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Abstract

Selfsimilar processes such as fractional Brownian motion are

stochastic processes that are invariant in distribution under suitable

scaling of time and space. These processes can typically be used to

model random phenomena with long-range dependence. Naturally,

these processes are closely related to the notion of renormalization in

statistical and high energy physics. They are also increasingly impor-

tant in many other �elds of application, as there are economics and

�nance. This paper starts with some basic aspects on selfsimilar pro-

cesses and discusses several topics from the point of view of probability

theory.
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1 Selfsimilarity and long-range dependence

Brownian motion is a very important example of a stochastic process. It is
a Gaussian process, a di�usion process, a L�evy process, a Markov process,
a martingale and a selfsimilar process. Each property above of Brownian
motion was a starting point of a new sub�eld of the theory of stochastic
processes. By now, Gaussian processes, di�usion processes, L�evy processes,
Markov processes and martingales constitute themselves major areas of re-
search in the modern theory of stochastic processes. The notion of selfsim-
ilarity did not immediately reach the same fundamental level; many more
recent applications have however called for a deeper understanding.

Selfsimilar processes are stochastic processes that are invariant in distri-
bution under suitable scaling of time and space. These processes also enter
naturally in the analysis of random phenomena (in time) exhibiting certain
forms of long-range dependence.

Fractional Brownian motion, which is a Gaussian selfsimilar process with
stationary increments, was �rst discussed by Kolmogorov [Kol40]. The �rst
paper giving a rigorous probabilistic treatment of general selfsimilar processes
is due to Lamperti [Lam62]. Later, the study of non-Gaussian selfsimilar
processes with stationary increments was initiated by Taqqu [Taq75], who
further developed a non-Gaussian limit theorem by Rosenblatt [Ros61].

On the other hand, the works of Sinai [Sin76] and Dobrushin [Dob80] for
instance, in the �eld of statistical physics, appeared around 1976. It seems
that similar problems were attacked independently in the �elds of probability
theory and statistical physics (see [Dob80]). The connection between these
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developments was pointed out by Dobrushin.
Most stochastic processes discussed in this paper are real-valued. They

are de�ned on a common probability space (
;F ; P ). In the following, by

fX(t)g
d
= fY (t)g, we mean the equality of all �nite-dimensional distributions.

Occasionally we simply write X(t)
d
= Y (t). X1

d
� X2 means the equality in

law of X1 and X2. By Xn(t)
d
) Y (t), we mean the convergence of all �nite-

dimensional distributions of fXn(t)g to fY (t)g as n!1, and by �n
d
! �, the

convergence in law of random variables f�ng to �. L(X) stands for the law
of a random variable X and the characteristic function of X with L(X) = �
is denoted by b�(�) = E[ei�X ], � 2 R.

De�nition 1.1 A stochastic process fX(t); t � 0g is said to be \selfsimilar"
if for any a > 0, there exists b > 0 such that

fX(at)g
d
= fbX(t)g :(1.1)

We say that fX(t); t � 0g is stochastically continuous at t, if for any
" > 0,
limh!0 PfjX(t+ h)�X(t)j > "g = 0. We also say that fX(t); t � 0g is triv-
ial, if L(X(t)) is a delta measure for every t > 0.

Theorem 1.1 ([Lam62]) If fX(t); t � 0g is nontrivial, stochastically con-
tinuous at t = 0 and selfsimilar, then there exists a unique exponent H � 0
such that b in (1:1) can be expressed as b = aH . Moreover, H > 0 if and only
if X(0) = 0 a.s.

In the more recent literature, selfsimilar processes are usually de�ned in
the following way: A stochastic process fX(t); t � 0g is selfsimilar, if there

exists H > 0 such that for any a > 0; fX(at)g
d
= faHX(t)g. In this case, it

follows that X(0) = 0 a.s. However, the uniqueness of the exponent is not
obvious form this de�nition, although it is unique by Theorem 1.1. There
seems to be some confusion about this fact in the more applied literature.

A stochastic process fX(t)g is said to have stationary increments, if the
distributions of fX(h+ t)�X(h)g are independent of h. In the following, we
discuss some properties of selfsimilar processes with stationary increments.
When fX(t); t � 0g is selfsimilar with stationary increments and its exponent
is H, then we call it H-ss, si, for short.
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Theorem 1.2 Let fX(t)g be nontrivial and H-ss, si, and suppose
E [jX(1)j2] <1. Then

E[X(t)X(s)] =
1

2

�
t2H + s2H � jt� sj2H

	
E
�
jX(1)j2

�
:

Proof. ([Taq81]) By H-ss, si,

E[X(t)X(s)] =
1

2

�
E
�
X(t)2

�
+ E

�
X(s)2

�
� E

�
(X(t)�X(s))2

�	
=

1

2

�
E
�
X(t)2

�
+ E

�
X(s)2

�
� E

�
X(jt� sj)2

�	
=

1

2

�
t2H + s2H � jt� sj2H

	
E
�
jX(1)j2

�
: �

Theorem 1.3 Let fX(t)g be nontrivial and H-ss, si, H > 0.
(i) ([Mae86]) If E [jX(1)j
] <1 for some 
 < 1, then H < 1=
.
(ii) If E[jX(1)j] <1, then H � 1.
(iii) ([Kon84]) If E[jX(1)j] <1 and 0 < H < 1, then E[X(t)] = 0.
(iv) ([Ver85]) If E[jX(1)j] <1 and H = 1, then X(t) = tX(1) a.s.

((ii) is easily seen from (i).) Because of (ii) and (iv) above, when the process
has �nite �rst moment, we always consider the case 0 < H < 1.

Let fX(t); t � 0g be nontrivial,H-ss, si, 0 < H < 1, and E[jX(1)j2] <1,
and de�ne

�(n) = X(n+ 1)�X(n) ; n = 0; 1; 2; � � � ;

r(n) = E[�(0)�(n)] ; n = 0; 1; 2; � � � :

Then

r(n)

(
� H(2H � 1)n2H�2E[jX(1)j2]; as n!1; if H 6= 1

2
;

= 0 ; n � 1 ; if H = 1
2
;

(1.2)

where an � bn, as n ! 1, means limn!1 an=bn = 1. This can be shown as
follows. Noticing that X(0) = 0 a.s. (Theorem 1.1) and using Theorem 1.2,
we have for n � 1,

r(n) = E[�(0)�(n)] = E[X(1)fX(n+ 1)�X(n)g]

= E[X(1)X(n+ 1)]� E[X(1)X(n)]

=
1

2

�
(n+ 1)2H � 2n2H + (n� 1)2H

	
E[jX(1)j2] ;
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which implies (1.2). Hence,
(1) if 0 < H < 1

2
,
P1

n=0 jr(n)j <1,
(2) if H = 1

2
, f�(n)g is uncorrelated,

(3) if 1
2
< H < 1,

P1
n=0 jr(n)j =1.

Actually, if 0 < H < 1
2
, r(n) < 0, for n � 1 (negative correlation), if

1
2
< H < 1, r(n) > 0 for n � 1 (positive correlation). The propertyP
jr(n)j =1 is called long-range dependence and especially of interest in

statistics (see [Ber94] and [Cox84]).

2 Brownian motion and fractional Brownian

motions

A stochastic process fX(t); t � 0g is said to have independent increments,
if for any m � 1 and for any partition 0 � t0 < t1 < � � � < tm, X (t1) �
X (t0) ; : : : ; X (tm)�X (tm�1) are independent.

De�nition 2.1 If a stochastic process fB(t); t � 0g satis�es
(i) B(0) = 0 a.s.,
(ii) it has independent and stationary increments,
(iii) for each t > 0, B(t) has a Gaussian distribution with mean zero and
variance t, and
(iv) its sample paths are continuous a.s.,
then it is called (standard) Brownian motion.

Theorem 2.1 Brownian motion fB(t)g is 1
2
-ss.

Proof. It is enough to show that for every a > 0,
�
a�1=2B(at)

	
is also Brow-

nian motion. Conditions (i), (ii) and (iv) follow from the same conditions
for fB(t)g. As to (iii), Gaussianity and mean-zero property also follow from

the properties of fB(t)g. As to the variance, E[
�
a�1=2B(at)

�2
] = t. Thus

fa�1=2B(at)g is a Brownian motion. �

Theorem 2.2 E[B(t)B(s)] = minft; sg.

Proof. Brownian motion is 1
2
-ss, si. Thus by Theorem 1.2, E[B(t)B(s)] =

1
2
ft+ s� jt� sjg = minft; sg. �
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Remark 2.1 It is known that the distribution of a Gaussian process is de-
termined by its mean and covariance structure. For, the distribution of a
process is determined by all its �nite-dimensional distributions and the den-
sity of a multidimensional Gaussian distribution is explicitly given through its
mean and covariance. Thus, a mean-zero Gaussian process with covariance
as in Theorem 2.2 must be Brownian motion.

De�nition 2.2 Let 0 < H < 1. A mean-zero Gaussian process fBH(t);
t � 0g is called \fractional Brownian motion", if

E [BH(t)BH(s)] =
1

2

�
t2H + s2H � jt� sj2H

	
E
�
BH(1)

2
�
:(2.1)

Theorem 2.3 fB1=2(t)g is the same as Brownian motion up to a multiplica-
tive constant.

Proof. (2.1) with H = 1
2
determines the covariance structure of Brownian

motion as mentioned in Remark 2.1. �

Theorem 2.4 ([ManVNe68]) Fractional Brownian motion fBH(t); t � 0g is
H-ss, si, and it has a stochastic integral representation(Z 0

�1

�
(t� u)H�1=2� (�u)H�1=2

�
dB(u)(2.2)

+

Z t

0

(t� u)H�1=2 dB(u)

)
E
�
BH(1)

2
�
:

Fractional Brownian motion is unique in the sense that the class of all frac-
tional Brownian motions coincides with that of all Gaussian selfsimilar pro-
cesses with stationary increments. fBH(t)g has independent increments if
and only if H = 1

2
.

Sample path properties of Brownian motion have been well studied. As
Brownian motion, fractional Brownian motion is also sample continuous,
nowhere di�erentiable and of unbounded variation almost surely. For sam-
ple path properties of general selfsimilar process with stationary increments,
see [Ver85], and for that of selfsimilar stable processes with stationary incre-
ments, see [KonMae91].
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Several properties of trajectories of multidimensional fractional Brownian
motion with multiparameter have also been studied. Let fBH(t); t 2 RNg
be a mean-zero Gaussian process with covariance

E[BH(t)BH(s)] = jtj2H + jsj2H � jt� sj2H ;

where jtj is the Euclidean norm of t 2 RN . Consider independent copies

fB
(j)
H (t)g; j = 1; :::; d; of fBH(t)g and the process fBH(t) = (B

(1)
H (t); :::;

B
(d)
H (t))g. This is an Rd-valued fractional Brownian motion with multipa-

rameter t 2 RN . For the Hausdor� measure and multiple point properties
of the trajectories of fBH(t)g, see [Tal95, Tal98], [Xia97, Xia98] and the
references therein.

Selfsimilar processes are related to the notion of a renormalization group.
The following result is due to Sinai [Sin76]. Let H > 0 and let Y =
fYj; j = 0; 1; 2; :::g be a sequence of random variables. De�ne, for each N � 1,
the transformation

T (N;H) : Y ! T (N;H)Y =
n
(T (N;H)Y )j ; j = 0; 1; 2; :::

o
;

where

(T (N;H)Y )j =
1

NH

(j+1)N�1X
k=jN

Yk; j = 0; 1; 2; ::: :

Because T (N;H)T (M;H) = T (NM;H), the sequence of transformations
fT (N;H); N � 1g forms a multiplicative semi-group. It is called the renor-
malization group of index H. Suppose Y = fYj; j = 0; 1; 2; :::g is a stationary
sequence.

De�nition 2.3 A stationary sequence Y = fYj; j = 0; 1; 2; :::g is called H-
selfsimilar, if Y is a �xed point of the renormalization group
fT (N;H); N � 1g with index H, namely for all N � 1,n

(T (N;H)Y )j ; j = 0; 1; 2; :::
o

d
= fYj; j = 0; 1; 2; :::g :

Since fractional Brownian motion fBH(t)g has stationary increments, the
random variables

Yj = BH(j + 1)� BH(j) ; j = 0; 1; 2; :::
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form a stationary sequence. This sequence fYj; j = 0; 1; 2; :::g is called frac-
tional Gaussian noise with exponent H. The following is a discrete analogue
of the statement on the uniqueness of fractional Brownian motion in Theorem
2.4.

Theorem 2.5 Let 0 < H < 1. Within the class of stationary sequences,
fractional Gaussian noise with exponent H is the only Gaussian �xed point
of the renormalization group fT (N;H); N � 1g.

Proof. For any �0; : : : ; �k, k � 0 and N � 1,

kX
j=0

�j (T (N;H)Y )j =
kX

j=0

�j
1

NH

(j+1)N�1X
k=jN

Yk

=
kX

j=0

�j
1

NH
fBH((j + 1)N)� BH(jN)g

d
=

kX
j=0

�j fBH(j + 1)� BH(j)g

=
kX

j=0

�jYj ;

and thus fractional Gaussian noise is a �xed point of fT (N;H); N � 1g.
Since fractional Brownian motion is the unique Gaussian H-selfsimilar pro-
cess with stationary increments (Theorem 2.4), fractional Gaussian noise is
the unique Gaussian �xed point. �

Remark 2.2 In general, suppose that fX(t); t � 0g is H-ss, si with H > 0.
(Recall that X(0) = 0 a.s. by Theorem 1.1.) Then the increment process

Yj = X(j + 1)�X(j); j = 0; 1; 2; :::

is a �xed point of the renormalization group transformation fT (N;H); N �
1g, since the proof of Theorem 2.5 also works in this general case.
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3 From central limit theorem to noncentral

limit theorem

Let X1; X2; : : : be a sequence of independent and identically distributed ran-
dom variables with E [X1] = 0 and E [X2

1 ] = 1. Then

1

n1=2

[nt]X
j=1

Xj
d
) B(t):(3.1)

Remark 3.1 In probability theory, several notions of convergence of
stochastic processes, stronger than convergence of �nite-dimensional distri-
butions, exist. In the case of (3.1), the so-called Donsker invariance principle
assures that a measure of the left hand side, de�ned on the function space
D[0;1) consisting of all functions being right continuous and having left
limits, converges to a Gaussian measure on D[0;1). The same comment
will be true for Theorem 4.5 in Section 4, but in this paper we do not discuss
such a weak convergence concept, because selfsimilarity is determined only
by �nite-dimensional distributions of stochastic processes.

The convergence (3.1) is one way of constructing a Brownian motion. Ac-
tually, any selfsimilar process arises in this way as the following fundamental
limit theorem by Lamperti [Lam62] shows.

Theorem 3.1 ([Lam62]) Suppose fX(t); t � 0g is stochastically continuous
at t = 0 and L(X(t)) is nondegenerate for each t > 0. If there exist a stochas-
tic process fY (t); t � 0g and real numbers
fa(�); � � 0g with a(�) > 0, lim�!1 a(�) =1 such that as �!1,

1

a(�)
Y (�t)

d
) X(t) ;(3.2)

then for some H > 0, fX(t); t � 0g is H-ss. Moreover, a(�) is of the form
a(�) = �HL(�), L being a slowly varying function.

In the above, L(�) is said to be slowly varying, if lim�!1 L(c�)=L(�) = 1
for any c > 0. For more information about slowly varying functions, see
[BinGolTeu87].
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If we �x t > 0 in (3.1), we have the classical central limit theorem.
Historically, the next question was how we can relax the assumption on inde-
pendence of fXjg by keeping the validity of the central limit theorem (3.1).
Rosenblatt [Ros56] introduced a mixing condition which is a kind of weak
dependence condition for stationary sequences of random variables. Numer-
ous extensions to other mixing conditions have been introduced. The next
problem addressed by Rosenblatt was as follows: Suppose that a station-
ary sequence has a stronger dependence violating the validity of the central
limit theorem, then what type of limiting distributions are expected to ap-
pear. He answered this question in [Ros61] laying the foundation of so-called
noncentral limit theorems.

Theorem 3.2 ([Ros61]) Let f�ng be a stationary Gaussian sequence such
that E[�1] = 0; E[�21 ] = 1 and E[�1�n+1] � nH�1L(n) as n ! 1 for some
H 2 (1

2
; 1) and some slowly varying function L. De�ne another stationary

sequence fXjg by

Xj = �2j � 1:(3.3)

Then

1

nH

nX
j=1

Xj
d
! Z;(3.4)

where Z is a non-Gaussian random variable and its characteristic function
is given by

E[ei�Z ] = exp

( 1X
p=2

(2i�)p

2p

Z
x2[0;1]p

jx1 � xpj
2(H�1)

pY
j=2

jxj � xj�1j
2(H�1)dx

)
; � 2 R:

Later, Taqqu [Taq75] considered a \process version" of (3.3) and obtained

the limiting process of n�H
P[nt]

j=1Xj. This limiting process is H-ss by The-
orem 3.1 and the �rst example of non-Gaussian selfsimilar processes having
strongly dependent increment structure. It is referred to as the Rosenblatt
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process and it is expressed by the multiple integral (3.4) below with k = 2,
as we will see.

A point we want to emphasize is that the functional f(x) = x2 � 1 con-
sidered in (3.2) is the 2nd order Hermite polynomial. Dobrushin and Major
[DobMaj79] and Taqqu [Taq79] extended this idea to general nonlinear func-
tionals of strongly dependent Gaussian sequences to get noncentral limit
theorems, by expanding nonlinear functionals in terms of Hermite polynomi-
als.

Let f�ng be a sequence of stationary Gaussian random variables with
E [�1] = 0, E [�21 ] = 1, and further assume that the covariances satisfy

r(n) = E [�1�n+1] � jnj�q L(jnj) ; n!1;(3.5)

where 0 < q < 1 and L is a slowly varying function. Let G be the spectral
measure of f�ng such that r(n) =

R �
�� e

inxG(dx).

Lemma 3.1 ([DobMaj79]) De�ne a set of measures fGn; n = 1; 2; :::g by

Gn(A) =
nq

L(n)
G

�
A

n
\ [�� �; �)

�
; A 2 B(R) :

Then there exists a locally �nite measure G0 such that Gn ! G0 (vaguely)
and for any c > 0, A 2 B(R), G0(cA) = cqG0(A).

In the above, for a de�nition of vague convergence, see [EmbKluMik97],
p.563.

Let ZG0
be a random spectral measure corresponding to G0, namely a

mean-zero, complex-valued Gaussian random measure such that
E[ZG0

(A)ZG0
(B)] = G0(A \ B), and put

X0(t) =

Z 00

Rk

eit(x1+���+xk) � 1

i(x1 + � � �+ xk)
ZG0

(dx1) � � �ZG0
(dxk) ;(3.6)

where
R 00
Rk is the integral overR

k except the hyperplanes xi = �xj; i 6= j, and
the integral is a so-called multiple Wiener-Itô integral. (For multiple Wiener-
Itô integrals, see [Maj81].) Let f be a function satisfying E [f (�1)] = 0,
E
�
f (�1)

2� <1, and expand f in terms of Hermite polynomials as

f(x) =
1X
p=0

cpHp(x) ;
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where Hp(x) is the p-th order Hermite polynomial de�ned by Hp(x) =
(�1)pex

2=2 dp

dxp
e�x

2=2; cp = 1
p!
E [f (�1)Hp (�1)], and the convergence is taken

in the sense of mean square. For example, H0(x) = 1; H1(x) = x and
H2(x) = x2 � 1, which is considered in (3.2). De�ne

k = min fp j cp 6= 0g :

This k is referred to as the Hermite rank of f . By the assumption E [f (�1)]
= 0, c0 = 0 so that k � 1.

Theorem 3.3 (Noncentral limit theorem, [DobMaj79], [Taq79]). Let k be
the Hermite rank of f and f�ng a sequence of stationary Gaussian random
variables with E[�1] = 0 and E[�21 ] = 1, and assume that (3:5) holds for
some q with 0 < q < 1=k. (We de�ne G0 as in Lemma 3:1 by using this q
and further X0(t) by (3:4):) If an = n1�kq=2L(n)k=2, then

1

an

[nt]X
j=1

f (�j)
d
) ckX0(t) :

Notice that the multiplicity k of the integral of the limiting selfsimilar process
X0(t) is identical to the Hermite rank of f . The idea of the proof is the
following.
(1) Consider f(x) = ckHk(x) + f �k (x), where f

�
k (x) =

P1
p=k+1 cpHp(x).

(2) Verify under our assumptions that

E

24������ 1an
[nt]X
j=1

f �k (�j)

������
235! 0 :

Here, the condition q < 1=k is essential. Hence, it is enough to show the
assertion when f(x) = Hk(x).
(3) Prove

1

an

[nt]X
j=1

Hk(�j)
d
) X0(t):

(Theorem 3.2 is the case k = 2.)
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Remark 3.2 As mentioned above, the condition q < 1=k is essential for
the validity of the noncentral limit theorem in Theorem 3.3. This condi-

tion assures that the order of Var
�Pn

j=1 f (�j)
�
, which is the same order as

Var
�Pn

j=1Hk (�j)
�
, is greater than n, implying that the random variables

ff (�j) ; j = 1; 2; : : :g are strongly dependent. This is the reason why non-
Gaussian limits appear and why the theorem is called the noncentral limit

theorem. What will happen, if the order of Var
�Pn

j=1 f (�j)
�
is n or n`(n),

`(�) being slowly varying? This corresponds to the case q � 1=k, and it is
known that the central limit theorem again holds ([BreMaj87], [GirSur85],
[Mar76], [Mar80]).

4 Selfsimilar stable-integral processes with

stationary increments

A probability distribution � is said to be strictly �-stable, 0 < � � 2, if it is
not a delta measure, b�(�) does not vanish and for any a > 0,

b�(�)a = b�(a1=��); 8� 2 R:

In the following, we call it just �-stable. For � = 2, we have the Gaussian
case. A stochastic process fX(t); t � 0g is said to be a L�evy process if it
has independent and stationary increments, it is stochastically continuous at
any t � 0, its sample paths are right continuous and have left limits, and
X(0) = 0 a.s. If fX(t); t � 0g is a L�evy process and L(X(1)) is �-stable,
then it is called an �-stable L�evy process and denoted by fZ�(t); t � 0g.
fZ2(t)g is Brownian motion.

Non-Gaussian stable distributions are, sometimes by physicists, called
L�evy distributions (see [Tsa97]). The special case � = 1 is called Cauchy
distribution (or Lorentz distribution by physicists). A signi�cant di�erence
between Gaussian distributions and non-Gaussian stable ones like the Cauchy
is that the latter have heavy tails, namely their variances are in�nite. Such
models were for a long time not accepted by physicists. More recently, the
importance of modelling stochastic phenomena with heavy-tailed processes
is dramatically increasing in many �elds. See, for instance, [EmbKluMik97].

One important such heavy tail property is the following.
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Theorem 4.1 If Z� is a random variable with �-stable distribution,
0 < � < 2, then for any 
 < �, E [jZ�j


] <1, but E [jZ�j
�] =1.

Proof. See [SamTaq94], for instance. �

Selfsimilar processes with independent and stationary increments are the
only stable L�evy processes as the following theorem shows.

Theorem 4.2 Suppose fX(t); t � 0g is a L�evy process and let 0 < � � 2.
Then L(X(1)) is �-stable if and only if fX(t)g is 1

�
-ss.

Proof. Denote �t = L(X(t)) and � = �1. Since fX(t)g is a L�evy process, for
each t � 0, b�t satis�es b�t(�) = b�(�)t. Indeed, for any n and m,

X
�m
n

�
=

�
X
�m
n

�
�X

�
m� 1

n

��
+ � � �+

�
X

�
1

n

�
�X(0)

�
;(4.1)

where X
�
k
n

�
�X

�
k�1
n

�
, k = 1; : : : ; m, are independent and identically dis-

tributed. It follows from (4.1) that b�m=n(�) = b�1=n(�)
m and in particularb�1=n(�) = b�(�)1=n. Thus

b�m=n(�) = b�1=n(�)
m = b�(�)m=n :

This, with the stochastic continuity of fX(t)g, implies that b�t(�) = b�(�)t for
any t > 0.

We now prove the \if" part of the theorem. By 1
�
-ss, X(a)

d
� a1=�X(1)

8a > 0, hence b�(�)a = b�(a1=��), 8a > 0, 8� 2 Rd, implying that � is stable,
and � = 1

H
. As a result, necessarily 1

2
� H <1.

For the \only if" part, suppose � is �-stable. Since fX(t)g has indepen-
dent and stationary increments, it is enough to show that for any a > 0,

X(at)
d
� a1=�X(t):

However,

E[expfi�X(at)g] = b�at(�) = b�(�)at = b� �a1=���t = b�t �a1=���
= E

�
exp

�
i�a1=�X(t)

	�
:

This completes the proof. �
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We extend the de�nition of fZ�(t); t � 0g to the case to the whole of

R in the following way. Let fZ
(�)
� (t); t � 0g be an independent copy of

fZ�(t); t � 0g and de�ne for t < 0, Z�(t) = �Z
(�)
� (�t).

Let f : R ! R be a nonrandom function. We consider the integral
of f with respect to fZ�(t); t 2 Rg. From now on, for simplicity, we as-
sume symmetry in the sense that L(Z�(t)) = L(�Z�(t)) for every t. Then
E[ei�Z�(t)] = e�ctj�j

�

for some c > 0. For simplicity we assume c = 1 in the
following.

Theorem 4.3 If f 2 L�(R), then

X� =

Z 1

�1
f(u)dZ�(u)

can be de�ned in the sense of convergence in probability, and X� is also
symmetric �-stable with

E
�
ei�X�

�
= exp

�
�j�j�

Z 1

�1
jf(u)j� du

�
:(4.2)

For the proof, see, for instance, [SamTaq94]. We de�ne stable-integral pro-
cesses by

X�(t) =

Z 1

�1
ft(u)dZ�(u); t � 0;

where ft : R! R, and ft 2 L�(R) for each t � 0.
We consider here two stable-integral processes of moving average type,

represented as

X1(t) =

Z 1

�1

�
jt� ujH�1=� � jujH�1=�

�
dZ�(u); t � 0; 0 < H < 1; H 6=

1

�
;

and

X2(t) =

Z 1

�1
log

����t� u

u

���� dZ�(u); t � 0; 1 < � � 2:

Both integrals are well de�ned because the integrands are L�-integrable in
the respective cases. The process fX1(t); t � 0g is H-ss, si, fX1(t)g with
� = 2 is a fractional Brownian motion and fX1(t)g with 0 < � < 2 is an
extension of fBH(t)g to in�nite variance processes. It is called the linear
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fractional stable motion ([TaqWol83], [Mae83]). Finally fX2(t)g is 1
�
-ss, si.

This is called the log-fractional stable motion ([KasMaeVer88]). Note that
fX2(t)g with � = 2 is no more than Brownian motion. This can be veri�ed by
calculating its covariance; clearly it has independent increments. However,
if 1 < � < 2, fX2(t)g does not have independent increments, in contrast
to �-stable L�evy process fZ�(t)g which is also 1

�
-ss, si, but has independent

increments.
We are going to give limit theorems on convergence to fXk(t)g; k = 1; 2:

Suppose fXj; j 2 Zg are independent and identically distributed symmetric
random variables satisfying

1

n1=�

nX
j=1

Xj
d
! Z�(1):(4.3)

Take Æ such that 1
�
� 1 < Æ < 1

�
, and de�ne a stationary sequence

Yk =
X
j2Z

cjXk�j; k = 1; 2; :::;

where

cj =

8><>:
0; if j = 0

j�Æ�1; if j > 0

�jjj�Æ�1; if j < 0:

We can easily see that the in�nite series Yk is well de�ned for each k and Yk
does not have �nite variance unless � = 2. De�ne further for H = 1

�
� Æ,

Wn(t) =
1

nH

[nt]X
k=1

Yk:(4.4)

Theorem 4.4

Wn(t)
d
)

(
1
jÆjX1(t) when Æ 6= 0

X2(t) when Æ = 0:

Remark 4.1 If Æ < 0 (necessarily � > 1), then H = 1
�
� Æ > 1

�
. Thus

the normalization nH in (4.4) grows much faster than n1=� in (4.3), the case
of partial sums of independent random variables. This explains why fYkg
exhibits long range dependence.
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We give an outline of the proof of Theorem 4.4.
Step 1. For m 2 Z and t � 0, de�ne

cm(t) =

[t]�mX
j=1�m

cj;

where
P�m

j=1�m means 0. Then we have

Wn(t) = n�H
X
m2Z

cm(nt)Xm:

Step 2. For any t1; :::; tp � 0 and �1; :::; �p 2 R,X
m2Z

�����n�H
pX

j=1

�jcm(ntj)

�����
�

!

8>>>><>>>>:

Z 1

�1

����� 1jÆj
pX

j=1

�j
�
jtj � uj�Æ � juj�Æ

������
�

du when Æ 6= 0Z 1

�1

�����
pX

j=1

�j log
jtj � uj

juj

�����
�

du when Æ = 0:

Step 3. Denote the characteristic function of X1 by �(�); � 2 R. Then
we have that

log�(�) � �j�j� as � ! 0

([MaeMas94]). Also
lim
n!1

n�H sup
m

cm(n) = 0

([Mae83]).
Step 4. We have

In :=E

"
exp

(
n�H

pX
j=1

�jWn(t)

)#

=E

"
exp

(
n�H

pX
j=1

�j
X
m2Z

cm(ntj)Xm

)#

=E

"Y
m2Z

�

 
n�H

pX
j=1

�jcm(ntj)

!#
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and, by Steps 2 and 3,

lim
n!1

In = lim
n!1

E

"Y
m2Z

�

 
n�H

pX
j=1

�jcm(ntj)

!#

= lim
n!1

E

"
exp

(X
m2Z

log�

 
n�H

pX
j=1

�jcm(ntj)

!)#

=

8>>>>>>>>><>>>>>>>>>:

E

"
exp

(
�

Z 1

�1

����� 1jÆj
pX

j=1

�j
�
jtj � uj�Æ � juj�Æ

������
�

du

)#
when Æ 6= 0

E

"
exp

(
�

Z 1

�1

�����
pX

j=1

�j log
jtj � uj

juj

�����
�

du

)#
when Æ = 0

=

8>>>><>>>>:
E

"
exp

(
i
1

jÆj

pX
j=1

�jX1(tj)

)#
when Æ 6= 0

E

"
exp

(
i

pX
j=1

�jX2(tj)

)#
when Æ = 0;

where we have used (4.2) at the last stage.
The above Step 4 gives us the conclusion. �

Kesten and Spitzer [KesSpi79] constructed an interesting class of ss, si
processes as a limit of random walks in random scenery, where the limiting
process is expressed as a stable-integral process with a random integrand.
Let fZ�(t); t 2 Rg be a symmetric �-stable L�evy process (0 < � � 2) and
fZ�(t); t 2 Rg a symmetric �-stable L�evy process (1 < � � 2) independent
of fZ�(t)g. Let Lt(x) be the local time of fZ�(t)g, that is

Lt(x) = lim
"#0

1

4"

Z t

0

I [Z�(s) 2 (x� "; x+ ")] ds ;

which is known to exist as an almost sure limit, if 1 < � � 2. Then we can
de�ne

X(t) =

Z 1

�1
Lt(x) dZ�(x)
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and fX(t); t � 0g is H-ss, si, with H = 1� 1
�
+ 1

��

�
> 1

2

�
.

A limit theorem for this process fX(t)g is given as follows. Let fSn; n �
0g be an integer-valued random walk with mean 0 and f�(j); j 2 Zg be
a sequence of symmetric independent and identically distributed random
variables, independent of fSng such that

1

n1=�

nX
j=1

�(j)
d
! Z�(1) and

1

n1=�
Sn

d
! Z�(1) :

The new stationary sequence f�(Sk)g, which is a random walk in random
scenery, is strongly dependent.

Theorem 4.5 ([KesSpi79]). Under the above assumptions, we have

1

nH

[nt]X
k=1

� (Sk)
d
)

Z 1

�1
Lt(x) dZ�(x) :

5 Selfsimilar processes with independent

increments

We are now going to discuss selfsimilar processes with independent incre-
ments but not necessarily having stationary increments. We call fX(t); t �
0g which is H-selfsimilar with independent increments as H-ss, ii.

As already seen in Theorem 4.2, if selfsimilar processes have indepen-
dent and stationary increments, then their distributions are completely de-
termined. However, this is not the case any more for selfsimilar processes
without either independent or stationary increments. Actually, as mentioned
in [BarnPer98], there is no simple characterization of the possible families
of marginal distributions of selfsimilar processes with only stationary incre-
ments. Several authors have looked at this problem. For instance, O'Brien
and Vervaat [OBrVer83] studied the concentration function of logX(1)+ and
the support of X(1), gave some lower bounds for the tail of the distribution
of X(1) in the case H > 1, and showed that X(1) cannot have atoms ex-
cept in certain trivial cases. Also Maejima [Mae86] studied the relationship
between the existence of moments and exponent of selfsimilarity, as men-
tioned in Theorem 1.3. One of interesting questions is: Is the distribution
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of X(1) outside 0 absolutely continuous, if H 6= 1? This question was raised
by O'Brien and Vervaat [OBriVer83], but as far as we know it is still open.

For selfsimilar processes with independent increments, the situation is
better. To state the main theorem in this chapter (due to Sato [Sat91]), we
start with the notion of selfdecomposability.

De�nition 5.1 A probability distribution � is called \selfdecomposable" if
for any b 2 (0; 1), there exists a probability distribution �b such that

b�(�) = b�(b�) b�b(�) ; 8� 2 Rd :(5.1)

Remark 5.1 Selfdecomposable distributions are in�nitely divisible.

Theorem 5.1 (e.g. [Sat80]) Suppose that there exists a sequence of inde-
pendent random variables fXjg, real sequences fang with an > 0, " 1 and
fbng such that for some probability distribution �

L

 
1

an

nX
j=1

Xj + bn

!
! �

and the following asymptotic negligibility condition holds:

lim
n!1

P

�
max
1�j�n

����Xj

an

���� > "

�
= 0 ; 8" > 0:

Then � is selfdecomposable. Conversely, any selfdecomposable distribution
can be obtained as such a limit.

Many distributions are known to be selfdecomposable, and their impor-
tance has been increasing, for instance, in mathematical �nance, turbulence
theory and other �elds; see, e.g. [Barn98] and [Jur97]. The following result
links selfsimilarity to selfdecomposability.

Theorem 5.2 If fX(t); t � 0g is stochastically continuous and H-ss, ii,
then for each t, L(X(t)) is selfdecomposable.

Proof. ([Sat91]) Let �t = L(X(t)) and �s;t = L(X(t) � X(s)). We have by
H-ss, ii that, for any b 2 (0; 1),

b�t(�) = b�bt(�) b�bt;t(�) = b�t �bH�� b�bt;t(�) :
20



This shows that �t is selfdecomposable. �

Sato [Sat91] also showed that for any given H > 0 and a selfdecompos-
able distribution �, there exists a uniquely in law H-ss process fX(t)g with
independent increments such that L(X(1)) = �.

In the following we give several examples of ss, ii processes.

Example 5.1 ([Get79]) Assume d � 3 and let fB(t)g be an Rd-valued
Brownian motion. For t > 0, de�ne

L(t) = supfu > 0 : kB(u)k � tg :

Since kB(u)k ! 1 a.s. as u!1 when d � 3, L(t) is �nite a.s. Then the
process fL(t)g is 2-ss, ii. Moreover, fL(t)g has si if and only if d = 3.

Proof. Selfsimilarity can be easily obtained:

L(at) = supfu > 0 : kB(u)k � atg

= sup
�
u > 0 : a�1kB(u)k � t

	
d
= sup

�
u > 0 :



B �a�2u
�

 � t

	
= a2L(t) :

As to the other parts of the proof, see [Get79]. �

Example 5.2 (Due to Kawazu, see [Sat91].) Let fB(t)g be a real-valued
Brownian motion. De�ne

M(t) = inf

�
u > 0 : B(u)�min

s�u
B(s) � t

�
;

V (t) = � min
s�M(t)

B(s)

and

N(t) = inffu > 0 : B(u) = �V (t)g :

These processes appear in limit theorems of di�usions in random environ-
ment. Then the processes fM(t)g; fV (t)g and fN(t)g have independent in-
crements, but none of them has stationary increments. The three processes
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are also selfsimilar, actually fM(t)g is 2-ss, fV (t)g is 1-ss and fN(t)g is 2-ss,
which can be seen as follows.

M(at) = inf

�
u > 0 : B(u)�min

s�u
B(s) � at

�
= inf

�
u > 0 : a�1

�
B(u)�min

s�u
B(s)

�
� t

�
d
= inf

�
u > 0 :

�
B
�
a�2u

�
�min

s�u
B(a�2s)

�
� t

�
= a2M(t) ;

V (at) = � min
s�M(at)

B(s)
d
= � min

s�a2M(t)
B(s) = � min

s�M(t)
B
�
a2s
� d
= aV (t)

and

N(at) = inffu > 0 : B(u) = �V (at)g
d
= inffu > 0 : B(u) = �aV (t)g

= inf
�
u > 0 : a�1B(u) = �V (t)

	
d
= inf

�
u > 0 : B

�
a�2u

�
= �V (t)

	
= a2N(t) :

Example 5.3 ([NorValVir96]) Let fBH(t); t � 0g be a fractional Brownian
motion with 1=2 < H < 1. De�ne fM(t); t � 0g by

M(t) =

Z t

0

u1=2�H(t� u)1=2�HdBH(u):

Then fM(t)g is Gaussian, (1�H)-ss and it has independent increments (but
not stationary increments).

6 Semi-selfsimilar processes

There exist various generalizations of the notion of selfsimilarity, one of which
is the so-called semi-selfsimilarity. We motivate the de�nition (see De�nition
6.2 below) with two examples, one based on the notion of semi-stable distri-
butions and the second via processes de�ned on Sierpinski gaskets.
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De�nition 6.1 A probability distribution � is said to be strictly (a; �)-semi-
stable, if for some a 2 (0; 1) [ (1;1) and � 2 (0; 2), b�(�)a = b� �a1=���.
Theorem 6.1 Let fZ�(t); t � 0g be a L�evy process such that L(Z�(1)) is
strictly (a; �)-semi-stable. Then we have

fZ�(at)g
d
=
�
a1=�Z�(t)

	
:(6.1)

Proof. Easy. �

Once (6.1) is true for some a 6= 1, then it is also true for an, n 2 N.
However, unless L(Z�(1)) is stable, (6.1) does not hold for some a > 0, and
thus it is not selfsimilar.

Kusuoka [Kus87], Goldstein [Gol87] and Barlow and Perkins [BarlPer88]
constructed di�usions on Sierpinski gaskets in the following way. On R2 let

a0 = (0; 0), a1 = (1; 0) and a2 =
�

1
2
;
p
3
2

�
, and let F0 = fa0; a1; a2g. De�ne

inductively

Fn+1 = F0 [ f2
na1 + Fng [ f2

na2 + Fng ; n = 0; 1; 2; : : : ;

where y + A = fy + x; x 2 Ag. Let

G0
0 =

1[
n=0

Fn

and let G0 be G
0
0 together with its re
ection around the y-axis. Let

Gn = 2�nG0 ; n 2 Z ; G1 =
1[
n=0

Gn ; G = G1 :

The resulting set G is the Sierpinski gasket. De�ne a simple random walk
on Gn as a Gn-valued Markov chain fYr; r = 0; 1; 2; : : :g with transition
probabilities

P fYr+1 = y j Yr = xg =

(
1
4
; if y 2 Nn(x) ;

0; otherwise ;

where Nn(x) are the four nearest points of Gn. Consider

X(n)(t) = 2�nY[5nt] ; t � 0 ; n = 0; 1; 2; : : : :
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Theorem 6.2 The R2-valued process
�
X(n)(t)

	
converges in distribution to

an R2-valued process fX(t)g, and

fX (5nt)g
d
= f2nX(t)g ; 8n 2 Z :(6.2)

Motivated by (6.1) and (6.2) above, a notion of semi-selfsimilarity which
extends selfsimilarity was introduced in [MaeSat99].

De�nition 6.2 A stochastic process fX(t); t � 0g is said to be \semi
-selfsimilar" if there exist a 2 (0; 1) [ (1;1) and b > 0 such that

fX(at)g
d
= fbX(t)g :(6.3)

We say that fX(t)g is proper, if L(X(t)) is nondegenerate for every t > 0.

Theorem 6.3 ([MaeSat99]) Let fX(t); t � 0g be a proper, stochastically
continuous at any t � 0, semi-selfsimilar process. Then the following state-
ments hold.
(i) Let � be the set of a > 0 such that there is b > 0 satisfying (6:3). Then
� \ (1;1) is nonempty. Denote the in�mum of � \ (1;1) by a0.

(a) If a0 > 1, then � = fan0 : n 2 Zg, and fX(t)g is not selfsimilar.
(b) If a0 = 1, then � = (0;1), and fX(t)g is selfsimilar.

(ii) There exists a unique H � 0 such that, if a > 0 and b > 0 satisfy (6:3),
then b = aH .
(iii) H > 0 if and only if X(0) = 0 a.s., H = 0 if and only if X(t) = X(0)
a.s.

An important application of Theorem 6.3 (i) is the following. Suppose
one wants to check the selfsimilarity of a process. Following the de�nition
of selfsimilarity, one has to check (1.1) for all a > 0. However, suppose one
could show the relationship (1.1) only for a = 2 and 3. Then, by Theorem
6.3 (i), the fact that 2; 3 2 � implies that � = (0;1), since log 2= log 3 is
irrational, and thus one concludes that fX(t)g is selfsimilar. This yields an
easy way to check selfsimilarity of a given process. Namely, we have

Theorem 6.4 ([MaeSatWat99]) Suppose that fX(t)g is stochastically
continuous at any t. If fX(t)g satis�es (1:1) for some a1 and a2 such that
log a1= log a2 is irrational, then it is selfsimilar.
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Remark 6.1 The condition log a1= log a2 is irrational comes from an appli-
cation of Kronecker's theorem, see [HarWri79], XXIII, Theorem 438.

Remark 6.2 The reader is referred to [Ber94] for the statistical analysis of
selfsimilar processes.
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