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Abstract – High frequency DEM-USD exchange rate data (resolution > 2 seconds)
are analyzed for their scaling behavior as a function of the time lag. Motivated by the
finding that the distribution of 1-quote returns is rather insensitive to the physical
time duration between successive quotes, lags are measured in units of quotes. The
mean absolute returns over lags of different sizes, shows three different regimes. The
smallest time scales show no scaling, followed by two scaling regimes characterized
by Hurst exponents H = 0.45 and H = 0.56, with a crossover occuring at lags of
≈ 500 quotes. The up-down correlation coefficient, defined here, shows strong anti-
correlations on scales smaller than 500. The lack of convergence to a large deviation
rate function, convex tails in the logarithm of the probability distributions, strong
up-down correlations and H < 0.5, show that the dynamics on small scales is more
complicated than random walk models with i.i.d. increments. Nevertheless, for
both scaling regimes there is a very high degree of distributional self-similarity. For
the H = 0.56 this self-similarity satisfies the same scaling rules as those for stable
distributions with characteristic exponent α = 1/H . The large deviation analysis
shows that the probabilities for large returns (negative or positive) decays less fast
than exponentially as a function of the lag. This sets the DEM-USD rates in a
higher risk-class then suggested by the Gaussian. April 15 1995

Introduction and summary
The central concept in fractal geometry is that of self-similarity[1]. For a geometric
object, such as a coast line, self-similarity means that the geometries of subsets of
different sizes resemble each other when rescaled to the same size. For stock price

records the self-similarity is a temporal one, and qualitatively manifests itself in the
virtual impossibility to determine the time scale and price scale of a record when
these are absent. In other words, quoting Benoit Mandelbrot[1], “no time lag is
really more special than any other.”

The quantitative analysis of self-similarity involves the measurement of scaling
relations between properties (N) measured at different scales ε. These are pow-
erlaw relations of the form N(ε) ∼ εD where D is called a fractal dimension[1].
For stock and Foreign exchange (FX) prices the Hurst exponent H[1, 2, 3, 4, 5] or

(equivalently) the power law decay of the Fourier power spectrum[2] replaces the
fractal dimension. In more complicated situations involving self-similar distribu-
tions in space, like for instance the charge distribution on a fractal surface[6], the
multifractal[7, 8, 9, 10] properties are described by a function f(α), instead of the

quantity D. An equivalent sort of analysis for time series and graphs[4], using large
deviation analysis, is also applied in this paper to FX prices.
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Figure 1: left) The daily logarithmic middle price records for the YEN-DEM, YEN-
USD and DEM-USD. The study presented in this paper concentrates on scales within
one day. This is shown in the right plot, which is the intra-day logarithmic middle
price record for DEM-USD on Thursday August 19, 1993. Note the anti-correlations
on the small time scales in the plot on the right.

This paper investigates quantitatively the self-similarity of the DEM-USD ex-

change rate on physical time scales from 2 seconds to to approximately 2 days. The
data used is the foreign exchange data HFDF93 from Olsen & Associates[12] in
Zürich, which contains of the order of 5000 bid-ask quotes per business day for the
Deutschmark-US Dollar exchange over the period October 1 1992 till September 30

1993. The number of quotes equals 1 472 241 in this time period, with a highest
resolution of 2 seconds. This amounts to an average of 1 quote every 21.42 seconds.
We have used the filter flag provided with the data to take out extreme outliers, such

as bid and ask prices 100 times the normal price. In Figure 1 we plotted the daily
record of the logarithmic middle price (Equation 1) for the JPY-USD, JPY-DEM
and DEM-USD foreign exchange data, for the period October 1 1992 till September
30 1993. The logarithmic middle price plotted is the one closest to 3 PM Greenwich

Mean Time (GMT).
As was pointed out in Reference [3] the prices in the HFDF93 data set are

quoted prices, not actual trading prices. Especially on the short time-scales, they
are contaminated by transmission delays and transmission breakdowns. Nevertheless

it may be reasonable to assume that this is the record that most active traders see,
and that it is the record available for computer assisted real time trading. Therefore
its properties are worthwhile unraveling and understanding.
It is important to note that the results discussed in this paper are not based on

solely looking at the shape of the distribution on one particular scale. All analysis
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involve the scaling relations between the distributions on various scales (lags k).

This is different from many of the analysis that have been done in the past, where
conclusions are drawn from fitting known densities to the empirical density of say
daily price jumps.
All the analysis presented in this paper is done in units of number of prices

quoted, i.e., a lag of size k = 512 means that there are 512 prices quoted between
the two prices considered. This notion of time, which we call quote time, differs
from e.g. the ordinary physical time or business time[13]. One reason for using this
notion of time unit is that we do not find significant empirical evidence for a strong

dependence of the price jumps across consecutive quotes, and the actual physical
time between the quotes. This suggests that there is no intra-quote dynamics of any
relevance.
A preliminary study of the distribution of waiting times between quotes shows

that these distributions have powerlaw tails which indicate that the concept of a
mean or average waiting time between quotes should be handled with utmost cau-
tion. The mean value of 1 quote every 24.42 seconds mentioned above has nothing

whatsoever to do with what a speculator will experience in real time during say two
hours of trading. Therefore, the relation between quote-time and physical time is a
statistical one with strong fluctuations.
A method is proposed, based on transforming the data into sequence of symbols

0 (price goes down) and 1 (price goes up), to analyze explicitly the up-down corre-
lations on all time scales. The up-down correlation coefficient C at coarse-graining
level k defined here, is a number between -1 and 1. For a simple random walk this
number is 0, independent on the level of coarse-graining and independent of the word

size used in the analysis. In general, the up-down correlation coefficient is negative
for processes where the signs of the jumps are negatively correlated, and positive
when they are positively correlated. The DEM-USD price record has a negative
up-down correlation coefficient for k < 512. For k > 512 it seems to be positively

correlated.
We find that the DEM-USD logarithmic middle price record has a high degree

of statistical self-similarity. However this self-similarity can not be described by a

single Hurst exponent H because of the presence of crossovers. Below a lag k = 16
(quotes) no exponent H is defined and there are strong anti-correlation between
the jumps in the log-middle price. For k = 32 to 512, we find H ≈ 0.45, and
also for these quote-time scales we explicitly show anti-correlations using the above

mentioned method. For k = 512 to 4096 we find H ≈ 0.56 and positive correlation
between the jumps. The anti-correlations on the small time scales explain why
typically the intra-day logarithmic middle price records look much rougher on these
scales than on larger ones (see Fig. 1).

The existence of a crossover at k = 512 (which roughly corresponds with a
physical time of 1 hour during peak periods) introduces a time scale into this prob-
lem, which makes it possible to measure whether one is below or above that scale.
However, as we show by looking at the full distributions of the logarithmic middle
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price jumps for different time scales k, this crossover is not from self-similar to non-

self-similar: on both sides of the crossover at k = 512, we find a very high degree
of distributional self-similarity. This concept of self-similarity is that defined and
used by Mandelbrot and van Ness in the definition of fractional Brownian motions
with Hurst exponents 0 < H < 1. These are strongly correlated random pro-

cesses. The renormalization rules for the distribution of jumps over lag k for these
processes is the same as that for stable distributions with characteristic exponents
1 < α = 1/H < 2.
Our results show that the logarithmic middle price record is in a completely

different class than Gaussian random walk models. Furthermore the observed self-
similarity can certainly not be explained with a simple stable random walk model for
k < 512, because of the strong anti-correlations and the fact that H = 0.45 < 0.5;
the latter being impossible for a random process with independent identically dis-

tributed increments. Neither is the self-similarity encountered, close to that of frac-
tional Brownian motions, since the basic distribution onto which the distributions
for different k values collapse, has tails fatter than that of a double exponential. We

assessed the full extend of the anti-correlations by time scrambling the DEM-USD
record, after which it became a Gaussian process with an estimated Hurst exponent
0.5, and a well-behaved empirical convergence to a large deviation rate function
falling right onto the exact solution for a Gaussian process. The non-convergence of

the suitably plotted distributions of returns for lag k, to a large deviation rate func-
tion, implies that there are either long tails or strong correlations in the DEM-USD
record. Indeed both are the case for k < 512. The large deviation analysis shows
that the probabilities for large returns (negative or positive) decays less fast than

exponentially as a function of the lag. This sets the DEM-USD rates in a higher
risk-class then suggested by the Gaussian model.
Even though the non-convergence to a large deviation rate function, and the

H = 0.56 distributional self-similarity are necessary conditions for the stability,

there is not enough evidence, to decide whether this scaling behavior found for the
larger time scales k > 512 is best modeled by a stable process or that correlations
play an important role.

Pareto distribution of physical times between quotes
Let us denote the bid and ask prices of US dollar prices in Deutsch Mark respectively
by {B(ti)}Ti=1 and {A(ti)}

T
i=1, where ti is the physical time and i is the quote time.

The Olsen DEM-USD data contains T = 1 472 241 quotes registered at physical
times

{ti}
T
i=1

which are in units of seconds.
Let ∆i = ti+1 − ti be the waiting time between the two consecutive quotes at

physical times ti and ti+1. Figure 2 depicts the estimates of the probability densities
P (∆)d∆ of the waiting times

∆ ∈ {∆i}
T−1
i=1 .
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Figure 2: Semi-log plots of the probabil-
ity densities of the waiting times ∆ be-
tween successive quotes for DEM-USD.
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Figure 3: Double logarithmic plots of the
same data shown in the left plot. The
numbers -1.13 and -1.61 are least square
estimates of the slopes of the tail in the
regions indicated.

One notices a large peak at 6 seconds and a subsequent one at 12 seconds, indicating
an effective granularity of 6 seconds. Figure 3 is a double logarithmic plot of the
same density. The approximate straightness of the tails closely resembles that of

Pareto distributions (power law distributions)

P (∆) ∼ ∆−λ−1.

From 23 seconds to 3 minutes the estimated exponent is λ ≈ 0.13. There is a
crossover at 3 minutes, and for 3 minutes up to 3 hours λ ≈ 0.61. Pareto distri-
butions appear in many economic quantities like for instance the size distribution

of companies and the distribution of insurance claim sizes[1, 14]. The perhaps sur-
prising result is that the values of the exponent λ ≤ 1 encountered here belong
to distributions without mean or variance. The shape of the empirical distribution
found, shows that the usage of the mean of the waiting times, and therefore certainly

also their variance, should be avoided. Therefore, the average physical time interval
between two consecutive quotes < ∆ >≈ 21.42 seconds, mentioned above, is not
indicative of what one would experience in real market conditions (here <> denotes

sample averaging). Plots of the waiting times as a function of the physical time of
the day during normal trading hours indeed show that this is a strongly fluctuating
quantity.

What happens between successive quotes
For daily stock prices (X) and foreign exchange prices there is much empirical

evidence[15, 2, 5, 3, 4, 16] showing that the average size of the absolute returns
over k day lags grows like < | lnX(t + k) − lnX(t)| >∼ kH where H is an expo-
nent somewhere around 0.5 (usually larger than 0.5.) This behavior makes random
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processes (Gaussian, stable, or others) good candidates for models for these price

records on time-scales above one day[17, 18, 15, 19]. But what happens on the
smallest available time-scales?
Based on the random walk model, where the number of increments is propor-

tional to the physical time, it is sometimes argued that the average absolute price

change will be larger the more one waits (the more time there is for important
news to arrive.) This is the explanation often used for large price changes on the
markets over weekends. We now address the question whether there is evidence for
the existence of a dynamical process (economical, psychological or else) on the very

smallest time scales, namely, the period between two successive quotes in the DEM-
USD data. In particular, also whether such a process could naturally be modeled
by an independent identically distributed (i.i.d.) random process.
To find out whether there is such an effect on the microscopic scales at hand, we

analyze whether the distributions of the 1-quote price jumps depend on the waiting
time between the successive quotes. In particular, we investigate whether there is a
powerlaw relation between the jumps across quote intervals of the order of t seconds

and those of the order of t′ seconds, with t �= t′?
The logarithmic middle price at physical time ti is well-known to be defined as

M(ti) =
lnA(ti) + lnB(ti)

2
. (1)

Up to a sign change, M(ti) is equal for the USD-DEM and DEM-USD exchange
rates. Let us denote the (1-quote) jumps in the logarithmic middle price by

l(i) =M(ti+1)−M(ti).

A logarithmic subdivision of the quote intervals ∆i = ti+1 − ti in bins

Iκ = 6× [3
κ−1, 3κ]

is made, with I0 = [1, 6]. That is,

interval min max

I0 1 s 6 s
I1 6 18 s
I2 18 54 s
I3 54 s 2.7 min
I4 2.7 min 8 min
I5 8 min 24 min
I6 24 min 73 min
I7 73 min 3.6 hrs
I8 3.6 hrs 11 hrs

For the quote intervals ∆i which lie in bin Iκ, the probability density Pκ(l) were
estimated. Pκ(l)dl is the probability that the jump across a quote interval lying in
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Iκ, has a magnitude between l and l + dl. If there would be some process going on

that could be modeled as a i.i.d. random additive process, then one would expect
that the distributions Pk(l) would broaden as a function of the quote interval sizes
k, as kH , with H somewhere around 1

2
.

The top-right insert in figure 4 is a plot of the probability densities of the log-
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Figure 4: Left) Probability densities for 1-quote jumps in the DEM-USD logarithmicmid-
dle price. Top right) Probability densities for 1-quote jumps, but now as a function of the
physical time interval, indexed by κ, between the quotes. Independent from the physical
time interval, all 1-quote jumps have approximately the same distribution. Bottom right)
Blow up of the center portion of the top figures.

arithmic price jumps for each of the Iκ. The bottom-right plot is a blow up of the
central part. The left plot shows the probability density of all logarithmic middle
price jumps, irrespective of the size of the waiting time. All densities have been
estimated with an adaptive kernel method[20] with a Gaussian kernel.

One notices immediately that there is very little dependence on the quote interval
bin Iκ. A more careful indication of possible dependencies is found in Figure 5, which
is a plot of the empirical dependence of the mean absolute middle price jumps as a

function of the logarithm of the size Iκ of the waiting time. The width of the middle
price jumps across 18-54 second waiting times is 0.00018% while that across 3.6 hrs-
11 hrs waiting times is 0.00055%. If these two results had to be linked by a powerlaw
dependence, ∆H, then the exponent H ≈ ln(0.00055/0.00018)/ ln(11× 3600/54) ≈
0.02. This is 25 times smaller than the random walk exponent. Furthermore, plot-
ting lnE|l| versus k does not yield a straight line. This shows that there is no
powerlaw behavior of the logarithmic middle price jumps as a function of the wait-
ing time between two quotes. Instead the typical jump size is rather independent of

the time interval between two successive quotes. Only successive quotes which are
above 4 hours apart show a weak dependency.
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Figure 5: The empirical dependence of the width of
the distribution of 1-quote jumps as a function of the
waiting time ∆. The dependence on the logarithm of
the physical time κ, is very weak.

Based on the lack of dependence of Pk on k, we conclude that there is no clearly
measurable accumulative random process going on between quotes, and that the
physical time duration between the quotes is rather irrelevant. Therefore we will
use the number of quotes as a measure of time. In this new time scale, called

quote-time, the interval between 2 successive quotes is 1.

The Hurst exponent H for the logarithmic middle price
From the Gaussian central limit theorem it is well-known that the expectation of
the absolute value of the sum of k i.i.d. random variables with finite variance scales

like kH with H = 1
2
. If such a random walk model would hold for stocks, one would

expect that the mean absolute return over a k-day investment, < |Lk| >, would
behave like

< |Lk′ | >

< |Lk| >
=

(
k′

k

)H

as a function of the number of days. This is a scaling relation between observations
at different scales, and provides quantitative description of the self-similarity of the

process. The exponent H has many names in the literature[1, 21, 5, 3]: (surface)
roughness exponent, drift exponent, Hurst exponent, and has many applications in
the description of rough surfaces in the material sciences[22]. Empirical values of
H for stock and FX records, are usually found to be larger[15, 5, 4, 16] than the

random walk value > 0.5.
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We now present the results of such an analysis for the DEM-USD HFDF data.

This analysis differs in two ways from that presented in Ref. [3]. First it concentrates
on time scales from 2 seconds to approximately 12 hours while the analysis in Ref.
[3] involves larger time scales. Second, it is based on quote time, and involves no
interpolation of prices, while the analysis in Ref. [3] is based on physical time with

an imposed granularity of 10 minutes, and requires interpolation of data.
Denoting the return between two quotes at distance k by

Li(k) =M(ti+k)−M(ti), i = 0, . . . , T − k

one computes the mean absolute jump as the average < |L(k)| > over all L(k)

L(k) ∈ {M(ti+k)−M(ti) }i=0,γk,2γk,...,<(T−k) (2)

where the parameter 1
k
≥ γ ≤ 1 determines the overlap. For γ ≥ 1 there is no

overlap, while for γ = 1/k there is maximal overlap between the successive elements
t = 0, γk, . . . in the set. Here we used the “one element in common” case γ =
(k− 1)/k ≈ 1 which we refer to as no overlap. Figure 6 shows a double logarithmic
plot of < |L(k)| > versus k. We distinguish three regimes. A non-scaling one for
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Figure 6: The behavior of the mean absolute logarith-
mic middle price jumps as a function of the number
k of intermediate quotes. There is a clear crossover
in the scaling behavior at lags of 512 quotes. What
happens if the price record is scrambled is shown in
Figure 10.

small k. This is followed by a scaling regime with H < 1
2
, which at a crossover

point k = 512 gives way to a regime with H > 1
2
. In Ref. [16], a similar plot is
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obtained using R/S analysis. This shows that the crossover behavior discussed here

is independent of the method.
As can be inferred from the shape of the tails in the left semi-logarithmic plot in

Figure 1, the distribution of the 1-quote returns has a tail fatter than that of a double
exponential distribution, whose tails would have formed straight lines. This and the

value H = 0.45 < 0.5, seems to indicate anti-persistence (negative correlations) on
the quote-time-scales of k = 25 = 32 quotes up to k = 29 = 512 quotes. This
anti-persistence is especially strong for quote-times below k = 32, and fits very well
with the rough (up-down) movement visible on the short time scale in Figures 1

(right).
On the other hand, there seem to be persistence (positively correlated) and/or

long tails for quote-time scales of k = 512 up to k = 8192. The latter limit k = 8192
is of the order of two days. This exponent H = 0.56 is compatible with the value

H = 0.59 found in Ref. [3] for 2 hours up to 3 months.
The existence of 3 regimes, and the values of the Hurst exponent H found,

exclude simple random walk models for time scales lower than 512 quotes. The

implications of the existence of these crossovers for the self-similarity of the DEM-
USD record are discussed in the last section. However, even when the exponent H
is well-defined over many decades, one needs additional analysis in order to assess
the possible mechanism responsible for the observed scaling behavior. For example,

exponents 0.5 < H < 1 can result from both from stable processes and from corre-
lated Gaussian processes like fractional Brownian motions[4, 23, 24]. Before giving
an interpretation to the above finding for H, we now explicitly analyze the data for
correlations.

The up-down correlation coefficient
We now discuss a method to systematically estimate the existence of correlations
or anti-correlations on all time scales. The first step is a coarse-graining procedure,
in which the k-quote logarithmic price jump time series is replaced by a time series

aj(k)

{ Li(k) =M(ti+k)−M(ti) }i=0,k,2k,...,jk,...,<(T−k) → { aj(k) }j=0,1,2,...,≈(T−k)/k , (3)

with aj(k) = 0 where the sign of the k-quote logarithmic price jumps Ljk(k) is
negative or zero, and a 1 where its sign is positive. Note that Li(k) × 100% is the
return on buying at physical time ti and selling k quotes later. The time series

then becomes a word w(k), consisting of the approximately (T − k)/k consecutive
symbols in the coarse-grained time series a(k), i.e.,

w(k) = a0(k) a1(k) a2(k) . . . .

A typical word w of size n = 5 may look like 00101. A symbol 0 (or 1) in this
word means that there has been a loss (or gain) at the end of a period containing k

quotes.
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Clearly words like 00000 and 11111 indicate persistence while words like 01010

indicate anti-persistence on quote-time scale k. A quantity Q(w) capturing this is
the number of symbol changes in a word w. For example, Q(01011) = 3, because
there are three symbol changes (or dislocations) occurring at the positions denoted
here 0|1|0|11 by vertical bars. Similarly Q(110) = 1, Q(1111111) = 0. For words of
size n, this number varies between 0 and n− 1, but will now be normalized to vary
between -1 and 1 independent of n.
For a completely random distribution of 0 and 1, like would be the case if the

(coarse-grained) DEM-USD price record were a pure random walk of size n, the

expected number EQn of symbol changes can be computed exactly. For a word of
size n there are n−1 possible positions where a dislocation can occur. Each of these
positions has equal probability to be an actual dislocation or not. Therefore, the
expected number of dislocations EQn in a random chain of n symbols 0 or 1, is

EQn =
n− 1

2
(4)

We now define the up-down correlation coefficient for a word of size n with q dislo-

cations as

C = 1−
q

EQn
= 1−

2q

n− 1
. (5)

This coefficient, always lies between -1 and 1. For example the word 010101 has
coefficient -1 and 00000 has coefficient 1. The up-down correlation coefficient for
a pure Gaussian random walk of size n is (by definition) 0, independent of the

coarse-graining k.
For the DEM-USD, the word size is approximately n = (T − k)/k for coarse

graining k. Figure 7 contains the up-down correlations coefficients for both the
sequence a(k), with k = 2i, derived from the DEM-USD exchange rates and the

time-scrambled DEM-USD. This time-scrambling procedure, which is discussed in
detail in the next section, scrambles the DEM-USD inter-quote jumps, and then
integrates to a new price record. Therefore, this scrambled record is a realization

of an i.i.d. random process. The straight line corresponds to the exact solution
(C = 0) for the perfectly random case (say a Gaussian random walk.) Except for
k = 1, (i = 0), the up-down correlation coefficient for the scrambled DEM-USD data
coincides with that the random case. Also, a plot (not shown here) of the up-down

correlation coefficient for a simulated random process of the same size as the DEM-
USD time records, indicates that after i = 9 there is not sufficient statistics. The
deviations from zero for k > 512 are not significant.
However, for k < 512, (i = 9) there is enough statistics and the above plot very

clearly shows that the DEM-USD price records is strongly anti-correlated on scales
smaller than 512 quotes.
Note: That C(0) is no equal to zero for the scrambled case is due to the fact that

the probability for a negative or zero interquote jump is Prob(0) = 0.563, and that for a

positive is 1 − p. The former are coded by a 0, and therefore the probability of for the

interquote letters 0 and 1 are not equal. One can easily derive that the probability for a
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Figure 7: The up-down correlation coefficient for the DEM-USD price record and its
scrambled version, as a function of various scales k = 2i. The coefficient is always between
-1 and 1. It is -1 for the completely anti-correlated case, 1 for the fully correlated case, and
0 for a pure random walk. The DEM-USD is anti-correlated on scales smaller than 512.
For higher scales the situation is not so clear, because as can be seen from the scrambled
data, the statistics does not seem enough.

dislocation in a Bernoulli trial with Prob(0) = p and Prob(1) = 1−p is q = 2p(1−p). The

correlation coefficient is therefore C ≈ 0.016,which is in good agreement with the empirical

finding for C(0) for the scrambled data. The probability for zero price changes drops

rapidly when aggregating quotes, and this spurious effect due to the coding convention,

disappear rapidly for k > 1.

Large deviation analysis of the middle price
The Hurst exponent is highly degenerate, in the sense that very different processes
can give rise to the same exponent. For example, the Gaussian central limit theorem
implies that H = 1

2
for sums of i.i.d. random variables, independent of the shape of

the underlying distribution, as long as the second moment is finite. Large deviation

theory[25, 26] provides a much more detailed analysis of such processes. It is used in
the quantitative description of multifractal measures[9, 10] and can also be applied
to the price records[4].

We only give the ideas, referring to references [4, 10] and [25, 26] and books on
probability theory for further details. Consider random processes

l(t) = l(0) +
t∑
i=1

Xi

where Xi are random variables, and for simplicity we take EXi = 0 for all i. The
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large deviation principle asserts that for a wide range of conditions on the Xi, the

probability

Prob

{
l(t+ k)− l(t)

k
> ρ > 0

}
∼ ekC(ρ)

decays exponentially, where the large deviation rate function C(ρ) is concave and
negative and has a maximum value 0 at ρ = 0. The same holds for Prob{ 1

k
[l(t+

k)− l(t)] < ρ < 0}. Therefore, if price records would satisfy such a large deviation
principle with rate function C(ρ), this would imply that the probability for a gain
larger than ρ × 100% per unit time, would decay exponentially as ekC(ρ). Large
deviation rate functions do not exist for all sorts of random processes. For example,
it does not exist for fractional Brownian motion (H �= 1

2
), nor for stable processes,

nor for the 30 stocks comprising the German DAX index[4].
To do a large deviation analysis[4, 10] for the logarithmic middle price (Equation

1), we first estimate the probability densities Pk(ρ) of the rate of returns ρ

ρ ∈

{
M(ti+k)−M(ti)

k

}
i=1,γk,2γk,...,<(T−k)

(6)

for several values of k. The parameter 1
k
≥ γ ≤ 1 determines the overlap.

If the large deviation principle holds, then these densities can be collapsed by
plotting

lnPk(ρ)

k
− ε(k) versus ρ (7)

The term ε(k) is a correction term for small values of k which in the case whereXi are
i.i.d. Gaussian random variables can be computed exactly[4]. These corrections turn
out to be just vertical shifts of the graphs of 1

k
lnPk(ρ), positioning there maximum

value at 0. Because of lack of theory for general cases, also in the following we

subtract the value of the maximum, i.e., we take

ε(k) =
lnPk(0)

k

so that the top of the curves are all at 0.
In Figures 8 we show the result for the DEM-USD FX. Clearly there is no sign of

convergence to a large deviation rate function. This non-convergence shows that the

DEM-USD FX process is totally different from a simple Gaussian process, where the
convergence would occur very rapidly[4]. The fact that the tails of the distributions
rise as a function of k, implies that the probability for per-unit-time-returns larger
than ρ×100% > 0, decays less fast then exponential (i.e. less fast than ekC(ρ) for any
C) as a function of the number of quotes k during which the position is held. Such
an exponential decay is what should come out for a Gaussian market[4]. Therefore,
the risk structure of the DEM-USD exchange record is very different from that of a
Gaussian.

There are various possible reasons for the lack of convergence to a large deviation
rate function. One is that the successive random variables are not independent.
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Figure 8: Large deviation analysis for the intra-day DEM-USD quotes over the year
1993. The left plot is for quote time intervals k = 1, 2, 4, 8 and the right plot for k =
32, 64, 128, 256, 512. The lack of a collapse of these different distribution onto a single
curve and the clear broadening of the rescaled distributions, shows that the probabilities
for large deviations decays less fast then exponentially. This is very different from what
would be expected from an i.i.d. finite variance random walk.

The second is that the distribution underlying the 1-quote jumps has long tails.
The third, which we do not consider here, is that the process may not be stationary.
Both lack of independence and long tails are the case for stocks on the DAX index[4].
Also in the present FX case, there is direct evidence shown in Figure 9, which

is a double logarithmic plot of the distribution of the absolute values |l| of the
logarithmic jumps across quotes. From this plot one finds that the tail behavior is
an approximate power law with an exponent -6. Note that as long as the exponent
is smaller than -3, such a random variable is still in the domain of attraction of the

Gaussian distribution[27]. Much more accurate methods for determining this tail
exponent have been developed in Ref. [28], and show that the real exponent lies
around -4, i.e., it is fatter than suggested in the above Figure 9.

To assess the effect of the up-down anti-correlations on the shape of the distribu-
tions in Figures 8, we turn off these correlations by time scrambling the price record.
To time scramble the logarithmic middle price record {M(ti)}Ti=1 (Equation 1,) one
first determines the 1-quote jump series {l(i) =M(ti+1)−M(ti)}

T−1
i=1 . Let {π(t)}

T
t=1

be a randomly chosen realization among the n! possible random permutations of the
quote-times {0, . . . , T − 1}. Than

{l(π(1)), l(π(2)), . . . , l(π(T − 1))}
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Figure 9: The distribution of the absolute values of
middle price jumps across single quotes.

is a time scrambled version of {l(i)}T−1i=1 . Each of the possible price records

Mi =M0 +
i−1∑
j=1

l(π(j)).

is then a time-scrambled realization of the original DEM-USD record. Note that

the scrambled record is now a sum of i.i.d. random variables.
The result of the analysis of the Hurst exponent for this scrambled DEM-USD

price record, plotted in Figures 10, shows that, now that the anti-correlation have

been taken away from the original data, the distributions become broader. The
Hurst exponent is now H = 0.5, which is the simple Gaussian random walk result.
The larger slope in the first 3 points is due to the long tails in the distribution of
the random variables added (shown in Figure 9.)

The left plot in Figure 11 shows the results of a large deviation analysis on the
scrambled data. In comparing this plot with that in Figure 8 one clearly sees the
effect of the negative up-down correlations on the distributions. First of all, the
scrambled record does satisfy a large deviation principle, and leads to a Gaussian

market. Namely, the smooth concave curve is the exact large deviation rate function
for a Gaussian process Xi with standard deviation σ = 0.000246. All the empirical
distributions P scrmk (ρ) for the scrambled DEM-USD record collapse onto this large
deviation rate function, using the collapse rule Equation 7. The dotted curve is the

k = 64 result for the original DEM-USD record taken from Figure 8. From the
change in the shape of the distribution for k = 64 in going from the original to the
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k of intermediate quotes for the scrambled time serie.
All crossovers disappear, and the process becomes a
simple Gaussian random walk. The original data have
been reproduced from Figure 6

scrambled data, one infers that the up-down anti-correlations have a pronounced
narrowing effect on the distribution of returns over 64 quotes. Nevertheless, the
shape of this (narrowed down) distribution is far from being Gaussian, and has tails
fatter than a double exponential distribution. This is not totally unexpected, since

alternatingly adding and subtracting positive long-tailed random variables is not
going to take away the long tail. However, this will narrow the distribution.
Similarly, the right plot in Figure 11 shows a 100 fold blow up of the top part of

the left plot, now containing only the exact Gaussian large deviation rate function
and both the scrambled and non-scrambled k = 2048 distributions. Also here the
narrowing effect is still present. But now the (concave) tails of the distribution
decay faster than double exponential. However, one should note that for k = 2048

the number of independent sample values of ρ is of the order of 700. A longer data
set is needed to determine the behavior more accurately at these larger time scales.

The self-similarity of the returns
We found two different Hurst exponents. One, H = 0.45, relates the mean absolute

returns over different lags 32 < k < 512 with each other. The other, H = 0.56,
relates the mean absolute returns over lags on higher scales 512 < k < 8192. The
large deviation analysis showed that this dual scaling behavior is distinctly non-
Gaussian, with tail probabilities decaying less fast then exponential as a function of
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Figure 11: left) Large deviation analysis for the scrambled intra-day DEM-USD quotes
over the year 1993. The smooth concave curve is the large deviation rate function for a
simple Gaussian process with standard deviation σ = 0.000246. The dotted curve is the
k = 64 result for the original DEM-USD record and one clearly sees the narrowing effect of
the up-down anti-correlations. right) is the same as left, but now for k = 2048. Also here
there is a substantial broadening with respect to the original. But here the correlations
plot is the same as the dotted curve is the exact Gaussian result

the holding period k.
Given that the mean absolute values seem to scale, with a crossover at k = 512,

the question remains whether the distributions of logarithmic middle price jumps
for different quote-time intervals k are self-similar. Self-similar[23, 4] in the sense

that a randomly picked k-quote returnM(ti+k)−M(ti) is identically distributed to
a randomly picked k′-quote return M(tj+k′) −M(tj) when the latter is rescaled by
a factor (k/k′)H . Formally, if the return over a lag k is written as a sample value of
a random variable Yk, and that of k′ as a sample value of Yk′ , then the process is

self-similarity[23] if

Yk i.d.

(
k′

k

)−H
Yk′ . (8)

To accommodate for the returns per unit time (ρ) used in the large deviation anal-
ysis, we rewrite as like

Yk
k
i.d.

(
k′

k

)1−H
Yk′

k′
(9)

which implies – by a simple change of variable in the densities – that, the process is
self-similar if plots of densities Pk(ρ) (Equation 6) collapse, when plotting

(H − 1) ln k + lnPk(ρ) versus k
1−Hρ. (10)

With the values of H known for the two different regimes, one could now check
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Figure 12: Self-similarity analysis for the anti-persistent and persistent regime for the
DEM-USD exchange rate. The left plot is for the anti-persistent regime and has been
rescaled with H = 0.45. The right plot has been rescaled with H = 0.56. In both plots
we added one distribution from the other regime, to show that indeed it does not collapse
onto the rest. Note that the top of the distributions have been shifted vertically so that
the absolute maximum values lie at 0.

whether the distributions are self-similar, by rescaling the densities estimated from
Equation 6 with the renormalization rule Equation 10. Note that the term (H −
1) ln k is a k dependent vertical shift of the distributions. Because the number of
independent samples used to estimate Pk(ρ) decreases with increasing k, the tails

of these estimated Pk(ρ) will be shorter. So, even though for a self-similar process,
the shape of the rescaled distributions will be identical for those overlapping values
of k1−Hρ that have been suitable sampled for both, the rescaled distribution for

the larger k will be located above the other, because, notwithstanding its relatively
shorter tails, it should normalize to 1. In order not to be disturbed by these finite
sample size corrections, also here we vertically translate all the maxima of (H −
1) ln k + lnPk(ρ) to 0.

The results are shown in Figure 12. The left plot is for the anti-persistent regime
k = 32−512, and according to the result in Figure 6 has been rescaled withH = 0.45.
The right plot is for the persistent regime k = 512 − 4096, and has been rescaled
withH = 0.56. The non-concavity of the tails of the basic distribution[4] onto which

everything collapses is again an indication of long or fatty tails. The symmetry of
the basic distribution and the fact that both the left and the right tail have the same
scaling behavior, fits well with the finding in Reference [3], that the mean absolute
positive and negative return fluctuation have the same scaling behavior.

What these two plots show is that in both the short time-scale regime (k < 512,
H = 0.45) and the long time-scales regime (k > 512, H = 0.56,) the DEM-USD
returns are self-similar to a very high degree. In the short time scale regime, it is very

clear that the self-similarity we measured is arising from a complicated dynamics,
characterized by strong anti-correlations and by fat tails. Because H < 0.5 this
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certainly is not a stable process.

More analysis has to be done on the correlations for scales above k > 512 in order
to assess their influence. From the smallness of the up-down correlation coefficients
on scales k > 512, we know that that sort of correlations do not seem to play a major
role. Reference [3] finds no correlations between hourly price changes, but does find

significant correlations for their absolute values (see also [2]). This complicates the
understanding of the origin of H > 0.56 even further.
By definition, the rescaling rule in Equation 10 collapses the lag-k distribution

of jumps in fractional Brownian motion with 0 < H < 1 onto a concave function

of the form −x2[23, 4]. This rescaling rule is also identical to that for symmetric
stable random variables[27] with zero expectation and with characteristic exponent
1 < α = 1/H < 2, i.e., 0.5 < H < 1. This implies that also for such processes
one gets a collapse of the distributions onto a basic distribution, using Equation

10. The difference is that in the latter case the basic distribution has convex tails.
The exponent H = 0.56 and the collapse in the right plot in Figure 12 are therefore
necessary, but not sufficient conditions to conclude that the self-similarity observed

is that of a stable process.
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