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Abstract
Let B{f = {B{!(t), t € RY } be a real-valued fractional Brownian sheet. Consider the
(N,d) Gaussian random field B¥ defined by
BY(t) = (B (t),...,Bi () (t€RY),

where BH ... ,Bf are independent copies of BEf. In this paper, the existence and joint

continuity of the local times of B¥ are established.
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1 Introduction

For a given vector H = (Hy,... ,Hy) (0 < H; <1 for £ =1,... ,N), a real valued frac-
tional Brownian sheet B{f = {Bl!(t),t € RY } with Hurst index H is a real-valued, centered

Gaussian random field with covariance function given by

N
1
EIBY () B3 (1] = T 5 (e + e = |se = "), s,0eRY. (L)
It follows from (1.1) that B{(t) = 0 a.s. for every ¢t € ORY, where 9RY is the boundary of
RY.
+

Fractional Brownian sheet has the following stochastic integral representation

t1 ty N
B0 =gt [ [ TLaw,(trsoW (as) (1.2

X p=1
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where W = {W (s),s € RY } is a standard Brownian sheet and

9u (t,5) = ((t = 5)) T2 = ((=s) )72,

with s; = max{s,0}, and ,, is the normalizing constant given by

n‘g:/_;.../_l [ﬁgm(l,se)rds.

© Tp=1

We associate with Bl a Gaussian random field B = {B#(t) : t € RY } with values in
R by

BH(t)y = (BH(t),... ,BH(1)), (1.3)

where Bf?,... | B are independent copies of B}'. We call B the (N, d)-fractional Brownian
sheet with Hurst index H = (Hy,... , Hy).

Note that if N = 1, then B is a fractional Brownian motion in R? with Hurst index
Hy € (0,1); if N > 1 and H; = --- = Hy = 1/2, then B is the (N, d)-Brownian sheet.
Hence B can be regarded as a natural generalization of one parameter fractional Brownian
motion in R? to Gaussian random fields in R?, as well as a generalization of the Brownian
sheet. Another well known generalization is the multiparameter fractional Brownian motion

X ={X(t), t € RN}, which is a centered Gaussian random field with covariance function
1
ELXG (90 (8)] = g (Js2 + 42— |s — 420, (1.4

where 0 < H; <1 is a constant and d;; = 1 if ¢ = j and 0 if i # j, and where | - | denotes the
Euclidean norm in RV . Fractional Brownian sheets arise naturally in many areas, including
in stochastic partial differential equations (cf. Oksendal and Zhang (2000), Hu, OQksendal
and Zhang (2000)) and in studies of most visited sites of symmetric Markov processes (cf.
Eisenbaum and Khoshnevisan (2001)).

Many authors have studied the sample path properties of the Brownian sheet and frac-
tional Brownian motion. See Orey and Pruitt (1973), Adler (1978, 1981), Pitt (1978), Ehm
(1981), Rosen (1984), Talagrand (1995), Xiao (1997), just mention a few. In all these papers,
the independent increment property of the Brownian sheet and the local nondeterminism of
fractional Brownian motion have played crucial roles. Since, in general, the fractional Brow-
nian sheet By has neither the property of independent increments nor local nondeterminism,
it seems quite difficult to investigate fine properties of its sample paths. Recently, Dunker
(2000) has studied the small ball probability of fractional Brownian sheet. For certain spe-

cial class of fractional Brownian sheets, Mason and Shi (2001) have obtained the exact rate



for small ball probability and have computed the Hausdorff dimension of some exceptional
sets related to the oscillation of their sample paths. Stochastic partial differential equations
driven by fractional Brownian sheet have been studied by @Oksendal and Zhang (2000), Hu,
Oksendal and Zhang (2000) and Duncan et al (2000).

The main objective of this paper is to study the existence and joint continuity of the local
times of fractional Brownian sheet B . Our existence theorem is sharp and its proof is quite
different from the proofs for the Brownian sheet and fractional Brownian motion. However,
for the joint continuity, we can only establish a sufficient condition; see Theorem 4.1. It is
still an open problem to find the best possible condition for the joint continuity of the local
times.

The rest of the paper is organized as follows. In Section 2, we collect some definitions
and basic facts about fractional Brownian motion and local times that will be useful to our
arguments. In Section 3, we prove the existence theorem (Theorem 3.7) and in Section 4, we
give a sufficient condition for the joint continuity of the local times of B and list some open

problems.

2 Preliminaries

In this section, we present some notations, and collect basic facts about Gaussian processes

as well as local times.

2.1 General Notations

The underlying parameter space is Rﬂ\_f = [0,00)", throughout. A typical parameter, t € RV
is written as ¢ = (t1,... ,ty), coordinatewise. There is a natural partial order, “<”, on RV,
Namely, s <t if and only if s; < t; for all j = 1,... ,N. When s<t, we define the closed

interval,

N

[s,£] = ] ] [ses tel.
/=1

Throughout, we will let A denote the class of all N-dimensional closed intervals I C
(0,00)" that are parallel to the axes. That is I € A is of the form I = [s,t], where s <t are
both in (0,00)Y. We always write )., for Lebesgue’s measure on R™, no matter the value of
the integer m. We use (-,-) and |- | to denote the ordinary scalar product and the Euclidean
norm in R™ respectively.

We will use K, Ky, Ks,..., to denote unspecified positive and finite constants which

may not be the same in each occurrence.



2.2 Fractional Brownian Motion

Given a constant « € (0, 1), a fractional Brownian motion in R with index « is a real-valued,
centered Gaussian process X = {X%(t), ¢t € R}, with the covariance function

ELX (5)X(0)] = 3 (s + 6P — |s — 1),

Fractional Brownian motion was introduced by Mandelbbrot and van Ness (1968) as a moving

average Gaussian process

X(t) = ﬁa/ [((t = 5)4)* 2 = ((=5)4)**1dB(s),

—o0
where B is the ordinary Brownian motion and x, is a normalizing constant.

From the convariance function, it is easy to verify that X is a self-similar process with
self-similarity index o and it has stationary increments. Except in the Brownian motion
case (i. e. a = 1/2), X* does not have the independent increment property. Instead,
when o > 1/2, X® is a processs with long range dependence. As such, fractional Brownian
motion has become a popular model in many areas from telecommunication networks to
mathematical finance. We refer to Samorodnitsky and Taqqu (1994) for more information
on fractional Brownian motion and related properties.

The following property of strong local nondeterminism of fractional Brownian motion was
discovered by Pitt (1978): there exists a constant 0 < K; < oo, depending on « only, such
that for all t € R and 0 < r < ¢,

Var (X*(t)| X(s) : |s —t| > 1) = Kyr*®. (2.1)

This property has been very useful in studying sample path properties of fractional Brownian
motion. See, for example, Talagrand (1995) and Xiao (1997).

Let detCov(Zy,--- ,Z,) denote the determinant of the covariance matrix of a Gaussian
random vector (Z1,... ,Z,). It is well known that
n
detCov(Zy,... , Zy) = Var(Zy) [ [ Var(Z;| 24, ... , Z; ). (2.2)
=2

Applying this fact, together with (2.1), we see that for all integer n > 2 and distinct
t1,... ,tp ER,

n
detCov(X*(t1),- -, X¥(tn)) > K~ [[ min{[t; — t:|**: 0 <i < j — 1}, (2.3)
j=1

where ty := 0.



2.3 Local Times

We end this section by briefly recalling aspects of the theory of local times. More information
on local times of random, as well as non-random, functions can be found in Ref.’s (Geman
and Horowitz 1980; Geman et al 1984; Xiao 1997).

Let X (t) be a Borel vector field on RY with values in R?. For any Borel set T C RV, the

occupation measure of X on T is defined as the following measure on R?:
pr(®) = An{t €T : X(t) € o}.

If ., is absolutely continuous with respect to Ag, we say that X (¢) has local times on T,
and define its local times, L(e,T), as the Radon-Nikodym derivative of 41, with respect to
Ad, 1.e.,

d
L(z,T) = dL)\Z(x)’ vz € R

In the above, x is the so-called space variable, and T is the time variable. Sometimes, we
write L(z,t) in place of L(z, [0,%]). It is clear that if X has local times on T, then for every
Borel set I C T, L(x,I) also exists.

By standard martingale and monotone class arguments, one can deduce that the local
times have a measurable modification that satisfies the following occupation density formula:

for every Borel set T C RY, and for every measurable function f : R? — R,
/ F(X(t)dt = f(z)L(z,T)dz. (2.4)
T Rd

Suppose we fix a rectangle T' = Hi]il[ai, a; + h;] in A. Then, whenever we can choose a
version of the local time, still denoted by L(z, Hi]\il[ai, a; + t;]), such that it is a continuous
function of (z,t1,--- ,tn) € RY x Hi]\il[(), hi], X is said to have jointly continuous local times
on T. When a local time is jointly continuous, L(z,®) can be extended to be a finite Borel

measure supported on the level set
X7l (z)={teT: X(t) =z} (2.5)

see Adler (1981) for details. In other words, local times often act as a natural measure on the
level sets of X. As such, they are useful in studying the various fractal properties of level sets
and inverse images of the vector field X. In this regard, we refer to Berman (1972), Adler
(1978), Ehm (1981), Monrad and Pitt (1986) Rosen (1984), and Xiao (1997).



It follows from (25.5) and (25.7) in Geman and Horowitz (1980) (see also Geman, Horowitz
and Rosen (1984), Pitt (1978)) that for any =,y € R?, T € A and any integer n > 1,

E[L(w,T)”} = (27r)"d/n/Rnd exp(—ii(uj,:@)
j=1

xEexp (zi <uj,X(tj)>)du df (2.6)

Jj=1

and for any even integer n > 2

B[ (L(s,T) - L{y, T))"|

~en [ f 1:I [exp(=iu, ) - exp(=iu, 1)

Eexp (z 3 (uj,X(tj))>dﬂ i, (2.7)

Jj=1

where 7@ = (u!,... ,u"), T = (t',...,t"), and each w/ € R?, #/ € (0,00)". In the coordinate
I =(ul,...,ul).

notation we then write w

3 Existence of the Local Times

In this section, we prove a sufficient condition for the existence of the local times of an (N, d)-
fractional Brownian sheet on any rectangle I € A. Because of the complicated covariance,
the proof of the existence is quite involved. Therefore, we split the proof into several lemmas,

which are also of their own interest.
Lemma 3.1 Let 0 < a<1,a>b>0. Then

(a+b)* <a”+ ab”. (3.1)

Remark 3.2 The above inequality is stronger than the well known inequality : (a + b)* <
a® + b°. O

Lemma 3.3 Let —1 < a <1 be fired. Then for all u > 0, it holds that

a+l _ 1
(w+1)* <2 : (3.2)

u—1

where for u = 1 the right hand side of (3.2) is defined to be a+1, the limiting value as u — 1.



Proof First we prove (3.2) for 0 < o <1 and u > 1. Define
_(u=1)(u4+1)"

flu) = et — 1
Then, by Lemma 3.1
2a
. _ < . _ 1
=g st A=t

To prove (3.2), it suffices to show that f'(u) > 0 for v > 1. By a simple calculation, we
get that

(u+ 1)21

f'(u) = (e T — 172 [(1 +a)u® 4+ (1 —a)u®™ — (1 +a)u+ (1 — )|

Thus, f'(u) > 0 if and only if
filw) == (1 +a)u® + (1 — a)u® = [(1 4 a)u+ (1 —a)] >0.
Observe that fi(1) = 0 and
flw) = 1+ a)feut + (1 — a)u® — 1].

To show that fi(u) > 0, it is sufficient to prove that fo(u) := au®~! + (1 — a)u® — 1 > 0 for
u > 1. This follows from the fact that fo(1) =0 and

fow) = a1l —a)u®2(u—1) >0, forall u>1.

This completes the proof of (3.2) for 0 < o« <1 and u > 1.

Inequality (3.2) clearly holds for u = 0. The case of 0 < @ <1 and 0 < u < 1 follows by

applying the first part to ¢ = %

Finally, for —1 < a < 0, we have

(07

lim f(u) = 2 >1 and lim f(u)=1.

u—1 14 a u—00

Hence to prove (3.2) for u > 1, we only need to show f'(u) < 0 for all w > 1. This, as well as

the proof for the remaining cases, is similar to the case of 0 < o < 1. we omit the details. [J

Fix a constant 0 < h < 1, we consider the function

1 1 1
Fu) = S(14u )" =21 +u )"0 +u)™ = Ju™"
1 1 1
—Zu2h+§(1+u)2h+§, (0 < u < 00). (3.3)

Lemma 3.4 Let Ky = 4"(1 — 4"1). Then,

F(u) > Ky forall 0<u<oo.



Proof As
F(1)=Ky <1 and lim F(u) = lim F(u) =1,
u—0

U—00

it suffices to show that F'(-) reaches its global minimum at u = 1. To this end, we study the

sign change of F'(u). Differentiating F' gives

h
F'(u) = —h(1+ u*1)2h*1u*2 —5 (1+ u)2h*1(1 + u*1)2h
h h
—|——2 (1+ u)2h(1 + u71)2h71u72 + 5 u 2h 1 (3.4)

h
—gu%*l + h(1 4 u)? 1t

Clearly, F'(1) = 0. By rewriting and rearranging the terms in (3.4), we have

h
F,(U) h(l U)Zh—lu—Zh—l 2 (1 u)4h—1u—2h
h h h
5 (1 u)4h—1u—2h—1 5 u—?h—l 5 u2h—1 h(l u)?h—l

_ gu—Zh—l [1 4wt 21+ u)2h—1]

_gu%q 4 (14 w)th Ly g1 u)2h71u72h+1}

h
— §u72h71 [((1 + u)2h71 _ 1)2 + (1 +u)4h71 _ (1 + u)4h72:|

_gu%q '((1 i u)2h71u72h+1 124 (14 u)4h71uf4h+1 1+ u)4h72u74h+2
_ gu72h71<(1 _’_u)2h71 _ 1)2 _ gu%’l((l i u)2h71u72h+1 _ 1>2‘

Thus F'(u) > 0 if and only if
((1 )2l 1)u—h—% > ((1 )2l 1)uh—%.
This holds if and only if
gu) =u + (1 +u) P —u(1l+uw)? 1 —-1>0. (3.5)
Applying Lemma 3.3 with & = 2h — 1 € (—1,1), we see that (3.5) holds if and only if
u > 1. Therefore, we have showed that F'(u) > 0 if and only if u > 1. This together with
F’(1) = 0 implies that u = 1 is the global minimum point of F. O
Corollary 3.5 For 0 < h <1, s >r >0, define
G(s,r) = s2r?h — %[3% + 72— (s — T)Zh]Z. (3.6)

Then G(s,r) > Ky r?'(s — )2, where Ky is defined as in the previous lemma.



Proof Setu = f — 1. We have

1, s \on 1,820, S \2n
_ p2h(y N2kt S 2 LS
Gls,r) = s —r S ()" - 2" ()
1 r on 1,8s—7r9p 1,8.0n 1
RS AR A R
= (s — ) (),
where F'(u) is the function defined in (3.3). Thus Corollary 3.5 follows. O
Lemma 3.6 Let —1 < a« < 1. Then, for all u > 1,
w <14 (uw—1)%u+ 1). (3.7)

Proof Define for u > 1 ( I D
w+1)(u—1)“
f(u) - petl — 1

Then,
lim f(u) =1.

U—00
To prove the lemma, it suffices to show that f'(u) <0 for all u > 1.
Indeed, as —1 < a <1, u > 1, elementary computation shows

(u— 1)1

) = guaer—qyz (1 ) —w) + (1)1 —u™)] <0

This proves Lemma 3.6. O

Theorem 3.7 Let B = {BH(t), t € RY} be an (N,d) fractional Brownian sheet with
Hurst index H = (Hy,... ,Hy). Ifd < Zé\;l HL[, then for all I € A, B has local times
{L(z,1), z € R} on I; and L(z,I) admits the following L? representation:

L(z,I) = (27r)_d/ e_i<y’x>/ei(y’BH(s)>ds dy, (3.8)
R I
where, Yy = (y17y27 "'7yd)'
Remark 3.8 The result in Theorem 3.7 is sharp. When H;y = --- = Hy = %, it recovers

the corresponding result for the Brownian sheet. See Ehm (1981) for additional information

about local times of the Brownian sheet. O



Proof Let I = [s,t] € A be fixed. Without loss of generality, we assume I = [¢, 1]V. By
the method in Orey (1970) and Pitt (1978), (see also (21.3) in Geman and Horowitz (1980)),

it is sufficient to prove that

ne=fas [ar [ ay |

For this purpose, we first establish the following estimate: let 0 < h < 1 be a constant,

Eexp y,BH( )) +i(z, B (r )‘dz < . (3.9)

then for any 0 > 2h, M > 0 and p > 0, there exist positive and finite constants K3 and Ky,
depending on d, €, M only, such that for 0 < a < M,

I(a) := /dr/ ds a_|_|8_74|2h} P

< Kj(a Pt 4 Ky). (3.10)

Indeed, by the symmetry of the integrand, we see that

1 1
_ —2ph a 5wl P
Z(a) 2/6 r dr/r [7“2h +(r 1) } ds.

Putting u = s/r and using the fact that r > €, s > ¢, we see that the above integral is
bounded by

1 1/r _ 1/e —
K/ rdr/ [a+(u—1)2h] ” du < K/ a+(u—1)2h] ? du
€ 1

= / (v—a) =i dv, (3.11)
where we have used the substitution v := a + (u — 1)?* and K > 0 is a finite constant
depending on €, h and p.

Let b, = a + (% —1)%h. We prove (3.10) for h > % and 0 < h < % separately. If h > %
then for ¢ > 2h, (3.11) and Holder’s inequality imply

K(/bE vp‘sdv>%</b5(v—a)(_22hl' 51)dv>ég_l

< Ki(a s + Ky),

Z(a)

IA

where we have used the fact that 2%—21 : 5%1 < 1. This proves (3.10) for h > 1/2.
If 0 < h <1/2, elementary calculation shows that for all 0 < a < M

be 1—2h
Z(a) < K/ v P(v—a)= dv
a
be )
< K/ v P e dy
a
< Ks(a™Pts + Ky)

10



for some positive and finite constants K3 and K4 depending on 4, €, M only.
Let us now go back to show (3.9). As B is Gaussian, using the expression for the

characteristic functions of Gaussian random variables it turns out that

d

1 _a
(2m) /ds/ HSQH[ 2He _ H Z( s2He +7"2H‘ —|se — 7"4|2H‘)2] * dr. (3.12)

=1
We claim that there exists a constant K5 = K¢ i > 0 such that for all 5, r € T = [¢, 1]V

N N

N
1
[Is"re™ =11 (50 sp g = Lse = oM > Ky [ — P (3.13)
= =1 =1

To see (3.13), we observe that

N
H 2H, QH‘I _ H le[ H, _’_TZH[ s — W|2H‘,]2

/=1

2H, 2H[ 2H, 2H, 1 2H, 2H, 2H1\2
(H )(1 ] —Z(s1 + i — sy = [7)

1
[S%Hl_i_,r,l —|s1— |2H1 [H 2H, 2Hg

A
_ H Z( H, +r2Hg — |se — Te|2H[)2}
=2
> K2 EZ‘]’\;I 4Hl|81 — ’I“1|2H1 +

L om, [ al 2H, 2H, Al 2H, | 2H, oH 2]
7€ s,y _HZ(SK +ry = sg —rg|T)
(=2 =2
where we have used Corollary 3.5 to obtain the last inequality.
Applying the above procedure repeatedly we finally can find a positive constant K5 de-
pending on €, N and H only such that (3.13) holds.
Choose 09, ...,dn such that §, > 2H, and

3< (G tnt i)

This is possible because d < (g + - + ﬁ) Applying the estimate (3.10) for

1

N-1
Z|34—m|2H[ and p=d/2,
=1

11



we obtain that J(I) is at most

1 1 1 1 1 1 N —d/2
Kﬁ/ dsl/ drl.../ dsN_l/ drN_l[/ dsN/ drN<Z|sz_re|2Hz> ]
€ € € € € € =1
1 1 1 1., N-1
SK7/ dsl/ drl'”/ dle/ [(
N-1 d 1

— —d/2++-
> lse— 7“e|2H[) s K4] dry_,
=1
1 1 1 1 B
< Ky +K9/ dsl/ dry - - / dle/ derl{ |sg — 7] ‘} N (3.14)
€ € € € 621

where Kg and Kgy are positive and finite constants depending on ¢ N, dy and H only. By
repeatedly using the estimate (3.10) as above, after N — 1 steps, we obtain that

L+...+5L

1 1 _dy
J(I)SKH)—I-KH/ dsl/ d’l"1|:|81—'r1|2H1:| 25N 2 (315)

This is finite because (%

0

— % ——— %)2H1 < 1 by the choices of §;. The proof is completed.

4 Joint Continuity

When the local times of B¥ exist, it is natural to ask whether there exists a version of the
local times which is jointly continuous in both space and time variables. The answers are
affirmative for the Brownian sheet and (N, d)-fractional Brownian motion; see Pitt (1978),
Ehm (1981) for details. The question for (N, d)-fractional Brownian sheets is significantly
harder due to the fact that B does not have the independent increment property nor local
nondeterminism. In this section, we prove a sufficient condition for the joint continuity of
the local times of BY.

Theorem 4.1 Let BY = {BY(t), t € RY'} be a fractional Brownian sheet in R® with Hurst
index H = (Hy,... ,Hy). If Hld < 1 for all £ =1,... ,d, then for all closed intervals I € A,
B has a jointly continuous local time on I. In particular, a real-valued fractional Brownian

sheet has jointly continuous local times.

Our proof of Theorem 4.1 is based on an moment argument and the continuity lemma, of
Garsia (1971). The basic estimates that are required for the proof are contained in Lemmas
4.8 and 4.9. For their proofs, we also need some results from Cuzick and Du Peez (1982) and
Xiao (1997).

12



Lemma 4.2 Let Zy,... ,Z, be the mean zero Gaussian variables which are linearly indepen-

dent and assume that -
/ g(v)e_€”2dv < 00

—o0

for all e > 0. Then

/n g(v1) exp [—%Var(i ijj)] dvy - - - dvy,

i=1

(27() (n—1)/2 /oo v _U2/2
= — d
(detCov(Zy,--- , Zy,))1/? _oog(m)e v

where 03 = Var(Z1|Zs, ... , Zy) is the conditional variance of Zy given Za, ... , Zy.

Lemma 4.3 Assume p(y) is positive and non-decreasing on (0,00), p(0) = 0, y"/p"(y) is
non-decreasing on [0,1], and [°p ?(y)dy < co. Then there exists a constant Kis such that
for allm > 1

> |exp(ivy) — 1|" nfl
dy < Kihp " —),
/0 p"(y) 2 <v)
where py(y) = min{1,p(y)}.

Lemma 4.4 For a > €?/2,
/ (log z)* exp(—z?%/2)dz < /7 (log o)“.
1

In the above, Lemmas 4.2 and 4.4 are due to Cuzick and Du Peez (1982), and Lemma 4.3 is
a slight modification of their Lemma 3.

Lemma 4.5 below will be important for our purpose. It connects the determinants of the
covariance matrices of B with those of fractional Brownian motions, hence makes it possible
for us to use the arguments in Xiao (1997) to prove the joint continuity of the local times of

fractional Brownian sheet.

Lemma 4.5 For any integer n > 2 and t',... ,t" € ]R_i]\_f, we have
N
detCov(BJ (t'),--- , B (t")) > [[ detCov(X ™ (ty), -+, X e (17)), (4.1)
=1
where for £ = 1,... N, XHt is the one parameter fractional Brownian motion in R with

Hurst index Hy.

13



Proof Recall that the Hadamard product of two n x n matrices A = (a;;) and B = (b;j)
is an n x n matrix defined as A o B = (a;;b;j). A classical theorem of Oppenheim (cf. Horn
and Johnson (1999, p.480) or Bapat and Raghavan (1996, p.137)) asserts that if A and B

are positive semidefinite Hermitian matrices, then
det(Ao B) > det(A) - det(B), (4.2)

where det(A) denotes the determinant of A.

By Eq. (1.1), we see that the covariance matrix
Cov(By (t1), -+, By (t"))
is the Hadamard product of the covariance matrices
Cov(XHe(ty), -, xH(t}), (£=1,...,N).

Hence Inequality (4.1) follows from (4.2) and induction. O

Lemma 4.6 Let 0 < v < 1. Then for all r > 0, a € R, all integers n > 1 and all distinct

ti, -+ ,ty € a,a + 7], we have

dt

/[a,aJrr} min{|t — tj|’7, j=1,-- ’n}

S K13 ’)"livnv.
where K13 > 0 is a finite constant depending on v only.

Proof This is a special case of Lemma 2.3 in Xiao (1997). O
For completeness, we also state the following basic result of Garsia (1971).

Lemma 4.7 Assume that p(u) and V(u) are two positive increasing functions on [0, 00),
p(u) L0 asul 0, ¥(u) is conver and ¥(u) T oo as u T o0o. Let D denote an open hypercube
in RY. If the function f(x) is measurable in D and

A(D, f) = / / |:1: - y|/5/2|))dxdy < 00, (4.3)

then after modifying f(x) on a set of Lebesque measure 0, we have

lz—y| A
@) - F)l <8 /0 w (Z55) dpw),  for all z,y € D.

14



As we mentioned earlier, the following Lemmas 4.8 and 4.9 give the required moment

estimates for proving the joint continuity of local times.

Lemma 4.8 Let T € A be a hypercube with edge length r > 0. Then for all x € R and all

integers n > 1,

E[L(z, T)"] < K7, r(N=30% Hed)n (1) 3205, Hud, (4.4)

Proof Similar to the argument in Xiao (1997, pp 137-138), we apply (2.6) and the
independence of Bf ... ,Bf to deduce

d n
1 ; , _
E[L(z,T)"] < (27r)”d/n H{/nexp[—EVar(ZuiBgl(tJ))}dUk}dt
k=1 j=1
—dj2
= (2m) /2 / [detcov(Bgf (tY,...,BE (t”))] df. (4.5)
where UF = (u,lc, ...,uy) € R", and we have used the fact that

(2m)"/2
[detCov(Bé{(tl), e ,Bé{(t”))}

1/2

/n exp [—%Var(i uiBéq(tj))]dUk =
j=1

for Ayp-almost all (¢,...,t") € T".
It follows from Lemma 4.5 and (2.3) that

detCov(BI(tY), ..., Bl (t,))

v

N
[T detCov(xe(t}), -, X e (27))
=1

N n
K111 [min{lti — 0 <i<j - 1}] . (4.6)

0=1j=1

Vv

Putting together (4.5), (4.6) and applying Lemma 4.6 n times, we obtain

—d/2
E[L(z,T)"] < KIG/ HH m1n{|t‘7 t)2He 0 <i < j— 1}] di
{=1j=1
d/2
< K16 / H mln{|t] tPHe 0 <i<j— 1}] dt} ...dt}
[e,e+r]™
< K14 T(N*Elzl Hld) (n!)zévzl Hld,
for some positive and finite constant Ki4. This proves (4.4). O
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Lemma 4.8 implies that for all p > 1, L(z,T) € LP(R?) a.s. (see Geman and Horowitz
(1980, page 42). Let v > 0 be a constant whose value will be determined later. Define

0, ify=0
p(y) =< log™ (e/lyl), f0< |yl <1
Yyl —~+1, if [y[ > L

Lemma 4.9 Let T be the same as in Lemma 4.8. Then for all even integers n > 2 and all

hypercubes D C R?, we have

/ / |x — y|/$l)T)>ndxdy < K (n)N (logn)™ PN =320, Hed) lognJ\W (7«) (4.7)

where K17 > 0 is a finite constant depending on N,d, H and D.

Proof First we note that for u',... ,u”, y € R?,
n . n d )
H ‘exp(—i(uﬁy)) — 1‘ = H ‘exp ( —iZuiyg) — 1‘
j=1 i=1 —
[eXp ( - ZZ“(?JZ) — exp ( - ZZ“(?JZ)} ‘ (yo =0, u} = 0)

IA IA
E; =-
== 1= 1=

<.
Il
-

‘eXp(—iu‘};yk) - 1H

i=1
= > I |exp(-iuf,ue,) - 1], (4.8)
j=1
where the summation )’ is taken over all sequences (ki,--- ,ky) € {1,... ,d}"™.

Secondly, without loss of generality, we may and will assume the edge length of T is

sufficiently small such that for all s,¢ € T
]E(|B0(s) - Bo(t)|2> < min{1, [e Var(B{ (u))] ™", u € T}. (4.9)

Otherwise, we can divide T into small pices so that (4.9) holds and (4.7) will only be affected
by a factor n2" L.
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It follows from (2.7) and (4.8) that

Bl - sy ] <@ [ ] |ewitdy a1
j=1

- exp [—%Var(z (!, BH(tj)>> } du dt
j=1

< (27r)—ndzl /Tn /Rnd 1—[1 ‘ exp(iuij (Yk;, — ;) — 1‘
j=

n

-exp[—%Var(Z (u, BH(tj))ﬂdﬂ di. (4.10)

Jj=1

Hence for any fixed hypercube D C R and any even integer n > 2, we have

<, 10 |x—y|/(f>)) Josts <3 [ ] L

‘exp zuk : 1‘

1;[1 |y—x|/\/_) exp[——Var(Jg(uj, BH(tJ))>]d_ dt dz dy
. ‘exp i) yk) 1‘
o MO [, /RH NIG)
exp[——Var(Z (!, BH(t7)>>}du dt dy. (4.11)
j=1

In the above, D& D = {z —y: z,y € D} and we have made a change of variables and have
used the fact that p(|y|/v/d) > p(ly;|/Vd) for all j =1,... ,d.
ykn) € {1,...,d}" and consider the integral

e TR ()

J=1

Now we fix a sequence (ki, ...

For any fixed n points t',... " € T such that t},... ,t7 are all distinct for 1 </ < N
(the set of such points has full Lebesgue measure), Lemma 4.5 implies that B (#/) (¢ =
,d, 7 =1,...,n) are linearly independent. Hence by applying the generalized Holder’s

17



inequality, Lemma 4.2 and Lemma 4.3, we have

|ex T )—11n ) ‘ B /n
M < KH //Rnd p|y:|3;]i/7) } exp[—%Var(ZZu%Bﬁ(t”)] dudykj}l
271.) n(d—1)/2
[detCov(BH (th),. Bgf (t n))]d/2

‘exp g, Y, [0 1‘” (ul )2 -y 1/n
// k; J) exp(— I;J )dykjdu{cj}

P (Y, /Vd)
2

[detCov(B({{(tl),.. I (n))]d/2 H [/ ( )eXP(_%>dU] v (4.12)

where K > 0 is a constant depending on D and Kj5 in Lemma 4.3, and 0]2- is the conditional
variance of B,g(tj) given BT (t') (¢ # kj or £ = kj, i # j).

Since

. log™? (e/m), fo<z<l1
Py (z) = .
1 ifx > 1.
and log% (zy) < 2%(log% « + log y) for all @ > 0, where log, z = max{1,logz}, we deduce
2

2
—n(0j v < .2 ny ny _v
/p+ (—U>exp( 2>dv < / exp(—v“/2)dv + 2 / log’, (v)exp( 2>dv
R loj/v|>1 o /v]<1

2
e v
+2"7/ log"” ( — ) exp( —— ) dv. (4.13)
|aj/v|<1 + <UJ> ( 2)
By Lemma 4.4, for n large, the above is bounded by
n ny i ny < n ny 2 ny
K [log+ (aj> + (log(n)) ] <K [log+ (Uj>][logn] . (4.14)
It follows from (4.11), (4.12), (4 13) and (4.14) that
L( L(y, T)\"
dzxdy < K"\y(D)[logn|™”
/ / Iﬂﬂ - yl/ V) )

1
' /T (detCov (B (t1), ...,

B (tm)))d/2 ]H1 log?, (U—j)df. (4.15)

By the independence of BI ... ,Bf, we deduce that
o = Var(B,g(tj)‘Bf(ti), (£ kjor b=k i# j)

J
- Var(B,g(tj)‘B,Z(ti), i;éj)
detCov (B (tY),... , BE(t"))
detCov (BE (t1),i # j)
> edetCov(BY (t),..., B (t")). (4.16)
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Notice that in obtaining the last inequality in (4.16), we have used (2.2) and the assumption
that the edge length of T is very small (so that (4.9) holds) to derive that for any s',... ,s" €
T

detCov(BE (s"), ..., B (s™))

— Var(BE (s HVar(BU (s7)|BE (s, i :1,...,j—1)
j=2

< Var(Bl (s HE(|B0 (s7) = B (s 7)?) < e

y (4.16), we have

- (& (&
Elogl (E) <27 logl! detCov(BI (1)), ..., BI(t")’ (4.17)
It follows from (4.15), (4.17), Lemma 4.5 and (2.2) that
T)\"
IS =
< K" 2a(D)tog n]™ /T (detCov (Bl (tl),1 .., BI(t")a?
‘logy! detCov(BI (tle), .., BI () dt
al 1
< K”Ad(D)[logn]m;/ng (detCov(X He(t}),... , X He(ty)))i/2
‘logy! detCov(XHk (tle) X (1) dt
1
< K"Aa(D)[logn]™ H / corpe (AetCov (XTe(t]), .., X He(1f))) 2
108 et Cov (X7 (1 ) X)) @ (4.18)
where we have written df, for dt} - - - dt7.
For similicity, we fix an £ € {1,... , N} and use N} to denote the integral
! ny ° .

1
/[e,fmn (detCov(X He(t)), ..., XHc(tp)) 42 "%+ detCov(X e (th),... , X (1))
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Since the integrand is invariant under permulations of the t‘z, we have

1
Ne = n!/
{e<tt<..<tr<etr) (detCov(XHe(ty), ..., XHe(ty)))d/2
e _
-log"”? dt,
* detCov(XHe(t)),... , X He(t}))
n n 1 e B
< K"n! / — . log") ————— dt,
o1 et <<ty <ery 1 |t) — t@’1|sz + |th — b
_ e
< Knrplpn(-Hed) log”” (;) (4.19)
The last inequality follows from the fact that Hyd < 1 and
r e e
ny [ & < ny—1,1—-H,d ny (&
S (s>ds_K2 r log (r>
for all v > 0.
Combining (4.18) and (4.19), we have
(yaT)>” N N=SN_ Hd)y. nN
dzdy < K™(n)N (logn)™? r(N =2 Hed) oo™ 7( )
/ / |:E - yl/\/_) T
This finishes the proof of Lemma 4.9. O

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 Let ¥(u) = uexp(u’), where § € (0,1/N) is a constant. Then ¥
is increasing and convex on (0,00). It follows from Lemma 4.9 and Jensen’s inequality (we

will ignore the first few terms in the series) that for all closed hypercubes D C R?

|LxT L(y,T)|
=/, ], oo g )

= Zn' / / |L szT— yI/E?)T”)ndxdy}H% < oo (4.20)

Hence Garsia’s lemma implies that there are positive and finite random variables A; and As

such that for almost all z, y € D with |z — y| < e™!

ven -ty < [ () )

4o og (1712 = yl) | i

By chosing v > 1/6, we see that B has almost surely a local time L(x, T) that is continuous

1/6 )

VAN

for all z € D. By taking an increasing sequence of closed hypercubes {D,,, n > 1} such that

R? = U | D,,, we have proved that almost surely L(z,T) is continuous for all = € RY.
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The proof of the joint continuity is very similar. It follows from Lemmas 4.8, 4.9 and the
easily verifiable inequality ¥(u + v) < ¥(2u) + ¥(2v) that

//// max{|s[f;ﬂ)m_i,yﬁ[/ej%))dwdydsdt
<]E//// 2|L |3_]t)|/\/ﬁ)s])|>dxdydsdt
[ [ [ [ e (o 3/ V@)sm)dmydsdkw

Therefore the joint continuity of the local times follows again from Garsia’s lemma. This
finishes the proof of Theorem 4.1. O

Remark 4.10 We conjecture that B has jointly continuous local times whenever the con-
dition d < Zé\;l H% is satisfied. However, we can not prove it by using the method in the

present paper. [l

Furthermore, it would be interesting to investigate the local behavior of the Borel measure

L(z,e). More specifically, we state the following

Problem: Let L*(I) = sup,era L(z,I) be the mazimum local time of BY on I. Find Haus-
dorff measure functions @1(r) and @3(r) such that

(i). for every t € (0,00)N almost surely

L*(I
lim sup 7( (t,r))

<K,
r—0 @1 (r)

where 1(t,r) is the (open) ball (or cube) centered at t with radius (edge length) r and

K > 0 is a constant; and

(ii). for any rectangle T € A, there exists a positive finite constant K such that almost
surely

L) _

lim sup sup
r—>0  teT  P2(7)

Solutions to this problem will have implications on the fractal properties of the level sets
of BH. For results on the Brownian sheet and fractional Brownian motion, we refer to Ehm
(1981) and Xiao (1997) respectively. Similar results were obtained by Cuzick (1982) for a
class of sationary Gaussian processes using a different approach.
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