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The Finite Element Method on the Sierpinski Gasket

Michael Gibbons, Arjun Raj, and Robert S. Strichartz

Abstract. For certain classes of fractal differential equations on the Sierpinski gas-
ket, built using the Kigami Laplacian, we describe how to approximate solutions us-
ing the finite element method based on piecewise harmonic or piecewise biharmonic
splines. We give theoretical error estimates, and compare these with experimental data
obtained using a computer implementation of the method (available at the web site
http://mathlab.cit.cornell.edu/∼gibbons). We also explain some interesting structure
concerning the spectrum of the Laplacian that became apparent from the experimental
data.

1. Introduction

Since fractals are not smooth objects, differential equations in the ordinary sense are not
defined for functions on fractals. Nevertheless, an interesting theory of what might be
called “fractal differential equations” has been developed for a limited class of fractals,
including the familiar Sierpinski gasket (SG), based on the construction of an analog of
the Laplacian. The definition of a Laplacian on SG by Kigami [Ki1], while not the first,
represented a real breakthrough from the point of view of numerical analysis because
it is completely explicit. This method was extended to a class of fractals called “post-
critically finite” in [Ki2]. A complete exposition will soon be available in the book [Ki3],
and an informal survey of the whole field that has developed may be found in [S2].

The definition of a Laplacian on SG as a limit of difference quotients may be described
simply by the formula

� f (x) = lim
m→∞(

3
2 )5

m
∑

y∼m x ( f (y)− f (x)).(1.1)

Here we regard SG as the limit of graphs�m , consisting of vertices Vm defined inductively
by Vm = ⋃3

i=1 Fi Vm−1 starting with V0, the three vertices of a triangle (usually taken to
be equilateral), where Fi are the three contractions with ratio 1

2 having fixed point equal
to one of the vertices. The edge relation x ∼m y of �m is that x and y belong to the
image of the original triangle under an m-fold iteration of the IFS {Fi }. We regard V0 as
the boundary of each of the graphs �m and of SG. Every nonboundary vertex has exactly
four neighbors in Vm , so the sum in (1.1) has four terms. We will refer to such vertices as
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junction points. These form a dense set of points in SG, and we will extend the definition
of � f to all points by continuity. Note that (1.1) defines the Laplacian on SG as a limit
of graph Laplacians. The analogy with the definition of the usual Laplacian on Rn via
difference quotients is obvious. (The appearance of the factor 5m is not so obvious, but
is essential in order to obtain a nontrivial operator.)

Using (1.1), it is easy to set up the analog of the finite difference method to approxi-
mate solutions of various equations involving �. This was done in [DSV]. The goal of
the present paper is to do the same for the finite element method. As a preliminary step,
it is necessary to construct the analog of various spline spaces. This was done in [SU].
Here we will use only the piecewise harmonic spline spaces S(H0, Vm) and the piecewise
biharmonic spline spaces S(H1, Vm), which are the first two of an infinite family con-
structed in [SU]. These are the analogs of piecewise linear and piecewise cubic splines
on an interval. A harmonic function is a solution of� f = 0, and a biharmonic function is
a solution of�2 f = 0. To get the spline spaces we localize these conditions to each cell
Fw(SG) of order m, wherew = (w1, . . . , wm) denotes a word and Fw = Fw1 ◦ · · · ◦ Fwm

is the corresponding iterated contraction, and we impose suitable matching conditions
at the junction points in Vm . For the harmonic splines the only matching condition is
continuity, but for biharmonic splines we also require a matching of normal derivatives
(the precise definition is given in Section 2). This is a natural condition, since it is neces-
sary and sufficient on f to glue together local statements � f = g on each cell Fw(SG)
to obtain a global statement � f = g on SG. It is easy to see that harmonic splines are
uniquely determined by specifying values at vertices in Vm . It is not so obvious, but a
result from [SU], that biharmonic splines are uniquely detrmined by specifying both the
value and the normal derivative at each vertex in Vm . There are corresponding natural
bases for the spline spaces, described in detail in [SU], along with basic formulas to
compute inner products and energies for pairs of basis elements.

The first class of equations we consider is the Dirichlet problem

−�u + qu = f, u|V0 = 0,(1.2)

where q and f are given continuous functions. The finite element approximations will be
projections of the solution onto the spline spaces (with the Dirichlet boundary condition
imposed) in a suitable inner product, but the approximations are obtained by an algorithm
that does not require knowing the solution. This algorithm is based on the equivalent
weak formulation of (1.2), which we now describe. Perhaps the most basic construction
in [Ki1] is the Dirichlet form E(u, v), defined as a limit of Dirichlet forms Em(u, v) on
the graphs �m . For simplicity, we restrict ourselves to the diagonal u = v. Then

Em(u, u) = ( 5
3 )

m
∑
x∼m y

(u(x)− u(y))2,(1.3)

and it can be shown that Em(u, u) is monotone increasing in m (this explains the factor
( 5

3 )
m), so that

E(u, u) = lim
m→∞ Em(u, u)

is defined for all continuous functions, allowing the value +∞. The domain of the
Dirichlet form, denoted dom E , is the set of continuous functions with a finite value for
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E(u, u). It should be noted that points have positive capacity in this theory, as is the case
for an interval but not for manifolds of dimension at least 2. This explains why dom E is
contained in the space of continuous functions. Harmonic functions may be characterized
by the property that Em(u, u) is independent of m, so that harmonic functions minimize
the Dirichlet form among all functions with given boundary values.

The energy may also be computed locally as

E(u, u) =
∑

|w|=m

( 5
3 )

mE(u ◦ Fw, u ◦ Fw).(1.4)

Letµ denote the standard self-similar probability measure on SG, giving equal weight
to all cells of level m:

µ(Fw(SG)) = 3−m for |w| = m.(1.5)

Then� f = g, in the sense of (1.1) (with uniform convergence) for continuous functions
f and g, is equivalent to f ∈ dom E and

E( f, v) = −
∫

gv dµ for all v ∈ dom0 E,(1.6)

the subscript 0 denoting functions vanishing on V0. We say f ∈ dom� in this case. We
define similarly f ∈ domL p � if f ∈ dom E and there exists g ∈ L p such that (1.6)
holds. There are analogous definitions for domains of higher powers of�. The Laplacian
satisfies the scaling identity

�(u ◦ Fw) = ρm(�u) ◦ Fw for |w| = m,(1.7)

where ρ = 1
5 . The factor ρm in (1.7) is the reciprocal of the factor 5m in (1.1), which

is related to the factors ( 5
3 )

m in (1.3) and 3−m in (1.5). The weak formulation of (1.2) is
then

E(u, v)+
∫

quv dµ =
∫

f dµ for all v ∈ dom0 E,(1.8)

where u ∈ dom0 E . The finite element approximations are obtained by restricting (1.8)
to the spline spaces S0(H0, Vm) or S0(H1, Vm) instead of dom0 E (same interpretation
of the subscript 0). By choosing a basis for the spline spaces this becomes a system of
linear equations, and the same conditions on q that guarantee a unique solution to (1.2)
also guarantee a unique solution to the system of linear equations. A full description of
the algorithm is given in Section 2.

In Section 3 we prove theoretical error estimates, both of a priori and of a posteriori
type, based on spline approximation results from [SU]. The estimates are expressed in
terms of powers of ρm , where m is the level of approximation. The heuristic principle
is that each power of the Laplacian should correspond to the same power of ρm , since
the factor 5m occurs in (1.1). The power of ρm that occurs in an estimate will be called
the exponent. In comparing with the usual estimates hα for mesh length h, the exponent
corresponds to 1

2α because the Laplacian corresponds to the second derivative. Most
of our results are for average (L2) and energy (E) error. The energy error controls the
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maximum (L∞) error, but in practice the maximum error seems to be of the same order
of magnitude as the average error. In general, our results show a gain of 1

2 in the exponent
for the average error over the energy error, and a gain of 1 for biharmonic splines over
harmonic splines. In Section 4 we discuss some experimental data that confirms the
predicted error estimates.

In Section 5 we discuss approximate solutions to the Dirichlet eigenvalue problem

−�u + qu = λu, u|V0 = 0.

When q = 0 the exact solutions are known [FS], allowing an easy empirical test of
the accuracy of the method. We also give some theoretical error estimates. Many of the
eigenvalues for the q = 0 problem have high multiplicity, so the addition of a small q will
split the multiple eigenvalues into clusters. The methods of this paper might be valuable
in experimental studies of the nature of these clusters. We present some numerical data
obtained in the case q = 0. These data reveal an interesting structure to the spectrum of
the Laplacian, and we give a proof that this structure continues for the entire spectrum.

In Section 6 we study the heat and wave equations associated with the Laplacian. For
simplicity we take q = 0, omit forcing terms, and impose Dirichlet boundary conditions.
The initial value problem for the heat equation is

∂u(x, t)

∂t
= �x u(x, t),

u(x, 0) = f (x),
u(x, t)|x∈V0 = 0,

(1.9)

and for the wave equation is
∂2u(x, t)

∂t2
= �x u(x, t),

u(x, 0) = f (x),
∂u(x, 0)

∂t
= g(x),

u(x, t)|x∈V0 = 0.

(1.10)

We use the finite element method in the x-variable, and either a finite difference method or
a matrix exponentiation method in the t-variable. A lot is known about the heat equation;
see [HK] for results obtained using probabilistic methods. In [DSV], numerical solutions
to these problems were given using the finite difference method. It was pointed out there
that the wave equation does not enjoy the finite propagation speed property that is usually
expected of wave equations on manifolds. We are able to give a proof of error estimates
for the heat equation, but not for the wave equation. Data obtained from trial runs using
the method for both equations may be found at the web site.

A complete set of programs implementing the algorithms described in this paper
may be found at the web site http://mathlab.cit.cornell.edu/∼gibbons, together with the
numerical data for the tests of the algorithms we performed. This paper is written so that
it can be read independently, but the web site provides additional information.

The algorithms and error estimates presented here are closely related to the standard
finite element method [CL]. The main challenge has been to find the appropriate analogs
of the basic function spaces and their approximation properties (mostly taken from [SU]),
and then to fashion arguments that use only the limited information at our disposal. The
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fundamental idea remains the same: the finite element approximation is an orthogonal
projection into a spline space, and so minimizes an appropriate norm while, on the other
hand, we know how to obtain certain approximation rates in the norm using interpolation
approximation. We present all the details of the arguments in Section 3, while we only
give a sketch of the argument in Section 6 because it so closely follows the standard
theory. The estimates in Section 5 are a bit ad hoc and perhaps not optimal, so we have
kept the dicussion informal.

At present we only have good information about the analogs of L2 Sobolev spaces
of integer order, although we have to treat the even and odd integers separately, using
energy for one derivative and the Laplacian for two derivatives. As more is learned about
other function spaces it may be possible to obtain more flexible finite element estimates.
One of the main obstacles we face is that multiplication by functions is not well behaved
in our function spaces (beyond the analog of one derivative in L2) [BST]. This forces
the restriction in Theorem 3.7(b) that q be constant. Our numerical results in Section 4
suggest that this is not the end of the story, however. In particular, squares of harmonic
functions do not behave substantially worse than harmonic functions. At present we have
no explanation for this.

In this paper we have restricted our attention to spline spaces using uniform grids. An
obvious direction for further research is to allow grids of variable size. Instead of the
decomposition

SG =
⋃

|w|=m

Fw(SG),(1.11)

one should allow

SG =
⋃
w∈A

Fw(SG),(1.12)

where A is a finite set of words chosen so that the cells on the right side of (1.12) overlap
only at single points. It is easy to see that the condition onA is that every sufficiently long
word has a unique prefix in A. One advantage of using such irregular decompositions
is that we could obtain good approximations to delta functions within the spline space,
without excessively driving up the cardinality of A, simply by taking a very refined grid
in a small neighborhood of the point where the delta function is to be supported.

We have also dealt exclusively with SG, although the methods of [SU] can be applied
to a wider class of fractals. It would certainly be worthwhile to work out the analogous
algorithms on some of these other spaces. There does not seem to be any obstacle in
principle to doing this, but the details may be technically demanding. One motivation for
doing this is that it would provide a method for experimentally studying the spectrum of
the Laplacians on other fractals. The exact methods of [FS] can only be used for a very
restricted class of fractals [Sh2].

2. The Basic Algorithm

In this section we describe the finite element algorithm for approximating the solution
of the Dirichlet problem

−�u + qu = f, u|V0 = 0,(2.1)
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on SG, for given continuous functions q and f , using harmonic or biharmonic splines
on a uniform grid. Recall that the Laplacian may be defined either using the pointwise
formula

�u(x) = lim
m→∞(

3
2 )5

m

(∑
y∼m x

(u(y)− u(x))

)
(2.2)

for x an interior vertex point, with uniform convergence, or by the weak formulation

− E(u, v) =
∫
(�u)v dµ(2.3)

for all v ∈ dom E vanishing on V0, where u ∈ dom E and �u is continuous. The
pointwise formula (2.2) leads to the analog of the finite difference method, which was
used in [DSV].

Existence and uniqueness for (2.1) holds under the assumption

q(x) ≥ −λ0 + ε(2.4)

everywhere for some ε > 0, where λ0 ≈ 16 is the lowest eigenvalue of −� (see Section
5). While (2.4) is not a necessary condition for existence and uniqueness, the finite
element method is likely to fail or perform poorly without it. The choice q(x) ≡ −λ0 is
an example where existence and uniqueness fails. With (2.4), the inner product

〈u, v〉q = E(u, v)+
∫

quv dµ(2.5)

dominates both the energy and the L2 inner products on the space dom0 E of functions
in dom E vanishing on V0 (see Lemma 3.2).

The finite element method is based on the following weak formulation of (2.1) from
[Ki1]–[Ki3]:

Theorem 2.1. A continuous function u satisfies (2.1) if and only if u vanishes on V0

and

〈u, v〉q =
∫

fv dµ(2.6)

for all v ∈ dom0 E .

For any finite-dimensional subspace W ⊆ dom0 E , define PW u ∈ W as the solution
to (2.6) for all v ∈ W . Note that PW u is exactly the projection onto W of the solution to
(2.1) with respect to the inner product (2.5). Thus

〈u − PW u, v〉q = 0(2.7)

for all v ∈ W , and

〈u − PW u, u − PW u〉q ≤ 〈u − v, u − v〉q(2.8)

for all v ∈ W . Since we usually do not know the true solution u, estimate (2.8) gives us
a way of controlling the error in the approximation PW u. Note that (2.6) is just a system
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of linear equations that can be solved using linear algebra, provided we have an explicit
basis for W and we can compute or approximate all the terms in (2.6) for basis functions.

In this paper we consider only two choices for the space W , either S0(H0, Vm) or
S0(H1, Vm). S(H0, Vm) is the space of piecewise harmonic continuous functions with
nodes at Vm , while S(H1, Vm) is the space of piecewise biharmonic functions with nodes
at Vm satisfying two consistency conditions at junction points. The precise definition will
be given below. The subscript 0 in the spline spaces indicates that we consider only func-
tions vanishing at V0. We refer to these spaces informally as harmonic and biharmonic
splines, and we denote the projection operator simply Pm . Harmonic splines belong to
dom0 E but not to dom�. Biharmonic splines are not typically in dom� either, but they
do belong to domL∞ � and the Laplacian may be computed piecewise (it usually has
jump discontinuities at the nodes). The additional “smoothness” of biharmonic splines
comes from the matching of normal derivatives.

The normal derivatives ∂n f (x) for x ∈ V0 are defined by

∂n f (x) = lim
m→∞(

5
3 )

m
∑
y∼m x

( f (x)− f (y)),(2.9)

if the limit exists. Note that there are only two terms in the sum. In [Ki1] it is shown that the
normal derivatives exist for f ∈ dom�, and the following version of the Gauss–Green
formula holds for u and v in dom�:∫

SG
(u�v − v�u) dµ =

∑
V0

(u∂nv − v∂nu).(2.10)

We may localize the definition to points in Vm . Each nonboundary point x in Vm can be
written x = Fwvj = Fw′vj ′ for two distinct choices of words with |w| = |w′| = m, and
vj and vj ′ in V0. For each of these there is a normal derivative; for the first

∂nu(x) = ( 5
3 )

m∂n(u ◦ Fw)(vj ) = lim
k→∞

( 5
3 )

k
∑
y ∼k x

y ∈Fw(SG)

(u(x)− u(y)).(2.11)

It is easy to see that for u ∈ dom�, the sum of the two normal derivatives at a junction
point must vanish. Moreover, if f and g are continuous functions satisfying � f = g
on each cell Fw(SG) with |w| = m, then � f = g on SG if and only if the sum of the
normal derivatives of f vanishes at every nonboundary point in Vm . This explains the
importance of imposing the matching condition in the definition of biharmonic splines.
There is a more elaborate theory of local derivatives given in [S3], but we only need the
normal derivatives here.

Definition 2.2.

(a) S(H0, Vm) is defined to be the space of all continuous functions f such that
�( f ◦ Fw) = 0 for all words w with |w| = m.

(b) S(H1, Vm) is defined to be the space of all continuous functions f such that
�2( f ◦ Fw) = 0 for all wordsw with |w| = m, satisfying the matching condition
for normal derivatives ∂n(u ◦ Fw)(vj ) = −∂n(u ◦ Fw′)(vj ′) at nonboundary points
x = Fwvj = Fw′vj ′ with |w| = |w′| = m.
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(c) S0(Hj , vm) is the subspace of S(Hj , vm) of functions vanishing on the bound-
ary V0.

It is easy to describe a basis for S0(H0, Vm). This space has dimension (3m+1 − 3)/2.
For each vertex y ∈ Vm\V0 we let ϕy denote the piecewise harmonic function that takes
on the value 1 at y and 0 at all other vertices in Vm (this function is denoted ϕ(0)0y in [SU]).
The space S0(H1, Vm) has dimension 3m+1, and has a basis consisting of two types of
functions, ϕ̃y and ψ̃y . For y ∈ Vm\V0, we let ϕ̃y be the biharmonic spline that has normal
derivatives vanishing at all vertices in Vm , and takes the same values as ϕy at vertices.
For any y ∈ Vm , the biharmonic spline ψ̃y vanishes at all vertices in Vm and has normal
derivatives vanishing at every vertex except y. We make the normal derivative of ψ̃y at
y equal 1, but this requires a somewhat arbitrary sign convention at interior vertices as
there are actually two normal derivatives on adjacent cells equal to ±1, and we need to
specify which gets the plus sign. (See the web page for the specifics of the choice we
used.) The values of all inner products and energies among basis elements are computed
explicitly in [SU].

Any function in S0(H0, Vm) has a unique representation∑
y∈Vm\V0

cyϕy(2.12)

where the coefficients cy are just the values of the function at the points y. The analogous
representation for S0(H1, Vm) splines is∑

y∈Vm\V0

c̃y ϕ̃y +
∑
y∈Vm

d̃yψ̃y,(2.13)

with a similar interpretation for the coefficients. In order to discuss both cases simulta-
neously we will write ∑

cjϕj(2.14)

to stand for either (2.12) or (2.13). We take (2.14) as the form for Pmu, with the coefficients
determined by substituting in (2.1), multiplying by ϕk , and integrating, to obtain

−
∑

j

cj

∫
(�ϕj )ϕk dµ+

∑
j

cj

∫
qϕjϕk dµ =

∫
f ϕk dµ.

Since −∫ (�ϕj )ϕk dµ = E(ϕj , ϕk) we obtain the matrix equation∑
j

Ek j cj +
∑

j

Qkj cj = Fk(2.15)

where 
Ekj = E(ϕj , ϕk),

Qkj = ∫
qϕjϕk dµ,

Fk = ∫
f ϕk dµ.

(2.16)
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The energy matrix {Ekj } is computed theoretically, while the other terms must be approx-
imated using numerical integration, except when q is constant, in which case Qkj = qGkj

where

Gkj =
∫
ϕkϕj dµ(2.17)

is the known Gram matrix of inner products for the basis. Under the hypothesis (2.4) the
matrix E + Q is invertible, so

c = (E + Q)−1 F(2.18)

gives the coefficients of Pmu.

3. Error Estimates

First we derive theoretical error estimates, which we may then compare with actual data.
We will need the following basic interpolation result, which is a special case of Theorem
4.8 of [SU]. We will express all estimates in terms of ραm , where ρ = 1

5 and α will
be called the exponent. Many of our estimates are valid for the larger class of fractals
considered in [SU], with different values of ρ.

Theorem 3.1.

(a) For any u ∈ domL2 � vanishing on V0, let um ∈ S0(H0, Vm) be the interpolating
spline taking the same values as u at all vertices in Vm . Then

E(u − um, u − um)
1/2 ≤ c0‖�u‖2ρ

(1/2)m .(3.1)

(b) For any u ∈ domL2 �2 vanishing on V0, let ũm ∈ S0(H1, Vm) be the interplating
spline taking the same values and normal derivatives as u at all vertices of Vm .
Then

E(u − ũm, u − ũm)
1/2 ≤ c1‖�2u‖2ρ

(3/2)m .(3.2)

See [SU] for the proof.

Remark. There are also corresponding estimates for the error in the L2-norm, namely

‖u − um‖2 ≤ c′
0‖�u‖2ρ

m in part (a),

and

‖u − ũm‖2 ≤ c′
1‖�2u‖2ρ

2m in part (b),

with a gain in exponent of 1/2. These are not explicitly stated in [SU], but follow by the
same argument as given in Corollary 4.8 there (see also Theorem 3.4 below).

Next we prove the basic coercivity estimate for the inner product (2.5). Note that we
already know

〈u, u〉q ≤ (1 + c‖q‖∞)E(u, u)(3.3)

(see (4.17) in [SU]).
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Lemma 3.2. Suppose q is continuous and satisfies (2.4). Then for any u ∈ dom0 E ,
and ε in (2.4):

‖u‖2
2 ≤ ε−1〈u, u〉q(3.4)

and

E(u, u) ≤ (1 + ε−1‖q‖∞)〈u, u〉q .(3.5)

Proof. By the definition of λ0 we have E(u, u) ≥ λ0‖u‖2
2, hence

〈u, u〉q ≥
∫
(λ0 + q)|u|2 dµ ≥ ε‖u‖2

2

by (2.4), proving (3.4). But then

|E(u, u)| ≤ 〈u, u〉q +
∫

|qu2| dµ ≤ (1 + ε−1‖q‖∞)〈u, u〉q

using (3.4).

We will be concerned with three types of error in a priori estimates. The L2 error (or
average error)

‖u − Pmu‖2,(3.6)

the L∞ error (or maximum error)

‖u − Pmu‖∞,(3.7)

and the energy error

E(u − Pmu, u − Pmu)1/2.(3.8)

Clearly these are of increasing size. We will not be able to give any useful theoretical
predictions for the maximum error. In practice, it seems to involve the same exponent
as the average error (with perhaps a logarithmic factor, not easily observed from data).
Our next goal is a basic comparison result for average and energy errors. In essence,
the exponent always increases by 1/2 for the average error as compared with the energy
error, regardless of most details. This is very useful, since the energy error is easier to
handle theoretically, and we get a boost in accuracy by considering average error.

Lemma 3.3. Suppose f ∈ L2 and q is continuous and satisfies (2.4). Then if u ∈
domL2(�) satisfies (2.1) we have

‖�u‖2 ≤ c‖ f ‖2.(3.9)

Proof. The weak formulation of (2.1) (with v = u) yields

E(u, u)+
∫

qu2 dµ =
∫

f u dµ.(3.10)

Apply Cauchy–Schwartz to the right side of (3.10) and (3.4) to the left side, to obtain
ε‖u‖2

2 ≤ ‖ f ‖2‖u‖2, hence ‖u‖2 ≤ ε−1‖ f ‖2. Then from (2.1):

‖�u‖2 ≤ ‖ f ‖2 + ‖qu‖2 ≤ (1 + ε−1‖q‖∞)‖ f ‖2.
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Theorem 3.4. Suppose q and f are continuous and q satisfies (2.4). Then

‖u − Pmu‖2 ≤ cρ(1/2)mE(u − Pmu, u − Pmu)1/2(3.11)

for either type of spline.

Proof. We have

‖u − Pmu‖2 = sup

{∫
(u − Pmu)v dµ : ‖v‖2 ≤ 1

}
,(3.12)

and we may even require that v be continuous. Let w be the solution of

−�w + qw = v, w|V0 = 0.(3.13)

Note that ‖�w‖ ≤ c by Lemma 3.3. Now apply Theorem 3.1(a) to w, to obtain wm ∈
S0(H0, Vm) with

E(w − wm, w − wm)
1/2 ≤ c‖�w‖2ρ

(1/2)m ≤ c′ρ(1/2)m .(3.14)

Note that ∫
(u − Pmu)v dµ = 〈u − Pmu, w〉q

by (3.13), and

〈u − Pmu, w〉q = 〈u − Pmu, w − wm〉q

by (2.7) (since S0(H0, Vm) ⊆ S0(H1, Vm)). By the Cauchy–Schwartz inequality for the
inner product (2.5) we have∣∣∣∣∫ (u − Pmu)v dµ

∣∣∣∣ ≤ 〈u − Pmu, u − Pmu〉1/2
q 〈w − wm, w − wm〉1/2

q .

By (3.3) we can replace the inner products by energies, so∣∣∣∣∫ (u − Pmu)v dµ

∣∣∣∣ ≤ cρ(1/2)mE(u − Pmu, u − Pmu)1/2

by (3.14). Together with (3.12), this proves (3.11).

Lemma 3.5. Suppose u ∈ dom� and �u ∈ dom E , and suppose u and its normal
derivatives vanish on V0. Then

E(u, u) ≤ cE(�u,�u).(3.15)

Proof. The vanishing of the normal derivative on V0 implies

−E(u,�u) =
∫
(�u)2 dµ,
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while the vanishing of u on V0 implies

E(u, u) ≤ c‖�u‖2
2

by Lemma 4.6 of [SU]. Combining the two and using the Cauchy–Schwartz inequality
for E yields

E(u, u) ≤ c|E(u,�u)| ≤ cE(u, u)1/2E(�u,�u)1/2

which implies (3.15). (Note that although E fails to be an inner product because of the
one-dimensional null space of constants, the usual derivation of the Cauchy–Schwartz
inequality is still valid, since the inequality is trivially true if one of the functions is
constant.)

Corollary 3.6. Let u ∈ dom� and �u ∈ dom E , and let ũm be the interpolating
biharmonic spline, as in Theorem 3.1(b). Then

E(u − ũm, u − ũm)
1/2 ≤ cE(�u,�u)1/2ρm .(3.16)

Proof. For each wordw of length m, (u − ũm)◦ Fw satisfies the hypotheses of Lemma
3.5. Note that since (�ũm) ◦ Fw is harmonic and (u − ũm) ◦ Fw vanishes on V0, we have

E((u − ũm) ◦ Fw, (�ũm) ◦ Fw) = 0.(3.17)

Thus, by the proof of Lemma 3.5:

E((u − ũm) ◦ Fw, (u − ũm) ◦ Fw) ≤ c|E((u − ũm) ◦ Fw,�((u − ũm) ◦ Fw))|
= c|E((u − ũm) ◦ Fw,�(u ◦ Fw))|

in view of (3.17). Continuing the argument from the lemma we obtain

E((u − ũm) ◦ Fw, (u − ũm) ◦ Fw) ≤ cE(�(u ◦ Fw),�(u ◦ Fw))

= cρ2mE((�u) ◦ Fw, (�u) ◦ Fw),

using (1.7). Finally, we sum over all words w of length m and take the square root,
using (1.4).

Theorem 3.7. Assume that q and f are continuous, that q satisfies (2.4), and that u is
the solution to (2.1).

(a) Then the harmonic spline approximations Pmu satisfy a priori error estimates
with exponent 1/2 for energy error and 1 for average error:

E(u − Pmu, u − Pmu)1/2 ≤ cρ(1/2)m,(3.18)

and

‖u − Pmu‖2 ≤ cρm .(3.19)
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(b) Assume q is constant and f ∈ dom�. Then the biharmonic spline approximations
have exponent 3/2 for energy error and 2 for average error:

E(u − Pmu, u − Pmu)1/2 ≤ cρ(3/2)m,(3.20)

and

‖u − Pmu‖2 ≤ cρ2m .(3.21)

(c) Assume q and f are in dom E . Then the biharmonic spline approximations have
exponent 1 for energy error and 3/2 for average error:

E(u − Pmu, u − Pmu)1/2 ≤ cρm,(3.22)

and

‖u − Pmu‖2 ≤ cρ(3/2)m .(3.23)

Proof. In view of Theorem 3.4 it suffices to establish the energy error estimates. For
part (a), since u ∈ dom�, we apply Theorem 3.1(a) to obtain (3.1) for the interpolating
harmonic spline um . By (3.3) and (3.5) the energy and the inner product (2.5) are equiv-
alent, and by (2.8) the spline Pmu minimizes the distance to u in the inner product (2.5).
Thus (3.1) implies (3.18).

Under the assumptions in (b), �u = qu − f ∈ dom� so u ∈ dom�2. We can
then derive (3.20) from (3.2) in Theorem 3.1(b) as before. Similarly, under the assump-
tions in (c), �u ∈ dom E (this uses the fact that dom E is an algebra under pointwise
multiplication). In this case, we use (3.16) from Corollary 3.6 to obtain (3.22).

Remark. The constants in (3.18) and (3.19) may be taken to be multiples of ‖�u‖2.
The constants in (3.20) and (3.21) may be taken to be multiples of ‖�2u‖2, and in (3.22)
and (3.23) multiples of E(�u,�u)1/2. Moreover, the hypotheses on f may be reduced,
so that f ∈ L2 in (a) and f ∈ domL2 � in (b) will suffice. The proofs are essentially the
same.

Next we consider a posteriori estimates. Here we see how close Pmu comes to satis-
fying (2.1), using

‖ f − (−�+ q)Pmu‖2(3.24)

as a measurement. Note that (3.24) would vanish if Pmu were the exact solution. For sim-
plicity, we restrict ourselves to the case of biharmonic splines, where Pmu ∈ domL∞ � ⊆
domL2 �, and�Pmu may be computed separately on each cell of level m. Note that this
is, in general, a discontinuous function since the harmonic functions defining �Pmu on
the small cells do not satisfy any matching conditions on the vertices of Vm . This explains
why the L2-norm is an appropriate choice in (3.24). On the other hand, for harmonic
splines, Pmu will not even belong to domL2 �, so an appropriate a posteriori errror would
have to take into account jumps in the normal derivatives at vertices of Vm .
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Lemma 3.8. Let

δm(u) = inf{‖u − v‖2 : v ∈ S0(H1, Vm)}(3.25)

denote the L2 error of the best approximation of u by biharmonic splines. Then

E(u − Pmu, u − Pmu)1/2 ≤ cδm(u)
1/2‖ f − (−�+ q)Pmu‖1/2

2 .(3.26)

Proof. Note that

f − (−�+ q)Pmu = (−�+ q)(u − Pmu).

On the other hand, by (2.7) we have

〈u − Pmu, u − Pmu〉q = 〈u − Pmu, u − v〉q

for any v ∈ S0(H1, Vm), hence

〈u−Pmu, u−Pmu〉q =
∫
(u−v)(−�+q)(u−Pmu)dµ ≤ ‖u−v‖2‖ f −(−�+q)Pmu‖2.

Using (3.5), choosing v to attain the infimum of (3.25), and taking the square root,
yields (3.26).

Theorem 3.9. Suppose q and f are continuous and q satisfies (2.4). Then

E(u − Pmu, u − Pmu)1/2 ≤ cρ(1/2)m‖ f − (−�+ q)Pmu‖2.(3.27)

In other words, the exponent for the energy error exceeds by 1/2 the exponent for the a
posteriori error.

Proof. By taking v = Pmu we obtain δm(u) ≤ ‖u − Pmu‖2. Using (3.11) of Theorem
3.4 with this in (3.26) yields

E(u − Pmu, u − Pmu) ≤ cρ(1/2)mE(u − Pmu, u − Pmu)1/2‖ f − (−�+ q)Pmu‖2

which yields (3.27).

Unlike the a priori errors (3.6), (3.7), and (3.8), the a posteriori error (3.24) may be
computed without knowing the exact solution. Theorem 3.9 shows that the energy error
(hence the average error) is controlled by the a posteriori error. Also, if, for any reason,
the a posteriori error is smaller than expected, then the same is true for the energy and
average errors.

4. Error Testing

To test our implementation of the finite element method we first used problems with a
known answer, by choosing u and q, computing f , and then running the method with the



The Finite Element Method on the Sierpinski Gasket OF15

Table 4.1. The exponents for the maximum (EMax), average (EAve), and energy
(EEn) error, as estimated by comparison with the known solution for three different
triharmonic functions (T1, T2, T3) and one quad-harmonic function (Q). The har-
monic splines used data from levels 2, 3, 4, 5, while the biharmonic splines used data
from levels 1, 2, 3, 4.

Harmonic splines Biharmonic splines

Function EMax EAve EEn EMax EAve EEn

T1 0.9965 0.9991 0.5074 1.9132 1.9487 1.4725
T2 0.9970 0.9999 0.5073 1.8899 1.9396 1.5142
T3 0.9938 0.9984 0.5050 1.7596 1.8896 1.4835
Q 0.9959 0.9991 0.5075 1.9562 1.9991 1.5369

q and f input. For u we chose functions for which we could compute �u theoretically
rather than numerically. If u is chosen to be harmonic, then both harmonic and biharmonic
splines should give the exact answer for any m. Similarly, for biharmonic splines, if u
is chosen to be biharmonic. We verified that this was the case. The first interesting test
was to choose u to be triharmonic, so that �u is a known biharmonic function, but
the solution is outside the spline spaces so the errors must be nonzero. We found the
method performed as expected, with the biharmonic splines producing high accuracy
with modest values of m. We computed the average, energy, and maximum errors for
harmonic (2 ≤ m ≤ 5) and biharmonic (2 ≤ m ≤ 4) splines, found the slope of the least
mean square line fitting the log error data, and divided by log ρ to obtain experimental
predictions of the exponents for the three types of error and each of the two spline types.
Since we only were able to use modest values for m, we could not expect this method
to be highly accurate. Also, we expect that transient and random effects will be more
significant for the maximum error than for the other errors which involve averages. Some
of the results are reported in Table 4.1. The average and energy error exponents are in
close agreement with the values predicted in Section 3, and the maximum error appears
to have the same exponent as the average error.

Next we analyzed the same approximate solutions by computing the errors in the
differences Pm+1u − Pmu of successive approximations. Since this does not involve the
solution itself, it is a test that can be applied in examples where the exact solution is not
known. We make the assumption that if the error of Pmu−u follows an exponential decay
law proportional to ρα , then the same should be true of the error of Pm+1u − Pmu with
the same exponent but with a different proportionality constant. Note that the estimates

‖Pmu − u‖ ≤ c1ρ
αm for all m,(4.1)

and

‖Pm+1u − Pmu‖ ≤ c2ρ
αm for all m,(4.2)

are equivalent, for any norm. So, in the long run, we should expect the same exponents to
be predicted. What is not clear is that the same will be true using only the data from small
values of m. In Table 4.2 we show the predictions for error exponents using successive
differences on the same data as was used for Table 4.1. Note that the number of data points
for fitting straight lines is reduced by one, and this amounts to a drastic decrease (for
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Table 4.2. The error exponents for the same functions as in Table 4.1 computed from the same
data, but this time using differences from level to level rather than comparison with the exact
solution. This table also gives the exponents for the a posteriori error (EAP).

Harmonic splines Biharmonic splines

Function EMax EAve EEn EMax EAve EEn EAP

T1 0.9947 0.9996 0.5047 1.9721 1.9838 1.4928 0.9997
T2 0.9938 0.9996 0.4990 1.9651 1.9832 1.4924 0.9997
T3 0.9882 0.9994 0.4988 1.9550 1.9678 1.4825 1.0010
Q 0.9937 0.9996 0.4990 1.9755 1.9844 1.4932 0.9996

biharmonic splines we have just two data points). Nevertheless, the predicted exponents
do not change very much.

The next set of tests involved systematically varying the nature of the inputs q and f ,
without knowing the solution in advance. Thus we were limited to measuring the errors
between successive approximations. We wanted a range of “smoothness” for the inputs,
and we chose three levels, and representative functions for each level. For the “smooth”
level, functions in dom�, we chose harmonic functions. Although harmonic functions
are actually smoother, belonging to the domain of any power of �, this additional
smoothness is not predicted to yield any improvement at the level of biharmonic or
harmonic splines, and no improvement was, in fact, noted. It would, in fact, be quite
tricky to produce functions in dom�which fail to be in dom�2 except at isolated points,
so we did not attempt to test this distinction. For the “semi-rough” level, functions in
dom E but not dom�, we chose the square of a harmonic function. It was shown in
[BST] that such a function fails to have a Laplacian at every vertex point, but it is easy to
see that it belongs to dom E . For the “rough” level, continuous functions not in dom E ,
we chose the coordinate variable x for the standard embedding of SG in the plane. It is
easy to see that the energies Em(x, x) grow on the order of ( 5

4 )
m , and the failure of x

to belong to dom E is a global property of the function. In addition to these smoothness
levels, we also considered constant q as a separate choice.

In Table 4.3 we show the estimated error exponents for ten different tests, for different

Table 4.3. Estimates for the error exponents for different choices of f and q, using the same
method as in Table 4.2. The functions used are 1 (the constant), h (a harmonic function), h2, and x
(the coordinate function).

Harmonic splines Biharmonic splines

f q EMax EAve EEn EMax EAve EEn EAP

h 1 0.9392 0.9987 0.4984 1.8671 1.9561 1.4708 0.8901
x h 0.9381 0.9913 0.4917 1.4253 1.4270 0.9325 0.4147
h2 h 0.8790 0.9930 0.4930 1.6443 1.8751 1.3969 0.9208
h h 0.9266 0.9992 0.4983 1.6470 1.8630 1.3963 0.9383
x h2 0.9383 0.9917 0.4918 1.4190 1.4230 0.9292 0.4133
h2 h2 0.8488 0.9912 0.4913 1.5608 1.8088 1.3361 0.8887
h h2 0.8870 0.9991 0.4978 1.5318 1.7726 1.3074 0.8748
x x 0.9420 0.9908 0.4917 1.4324 1.4288 0.9339 0.4149
h2 x 0.8932 0.9936 0.4939 1.6425 1.8760 1.3943 0.9008
h x 0.9457 0.9984 0.4984 1.4242 1.4752 0.9771 0.4356
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types of q and f . The results are in rough agreement with the predictions. The use of the
square of a harmonic function in place of a harmonic function does not seem to have as
negative an effect on the performance as anticipated. There may be an explanation for
this, based on some results in [T2], but this remains to be seen.

5. Eigenfunctions

We may also use the finite element method to approximate solutions of the Dirichlet
eigenfunction equation

−�u + qu = λu, u|V0 = 0.(5.1)

When q = 0, the exact spectrum and eigenvalue multiplicities were determined in
[FS] (see also [T1]), and a finite difference-type method for the exact computation of
eigenfunctions was given in [DSV]. This presents a good opportunity to test the method,
but the actual results are of less interest. However, there are many fractals with great
symmetry for which the spectral decimation method of [FS] does not work [Sh2], yet
the finite element method offers a viable option for future investigation. And, of course,
once a nonconstant potential q is involved, the finite element is at present the only option.

To approximate the solutions of (5.1), using either spline space, we substitute the
representation (2.11) into (5.1), multiply by ϕk , and integrate. Instead of (2.12) we
obtain ∑

j

Ek j cj +
∑

j

Qkj cj = λ
∑

j

Gkj cj ,(5.2)

so the coefficients are just the eigenvectors of the matrix G−1(E + Q), and the ap-
proximate eigenvalues of (5.1) are the eigenvalues of this matrix. Since this matrix is
conjugate to G−1/2(E + Q)G−1/2, which is self-adjoint and positive definite, the matrix
G−1(E + Q) has a complete set of eigenvectors with positive eigenvalues. In fact, the
assumption (2.4) means ∫

(−�u + qu)u dµ ≥ ε‖u‖2
2

for any u, because λ0 is the bottom of the spectrum of −�. In particular, for u of the form
(2.11) this becomes 〈Ec + Qc, c〉 ≥ ε〈Gc, c〉, so ε is a lower bound for the spectrum
of G−1(E + Q). In fact, the min–max characterization of eigenvalues ((5.12) and (5.13)
below) shows that the approximating eigenvalues are always greater than the true ones,
and decrease as m increases.

Let us write {̃uj } and {̃λj } for an orthonormal basis of eigenfunctions with correspond-
ing eigenvalues, arranged in increasing order (with repetitions in the case of multiplicity)
in the spline space for the approximate problem (5.2). Given an honest solution to the
true problem (5.1), we would like to be able to say that it is close to one of the approxi-
mate solutions on the list (or a linear combination in the case of multiplicity). In order
to ensure this we must take m large enough so that u can be well approximated in the
spline space. In addition, we need to know that the gaps between distinct approximate
eigenvalues are not too small.
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Now by Theorem 4.8 and Corollary 4.9 of [SU] we can find a spline ũ approximating
u so that 

E(u − ũ, u − ũ)1/2 ≤ cλ2ρ(3/2)m,

‖u − ũ‖2 ≤ cλ2ρ2m, and hence

〈u − ũ, u − ũ〉1/2
q ≤ cλ2ρ(3/2)m,

(5.3)

for biharmonic splines (for harmonic splines, the rates areλρ(1/2)m andλρm , respectively).
Let

ũ =
∑

bj ũ j(5.4)

be the expression of ũ in terms of the orthonormal basis of spline eigenfunctions. Then
〈̃u, ũk〉q = λ̃kbk while

〈u, ũk〉q = λ

∫
uũk dµ = λ

∫
ũũk dµ+λ

∫
(u − ũ)̃uk dµ = λbk +λ

∫
(u − ũ)̃uk dµ.

Thus

|̃λk −λ||bk | ≤ |〈u − ũ, ũk〉q |+λ
∣∣∣∣∫ (u − ũ)̃uk dµ

∣∣∣∣ ≤ c̃λ1/2
k λ2ρ(3/2)m + cλ3ρ2m(5.5)

by (5.3). Let λ̃j be chosen to be the closest value to λ, and let γ be the smallest value
of |̃λk − λ̃j | when λ̃k �= λ̃j (because of the possibility of multiplicity there may be
more than one eigenvalue equal to λ̃j ). Provided that γ is not too small, the estimate
(5.5) for λ̃k �= λ̃j will tell us that the coefficients bk are small, so ũ is close to a spline
eigenfunction. But then (5.5) for λ̃k = λ̃j will tell us that λ is close to λ̃j .

Specifically, let

ṽ =
∑
λ̃k=λ̃j

bk ũk(5.6)

so that ṽ is a spline eigenfunction with eigenvalue λ̃j . Then

‖ũ − ṽ‖2 =
∑
λ̃k �=λ̃j

|bk |2
1/2

≤ cλ2ρ(3/2)m

∑
λ̃k �=λ̃j

λ̃k

|̃λk − λ|2

1/2

(5.7)

+cλ3ρ2m

∑
λ̃j �=λ̃j

|̃λk − λ|−2

1/2

by (5.5). We know that for q = 0 the true eigenvalues satisfy a Weyl asymptotic law

λk ≈ k2/α for α = 2 log 3

log 5
≈ 1.3652124,(5.8)

called the spectral dimension [FS], [KL]. Thus it is plausible to assume that the sums on
the right side of (5.7) remain uniformly bounded as m increases, and can be dominated
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by the largest terms, which occur when |̃λk − λ| ≈ γ . Then (5.3) and (5.7) would yield
an estimate

‖u − ṽ‖2 ≤ cγ−1(λ5/2ρ(3/2)m + λ3ρ2m).(5.9)

Assuming that u is normalized by ‖u‖2 = 1 and m is sufficiently large, we can arrange
to have |bj | ≥ 1

2 (if the multiplicity of λ̃j is greater than one this may require choosing
the eigenfunction ũ j appropriately). Then (5.5) for k = j yields

|̃λj − λ| ≤ c(λ5/2ρ(3/2)m + λ3ρ2m).(5.10)

In other words, if we fix m and fix an acceptable error ε, this determines a value λ(m, ε)
such that for every true eigenvalue λ satisfying λ ≤ λ(m, ε) there exists an approximate
eigenvalue λ̃j satisfying |λ− λ̃j | ≤ ε, where λ(m, ε) is determined by

c(λ(m, ε)5/2ρ(3/2)m + λ(m, ε)3ρ2m) = ε(5.11)

(the constant c as in (5.10)). Moreover, if λ has multiplicityµ greater than one, there will
be at least µ distinct corresponding approximate eigenvalues. We cannot assert a priori
that the multiplicity of the approximate eigenvalues is the same as the multiplicity of λ
because the error tolerance ε could result in splitting multiplicities, but our experimental
data indicates that such splitting never occurs.

Conversely, we can assert that every approximate eigenvalue λ̃j satisfying |̃λj | ≤
λ(m, ε) is paired with a true eigenvalue, which will be labeled λj in increasing order.
In other words, the part of the approximate spectrum below λ(m, ε) matches the part of
the true spectrum below λ(m, ε) to within the error tolerance ε. To see this we recall the
min–max characterization

λj = min{max{〈u, u〉q : u ∈ L j , ‖u‖2 = 1} : dim L j = j, L j ⊆ dom E0}(5.12)

for the true eigenvalues, and the corresponding characterization

λ̃j = min{max{〈u, u〉q : u ∈ L j , ‖u‖2 = 1} : dim L j = j, L j ⊆ S0(H1, Vm)}(5.13)

for the approximate eigenvalues. Thus λ1 ≤ λ̃1 so λ̃1 is closest to λ1 and will be paired
with it. Since λ2 ≤ λ̃2, the closest approximate eigenvalue to λ2 must be either λ̃1 or
λ̃2. However, if it is λ̃1, then λ2 must also be close to λ̃2 because u2 cannot be close to
ũ1 (if the spectral separation γ is not too small, this will imply that λ̃1 = λ̃2). Then we
can pair λ2 with λ̃2 and continue in the same way for the portion of the spectrum below
λ(m, ε).

If we fix ε and vary m, then the cutoff value λ(m, ε) will grow on the order of 50.6m .
This means, using the estimate (5.8), that the number of acceptable approximate eigen-
values will be on the order of 5(0.3α)m ≈ (1.933182)m , as compared with the number
3m of approximate eigenvalues. Although this is asymptotically a negligible proportion,
it is not feasible to use large values of m in actual computations. Moreover, we might
be content if the size of the error is small relative to λ. This would mean demanding
that the right side of (5.10) be bounded by ελ rather than ε. This would put the cutoff
value on the order of 5m and yield on the order of 5(α/2)m = 3m acceptable approximate
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Table 5.1. Estimates of the eigenvalues obtained using biharmonic splines at levels 1, 2, and 3. The
true eigenvalues and their multiplicities and names are taken from [DSV], with suitable renormal-
ization. At level k there are 3k eigenvalues counting multiplicity, and 7 · 2k−1 − 2 eigenvalues not
counting multiplicity.

Eigenvalue Name Multiplicity Level 1 Level 2 Level 3

16.815999 λ
(2)
0 1 16.816727 16.816006 16.815999

55.885828 λ
(5)
0 2 55.949427 55.886586 55.885834

172.364521 λ
(5)
1 2 175.149206 172.418561 172.365099

240.168595 λ
(2)
1 1 250.117638 240.351470 240.170704

279.429140 5λ(5)0 3 297.713415 279.747135 279.432927
677.859 λ

(6)
1 3 683.118556 677.971289

861.822605 5λ(5)1 3 875.747103 862.092805
920.619693 λ

(2)
2 1 938.519314 920.964478

1032.035531 λ
(5)
2 2 1059.687917 1032.560608

1262.029498 λ
(5)
3 2 1322.604655 1263.125999

1354.326273 λ
(2)
3 1 1434.788746 1355.716193

1397.1457 52λ
(5)
0 6 1488.567073 1398.735676

3389.295 5λ(6)1 12 3415.593
4306.130 52λ

(5)
1 6 4378.736

4371.676 λ
(2)
4 1 4445.232

4509.405 λ
(5)
4 2 4592.177

4872.030 λ
(5)
5 2 4983.081

5058.588 λ
(2)
5 1 5186.733

5160.178 5λ(5)2 3 5298.440
5493.225 λ

(6)
2 3 5669.176

6310.148 5λ(5)3 3 6613.023
6399.149 λ

(2)
6 1 6719.463

6557.111 λ
(5)
6 2 6910.399

6842.178 λ
(5)
7 2 7262.035

6942.044 λ
(2)
7 1 7387.533

6985.729 53λ
(5)
0 15 7442.835

eigenvalues. Thus a fixed proportion of approximate eigenvalues will have relative error
bounded by ε.

In view of (5.9), the approximate eigenfunctions would have an acceptable error (a
multiple of ε) for the portion of the spectrum below λ(m, ε), but the eigenfunctions
would lose all significance outside the range, even if the relative error in the eigenvalue
is small.

We now discuss results obtained in the special case q = 0. Table 5.1 records the
eigenvalues as estimated using biharmonic splines at the first three levels. The true
eigenvalues are computed in [DSV]. Note, however, that a different normalization for
the definition of the Laplacian was used there, so the values in [DSV] must be multiplied
by 7.5 to obtain the values listed in the first column. (We have also corrected for some
roundoff error in the first two eigenvalues as reported in [DSV].)

We follow the notation from [DSV] to label the eigenvalues. There are three series
of eigenvalues: λ(2)n , n ≥ 0, occur with multiplicity 1; 5kλ(5)n , n ≥ 0, k ≥ 0, occur with
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multiplicity (3k + 3)/2; 5kλ(6)n , n ≥ 0 and n ≡ 1 or 2 (mod 4), k ≥ 0, occur with
multiplicity (3k+2 − 3)/2. The multiplicities were previously determined in [FS]. The
data is consistent with the observation that the estimates are always overestimates and
improve as the level increases. According to the data, the relative error is around 6.5%
for the largest eigenvalue estimates at each of the levels. If we look only at the eigenvalue
estimates at each level that correspond to eigenvalues that appeared at the previous level
(that effectively means the first third of the eigenvalues, counting multiplicity) then the
relative error drops to around 0.11%.

The data also reveals that the order and multiplicity of the eigenvalues is correctly
predicted by the approximation. It is not difficult to present an argument that the ap-
proximation using harmonic splines always gives the correct multiplicity. The reason
is that the multiplicities are explained by certain symmetries of a combinatorial nature,
and these symmetries are also present in the spaces of harmonic splines. It is not clear
how to present such an argument in the case of biharmonic splines, but the data strongly
suggests that the result is valid.

The data also reveals a striking “octave” pattern to the sequence of eigenvalues, with
a periodic repetition of groups of seven consecutive eigenvalues (not counting multiplic-
ity), which has not been previously remarked upon. We will digress a little to explain
this pattern, although the argument is unrelated to the finite element approximations.

Theorem 5.1. The eigenvalues in consecutive order (not counting multiplicity) occur
in “octaves” as follows:

λ
(2)
2k (2m+1)−2 < λ

(5)
2k (2m+1)−2 < λ

(5)
2k (2m+1)−1 < λ

(2)
2k (2m+1)−1(5.14)

< 5kλ
(5)
2m < 5k−1λ

(6)
2m+ε < 5kλ

(5)
2m+1

for m ≥ 0 and k ≥ 1, where ε = 1 if m is even, and ε = 0 if m is odd. The octaves
are ordered according to the size of the even numbers 2k(2m + 1)− 2, so that the next
octave above (5.14) corresponds to (m ′, k ′) satisfying

2k ′
(2m ′ + 1)− 2 = 2k(2m + 1).(5.15)

Proof. Let

�±(x) = 1
2 (5 ± √

25 − 4x)(5.16)

and write �w = �wk�wk−1 · · ·�w1 where w = (wk, . . . , w1) with each wj = ±. A
complete description of the eigenvalues in terms of these functions is given in [FS] (this
is with the other normalization). Following the notation of [DSV]:

λ(2)n = lim
k→∞

5k�w[k](2)(5.17)

where w[k] = (wk, . . . , w1) for

wj = (−1)1+δj−1+δj(5.18)

if

n =
∞∑

j=0

δj 2
j(5.19)
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is the binary representation of n. Note that all but a finite number of δj are zero, so all
but a finite number of �wj are �−. Similarly

λ(5)n = lim
k→∞

5k�w[k](5)(5.20)

with the same relationship (5.18) holding. For λ(6)n , the formula is slightly different,

λ(6)n = lim
k→∞

5k+1�w[k](6).(5.21)

The condition that n ≡ 1 or 2 mod (4) means that �w1 = �+.
Now we may restrict x to the interval [0, 6] in all these computations. Note that �−

is increasing and�+ is decreasing on this interval, and also that�−(x) < �+(x). Thus
�w is increasing if there are an even number of wj = +, and decreasing if there are an
odd number. Now from (5.18) it follows that the parity of the number of wj = + is the
same as the parity of n, so �w[k](2) < �w[k](5) for n even and the reverse inequality for
n odd. The fact that strict inequality is preserved in the limit as k → ∞ follows from
the fact that 5�′

−(x) → 1 as x → 0 at a suitable rate. This proves the first and third
inequality in (5.14). The second inequality is proved in [DSV].

To prove the fourth inequality in (5.14) it suffices to show

�w[p](2) < �w′
[p−k]
(5)(5.22)

for sufficiently large p, where w[p] is determined by n = 2k(2m + 1) − 1 and w′
[p−k]

by n = 2m. For, if we multiply (5.22) by 5p and take the limit as p → ∞, we obtain
λ
(2)
2k (2m+1)−1 ≤ 5kλ

(5)
2m , and we can remove the equality as before. To prove (5.22) observe

that 2k(2m +1)−1 = 2k(2m)+2k −1 in binary has the digits of 2m translated k places
to the left and followed by k ones. By (5.18) this means that �w[p] = �w′

[p−k]
�+�k−1

− .

Recall that �w′
[p−k]

is an increaisng function because 2m is even. Thus (5.22) follows

from �+(x) < 5 for x in the interval [0, 6] (here x = �k−1
− (2)).

The last two inequalities in (5.14) are quite easy. Note that it suffices to take k = 1,
and show

5λ(5)4m < λ
(6)
4m+1 < 5λ(5)4m+1 and 5λ(5)4m+2 < λ

(6)
4m+2 < 5λ(5)4m+3.(5.23)

The factor of 5 comes from the different powers of 5 in (5.20) and (5.21), so we obtain
(5.23) from �−(5) < �+(6) < �+(5) by applying the increasing �w[k] in the 4m case
and the decreasing �w[k] in the 4m + 2 case.

We have shown that the ordering (5.14) within octaves is valid. Next we need to show
that the last term in one octave lies below the first term in the next octave, namely

5kλ
(5)
2m+1 < λ

(2)
2k (2m+1).(5.24)

Note that the binary expansion of 2m + 1 gets shifted to the left k places followed by k
zeros to obtain the binary expansion of 2k(2m +1), and there is a one in the place before
the added zeros. If we write w[p] to correspond to n = 2m + 1 and w′

[p+k] to correspond

to n = 2k(2m +1), then�w′
[p+k]

= �w[p]�+�k−1
− . Now�+�k−1

− (2) < 5, and since�w[p]

is decreasing we obtain

�w[p](5) < �w′
[p+k]
(2).(5.25)

Multiplying (5.25) by 5p+k and taking the limit as p → ∞ proves (5.24).
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Finally, since every eigenvalue appears in one of the octaves, we have the complete
ordered list.

There is considerably more structure to the spectrum than we have described. In
particular, the spectral gaps toward the top of the octaves (the last two inequalities
in (5.14)) appear to be significantly larger than elsewhere, including between octaves.
Undoubtedly, this could be explained by further study of the inequalities in the proof.
Also, the largest gaps occur exactly at the breaks between the approximate spectra at
different levels. It is not clear what the explanation for this might be (it is not true
for harmonic splines). Another interesting question is whether there is any asymptotic
statement about the relative eigenvalues within octaves.

6. Space–Time Equations

In this section we consider two basic space–time equations, the heat equation and the
wave equation. In both cases we take Dirichlet boundary conditions, and no forcing term.
The initial value problem for the heat equation is

∂u(x, t)

∂t
= �x u(x, t),

u(x, 0) = f (x),

u(x, t)|x∈V0 = 0,

(6.1)

and similarly for the wave equation
∂2u(x, t)

∂t2
= �x u(x, t),

u(x, 0) = f (x),
∂u(x, 0)

∂t
= g(x),

u(x, t)|x∈V0 = 0.

(6.2)

The data f (or f and g) are assumed to be continuous functions, vanishing on the
boundary for consistency. Actually the most interesting solutions are the heat kernel and
the wave propagator, where we take f equal to a delta function at a point ( f = 0 and g
a delta function for the wave propagator). Since the delta functions are not continuous
functions, we can only hope to approximate these solutions by using approximations to
delta functions in our spline spaces.

The solution to the heat equation (6.1) can be written formally

u(x, t) = et� f (x),(6.3)

or, more precisely,

u(x, t) =
∑

aj e
−tλj u j (x),(6.4)

where {uj } is an orthonormal basis of Dirichlet eigenfunctions for −� with eigenvalues
{λj }, and

aj =
∫

fuj dµ.(6.5)
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The spline approximation is obtained simply by replacing the eigenfunctions and eigen-
values by the spline approximations {̃uk} and {̃λk} given by (5.2) (with Q = 0). Thus

Pmu(x, t) =
∑

ãj e
−t λ̃ũ j (x)(6.6)

for

ãj =
∫

f ũ j dµ,(6.7)

where the sum in (6.6) is a finite sum. Note that (6.7) amounts to projecting f into
the spline space via the L2 orthogonal projection. One could also approximate f by an
element in the spline space using a different method, and then use this spline in place of
f in (6.7).

This is not the way we would normally compute the approximation, however, since
we prefer to express functions in terms of our spline basis. So if

Pmu(x, t) =
∑

cj (t)ϕj (x)(6.8)

is this representation, then

c′(t) = −G−1 Ec(t),(6.9)

hence

c(t) = e−tG−1 E c(0),(6.10)

where {cj (0)} are the coefficients of f , if f is already in the spline space or, more gen-
erally, an approximation to f in the spline space. We can use any matrix exponentiation
algorithm to compute (6.10). If we use a finite difference approximation in (6.9), this
amounts to writing

e−tG−1 E = (e−k−1tG−1 E )k

and then approximating e−k−1tG−1 E by I −k−1tG−1 E . It is necessary to take k sufficiently
large for this approximation to be accurate

c(t) ≈ (I − k−1tG−1 E)kc(0).(6.11)

If λ̃max denotes the largest eigenvalue of G−1 E (the maximum of the eigenvalues λ̃j ),
then (k−1t λ̃max)

2 gives the order of magnitude of the error for this approximation to Pmu.
From now on we concentrate on error estimates for Pmu (called the semidiscrete

approximation). We will assume either that f belongs to the spline space, or that it
satisfies the hypotheses of Theorem 3.1 so that it may be approximated by splines with
the appropriate accuracy. We will follow closely the arguments in the classical theory,
as presented in Theorem 3.1 of [Th]. Since much of the argument is generic in nature,
we will only outline the proof.

Theorem 6.1.

(a) Let f ∈ domL2 � with f |V0 = 0. Then for harmonic splines

‖u − Pmu‖2 ≤ c‖� f ‖2ρ
m(6.12)

for all t > 0.
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(b) Let f ∈ domL2 �2 with f |V0 = 0 and � f |V0 = 0. Then for biharmonic splines

‖u − Pmu‖2 ≤ c‖�2 f ‖2ρ
2m(6.13)

for all t > 0.

Proof. We may assume that f belongs to the spline space in view of the remarks
following Theorem 3.1 and the fact that et� contracts L2-norms. We write e = Pmu−u for
the error, and let (−�)−1 and (−�m)

−1 denote the inverse of −�with Dirichlet boundary
conditions and the spline approximation, respectively. Then a simple computation shows
that

∂e

∂t
−�me = −�u +�mu

hence

(−�m)
−1 ∂e

∂t
+ e = −h(6.14)

for

h = ((−�m)
−1 − (−�)−1)

∂u

∂t
.(6.15)

We take the inner product of (6.14) with e to obtain

1

2

∂

∂t

∫
e(−�m)

−1e dµ+ ‖e‖2
2 = −

∫
he dµ ≤ 1

2‖e‖2
2 + 1

2‖h‖2
2.

After integration this yields ∫ t

0
‖e‖2

2 ds ≤
∫ t

0
‖h‖2

2 ds(6.16)

since e(0) = 0 and (−�m)
−1 is positive. Also, taking the inner product of (6.14) with

∂e/∂t and doing similar manipulations yields

t‖e(t)‖2
2 ≤ 2t‖h‖2‖e‖2 +

∫ t

0

(
‖e‖2

2 + 2‖h‖2‖e‖2 + 2s

∥∥∥∥∂h

∂t

∥∥∥∥
2

‖e‖2

)
ds.(6.17)

Combining (6.16) and (6.17) with elementary inequalities yields

‖e(t)‖2 ≤ c sup
o<s≤t

(
s

∥∥∥∥∂h

∂t
(s)

∥∥∥∥
2

+ ‖h(s)‖2

)
.(6.18)

We will use the estimate (6.18) to prove both parts of the theorem. The arguments
used to prove (6.18) did not involve the smoothing properties of the solution of the heat
equation, but these will now be used in the estimates for ‖h‖2 and ‖∂h/∂t‖2. For part
(a) we use the same part of Theorem 3.7, with q = 0, and the Remarks following it. In
view of (6.15) we have

‖h(t)‖2 ≤ cρm

∥∥∥∥∂u

∂t

∥∥∥∥
2

(6.19)
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and

t

∥∥∥∥∂h

∂t
(t)

∥∥∥∥
2

≤ cρmt

∥∥∥∥∂2u

∂t2

∥∥∥∥
2

.(6.20)

But ∥∥∥∥∂u

∂t

∥∥∥∥
2

=
(∑

|λj aj e
−tλj |2

)1/2
≤
(∑

|λj aj |2
)1/2

while

t

∥∥∥∥∂2u

∂t2

∥∥∥∥
2

=
(∑

|tλ2
j aj e

−tλj |2
)1/2

≤ e−1
(∑

|λj aj |2
)1/2

,

and ‖� f ‖2 = (
∑ |λj aj |2)1/2. This yields (6.12).

The reasoning for part (b) is similar. In place of (6.19) and (6.20) we have

‖h(t)‖2 ≤ cρ2m

∥∥∥∥∂2u

∂t2

∥∥∥∥
2

and

t

∥∥∥∥∂h

∂t
(t)

∥∥∥∥
2

≤ cρ2mt

∥∥∥∥∂3u

∂t3

∥∥∥∥
2

using part (b) of Theorem 3.7. Now∥∥∥∥∂2u

∂t2

∥∥∥∥
2

=
(∑

|λ2
j aj e

−tλj |2
)1/2

≤
(∑

|λ2
j aj |2

)1/2

and

t

∥∥∥∥∂3u

∂t3

∥∥∥∥
2

=
(∑

|tλ3
j aj e

−tλj |2
)1/2

≤ e−1
(∑

|λ2
j aj |2

)1/2

and

‖�2 f ‖2 =
(∑

|λ2
j aj |2

)1/2

(this uses the assumption that �u|V0 = 0). This yields (6.13).

The solution of the wave equation (6.2) can be expressed similarly as

u(x, t) = cos t
√−� f + sin t

√−�√−� g,(6.21)

or, more precisely,

u(x, t) =
∑(

aj cos t
√
λj + bj

sin t
√
λj√

λj

)
uj (x)(6.22)

with

aj =
∫

f u j dµ, bj =
∫

guj dµ.(6.23)
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The spline approximation is

Pmu(x, t) =
∑ãj cos t

√
λ̃j + bj

sin t
√
λ̃j√

λ̃j

 ũ j (x)(6.24)

with

ãj =
∫

f ũ j dµ, b̃j =
∫

gũ j dµ.

In the spline basis representation (6.8) we have

c(t) = cos t
√

G−1 Ecf (0)+ sin t
√

G−1 E√
G−1 E

cg(0)

with the coefficients of f and g (or spline approximations to them) in the spline basis
denoted cf (0) and cg(0). Again there are a variety of options for approximating the
matrix computations in (6.26). The numerical implementation is very similar to the case
of the heat equation.

We cannot prove the analog of Theorem 6.1 for the wave equation, however, because
we do not have the analogous smoothing properties to estimate derivatives of the solution.
In other words, we could get as far as (6.18) in the argument, but no further. In fact, it
is possible to obtain some results by assuming more smoothness for the data, but these
results are essentially uninteresting because the splines themselves do not have this
additional smoothness.

The web site contains programs implementing the approximate solutions to both
the heat and wave equations, and the graphical output of trial runs. The approximate
solutions of the wave equation exhibit quite intricate behavior on a small scale, but it is
not clear whether this is attributable to artifacts of the method or actual features of the
wave equation. Solutions may be viewed in real time to simulate vibrations propagating
through the gasket.
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