
Multifractality of Deutschemark / US Dollar Exchange Rates∗

Adlai Fisher and Laurent Calvet†

Department of Economics, Yale University

Benoit Mandelbrot‡

Department of Mathematics, Yale University and
IBM T. J. Watson Research Center

Cowles Foundation Discussion Paper No. 1165

This Draft: September 15, 1997
First Draft: October 1996

THIS VERSION TEXT ONLY
Download figures at http://www.econ.yale.edu/∼fisher/papers.html
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Abstract

This paper presents the first empirical investigation of the Multifractal Model of Asset

Returns (“MMAR”). The MMAR, developed in Mandelbrot, Fisher, and Calvet (1997),

is an alternative to ARCH-type representations for modelling temporal heterogeneity

in financial returns. Typically, researchers introduce temporal heterogeneity through

time-varying conditional second moments in a discrete time framework, or time-varying

volatility in a continuous time framework. Multifractality introduces a new source of

heterogeneity through time-varying local regularity in the price path. The concept of

local Hölder exponent describes local regularity. Multifractal processes bridge the gap

between locally Gaussian (Itô) diffusions and jump-diffusions by allowing a multiplicity

of Hölder exponents. This paper investigates multifractality in Deutschemark / US

Dollar currency exchange rates. After finding evidence of multifractal scaling, we show

how to estimate the multifractal spectrum via the Legendre transform. The scaling

laws found in the data are replicated in simulations. Further simulation experiments

test whether alternative representations, such as FIGARCH, are likely to replicate the

multifractal signature of the Deutschemark / US Dollar data. On the basis of this

evidence, the MMAR hypothesis appears more likely. Overall, the MMAR is quite

successful in uncovering a previously unseen empirical regularity. Additionally, the

model generates realistic sample paths, and opens the door to new theoretical and

applied approaches to asset pricing and risk valuation. We conclude by advocating

further empirical study of multifractality in financial data, along with more intensive

study of estimation techniques and inference procedures.

Keywords: Multifractal Model of Asset Returns, Multifractal Process, Compound Stochas-

tic Process, Trading Time, Time Deformation, Scaling Laws, Multiscaling, Self-Similarity,

Self-Affinity



1 Introduction

Multifractality is a promising new tool for economists. Recent theoretical research proposes the

Multifractal Model of Asset Returns (“MMAR”) as a method of modelling financial prices. (Man-

delbrot, Fisher and Calvet, 1997; Calvet, Fisher and Mandelbrot, 1997; Mandelbrot, 1997). The

MMAR is thus an alternative to ARCH and its variants. Multifractal processes incorporate long-

tailed asset returns and long memory in “volatility”. Additionally, the MMAR predicts a form of

scaling in the moments of returns that is new to both theoretical and empirical finance.

Current finance literature notes a discrepancy between financial theory, which is largely set

in continuous time, and empirical research that tends towards discrete formulations. (Rossi, 1997;

Drost and Werker, 1996; Melino, 1994) This discrepancy is sometimes viewed as a “gap” to be reme-

died by improvements in empirical models. Multifractality offers a different perspective, showing

that a large class of interesting stochastic processes are not covered by the Itô diffusion paradigm.1

Importantly, the MMAR contains a restriction, scaling, that is strong enough to generate empiri-

cal tests. “Scaling” describes a specific relationship between data samples of different time scales,

e.g. daily, weekly, or monthly returns.2 We envision a growing set of econometric methods that

explicitly test or model the behavior of data at different time scales. Established research along

these lines includes the literature on decreasing sequences of ARCH representations (Nelson, 1990;

Nelson and Foster, 1994; Drost and Werker, 1996). This work assumes a decreasing sequence of

sampling frequencies, and therefore matches the natural continuous time framework of the MMAR.

The present paper conducts the first empirical investigation of the MMAR. The empirical work

uses an estimation technique that is new to economics, and is validated through simulation. Simu-

lations also are used to illuminate important differences in a core group of extant financial models.

Overall, the empirical results are quite promising for the MMAR, showing strong regularities in

an important data set that are consistent with restrictions imposed by multifractality. We hope

1Itô diffusions are locally quadratic, allowing arbitrage arguments and other mathematical conveniences that would
require distributional assumptions in discrete time. Theoretical results that depend critically upon It ô diffusions
are generally understood to be idealized, and problematic because of the presence of discontinuities. The MMAR
reinforces reservations about the “continuous hedge” by postulating a more generally diverse variety of local behavior.
Even when price paths are continuous, they in general are not locally quadratic.

2A similar term that has been used in these papers is “scale-consistent”, which has the same meaning as “closed
under temporal aggregation”. By this, we mean that the class includes a representation of the process at each discrete
time scale. Thus, GARCH is not scaling, but under certain assumptions, is scale-consistent. (See Drost and Nijman,
1993).
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to encourage further research by demonstrating the empirical content of the model, and to lay

groundwork that suggests which approaches will be most fruitful.

The structure of the paper is as follows: Section 2 presents the primary estimation methodology.

Multifractal processes are reviewed and their scaling properties are related to restrictions upon

moments of the data. This leads to an informal test of multifractality, and an estimation method

for the scaling function, which describes growth rates of moments as the time scale increases.

Section 3 applies these methods to Deutschemark / US Dollar exchange rate data. We find strong

evidence of scaling, consistent with the predictions of the MMAR.

Section 4 reviews the multifractal spectrum, which is a renormalized density of points in time

with different degrees of local regularity. We show that the multifractal spectrum can be estimated

by Legendre transform of the scaling function. Section 5 carries out the Legendre transform on the

estimated scaling function and discusses these results. The MMAR components are recovered from

the estimated multifractal spectrum. Finally, Monte Carlo simulations show a striking resemblance

to the DM/USD data, although consistent replication of scaling requires large simulated sample

sizes. This result is discussed in Section 5.

Section 6 simulates GARCH and FIGARCH processes, using parameters obtained from pre-

viously published research on exchange rates. Lack of long memory is made intuitively clear by

graphical representations of GARCH over long time intervals. Similar FIGARCH simulations show

long memory, but lack variability at high frequencies when compared to the data (or the MMAR).

Neither GARCH nor FIGARCH captures the scaling properties of the data with consistency, even

at large sample sizes. We discuss how to interpret these results.

Section 7 conducts a variety of robustness tests. We apply several seasonal adjustment filters to

the high frequency data, split the data to test for model stationarity, and perform similar tests with

the Japanese Yen/ US Dollar series. Scaling properties are robust to reasonable transformations of

the DM/USD data. Scaling behavior in the Yen/ Dollar series is more complicated, and is discussed

at the end of Section 7.

Section 8 concludes. Overall, we find that the MMAR captures a multitude of important features

of the data. These include long memory in volatility, long tails, scaling, and high variability in

returns at high frequencies. This line of research should therefore be extended in several directions,

including theory, empirical methods, and simulation methods. There is also a need for more
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comprehensive empirical work using different data sets. Finally, the most important applications

of this model will be in the valuation of risk.

2 Testing the MMAR: Methodology

Mandelbrot, Fisher, and Calvet (“MFC”, 1997) introduces multifractality to economics, focusing

upon scaling properties in moments. The main result is the Multifractal Model of Asset Returns

(“MMAR”), which shows that multifractal measures, when combined with the concept of trading

time, generate continuous-time stochastic processes that have long memory in volatility, long tails,

and are flexible enough to generate either martingale or long memory behavior in log prices.

Calvet, Fisher, and Mandelbrot (“CFM”, 1997) further develops the theory of multifractals,

focusing upon local scaling properties. This paper develops the concept of Hölder exponent, which

describes the local regularity of the price path, and the multifractal spectrum, which is a renormal-

ized density of local Holder exponents. These concepts are then related back to the MMAR.

This section and Section 4 review multifractality, emphasizing concepts necessary for empirical

work. Readers interested in further development of the theory should consult MFC, CFM, and the

literature cited therein.

2.1 Review of the MMAR and Multifractal Processes

Let X(t,4t) generically denote the increments of a stochastic process X(t), i.e.

X(t,4t) ≡ X(t+ 4t) −X(t), 0 ≤ t ≤ T.

Also, let X (4t) stand for X(0,4t), which is distributionally invariant under translations when

stationarity in increments is assumed. MFC defines a multifractal process as a continuous time

process with stationary increments that satisfy

E [|X(t,4t)|q] = c(q) (4t)τ(q)+1 (1)

for all t,4t on which X is defined, and for all q such that E [|X(t,4t)|q] <∞. This expectation is

assumed finite over an interval [0, qmax)], which may be open or closed on the right.

Equation (1) is a scaling law in the moments of X(4t). It specifies a form for their change as

4t varies. All information about the rate of growth is contained in the function τ(q), called the
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scaling function. Thus, τ(q) is a focal concept in the theory of multifractals. The prefactor, c(q),

is not considered in this paper, except for the fact that it does not vary over t or 4t.
The MMAR posits a Fractional Brownian Motion, BH(t), compounded by a multifractal trading

time, θ(t). Trading time and the Fractional Brownian Motion are assumed independent. The

resulting multifractal price process is written3

logP (t) − logP (0) = BH [θ(t)] . (2)

The strategy followed in this paper will be first to test the scaling law in equation (1) . We then

estimate τ(q), which is transformed into an estimate the multifractal spectrum. This, in turn,

allows us to recover the individual components of the MMAR and simulate the price process (2).

A review of the multifractal spectrum, which is not necessary to test the existence of a multifractal

scaling law, is deferred until Section 4.1.

2.2 A Simple Test of Multifractality

Consider a price series P (t) defined on all t belonging to the fixed time interval [0, T ]. Denote the

logarithm of price by X(t) ≡ logP (t) − logP (0). Dividing [0, T ] into N intervals of length 4t,
define the sample sum (also called partition function4 from origins in thermodynamics),

Sq(T,4t) ≡
N−1∑
i=0

|X(i4t,4t)|q . (3)

By the stationary increments property of multifractal processes, the addends are identically dis-

tributed, although they may have arbitrary correlation. If X(t) is multifractal, the scaling law

yields

log E [Sq (T,4t)] = τ(q) log(4t) + c(q) log T (4)

when the qth moment exists.

The methodology employed in the remainder of the paper is straightforward. We plot log Sq(4t)
against log4t for various values of q and various values of 4t. The linearity of these plots for given

3All of the empirical work in this paper uses base 10 logarithms, except for the initial transformation of prices,
which is a natural logarithm. The companion theoretical papers work in natural logarithms exclusively, and use
the ln notation. This paper uses a single notation, log, which should be interpreted according to whether the use is
empirical or theoretical. All of the theory converts easily (but tediously) to base 10 (or vice versa).

4The logarithm of Sq is also frequently referred to as the partitition function. We hope the reader will tolerate
this ambiguity in order to expedite discussion.
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values of q is proposed as a test of the MMAR. We check linearity by visual inspection. The slope

of the lines, estimated by OLS regression, gives an estimate of the scaling function τ(q). The

estimated scaling function is easily transformed into an estimated multifractal spectrum.

Despite the simplicity of these methods, theoretical justification beyond equation (4) is quite

difficult. Mandelbrot (1995, Section 6.4) has conjectured consistency of estimated slopes for a

large class of multifractals as 4t → 0. In general, a theoretical proof of this conjecture has

been elusive, except for a few simple cases such as the binomial and multinomial multiplicative

cascades. Consistency, along with inference methods, remains an open and interesting area for

future theoretical work.

Until additional theory is developed, we justify the above methodology on two counts. First,

while inversion of logarithms and expectations will produce small sample biases in estimation, these

need not prevent transmission of linearity in (4) to approximate linearity in the sample partition

function.5 Secondly, estimation biases for τ(q) can be studied and understood for particular cases

of interest.

Monte Carlo simulation validates the empirical methods used in this paper. After Section 3

shows linearity in DM/USD partition functions, Section 5 estimates τ(q) and uses this information

to generate an estimated multifractal spectrum. Using results provided in MFC and CFM, we

then recover a generating mechanism with theoretical multifractal spectrum similar to the data.

Simulated partition functions of this process follow their predicted paths, with (approximately)

linear partition functions of (approximately) the same slope as the DM/USD data.

Finally, the partition function methodology has some power to discriminate against reasonable

alternatives. Section 5 simulates GARCH and FIGARCH processes with parameters from pub-

lished research on exchange rates. Although the simulated alternatives mimic scaling behavior in

individual samples, the MMAR replicates the scaling behavior found in the data more consistently.

All of the simulation results should be considered preliminary investigations, and should be studied

more thoroughly in future research.

5By Jensen’s inequality, rewriting equation (4) as a regression yields errors with negative expectation. The effect
on linearity of the partition function and estimated slope depends on both the magnitude of the bias and how the
bias varies with 4t. Both of these problems are tractable with simulation methods, although beyond the scope of the
present paper.
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2.3 Unifractal Examples: Brownian Motion and Fractional Brownian Motion

Consider a (Wiener) Brownian Motion (“WBM”, to distinguish from Fractional Brownian Motion,

“FBM”) with volatility σ. By self-affinity, E[|X(t,4t)|q ] = σ (4t)q/2 for all t, and all q, 4t > 0.

Independent increments and the strong law of large numbers immediately yield

τ(q) =
q

2
− 1.

We simulate the increments at T = 105 uniform intervals, and calculate Sq(4t) for several

values of q between 1.5 and 5 and numerous values of 4t between 1 and 1000. Figure 2 shows

log4t plotted against log Sq(4t) for each value of q. The plotted values fall very nearly on lines

of the predicted slope. The predicted values are shown as dotted lines in the figure.

We now repeat the example above for several Fractional Gaussian Noises (“FGN”), the discrete

time analogues of Fractional Brownian Motion. Understanding these processes is important, since

FBM is one of two main components in the MMAR. Mandelbrot and Wallis (1969) provides two

discrete approximations to the FBM. A third approximation, which reduces computational com-

plexity, appears in Mandelbrot (1971). These discrete FGN received widespread application in the

natural sciences and economics.

Granger (1980), Granger and Joyeux (1981), and Hosking (1980) provide a fourth discrete

approximation to the FBM,6 proposing the fractional differencing operator in discrete time as the

binomial expansion of (1 − L)d. This gives the familiar ARFIMA(0, d, 0) process,

(1 − L)dxt = ut,

where {ut} is white noise and d = H − 1/2. The Wold decomposition is

xt =
∞∑

k=0

ψkut−k

ψk =
Γ(k + d)

Γ(k + 1)Γ(d)
∼ 1

Γ(d)
kd−1 as k → ∞, (5)

where Γ denotes the Gamma function. Asymptotically, the decay rate of d−1 in the MA coefficients

is identical to the previous discrete approximations of 1968 and 1971. This gives an asymptotic

6This approximation is called Fractional White Noise by some authors. The perceived conceptual distinction is
that the FGN approximates increments of the FBM, while the FWN applies the fractional differencing operator to
white noise.
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decay rate in autocorrelations of 2d−1, which (alternatively expressed in terms of ACF or spectrum)

is the fundamental characteristic of FBM and discrete approximations to the FBM. Short-memory

components can be added to fit high-frequency features of the data as suggested by Mandelbrot

(1971), and formalized in the ARFIMA(p, d, q) process.

Figure 3 shows several simulations of Fractional Gaussian Noise, H ranging between .2 and

.8. In addition, we show a near-Fractional Gaussian Noise that is just non-stationary, and several

processes whose increments are FGN with 0 < H < 1. Beginning with d = .5, the span of the

vertical axis begins to increase dramatically as a consequence of non-stationarity.

These graphs are notably different from the data. The persistent values of .5 < H < 1 have

long-memory in their increments, which is usually diagnosed by a slow rate of decay in the sample

autocorrelation function. Long-memory can be detected visually when H = .8, and somewhat when

H = .6, by apparent long-period trends in direction. More distinctive features of the DM/USD

data are low frequency shifts in the size, or absolute value, of price increments. When simulating

multifractal processes in Section 5, the distinction between long-memory in increments and long-

memory in the absolute value of increments will again become apparent.

Figure 4 shows, in solid lines, the estimated partition functions for four of the simulated FGN’s.

The dotted lines are reference lines showing the expected values for Wiener Brownian Motion, and

the dashed lines show theoretical expectations for FBM’s of the same H. All simulated partition

functions follow the prediction for FBM fairly closely.7 Even for H = .53, which is indistinguishable

from Wiener Brownian Motion by inspection of sample paths or increments, differences in slope

are apparent when using the partition function methodology.

3 Testing the MMAR: Empirical Results

3.1 The Data: Deutschemark / US Dollar Exchange Rates

The Deutschemark / US Dollar (“DM/USD”) currency market is the most thickly traded exchange

rate market in the world (three times the size of the Yen/Dollar market on the basis of quotes), and

high frequency (quote by quote) data is readily available. Olsen and Associates, a currency research

and trading firm located in Zürich, Switzerland, provided data for a one year period (October 31,

7As the distance between H and 1/2 increases, some biases appear. A likely explanation is approximation error in
the simulations. We use the infinite MA representation in (5) with a cutoff at 30, 000 lags. Alternative approximations
to the FBM will be explored in future work.
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1992 – September 1, 1993). The data set consists of all bid/ask quotes, with transmittal times,

collected by Olsen & Associates during that year. Quotes are collected from banks and other

trading institutions world-wide, creating a data set with round-the-clock observations. For the

DM/USD series, this amounts to 1,472,241 quotes. Previous researchers using the Olsen data have

noted that traders have strong incentives not to transmit spurious quotes, and Olsen provides a

filter for quotes which they believe to be erroneous.8

A second data source is a nearly twenty-four year series of daily DM/USD exchange rates. This

data set also was provided by Olsen and Associates, and spans from June 1973, shortly after the

permanent demise of the Bretton-Woods system of exchange rate pegs, to December 1996. The

reported price is the geometric mean of bid and ask quotes.9 The prices were recorded at 16:00

UK time as a linear interpolation of the two closest (in time) quotes. Data are provided for every

weekday except New Years and Christmas. Figure 1 shows the DM/USD daily series, along with

increments and log increments, over the length of this sample period.

Combining these two data sets allows calculation of the partition function over three orders of

magnitude of 4t. This permits investigation of scaling behavior over a broad range of sampling

frequencies.

3.2 Seasonality

Figure 5 shows weekly patterns in two measures of market activity. These are, respectively, average

number of quotes per fifteen minutes and average absolute returns per fifteen minutes. Trading

activity falls significantly during weekends, from the close of trading in the U.S. on Friday to the

opening of the Australian and Asian markets on Monday. Weekday market activity subsides from

approximately 3:00-4:30 AM GMT, when it is lunchtime in the major Asian economies and other

major markets are closed.

Seasonal components are non-scaling, and preclude that trading time is multifractal as defined

in MFC.10 While this claim may not be intuitively obvious, it depends upon viewing multifractal

8Olsen & Associates provide a flag for quotes they believe to be either erroneous or not representative of actual
willingness to trade. We eliminate the flagged observations, which comprise .36% of the dataset.

9The logarithm of the geometric mean is the logarithmic mid-point. This is a standard approximation to price
when only bid and ask quotes are available. We test sensitivity to this approximation in Section 7, which uses buying
rates provided by the Federal Reserve.

10This set of papers has presented a fairly strict definition of multifractality, based upon the exact scaling equation
(1). Alternatively, we have discussed statistical self-similarity of random measures at times, as in Appendix 9.1.
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trading time as the cumulative distribution function (“c.d.f.”) of a statistically self-similar random

measure. For interested readers, this argument is presented in Appendix 9.1. Otherwise, seasonal

adjustment can be viewed simply as a stationarity requirement.

This complication is addressed by applying a seasonal adjustment filter11 that reduces the

seasonal component in the data. The seasonally modified version of the MMAR is written

lnP (t) = BH {θ [SEASn(t)]} ,

where SEASn denotes the nth seasonal adjustment filter among the several that we employ.12

The basic idea is that time is expanded during typically active periods of the week, and contracted

during typically slow periods. The expansions and contractions are restricted to maintain a constant

amount of total time, i.e. 604, 800 seconds in a week.

Even for established time series models, seasonal adjustment is a delicate issue. (See the survey

by Ghysels, 1994.) Optimal procedures, in the sense of Grether and Nerlove (1970), are thus beyond

the scope of the present paper, and should be investigated separately. Instead, we choose a range

of imperfect, but reasonable, seasonal adjustment filters. Some have the merit of predictability in

whether they under-adjust or over-adjust for the seasonal component. This range allows us to test

robustness of results to reasonable variation in the seasonal adjustment method.

To simplify presentation, the results in Sections 3 and 5 use a single seasonal adjustment filter.

Section 6 separately investigates the issue of robustness, and presents results for the other four

filters. The filter used for the main results is SEAS2 which deforms time to smooth variation in

average absolute returns over fifteen minute intervals of the week.

A broader view of multifractality is simply the presence of multiple Hölder exponents, as in CFM. While we have
not fully developed this viewpoint, one would proceed by presenting multifractality as an asymptotic, and thus less
restrictive, requirement. This definition would permit seasonality, since seasonality can typically be viewed as a
smooth transformation that affects prefactors, but not Hölder exponents. As long as prefactors are well behaved, the
scaling properties as 4t → 0 are not affected. This idea may be further developed in the future, but does not seem
to present significant advantages in empirical work at the present time.

11The term “filter” as used here simply means the data are “treated in a particular way before they are analyzed”
(Hamilton, 1990, p.63).

12Hereafter, we specify the seasonal filter in text and graphs, and drop this notation from future equations. Con-
struction of the seasonal adjustment filters is discussed in Appendix 9.2.
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3.3 Plots of the Partition Function

Figure 6 shows renormalized graphs of log Sq(4t) against log(4t) for values of q around 2. 13 From

bottom to top on the graph, the values of q increase from 1.75 to 2.25. The values of 4t range

from 20 seconds to 180 days, and are spaced at intervals of approximately .0414 on a log10 scale,

or multiples of about 1.1 on a real scale. The renormalization for all q is log Sq(20 seconds) = 0.

This renormalization is useful because the intercepts of the curves are not studied, and it allows

presentation of several curves on the same graph. Sample sums for the high frequency data and

the daily data are spliced together by the vertical displacement that provides the best linear fit,

using OLS, under the restriction that both lines have the same slope.14

Figure 7 plots higher moments (up to q = 5), which are generally more sensitive to deviations

from scaling. Format is the same as the Wiener Brownian Motion example from Figure 2. Dotted

lines are provided for reference, and show expectations for data generated by WBM. The horizontal

axis begins at log(2 hours) to focus attention on the region of principal interest. Each partition

function stops when the number of independent observations in the sample falls approximately

below 50. Thus, for the 365 day sample of high frequency data, the highest value of 4t represented

is 7 days, and 180 days is the approximate maximum for the daily data. The following section

explains what can be learned from inspection of these graphs.

3.4 Main Results

3.4.1 High Frequency Crossover

The most striking aspects of Figure 6 are the two clean breaks in the curves, highlighted by vertical

dotted lines. The first dotted line corresponds to five minutes of deseasonalized clock time. The

second dotted line corresponds to about two hours of deseasonalized clock time.15

The existence of lower and upper scale bounds for a model has been termed crossover in the

physics literature. This seems an appropriate term to extend to the phenomenon evident in Figure

13For the high frequency data, the price at time t is approximated by the geometric mean of bid and ask for the
most recently observed quote. This is consistent with the format the daily data was received in, explained in Section
3.1. Sensitivity to this approximation is addressed in Section 7.

14For canonical multifractal measures, vertical displacement is generally a random variable that depends only on
q. We expect this trait to be passed on to the price process by θ(t), and thus place no restrictions on the intercepts.

15During weekdays when a major market is open, these amounts would decrease by about 1/2 to 2/3 in units of
clock time. (Recall that seasonal adjustment expands active times of the week and contracts slow times.) Exact
conversions from deseasonalized clock time to clock time at different times of the week can be made using the vertical
axis in Figure 5a.
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6 at about two hours. For the remainder of this paper, we consider primarily the long range of

sampling intervals greater than two hours. These sampling intervals still span nearly three orders

of magnitude of 4t. The absence of a sharp upper crossover in this region, at least up to 180 days,

is promising.

We conjecture that high-frequency crossover can be related to market frictions such as bid-ask

spreads, discreteness of trading units, and discontinuous trading. This topic will be investigated in

a forthcoming paper.

3.4.2 The Self-Affinity Index for BH(t)

A close up view of the slopes of the partition functions around the moments q = 2 is chosen in

Figure 6 for a particular purpose. The self-affinity index, H, of the Fractional Brownian Motion

BH(t) in the MMAR is identified by the condition that

τP (1/H) = 0, (6)

where τP is the scaling function for the price process.16

From Figure 6, the value of q with slope zero appears to be about 1.9, indicating H ≈ .53. This

implies small persistence in DM/USD exchange rates. At the same time, the estimated H is very

close to 1/2. Previous studies, based on well understood estimation methods, find white spectra

(implying H = 1/2) for log increments of typical financial data. Thus, the martingale hypothesis

for log prices seems to be a reasonable approximation. At the same time, Section 5 shows strong

evidence of multifractality in trading time, implying long memory in squared returns.

3.4.3 Linearity of the Partition Functions

Linearity of the partition functions in Figure 6 indicates a multifractal scaling law that holds, at a

minimum, for close to three orders of magnitude of 4t. Scaling is even more striking in Figure 7

because the moments are higher, reaching to q = 5. Once again, the lines are relatively straight,

consistent with the MMAR. Variability of the lines around their apparent slopes increases as q

increases, as is to be expected.

16In a partition with fixed endpoints where all increments are restricted to have the same sign, the sum of increments
cannot depend on grid size. Intuitively, the total variation of an increasing process, estimated by finite increments,
does not depend on how we cut it up. Therefore, since θ(t) is increasing (being the c.d.f. of a random measure),
τθ(1) = 0. For a Fractional Brownian Motion, τ (q) = Hq − 1, and τP (q) = τθ(Hq) by Theorem 4.2 in MFC(1997).
This establishes that τP (1/H) = 0. See CFM and Mandelbrot (1997) for further discussion.
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Closer inspection of Figures 6 and 7 reveals that the lines are in fact composed of two distinct

segments, corresponding to the high frequency data and the daily data. At 4t = 1 day, the daily

partition function overlaps the high frequency partition function with nearly the same slope, and

greater regularity because of a sample span nearly 24 times as large. Once again, as 4t increases,

the variability around the apparent slope increases, until estimation ceases at 180 days.

The strong similarity in slopes between the high frequency data and the daily data suggests

model stationarity. At least for moments up to q = 5, the scaling law for 1992-1993 is similar to

the scaling law for 1973-1996. Returning to the daily price series of DM/USD returns presented

in Figure 1, note several long swings in price as the Dollar appreciates and depreciates against the

Mark. Working with the variety of GARCH, FIGARCH, ARFIMA, stochastic trend, and stochastic

volatility models that are currently available, few researchers would attempt to capture long term

behavior in the DM/USD series over the twenty-five year sample span with the same model that

explains relatively high frequency behavior in 1992-1993.

This highlights a major innovation in the MMAR approach. By modelling restrictions upon

the relationship between distributions or moments at different time scales, we can generate new

predictions and new econometric methods for testing these restrictions.

This section has shown evidence of a multifractal scaling law for DM/USD exchange rates. In

Figures 6 and 7 the eye is unable to discriminate differences in τ̂(q) (where τ̂ indicates the estimated

scaling function) between the high frequency data set and the daily data set. Section 4 estimates

τ(q) separately for each data set, and employs Legendre transforms of τ̂(q) to obtain estimates of

the multifractal spectrum.

4 Review of the Multifractal Spectrum

The scaling law in moments (1) is useful in generating testable restrictions, but not an intuitive

description of multifractality. Other intrinsic characteristics of multifractals might serve as defini-

tions, though with greater technical complications. For example, Mandelbrot (1972, 1974) begins

with the distributional scaling of statistically self-similar random measures and arrives at a scaling

law in moments as an implication.

The deepest, though probably most difficult, understanding of multifractals comes from studying

local scaling properties. This is explored in CFM, and reviewed here in order to prepare for the
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empirical work in Section 5. The concept of Hölder exponent is essential. The local Hölder exponent,

α(t), measures the local regularity of a process:

X(t,4t) ∼ (4t)α(t) for all t, and as 4t→ 0. (7)

In a standard Itô diffusion, the local variation is always proportional to (4t)1/2. The most common

way to break this local scaling law is to introduce a jump component, which is akin to a local scaling

rule of the form (4t)0.

Multifractal processes generate variety in local regularity while filling the gaps between locally

(4t)1/2 and (4t)0 behavior. Multifractal processes contain a multiplicity of local Hölder exponents.

One might expect this diversity to result in unstructured behaviors. On the contrary, knitting

together sets of points with different Hölder exponents requires a particular kind of structure,

which is the topic of the two theoretical papers MFC and CFM.

The multifractal spectrum is the main tool for describing the distribution of Hölder exponents.

The following section reviews three subtly different interpretations. Section 4.2 provides a heuristic

for estimating the multifractal spectrum via a Legendre transform of the scaling function. Finally,

Section 4.3 reviews some basic facts about the multifractal spectrum that are useful in empirical

work.

4.1 Three Interpretations of the Multifractal Spectrum

The multifractal spectrum is a function f(α) ≤ 1, that may be defined on any subset of the real

line. The domain can be thought of as a space of Hölder exponents when α ≥ 0. (This is the only

case considered in the present paper.)17 The goal of the multifractal spectrum is to describe the

distribution of local Hölder exponents in a multifractal process. The most natural place to begin

this investigation is with the standard frequency renormalization of probability theory. Partitioning

time into a grid with increments of size 4t = b−k, we define the coarse Hölder exponents,

αk(t) =
lnX[t,∆t]

ln ∆t
.

By increasing k we proceed to the limit 4t → 0, and may expect that the frequency histogram of

coarse Hölder exponents will converge to the frequency distribution of Local Hölder exponents. This
17The case α < 0 cannot correspond to a Holder exponent for measures or bounded functions, but has gained an

alternative interpretation as a virtual α. This topic is at the frontiers of research in mathematics, and is beyond the
scope of the present paper.
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intuition turns out to be correct, but misses a great deal of information. Mandelbrot (1989) shows

that an alternative renormalization is more informative. CFM neatly categorizes this interpretation

with two other common interpretations for f(α):

(D1) the limit of a renormalized histogram of coarse Hölder exponents,

(D2) the fractal dimension of the set of instants with Hölder exponent α,

(D3) the limit of k−1 logb P {αk > α} + 1 provided by Large Deviation Theory.

The second interpretation is a statement about fractal dimension, or Hausdorff-Besicovitch

dimension. In a partition of size 4t, the number of intervals characterized by α takes the form

Nα(4t) ∼ (4t)−f(α).

This form justifies calling f(α) a fractal dimension.18 On the real line, fractal dimensions are

constrained to lie between zero and one. Fractal dimension and (unit renormalized) Lebesgue

measure coincide when both are either zero or one. On the other hand, all sets with positive

Lebesgue measure have a fractal dimension of one, and all sets with fractal dimension less than one

have zero Lebesgue measure. Thus, fractal dimension provides more information about some types

of sets. Standard continuous-time financial models have components with fractal dimension of one,

which applies to typical Itô diffusions, or zero, which applies to jump components. Thus, fractal

sets fill space in a manner that is midway between the standard cases of continuous time finance.

Definition (D3) is a statement about applying Large Deviation Theory (“LDT”) to multifractals

generated via multiplicative cascades. In the case of multifractals, the LDT provides far more

information about the generating mechanism than do the Strong Law of Large Numbers or Central

Limit Theorem.

These three definitions coincide when f(α) > 0, but clearly (D1) precludes negative values of

f(α).19 Negative fractal dimensions are known as latent α’s, deriving from the fact that sets of

18Note that the quantity − log Nα(4t)/ log(4t), which is f(α), does not depend on 4t.
19Definition (D2) is compatible with negative values for f(α) since Mandelbrot (1988, 1995) introduced the concept

of negative dimension as “degreee of emptiness of an empty set.” The idea is troubling at first, but has an interesting
probabilistic justification related to the embedding of a process or measure in a higher-dimensional space. For
example, in a one dimensional section drawn from a three dimensional space populated by stellar matter, the fractal
dimension of stellar matter is negative. An individual draw almost always has no matter, but by the generation of
numerous low-dimensional sections, called supersampling, one obtains information about the (positive) dimension of
stellar matter in the embedding space.
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negative fractal dimension will typically not be found in a random sample. Estimating latent α’s

requires supersampling, or obtaining many samples from the same higher dimensional space.20 This

paper focuses on manifest α’s, for which f(α) ≥ 0. The positive part of the multifractal spectrum

can be obtained from a single long sample, and describe the typical behavior of the process.

4.2 A Hölder Exponent Heuristic for the Estimation of f(α)

This section provides a brief heuristic showing the relationship between the scaling law in moments,

which is the focus of our empirical work, and the multiple Hölder exponents property of multifractal

processes. We see through this heuristic that the multifractal scaling function τ(q) and asymptotic

linearity of the partition function come from the fractal nature of sets of points in time with a given

Hölder exponent (D2). In addition, the heuristic shows how to obtain the estimated multifractal

spectrum of the process by applying a Legendre transform to the estimated scaling function τ̂(q).21

Consider again a finite sample span [0, T ]. Define

τ̂(q) = log Sq(T,4t)/ log4t = log

[
N−1∑
i=0

|logX(i4t,4t)|q
]
/ log ∆t

For a given realization of a sample path and small 4t,

|X(t,4t)|q ∼ (∆t)qα(t),

where α(t) is the local Hölder exponent of the path at t. At the scale ∆t, the distribution of α is

of the form c(α)(∆t)−f(α), where c (α) is a constant. Thus, f(α) is the fractal dimension of the set

of points having local Hölder exponent α. Rewriting the sum over price increments as a sum over

Hölder exponents yields

N−1∑
i=0

|X(i4t,4t)|q ∼
∫
c(α) (∆t)qα−f(α) dα.

As ∆t goes to zero, the main contribution to the integral comes from:

(∆t)
Min

α
[qα−f(α)]

,

20Supersampling circumvents non-ergodicity in long memory processes. This is conceptually possible by obtaining
repeated long samples of the same generating mechanism, but probably has limited applicability economics. See the
previous note.

21This heuristic is known as the Method of Steepest Descents in the thermodynamics literature, and dates at least
back to Cramér (1936). It was later used by Halsey, et al. (1986), and Frisch and Parisi (1985).
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and thus

τ̂(q) →Min
α

[qα− f(α)] as 4t→ 0.

We see that τ̂(q) converges to the Legendre transform of f . Conversely, f(α) can be estimated by

Legendre transform of τ̂(q) :

f̂(α) = Min
α

[qα− τ̂(q)] . (8)

This provides an estimation method for f(α).

4.3 Reference Points on the Multifractal Spectrum

The empirical work that follows estimates scaling functions and multifractal spectra for multifrac-

tal processes. Two essential results allow us to decompose the multifractal process into the two

components postulated by the MMAR.

First, by Theorem 4.2 of MFC,

τP (q) = τθ(Hq), (9)

where P denotes the price process, θ denotes trading time, and H denotes the self-affinity index of

the FBM. Since H is estimated by (6), both components are identified. The scaling functions of

prices and trading time are each deducible from the other by (9). Similarly, Theorem 5.1 of CFM

allows us to relate the multifractal spectra of the price process and trading time by the relation

fP (α) = fθ(α/H). (10)

Note that these two theorems imply one another by application of Legendre transforms.

An added benefit of these theorems is that simple results which have been derived for multi-

fractal measures can be immediately applied to multifractal processes. For example, concavity of

multiplicatively generated multifractal measures implies concavity of fP (α). Also, the spectrum of

a multifractal measure always lies below the line f(α) = α, and has a tangent to this line at exactly

one point.22 Thus, fP (α) ≤ α/H, with equality at a single point. Additional notation and simple

facts about the multifractal spectrum follow:

22Violation of this would imply that total measure increases as we take finer and finer partitions of an interval. See
Evertsz and Mandelbrot (1992) for further intuition.
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• α0 denotes the value of α for which f(α0) = 1. This is the maximum value of the multifractal

spectrum. By strict concavity, α0 is unique. This is also the most frequently occurring value

of α, occupying a set of Lebesgue measure one (or T if the sample span is not renormalized

to a value of one.)

• α1 denotes the value of α that carries most of the mass of a multifractal measure, or most

of the variation of a multifractal process. Multifractal measures satisfy f(α1) = α1. The

spectrum of a multifractal process generated by the MMAR thus satisfies fP (α1) = 1/H.

• αmin denotes the smallest manifest α, i.e. αmin =
{

min
α

: f(α) ≥ 0
}
.

• αmax denotes the largest manifest α.

Each of these points is depicted in the multifractal diagram shown in Figure 8.

4.4 Unifractal Examples

While the Legendre transform (8) can be worked out mechanically, a graphical representation is

more instructive. This is obtained by plotting, for each q, a line of slope q and vertical intercept

−τ̂(q). Placing all of these lines upon the same graph, the lower envelope gives the estimated

multifractal spectrum.

For each of the Fractional Gaussian Noises in Figure 4, the simulated partition functions follow

lines of approximate slope τ(q) = Hq− 1. Figure 9 shows Legendre transforms of scaling functions

for FGN’s with self–affinity indices .4, .53, .6, .8. Only the left side of each spectrum is shown.

The right side of the multifractal spectrum comes from negative moments of the partition function,

which are not used in the empirical work in this paper. Each of the lines drawn passes through the

same point at {α, f(α)} = {H, 1} . The lower envelope is thus degenerate:

f(α) =

 1, α = H

−∞, α 6= H

By inspection of equation (8), this form derives from the linearity of τ(q). The multifractal spectrum

is defined only for values of α that are tangency slopes for some value of the scaling function.

A single valued multifractal spectrum is an alternative way of saying that each of these processes

contains only a single Hölder exponent. Thus α0, which carries all of the Lebesgue measure of the
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process, is the same as α1, which carries all of the variation of the process. These two values of α

are distinct for multifractal processes.

5 The Multifractal Spectrum of DM/USD Exchange Rates

5.1 Estimation of the Scaling Function

Section 3.3 claimed evidence of a multifractal scaling function for DM/USD exchange rates based

upon linearity of partition functions. Estimating slopes of the partition functions for many q

gives the estimated scaling function τ̂ (q). Figures 6 and 7 indicated the relevant, approximately

linear, estimation region as 4t greater than two hours. With nearly linear partition functions,

the estimation method has little effect. We proceed by a combination of OLS and weighted least

squares.

Observations of Sq(4t) may be inversely weighted by some measure of their apparent variabil-

ity. We tried several reasonable weighting matrices, including no weighting at all, and found the

differences in estimated slopes to be very small. Likewise, dropping observations from the beginning

or the end of either sample, i.e., starting with a 4t of four hours or using only values of 4t up to

90 days, had little effect. For all the results presented, observations Sq(4t) are unweighted.23 All

values of Sq(4t) with 4t > 2 hours are used.

Separate scaling functions were estimated for the daily data and the high frequency data. We

also considered regression with the slopes restricted to be identical between data sets. These results

are not reported since the separately estimated scaling functions contain more information.24

Figure 10 shows the estimated scaling functions. The solid line represents the high frequency

data and the dashed line represents the daily data. Values of the scaling function were estimated

at 99 values of q between .01 and 30, with more concentration at low values of q and values around

2. The scaling function is only estimated for positive values of q. Negative exponents greatly

amplify small fluctuations, and thus are unreliable with imprecisely measured data. Some degree of

measurement error is typical of financial data. For similar reasons, the estimated slopes for higher

23The variance of the partition function at each value of 4t can be directly estimated at the same time the partition
functions are calculated through the variance of the summands. We omitted this step, instead checking robustness
to changes in weighting, which holds over a broad range of diagonal weighting matrices. Estimation of covariances
probably requires bootstrapping.

24Any value between the two unrestricted estimates can be obtained by changing the relative weighting of obser-
vations from the two data sets.
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values of q can be expected to be less robust.

The graphs show several characteristics that are typical of estimated scaling functions. First,

τ̂(0) = −1, which derives from the definition of the partition function. Secondly, the scaling function

is concave. This is a consequence of Hölder’s inequality, as shown in MFC. In addition, each of the

estimated scaling functions is non-decreasing.25.

Of particular interest in each graph is the value of q where τ̂(q) = 0. This value of q identifies

H by (6) . Finally, each of the scaling functions is asymptotically linear, with a slope approximately

equal to αmin. The minimum α corresponds to the most irregular instants on the price path, and

thus the riskiest events for investors.

5.2 Estimation of the Multifractal Spectrum

The multifractal spectrum is obtained by applying the Legendre transform (8) to the estimated

scaling function τ̂(q). Figures 11 and 12 show the estimated multifractal spectra, on the left

side of α0, for the high frequency data and the daily data respectively. The right side is not

estimated because this requires estimation of the scaling function for negative values of q. As

mentioned previously, calculation of Sq(4t) with q < 0 is not appropriate for financial data. Small

measurement error amplify greatly when using negative moments, thus requiring a high degree of

precision from the data.

While the estimated spectra of high frequency and daily data are not exactly identical, strong

similarities indicate that the MMAR can be used to model both samples. Both figures show a strong

degree of multifractality. Whereas the unifractal examples of Section 4.2 converged to a spike at

α = 1/H, both estimated spectra of the DM/USD data are concave. From left to right on the

horizontal axis, values of α increase from zero, corresponding to discontinuities in the process, to

.6, corresponding to a greater degree of regularity than the Brownian Motion. The most commonly

occurring Hölder exponent, α0, is greater than 1/2 in both figures. Thus, on a set of Lebesgue

measure 1, the continuous-time process corresponding to either spectrum is more regular than

Brownian Motion. Nonetheless, both spectra have Hölder exponents less than 1/2, reaching down

to values of about 1/4. These are very irregular instants for the price process, and represent high

25Theoretical scaling functions are not restricted to be nondecreasing. This is a case of virtual α’s, mentioned in
note 17.
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risk for the investor.26

In terms of trading time, low values of α correspond to sets of points where the measure of

trading time per unit of clock time is very high. This translates into a low Hölder exponent for

the c.d.f. of trading time at these instants, i.e. very swift passage of trading time. The Fractional

Brownian Motion component of the MMAR has a constant Hölder exponent, so irregularity of the

price process at instants with low α is due solely to trading time.

Each of the two spectra can be decomposed into BH(t) and θ(t). Equation (10) is the key.

Having determined H ≈ .53 by (6), the multifractal spectrum of trading time is derived by expand-

ing the price spectrum along the horizontal axis by a factor of 1/H. The next section discusses

recovery of the MMAR components more thoroughly.

Turning to some of the differences between the two figures, the high frequency spectrum is more

curved than the spectrum of the daily data, and its slope converges to ∞ approximately as α→ αmin

from above. This type of behavior is typical of binomial and multinomial cascades. The spectrum

of daily data is more typical of a canonical trading time, which assumes that the multipliers in

a multiplicative cascade sum to one in expectation, instead of exactly.27 Canonical sample paths

typically have an abrupt transitions at approximately αmin. This can be seen in the spectrum

of daily data where all of the high moments pass through, or pivot at, a point approximated by

{α̂min,f(α̂min)}.28 Thus, at a single point the spectrum (approximately) has a finite slope to the

right but is undefined to the left.

That f̂(α) has negative sample values for the daily data can be attributed to sample variability.

In general, the behavior of the spectrum around f̂(α) = 0 is most variable since it is determined

by high moments of the data. Not surprisingly, this is where the differences in the two estimated

spectra appear most strong.

26Moreover, because of the particular structure of fractal sets, the set of instants with a particular value of α tends
to be clumped together, simultaneously generating more risk and long memory in volatility. This is because uniform
spacing, when viewed from a distance, becomes uniformly dense spacing and demands space-filling (or Lebesgue
Measure of 1) behavior to maintain self-similarity. Only irregularly spaced sets on the real line, like the Cantor set,
can maintain self-similarity without filling space.

27A microcanonical trading time shifts time locally, but preserves mass exactly at each step. Canonical measures
allow random variations in mass that on average are conservative. This results in a random total mass of the measure.
See MFC and CFM for further discussion.

28While a particular draw of the random measure is expected to pivot at f(αmin) = 0, there is some variability
in samples, and we see some spectra that pivot above or below zero. Note also that the LDT interpretation of the
multifractal spectrum allows f(α) < 0. See note 19.
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Section 6 shows that SEAS2, used to generate Figure 11, overadjusts in removing seasonal

components from the high frequency data. This causes underestimation of the fractal dimension

for low values of α. By employing other seasonal filters in Section 6, we can posit a range of possible

values for the “optimally seasonal adjusted” high-frequency spectrum. This range appears much

closer to the spectrum of the daily data, and thus the similarity in scaling laws is stronger than

suggested by Figures 11 and 12.

5.3 Recovering the MMAR Components

Each of the two spectra in Figures 11 and 12 can be compared to the shapes of known multifractal

measures (see CFM, Section 4.2). The spectrum of daily data is approximately quadratic, suggest-

ing the limit lognormal multifractal measure. The limit lognormal has a long history, and was in

fact the first multifractal developed by Mandelbrot (1972).29

The limit lognormal measure is a multiplicative cascade whose multipliers are lognormally

distributed. Following MFC and CFM, the generating process starts with a uniform mass on

[0, 1] and divides into b equal sized intervals, each taking a proportion of the original mass equal to

M(η), where 0 ≤ η < b indexes the interval, and M is distributed i.i.d. lognormal across intervals.

The multipliers need not sum exactly to one, but do have an expected sum of 1, which makes

the construction canonical. At the second stage, each interval is further subdivided in the same

manner. In the limit these iterations lead to the lognormal measure.

Following this construction, at the kth stage of subdivision all intervals are of the size b−k. We

can denote an interval at the kth stage by the b-adic expansion of its starting time

t = 0.η1...ηk.

29Mandelbrot (1972) is a critique of theories put forward by Kolmogorov, Yaglom, and others concerning the
distribution of turbulent dissipation over cubic eddies. The contending theories held that dissipation is identically
lognormally distributed over cubic eddies of the same size. This parallels arguments put forward by Clark (1973)
which proposed modelling trading time with i.i.d. lognormally distributed increments. As argued by Mandelbrot in
1972, this creates an inconsistent model, since the sum of independent lognormals is not lognormal. Hence, Clark’s
model could only hold at a single time scale.

The arguments put forward in Mandelbrot (1972) are slightly more complicated. Previous theories had conjectured
correlation patterns that allowed the sum of lognormals to be lognormal. Mandelbrot showed that these correlation
patterns could not maintain self-similarity at different scales without introducing the concept of conservation of mass
on the average, as opposed to local conservation, i.e. canonical vs. microcanonical. This observation began the study
of multifractals.
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The measure in an interval is the product

µ(η1...ηk) = M1(η1)...Mk(ηk)Ω(η1...ηk).

Mj denotes the multiplier at the jth level of the cascade. The r.v. Ω is called the high-frequency

component, and captures changes in total mass of the interval caused by stages beyond k. It can

be shown that Ω has the same distribution for all levels of the cascade, and thus has the same

distribution as the limiting mass in the interval [0, 1].30

For convenience, denote

V = − logbM ∼ N(λ, σ2).

CFM shows that the multifractal spectrum of a multiplicative cascade with lognormal multipliers

is given by

fθ(α) = 1 − (α− λ)2

2σ2 log b
. (11)

We can generate a further restriction by requiring average conservation of mass, so that

1
b

= E(M) = E(e−V log b),

leading to

log b =
2(λ− 1)
σ2

.

Substituting this into (11) eliminates both b and σ2, giving

fθ(α) = 1 − (α− λ)2

4(λ− 1)
.

We now have a single parameter expression for the multifractal spectrum of trading time; however,

we directly estimate the price spectrum which is obtained by applying equation (10) :

fP (α) = 1 − (α−Hλ)2

4H2(λ− 1)

Finally, using the substitution λ = α0/H allows us to write the spectrum in terms of α0 and H:

fP (α) = 1 − (α− α0)2

4H(α0 −H)
.

30Convergence of mass to a random variable is guaranteed by the convergence of a positive martingale, or alterna-
tively, by the ergodic theorem.
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H is estimated by equation (6), which gives

Ĥ = 1.88−1

for the daily data. This leaves us with only one parameter to fit.31 Using

α̂0 = .589

produces the parabola shown by circled stars in Figure 12. The fit with the actual data appears quite

remarkable. The next section uses Monte Carlo methods to asses the variability of the spectrum.

5.4 Monte Carlo Simulation

The methods used for simulation are quite simple. (See MFC for other simulation examples).

We approximate Fractional Brownian Motion with a Fractional Gaussian Noise, as in Section 2.3.

For trading time, a finite multiplicative cascade with lognormal multipliers approximates a limit

lognormal multifractal measure. The values of λ and σ2 are recovered from Ĥ and α̂0 by the

equations above.

Several simulated processes, with corresponding log first differences, are shown in Figure 13.

The results are promising, with a variety of large asymmetric price changes, apparent trends, and

other characteristics typical of real data.

Another goal of simulation is to test the partition function methodology. We calculated partition

functions for twenty simulations with sample size identical to the data. Replication of the scaling

properties of the data constitutes a joint test of the partition function methodology and simulation

methods. About six or seven simulations followed a scaling law close to the data. Figure 14 shows

four of these graphs. The plots are relatively straight, and vary somewhat around their predicted

values. Some of the remaining simulations had nonlinear partition functions. The others had

straight partition functions, but with different slope than the data.

Rejection of the MMAR is thus difficult, in a problematic sense, because of apparent low

power. At the same time, the results are promising. Although variability is high, the simulated

partition functions tend to follow their predicted lines. Improvements in either partition function

31Joint estimation of parameters will generally improve fit, by whatever metric is chosen. This point is relatively
unimportant since sequential estimation produces good results.
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methodology or simulation methods should improve power.32 Incorporating information from all

moments of the data into a single statistic should have the same result.

At a more basic level, we may also consider that the data is better represented by an alternative

scaling model with less variability. This is a reversal of the usual situation in economics, where

data is typically much noisier than its first-approximation model. Strong empirical regularities of

the type seen in the DM/USD data are worthy of further theoretical attempts at description.

Longer simulated records improve ability to distinguish between scaling in the MMAR and

non-scaling in FIGARCH. A complete sample of twenty partition functions, each calculated from

simulations with 105 increments, is shown in Figure 15.33 Figure 15a shows simulated high moments,

up to q = 5, and 15b shows moments around q = 2. The results are convincing. Most of the plots are

approximately linear at high moments, (although there are a few notable exceptions). The graphs

strongly tend to follow their predicted lines, perhaps with some inclination towards a downward

bias. For low moments, the simulations are even more consistent with expectations.

Figure 16 shows estimated multifractal spectra for all twenty simulations. Dotted lines represent

simulated data, and circles represent the theoretically prediction. The simulated spectra cluster

around the predicted value, with more variability at low values of f(α), as expected.

From these experiments, we arrive at two conclusions. First, the MMAR theory, the simula-

tion methods, and the estimation methods are all conceptually sound. Starting from the theory,

going through simulation, and comparing estimates from simulation to their predicted values gives

reasonable results. Secondly, there do appear to be convergence issues and possible biases, both of

which must be studied more carefully. Overall, the results are positive. Both model and estimation

method are in their infancy, and continued research should improve our ability to do inference.

Future research should attempt to systematically describe, for various specifications of the model,

convergence of the partition functions to their expected values as sample sizes increase.

32A detailed discussion of simulation methods for multifractal trading times is beyond the scope of the present
paper. In this work, we use a finite lognormal cascade, with a high frequency approximation to Ω. See MFC
for further detail on this construction. Future work will treat simulation methods independently, and will explore
alternative approximations to the limit lognormal measure. Better simulation methods may reduce variability.

33In simulation, the value of H was 1/2, rather than the value .53 from estimation. This allows us to forego
computationally expensive simulation of the Fractional Brownian Motion. At lower sample sizes and this value of H,
unreported tests indicate that the FBM does not add substantially to variability.
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6 GARCH and FIGARCH Alternatives

This section simulates data from GARCH and FIGARCH representations. The parameter values

come from previously published research on foreign exchange data. We find that these processes

are distinct from the MMAR under simulation, and that the scaling properties of the DM/USD

data are more consistent with the MMAR.

6.1 GARCH

Weak memory in GARCH has recently become interesting to researchers. Taylor (1986), Dacorogna

et al. (1993), Baillie (1996), and others note that many financial time series display hyperbolically

declining sample autocorrelation functions. In contrast, the GARCH decay rate is exponential.

This finding is not a technicality or a matter of moment fitting, but has important qualitative

implications. For example, under certain regularity conditions rescaled weak memory processes

weakly converge to Brownian Motion.34 This can be depicted visually.

Four GARCH(1,1) simulations, with parameters from Baillie and Bollerslev (1989), appear in

Figure 17. The parameter values cover a typical range for GARCH(1,1) estimated on daily and

weekly data. The plots contain 40, 000 observations in order to show low frequency effects clearly.

Convergence to Gaussian is apparent in 17a-c. The occasional spikes do not cluster except at high

frequencies, and thus their contribution is washed out over long intervals.

Figure 17d is different. The parameter values used in this simulation are {α1, β1} = {.072, .923},

which very nearly sum to one. Thus, squared returns are nearly integrated, or IGARCH, explaining

noticeable low frequency effects. Still, the variations in volatility appear very unnatural, lacking

significant high frequency variation.35 Because weak-memory, even near integration, in volatility

appears inconsistent with the data, we predict that GARCH will not replicate scaling patterns

found in the data.

Expectations for the GARCH partition function are not easily calculated, so simulation is

our main tool.36 Partition functions of the previous simulations appear in Figure 18. None is

34This is a generalization of Donsker’s Theorem, which concerns the weak convergence of random walks. Intuitively,
the claim is also related to Central Limit Theorems for weakly dependent sequences.

35In this paper,“high frequency” should be interpreted relative to the scale of the graph or data.
36For general GARCH(q, p) processes, E [Sq(4t)] is a complicated expression in combinatorial sums. As 4t → ∞,

we expect GARCH to scale like Brownian Motion, since very large increments are approximately Gaussian with
negligible dependence.
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particularly straight, and repeated simulation (not shown) shows a tendency towards the downward

bend observed in three examples. Moreover, the apparent slopes of the straighter plots are predicted

lines for Brownian Motion, rather than the slopes of the data.

The GARCH trend component is omitted from the simulations in Figure 18. Figure 18b repeats

the exercise, but includes the estimated trend. Clearly, the combination of trend and GARCH

component is nonscaling.

GARCH(1,1) fails to capture important aspects of financial data. Temporal dependence be-

comes negligible too quickly as the sampling interval increases. Also, neither simulated GARCH

nor sample partition functions of simulated GARCH replicate scaling features of the DM/USD

data.

6.2 FIGARCH

FIGARCH improves on previous processes by parsimoniously obtaining long memory in volatility.

It generates behavior in-between weak memory, typified by 17a-c, and unit root integration in

volatility, approximated by 17d.

Baillie, Bollerslev, and Mikkelsen (1996), which also studies DM/USD exchange rates, prefers

the FIGARCH(1, d, 0) specification. We use parameter estimates from this paper to generate the

simulations in Figure 18. These improve upon Figure 17 in volatility correlations. On the other

hand, the simulations are more symmetric than the data, and too systematic in volatility at high

frequencies. Excessive regularity at high frequencies appears as thick clumps where increments of

like size group together. In contrast, the DM/USD data contains clustering, but within clusters,

subgroups of intervals cluster again into more or less variable groups. In turn, each subinterval can

be broken down again, ad infinitum. This characteristic typifies multifractality, and is not captured

by FIGARCH.

The FIGARCH(p, d, q) equations are

εt = σtut

φ(L)(1 − L)dε2t = ω + [1 − β (L)] vt, (12)

where φ(L) ≡ [1 − α (L) − β (L)] (1 − L)−1, α (L) ≡ ∑q
k=0 αkL

k, β (L) ≡ ∑p
k=0 βkL

k, vt ≡ ε2t −
σ2

t . In estimation, {ut} are typically assumed identically distributed, but not independent. Also,
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their distribution is usually specified Student t rather than Gaussian. In simulation, we assume

independence for lack of an explicit alternative, and use the Gaussian for ut. These assumptions

should not qualitatively affect our conclusions.

For FIGARCH(1, d, 0), (12) can be written more intuitively. Starting with

(1 − L)dε2t = ω + [1 − β1L] vt,

rewrite

σ2
t = ω − β1vt−1 +

[
1 − (1 − L)d

]
ε2t

= ω − β1vt−1 −
∞∑

k=1

ψkε
2
t−k.

where

ψk =
Γ(k − d)

Γ(k + 1)Γ(−d)

The ARMA representation in volatility clarifies how simulation proceeds, and how long memory

arises. (Plotting ψk will help readers gain further intuition for the process.) Because the Gamma

function is smooth, the path of volatility is also smooth. This is the property that leads to clumping

of like-sized returns.

Like ARFIMA, FIGARCH is a hybrid from the scaling point of view. For ARFIMA, intuition

is clear since it is asymptotically equivalent in increments to Fractional Gaussian Noise. Short

memory components are non-scaling, but become negligible over long sampling increments. This

intuition disappears for FIGARCH since squared increments are asymptotically scaling, not incre-

ments themselves.

An alternative intuition is the literature on diffusion limits of ARCH sequences. The continuous

time limit of discrete GARCH sequences is an Itô diffusion or jump-diffusion in certain cases.

(Nelson, 1990; Drost and Nijman, 1996). Intuitively, GARCH is not scaling since Itô diffusions are

not scaling.37 Continuous time limits of FIGARCH, on the other hand, are not known.38

Twenty simulated partition functions, appearing in Figure 19, are used to investigate the scaling

properties of FIGARCH. Each simulations consists of 100,000 observations, allowing like comparison

37A reference is not available, but intuitively, it results from smoothness of volatility.
38Nelson (1990) notes that his method of demonstrating convergence to a continuous time diffusion does not apply

to long memory processes.
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with the MMAR (Figure 15). Moments up to q = 5 appear in 19a. Moments around q = 2 appear

in 19b.

The high moments are irregular, and many show a tendency towards concavity. The partition

functions for the MMAR, in contrast, are mostly straight. Some partition functions for FIGARCH

approximately follow the best fit line of the data, although not as convincingly as MMAR partition

functions. A reasonable degree of ambiguity suggests that developing stronger inference methods

will be important in the future.

A more clear distinction exists in low moments. The MMAR partition functions around q = 2

follow predicted values very closely, while almost half of FIGARCH partition functions are quite

irregular. Of the remaining partition functions, most are closer to the predictions for Brownian

Motion than best fit lines of the DM/USD data.

This section investigated scaling properties of simulated GARCH and FIGARCH processes.

Neither process appears as likely as the MMAR to scale like the DM/USD data. Barring theoretical

results that allow distributional inference, more systematic simulation evidence is needed.

7 Robustness Tests

7.1 Alternative Reporting Methods

This section tests sensitivity of results to alternative reporting methods for the data, including

price approximation by bid or ask or average, and source of data. We obtained daily data from

the Federal Reserve Bank of New York covering approximately the same sample span as the Olsen

daily data. The Fed data is recorded at noon in New York, and is a buying rate for foreign

currencies. Because of missing data, two separate data sets were constructed. FED1 supplements

missing values with Olsen data. FED2 eliminates missing observations. Appendix 9.3 provides

more information on construction.

Figure 22 shows partition functions for FED1 and FED2. Figure 23 compares the multifractal

spectra of these series with the previously estimated spectrum of Olsen data. Results are not sub-

stantially affected by the use of these alternative data sets. Thus, reasonable variations, including

treatment of missing values, use of bid or ask or an average, and use of price quotes or government

reported rates, do not seem to substantially alter results.39

39Although the two daily spectra are quite similar, the Fed spectra are narrower. This might be expected based
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7.2 Consistency in Subsamples

We split the twenty-four year sample span of FED1 into two separate twelve year samples, 1973−
1985, and 1985 − 1997. Figure 22 shows partition functions and Figure 23 shows estimated multi-

fractal spectra. The results are very similar to full sample results, suggesting near stationarity in

the model. This is an important result, and probably the most substantial test of robustness in

DM/USD scaling.

Also of interest is the small, but noticeable, difference between the two subsamples. The break

point occurs in 1985, a major turning point in international monetary policy. In February of 1985,

a concerted intervention by major central banks reversed appreciation of the dollar, and marked a

shift from “near complete flexibility to a managed float” (Catte, et al., 1994).40 Consistent with

this institutional shift, we notice a longer tail in the spectrum of the earlier, less managed, period.

7.3 Seasonal Adjustment Filters

This section tests robustness of scaling in the high frequency data to different deseasonalizing

methods. We use four additional seasonal adjustment filters. Briefly, SEAS1 adjusts by number

of quotes received per fifteen minutes. Like the previously used SEAS2, this method is market-

activity based. The other three methods simply remove slow (on average) trading times from the

data, expanding remaining time so as to keep total time constant. These are crude deseasonalizing

methods. Details of construction are in Appendix 9.2.

Figure 20 shows graphs of the partition function around q = 2 for each new seasonal filter.

Figure 21 shows partition functions for higher moments. For comparison with Figures 6 and 7, the

format and aspect ratio are identical, and the high frequency plots are shown next to the same

daily data as previously.

All methods, except to some degree SEAS4, result in strongly linear partition functions.

Crossover occurs at roughly the same point, again with the possible exception of SEAS4, which

appears to have a later crossover. The slopes of all partition functions appear slightly lower than

in Figure 7. The lower slope is pronounced for SEAS4. Lower slopes result in wider estimated

upon lower variability in the ask series than in the bid-ask midpoint. It would be interesting to see whether the same
effect is present in other currencies.

40This shift is clearest when viewed from the perspective of international agreements. Individual countries varied
with respect to their exchange rate policies from 1973-1985.
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multifractal spectra. Figure 22 plots envelopes of the estimated multifractal spectra for all five

methods. The narrowest stands out among the rest, and was generated using SEAS2.

This is probably the result of over-deseasonalization. SEAS2 adjusts on the basis of absolute

price changes, which also form the basis of our empirical tests. Due to a limited sample, the

seasonality index is constructed with the same data that is later transformed by the index. Ideally,

the seasonality index would be constructed with out of sample data, since large price changes

are partially filtered away after they contribute to a high index of weekly activity for their time

period.41

On the other hand, the three crude methods under-deseasonalize. Crude filters eliminate slow

(on average) time periods, but do nothing to smooth remaining parts of the week. This leaves more

irregularity in the data, leading to higher estimated fractal dimensions for low values of α, and thus

a wider spectrum. The ordering of the three crude filters confirms this hypothesis: SEAS4, which

removes the fewest time periods, is the widest. SEAS0, which removes the most time, is narrowest.

Informally, we can think of SEAS0 as an upper bound estimate of the spectrum (for low values of

α), and SEAS2 as a lower bound estimate.

Despite non-optimality of the seasonal adjustment filters, the range of variation appears tolera-

ble. The multifractal scaling law in the DM/USD series is thus fairly robust to choice of deseason-

alizing method. Estimated multifractal spectra are predictably affected by the seasonal adjustment

procedure, and permit upper and lower bound estimates of an “optimally” deseasonalized multi-

fractal spectrum.

7.4 The Japanese Yen/ US Dollar Series

Our final investigation involves the Japanese Yen/ US Dollar (“JPY/ USD”) series, also obtained

from Olsen and Associates. We conducted a similar, but less thorough set of tests, and found

this price record less consistent with the MMAR than is DM/USD. Figure 24 shows JPY/ USD,

its increments and log increments. Figure 25 shows patterns in seasonality. Figure 26 shows the

estimated partition function using SEAS2 seasonal adjustment for the high frequency data and

daily data from the Federal Reserve Bank of New York.42

41Smoothing by moving averages would reduce this problem, but the exact method is a significant empirical problem
on its own, and deserves a separate treatment.

42The daily data is described in more detail in Appendix 9.3.

30



This last figure is a vignette, reproduced at a scale that will not overemphasize its importance.

The irregularities in the partition function should not be viewed simply as failures of the model, but

as opportunities to learn about different types of behavior and their causes. Comparing the JPY/

USD series in levels with the DM/USD series, JPY/ USD appears much smoother, particularly

lacking in sharp local peaks. Institutional differences may matter.

On this point, a recent study of concerted interventions by G-3 Central banks finds almost twice

the dollar value of intervention in the JPY/ USD market as in the significantly larger DM/USD

market.43 While the connection between activism in exchange rate policies and scaling behavior

has not been empirically established, it seems reasonable that the institutional rules or customs

that govern a market affect the appearance of its price series. In turn, this may give a distinctive

signature to partition functions or multifractal spectra. Comprehensive study of other data sets is

the first step in studying this relationship.

More fundamentally, the MMAR does not exhaust the set of possible scaling models. While the

JPY/ USD series does not appear entirely consistent with the MMAR, no completely satisfactory

alternative is apparent.44 Scaling models may be modified in the future to describe a greater variety

of behavior.

8 Conclusion

This paper has conducted the first empirical investigation of a multifractal model in economics.

Consistent with the Multifractal Model of Asset Returns, we find evidence of a multifractal scaling

law in an important financial data set, Deutschemark / US Dollar returns. The scaling properties

of the data set are robust to variations in data reporting, including use of bids, asks, or averages

as approximations to price; use of market price quotes or government reported exchange rates;

and treatment of missing values. The DM/USD scaling properties are also robust to seasonal

adjustment methods. Further, within subsamples of the data, the scaling laws are quite similar.

We thus propose that a single, stationary model can provide a good approximation to the generating

process of the data, covering not only a long and highly variable sample span (1973-1997), but also

43Catte, et al. (1994) studies a sample of nineteen major concerted interventions from 1985-1991. Dollar interven-
tions were about $100 billion for JPY/USD vs. about $54 billion for DM/USD.

44The JPY/USD first differences are quite different from the FIGARCH simulations, the most obvious difference
being the lack of variation in volatility at high frequencies in FIGARCH.
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a broad range of sampling frequencies (two hours to six months).

In modelling financial prices, multifractality generates long memory in squared returns, long

tails, and allows substantial flexibility in modelling either martingale or long-memory behavior in

returns. Repeated simulations show that, among existing models of financial prices, the MMAR is

most like typical financial data in its appearance. Further, the MMAR is best able to replicate the

scaling law found in DM/USD returns.

The conclusion we draw is that multifractality is a promising new tool in economics. In the near

future, it should be possible to use the MMAR in the evaluation of risk. With assumptions on a

pricing model, we also envision pricing derivative assets through simulation methods. Naturally, this

will require further work on estimation methods for multifractal processes, including convergence

properties, simulation methods, and inference procedures. Another component of this research

program is empirical study of other data sets. Given that all of these areas are relatively unexplored,

there is considerable potential for new discovery.
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9 Appendix

9.1 Goal of Seasonal Adjustment Filters

Mathematically, the multifractal trading time θ(t) is the c.d.f. of a statistically self-similar random

measure. Statistically self-similar random measures have invariant conditional distributions of

measure under isotropic contractions. In the MMAR, the conceptualization is fairly simple. The

random measure, denoted µθ, is defined on I∗ = [0, T ], an interval of the real line. Consider

subintervals I1, I2 ⊆ I∗, and the class of affine transformations on the real line, denoted S. We

require invariance of conditional distribution of measure under affine transformation. (This rewrites

Assumption 1 of MFC, Section 3.5.)

µθ [S(I1)]
µθ [I1]

d=
µθ [S(I2)]
µθ [I2]

whenever I1, I2, S(I1), S(I2) ⊆ I∗

Seasonality violates statistical self-similarity. For example, for two one week intervals in clock

time containing identical measures of trading time, the distribution of trading time in the first

seventh of the interval clearly depends upon whether that particular interval begins on a Sunday

or a Wednesday. Thus the goal of the seasonal adjustment filters is to remove weekly patterns in

trading time.

9.2 Construction of Seasonal Adjustment Filters

Since trading time is an abstract concept, deseasonalizing filters are based upon proxy measures of

market activity. The strategy followed in this paper is to use several reasonable seasonal adjustment

methods and thereby test the sensitivity of our results. To limit the number of alternatives, we

do not investigate transformations of the raw indices of market activity. The five prefilters used in

this paper are summarized in the following table

Table 1: Seasonal Filters

SEAS0 - Crude; Removes (2100 Fri-2300 Sun) and (weekdays 300-430)

SEAS1 - Market activity; Deseasonalizes by average number of quotes

SEAS2 - Market activity; Deseasonalizes by average absolute price change

SEAS3 - Crude; Removes (2300 Fri-1800 Sun) and (weekdays 300-400)

SEAS4 - Crude; Removes (2300 Fri-1800 Sun)

.
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The market activity based filters use some measure of market activity as a proxy for trading

time. By expanding periods of high market activity and contracting periods of low activity, the

goal is to create a new time scale under which, on average, all times of the week have the same

measure of market activity per unit of time. SEAS1 and SEAS2 are based upon the market

activity measures in Figures 5a and 5b. Respectively, these are the average number of quotes per

15 minute interval, and the average absolute price change over 15 minute intervals. In the graph,

the vertical axis gives the trading time/clock time ratio that would be required to (approximately)

eliminate weekly seasonality in that particular measure. For example, a value of two on the vertical

axis indicates that, on average, the relevant time interval is twice as active per unit of time as the

average time interval in the week.

The crude filters simply remove sparse periods of market activity from the data set. Remaining

time periods are uniformly expanded by an amount which returns the data set to its original time

span. “Sparse” time periods were determined for SEAS0 by printing out all time periods during

which no quotes arrived for a period of at least 30 minutes. The most frequently occurring times of

the week with thirty minute lulls were determined by inspection, and occur from 9 p.m. Friday to

11 p.m. Sunday, plus the period from 3:00-4:30 AM on weekdays, during which activity in Asian

markets slows because of the lunch hour, and no other markets are open. Sparse time periods for

SEAS3 and SEAS4 were determined after inspecting the measures of market activity in Figure

5. SEAS3 eliminates less of the sparse time periods than SEAS0 and SEAS4 eliminates only

weekends, leaving in the period around the Asian lunch hour.

9.3 Daily Data Series

The daily data used in Sections 3 to 5 was provided by Olsen & Associates. The set contains

DM/USD rates for every weekday between June 4, 1973 and December 31, 1996 except Christmas

and New Year’s Day. The price is recorded as a linear interpolation of the quotes immediately

preceding and immediately following 16:00 GMT. The geometric mean of bid and ask proxies for

price, and there are 6119 total observations in the data set.

Section 6 uses daily data from the Federal Reserve Bank of New York. The recorded price is

the noon buying rate in New York, used for customs purposes. The data set spans June 4, 1973 to

June 3, 1997. The following table provides information on missing values and the construction of
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the two series FED1 and FED2. The table is broken down into two twelve year periods, reflecting

the subsamples used in section 6.2.

Table 2: DM/USD Daily Data from NY FED

Years Obs Nmiss Nreplace

1973-1985 3131 126 110

1985-1997 3131 114 93

FED1 replaces missing values with Olsen data when it is available. The “Nreplace” column gives

the number of replacement observations used. When no replacement value is available, we use the

previous day’s price. FED2 simply eliminates all missing values from the data set.

The JPY/ USD data used in Section 6 contains the same number of observations and missing

values as the DM/USD data, and also comes from the Federal Reserve Bank of New York. An

alternativge data source was not used for the JPY/ USD data. The reported results replace missing

values with the previous day’s price. We performed the same tests after eliminating all missing

values, and found the results not to be substantially different.
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