z}’Ha(])xj v +a)<l>(dx1,...,dxka)pa .

acA®Pa j=1

By the definition ofx in (4.2) we see that = y(1+ «), givingy = o/(x + 1).

Equation (5.7) is the renewal equation of [17] and hence we can conclude from
a version of the classical renewal theorem (see [16] for a discussion of this type of
renewal theorem), that

Lemma 5.6. If v is not lattice, then
ffooo u® (x)dx
Jo~ xvdx)

Otherwise, if the support of lies in some discrete subgroup &f then if T is the
greatest common divisor of the supportwpfthenG (t) = lim,_.oo m?(t + nT)
exists for every and

m® (c0) =

Y eult+jT)
Jo  xv(dx)

G() =



Random recursive Sierpinski gaskets 243

This determines the mean behaviour of the limits in Theorem 5.5. In order to
prove the existence of the almost sure limit we will try to establish a similar result
to the general branching process result from Theorem 3.2. For this we set up a little
more notation. Let

Jr={i=(,i) 0 <t 00>t}
Je=1{i=(,0)i0oj<t,op>t+c} .

The proof of Theorem 5.5 will be established by showing the almost sure conver-
gence on certain lattices which we define as follows.cLet0, takerg € [0, c] and

setty = 19+ kc for k € Z. Also we writety , = ke/nfork e Zandn = 1,2, .. ..

We will now work with Xo and follow closely the proof of the main result in [22],
omitting details where the proofs are essentially the same.

Lemma 5.7. For eachc > 0, 1 € [0, c] we have
e V% Xo(ty) — m(co)W, a.s.
ask — oo.
Proof. We follow the proof of [22] Lemma 5.10. Firstly truncajeto n° where

c — n(t)a r < noc,
g (t)_{ 0, t > ngc.

Then, forn > no, we have from (5.6), writind(§, for X", m¢ for m" anda;(t) =
e VXE(t — o) —mC(t — o7), that

T X t) —mEEIW] = | Y T ()
i W \I e
+ Z e m (tkyn — 0i) | — m (c0)W
ieftk\ﬁxk.m-
= S1(60) + So(te) - (5-8)

The behaviour of the second tesy(#;) depends purely on the general branching
process and by [22] (5.53) we can prove that for any 0, there is am > ng such
that

limsupSz(f) < We .

k—o00

The first term in (5.8) can be writte$y (t;) = S11(#) S12(tx) where
S11(tx) = e VI Ity nel,

1 (i —
S12(tx) = W Z e v tk)ai (Tk+n)
Ik tr,ncl |,
|€ftk\=¢tk,nc
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It is clear thatS11(1x) < e~ 7% Z¢%) and hence is almost surely bounded by a con-
stant. For the final tern§12(#;) we note that;; are mean 0 random variables and
we can apply the version of the strong law of large numbers proved as Lemma 4.1
in [22]. For this we use boundednesspofiniteness of the total population at fixed
times and exponential growth p#,, \.%,, ..|. Using [22] Proposition 4.3 we have

S1(t) — 0, a.s. ask — oo .

Both parts obtain results which are independent &W/e then use the fact that
Xo = X§ + X;, whereX, satisfies

§(1)(00)
X(/)(t) = n(t)l{t>noc} + Z X(/)(l —0j) .
i=1
Now from this equation, there exists a const@ntsuch that

Z%(1)
lim supe ™ “TOX((r 4 ¢) = lim supe ™7 9 Z nt+c—oy)
11— 00 11— 00 i=1
< limsupe 7"+ z¢ ()M
11— 00

e VCC1W, a.s.

IA

From this we use dominated convergence to show that we can takeco and
remove the truncation to get the result for O

Corollary 5.8. For each fixed:
e Yk Xo(ty.n) — m(0o)W, a.s.
Proof. This follows from the previous Lemma as in [22] Corollary 5.11. O

Lemma 5.9. The proces$Xo(?) : t € R} has Malthusian parameter = «/(« +
1) wherex satisfies the equation
&1y (00)
ECY  pa(s@) ™) =1.
i=1
If the mean reproduction measuras non-lattice, then
lim Xo(t)e 7" = m(co)W, a.s. ,
11— 00

where
2 e Y En(t)dt

o0

Jo~ te~rtv(dr)

If the support of the measurelies in a discrete subgroup &, then, ifT is the
generator of the support, then for large

m(oc0) =

Xo(t) = (G@) +o(1) "' W, a.s.
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wheregG is a positive periodic function with periddl given by

Y e VD ENG 4 jT)

j=—0

JZ tertv(dn)

Proof. The discussion prior to Lemma 5.6 shows that the Malthusian parameter
is y and the expression fot(co) comes from Lemma 5.6. Thus we just need to
demonstrate convergence as in Corollary 5.8. We begin by defining

n°(@) = sup n(s)

|s—t|<e

ne() = inf _n(s) .

As the paths ofj(¢) are bounded and cadlag we see that?) is continuous and,
ase — 0, we have

En“(t) L En(t), Ene(t) 1 En() ,

for almost every. ThusEn“/" (1), En¢/,(t) are continuous for almost everylt
is clear that the processade/», X" will exist and by definition

X" (1) < Xo(t) < X" (1) .
Again using the boundedness of the functipwe have
eV Mmein (o)W < liminf e 7 Xo()
—00

< limsupe™"' Xo(t) < &”</"m"" (c)W .

—>00

Using dominated convergence and the renewal equation we can dedunécfﬁat
m'</n — m(oco) and hence we have the result on letting> co. O

Proof of Theorem 5.8Me can now complete the proof of the theorem by replacing
Xo in the almost sure convergence result given in Lemma 5.9, by the counting
function No(x),

lim e 7" No(e' W) = m(co)W .

11— 00

Finally substituting = log(x/ W) we see thayy = d;/2 and the results of Lem-
ma 5.9 complete the proof. O

By (5.4) we know that the spectral asymptotics for both the Dirichlet and Neu-
mann Laplacians will be the same.

Corollary 5.10. For the random recursive Sierpinski gaskets of the introduction
we have

lim N?G)x~%/? = m(co) WY MHD (0), ge.we .
X—> 00
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Remark 5.11. (1) Itis clear that the only way it is possible to get the lattice case is

if the family of fractals is at most countably infinite. In this case we would need to
find say two affine nested fractals with conductance scale factors which are related
via their logarithms, in that log; / log o> € Q. Even if we could find such a pair,

we would still need to prove that the periodic functi@nvas non-constant. It would

be interesting to find a non-trivial example.

(2) The random variabl& determines the growth rate of the tree describing the
fractal and can thus be interpreted as a measure of the volume of the fractal. In [20]
it was shown that, under some conditions, the Hausdorff measure (with respect to
the exact Hausdorff measure function) of the boundary of a Galton-Watson tree
was proportional tav.

(3) The deterministic case can be recovered if we take our probability distribution
to be a point mass on a particular fractal in the family. As the limiting distribution
will become degenerate we ha¥lé = 1 and the value ofi(co) will be the same

as that for the p.c.f. case discussed in [17].

(4) Using the fact that the trace of the heat kernel is the Laplace transform of the
eigenvalue counting function, as in [3] Section 7, we can apply a Tauberian theorem
to obtain a constant limit result for the quantﬁy pi(x, x)u(dx) as

|im0/ td“/zp,(x, ) (dx) = m(co)Wi=4/2p (1 + ds/2), P—a.s.
t— F

From the results in [11], for the first random recursive fractal mentioned in the
introduction, there are pointwise bounds on the on-diagonal heat kernel, of the
form

cet %2 logt|?" < p,(x,x) < it %/?|logt|f, 0<t <1, VxeG, P—as.

wherecg, c7, B, B’ are constants. The logarithmic terms are believed to be neces-
sary.
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