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The Finite Element Method on the Sierpinski Gasket

Michael Gibbons, Arjun Raj, and Robert S. Strichartz

Abstract. For certain classes of fractal differential equations on the Sierpinski gas-
ket, built using the Kigami Laplacian, we describe how to approximate solutions us-
ing the finite element method based on piecewise harmonic or piecewise biharmonic
splines. We give theoretical error estimates, and compare these with experimental data
obtained using a computer implementation of the method (available at the web site
http://mathlab.cit.cornell.edu/~gibbons). We aso explain some interesting structure
concerning the spectrum of the Laplacian that became apparent from the experimental
data.

1. Introduction

Since fractals are not smooth objects, differential equationsin the ordinary sense are not
defined for functions on fractals. Nevertheless, an interesting theory of what might be
called “fractal differential equations’ has been devel oped for alimited class of fractals,
including the familiar Sierpinski gasket (SG), based on the construction of an analog of
the Laplacian. The definition of a Laplacian on SG by Kigami [Ki1], while not the first,
represented a real breakthrough from the point of view of numerical analysis because
it is completely explicit. This method was extended to a class of fractals called “post-
criticaly finite” in [Ki2]. A compl ete exposition will soon be availableinthe book [Ki3],
and an informal survey of the whole field that has developed may be found in [S2].

Thedefinition of aL aplacian on SG asalimit of difference quotients may be described
simply by the formula

(1) At = lim (55", (F(y) = F(x)).

Hereweregard SG asthelimit of graphsT'y,, consisting of vertices Vi, defined inductively
by Vin, = Ui3:1 Fi Vin_1 starting with Vj, the three vertices of atriangle (usually taken to
be equilateral), where F; are the three contractions with ratio % having fixed point equal
to one of the vertices. The edge relation x ~p, y of I'y, is that x and y belong to the
image of the original triangle under an m-fold iteration of the IFS {F; }. Weregard V; as
the boundary of each of the graphs 'y, and of SG. Every nonboundary vertex has exactly
four neighborsin Vp,, sothesumin (1.1) hasfour terms. We will refer to such vertices as
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junction points. These form adense set of pointsin SG, and we will extend the definition
of Af toall points by continuity. Note that (1.1) defines the Laplacian on SG as alimit
of graph Laplacians. The analogy with the definition of the usua Laplacian on R" via
difference quotients is obvious. (The appearance of the factor 5™ is not so obvious, but
isessential in order to obtain anontrivial operator.)

Using (1.1), it is easy to set up the analog of the finite difference method to approxi-
mate solutions of various equations involving A. Thiswas donein [DSV]. The goal of
the present paper isto do the same for the finite element method. As a preliminary step,
it is necessary to construct the analog of various spline spaces. This was done in [SU].
Herewewill use only the piecewise harmonic spline spaces S(Ho, Vim) and the piecewise
biharmonic spline spaces S(H1, Vin), which are the first two of an infinite family con-
structed in [SU]. These are the analogs of piecewise linear and piecewise cubic splines
onaninterval. A harmonicfunctionisasolutionof Af = 0, and abiharmonicfunctionis
asolution of A2 f = 0. To get the spline spaces we | ocalize these conditions to each cell
F.,(SG) of order m, wherew = (wy, ..., wn) denotesawordand F,, = F,, 0-- -0 F,,,
is the corresponding iterated contraction, and we impose suitable matching conditions
at the junction points in Vy,. For the harmonic splines the only matching condition is
continuity, but for biharmonic splines we also require a matching of normal derivatives
(the precise definition isgivenin Section 2). Thisisanatural condition, sinceit isneces-
sary and sufficient on f to glue together local statements Af = g on each cell F,,(SG)
to obtain a global statement Af = g on SG. It is easy to see that harmonic splines are
uniquely determined by specifying values at vertices in Vp,. It is not so obvious, but a
result from [SU], that biharmonic splines are uniquely detrmined by specifying both the
value and the normal derivative at each vertex in V. There are corresponding natural
bases for the spline spaces, described in detail in [SU], along with basic formulas to
compute inner products and energies for pairs of basis elements.

Thefirst class of equations we consider isthe Dirichlet problem

(1.2 —Au+qu =T, uly, =0,

whereq and f aregiven continuousfunctions. Thefinite element approximationswill be
projections of the solution onto the spline spaces (with the Dirichlet boundary condition
imposed) inasuitableinner product, but the approximations are obtained by an algorithm
that does not require knowing the solution. This algorithm is based on the equivalent
weak formulation of (1.2), which we now describe. Perhaps the most basic construction
in [Ki1] isthe Dirichlet form £ (u, v), defined as alimit of Dirichlet forms £y, (u, v) on
the graphs I'r,,. For simplicity, we restrict ourselves to the diagonal u = v. Then

(1.3) Em(u,u) = (D™ D WU — uy)?,

X~mYy

and it can be shown that £y,(u, u) is monotone increasing in m (this explains the factor
(3™, sothat

Eu,u) = rTI]im Em(u, u)

is defined for al continuous functions, alowing the value +oc. The domain of the
Dirichlet form, denoted dom &, is the set of continuous functions with a finite value for
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£(u, u). It should be noted that points have positive capacity in thistheory, asisthe case
for aninterval but not for manifolds of dimension at least 2. Thisexplainswhy dom¢ is
contained in the space of continuousfunctions. Harmonic functionsmay be characterized
by the property that &y (u, u) isindependent of m, so that harmonic functions minimize
the Dirichlet form among all functions with given boundary values.

The energy may also be computed locally as

(1.4) Eu,uy= > (MEUoF, uoF,).

[w|=m

Let .« denote the standard self-similar probability measure on SG, giving equal weight
to all cellsof level m:

(1.5) w(F,(SG) =3" for |w|=m.

Then Af = g, inthesenseof (1.1) (with uniform convergence) for continuousfunctions
f and g, isequivalentto f € dom¢& and

(1.6) E(f,v) = —/gv du forall v edomgé,

the subscript 0 denoting functions vanishing on V. We say f € dom A in this case. We
define similarly f € domer A if f € dom& and there exists g € LP such that (1.6)
holds. There are anal ogous definitionsfor domains of higher powersof A. TheLaplacian
satisfies the scaling identity

a7 A(uoF,) =p™(Au)o F, for Jw|=m

where p = % The factor p™ in (1.7) is the reciprocal of the factor 5™ in (1.1), which

isrelated to the factors (g)m in(1.3) and 3 ™ in (1.5). The weak formulation of (1.2) is
then

(1.8) E(u, v)+/qUU du =/ fdu forall v edomgé,

whereu € domg £. The finite element approximations are obtained by restricting (1.8)
to the spline spaces S(Ho, Vim) or S(H1, Vin) instead of domg £ (same interpretation
of the subscript 0). By choosing a basis for the spline spaces this becomes a system of
linear equations, and the same conditions on g that guarantee a unique solution to (1.2)
also guarantee a unique solution to the system of linear equations. A full description of
the algorithm is given in Section 2.

In Section 3 we prove theoretical error estimates, both of a priori and of a posteriori
type, based on spline approximation results from [SU]. The estimates are expressed in
terms of powers of o™, where m is the level of approximation. The heuristic principle
is that each power of the Laplacian should correspond to the same power of p™, since
the factor 5™ occursin (1.1). The power of p™ that occursin an estimate will be called
the exponent. In comparing with the usual estimates h* for mesh length h, the exponent
corresponds to %oz because the Laplacian corresponds to the second derivative. Most
of our results are for average (L?) and energy (€) error. The energy error controls the
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maximum (L °°) error, but in practice the maximum error seemsto be of the same order
of magnitude asthe average error. In general, our results show again of % inthe exponent
for the average error over the energy error, and a gain of 1 for biharmonic splines over
harmonic splines. In Section 4 we discuss some experimental data that confirms the
predicted error estimates.

In Section 5 we discuss approximate solutions to the Dirichlet eigenvalue problem

—Au+qu = AU, uly, = 0.

When q = 0 the exact solutions are known [FS], allowing an easy empirical test of
the accuracy of the method. We also give some theoretical error estimates. Many of the
eigenvaluesfor theq = 0 problem have high multiplicity, so the addition of asmall q will
split the multiple eigenvalues into clusters. The methods of this paper might be valuable
in experimental studies of the nature of these clusters. We present some numerical data
obtained in the case g = 0. These datarevea an interesting structure to the spectrum of
the Laplacian, and we give a proof that this structure continues for the entire spectrum.

In Section 6 we study the heat and wave equations associated with the Laplacian. For
simplicity wetakeq = 0, omit forcing terms, and impose Dirichlet boundary conditions.
The initial value problem for the heat equation is

au(x,t)
S = AU,
(1.9) u(x,0) = f(x).

u(X, Hlxev, =0,

and for the wave equation is

Fux.t) _ Ayu(x, t)
S T 0 ’ ’0

U(X, t)lXEVQ = 0

Weusethefinite element method in the x-variable, and either afinitedifference method or
amatrix exponentiation method in thet-variable. A lot isknown about the heat equation;
see[HK] for results obtained using probabilistic methods. In[DSV], numerical solutions
to these problems were given using the finite difference method. It was pointed out there
that the wave equation does not enjoy thefinite propagation speed property that isusually
expected of wave equations on manifolds. We are able to give a proof of error estimates
for the heat equation, but not for the wave equation. Data obtained from trial runs using
the method for both equations may be found at the web site.

A complete set of programs implementing the algorithms described in this paper
may be found at the web site http://mathlab.cit.cornell.edu/~gibbons, together with the
numerical datafor thetests of the algorithmswe performed. This paper iswritten so that
it can be read independently, but the web site provides additional information.

The algorithms and error estimates presented here are closely related to the standard
finite element method [CL]. The main challenge has been to find the appropriate anal ogs
of the basi ¢ function spacesand their approximation properties (mostly takenfrom [SU]),
and then to fashion arguments that use only the limited information at our disposal. The
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fundamental idea remains the same: the finite element approximation is an orthogonal
projection into a spline space, and so minimizes an appropriate norm while, on the other
hand, we know how to obtain certain approximation ratesin the norm using interpolation
approximation. We present all the details of the argumentsin Section 3, while we only
give a sketch of the argument in Section 6 because it so closely follows the standard
theory. The estimatesin Section 5 are a bit ad hoc and perhaps not optimal, so we have
kept the dicussion informal.

At present we only have good information about the analogs of L2 Sobolev spaces
of integer order, although we have to treat the even and odd integers separately, using
energy for one derivative and the L aplacian for two derivatives. Asmoreis|earned about
other function spacesit may be possibl e to obtain more flexibl e finite element estimates.
One of the main obstacles we faceisthat multiplication by functionsis not well behaved
in our function spaces (beyond the analog of one derivative in L?) [BST]. This forces
the restriction in Theorem 3.7(b) that g be constant. Our numerical resultsin Section 4
suggest that thisis not the end of the story, however. In particular, squares of harmonic
functionsdo not behave substantially worse than harmonic functions. At present we have
no explanation for this.

In this paper we have restricted our attention to spline spaces using uniform grids. An
obvious direction for further research is to alow grids of variable size. Instead of the
decomposition

(1.12) SG= | J Fu(SG).

lw|=m
one should alow

(1.12) SG = | J Fu(SG),
weA

where A isafinite set of words chosen so that the cellson theright side of (1.12) overlap
only at singlepoints. It iseasy to seethat the condition on A isthat every sufficiently long
word has a unique prefix in .4. One advantage of using such irregular decompositions
is that we could obtain good approximations to delta functions within the spline space,
without excessively driving up the cardinality of .A, simply by taking avery refined grid
in asmall neighborhood of the point where the delta function is to be supported.

We have also dealt exclusively with SG, although the methods of [SU] can be applied
to awider class of fractals. It would certainly be worthwhile to work out the analogous
algorithms on some of these other spaces. There does not seem to be any obstacle in
principleto doing this, but the details may be technically demanding. One motivation for
doing thisisthat it would provide amethod for experimentally studying the spectrum of
the Laplacians on other fractals. The exact methods of [FS] can only be used for avery
restricted class of fractals [Sh2].

2. TheBasic Algorithm

In this section we describe the finite element a gorithm for approximating the solution
of the Dirichlet problem

(2.0) —Au+qu=f, uly, =0,
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on SG, for given continuous functions q and f, using harmonic or biharmonic splines
on auniform grid. Recall that the Laplacian may be defined either using the pointwise
formula

(22) Aux) = lim (5)5" (Z u(y) - u(x)))

Y~mX

for x an interior vertex point, with uniform convergence, or by the weak formulation

(2.3) —E(u,v) = /(Au)v du

for all v € dom¢& vanishing on Vp, where u € domé& and Au is continuous. The
pointwise formula (2.2) leads to the analog of the finite difference method, which was
usedin [DSV].

Existence and uniqueness for (2.1) holds under the assumption

(2.4) qx) > —ro+¢

everywherefor somee > 0, where 1o ~ 16 isthelowest eigenvalue of — A (see Section
5). While (2.4) is not a necessary condition for existence and uniqueness, the finite
element method is likely to fail or perform poorly without it. The choice q(x) = —Ag is
an example where existence and uniqueness fails. With (2.4), the inner product

(2.5) (U,v)g =€, v) +/un du

dominates both the energy and the L2 inner products on the space domg £ of functions
in dom & vanishing on Vy (see Lemma 3.2).

The finite element method is based on the following weak formulation of (2.1) from
[Kil]Ki3]:

Theorem 2.1. A continuous function u satisfies (2.1) if and only if u vanishes on Vg
and

(2.6) (U, v)q =/ fodu

for all v € domg €.

For any finite-dimensional subspace W C domg &, define Pwu € W as the solution
to (2.6) for al v € W. Notethat Pyu is exactly the projection onto W of the solution to
(2.1) with respect to the inner product (2.5). Thus

(2.7) (u—Pwu,v)q =0
foral v e W, and
(2.8) (U—Pwu,u— Pyu)q < (U—v,U—1)q

for al v € W. Since we usually do not know the true solution u, estimate (2.8) gives us
away of controlling the error in the approximation Py u. Notethat (2.6) isjust asystem
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of linear equations that can be solved using linear algebra, provided we have an explicit
basisfor W and we can compute or approximate all thetermsin (2.6) for basisfunctions.

In this paper we consider only two choices for the space W, either S(Ho, Vim) Or
S(H1, Vin)- S(Ho, Vim) is the space of piecewise harmonic continuous functions with
nodesat Vi, while S(H1, Vin) isthe space of piecewise biharmonic functionswith nodes
at Vp, satisfying two consistency conditionsat junction points. The precise definition will
be given below. The subscript 0 in the spline spacesindicates that we consider only func-
tions vanishing at V. We refer to these spaces informally as harmonic and biharmonic
splines, and we denote the projection operator simply Pr,. Harmonic splines belong to
domg € but not to dom A. Biharmonic splines are not typically in dom A either, but they
do belong to dom_~ A and the Laplacian may be computed piecewise (it usually has
jump discontinuities at the nodes). The additional “smoothness’ of biharmonic splines
comes from the matching of normal derivatives.

The normal derivatives d, f (x) for x € V, are defined by

(29) B f () = lim (™ 3 (F00 — F(y),

Y~mX

if thelimit exists. Notethat thereare only twotermsinthesum. In[Ki1] itisshownthat the
normal derivatives exist for f € dom A, and the following version of the Gauss-Green
formulaholds for u and v indom A:

(2.10) / (UAV — vAU) dp = D (Udqv — vdU).
SG Vo

We may localize the definition to pointsin V,. Each nonboundary point x in Vy, can be
written X = F,,v; = F, v} for two distinct choices of words with |w| = [w'| = m, and
vj and v in V. For each of these thereis anormal derivative; for the first

(21D 80U = ()Mo Fu) ) = lim (DX D oo — u(y)).
y oS

Itiseasy to seethat for u € dom A, the sum of the two normal derivatives at ajunction
point must vanish. Moreover, if f and g are continuous functions satisfying Af = g
on each cell F, (SG) with |lw| = m, then Af = g on SG if and only if the sum of the
normal derivatives of f vanishes at every nonboundary point in Vy,. This explains the
importance of imposing the matching condition in the definition of biharmonic splines.
Thereisamore elaborate theory of local derivatives givenin [S3], but we only need the
normal derivatives here.

Definition 2.2.

(@ S(Ho, Vi) is defined to be the space of al continuous functions f such that
A(f o F,) = 0for al words w with |w| = m.

(b) S(H1, Vim) is defined to be the space of al continuous functions f such that
A?(f o F,) = Ofor all words w with |w| = m, satisfying the matching condition
for normal derivatives o, (U o Fy,) (vj) = —0n(U o Fyy)(vjr) a nonboundary points
X = Fyv; = Fyvp with [w] = [w'| = m.
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() S(H;, vm) is the subspace of S(7;, vm) of functions vanishing on the bound-
ary V.

It iseasy to describe abasisfor Sy(Ho, Vin). This space has dimension (3™ — 3)/2.
For each vertex y € Vin\Vo we let ¢, denote the piecewise harmonic function that takes
onthevaluelaty and O at all other verticesin Vi, (thisfunction is denoted ¢ in[SU]).
The space S(H1, Vm) has dimension 3™ 1 and has a basis consisting of two types of
functions, gy and yry. For y € Vin\Vo, welet @ be the biharmonic spline that has normal
derivatives vanishing at al verticesin Vi, and takes the same values as ¢y at vertices.
For any y € Vm, the biharmonic spline v/, vanishes at all verticesin Vi, and has normal
derivatives vanishing at every vertex except y. We make the normal derivative of ¢y at
y equal 1, but this requires a somewhat arbitrary sign convention at interior vertices as
there are actually two normal derivatives on adjacent cells equal to +1, and we need to
specify which gets the plus sign. (See the web page for the specifics of the choice we
used.) Thevalues of al inner products and energies among basis el ements are computed
explicitly in [SU].

Any function in S(Ho, Vim) has a unique representation

(2.12) > oy

y€Vm\Vo

wherethe coefficients c, arejust the values of thefunction at the points y. The analogous
representation for S(H1, Vim) splinesis

(2.13) Z Cypy + Z aﬁw

ye Vm\Vo yEVm

with asimilar interpretation for the coefficients. In order to discuss both cases simulta-
neously we will write

(2.14) > Gy

tostandfor either (2.12) or (2.13). Wetake (2.14) astheformfor Pu, with the coefficients
determined by substituting in (2.1), multiplying by ¢k, and integrating, to obtain

—ZCj/(ij)wderZCj/qijkdu=/ fordu.
i j

Since — [ (Agj)ex du = E(gj, ¢x) we obtain the matrix equation

(2.15) Z Ekj Cj =+ Z ij C = F
j i
where
Exj = £(9j, vx),
(2.16) Qkj = [ agjex du,

Fe=/ fodu.
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Theenergy matrix { Ex; } iscomputed theoretically, whilethe other terms must be approx-
imated using numerical integration, except when g isconstant, inwhich case Qy; = qGy;
where

(2.17) Gy = [ g d

isthe known Gram matrix of inner products for the basis. Under the hypothesis (2.4) the
matrix E + Q isinvertible, so

(2.18) c=(E+Q7F

gives the coefficients of Pyu.

3. Error Estimates

First we derive theoretical error estimates, which we may then compare with actual data.
We will need the following basic interpol ation result, which isaspecia case of Theorem
4.8 of [SU]. We will express all estimates in terms of p*™, where p = % and o will
be called the exponent. Many of our estimates are valid for the larger class of fractals
considered in [SU], with different values of p.

Theorem 3.1.

(@) For anyu € dom_ 2 A vanishing on Vj, let uy, € S(Ho, Vin) be the interpolating
spline taking the same values as u at all verticesin Vy,. Then

(3.1) E(U — Um, U — Um)¥? < col| Aul|p 2™,

(b) For any u € dom_ > A2 vanishing on Vo, let U, € S(H1, Vin) be the interplating
spline taking the same values and normal derivatives asu at all vertices of Vp,.
Then

(32 EU — T, U — Tm)¥? < 1| A2ul20®2™,
See [SU] for the proof.

Remark. Therearealso corresponding estimatesfor the error in the L2-norm, namely

[lu—umll2 < cgllAullzp™ inpart (a),
and
lu — Tmll2 < C;l1A2Ull2p®™ in part (b),

with againin exponent of 1/2. These are not explicitly stated in [SU], but follow by the
same argument as given in Corollary 4.8 there (see a'so Theorem 3.4 below).

Next we prove the basic coercivity estimate for the inner product (2.5). Note that we
already know

(3.3 (U, U)g < (L +cllgllee)€(u, u)
(see (4.17) in [SU]).
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Lemma3.2. Suppose q is continuous and satisfies (2.4). Then for any u € domg &,
and ¢ in (2.4):

(3.4) lull3 < e Hu, u)q
and
(3.5) Eu,u) < 1+ e7qlle0) (U, U)g.

Proof. By the definition of Ao we have £(u, u) > A0||u||§, hence
(U, Uy = /(Ao+q>|u|2 du > elluly
by (2.4), proving (3.4). But then
€U, Wl =< (U, u)g + / lqu?| de < (1+ & lglleo) (U, U)g
using (3.4). ]

We will be concerned with three types of error in apriori estimates. The L2 error (or
average error)

(3:6) lu — Pmull2,
the L*° error (or maximum error)
(3.7) lu — Pmullec,

and the energy error

(3.8) E(U — Ppu, u — Puu)Y/2.

Clearly these are of increasing size. We will not be able to give any useful theoretica
predictions for the maximum error. In practice, it seems to involve the same exponent
as the average error (with perhaps a logarithmic factor, not easily observed from data).
Our next goal is a basic comparison result for average and energy errors. In essence,
the exponent alwaysincreases by 1/2 for the average error as compared with the energy
error, regardless of most details. Thisis very useful, since the energy error is easier to
handle theoretically, and we get a boost in accuracy by considering average error.

Lemma3.3. Suppose f € L? and q is continuous and satisfies (2.4). Then if u €
dom,2(A) satisfies (2.1) we have

(3.9 lAullz < cll fl2.
Proof. Theweak formulation of (2.1) (with v = u) yields

(3.10) E(u, u)Jr/qu2 d,u:f fudu.

Apply Cauchy—Schwartz to the right side of (3.10) and (3.4) to the left side, to obtain
ellull3 < [ fll2llull2, hence [[u]l2 < &~ f ||2. Then from (2.1):

AUl < [Ifll2+lqullz < X+ e alleo) I Fll2- |
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Theorem 3.4. Supposeq and f are continuous and q satisfies (2.4). Then
(3.11) lu— Pullz < o™?MEU — Pyu, u — Pyu)?

for either type of spline.

Proof. Wehave
(3.12) U= Poulls = sup{/(u Pty du: ol < 1},

and we may even require that v be continuous. Let w be the solution of
(3.13) —Aw+qw = v, wly, = 0.

Note that |Aw| < ¢ by Lemma 3.3. Now apply Theorem 3.1(a) to w, to obtain wy, €
S(Ho, Vi) with

(3.14) Ew — wm, w — wm)Y? < c||Aw|2p 2™ < ¢/ pE/2M,
Note that
f(u — Pnuv du = (U — Pyu, w)q
by (3.13), and

(U — Pnu, w)g = (U= PnU, w — wm)q

by (2.7) (since S(Ho, Vim) € S(H1, Vim)). By the Cauchy—Schwartz inequality for the
inner product (2.5) we have

‘/(u — Phwvdu

< (Uu— Pypu,u— Pmu>é/2<w — Wm, W — wm)é/z-

By (3.3) we can replace the inner products by energies, so
‘/(u — Pnu)v du' < coVPMEU — Pyu, u — Ppu)t/?
by (3.14). Together with (3.12), this proves (3.11). ]

Lemma3.5. Supposeu € domA and Au € domé&, and suppose u and its normal
derivatives vanish on V. Then

(3.15) E(u,u) < cE(Au, Au).

Proof. The vanishing of the normal derivative on Vg implies

—&(u, Au) = /(Au)zdu,
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while the vanishing of u on Vg implies
£(u.u) < cllAaul}

by Lemma 4.6 of [SU]. Combining the two and using the Cauchy—Schwartz inequality
for £ yields

E(u,u) < clE(u, Au)| < cEu, WY2E(Au, Au)/?

which implies (3.15). (Note that although £ fails to be an inner product because of the
one-dimensional null space of constants, the usual derivation of the Cauchy—Schwartz
inequality is till valid, since the inequality is trivially true if one of the functions is
constant.) ]

Corollary 3.6. Let u € domA and Au € domé&, and let Up, be the interpolating
biharmonic spline, asin Theorem 3.1(b). Then

(3.16) EWU = Unm, u—UmY2 < c&(Au, Au)Y?p™,

Proof. For each word w of length m, (u — Up,) o F,, satisfies the hypotheses of Lemma
3.5. Notethat since (Aliy) o F,, isharmonic and (u — Uy,) o F,, vanisheson Vy, we have

(3.17) E(U—Tp) o Fy, (Alm) o Fy) = 0.
Thus, by the proof of Lemma 3.5:

E(U—Tn)oFy,U—Um)oFy) < clE((U—1Tn)oFy, A((U—Unm) o Fy))|
= c|E((u—Un) o Fy, A(uo Fy))|

inview of (3.17). Continuing the argument from the lemma we obtain

E((u—Um) o Fy, (U—Tm) o Fy)

A

cE(A(Uo Fy), A(uo Fy))

= co®"E((AU) o Fyy, (AU) 0 Fy),
using (1.7). Finally, we sum over all words w of length m and take the square root,
using (1.4). ]
Theorem 3.7. Assumethat g and f are continuous, that q satisfies (2.4), and that u is
the solution to (2.1).

(@) Then the harmonic spline approximations Pyu satisfy a priori error estimates
with exponent 1/2 for energy error and 1 for average error:

3.18) E(U — Ppu, U — Pyu)Y/2 < cp/2m
(

and
(3.19) lu— Pnull2 < co™.
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(b) Assumeqisconstantand f € dom A. Then the biharmonic splineapproximations
have exponent 3/2 for energy error and 2 for average error:

(3.20) E(U = Pyu, U — Pyu)¥2 < cp@2m

and
(3.21) lu— Pmull2 < cp®™.

(¢) Assumeq and f arein dom &. Then the biharmonic spline approximations have
exponent 1 for energy error and 3/2 for average error:

(3.22) EU = Ppu, u— Ppu)¥2 < co™,

and

(323 lu— Prullz < cp®/2™,

Proof. In view of Theorem 3.4 it suffices to establish the energy error estimates. For
part (a), sinceu € dom A, we apply Theorem 3.1(a) to obtain (3.1) for the interpolating
harmonic spline up,. By (3.3) and (3.5) the energy and the inner product (2.5) are equiv-
alent, and by (2.8) the spline P,u minimizesthe distanceto u in the inner product (2.5).
Thus (3.1) implies (3.18).

Under the assumptions in (b), Au = qu — f € domA sou € domAZ2. We can
then derive (3.20) from (3.2) in Theorem 3.1(b) as before. Similarly, under the assump-
tionsin (c), Au € dom¢& (this uses the fact that dom £ is an algebra under pointwise
multiplication). In this case, we use (3.16) from Corollary 3.6 to obtain (3.22). ]

Remark. The constantsin (3.18) and (3.19) may be taken to be multiples of ||Au]|».
The constantsin (3.20) and (3.21) may be taken to be multiples of | A%u]|», andin (3.22)
and (3.23) multiples of £(Au, Au)Y/2. Moreover, the hypotheses on f may be reduced,
sothat f € L2in(a) and f € domy2 A in (b) will suffice. The proofs are essentially the
same.

Next we consider a posteriori estimates. Here we see how close P,u comes to satis-
fying (2.1), using

(3:24) I'f — (=A+a)Pnull2

asameasurement. Notethat (3.24) would vanishif Pyu werethe exact solution. For ssim-
plicity, werestrict ourselvesto the case of biharmonic splines, where Pyu € domp«~ A C
dom, 2 A, and A Pu may be computed separately on each cell of level m. Notethat this
is, in general, a discontinuous function since the harmonic functions defining A Pu on
thesmall cellsdo not satisfy any matching conditions on the vertices of Vi,. Thisexplains
why the L2-norm is an appropriate choice in (3.24). On the other hand, for harmonic
splines, Pu will not even belong todom, 2 A, so an appropriate aposteriori errror would
have to take into account jumpsin the normal derivatives at vertices of Vp,.
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Lemma3.8. Let
(3.25) Sm(u) = inf{llu — vll2 1 v € S(Ha, Vim)}
denote the L2 error of the best approximation of u by biharmonic splines. Then

(3.26) EU — Ppu, U — Ppw)¥2 < cSnW)Y?[| f — (—A 4 q) Puully>

Proof. Notethat

f—(—A+QPnu=(—A+q)u— Pyu).
On the other hand, by (2.7) we have

(U — Pqu, U — Ppu)q = (U— Ppu,U—v)q

for any v € S(H1, Vi), hence
(U=Pmu, U—PnU)q =/(U—v)(—A+q)(U—PmU)du < lu=vli2[ f =(=A+q) Pmull2.

Using (3.5), choosing v to attain the infimum of (3.25), and taking the sguare root,
yields (3.26). ]

Theorem 3.9. Supposeq and f are continuous and q satisfies (2.4). Then
(3.27) E(U — Puu, U — P2 < oM f — (= A + ) Pnull2.

In other words, the exponent for the energy error exceeds by 1/2 the exponent for the a
posteriori error.

Proof. By taking v = Pyu weabtain §,(u) < ||u — Pyu|l2. Using (3.11) of Theorem
3.4 with thisin (3.26) yields

E(U — Py, U — Puu) < coM?ME(U — Pyu, u — Paw)Y?[| f — (—A + q)Puull2

which yields (3.27). n

Unlike the a priori errors (3.6), (3.7), and (3.8), the a posteriori error (3.24) may be
computed without knowing the exact solution. Theorem 3.9 shows that the energy error
(hence the average error) is controlled by the a posteriori error. Also, if, for any reason,
the a posteriori error is smaller than expected, then the same is true for the energy and
average errors.

4. Error Testing

To test our implementation of the finite element method we first used problems with a
known answer, by choosing u and g, computing f, and then running the method with the
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Table 4.1. The exponents for the maximum (Emax), average (Eave), and energy
(Egn) error, as estimated by comparison with the known solution for three different
triharmonic functions (Ty, T2, T3) and one quad-harmonic function (Q). The har-
monic splines used datafrom levels 2, 3, 4, 5, while the biharmonic splines used data
fromlevels1, 2, 3, 4.

Harmonic splines Biharmonic splines
Function Emax Eave Een Emax Eave Een
T 0.9965 0.9991 0.5074 1.9132 1.9487 1.4725
T 0.9970 0.9999 0.5073 1.8899 1.9396 1.5142
T3 0.9938 0.9984 0.5050 1.7596 1.8896 1.4835
Q 0.9959 0.9991 0.5075 1.9562 1.9991 1.5369

g and f input. For u we chose functions for which we could compute Au theoretically
rather than numerically. If u ischosen to beharmonic, then both harmonic and biharmonic
splines should give the exact answer for any m. Similarly, for biharmonic splines, if u
is chosen to be biharmonic. We verified that this was the case. The first interesting test
was to choose u to be triharmonic, so that Au is a known biharmonic function, but
the solution is outside the spline spaces so the errors must be nonzero. We found the
method performed as expected, with the biharmonic splines producing high accuracy
with modest values of m. We computed the average, energy, and maximum errors for
harmonic (2 < m < 5) and biharmonic (2 < m < 4) splines, found the slope of theleast
mean square line fitting the log error data, and divided by log p to obtain experimental
predictions of the exponents for the three types of error and each of the two spline types.
Since we only were able to use modest values for m, we could not expect this method
to be highly accurate. Also, we expect that transient and random effects will be more
significant for the maximum error than for the other errorswhich involve averages. Some
of the results are reported in Table 4.1. The average and energy error exponents are in
close agreement with the values predicted in Section 3, and the maximum error appears
to have the same exponent as the average error.

Next we analyzed the same approximate solutions by computing the errors in the
differences Py, 1U — Pyu of successive approximations. Since this does not involve the
solution itself, it isatest that can be applied in examples where the exact solution is not
known. We makethe assumption that if theerror of P,,u— u followsan exponential decay
law proportional to p*, then the same should be true of the error of Py, 1u — Pnu with
the same exponent but with a different proportionality constant. Note that the estimates

(4.2) | Pnu — u|| < cpp*™ for all m,
and
(4.2) [l Pmyau — Pul| < Cp*™ for al m,

areequivalent, for any norm. So, in thelong run, we should expect the same exponentsto
be predicted. What isnot clear isthat the samewill be true using only the datafrom small
values of m. In Table 4.2 we show the predictions for error exponents using successive
differenceson the samedataaswas used for Table4.1. Notethat the number of datapoints
for fitting straight lines is reduced by one, and this amounts to a drastic decrease (for
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Table4.2. The error exponents for the same functions as in Table 4.1 computed from the same
data, but this time using differences from level to level rather than comparison with the exact
solution. This table also gives the exponents for the a posteriori error (Eap).

Harmonic splines Biharmonic splines
Function Emax Eave Egn Emax Eave Egn Eap
T1 0.9947 0.9996 0.5047 1.9721 1.9838 1.4928 0.9997
T, 0.9938 0.9996 0.4990 1.9651 1.9832 1.4924 0.9997
T3 0.9882 0.9994 0.4988 1.9550 1.9678 1.4825 1.0010
Q 0.9937 0.9996 0.4990 1.9755 1.9844 1.4932 0.9996

biharmonic splines we have just two data points). Neverthel ess, the predicted exponents
do not change very much.

The next set of testsinvolved systematically varying the nature of theinputsg and f,
without knowing the solution in advance. Thus we were limited to measuring the errors
between successive approximations. We wanted a range of “smoothness” for the inputs,
and we chose three levels, and representative functions for each level. For the “ smooth”
level, functions in dom A, we chose harmonic functions. Although harmonic functions
are actually smoother, belonging to the domain of any power of A, this additional
smoothness is not predicted to yield any improvement at the level of biharmonic or
harmonic splines, and no improvement was, in fact, noted. It would, in fact, be quite
tricky to produce functionsin dom A which fail to bein dom A2 except at isolated points,
so we did not attempt to test this distinction. For the “semi-rough” level, functions in
dom & but not dom A, we chose the square of a harmonic function. It was shown in
[BST] that such afunction failsto have alLaplacian at every vertex point, but it iseasy to
see that it belongs to dom £. For the “rough” level, continuous functions not in dom &,
we chose the coordinate variable x for the standard embedding of SG in the plane. Itis
easy to see that the energies £n(X, X) grow on the order of (%)m, and the failure of x
to belong to dom £ isaglobal property of the function. In addition to these smoothness
levels, we also considered constant g as a separate choice.

In Table 4.3 we show the estimated error exponentsfor ten different tests, for different

Table 4.3. Estimates for the error exponents for different choices of f and q, using the same
method asin Table 4.2. The functions used are 1 (the constant), h (aharmonic function), h2, and x
(the coordinate function).

0.9420 0.9908 0.4917 1.4324 1.4288 0.9339 0.4149
0.8932 0.9936 0.4939 1.6425 1.8760 1.3943 0.9008
0.9457 0.9984 0.4984 1.4242 1.4752 0.9771 0.4356

Harmonic splines Biharmonic splines

f q Emax Eave Egn Emax Eave Egn Eap
h 1 0.9392 0.9987 0.4984 1.8671 1.9561 1.4708 0.8901
X h 0.9381 0.9913 0.4917 1.4253 1.4270 0.9325 0.4147
h? h 0.8790 0.9930 0.4930 1.6443 1.8751 1.3969 0.9208
h h 0.9266 0.9992 0.4983 1.6470 1.8630 1.3963 0.9383
X h? 0.9383 0.9917 0.4918 1.4190 1.4230 0.9292 0.4133
h? h? 0.8488 0.9912 0.4913 1.5608 1.8088 1.3361 0.8887
h h? 0.8870 0.9991 0.4978 15318 17726 1.3074 0.8748

X

X

X
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typesof g and f. Theresultsarein rough agreement with the predictions. The use of the
sguare of a harmonic function in place of a harmonic function does not seem to have as
negative an effect on the performance as anticipated. There may be an explanation for
this, based on some resultsin [T2], but this remains to be seen.

5. Eigenfunctions

We may aso use the finite element method to approximate solutions of the Dirichlet
eigenfunction equation

(5.1 —AU+ qu = Au, uly, = 0.

When q = 0, the exact spectrum and eigenvalue multiplicities were determined in
[FS] (see also [T1]), and a finite difference-type method for the exact computation of
eigenfunctionswas givenin [DSV]. This presents agood opportunity to test the method,
but the actual results are of less interest. However, there are many fractals with great
symmetry for which the spectral decimation method of [FS] does not work [Sh2], yet
the finite element method offers aviable option for future investigation. And, of course,
once anonconstant potential g isinvolved, thefinite element isat present the only option.

To approximate the solutions of (5.1), using either spline space, we substitute the
representation (2.11) into (5.1), multiply by ¢, and integrate. Instead of (2.12) we
obtain

(5.2) Z Exjc + Z QkiC =2 Z Gy G,
i j i

so the coefficients are just the eigenvectors of the matrix G—(E + Q), and the ap-
proximate eigenvalues of (5.1) are the eigenvalues of this matrix. Since this matrix is
conjugateto G~Y2(E + Q)G /2, which is self-adjoint and positive definite, the matrix
G Y(E + Q) has acomplete set of eigenvectors with positive eigenvalues. In fact, the
assumption (2.4) means

/(—Au+qu)u du > eful3

for any u, because 1¢ isthe bottom of the spectrum of —A.. In particular, for u of theform
(2.11) this becomes (Ec + Qc, ¢) > ¢(Gc, c), so ¢ is alower bound for the spectrum
of G™1(E + Q). Infact, the min-max characterization of eigenvalues ((5.12) and (5.13)
below) shows that the approximating eigenval ues are always greater than the true ones,
and decrease as m increases.

Let uswrite{U; } and {1, } for an orthonormal basis of eigenfunctionswith correspond-
ing eigenvalues, arranged inincreasing order (with repetitionsin the case of multiplicity)
in the spline space for the approximate problem (5.2). Given an honest solution to the
true problem (5.1), we would like to be able to say that it is close to one of the approxi-
mate solutions on the list (or alinear combination in the case of multiplicity). In order
to ensure this we must take m large enough so that u can be well approximated in the
spline space. In addition, we need to know that the gaps between distinct approximate
eigenvalues are not too small.
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Now by Theorem 4.8 and Corollary 4.9 of [SU] we can find aspline U approximating
u so that

EU—T,u—MY < ca2p®2am
(5.3 lu— 1|2 < cA?p?™, and hence
(U—T,u—1Tg? < cazp®2m

for biharmonic splines(for harmonicsplines, theratesare Ao /2™ and o™, respectively).
Let

(5.4) =) b
be the expression of U in terms of the orthonormal basis of spline eigenfunctions. Then
(U, Uk)q = Axbx while

(U, T :/\/uﬁkdu:A/Gﬁkdu+k/(u—ﬁ)ﬁkdu:Abk—i-k/(u—ﬁ)ﬁkdu.
Thus

(55) [k —Allbel < [(u—T, Gk>q|+x‘ f (U — Wi dp| < cX/2a2p@2m 4 ca®p2m

by (5.3). Let AJ be chosen to be the closest value to A, and let y be the smallest value
of [hx — AJ| when 7. #+ A, (because of the possibility of multiplicity there may be
more than one eigenvalue equal to ;). Provided that y is not too small, the estimate
(5.5) for T # Aj will tell us that the coeff|C|ents by are small, so U is close to aspline
eigenfunction. But then (5.5) for T = A, will tell usthat A iscloseto AJ

Specifically, let

(5.6) T= )" b

s

so that v is a spline eigenfunction with eigenval ue)f,— . Then

172 ~ 12
~ o~ Ak
(5.7) Il ll2 ( E bk ) < P E PO

AFEA]
1/2
+cA3p2m (Z I — /\|—2)

7R
by (5.5). We know that for g = 0 the true eigenval ues satisfy a Weyl asymptotic law

2log3
(5.9) ke for o= 9%~ 13652124,
log5

called the spectral dimension [FS], [KL]. Thusit is plausible to assume that the sumson
theright side of (5.7) remain uniformly bounded as m increases, and can be dominated
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by the largest terms, which occur when I — Al & y. Then (5.3) and (5.7) would yield
an estimate

(5.9) U= Tllp < ¢y " L(A52p @AM | 33,2y

Assuming that uisnormalized by ||u||, = 1and missufficiently large, we can arrange
to have |bj| > 1 5 (if the multiplicity of AJ is greater than one this may require choosing
theeigenfunctlon U; appropriately). Then (5.5) for k = j yields

(5.10) [ — Al < c(15/2p®/2Am 1 3,2m)

In other words, if wefix m and fix an acceptable error ¢, this determinesavalue A(m, ¢)
such that for every true eigenvalue A satisfying 2 < A(m, ¢) there exists an approximate
agenvaluekJ satisfying |A — AJ| < &, where A(m, ¢) is determined by

(5.12) c(h(m, £)%2p@2™ 4 j(m, £)%p®™) = ¢

(the constant c asin (5.10)). Moreover, if A hasmultiplicity u greater than one, therewill
be at least 1 distinct corresponding approximate eigenvalues. We cannot assert a priori
that the multiplicity of the approximate eigenvalues is the same as the multiplicity of A
because the error tolerance ¢ could result in splitting multiplicities, but our experimental
dataindicates that such splitting never occurs. _ 5

Conversely, we can assert that every approximate eigenvalue A; satisfying [Aj| <
A(m, g) is paired with a true eigenvalue, which will be labeled 4; in increasing order.
In other words, the part of the approximate spectrum below A(m, &) matches the part of
the true spectrum below A (m, &) to within the error tolerance . To seethiswerecall the
min—max characterization

(5.12) Xj = min{max{(u, u)q :u e L, lulz =1} :dimL; = j, Lj € dom&p}
for the true eigenvalues, and the corresponding characterization
(5.13) Xj = min{max{(u, U)q : U € Lj, [lull2 =1} : dimL; = j, L; € S(H1, Vim)}

for the approximate eigenval ues. Thusi; < :fl o Xl is closest to A1 and will be pai red
W|th it. Since A, < A2, the closest approximate e|genva|ue to Ao must be either A1 or
Az However, if itis xl, then A, must also be close to Az because Uz _cannot be close to
Uy (if the spectral separation y is not too small, this will imply that = xz). Then we
can pair A, with A, and continue in the same way for the portion of the spectrum below
A(m, g).

If wefix & and vary m, then the cutoff value A(m, &) will grow on the order of 5%6™,
This means, using the estimate (5.8), that the number of acceptable approximate eigen-
values will be on the order of 503%™ ~ (1.933182)™, as compared with the number
3™ of approximate eigenvalues. Although thisis asymptotically anegligible proportion,
it is not feasible to use large values of m in actual computations. Moreover, we might
be content if the size of the error is small relative to A. This would mean demanding
that the right side of (5.10) be bounded by A rather than ¢. This would put the cutoff
value on the order of 5™ and yield on the order of 5(*/2™M = 3™ acceptable approximate
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Table5.1. Estimates of the eigenval ues obtained using biharmonic splines at levels 1, 2, and 3. The
true eigenvalues and their multiplicities and names are taken from [DSV], with suitable renormal-
ization. At level k there are 3¢ eigenvalues counting multiplicity, and 7 - 2<-1 — 2 eigenvalues not
counting multiplicity.

Eigenvalue Name Multiplicity Level 1 Level 2 Level 3
16.815999 a2 1 16.816727 16.816006 16.815999
55.885828 P 2 55.949427 55.886586 55.885834

172.364521 ,\55) 2 175149206 172418561  172.365099

240.168595 a2 1 250.117638 ~ 240.351470  240.170704

219420140 5.0 3 207.713415 279747135 279.432927

677.859 R 3 683118556  677.971289

861.822605 sxiS) 3 875.747103  862.092805

920.619693 A 1 938519314  920.964478

1032.035531 38 2 1050.687917  1032.560608
1262.029498 ,\§5) 2 1322.604655  1263.125999
1354.326273 Ay 1 1434.788746 1355716193
1397.1457 523 6 1488567073  1398.735676
3389.295 5.0 12 3415503
4306.130 5%%2 6 4378.736
4371.676 A 1 4445.232
4509.405 ,\?f’) 2 4592.177
4872.030 A 2 4983.081
5058.588 pre 1 5186.733
5160.178 51 3 5298.440
5493.225 A 3 5669.176
6310.148 5. 3 6613.023
6399.149 AEZ) 1 6719.463
6557.111 s 2 6910.399
6842.178 A 2 7262.035
6942.044 i 1 7387.533
6985.729 5355 15 7442.835

eigenvalues. Thus afixed proportion of approximate eigenvalues will have relative error
bounded by «.

In view of (5.9), the approximate eigenfunctions would have an acceptable error (a
multiple of ¢) for the portion of the spectrum below A(m, ¢), but the eigenfunctions
would lose al significance outside the range, even if the relative error in the eigenvalue
issmall.

We now discuss results obtained in the special case q = 0. Table 5.1 records the
eigenvalues as estimated using biharmonic splines at the first three levels. The true
eigenvalues are computed in [DSV]. Note, however, that a different normalization for
the definition of the Laplacian was used there, so the valuesin [DSV] must be multiplied
by 7.5 to obtain the values listed in the first column. (We have also corrected for some
roundoff error in the first two eigenvalues as reported in [DSV].)

We follow the notation from [DSV] to label the eigenvalues. There are three series
of eigenvalues: A2, n > 0, occur with multiplicity 1; 5A®, n > 0, k > 0, occur with
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multiplicity (3 + 3)/2; 52®, n > 0andn = 1 or 2 (mod 4), k > 0, occur with
multiplicity (3“t2 — 3)/2. The multiplicities were previously determined in [FS]. The
data is consistent with the observation that the estimates are always overestimates and
improve as the level increases. According to the data, the relative error is around 6.5%
for thelargest el genval ue estimates at each of thelevels. If welook only at the eigenvalue
estimates at each level that correspond to eigenval ues that appeared at the previouslevel
(that effectively means the first third of the eigenvalues, counting multiplicity) then the
relative error drops to around 0.11%.

The data also reveals that the order and multiplicity of the eigenvalues is correctly
predicted by the approximation. It is not difficult to present an argument that the ap-
proximation using harmonic splines always gives the correct multiplicity. The reason
isthat the multiplicities are explained by certain symmetries of a combinatorial nature,
and these symmetries are also present in the spaces of harmonic splines. It is not clear
how to present such an argument in the case of biharmonic splines, but the data strongly
suggests that the result is valid.

The data aso reveals astriking “octave” pattern to the sequence of eigenvalues, with
aperiodic repetition of groups of seven consecutive eigenval ues (not counting multiplic-
ity), which has not been previously remarked upon. We will digress a little to explain
this pattern, although the argument is unrelated to the finite el ement approximations.

Theorem 5.1. The eigenvalues in consecutive order (not counting multiplicity) occur
in*“ octaves’ as follows:

2 5) (5) 2
(5.14) Akomin—2 < Ak@min-2 < Akemin-1 < Ak@min-1
k4 (5 k—14 (6) k4 (5)
< Som <9 Aompe < 9Aamia

form>0andk > 1, wheree = 1if miseven, and ¢ = 0 if mis odd. The octaves
are ordered according to the size of the even numbers 2¢(2m + 1) — 2, so that the next
octave above (5.14) corresponds to (m', k') satisfying

(5.15) 2em +1) —2=22m+1).

Proof. Let

(5.16) Dy(x) =15+ +/25—4x)

and write ®,, = ®,, Py, , - - Py, Where w = (wy, ..., wy) with each w; = £. A

compl ete description of the eigenvaluesin terms of these functionsisgivenin [FS] (this
iswith the other normalization). Following the notation of [DSV]:

(5.17) )"r('nZ) = kILTo Skq)w[k] 2
where wyg = (wy, . .., wy) for
(5.18) wj = (=10t

if

o
(5.19) n=> 42
j=0
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is the binary representation of n. Note that all but afinite number of §; are zero, so all
but afinite number of ®,, are ®_. Similarly

5 H k
(5.20) AD = k'LTo 5@, (5)

with the same relationship (5.18) holding. For 1, the formulais dightly different,
6 L ekl
(5.21) Ay = lim 50, (6).

The condition that n = 1 or 2 mod (4) meansthat ®,,, = &,.

Now we may restrict x to the interval [0, 6] in all these computations. Note that ©_
isincreasing and @ isdecreasing on thisinterval, and also that ®_(x) < @, (X). Thus
®,, isincreasing if there are an even number of w; = +, and decreasing if there are an
odd number. Now from (5.18) it follows that the parity of the number of w; = + isthe
same as the parity of n, so ®,,,,(2) < ®,,,(5) for n even and the reverse inequality for
n odd. The fact that strict inequality is preserved in the limit ask — oo follows from
the fact that 5&’ (x) — 1asx — 0 at asuitable rate. This proves the first and third
inequality in (5.14). The second inequality is proved in [DSV].

To prove the fourth inequality in (5.14) it suffices to show

(5.22) Dy (2) < Dy (5)

for sufficiently large p, where wyy is determined by n = 22m+ 1) — 1 and wfp_k]
by n = 2m. For, if we multiply (5.22) by 5P and take the limit as p — oo, we obtain
’\;f)(zm 1 = 5"/\;?], and we can remove the equality asbefore. To prove (5.22) observe
that 2¢(2m+ 1) — 1 = 2%(2m) 4 2% — 1in binary hasthe digits of 2m transated k places
to the left and followed by k ones. By (5.18) this means that ®,,, = &, - o <L

Wip] Ip
Recall that q’w{p,k] is an increaisng function because 2m is even. Thus (5.22) follows
from @, (x) < 5for x intheinterval [0, 6] (here x = ®*71(2)).

The last two inequalities in (5.14) are quite easy. Note that it sufficesto take k = 1,
and show

(523) 5\ <AD <5

P oy and B <A <5

4m+-2 4m+-2 4m+-3°

The factor of 5 comes from the different powers of 5in (5.20) and (5.21), so we obtain
(5.23) from @_(5) < &, (6) < ¥, (5) by applying the increasing ®,,,, in the 4m case
and the decreasing ®,,,, inthe 4m + 2 case.

We have shown that the ordering (5.14) within octavesisvalid. Next we need to show
that the last term in one octave lies below the first term in the next octave, namely

k4, (5) )]
(5.24) S5 1 < Ao

Note that the binary expansion of 2m + 1 gets shifted to the left k places followed by k
zerosto obtain the binary expansion of 2¢(2m+ 1), and thereisaonein the place before
the added zeros. If we write wyp) to correspond to n = 2m+ 1 and wy,,,, to correspond

[K]

p+K

ton =2¢@m+1), thend,, = Dy, D+ @1 Now &, 0(2) < 5,andsince @,,,,,
is decreasing we obtain
(5.25) qu[p] (5) < CI)U)[/p+k] (2)'

Multiplying (5.25) by 5Pk and taking the limit as p — oo proves (5.24).
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Finally, since every eigenvalue appears in one of the octaves, we have the complete
ordered list. ]

There is considerably more structure to the spectrum than we have described. In
particular, the spectral gaps toward the top of the octaves (the last two inequalities
in (5.14)) appear to be significantly larger than elsewhere, including between octaves.
Undoubtedly, this could be explained by further study of the inequalities in the proof.
Also, the largest gaps occur exactly at the breaks between the approximate spectra at
different levels. It is not clear what the explanation for this might be (it is not true
for harmonic splines). Another interesting question is whether there is any asymptotic
statement about the relative eigenval ues within octaves.

6. Space-Time Equations

In this section we consider two basic space-time equations, the heat equation and the
wave equation. In both caseswetake Dirichlet boundary conditions, and no forcing term.
The initial value problem for the heat equation is

au(x,t)

5 = AxU(X, t),
(6.1) u(x, 0) = f(x),
u(X, Hlxev, = 0,

and similarly for the wave eguation

2
% = Ayu(x, 1),
(6.2) ux, 0 = f(x), W0 _ g(x),

u(X, Hlxev, = 0.

The data f (or f and g) are assumed to be continuous functions, vanishing on the
boundary for consistency. Actually the most interesting solutions are the heat kernel and
the wave propagator, where wetake f equal to adeltafunction at apoint (f = 0and g
a delta function for the wave propagator). Since the delta functions are not continuous
functions, we can only hope to approximate these solutions by using approximations to
deltafunctions in our spline spaces.

The solution to the heat equation (6.1) can be written formally

(6.3) u(x, t) = e f(x),
or, more precisaly,

(6.4) ux.t) =) e Muj(x),

where {u; } isan orthonormal basis of Dirichlet eigenfunctionsfor —A with eigenvalues
{A;}, and

(6.5) a = /fuj du.
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The spline approximation is obtained simply by replacing the eigenfunctions and eigen-
values by the spline approximations {Uy} and {A«} given by (5.2) (with Q = 0). Thus

(6.6) Pmu(x, t) = Zﬁ,— e‘dﬁj (x)
for
(6.7) g =/ fO; du,

where the sum in (6.6) is a finite sum. Note that (6.7) amounts to projecting f into
the spline space viathe L2 orthogonal projection. One could also approximate f by an
element in the spline space using a different method, and then use this splinein place of
fin(6.7).

Thisis not the way we would normally compute the approximation, however, since
we prefer to express functions in terms of our spline basis. So if

(6.8) Pat(X, 1) = Y ¢ (g (%)
is this representation, then

(6.9) c(t) = -G 1Ec(t),
hence

(6.10) c(t) = e ' 'Ec(0),

where {c; (0)} are the coefficientsof f, if f isalready in the spline space or, more gen-
eraly, an approximation to f in the spline space. We can use any matrix exponentiation
algorithm to compute (6.10). If we use a finite difference approximation in (6.9), this
amounts to writing

—tGE

1yl
e :(eik tG E)k

and then approximating e % tG™'E by | —k~tG~LE. Itisnecessary totakek sufficiently
large for this approximation to be accurate

(6.11) ct) ~ (I —k G 1E) c(0).

If %mex denotes the largest eigenvalue of G—E (the maximum of the eigenvalues %)),
then (k~*t Amax)? givesthe order of magnitude of the error for this approximationto Ppu.

From now on we concentrate on error estimates for Pnu (caled the semidiscrete
approximation). We will assume either that f belongs to the spline space, or that it
satisfies the hypotheses of Theorem 3.1 so that it may be approximated by splines with
the appropriate accuracy. We will follow closely the arguments in the classical theory,
as presented in Theorem 3.1 of [Th]. Since much of the argument is generic in nature,
we will only outline the proof.

Theorem 6.1.
(8 Let f € domy 2 A with f |y, = 0. Then for harmonic splines
(6.12) lu— Pmull2 < c[|Af]20™
foralt > 0.
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(b) Let f e dom > A? with f|y, = 0and Af |y, = 0. Then for biharmonic splines
(6.13) lu— Prullz < cl|AZ f[|20°"

forallt > 0.

Proof. We may assume that f belongs to the spline space in view of the remarks
following Theorem 3.1 and thefact that €' contracts L 2-norms. Wewritee = Pyu—ufor
theerror, andlet (—A)~*and (— Ap,) ! denotetheinverseof — A with Dirichlet boundary
conditions and the spline approximation, respectively. Then asimple computation shows
that

§E——A e=—Au+ Apu
Bt m- — m
hence
d
(6.14) (—Am)’la—f +e=-h
for
1 _1.0U
(6.15) h=({(—-An)"" —(-4) )ﬁ.

We take the inner product of (6.14) with eto obtain

10

5 5¢ | S-AmTedu+ el = - / hedu < 3llel5+ 3lIhl3.

After integration thisyields

t t
(6.16) / lelZds < / Ih2ds
0 0

since e(0) = 0 and (—An,) ! is positive. Also, taking the inner product of (6.14) with
de/ot and doing similar manipulations yields

t oh
(6.17) t||e(t>||§szt||h||2||e||z+/0 (||e||§+2||h||z||e||2+zs t ||e||2)d5-
2

Combining (6.16) and (6.17) with elementary inequalitiesyields

ah
(6.18) let)ll2 < ¢ sup (s ﬁ(S)

o<s<t

+ IIh(S)|I2> .
2

We will use the estimate (6.18) to prove both parts of the theorem. The arguments
used to prove (6.18) did not involve the smoothing properties of the solution of the heat
equation, but these will now be used in the estimates for ||h||, and ||dh/at||,. For part
(a) we use the same part of Theorem 3.7, with q = 0, and the Remarks following it. In
view of (6.15) we have

(6.19) Ih®)[l2 < co™

at |,
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and
2
6.20 — @) <co™
(620 t|5e0) <eom| e
But
ou o\ 1/2 1/2
2]~ (Srmer) = (S
while

1/2
20 e —1 2
(|22 = (e <o (Smar)

and |Afll2 = (3 1Aja1?)Y2. Thisyields (6.12).
The reasoning for part (b) issimilar. In place of (6.19) and (6.20) we have

2

ht)|l2 < co®™ | —
IOl = ™ | 55|

' oh
t
at

using part (b) of Theorem 3.7. Now

’ (Z \Paje| ) (Z 173y |2> v

and
3

a3
and
3 —tx —1 24,12 12
8t3 <Z|tkae J|> <e (Z|Ajaj|)
and
1/2
182812 = (Y 137y 12)
(this uses the assumption that Auly, = 0). Thisyields (6.13). ]

The solution of the wave equation (6.2) can be expressed similarly as

(6.21) u(x,t) = cost/—Af + Smtﬁ_Ag,
or, more precisely,
(6.22) ux.ty =y (aJ costy/A + b f) uj (X)

with
(6.23) g :/ fLIJ' du, bj =/ng du.
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The spline approximation is
= sint ’Xj
(6.24) Pau(x,t) = > | & costy/Aj + bj—=—— | T (%)
Aj
with
aj :/ fﬁj d/L, SJ Z/gﬁj d;L.

In the spline basis representation (6.8) we have

— sintv/G-1E
C(t) == COSt G 1ECf (O) + ﬁCg(o)

with the coefficients of f and g (or spline approximations to them) in the spline basis
denoted c; (0) and c4(0). Again there are a variety of options for approximating the
matrix computationsin (6.26). The numerical implementation isvery similar to the case
of the heat equation.

We cannot prove the analog of Theorem 6.1 for the wave equation, however, because
wedo not havethe anal ogous smoothing propertiesto estimate derivatives of the solution.
In other words, we could get as far as (6.18) in the argument, but no further. In fact, it
is possible to obtain some results by assuming more smoothness for the data, but these
results are essentialy uninteresting because the splines themselves do not have this
additional smoothness.

The web site contains programs implementing the approximate solutions to both
the heat and wave eguations, and the graphical output of trial runs. The approximate
solutions of the wave equation exhibit quite intricate behavior on asmall scale, but itis
not clear whether thisis attributable to artifacts of the method or actual features of the
wave equation. Solutions may be viewed in real time to simulate vibrations propagating
through the gasket.
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