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�� Introduction

There are many examples of physical systems which exhibit phase transitions� for example
ice melting� or a ferromagnetic material becoming permanently magnetised� The percola�
tion model is an example of a simple mathematical model which exhibits a phase transition
and it is hoped that some insight may be gained by understanding the percolation model�
which will transfer to the analysis of phase transitions in other physical systems� Equally�
important ideas based on physical intuition such as scaling theory� and the renormalisation
group� introduced originally with little or no mathematical rigour can be of great help in
understanding these systems from a physical viewpoint�

The �rst part of this essay consists of a general overview of the percolation model
near the critical point� and discusses the idea of critical exponents and their interrelations�
without being particularly concerned with rigour� The second part presents a very brief
account of what is proven in the two dimensional case� and the more major third part
discusses the behaviour of the model in high dimensions� including a proof via the lace
expansion of the existence of critical exponents in high dimensions� In many places results
stated here are not �best possible	� for example many results have been restricted to bond
percolation on the hypercubic lattice� since the technical details involved in the more
general case seems mainly to hide the ow of the argument� In particular no discussion is
given of the �spread out lattice	 on which many of the lace expansion results were originally
proved� However the original paper of Hara and Slade �Hara and Slade� ����a� contains a
detailed discussion of this model�

���� The percolation model
There are two variants on percolation which will be considered in this essay� namely site
and bond percolation� To start� take a lattice of some sort in d dimensional �Euclidean�
space� This lattice will be denoted L

d � The lattice consists of a set of vertices V �the sites�
joined by a set of �possibly directed� edges E �the bonds��

Most of this essay will be concerned with the hypercubic lattice� which has vertex set
V
d � Z

d� and edge set Ed � f�x� y� � kx� yk � �g� This pair �Vd � Ed � will be denoted L
d

as a short hand� Throughout d will universally be taken to denote the dimension of the
space under consideration�

Site Percolation

In the site percolation model� each site is either open or closed� Each site is declared open
with a probability p �� � p � ��� independently of all the other sites� If a site is not open
then it is closed�

Bond Percolation

The bond percolation model behaves similarly� Each bond is either open or closed� and it
is declared open with a probability p independently of all the other bonds�

It turns out that all bond percolation problems can be described as site percolation
problems on a �covering	 lattice of the original lattice� The converse is not true�

��
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Figure �� Simulation of Bond Percolation on a �� � �� fragment of the
square lattice L� � at p � pc � ���� The origin is represented by a black
dot�

The Percolation Probability
Take a �xed site� which will be called the origin and denoted � �it is clear that the model
is translation invariant in the choice of this site�� Now consider the event that the origin
is joined to in�nitely many other sites by open bonds� Let the probability of this event�
the percolation probability be denoted ��p�� where as before p is the probability of a given
bond being open� As p increases from zero to one� for d � �� ��p� can be shown to be zero
for all p � pc� and non zero for p � pc� for some value � � pc � � which is called the
critical probability� The following graph shows the principal features of the graph of ��p�
against p�
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Figure �� General features of the behaviour of ��p� plotted as a function
of p� The phase transition occurs at the critical probability pc� Note that
some features of this graph remain conjectures� such as the continuity
of ��p� at pc �the possibility of a jump discontinuity has not been ruled
out��

���� The Phase Transition
An immediately obvious question is what happens to ��p� in the vicinity of this critical
point pc� For example is ��pc� zero� This question� trivial though it may seem� remains
unanswered for moderate values of the dimension d �it is known to be zero for d � � and
d � ����

Another conjecture is that in the vicinity of the critical point

��p� � �p� pc�
� as p � pc�

It is not even known how strong is the asymptotic relation implied by the symbol ��
although it is most probably of a logarithmic form� that is

lim
p�pc

log ��p�

log�p� pc�
� ��

This constant � is called a critical exponent and is believed to be universal� that is the
same constant applies for all lattices in d dimensional space� Note that this conjecture
forces ��pc� to be zero� or else the limit in question would not be de�ned�



�� Notation

A few details must be cleared up here to avoid confusion later on� In general a graph�
ical notation for open paths on the percolation lattice will be used�� The case of bond
percolation will be used for the remainder of the essay�

Paths
A path connecting x� to xn on the lattice is an alternating sequence x��e��x��e��� � �� en���xn
of distinct vertices xi and edges ei between vertices xi and xi��� The path is said to be
open if all the edges ei are open� The event that a and b are joined by such an open path
is denoted

a�b�

Often when describing a more complex event it is important to indicate that two paths in
the event are edge disjoint �that is they have no edges in common�� This will be expressed
by writing each path as

a�b�

When a single bond is to be used in a path� it is traversed in a particular direction and so
the notation u�v will be used for the directed bond from u to v �it is broken to indicate
that no information is being given as to whether it is open or closed�� On the occasions
when an undirected bond is referred to� this will be written as �u� v��

Pivotal and Key Bonds
Given a bond con�guration� a bond u�v is said to be a pivotal for the connection ��x if
there exists a path from � to u� and a path from v to x� but if the bond u�v is closed then
there is no connection between � and x� Note that no information is implied about the
actual status of the bond u�v� This event is expressed diagramatically as�

��u�v�x�

If the pivotal bond is open� then it is possible to go one step further and say that it is a
key bond for the connection� This is expressed diagramatically as

��u�v�x�

The solid bond u�v indicates that the bond is open� Thus it can be seen how the previous
remarks about directionality are signi�cant� since the events

��v�u�x� and ��u�v�x�

are distinct� This is advantageous in that it simpli�es the notation for summations over�
for example� all bonds u�v without problems of counting a bond twice�

� These notations seem to be non�standard� although based on the notation in �Hara
and Slade� ����a��

��
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Double Connectedness
The point x is said to be doubly connected to y if there exist at least two edge disjoint
paths from x to y� which will be denoted

x�y�

Clusters
The open cluster containing x� denoted C�x� will be de�ned as the set of all sites connected
to x by an open path� The size of the cluster jC�x�j is the number of sites which it contains�

Sometimes restricted clusters of sites connected to x without using a particular bond�
or a particular group of sites are of interest� The notation C�u�v��x� is the set of all sites
connected to x without using the �undirected� bond �u� v�� Similarly if B is a set of sites�
then CB�x� is the set of sites connected to x without using any site in B�

Avoidance
Later on� it will become useful to consider paths which do� or do not use a set of bonds�
especially when describing the lace expansion� The following� fairly obvious graphical no�
tation

x�A y�

denotes a connection from x to y avoiding the sites in the set A i�e� using no bond with an
endpoint lying in A� and

x�A
y�

denotes a connection between x and y using at least one site in A� and there is no connection
from x to y without using a site in A�



�� Basic results

The results presented in this section� are results from the theory of increasing events which
will prove useful in the sequel� Lack of space precludes the inclusion of proofs which can
be found in �Grimmett� ������ �Grimmett� ������

For percolation� a probability space ���F �P� will be used� with sample space � �Q
s�Sf�� �g� where S is a �nite� or countably in�nite set� points of which are called con�

�gurations� For example bond percolation on the hypercubic lattice has S � E d � and a
con�guration assigns a value of � or � to each edge� depending upon whether it is open or
closed respectively� The ���eld F is that subsets of � generated by the �nite dimensional
cylinders� The measure P is the product measure on ���F�� that is P �

Q
s�S �s� where

for each s � S�
�s�	�s� � �� ��� p�s��

�s�	�s� � �� �p�s��

In this essay the special case where p�s� � p for all s � S alone will be considered� In this
special case� the product measure is denoted Pp�

���� Existence of the Phase Transition
The following important theorem implies the existence of a phase transition for dimension
greater than or equal to two� Proof may be found in �Grimmett� ������ �Grimmett� ������
or �Grimmett� ���
��

De�ne
pc �� supfp � ��p� � �g�

Theorem ����
For dimension d � � then � � pc � ��

���� Increasing Events
To de�ne a partial ordering on �� let 	� and 	� be elements of � Then de�ne 	� � 	� if
and only if 	��s� � 	��s� for all s � S�

An event �which is a subset of �� is de�ned to be increasing if 	 � A� and 	� � 	
implies that 	� � A�

An example of an increasing event is x�y Clearly if this event occurs� making more
edges open cannot stop it from occurring� so the event is increasing�

This de�nition may be extended to a random variable X� which is increasing if 	 � 	�

implies that X�	� � X�	���

���� FKG Inequality
Intuitively it seems reasonable to expect some form of positive correlation between increas�
ing events� For example if x�y then this would be expected to increase the probability of

u�v� This form of correlation is expressed by the FKG inequality�

Theorem �FKG Inequality� ����
For increasing random variables X and Y then the following holds�

E p�XY � � Ep�X�Ep�Y ��


�
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Corollary ����
For A and B increasing events

Pp�A �B� � Pp�A�Pp�B��

Proof
Let X � I�A� �here I�A� is the indicator function of A�� and Y � I�B� then Ep�X� �
Pp�A�� and E p�Y � � Pp�B� and the result follows from the FKG inequality�

���� BK Inequality
This is a partial converse to the FKG inequality� It concerns itself with disjointly oc�
curring increasing events� First a de�nition of disjoint occurrence is necessary� Given a
con�guration 	� let K�	� be the set of edges which are open in the con�guration i�e�
K�	� � fe � E � 	�e� � �g� The event that A and B occur disjointly is denoted A � B�
and is de�ned to be the event�

A �B �f	 � � � A and B occur disjointlyg�
�f	 � �H 	 K�	�� such that 	� � A�	�� � B�

where K�	�� � H�K�	��� � K�	� nHg�

An example of disjoint occurrence in percolation is that of edge disjoint paths� Let
A � fa�bg and B � fc�dg� Then the event A � B is the event that there are two edge
disjoint paths� one from a to b� and the other from c to d i�e� the event fa�b and c�dg�
Theorem �BK Inequality� ����
If A and B are increasing events then

Pp�A �B� � Pp�A�Pp�B��

���� Russo�s Formula

Theorem �Russo�s Formula� ����
Let E be a �nite set and � � f�� �gE and let A be an increasing event of �� Then if
� � p � �

d

dp
Pp�A� � Ep�N�A���

where the random variable N�A� is the number of edges which are pivotal for the event A�



�� Critical Exponents

As has already been discussed there are singularities in macroscopic functions of the model�
such as the percolation probability ��p� at the critical probability pc� It is believed that
they exhibit power law behaviour about the critical point� and so critical exponents are
introduced to describe this behaviour� There is no general proof of the existence of these
exponents� although in the special case of Cayley trees it may be proven� as it will be later
for high dimensions�

The same critical exponents are believed to be valid for site or bond percolation� on
any lattice in d�dimensional space� This gives rise to the hypothesis of universality� which
states that critical exponents depend only upon dimension�

The names which are used for the exponents are based on those used in Statistical
Mechanics where similar behaviour is observed in� for example� magnetic systems �such as
the Ising model� or the q�state Potts model��

���� Principal Exponents
Of these critical exponents� there are three principal ones� which are described in this sec�
tion� As in the introduction� the relation ��	 will be used to denote an imprecise asymptotic
relation�

Percolation Probability
The percolation probability has already been mentioned in the introduction�

��p� � Pp�jC���j � 
� � �p� pc�
� as p � pc�

This corresponds to spontaneous magnetisation in magnetic models�

Mean Cluster Size
The mean cluster size 
�p� is de�ned to be the expected number of points in the open
cluster containing the origin�


�p� �Ep �jC���j� �
X
x

Pp���x��

��
�Pp�jCj � 
�� �
�X
n��

nPp�jCj � n��

��pc � p��� as p � pc� �����

This corresponds to the magnetic susceptibility in magnetic models�

Cluster Size Distribution
A third principal exponent � is introduced by

Ppc�jC���j � n� � n������ as n�
�

��
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���� Other Critical Exponents
In the supercritical phase 
�p� � 
� but if only the contributions from �nite clusters are
considered� then the principal critical exponent � has an associated exponent �� such that


f �p� � Ep�jC���j� jC���j �
� � �p� pc�
���

as p � pc� �����

It is conjectured that � � ��� in which case as 
f �p� � 
�p� for p � pc the two relations
����� and ����� give


f � �p� pc�
�� as p� pc�

The remainder of the critical exponents will be introduced as follows� As for 
�p�� in some
cases a supercritical analogue ���� of an exponent from the subcritical phase ��� may exist�
It is however generally conjectured that the two values are equal�

Number of Clusters per Site
Let �p� be the mean number of clusters per lattice site

�p� � E �jC���j�� � jC���j �
��

this  is believed to be di�erentiable twice� but to have a singularity in its third derivative
of the form

����p� �

� jp� pcj���� as p � pc�
jp� pcj�����

as p � pc�
where �� � �� �� � ��

Gap Exponents
A sequence of critical exponents can be introduced by considering the ratios of the moments
of the cluster size distribution� for m � ��

E �jC���jm���

E �jC���jm�
� �pc � p���m�� as p � pc�

It is conjectured that �k � � for all k � �� Analogously if the expectations are restricted
to �nite clusters

E �jC���jm�� � jC���j �
�

E �jC���jm � jC���j �
�
� jp� pcj���

m�� as p � pc�

Similarly it is conjectured that ��
k � �k � �� for all k� and this conjecture is supported

by the results of scaling theory�

Cluster Radius and Connectivity Function
At the critical point three exponents are signi�cant � �already discussed�� �� and ��

Ppc�rad�C���� � n� � n������ as n�
�

where rad�C� is de�ned as maxfkxk� � x � Cg�
Ppc���x� � jxj��d���
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Correlation Length
Let e� denote the �rst unit vector in the standard basis� De�ne �n � Pp���ne��� By the
FKG inequality �and translation invariance��

�m�n � �m�n� �����

so by the subadditive inequality �proven in Appendix II of �Grimmett� ������� the limit
limm��

�
m log �m is de�ned� Hence for p � pc it is possible to de�ne a correlation length

��p� by
�

��p�
�� � lim

m��

�

m
log �m�

The following result can be proven

�m � e�
m
��p� �

This result gives an example of how the correlation length gives a natural length scale of
the system� on which to measure the size of clusters� As p tends to its critical value� this
length scale diverges� Hence a critical exponent � is conjectured

��p� � �pc � p��	 as p � pc�

In the supercritical phase another de�nition of the correlation length is needed� There are
several possible ways to introduce a �connectivity	 function� one of the most natural being

Pf
p ���x� �� Pp���x� jC���j �
��

Using this� an analogue of the correlation length can be de�ned

�

�f �p�
�� � lim

m��

�

m
logPf

p ���me���

The simple multiplicative inequality ����� no longer holds� and a more detailed analysis
�see �Chayes and Chayes� ������ or section ����� of �Hughes� ���
�� is needed to prove that
the limit in question exists� It is then postulated that

�f �p� � �p� pc�
	�

as p � pc�

where it is conjectured � � ���

���� Scaling Theory
So far a number of critical exponents have been introduced� however it is not believed
that they are independent� The following scaling relations are widely believed to relate the
critical exponents �although this has not been proven�� The �rst group are just statements
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of the various conjectures about equality of critical exponents� which have already been
mentioned when those exponents were introduced�

� ����

� ����

� ��k � ��
k for k � ��

The second group are rather more signi�cant relations between the di�erent critical expo�
nents�

�� � �� � �� � ��� � ���

� ����

� ����� ���

Their heuristic derivation comes from scaling theory� which starts by assuming that
all the critical exponents conjectured exist� It is then postulated that the behaviour near
to the critical point is dominated by a single length scale� This is expressed by introducing
the Stau�er ansatz��

singular part of Pp�jC���j � n� �
�
n�
f��n�jp� pcj� p � pc�
n�
f��n�jp� pcj� p � pc�

where the functions f� and f� are smooth functions� In the following� f will be assumed
to be chosen appropriately depending upon whether p � pc or p � pc�

The �rst relation comes from the list of critical exponents� since there is a direct link
between � in this expression and the critical exponent �� namely

� � � �
�

�
� �����

Given this assumption� the singular part of the kth moment is computed from the ansatz
by�

singular part of
�X
n��

nkPp�jC���j � n� �
Z �

�

nk�
f�n�jp� pcj�dn�

� �

�
jp� pcj�
���k���

Z �

�

z	�k���
���
��f�z�dz�

where in the last step the change of variable z � n�jp � pcj has been made� Noting that
many of the critical exponents come from the behaviour near the critical points of such
moments� the following identities can be derived� if the Stau�er ansatz is to be consistent
with the existence of the critical exponents�

� There is some ambiguity in the de�nition of the exponents �� and � in the literature�
some authors preferring to incorporate the correlation length in the ansatz� but this is
not signi�cantly di�erent� since the existence of all critical exponents has been assumed�
including � for the correlation length�
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Minus �rst moments
The minus �rst moment of the cluster size distribution is

X
n

�

n
Pp�jC���j � n� � E p�jC���j��� jC���j �
� � �p��

From the Stau�er ansatz with k � ��� it is suggested that�

�p� � �p� pc�

���

The critical exponent � was introduced by suggesting

����p� �
� jp� pcj���� as p � pc�
jp� pcj�����

as p � pc�

so by a fairly large leap of faith

�� � � �� �� �
�

�
� �����

Zeroth Moments
The zeroth moment is

P
n P �jC���j � n� which is related to the percolation probability by

�� ��p� �
X
n

P �jC���j � n��

hence given that ��p� � �p� pc�
� � it is postulated that

� �
� � �

�
� ���
�

First Moments
The �rst moment

P
n nPp�jC���j � n� � E �jC���j� jC���j � 
�� directly gives 
f �p�

�irrespective of whether p � pc� or p � pc�� so it is postulated that

� � �� �
�� � �

�
� �����

Second and Higher Moments
Taking ratios of moments suggests that

E �jC���jk � jC���j �
�

E �jC���jk�� � jC���j �
�
� jp� pcj��k as p � pc�
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which implies
� �� �k � ��

k � ���� �����

Now taking relations ����������� together the following relations are obtained directly�
Multiplying ���
� and ����� by � and adding yields

� �
�

� � �
�

Also using ������ �� � � � ���� � �� � ���� Hence from ������

�� � �
�

�
�
�� � �

�
from ���
��

�� �
�

�
� � � �� � ���

�� � ���

Also the gap exponent satis�es

� �
�

�
� � � � � ���

The �nal scaling relation may be justi�ed similarly only by the introduction of another
ansatz such as

P���x� jC���j �
� �
� jxj��d��g��jxj���p�� as p � pc and x�
�
jxj��d��g��jxj���p�� as p � pc and x�
�

where in fact g� and g� are believed to be exponential� This is then used in a similar way
to suggest

E p�jC���j� jC���j �
� � ��p�����

and therefore the relation � � ���� �� is suggested�

���� Hyperscaling Relations
In addition to the scaling relations two hyperscaling relations may be suggested� which are
believed even less strongly than the scaling relations� These state that for d � dc� where
dc is some upper critical dimension� which is believed to be six�

d� �� � ��

�� � �d��

Together with the scaling relations these yield

�� � � � � �� � ��� � �� � d�� �����

Thus the picture which this leaves is of a lower critical dimension �which is one for percola�
tion� and for d less than or equal to this lower critical dimension no phase transition occurs
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in the system� For d greater than this value there is an intermediate region � � d � dc
where the system undergoes a phase transition� but the values of critical exponents depend
upon the dimension d� Finally there is a third region for d � dc� when the critical exponents
are universal and independent of d� and take the same values as the critical exponents for
percolation on Cayley Trees� Making this assumption and inserting the values for Cayley
Trees �see section �� in ������ one obtains d����� � ���� � � which implies that d � 
� This
is taken as suggesting that dc � 
� which is backed up by other similarly tenuous arguments
from statistical physics� However as the next section shows dc must be greater than six�
and for dimensions greater than nineteen the high dimensional mean �eld behaviour can
be established �see section ���

The introduction of the hyperscaling relations can be justi�ed �again rather tenuously�
by assuming that the correlation length ��p� provides the only length scale near the critical
point� The quantity  is analogous to free energy in a magnetic system� The singular part
of this may be expected to scale as

 � �length scale�d � jp� pcjd	 �

Now it is possible to make a tenuous connection between this and the exponent � which
satis�es

 � jp� pcj���� as p � pc�
suggesting � � � � d�� provided d� � �� so that the third derivative does in fact have a
singularity�

���� Hyperscaling Inequalities
Although the hyperscaling relations have not been proven� various inequalities have been
proven �see �Chayes and Chayes� ����� and �Tasaki� ������� which become exact equalities
if the hyperscaling hypothesis holds� Examples of these from �Tasaki� ����� are

�d� �� �� ����

d�� ��� � ��� dmax��� ��� � � � ��

d� ���n � �� for n � ��

d�� ���
n � �� dmax��� ��� � �n � �� for n � ��

These imply that the critical exponents cannot simultaneously assume their mean �eld
values in dimension d � 
� since the inequalities are inconsistent� This implies that dc � 
�

���� Open Questions
To summarise the results of the previous sections� in general the following results have not
been proven rigorously�
 The existence of the critical exponents for d � ���
 The universality hypothesis�
 The scaling relations�
 The hyperscaling relations�
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 The conjectured values for the critical exponents� for d � �� and the values of these
exponents for 
 � d � �� �these are believed to be the mean �eld values� as for
d � ����

� It has been conjectured that in d � � the critical exponents universally assume the
following values � � ����� � � ���
� � � ������ � � ���� and � � ����



�� Percolation on Trees � Mean Field Values

A Cayley tree is a graph with no closed loops where each vertex �except for one special
one called the �root	� has the same co�ordination number �the number of edges which
meet there�� A binary tree is such a tree where each vertex has co�ordination number ��
Percolation on such trees was �rst described by Fisher and Essam in ��
� �Fisher and
Essan� ��
���

It is possible in this case to prove rigorously the existence of all the critical exponents�
However� there is a di�culty in de�ning some of them such as � �the exponent for corre�
lation length� since there is no good natural measure of the distance between two sites on
the tree� This is usually done by treating the tree as embedded in an in�nite dimensional
space� Then the distance between sites joined by an n step path may be taken as

p
n� In

addition the de�nitions of the exponents � and � must be amended �see �Grimmett� �����
section ����� The critical exponents can be shown to take the following values on a tree�

� �
��� � �
� �
� ��
� �
� �

�
� �
� �

�

which satisfy the conjectured scaling relations of section ����
As an example� the proof of the existence of � is given in the case of a binary tree�

Theorem ����
For a binary tree ��p� � �p� pc�

�T where �T � ��

Proof
Let C be the open cluster of the tree containing the root� The open portion of the tree may
be thought of as a branching process� with a single original parent� each �single� parent
may have either zero� one or two o�spring� The number in each case is a sample from
the binomial distribution bin��� p�� The cluster C is then �nite if and only if the process
becomes extinct� Let G�s� be the probability generating function of a typical family size�

G�s� � ��� p��s� � ��� p�p
�

�
s� � p�s� � ��� p � ps���

The extinction probability is then the smallest non�negative root of s � G�s�� This turns
out to be � if p � �

� and ���pp �� if p � �
� � Hence the percolation probability is given by

��p� �

�
� if p � �

� �

�� ���p
p

�� if p � �
� �

�
�
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Thus the critical probability for percolation on the Cayley tree is �
� � Now di�erentiate the

expression for ��p� �for p � pc� at pc � �
�
� to obtain

��p� � ��p� pc�
� as p � �

�
�

This proves that �T � � as required�

Proofs of the other results may be found in �Grimmett� ������ or �Hughes� ���
��

���� Tree Inequalities
The following inequalities can be proven between the values of the critical exponents in Ld

and those on the tree�

Theorem ����
If any of the exponents � � or � exists for percolation on Ld  then they must take a value
greater than or equal to the corresponding value for percolation on the tree�

For a tree �T � �� and the proof that � � �T is similar to the �rst half of the proof
of Theorem ���� which provides the bound


�p� �
�

�d�pc � p�
for p � pc�

which on comparison with the hypothesis 
�p� � �pc � p��� for p � pc yields the desired
inequality � � ��



	� Low Dimensions

As has been mentioned earlier� rigorous results are known either for d � � or d � ���
This essay concentrates on the high dimensional case� However a summary of the low
dimensional results is presented here� Further details can be found in �Langlands et al��
������ �Langlands et al�� ������ The following only applies to the two dimensional case�
however the lattice will not be �xed as L� �

���� Critical Exponent Results
Kesten has proved the following important results in the two dimensional case� If the
critical exponents � and � exist� then all of the other critical exponents �except �� exist
and the scaling and hyperscaling relations not involving � hold� namely

�� � � � �� � ��� � ��� �� � � � �� � � ���� ���

���� Conformal Invariance
Let C be a simple closed curve in R� � and let � and � be arcs of C� Introduce r � �� a
dilation factor and consider Ppc�r� is connected to r� in rC�� It is believed that the limit
as r �
 exists and this de�nes a quantity ���� ��C�

���� �� C� � lim
r��

Ppc�r� is connected to r� in rC��

A graph based model of percolation M is speci�ed by the fundamental data discussed
in section � �the graph� probability function� con�guration space� product measure�� An
element g of the group GL���R� acts on a model M of percolation by sending sites s �� gs
and bonds b �� gb� The group elements act similarly on events E �such as the crossing event
described above�� The probability of the event E in model M will be denoted ��E�M��

Conjecture �Universality��
For M and M � models of percolation on graphs then there is an element g � GL���R�
such that

��E�M �� � ��E� gM��

Note that this is a di�erent assertion from the universality of critical exponents which
has been discussed elsewhere�

Conjecture �Conformal Invariance��
For every model M  there is a linear transformation J � J�M� of the plane establishing
a complex structure �multiplication by i is given by x �� Jx and J� � �I� such that for
every function � which is J �holomorphic or J �antiholomorphic in the interior of C and
continuous up to its boundary

���E�M� � ��E�M��

for all events E�

���
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An example of establishing a complex structure is given by considering the model M�

of percolation by site on the square lattice� We may establish a complex structure by
identifying one co�ordinate direction with the real axis� and the other with the imaginary
axis i�e� by setting

J� �

�
� ��
� �

�
�

The ensuing holomorphic functions are the usual ones on the complex plane�

���� Cardy�s Formula
Cardy �Cardy� ����� made a remarkable conjecture as to the crossing probability of a
region in two dimensional percolation� If the percolation lattice is con�ned to the upper
half plane� then the probability of a crossing between the interval  x�� x�! and  x�� x�! of
the x�axis is given by�

Ppc f x�� x�! connects to  x�� x�!g �
�"����

"��� ��
�����F�

�
�

�
�

�

�
�

�

�
� �

�
�

where � is the cross�ratio of the four points x��x�� x� and x�� and �F� is the hypergeometric
function� and " is the gamma function �for de�nition see �Abramowitz and Stegun� ��
����

To apply this to �nd the crossing probability for a rectangle� consider a Schwartz�
Christo�el transformation �see �Nehari� ������ of the upper half plane into a rectangle�
Let the points corresponding to the vertices be ���k����� and ��k� for a real parameter k�
so the points lie on the x�axis� then the transformation is�

z ��
Z z

�

dtp
��� t����� k�t��

�

Then the cross ratio and aspect ratio of the rectangle are given by

� �
�z� � z���z� � z��

�z� � z���z� � z��
�

�
�� k

� � k

��

� r �
�K�k��

K��� k��
�

where K�u� is the complete elliptic integral�
This value of � may then be substituted into the formula for the crossing probability�

giving the probability of crossing a rectangle of aspect ratio r� in the limit as the size of
the rectangle becomes in�nitely great� This formula may be expressed explicitly in terms
of r� see �Zi�� ����a� and �Zi�� ����b��

The formula is supported by numerical evidence �such as that of �Langlands et al��
����� and �Langlands et al�� ������� I have calculated some additional supporting results
which are presented in the appendix� which includes some tabulated values of the crossing
probability for a rectangle which was computed from Cardy	s formula�




� High Dimensions

This section presents an overview of results in high dimensional percolation theory and
explains the goals of this part of the essay�

The aim is to prove that in high enough dimensions some of the critical exponents
of the nearest neighbour percolation model exist� This is a fairly substantial goal and to
reach it a number of stages are needed�
�i� Express P���x� using convolutions� by using an expansion �the Lace Expansion�� In

the processes it is necessary to bound the terms in the expansion to be sure that it
converges�

�ii� Take the discrete fourier transform of this expression and solve for the fourier trans�
form of P���x��

�iii� Use the BK inequality to bound the expression for this fourier transform�
�iv� Using this bound establish that T �pc� � 
� the so called triangle condition holds in

su�ciently high dimensions�
�iv� From the �niteness of T �pc� deduce the main result of high dimension percolation

theory� the existence of the critical exponents�
The statement of this main theorem is as follows� although it is conjectured that it is

possible to reduce the minimum dimension from nineteen to six �but no lower��

Theorem 
���
For all dimensions greater than or equal to nineteen for the nearest neighbour percolation
model the following hold


�p� � �pc � p��� as p � pc�
��p� � �p� pc�

� as p � pc�
��p� � �pc � p����� as p � pc�

E �jC���jm�� � jC���j �
�

E �jC���jm � jC���j �
�
� �pc � p��� as p � pc� for m � ��

Here the asymptotics are of the strong form

f�x� � g�x� � �c�� c� such that c�g�x� � f�x� � c�g�x� for all x close to xc�

In this essay� the �rst of these results �for 
�p�� will be proven in outline form� Fol�
lowing similar methods� the other results of theorem ��� may be proved� apart from that
for the correlation length �� The proof of this is more involved� but based on proving sim�
ilar results for emx� �weighted quantities� for example the function emx�Pp���x� replaces
Pp���x�� This proof may be found in �Hara� ������ The theorem is valid for �su�ciently
high dimension	� the best precise form of this condition which has been found so far being
d � �� �proof unpublished��

���



�� Three Important Lemmas

Three lemmas will be used in the development of the Lace expansion� so they are stated
now along with some useful corollaries� Their proof is not fundamental to the structure of
the sequel� so it has been deferred until the end �section ����

Lemma A�
Let A be any non empty set of sites� Let the event E be the event that �� is connected to
u through A and no pivotal bond for the connection has its �rst endpoint connected to �
through A�� Then

Ep �I�E�I���u�v�x�� � pE p

�
�I�E�I

�
�
v�C�u�v���� x

	
A


� �

Corollary A��

Pp���u�v�x� � pEp

�
�I���u�Pp

�
�
v�C�u�v���� x

	
A


� �

Proof
Take the event E in lemma A to be �� is connected to u through fug	� Then the result
follows immediately�

A similar result holds for Pp���u�v�x�� without the leading factor of p�

Corollary A��

Pp���u�v�x� � pEp

�
�I���u�Pp

�
�
v�C�u�v���� x

	
A
	
A �

Proof
Take A � Zd� then the event E requires there to be no pivotal bonds in the connection
from � to u� which means that there must be two edge disjoint paths between these points�
i�e� ��u�

The following lemma is a technical tool to allow the set of �closable	 bonds to be
enlarged arbitrarily in order to complete the proof of the triangle condition in full generality�
In our application� we shall take B � fz � Zd � kzk� � Rg�
Lemma B�
Let u be any unit vector� Then for a box B � fx � Zd � kxk� � Rg � f�� ug

Pp
�
���x� u�C���u��x� y

	
A � ��p�Pp

�
���x� u�CB�x� y

	
A �

where ��p� � min�p� �� p�bonds in B �

���
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Lemma C
The following lemma is used in the conjunction with Lemma B� It should be noted that
the event on the left hand side here is the same as that appearing in the right hand side
of Lemma B��

Lemma C�

Pp
�
�

��x� u�CB�x� y

	
A � Ep

�
�I���x�Pp

�
�
u�CB�x� y

	
A
	
A �

� Lemma C is used as an equality in �Aizenman and Newman� ����� �see equation
�
����� but it would appear that it should in fact be an inequality�



�� The Triangle Condition

As was mentioned in the introduction� as the number of dimensions increases� percolation
on the lattice becomes more and more like percolation on a tree� Thus we are led to consider
the importance of loops in the lattice� and a measure of this is suggested by the triangle
function T �p��

T �p� �
X
x�y

Pp���x�Pp�x�y�Pp�y����

where the sum extends over all vertices x and y� The triangle condition is the condition
that at the critical point� the triangle function is �nite� that is

T �pc� �
�

The validity of this condition is not immediately obvious� since 
�p� �
P

x Pp���x�
diverges as p � pc�
Theorem ����
In the nearest neighbour bond percolation model on Zd if the triangle condition is satis�ed
in space of dimension greater than two then


�p� � �pc � p��� as p � pc�

The proof of this result uses Russo	s formula� Bounds will be obtained for 
�p�� by
bounding 
��p�� The lower bound on 
 is fairly straightforward to obtain� but the opposite
bound is harder to establish�

Proof
By de�nition the expected cluster size 
 is given by


�p� �
X
x

Pp���x��

It would be useful to apply Russo	s formula� but this is not possible directly since the
event ��x depends upon the status of in�nitely many edges� To avoid this problem let�
� � #� � #� � � � � � Z

d� be a sequence of �nite subsets of Zd such that

��
n��

#n � Z
d�

Also let P�n�
p �x�y� be the probability that x is joined to y using open edges with both

endpoints in #n� A restricted version of 
�p� can also be de�ned


�n��p� �� max
x��n

X
y��n

P�n�
p �x�y��

���
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Clearly the following inequality holds


��� � 
�n���� �
X
y��n

P�n�
p ���y��

By application of the monotone convergence theorem

lim
n��

P�n�
p ���y� � Pp���y� as n�
�

Thus using the bounded convergence theorem the right hand term tends to 
�p� as n�
�
Hence 
�n��p� � 
�p� as n�
 �whether or not 
�p� is �nite�� But 
�n��p� is de�ned as a
maximum over �nitely many polynomial functions� These functions will be denoted


�n�w �p� ��
X
y��n

P�n�
p �w�y�� �����

for each w � #n� Hence 
�n��p� is di�erentiable� except possibly at �nitely many points�
As a convention� the value of any restricted function is taken to be zero when any of

its arguments is a point outside of #n� It is now possible to apply Russo	s formula to ������

d

�n�
w

dp
�
X
x

X
u�v P

�n�
p �w�u�v�x�� �����

where the �rst sum extends over all points u and v which form the endpoints of a bond�

From expression ������ an upper bound may be derived for the derivative of 

�n�
w �p��

P�n�
p �w�u�v�x� �P�n�

p �w�u and edge disjointly v�x�

�P�n�
p ��w�u� � �v�x��

Applying the BK inequality to the right hand side and summing�

d

�n�
w

dp
�
X
x

X
u�v P

�n�
p �w�u�P�n�

p �v�x��

��d
�n�w �p�
�n��p��

��d
�n��p���

Using this result which is valid for a �nite part of the lattice� a bound can be obtained for
the derivative of 
�n��p� whenever this derivative exists�

d
�n�

dp
� max

w��n

�
� d

dp

X
y��n

P�n�
p �w�y�

��
� �

��d
�n��p���
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As 
�n��p� is continuous on  �� �!� this may be integrated from p � pc to p� � pc to give

�


�n��p�
� �


�n��p��
� �d�p� � p��

At this point it is permissible to take the in�nite volume limit n � 
� and then �nally
taking the limit as p� � pc� the desired lower bound on 
 is obtained� since 
�n��p�� �

�p�� � 
� as n�
� so


�p� �
�

�d�pc � p�
for p � pc�

Note that this was proved entirely without using the triangle condition$ For the upper
bound on 
 more care is needed� but the starting point is the same� To avoid confusion
the function 
 will be considered in the in�nite volume case� although a similar argument
to that in the previous part should be used to take the in�nite volume limit�

Applying translation invariance� to the in�nite volume analogue of ����� yields

d


dp
�
X
x�y

X
juj��

Pp�x���u�y�� �����

�
X
x�y

X
juj��

Pp
�
�

��x� u�C���u��x� y

	
A �

where the last assertion follows by rewriting the event in ���� Unfortunately by itself this
is only su�cient to prove the result for the special case T �pc� � � �which in fact never
occurs$�� A stronger form is needed where instead of considering a single bond being closed
as in C���u�� all the bonds with an endpoint in the box B�R� � fx � Zd � kxk � Rg are
made closed� Let CB�x� be the set of points reachable from x using no points in B� Using
lemma B�

d


dp
���p�

X
x�y

X
juj��

Pp
�
�

��x� u�CB�x� y

	
A �

���p�
X
x�y

X
juj��

Ep

�
�I���x�Pp

�
�
u�CB�x� y

	
A


� by Lemma C�

The term Pp
�
�
u�CB�x� y

	
A is rewritten as

Pp�u�y��
�
�Pp�u�y�� Pp

�
�
u�CB�x� y

	
A


� �

� Obviously this does not apply in the �nite volume case� but its use is not fundamental
to the proof�
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So

d


dp
���p�

X
x�y

X
juj��

�
Pp���x�Pp�u�y�

� Ep

�
�I���x�

�
�Pp�u�y�� Pp

�
�
u�CB�x� y

	
A
	
A


��� �����

To bound the di�erence in the second bracket the following consequence of the BK in�
equality is used�

Pp�u�y� �Pp
�
�
u�A y

	
A� Pp

�
u�A

y

�
�

�Pp
�
�
u�A y

	
A�

X
w�A

Pp �u�w and w�y� �

�Pp
�
�
u�A y

	
A�

X
w�A

Pp�u�w�Pp�w�y� by BK�

Applying this to A � CB�x�� gives

Pp�u�y��Pp
�
�
u�CB�x� y

	
A �

X
w�CB�x�

Pp�u�w�Pp�w�y��

�
X

w�ZdnB

I

�
�
w�B x

	
APp�u�w�Pp�w�y�� �����

Using this bound ����� in the expression ����� gives

d


dp
� ��p�

X
x�y

X
juj��

�
Pp���x�Pp�u�y�

�
X

w�ZdnB

Ep

�
�I���x�I

�
�
w�B x

	
APp�u�w�Pp�w�y�



�
�
� ���
�

If � is connected to x� and w is connected to x outside of B� then there must be a point v
outside B such that there exist disjoint paths ��v� v�w� and v�x� Hence using the BK
inequality�

Pp
�
�

��x� w�B x

	
A �

X
v�ZdnB

Pp���v�Pp�v�w�Pp�v�x�� �����
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Putting ����� into ���
� and simplifying gives

d


dp
� �d��p�
�p��

�
��� max

juj��

X
v�w�ZdnB

Pp���v�Pp�v�w�Pp�w�u�



� �

A new form Q�a� b� is de�ned� which gives the triangle function as a special case
T �p� � Q��� ���

Q�a� b� ��
X
v�w

Pp�a�v�Pp�v�w�Pp�w�b��

This Q is a positive de�nite form� that isX
x�y

f�x�Q�x� y�f�y�� ��

since for any absolutely summable function f � Zd � C �

X
x�y

f�x�Q�x� y�f�y� �
X
x�y

g�x�Pp�x�y�g�y� �E p

�X
x�y

g�x�I�x�y�g�y�

�
�

�E p

�
� X

open
cluster C

�����
X
x�C

g�x�

�����
�
	
A � ��

where
g�x� �

X
a

f�a�Pp�a�x��

Therefore by Schwartz	s inequality

Q�a� b�� � Q�a� a�Q�b� b� � T �p���

so Q��� u� � T �p�� hence the triangle condition implies �niteness of Q��� u� for p � pc�
Thus by choosing R so that B�R� is su�ciently large�X

w�v�ZdnB

Pp���v�Pp�v�w�Pp�w�u� �
�

�
for p � pc�

Hence the bound
d


dp
�

�

�
� �d
�p����p� for p � pc�

is obtained� which on integration gives an upper bound on 
�p�� Together with the lower
bound obtained earlier

�

�d�pc � p�
� 
�p� �

�

d
R pc
p

��p�dp
for p � pc�

for p � pc� Provided that p � � � �� for some �� this may further be simpli�ed using the
de�nition of ��p� �in Lemma B� to

�

�d�pc � p�
� 
�p� �

�

dC�pc � p�
for � � p � pc�

for some constant C�



��� Lace Expansion and Triangle Condition

In order to link the Lace expansion and the Triangle Condition a key theorem is to be
proved� To reach this goal two lemmas are needed�

A new quantity in addition to the triangle function is de�ned by

W �p� ��
X
x�Zd

jxj�Pp���x��

Lemma �����
Both T �p� and W �p� are continuous functions of p for p � pc�

Proof
For the nearest neighbour model� Pp���x� decays exponentially if 
�p� � 
� It is a
standard result that Pp���x� is increasing� and continuous in p �for � � p � ��� By
application of the monotone convergence theorem the continuity of T �p� and W �p� is
established�

Lemma �����
There exist constants kT and kW such that for p � ����d�

T �p� � � �
kT
d
� W �p� �

kW
d
�

This lemma is proved by comparison with the Gaussian model for the simple ran�
dom walk� Later on� it is proven in theorem ���� that for p � ����d� the inequality
Pp�x�y� � CG�x� y� holds� where CG is the Gaussian propagator de�ned in section �����
Hence lemma ���� may be proven by bounding the analogous quantities �TG� WG� of the
Gaussian model� the proof of which may be found in Appendix B of �Hara� ������

Lemma� �����
Given the constants kT and kW of the previous lemma for ����d� � p � pc if

T �p� � � �
�kT
d

� W �p� �
�kW
d

� for p �
�

�d
� ������

then

T �p� � � �
�kT
d

� W �p� �
�kW
d

� for p �
�

�d
� ������

The proof of lemma ���� is rather long and technical� a sketch of the key elements of the
proof is deferred until after the discussion of the lace expansion� since this forms a key
element of the proof�

� Two extra conditions are actually required in the full statement of this lemma� they
take the form of bounds on Wa and Ha��a� as given in the statement of lemma �����
Similarly a stronger bound on these quantities may be derived in the conclusion of the
lemma� This is omitted here� since the details are technical and only a�ect the derivation
of certain bounds which has been omitted here�

���
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Theorem �����
For suitably high dimensions �d � �� su�ces� the triangle condition is satis�ed�

Proof
The conclusion of lemma ���� is that there is a region of space in which the pairs �p� T �p����
and �p�W �p�� may not lie� This is the shaded region in the diagram�

4
2d

3
2d

4k
d

3k
d

p

T(p)-1
or W(p)

Figure �� The region of space in which tuples �p� T �p��	� and �p�W �p��
are not allowed to lie as a result of the previous lemma is shown shaded�

But the result of lemma ���� implies that W �p� and T �p� � � are continuous for
p � pc� they are also zero for p � �� hence to avoid a jump discontinuity it is clear that
the condition ������ must be satis�ed$

This implies

T �p� � � �
�kT
d

for all p � pc�

By application of the monotone convergence theorem coupled with the fact that Pp���x�
is increasing and continuous the following is obtained

T �pc� � lim
p�pc

T �p� � � �
�kT
d

�
�

This is the triangle condition�



��� The Lace Expansion

The lace expansion is used to prove results about percolation in high dimensions d� An
insight into what is going on may be gained from the following� As the dimension of the
lattice is increased� the percolation on the lattice comes to resemble more and more closely
percolation on a tree � that is� if there is a path between two points there is only one such
path� If there is a connection between � and x then this connection may be split up into
a series of doubly connected clusters divided by pivotal bonds�

0 x

Figure �� An example of the decomposition of a connection between �
and x into doubly connected clusters �circles� linked by pivotal bonds
�lines��

These doubly connected clusters cannot intersect �or else the bonds between them
would not be pivotal�� This �repulsion	 of doubly connected clusters is described by the
lace expansion��

����� The Expansion
The �rst stage in the expansion is to decompose the probability of a connection between
vertices � and x as follows�

P���x� � P���x� �
X
y��y�

�

P���y��y�

�
�x��

Now the corollary A� allows the second term to be written as

P���y��y�

�
�x� � pEp

�
�I���y��Pp

�
�
y�

�
�C�y��y�

��
��� x

	
A
	
A �

It is desirable to write this as a convolution� where in this context the convolution of
functions f and g is de�ned by the following

f � g�x� �
X
y

f�x� y�g�y��

� It is interesting to note that a similar form of lace expansion may be applied to the
problem of the self avoiding random walk in high dimensions since the behaviour of a
self avoiding random walk becomes more and more like an ordinary random walk as the
dimension is increased as in some sense there are more directions to take at each point� so
the walk is very unlikely to intersect itself�

���
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To this end the trivial decomposition a � b� �b� a� is used to write

Pp
�
�
y�

�
�C�y��y�

��
��� x

	
A � Pp�y�

�
�x��

�
�Pp�y�

�
�x�� Pp

�
�
y�

�
�C�y��y�

��
��� x

	
A


� �

For notational simplicity double connectedness probability function gp is introduced�
such that

gp�x� �� Pp���x��

Let I�x� be the neighbour function taking the value � at sites x which are nearest neigh�
bours of the origin and zero otherwise�

In order to express the convolution with Pp���x�� the notation Pp����� will be used
for the function� such that Pp������x� � Pp���x�� Hence

Pp���x� � gp�x� � �gp � pI � Pp�������x�� R���
p �x�� ������

where the �rst remainder term is

R���
p �x� �� p

X
y��y�

�

Ep

�
�I���y��

�
�Pp�y�

�
�x�� Pp

�
�
y�

�
�C�y��y�

��
��� x

	
A


�
	
A � ������

Now to expand this remainder term further a lemma is needed� Frequent reference will be
made to the special event B�x� y�A�� which is the event� that
�i� x is connected to y through A�
�ii� No pivotal bond for the connection from x to y has its �rst end point connected to x

through A�

x y x y

(a) (b)

Figure �� Here single lines denote pivotal bonds for the connection from
x to y� and circles clusters of doubly connected sites� The thick dotted
line represents the �not necessarily connected� sites of A� In �a� the event
B�x� y
A� is taking place� in �b� it is not as there is a pivotal bond �after�
the path has been through A�

� This event does not seem to have a standard notation� Hara and Slade in �Hara and
Slade� ����� use E��
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Lemma �����
For any set A the following holds

Pp�v�x�� Pp
�
�
v�A x

	
A �

E p �I�B�v� x�A��� � p
X
a�b E p

�
�I�B�v� a�A��Pp

�
�
b�C�a�b��v� x

	
A


� �

Proof
The probability on the left hand side is the probability that v is connected to x through A�
If this event occurs then either�
�i� There is no pivotal bond for this connection with its �rst endpoint connected to v

through A� or
�ii� There is such a pivotal bond�

From the above de�nition �i� is just the occurrence of the event B�v� x�A�� In the
second case let a�b be the �rst pivotal bond for the connection from v to x such that the
�rst endpoint a is connected to v through A� Then the contribution from terms of type
�ii� is X

a�b Pp �B�v� a�A� occurs and v�a�b�x�

Then by application of lemma A the sum of the two contributions from cases �i� and �ii�
gives the right hand side of the lemma�

Expansion of the �rst remainder R
���
p

The result of lemma ���� is inserted into the expression for the �rst remainder term in
the lace expansion ������� superscripts are used on expectations and random quantities for
clarity� so for example C� is random for E � � but may be considered as predetermined for
E
k � for k � ��

R���
p �p

X
y��y�

�

Ep

�
�I���y��

�
�Pp�y�

�
�x�� Pp

�
�
y�

�
�C�u�v���� x

	
A
	
A


� �

�p
X
y��y�

�

E
�
p

h
I���y��Pp

�
B�y�� x�C�

�y��y�

��
����

�i
������

� p�
X
y��y�

�

X
y��y�

�

E
�
p

�
�I���y��E�p

�
�I�B�y��� y��C

�
�y��y�

��
�����Pp

�
�
y�

�
�C�y��y�

��
�y��� x

	
A


�


� �

Just as in the �rst stage� the trivial identity a � b� �b� a� is used to split the last term
into a convolution term and a next stage remainder term�

Pp
�
�
y�

�
�C�y��y�

��
�y��� x

	
A � Pp�y�

�
�x��

�
�Pp�y�

�
�x�� Pp

�
�
y�

�
�C�y��y�

��
�y��� x

	
A


� �
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As the expressions are becoming fairly complicated at this stage it is worthwhile introducing
the abbreviations�

%���
p �x� �� p

X
y��y�

�

E
�
p

h
I���y��Pp

�
B�y�� x�C�

�y��y�

��
����

�i
�

R���
p �x� ��p�

X
y��y�

�

X
y��y�

�

E
�
p

�
I���y��E�p

h
I�B�y��� y��C

�
�y��y�

��
�����

i

�
�
�Pp�y�

�
�x�� Pp

�
�
y�

�
�C�

�y��y�

��
�y��� x

	
A
	
A
�
�

Inserting these expressions into ������ and then substituting for the remainder term in the
�rst stage convolution equation ������ yields

Pp���x� � gp�x�� %���
p �x� � ��gp �%���

p � � pI � P�������x� � R���
p �x�

This procedure may be continued arbitrarily far� and it is a tedious �although not especially
di�cult� exercise to prove the full lace expansion theorem stated below� To state it concisely
yet more notation is required� Let

Cn�� �� Cn��
�yn�y�

n�
�y�n���� In �� I�B�y�n� yn���Cn�����

%�n�
p �x� �� pn

X
y��y�

�

� � �
X
yn�y�

n

E
�
p

�
I���y��E�p

�
I�
�
E
�
p

�
I� � � � Enp  I�B�y�n� x�Cn����!

� � � ���� �

h�n�p �x� �� gp�x� �
nX
j��

����j%�j�
p �x��

R�n�
p �x� �� pn��

X
y��y�

�

� � �
X

yn��
�y�

n��

E
�
p

�
I���y��E �p

�
I�

�
E
�
p

�
I� � � � Enp

�
In

�
�
�Pp�y�

n��
�x�� Pp

�
�
y�

n��
�C

n
x

	
A
	
A
�����

�

Theorem �Lace Expansion� �����
Given the foregoing de�nitions then for p � pc and N � �

Pp���x� � h�N�
p �x� �

�
h�N�
p � pI � Pp�����

�
�x� � ����N��R�N�

p �x��

It is possible to obtain bounds in x�space for each of the terms in this expression by
using the BK inequality many times� and hence to obtain bounds for their discrete fourier
transforms� The details may be found in section ��� of �Hara and Slade� ����a��

Taking the �discrete� fourier transform of this equation� let &��k� be the transform of
P���x�� and solve for &��k� to get

&��k� �
&gp �

PN
j������j &%

�j�
p � ����N�� &R

�N�
p

�� p&I&gp � p&I
PN

j������j &%
�j�
p

�
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����� The Simple Random Walk
When constructing bounds in order to prove lemma ���� a number of quantities from the
simple random walk will be introduced� A simple random walk on the hypercubic lattice
can be constructed by building a path which at each vertex takes one of the �d available
directions with equal probabilities� A two point function may be de�ned by

Cz�x� ��
X

����x

zj�j�

where the sum extends over all simple random walks joining the points � and x� The
quantity j	j is the number of steps in the walk 	� As there are ��d�n simple random walks
with n steps on L

d a trivial bound may be obtained

X
x

jCz�x�j �
�X
n��

��djzj�n�

which implies that the two point function Cz�x� and its fourier transform are �nite for
jzj � ����d��

An expansion is formed �in some ways analogous to the lace expansion� by conditioning
on the �rst step �� � y� in the walk� so

Cz�x� � ���x �
X

fy�I�y���g

z
X

��y�x

zj�j�

where I�x� is the nearest neighbour function� This can be expressed as a convolution

Cz�x� � ���x � z�I � Cz��x��

Taking the fourier transform and solving for &Cz�k� yields

&Cz�k� �
�

�� z &I
�

A quantity D is introduced by

D�k� ��
&I�k�

�d
�

�

d

dX
��

cos�k��

From this de�nition� and the fact that � � D�k� behaves like k� near to �� a limiting
argument shows that C����d��x� is �nite� At this value of z � ����d��

C����d��x� �
�X
n��

P�n step walk from � to x�� ������
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Thus a propagator can be introduced at z � ����d�� namely

CG�x� y� ��
�

����d

Z
	����
d

ddk
e�ik��x�y�

��D�k�
�

This is a quantity which can be substituted for � in many expressions leading to a �Gaus�
sian	 theory� for example

TG ��
X
x�y

C��� x�C�x� y�C�y� ���

compares with

T �p� ��
X
x�y

Pp���x�Pp�x�y�Pp�y����

Similarly to W �p� it is possible to introduce

WG ��
X
x

jxj�C��� x���

Further useful results bounding quanties in the Gaussian model are given in appendix B
of �Hara� ������ A very simple theorem shows a relationship between the Gaussian and
percolation model

Theorem �����

For � � p � ����d� the inequality

Pp�x�y� � CG�x� y�

holds�

Proof

Fix p in the interval  �� ����d�!� If x�y� then there exists a self�avoiding path of open
bonds from x to y� So the probability may be bounded as follows

Pp�x�y� �
X

��x�y
� self avoiding

Pp�	 uses only open bonds��

�
X

��x�y

pj�j � CG�x� y��

where the �nal inequality follows from �������
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����� Bounds
In order to apply the lace expansion for percolation to the proof of the existence of critical
exponents� it is necessary to bound the various terms of the expansion in fourier transform
space and hence obtain a bound on &��k�� In this section constraints of space mean that it
is not possible to present all the details� Key steps occur in the proof and these have been
picked out and described�

From the result of the lace expansion� the fourier transform of P���x� is rewritten
to look like that of the Gaussian propagator� since it is easier to construct bounds on
quantities from the simple random walk model� than upon those of percolation quantities�
Noting that

&��k� �
&G�N��k�

�� �dpD�k�� &'�N�
�

where

&G�N��k� ��&gp �
NX
j��

����j &%�j�
p � ����N�� &R�N�

p �

&'�N��k� ��� p&I � p&I&gp � p&I
NX
j��

����j &%�j�
p �

Lemma �����
Let p be �xed satisfying ����d� � p � pc and N � �� Assume that

T �p� � � �
�kT
d

� W �p� �
�kW
d

� for p �
�

�d
�

where kW and kT are the constants of lemma ����� and

Wa �
X
x

jxj�Pp���x�Pp�x�a� �
�k�W
d

for kak� � �
�p� ��d� �� ln��
�p�� � � ln�d�� �

where k�W is a universal constant which depends only upon kW and kT � Also assume that
for

max
i����

kaik� � �
�p� ���d � �� ln��
�p�� � � ln�d�� �

the following holds

Ha��a� �
X

x�y�z�u�v

jxj�Pp���x�Pp�x�y�Pp�x�u�Pp���u�

� Pp���z�Pp�u�v�Pp�v�y�a��Pp�v�z�a�� �
��kW
d

�

Then there exists a d� independent of p such that for all d � d����&'�N��k�
��� � c

d
�

����s&'�N��k�
��� � c�

d�
� s � �� �� �a�
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In addition for N su�ciently large �the necessary value of N depends upon both d and p�

&F �k� �� �� �dpD�k�� &'�N��k� �

�
�� c��

d

�
���D�k�� � �b�

j &G�N��k�� �j � c

d
� j�s &G�N��k�j � c�

d�
� s � �� �� �c�

and

� � &��k� �
�

��D�k�

�
� �

c���

d

�
� �d�

where the constants cc�c�� and c��� depend only on kT and kW �
The proof of lemma ���� follows from a series of bounds obtained from diagram ex�

pansions and may be found in �Hara and Slade� ����a�� Using this lemma the following
sketch shows the structure of the proof of lemma ����� Note that the last two conditions
�bounds on Wa and Ha��a�� in lemma ���� are highly technical and for this sketch proof
are completely ignored�

Proof of Lemma ���	 �sketch�
Choose N su�ciently large that the conditions of lemma ���� are satis�ed� The proof
is split into a number of parts� each proving one of the inequalities in the conclusion of
lemma �����
�a� p � �

�d � By �c� of the lemma for large enough d

�� �dp� &'�N���� � &G�N�����&���� � &G�N�����
�p� � ��

so by part �a��

�dp � �� &'�N���� � � �
c

d
�

whence� for su�ciently large d �d � c�� su�ces�� p � �
�d �

�b� T �p� � � � �kT
d

� By fourier transform results

T �p� �
�

����d

Z
	����
d

ddk &��k���

�� �
�

����d

Z
	����
d

ddk
�
�� � &��k���&��k�� ���

�
� ������

The �rst bracket �� � &��k�� may be bounded using part �d� of the lemma� for d � �c���

� � &��k� � � � � �
�

��D�k�

�
� �

c���

d

�
� � �

�

�

�

��D�k�
� ����
�

From the lace expansion bound on &��k��

&��k�� � �
�dpD�k� � &G�N��k�� � � &'�N��k�

�� �dpD�k�� &'�N��k�
�

�dpD�k� � &G�N��k�� � � &'�N��k�

&F �k�
�
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Now using �a� � �c� of the lemma the following bound can be established for the second
bracket in ������� for su�ciently large d �using the Schwartz inequality��

�&��k�� ��� �
� ��dpD�k��� � �j &G�k�� �j� j&'�N��k�j��!

&F �k��
�

���
D�k�� � c��d�

���D�k���
�

Now putting these two bounds together into ������ �using the fact that ���D�k���m

has an integral which is bounded uniformly in d � � for m � �� �� ���

T �� � ��
�

����d

Z
	����
d

ddk

�
� �

�

�

�

���D�k��

�
D�k��

���D�k���
�
c��

d�
�

�� � ��TG �
c��

d
� � �

kT
d

�
c��

d�
� � �

�kT
d

�

which holds for su�ciently large d� using the fact that CG��� ��� � � c�d�
�c� W �p� � �kW

d � Using Parseval	s theorem� W �p� can be written as

W �p� ��
X
x

jxj�Pp���x�� �
dX

��

�

����d

Z
	����
d

ddk ��&��k��� �

Now di�erentiating the result for &��k� from the lace expansion and substituting in the
expression for W �p� one obtains

W �p� �
dX

��

�

����d

Z
	����
d

ddk

�
� &G�N��k��D�k�!�

&F �k��
�

 &G�N��k��&'�N��k�!�

&F �k��

�
 � &G�N��k�!�

&F �k��

�
� ������

Now bound the powers of &F �k� occurring in the denominators using part �b� of the
lemma� By part �c� the �rst term of the integrand �including the summation� may
be bounded by ��WG for su�ciently large d� and the third term is bounded by c�d��
To bound the second term note that by symmetry �&'�N��k� must equal zero for any

k with zeroth �th component� Let (k be k with the �th component set to zero� By
Taylor	s theorem there is a point k	 on the line segment joining k and (k such that

�&'�N��k� � �&'�N��k�� �&'�N��(k� � k�
�


&'�N��k	��

Now using �a� and �c� the second term of ������ may be bounded by

 &G�N��k��&'�N��k�!�

&F �k��
�

c

d�
�

����d

Z
	����
d

ddk
k�

 ��D�k�!�
�

Noting that
��

�
 ��D�k�! �

k�

d
�

the second term of ������ can hence be bounded by c��d�� For su�ciently large d�
inserting these bounds in ������ gives the desired bound on W �p��



��� Proofs of Three Important Lemmas

These lemmas were introduced in section �� without proof� The proofs are presented here�

Lemma A�
Let A be any non empty set of sites� Let the event E be the event that �� is connected to
u through A and no pivotal bond for the connection has its �rst endpoint connected to �
through A� �this is the same as the event B��� u�A� described in section ������ Then

Ep �I�E�I���u�v�x�� � pE p

�
�I�E�I

�
�
v�C�u�v���� x

	
A


� �

Proof
First note that both the event E and the event that ��u� v� is a pivotal bond for the
connection � to x	 are independent of the status of the bond �u� v� �whether it is open or
not�� hence

Ep �I�E�I���u�v�x�� � pE p  I�E�I���u�v�x�! �

Now conditioning on the cluster C�u�v����� we obtain

Ep �I�E�I���u�v�x��

� p
X

fS���Sg
S �nite

E p

�
I�E occurs� ��u�v�x and C�u�v���� � S�

�
� ������

In ������ it is possible to replace the statement ��u�v�x by �v connects to x outside of
S	 �since suppose a bond with an endpoint in S were used in the connection from v to x�
then there is a connection from � to x irrespective of the bond u�v which contradicts the
pivotal nature of the bond�� and so the right hand side of ������ becomes

p
X

fS���Sg
S �nite

Ep

�
�I
�
��E occurs� v�S x� C�u�v���� � S

	
A


� �

The event E requires that no pivotal bonds for the connection from � to x have their
�rst endpoint connected to � through A� so it is determined by bonds with at least one
endpoint in C�u�v����� Also the event C�u�v���� � S depends only upon the status of bonds
in S� Hence the event fE and C�u�v���� � Sg is independent of the event v connects to x
avoiding S� Therefore the right hand side of ������ becomes

p
X

fS���Sg
S �nite

Ep

�
I
�
E occurs and C�u�v���� � S

��Pp
�
�
v�S x

	
A �

���
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But the probability term can be taken inside the expectation and performing the sum
over S we get�

E p �I�E�I���u�v�x�� � pEp

�
�I�E�Pp

�
�
v�C�u�v���� x

	
A


� �

Lemma B�
Let u be any unit vector� Then for a box B�R� � fx � Zd � kxk� � Rg � f�� ug

Pp
�
�

��x� u�C���u��x� y

	
A � ��p�Pp

�
�

��x� u�CB�x� y

	
A �

where ��p� � min�p� �� p�bonds in B �

Proof
De�ne three events E�F�G as follows

E �

�
���x� u�C���u��x� y

��
� �

F �

�
���x� u�CB�x� y

��
� �

G � fC�x� �B �� �� C�y� �B �� �� and CB�x� � CB�y� � �g �

It is straightforward to see that E 	 F 	 G� and hence

Pp�G� � Pp�F �� Pp�E� � Pp�G�Pp�EjG�� ������

The event G depends only upon bonds with at least one endpoint not in B� Hence� given
that for the con�guration 	� the event G occurs �i�e� 	 � G�� provided d � � it is possible to
construct at least one con�guration of bonds with both endpoints in B� such that replacing
the con�guration of these particular bonds which occurs in 	� with this new con�guration�
means that the event E occurs� The diagram shows an example of this process�
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y
x u

Figure �� The box B�	� is shown bounded by a dashed line� and all the
sites within it are marked by circles� Thicker lines indicate the presence
of an open bond� G is shown occurring� i�e� x connects to a site in B�
and y connects to a site in B� but x and y are not connected outside
of B�

As B is �nite� so is the number of edges with both endpoints in B� and hence

Pp�a con�guration inside B� � min�p� �� p� of edges in B � ��p��

So Pp�EjG� � ��p�� Inserting this in equation ������ implies that

Pp�E� � Pp�EjG�Pp�G� � Pp�EjG�Pp�F � � ��p�P�F ��

But from the de�nitions of E and F � this is just the statement of the lemma�

In the case of B � B�R�� then the number of points in B is ��R � ��d and a bound

on the number of edges in EB is d��R � ��d� so ��p� � min�p� �� p�d��R���d �

Lemma C�

Pp
�
�

��x� u�CB�x� y

	
A � Ep

�
�I���x�Pp

�
�
u�CB�x� y

	
A
	
A �

Proof

Conditioning on the random set CB�x��

Pp
�
�

��x� u�CB�x� y

	
A �

X
fS�x�Sg

Pp�CB�x� � S�

� Pp
�
�

��x� u�S y

�����CB�x� � S

	
A �
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The two events in the second probability term are not independent� but they depend only
upon bonds not touching S and bonds connecting S to B� Restricted to this set of bonds
the two events are increasing and so the FKG inequality may be applied�

Pp
�
�

��x� u�CB�x� y

	
A �

X
fS�x�Sg

Pp�CB�x� � S�� Pp���xjCB�x� � S�

� Pp
�
�
u�S y

�����CB�x� � S

	
A �

Finally independence of the events CB�x� � S and u�S y allows the desired
conclusion to be attained�



��� Appendix

This appendix presents some numerical evidence which I have computed in favour of the
hypothesis of conformal invariance and more speci�cally Cardy	s formula� which was de�
scribed in Section 
���

����� Crossing Probability for a Rectangle
The �rst set of numerical experiments aim to determine the crossing probably from one
edge to an opposite one of a rectangle in L� for a site percolation mode� Site percolation was
chosen since this simpli�ed the computations� One million con�gurations were generated
for each rectangle size� and in each case a value of pc of ��������� was used� �to save
computer time� these con�gurations were in fact generated as required� so it was never
decided if unreached bonds were open or not�� For each con�guration an attempt was
made to cross from the left hand edge to the right hand edge via a �wetted sites	 algorithm�

�which has an empirically determined complexity proportional to the number of sites in the
rectangle raised to the ����
th power�� The number of con�gurations for which this crossing
was successful was then recorded� and this used to compute an estimate of the crossing
probability� For a million con�gurations� assuming that the random number generator is
perfect� this should give a ��) con�dence interval of �������� in the worst case �p � �����

����� Comments on Results
Note that when compared with the data in �Langlands et al�� ����� there is one particularly
striking di�erence� namely in their results table ����� all of the simulated values for the

horizontal crossing �&�h� lie above the predictions from Cardy	s formula ��cfth �� I suspect
that this is due to de�ciencies in the random number generator which was used in those
simulations �a linear congruential generator�� For the above results dprand�� written by
Nick Maclaren was used �available from cus�cam�ac�uk by anonymous ftp�� The above
computations took just under three days on a network of �� Pentium II processors��

� Various estimates for this value have been given� see �Hughes� ���
� page ���� for
some examples� A better estimate would seem to be that of �Zi�� ������ which gives
pc � �������
������������ The particular value used in these simulations was taken from
�Langlands et al�� ������

� An alternative algorithm� based on attempting to construct the boundary of a perco�
lation cluster via a type of self avoiding walk� is given in �Zi� et al�� ������ which could
possibly be more e�cient�

� Peter Benie made many helpful suggestions for improving the speed of the program
when running on modern hardware� not su�ering from a shortage of RAM�

���
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Crossing Probability for a Rectangle

Width Height Aspect Ratio Simulated Cardy	s Formula
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����� Graphical Comparison
To illustrate the closeness of the agreement between simulation and computation through
Cardy	s formula� the following graph shows a curve of results obtained from Cardy	s for�
mula �numerical integration was used to compute the special functions�� The simulation
results have been superimposed as crosses �the error bars are so small that they would be
invisible on such a graph� so they have been omitted��
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Figure �� Comparison of simulated results and Cardy�s prediction of
crossing probabilities for site percolation on rectangles� Aspect ratio is
plotted along the horizontal axis� and the prediction forms the solid line�
Simulated results are shown as crosses�

����� The Triangle Conjecture
Another demonstration of conformal invariance is provided by a rather nice problem� the
triangle crossing conjecture�

Conjecture �����
Consider a triangular section ABC of the triangular lattice with sides of length n� Now
take the sections Ax of length xn starting at vertex A along side AB� Then the following
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holds�
lim
n��

Pp�Ax is connected to BC in triangle� � x�

This can be veri�ed from Cardy	s formula and conformal invariance� Consider the
Schwartz�Christo�el transform between the upper half plane and the equilateral triangle
ABC� Let the points ��� � and �� on the real axis be mapped to the vertices B�C� and
A respectively� The transformation is then given by�

f�z� �

Z z

�

�

w����w � ������w � �����

The image of the upper half plane under f�z� is the triangle with vertices ��

Z �

�

�

w����w � ������w � �����
� ������� ��
��i�

and Z ��

�

�

w����w � ������w � �����
� ������ ��
��i�

Now take another point y on the real axis satisfying y � � or y � �� and let its image be
the other end of the portion Ax� First the length of this is computed as a fraction of the
length of the side� giving x of the conjecture� Then the anharmonic ratio of all four points
on the real axis is computed

� �
���� ����� y�

���� ����� y�
�

which may be inserted into Cardy	s formula� and evaluated numerically� Note that this
would be much simpler if an analytic inversion of the Schwartz�Christo�el transform could
be used� NAg library routines are used to evaluate the special functions �hypergeometric�
gamma� and Schwartz�Christo�el integral� providing results which agree to six decimal
places �the accuracy used for the numerical computations�� It would therefore appear
that proving this exactly should be an exercise in manipulation of special functions� Thus
Cardy	s formula and conformal invariance would seem to con�rm the conjecture� The table
shows some of the computed results for various values of x� It is an extract from a much
larger table�
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Crossing Probabilitity for Triangle

Cardy Formula
x Crossing Probability
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����� Numerical Simulation
The simulation used in the previous part was easily extended to cover site percolation on
a triangular lattice�� The number of con�gurations used for each value of x varies� but a
��) con�dence interval was computed for the crossing probability� based upon the results
of the simulation� The results produced� strongly con�rm the hypothesis that as the side

� This was facilitated by using the lattice embedding suggested in �gure ��� of �Kesten�
������

� The original results were computed on a small network of workstations �two Sun IPX
workstations� HP����*���� HP����*���t�� These were then extended by further compu�
tations on a larger network of �� Pentium II processors�
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length tends to in�nity the crossing probability is x� The computations were performed
on a triangles of side ����� and on those of side ����� Typically ����� con�gurations took
just over two days to compute on a Sun IPX�

Results for Side Length ����

Crossing Probabilitity for Triangle �side �����

x Simulated Crossing ��) Con�dence Number of
Probability Interval Con�gurations
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