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Abstract

Selfsimilar processes such as fractional Brownian motion are
stochastic processes that are invariant in distribution under suitable
scaling of time and space. These processes can typically be used to
model random phenomena with long-range dependence. Naturally,
these processes are closely related to the notion of renormalization in
statistical and high energy physics. They are also increasingly impor-
tant in many other fields of application, as there are economics and
finance. This paper starts with some basic aspects on selfsimilar pro-
cesses and discusses several topics from the point of view of probability
theory.
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1 Selfsimilarity and long-range dependence

Brownian motion is a very important example of a stochastic process. It is
a Gaussian process, a diffusion process, a Lévy process, a Markov process,
a martingale and a selfsimilar process. Each property above of Brownian
motion was a starting point of a new subfield of the theory of stochastic
processes. By now, Gaussian processes, diffusion processes, Lévy processes,
Markov processes and martingales constitute themselves major areas of re-
search in the modern theory of stochastic processes. The notion of selfsim-
ilarity did not immediately reach the same fundamental level; many more
recent applications have however called for a deeper understanding.

Selfsimilar processes are stochastic processes that are invariant in distri-
bution under suitable scaling of time and space. These processes also enter
naturally in the analysis of random phenomena (in time) exhibiting certain
forms of long-range dependence.

Fractional Brownian motion, which is a Gaussian selfsimilar process with
stationary increments, was first discussed by Kolmogorov [Kol40]. The first
paper giving a rigorous probabilistic treatment of general selfsimilar processes
is due to Lamperti [Lam62]. Later, the study of non-Gaussian selfsimilar
processes with stationary increments was initiated by Taqqu [Taq75], who
further developed a non-Gaussian limit theorem by Rosenblatt [Ros61].

On the other hand, the works of Sinai [Sin76] and Dobrushin [Dob80] for
instance, in the field of statistical physics, appeared around 1976. It seems
that similar problems were attacked independently in the fields of probability
theory and statistical physics (see [Dob80]). The connection between these



developments was pointed out by Dobrushin.
Most stochastic processes discussed in this paper are real-valued. They
are defined on a common probability space (2, F, P). In the following, by

{X(t)} L {Y'(t)}, we mean the equality of all finite-dimensional distributions.
Occasionally we simply write X (¢) L Y(t). Xy < X, means the equality in
law of X and X,. By X, (¢) 4 Y'(t), we mean the convergence of all finite-

dimensional distributions of { X,,(¢)} to {Y(¢)} as n — oo, and by &, % ¢, the
convergence in law of random variables {£,} to . L£(X) stands for the law

of a random variable X and the characteristic function of X with £(X) = u
is denoted by 7i(#) = E[¢"’X], # € R.

Definition 1.1 A stochastic process { X (t),t > 0} is said to be “selfsimilar”
if for any a > 0, there exists b > 0 such that

(1.1) {X(at)} £ {bX(1)}.

We say that {X(t),t > 0} is stochastically continuous at t, if for any
e >0,
limy, o P{|X (¢t + h) — X(t)| > €} = 0. We also say that {X(¢),t > 0} is triv-
ial, if L(X (1)) is a delta measure for every ¢t > 0.

Theorem 1.1 ([Lam62]) If {X(¢),t > 0} is nontrivial, stochastically con-
tinuous at t = 0 and selfsimilar, then there exists a unique exponent H > 0

such that b in (1.1) can be expressed as b = afl. Moreover, H > 0 if and only
if X(0) =0 a.s.

In the more recent literature, selfsimilar processes are usually defined in
the following way: A stochastic process {X(t),t > 0} is selfsimilar, if there

exists H > 0 such that for any a > 0, {X (at)} L {a” X (t)}. In this case, it
follows that X (0) = 0 a.s. However, the uniqueness of the exponent is not
obvious form this definition, although it is unique by Theorem 1.1. There
seems to be some confusion about this fact in the more applied literature.

A stochastic process {X (¢)} is said to have stationary increments, if the
distributions of { X (h+1t) — X (h)} are independent of h. In the following, we
discuss some properties of selfsimilar processes with stationary increments.
When {X(t),¢ > 0} is selfsimilar with stationary increments and its exponent
is H, then we call it H-ss, si, for short.

3



Theorem 1.2 Let {X(t)} be nontrivial and H-ss, si, and suppose
E[|X(1)]?] < oo. Then

XX (5)] = 5 {7 + 57 — |t — s} E [ X
Proof. (|[Taq81]) By H-ss, si,
BIX(0X(5)] = 5 {B [X(0] + B [X(5)7] - B [(X(1) ~ X()?]}

= S (B[X@) + B[X(s) — B[X (It — sl)"]}
_ % {tQH Lo2H It — S|2H}E [|X(1)|2] .0

Theorem 1.3 Let {X(t)} be nontrivial and H-ss, si, H > 0.

(i) ([Mae86)) If E[|X(1)]"] < oo for some v < 1, then H < 1/7.
(ii) If E[|X(1)|] < oo, then H < 1.

(iii) ([Kon84]) If E[|X(1)]] < 00 and 0 < H < 1, then E[X(t)] = 0.
(iv) ([Ver85]) If E[|X(1)|] < oo and H =1, then X (t) =tX(1) a.s

((ii) is easily seen from (i).) Because of (ii) and (iv) above, when the process
has finite first moment, we always consider the case 0 < H < 1.

Let {X(¢),t > 0} be nontrivial, H-ss, si, 0 < H < 1, and E[| X (1)]?] < oo,
and define

§(n):X(n+1)—X(n), n:071727"'7
E[£(0)¢(n)], n=20,1,2,---

Then

~ H(2H — 1)n*2E[|X(1)]}], asn— oo, if H# % ,

(1.2)  r(n) ) .

=0, n>1, iftH=g3,

where a, ~ b,, as n — oo, means lim,, ,o a,/b, = 1. This can be shown as

follows. Noticing that X (0) =0 a.s. (Theorem 1.1) and using Theorem 1.2,
we have for n > 1,

7"() £0)¢(n)] = EIX({X(n+1) = X(n)}]
1

El
EIX(1)X(n+1)] = EIX(1)X(n)]

% {(n+ 1?7 — 20 4 (n— 1)} BX(1)P],



which implies (1.2). Hence,

(if0< H <3, >0, |r(n)| < oo,

(2) if H =3, {£(n)} is uncorrelated,

(3)if § <H < 1,52 |r(n)] = oo.

Actually, if 0 < H < %, r(n) <0, for n>1 (negative correlation), if
$<H<1, r(n)>0 for n>1 (positive correlation). The property
> |r(n)| = oo is called long-range dependence and especially of interest in
statistics (see [Ber94] and [Cox84]).

2 Brownian motion and fractional Brownian
motions

A stochastic process {X (t),t > 0} is said to have independent increments,
if for any m > 1 and for any partition 0 < ¢y < t; < -+ < t,, X (t1) —
X (to),---, X (tm) — X (t;u_1) are independent.

Definition 2.1 If a stochastic process {B(t),t > 0} satisfies

(i) B(0) =0 a.s.,

(ii) it has independent and stationary increments,

(iii) for each t >0, B(t) has a Gaussian distribution with mean zero and
variance t, and

(iv) its sample paths are continuous a.s.,

then it is called (standard) Brownian motion.

Theorem 2.1 Brownian motion {B(t)} is 5-ss.

Proof. It is enough to show that for every a > 0, {a "/2B(at)} is also Brow-
nian motion. Conditions (i), (ii) and (iv) follow from the same conditions
for {B(t)}. As to (iii), Gaussianity and mean-zero property also follow from

the properties of {B(t)}. As to the variance, E[(a*I/ZB(at))Q] = t. Thus
{a='?B(at)} is a Brownian motion. [

Theorem 2.2 E[B(t)B(s)] = min{t, s}.

Proof. Brownian motion is 3-ss, si. Thus by Theorem 1.2, E[B(t)B(s)] =
s{t+s— |t —s|} =minft,s}. O



Remark 2.1 It is known that the distribution of a Gaussian process is de-
termined by its mean and covariance structure. For, the distribution of a
process is determined by all its finite-dimensional distributions and the den-
sity of a multidimensional Gaussian distribution is explicitly given through its
mean and covariance. Thus, a mean-zero Gaussian process with covariance
as in Theorem 2.2 must be Brownian motion.

Definition 2.2 Let 0 < H < 1. A mean-zero Gaussian process {Bg(t),
t > 0} is called “fractional Brownian motion”, if

(21)  E[Bu(t)Bu(s) = % (P11 27— P"VE [By(1)?] |

Theorem 2.3 {By(t)} is the same as Brownian motion up to a multiplica-
tive constant.

Proof. (2.1) with H = § determines the covariance structure of Brownian
motion as mentioned in Remark 2.1. [

Theorem 2.4 ([ManVNe68|) Fractional Brownian motion { By (t),t > 0} is
H-ss, si, and it has a stochastic integral representation

(2.2) { /_ ((t = u)" 12— (—u)"1/2) dB(u)

+ [e—wr dB(u)}E [Bu(1)7].

Fractional Brownian motion is unique in the sense that the class of all frac-
tional Brownian motions coincides with that of all Gaussian selfsimilar pro-
cesses with stationary increments. {By(t)} has independent increments if
and only if H = %

Sample path properties of Brownian motion have been well studied. As
Brownian motion, fractional Brownian motion is also sample continuous,
nowhere differentiable and of unbounded variation almost surely. For sam-
ple path properties of general selfsimilar process with stationary increments,
see [Ver85], and for that of selfsimilar stable processes with stationary incre-
ments, see [KonMae91].



Several properties of trajectories of multidimensional fractional Brownian
motion with multiparameter have also been studied. Let {Bgy(t),t € RN}
be a mean-zero Gaussian process with covariance

E[By(t)Br(s)] = [t + |s|*" — |t — s[*",

where |¢] is the Euclidean norm of ¢ € R"Y. Consider independent copies
{Bg)(t)},j = 1,...,d, of {Bg(t)} and the process {Bg(t) = (Bg)(t),...,
Bg) (t))}. This is an R%valued fractional Brownian motion with multipa-
rameter ¢ € RY. For the Hausdorff measure and multiple point properties
of the trajectories of {Bg(t)}, see [Tal95, Tal98|, [Xia97, Xia98] and the
references therein.

Selfsimilar processes are related to the notion of a renormalization group.
The following result is due to Sinai [Sin76]. Let H >0 and let ¥V =
{Y;,7=0,1,2,...} be asequence of random variables. Define, for each N > 1,
the transformation

T(N,H):Y — T(N,H)Y = {(T(N, H)Y),,j=0,1,2, } :

where

1 (j+1)N—-1
;= Y Y, j=01,2...

k=jN

Because T(N,H)T(M,H)=T(NM, H), the sequence of transformations
{T(N,H),N > 1} forms a multiplicative semi-group. It is called the renor-
malization group of index H. Suppose Y = {Y;,7 =0,1,2, ...} is a stationary
sequence.

(T(N, H)Y)

Definition 2.3 A stationary sequence Y = {Y;,j =0,1,2,...} is called H-
selfsimilar, if 'Y is a fired point of the renormalization group
{T(N,H),N > 1} with index H, namely for all N > 1,

{(T(N, H)Y),,j=0,1,2, } Ly, j=0,1,2,..} .

Since fractional Brownian motion { By (t)} has stationary increments, the
random variables
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form a stationary sequence. This sequence {Y;,j =0,1,2,...} is called frac-
tional Gaussian noise with exponent H. The following is a discrete analogue

of the statement on the uniqueness of fractional Brownian motion in Theorem
2.4.

Theorem 2.5 Let 0 < H < 1. Within the class of stationary sequences,
fractional Gaussian noise with exponent H is the only Gaussian fized point

of the renormalization group {T'(N,H), N > 1}.

Proof. For any 6g,... .0k, k> 0and N > 1,

k k 1 (j+1)N—-1
D TWHY); =) O >, Y
7=0 7=0 k=jN

_ Zgj% {Bu((j + 1)N) = Bu(jN)}

Jj=0

4 Zej {Bu(j +1) — Bu(j)}

k
= 0,
j=0

and thus fractional Gaussian noise is a fixed point of {T'(N,H), N > 1}.
Since fractional Brownian motion is the unique Gaussian H-selfsimilar pro-
cess with stationary increments (Theorem 2.4), fractional Gaussian noise is
the unique Gaussian fixed point. [

Remark 2.2 In general, suppose that {X (¢),¢ > 0} is H-ss, si with H > 0.
(Recall that X (0) = 0 a.s. by Theorem 1.1.) Then the increment process

Y;=X(+1)—X(j), j=0,1,2,..

is a fixed point of the renormalization group transformation {T'(N, H), N >
1}, since the proof of Theorem 2.5 also works in this general case.



3 From central limit theorem to noncentral
limit theorem

Let X1, X5, ... be a sequence of independent and identically distributed ran-
dom variables with F'[X;] =0 and F[X?] = 1. Then

[nt]
1 Z d
j=1

Remark 3.1 In probability theory, several notions of convergence of
stochastic processes, stronger than convergence of finite-dimensional distri-
butions, exist. In the case of (3.1), the so-called Donsker invariance principle
assures that a measure of the left hand side, defined on the function space
D|0,00) consisting of all functions being right continuous and having left
limits, converges to a Gaussian measure on D[0,00). The same comment
will be true for Theorem 4.5 in Section 4, but in this paper we do not discuss
such a weak convergence concept, because selfsimilarity is determined only
by finite-dimensional distributions of stochastic processes.

The convergence (3.1) is one way of constructing a Brownian motion. Ac-
tually, any selfsimilar process arises in this way as the following fundamental
limit theorem by Lamperti [Lam62] shows.

Theorem 3.1 ([Lam62]) Suppose {X (t),t > 0} is stochastically continuous
att =0 and L(X (t)) is nondegenerate for eacht > 0. If there exist a stochas-
tic process {Y(t),t >0} and real numbers
{a(A), A > 0} with a(X) > 0, limy_,« a(X) = 0o such that as X — oo,
(3.2) L yon 2 x

' a(A) ’
then for some H >0, {X(t),t > 0} is H-ss. Moreover, a()) is of the form
a(N) = M L(N), L being a slowly varying function.

In the above, L(\) is said to be slowly varying, if limy_,o L(c\)/L(\) = 1
for any ¢ > 0. For more information about slowly varying functions, see
[BinGolTeu87].



If we fix ¢ > 0 in (3.1), we have the classical central limit theorem.
Historically, the next question was how we can relax the assumption on inde-
pendence of { X} by keeping the validity of the central limit theorem (3.1).
Rosenblatt [Rosb6] introduced a mixing condition which is a kind of weak
dependence condition for stationary sequences of random variables. Numer-
ous extensions to other mixing conditions have been introduced. The next
problem addressed by Rosenblatt was as follows: Suppose that a station-
ary sequence has a stronger dependence violating the validity of the central
limit theorem, then what type of limiting distributions are expected to ap-
pear. He answered this question in [Ros61] laying the foundation of so-called
noncentral limit theorems.

Theorem 3.2 ([Ros61]) Let {{,} be a stationary Gaussian sequence such
that E[&] = 0,E[¢}] = 1 and E[§,&,11] ~ n®71L(n) as n — oo for some
H € (%, 1) and some slowly varying function L. Define another stationary
sequence {X,} by

(3.3) Xj=¢-1.

Then

3.4 Ly X 4z

(3.4) i 2% 52
]:

where Z is a non-Gaussian random variable and its characteristic function
15 given by

. . (2i0)P
Fe = e {Z | ;p) /$E[U 1] o1 = 0
p=2 ’
p
H |z; — xj1|2(H_1)dx} , BeR.
=2

Later, Taqqu [Taq75] considered a “process version” of (3.3) and obtained
the limiting process of n= 25@1 X;. This limiting process is H-ss by The-
orem 3.1 and the first example of non-Gaussian selfsimilar processes having
strongly dependent increment structure. It is referred to as the Rosenblatt
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process and it is expressed by the multiple integral (3.4) below with k& = 2,
as we will see.

A point we want to emphasize is that the functional f(z) = 2> — 1 con-
sidered in (3.2) is the 2nd order Hermite polynomial. Dobrushin and Major
[DobMaj79] and Taqqu [Taq79] extended this idea to general nonlinear func-
tionals of strongly dependent Gaussian sequences to get noncentral limit
theorems, by expanding nonlinear functionals in terms of Hermite polynomi-
als.

Let {&,} be a sequence of stationary Gaussian random variables with
FE[&] =0, E[€2] =1, and further assume that the covariances satisfy

(3.5) r(n) = E[§&] ~ [n|"7L(|n|), n — oo,

where 0 < ¢ < 1 and L is a slowly varying function. Let G be the spectral
measure of {&,} such that r(n) = ["_e™*G(dx).

Lemma 3.1 ([DobMaj79]) Define a set of measures {Gp,n =1,2,...} by

G =" a(Lap-mnm), scom)

n - L(n) n 7T,7T ) .

Then there exists a locally finite measure G such that G, — Gy (vaguely)
and for any ¢ > 0, A € B(R), Go(cA) = "Gy(A).

In the above, for a definition of vague convergence, see [EmbKIluMik97],
p.563.

Let Zg, be a random spectral measure corresponding to Gy, namely a
mean-zero, complex-valued Gaussian random measure such that

E[ZGO (A)ZGO (B)] = GO(A N B)v and put

" eht(ml‘i’""kmk) o 1
3.6 Xo(t) = Zao (dxy) -+ Zg, (d
3O X0 = [ e () Zo, (d)

where fgk is the integral over R except the hyperplanes z; = +x;,i # j, and
the integral is a so-called multiple Wiener-It6 integral. (For multiple Wiener-
[t6 integrals, see [Maj81].) Let f be a function satisfying F [f (&)] =0,
E [f (51)2] < 00, and expand f in terms of Hermite polynomials as



where H,(z) is the p-th order Hermite polynomial defined by H,(z) =
(—1)per 2L e=2*/2 ¢, = iE[f (&1) Hy (&1)], and the convergence is taken
in the sense of mean square. For example, Hy(z) = 1, Hi(z) = z and

Hy(x) = 2% — 1, which is considered in (3.2). Define

k=min{p|c, # 0} .

This k is referred to as the Hermite rank of f. By the assumption E[f (&)]
=0, co =0 so that £ > 1.

Theorem 3.3 (Noncentral limit theorem, [DobMaj79], [Taq79]). Let k be
the Hermite rank of f and {&,} a sequence of stationary Gaussian random
variables with E[§;] = 0 and E[¢?] = 1, and assume that (3.5) holds for
some q with 0 < g < 1/k. (We define Gy as in Lemma 3.1 by using this q
and further Xo(t) by (3.4).) If a, = n'~*/2L(n)*/2, then

[nt]

STFE) S e Xo(t).

j=1

1

Qn

Notice that the multiplicity & of the integral of the limiting selfsimilar process
Xo(t) is identical to the Hermite rank of f. The idea of the proof is the
following.

(1) Consider f(x) = cx He(x) + fi (x), where fi(z) =37%, | ¢, Hy(2).
(2) Verify under our assumptions that

2

Here, the condition ¢ < 1/k is essential. Hence, it is enough to show the
assertion when f(z) = Hy(x).
(3) Prove
1
q
- ZHk(fj) = Xo(t).
n =1

(Theorem 3.2 is the case k = 2.)
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Remark 3.2 As mentioned above, the condition ¢ < 1/k is essential for
the validity of the noncentral limit theorem in Theorem 3.3. This condi-

tion assures that the order of Var (Z?:1 f (@-)), which is the same order as

Var <E?:1 H;, ({7)), is greater than n, implying that the random variables

{f(&),j=1,2,...} are strongly dependent. This is the reason why non-
Gaussian limits appear and why the theorem is called the noncentral limit

theorem. What will happen, if the order of Var (Z?Zl f (5]-)) is n or nl(n),

¢(+) being slowly varying? This corresponds to the case ¢ > 1/k, and it is
known that the central limit theorem again holds ([BreMaj87], [GirSur85],
[Mar76], [Mar80]).

4 Selfsimilar stable-integral processes with
stationary increments

A probability distribution p is said to be strictly a-stable, 0 < a < 2, if it is
not a delta measure, 7i(f) does not vanish and for any a > 0,

i(0)* = fi(a'/*0), VO € R.

In the following, we call it just a-stable. For v = 2, we have the Gaussian
case. A stochastic process {X(t),t > 0} is said to be a Lévy process if it
has independent and stationary increments, it is stochastically continuous at
any t > 0, its sample paths are right continuous and have left limits, and
X(0) =0 as. If {X(¢),t > 0} is a Lévy process and L£L(X (1)) is a-stable,
then it is called an a-stable Lévy process and denoted by {Z,(t),t > 0}.
{Z5(t)} is Brownian motion.

Non-Gaussian stable distributions are, sometimes by physicists, called
Lévy distributions (see [Tsa97]). The special case a =1 is called Cauchy
distribution (or Lorentz distribution by physicists). A significant difference
between Gaussian distributions and non-Gaussian stable ones like the Cauchy
is that the latter have heavy tails, namely their variances are infinite. Such
models were for a long time not accepted by physicists. More recently, the
importance of modelling stochastic phenomena with heavy-tailed processes
is dramatically increasing in many fields. See, for instance, [EmbKluMik97].

One important such heavy tail property is the following.
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Theorem 4.1 If Z, is a random wvariable with «-stable distribution,
0 < <2, then for any v < a, E[|Z,|"] < 0o, but E[|Z,|"] = oc.

Proof. See [SamTaq94], for instance. [J

Selfsimilar processes with independent and stationary increments are the
only stable Lévy processes as the following theorem shows.

Theorem 4.2 Suppose {X(t),t > 0} is a Lévy process and let 0 < a < 2.
Then L(X (1)) is a-stable if and only if {X (t)} is =-ss.

Proof. Denote py, = L(X(t)) and g = py. Since {X ()} is a Lévy process, for
each ¢t > 0, 71, satisfies 71,(0) = i(#)". Indeed, for any n and m,

3@ (A (7)) fr () o)

where X (%) - X (%), k=1,...,m, are independent and identically dis-
tributed. It follows from (4.1) that 7i,/n(0) = Ji1/n(0)™ and in particular
fi1/n(0) = 7i(0)'/™. Thus

ﬁm/n(g) = ﬁl/n(g)m = ﬁ(e)m/n .

This, with the stochastic continuity of {X (¢)}, implies that 7i,(6) = 7i(0)" for
any t > 0.

We now prove the “if” part of the theorem. By 1-ss, X(a) < a'/*X (1)
Ya > 0, hence 7i()® = fi(a'/*0), Va > 0, V6 € R?, implying that p is stable,
and o = % As a result, necessarily % < H < o0.

For the “only if” part, suppose pu is a-stable. Since {X (¢)} has indepen-
dent and stationary increments, it is enough to show that for any a > 0,

X (at) L a/*X(t).
However,

Elexp{i0X (at)}] = fia(0) = (0)" = 7i (a'/°0)" = s (a*/0)
= E [exp {iﬁal/O‘X(t)}] :

This completes the proof. [

14



We extend the definition of {Z (t),t > 0} to the case to the whole of
R in the following way. Let {Z ( ),t > 0} be an independent copy of
{Za(t),t > 0} and define for t < 0, Zy(t) = — 25 (—1).

Let f : R — R be a nonrandom function. We consider the integral
of f with respect to {Z,(t),t € R}. From now on, for simplicity, we as-
sume symmetry in the sense that £(Z,(t)) = L(—Z.(t)) for every ¢. Then
E[e?7a)] = =" for some ¢ > 0. For simplicity we assume ¢ = 1 in the
following.

Theorem 4.3 If f € L*(R), then

X, = /_ Z F(u)dZa(u)

can be defined in the sense of convergence in probability, and X, is also
symmetric a-stable with

) Bl =exp { -l [ 1701 du}.

oo

For the proof, see, for instance, [SamTaq94]. We define stable-integral pro-
cesses by

/ fe(w)dZo( t =0,

where f; : R — R, and f; € L*(R) for each t > 0.
We consider here two stable-integral processes of moving average type,
represented as

o 1
Xl(t) = / (|t - U|H71/a - |u|H71/a) dZa(u)a t> 070 <H< 17H 7£ &7

and
t—u

dZ,(u), t>0,1<a<2.

Xs(t) = /00 log

o0

u

Both integrals are well defined because the integrands are L“-integrable in
the respective cases. The process {X;(t),t > 0} is H-ss, si, {X;(¢)} with
a = 2 is a fractional Brownian motion and {X,(¢)} with 0 < a < 2 is an
extension of {By(¢)} to infinite variance processes. It is called the linear
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fractional stable motion ([TagWol83], [Mae83]). Finally {X,(t)} is i-ss, si.
This is called the log-fractional stable motion ([KasMaeVer88]). Note that
{Xs(t)} with a = 2 is no more than Brownian motion. This can be verified by
calculating its covariance; clearly it has independent increments. However,
if 1 < o <2, {Xy(t)} does not have independent increments, in contrast
to a-stable Lévy process {Z,(t)} which is also 1-ss, si, but has independent
increments.

We are going to give limit theorems on convergence to { X (¢)}, k=1, 2.
Suppose {X;,j € Z} are independent and identically distributed symmetric
random variables satisfying

1 <& d
(4.3) 7 > XS Za(1).
7=1

Take 6 such that é —1<d< é, and define a stationary sequence

Y;CZZC]'X]C,]', k:1,2,...,

JEZ
where
0, if j=0
Cj = j_6_1, 1fj>0
—1j|7°7t, ifj <.

We can easily see that the infinite series Y}, is well defined for each k£ and Y}
does not have finite variance unless ae = 2. Define further for H = é -0,

(4.4) Walt) = — R

Theorem 4.4
1
W (1) < WXl(t) when § # 0
X, (t) when § = 0.

Remark 4.1 If § < 0 (necessarily o > 1), then H = £ —§ > L1 Thus
the normalization n! in (4.4) grows much faster than n'/® in (4.3), the case
of partial sums of independent random variables. This explains why {Y}}

exhibits long range dependence.
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We give an outline of the proof of Theorem 4.4.
Step 1. For m € Z and t > 0, define

[t]—m
Cj,

j=1-m
means 0. Then we have

=n 1 Z Cm(nt) X

meZ
Step 2. For any t1,...,t, > 0 and 0, ...,0, € R,

Z n~H iﬁjcm(ntj)
j=1

where Y.

j=1-m

mezZ
o0 1 p [0
/ m Zgj (|tj - U|_6 — |U|_5) du when 0 # 0
ST s .
| |t; — ul
/ Z 93 IOg ]| | du when 6 = 0.
e

Step 3. Denote the characteristic function of X; by A(6),6 € R. Then
we have that
logA(0) ~ —|0]* as @ —0

([MaeMas94]). Also

lim n~ " sup ¢, (n) =0
([Mae83]).
Step 4. We have

n— oo m
I, =F exp{ }]

—F exp{ z:: i em(nt)) Xm}]

meZ

=F H A (nHZQjcm(ntj)>]

< ||M~s

Lm€EeZ

17



and, by Steps 2 and 3,

i p
. IR T —H ) )
fi =l 2 T] 2 (” 2 lgﬂ%(”’fﬂ)”
]:

LmeZ

= nh_)I{.loE exp {Z log A (nHzp:Hjcm(ntj)> }]

meZ

_ |1 »
FE exp{—/ WZHJ (|tj—u|*5— |U|76)

L o j=1
du}]

i p
E |exp {zr; Zﬁle(tj)}] when 6 # 0
L 7=1

[ P
E |exp {iZGjXQ(tj)}] when 6 =0,
I =1

where we have used (4.2) at the last stage.
The above Step 4 gives us the conclusion. [J

.

“

when ¢ # 0
|

- - »
t._
FE exp{—/ Zajlog|]|u|u
L =l

oo

when 6 =0

\

Kesten and Spitzer [KesSpi79] constructed an interesting class of ss, si
processes as a limit of random walks in random scenery, where the limiting
process is expressed as a stable-integral process with a random integrand.
Let {Z,(t),t € R} be a symmetric a-stable Lévy process (0 < o < 2) and
{Zs(t),t € R} a symmetric f-stable Lévy process (1 < 3 < 2) independent
of {Z,(t)}. Let L,(x) be the local time of {Z3(¢)}, that is

1 t
Li(z) = 15{514_5/0 [[Zs(s) € (1 — e, 2 +2)] ds,

which is known to exist as an almost sure limit, if 1 < # < 2. Then we can
define

o0

X(t) = / Li(x) dZa(x)

o0

18



and {X (), > 0} is H-ss, si, with H =1 — £ + L (> 3).

A limit theorem for this process {X (¢)} is given as follows. Let {S,,n >
0} be an integer-valued random walk with mean 0 and {£(j),j € Z} be
a sequence of symmetric independent and identically distributed random

variables, independent of {S,} such that

1 - N d 1 d
nl/a Zg(]) - Za(l) and Wsn — Zg(l) .
7=1

The new stationary sequence {£(Sk)}, which is a random walk in random
scenery, is strongly dependent.

Theorem 4.5 ([KesSpi79]). Under the above assumptions, we have

[nt]

S SR /oo Lu(w) dZa(x)

k=1

5 Selfsimilar processes with independent
increments

We are now going to discuss selfsimilar processes with independent incre-
ments but not necessarily having stationary increments. We call {X (¢),t >
0} which is H-selfsimilar with independent increments as H-ss, ii.

As already seen in Theorem 4.2, if selfsimilar processes have indepen-
dent and stationary increments, then their distributions are completely de-
termined. However, this is not the case any more for selfsimilar processes
without either independent or stationary increments. Actually, as mentioned
in [BarnPer98|, there is no simple characterization of the possible families
of marginal distributions of selfsimilar processes with only stationary incre-
ments. Several authors have looked at this problem. For instance, O’Brien
and Vervaat [OBrVer83] studied the concentration function of log X (1) and
the support of X (1), gave some lower bounds for the tail of the distribution
of X (1) in the case H > 1, and showed that X (1) cannot have atoms ex-
cept in certain trivial cases. Also Maejima [Mae86] studied the relationship
between the existence of moments and exponent of selfsimilarity, as men-
tioned in Theorem 1.3. One of interesting questions is: Is the distribution

19



of X (1) outside 0 absolutely continuous, if H # 17 This question was raised
by O’Brien and Vervaat [OBriVer83], but as far as we know it is still open.

For selfsimilar processes with independent increments, the situation is
better. To state the main theorem in this chapter (due to Sato [Sat91]), we
start with the notion of selfdecomposability.

Definition 5.1 A probability distribution p is called “selfdecomposable” if
for any b € (0,1), there exists a probability distribution p, such that

(5.1) fi(0) = i(b9) pu(6), VO € R
Remark 5.1 Selfdecomposable distributions are infinitely divisible.

Theorem 5.1 (e.g. [Sat80]) Suppose that there exists a sequence of inde-
pendent random variables {X;}, real sequences {a,} with a, >0, 1 oo and
{bn} such that for some probability distribution p

1 n
|l = :
(an ZXJ +bn> — U
7j=1
and the following asymptotic negligibility condition holds:

Qn

lim P <{ max
n—00 1<j<n

>5}:0, Ve > 0.

Then p is selfdecomposable. Conversely, any selfdecomposable distribution
can be obtained as such a limit.

Many distributions are known to be selfdecomposable, and their impor-
tance has been increasing, for instance, in mathematical finance, turbulence
theory and other fields; see, e.g. [Barn98] and [Jur97]. The following result
links selfsimilarity to selfdecomposability.

Theorem 5.2 If {X(t),t > 0} is stochastically continuous and H-ss, ii,
then for each t, L(X (t)) is selfdecomposable.

Proof. ([Sat91]) Let p, = L£(X(t)) and psp = L(X(t) — X (s)). We have by
H-ss, ii that, for any b € (0, 1),

11(0) = Tie (0) Tipe(0) = 7i (b7 6) Tipee(6) .
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This shows that p, is selfdecomposable. []

Sato [Sat91] also showed that for any given H > 0 and a selfdecompos-
able distribution g, there exists a uniquely in law H-ss process {X(¢)} with
independent increments such that £(X (1)) = p.

In the following we give several examples of ss, ii processes.

Example 5.1 ([Get79]) Assume d >3 and let {B(¢)} be an R%-valued
Brownian motion. For ¢t > 0, define

L(t) = sup{u > 0: || B(u)|| < t}.

Since ||B(u)|| — oo a.s. as u — oo when d > 3, L(t) is finite a.s. Then the
process {L(t)} is 2-ss, ii. Moreover, {L(t)} has si if and only if d = 3.

Proof. Selfsimilarity can be easily obtained:

L(at) = sup{u > 0 : || B(u)|| < at}
=sup {u>0:a7"||Bu)| <t}
sup {u > 0: HB (a’Qu)H < t}
= a’L(t).
As to the other parts of the proof, see [Get79]. O

Example 5.2 (Due to Kawazu, see [Sat91].) Let {B(¢)} be a real-valued
Brownian motion. Define

M(t) = inf {u > 0: B(u) — min B(s) > t} :

s<u
V(t)=— min B
=~ g, B
and

N(t) =inf{u > 0: B(u) = -V (t)}.

These processes appear in limit theorems of diffusions in random environ-
ment. Then the processes {M(t)}, {V(¢)} and {N(t)} have independent in-
crements, but none of them has stationary increments. The three processes
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are also selfsimilar, actually {M(¢)} is 2-ss, {V'(¢)} is 1-ss and {N(¢)} is 2-ss,
which can be seen as follows.

M(at) = inf {u > 0: B(u) — min B(s) > at}

s<u
= inf {u >0:a"" <B(u) - rsn<111}B(s)> > t}
< inf {u >0: (B (a%u) — Isn<11? B(a23)> > t}
=a*M(t), 7
V(at) = — sgrrﬂl/[i(l}w) B(s) L_ sgra%i]\?(t) B(s) = — Sén]\irl(lt) B (a’s) L aV(t)
and
N(at) =inf{u > 0: B(u) = =V (at)}
Linf{u>0: B(u) = —aV(t)}

=inf{u>0:a"B(u)=-V(t)}
L inf {u>0:B(au)=-V()}
= a’N(t).
Example 5.3 ([NorValVir96]) Let {Bg(t),t > 0} be a fractional Brownian
motion with 1/2 < H < 1. Define {M(t),t > 0} by
t
M) = [ W e = ) TdBy ().
0

Then {M(t)} is Gaussian, (1 — H)-ss and it has independent increments (but
not stationary increments).

6 Semi-selfsimilar processes

There exist various generalizations of the notion of selfsimilarity, one of which
is the so-called semi-selfsimilarity. We motivate the definition (see Definition
6.2 below) with two examples, one based on the notion of semi-stable distri-
butions and the second via processes defined on Sierpinski gaskets.
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Definition 6.1 A probability distribution u is said to be strictly (a, a)-semi-
stable, if for some a € (0,1) U (1,00) and o € (0,2), 1(0)* = i (a'/*0).

Theorem 6.1 Let {Z,(t),t > 0} be a Lévy process such that L(Z,(1)) is
strictly (a, o)-semi-stable. Then we have

(6.1) (Zalat)}y £ {0/ Z, (1)} .
Proof. Easy. [

Once (6.1) is true for some a # 1, then it is also true for a”, n € N.
However, unless £(Z,(1)) is stable, (6.1) does not hold for some a > 0, and
thus it is not selfsimilar.

Kusuoka [Kus87], Goldstein [Gol87] and Barlow and Perkins [BarlPer88]
constructed diffusions on Sierpinski gaskets in the following way. On R? let

ap = (0,0), a; = (1,0) and ay = (l ﬁ), and let Fy = {aop,as,as}. Define

2072
inductively

Fnﬂ:FOU{Qna1+Fn}U{2na2+Fn}, n:0,1,2,...,

where y + A = {y +z;x € A}. Let
Gy=JF.
n=0
and let Gy be G|, together with its reflection around the y-axis. Let
Gn=2"Go, ne€Z, Guo=|JG., G=0.
n=0

The resulting set GG is the Sierpinski gasket. Define a simple random walk
on GG, as a Gy-valued Markov chain {Y,,r = 0,1,2,...} with transition
probabilities

1 ify € No(2),

P{Y, ., =yl|Y, =2} =4
=y } {0, otherwise ,

where N, (x) are the four nearest points of G,,. Consider

X™(t) =2y, t>0, n=0,1,2,...
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Theorem 6.2 The R?-valued process {X(”) (t)} converges in distribution to
an R?-valued process {X (t)}, and

(6.2) (X (5M)} £ {2"X (1)}, VneZ.

Motivated by (6.1) and (6.2) above, a notion of semi-selfsimilarity which
extends selfsimilarity was introduced in [MaeSat99].

Definition 6.2 A stochastic process {X(t),t > 0} is said to be “semi
-selfsimilar” if there exist a € (0,1) U (1,00) and b > 0 such that

d
(6.3) {X(at)} = {0X(t)}.
We say that { X (¢)} is proper, if £(X (t)) is nondegenerate for every ¢t > 0.

Theorem 6.3 ([MaeSat99]) Let {X(¢),t > 0} be a proper, stochastically
continuous at any t > 0, semi-selfsimilar process. Then the following state-
ments hold.
(i) Let T be the set of a > 0 such that there is b > 0 satisfying (6.3). Then
['N(1,00) is nonempty. Denote the infimum of T' N (1,00) by ay.

(a) If ag > 1, then T' = {ag : n € Z}, and {X(t)} is not selfsimilar.

(b) If ag = 1, then T' = (0,00), and {X(t)} is selfsimilar.
(ii) There exists a unique H > 0 such that, if a > 0 and b > 0 satisfy (6.3),
then b = a™.
(iii) H > 0 if and only if X(0) =0 a.s., H =0 if and only if X(t) = X (0)

a.s.

An important application of Theorem 6.3 (i) is the following. Suppose
one wants to check the selfsimilarity of a process. Following the definition
of selfsimilarity, one has to check (1.1) for all a« > 0. However, suppose one
could show the relationship (1.1) only for a = 2 and 3. Then, by Theorem
6.3 (i), the fact that 2,3 € I' implies that I" = (0,00), since log2/log3 is
irrational, and thus one concludes that {X(¢)} is selfsimilar. This yields an
easy way to check selfsimilarity of a given process. Namely, we have

Theorem 6.4 ([MaeSatWat99]) Suppose that {X(t)} is stochastically
continuous at any t. If {X(t)} satisfies (1.1) for some a; and ay such that
log ai/logasy is irrational, then it is selfsimilar.
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Remark 6.1 The condition loga;/logas is irrational comes from an appli-
cation of Kronecker’s theorem, see [HarWri79], XXIII, Theorem 438.

Remark 6.2 The reader is referred to [Ber94] for the statistical analysis of
selfsimilar processes.
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