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Abstract

Let X(t) (t € RV) be a fractional Brownian motion of index « in RY. For any analytic set £ C RY, we show that
. 1 ..
DimX(F)= —Dimy E as.,
x

where Dim E is the packing dimension of £ and Dim, £ is the packing dimension profile of E defined by Falconer and
Howroyd (1995).
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1. Introduction

Let X(¢) = (Xi(#),...,X4(¢)) (¢t € RY) be a fractional Brownian motion of index « (0 < a < 1) in R?
(see Kahane, 1985, Ch. 18). If N = 1, o = 1, then X(7) (¢ € R) is the ordinary Brownian motion in R?. If
N> 1, a =, then X(¢) (+ € R¥) is Levy’s Brownian motion with N parameters.

Kahane (1985) proved that for every Borel set £ C RV,

dim X (F) = min (d, ldimE) a.s., (L.1)
«

where dim £ is the Hausdorfl dimension of E. We refer to Falconer (1990) or Mattila (1995) for the definition
and properties of Hausdorfl measure and Hausdorff dimension.

Packing dimension was introduced in the early 1980s as a dual concept to Hausdorff dimension and since
then it has become a very useful tool in analyzing fractal sets (see e.g. Tricot, 1982; Tricot and Taylor, 1985;
Saint Raymond and Tricot, 1986; Falconer, 1990; Mattila, 1995). It is natural to ask whether the following
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analogue of (1.1) holds for packing dimension Dim:
1
Dim X (E) = min (d, - DimE) as. (1.2)

Since dim <Dim (Tricot, 1982), it is easy to deduce from (1.1) that (1.2) holds for every Borel set £ C RV
with dim £ = Dim E. When N <ad, Xiao (1993) proved that the following stronger result holds: with prob-
ability 1, for every Borel set £ C RY

Dim X(F) = lDimE .
o

In the case of N > ad, Talagrand and Xiao (1996) showed that (1.2) does not hold in general and they also

obtained the best lower bound for Dim X(E): with probability 1,
DIimE -d

od + DImE - (N ~ad) |’

|
DimX(£)> max{min {d, —dimE}; (1L.3)
o
and the equality holds for all sets with dimE = DimE and for some sets with dimE = 0. This raises
the obvious question — Can the lower bound in (1.3) be improved by knowing 0 < dimE < DimE? The
following example (N = 1) shows that the answer is obviously negative. Let £, be the compact set constructed
in Lemma 3.2 in Talagrand and Xiao (1996) and let E, be any Borel set of R with

DimE; - ad
od +DIimE, - (1 —ad)’

Let £ = EyUE,, then dimE = dim F;, DimE = Dim £ and by Corollary 4.1 in Talagrand and Xiao (1996)
and (1.1), with probability 1,

Dim X(E) = max{Dim X(E,); DimX(E,)}

_ DimE -d
" ad + DIimE (1 —ad)

In particular, we cannot have a general formula for DimX(E) in terms of dimE and DimE. In fact, no
previoulsly known formula for Dim X(E) is valid for all EC R, even if X is Brownian motion (N = d =
I, a=3).

Veryzrecently, Falconer and Howroyd (1995) introduced the concept of packing dimension profiles for finite
Borel measures and sets in RV, which carries more information about local and global geometric properties
of the measures and sets than packing dimension does. By using packing dimension profiles, Falconer and
Howroyd (1995) solved the problem of the packing dimension of projections. The objective of this note is to
give a complete solution to the problem of finding a general formula for Dim X(E). We will show that for
any analytic set £ C RV,

1
Dim X(E) = - DimyE s, (1.4)

where Dim; E is the packing dimension profile of £ defined by using s-dimensional kernel. We remark that
when N <ad, Dim,; E = DimE, and hence (1.4) reduces to (1.2). If N > ad and DimE = dimE, then
Dim,; £ = min{zd; DimE} and (1.4) also reduces to (1.2).

This note is organized as follows. In Section 2, we recall the definitions and some basic properties of
packing dimension and packing dimension profiles. In Section 3, we consider the packing dimension of the
image measure py of a finite Borel measure ¢ on RY under X(¢) (r € RY). Then in Section 4, we deduce a
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similar result for the packing dimension of the image of an analytic set under X(¢) (t € RY) by examining
the packing dimension of the finite Borel measures supported on the set.
We will use X to denote an unspecified positive constant which may differ from line to line.

2. Preliminaries

In this section we recall briefly the definitions and some basic properties of packing dimension and packing
dimension profiles. Let @ be the class of functions ¢ : (0,8) — (0,1) which are right continuous, increasing
with ¢(0+) = 0 such that there exists a finite constant X > 0 for which

(Z(és)) <K for0<s<1i

For ¢ € &, Taylor and Tricot (1985) defined the set function ¢-P(E) on RY by

d.

¢-P(E) = liII(l) sup { Z d(2r;) : B(x;,r;) are disjoint, x; € E, r; < 8} ,
e— -

where B(x,r) denotes the open ball of radius r centered at x. The set function ¢-P is not an outer measure
because it fails to be countably subadditive. But it gives rise to a metric outer measure ¢-p on RY as follows

¢-p(E) = inf {Z $-P(En): EC unEn} :
n
¢-p(E) is called the ¢-packing measure of £. If ¢(s) = 5% s*-p(E) is called the x-dimensional packing
measure of E. The packing dimension of E is defined by
DimE =inf{z > 0: s*-p(E)=0}.

The packing dimension of a Borel measure x4 on RY (or lower packing dimension as it is sometimes called)
is defined by

Dim y = inf {Dim £ : 4(E) > 0 and E CRY is a Borel set}. 2.1
The upper packing dimension of y is defined by
Dim* s = inf{Dim E : y(R¥\E) = 0 and E CR" is a Borel set}. (2.2)

For a finite Borel measure x4 on R and for any s > 0, let
Pécr) = [ min{l, 2Ly =7 duo),
R\

where | - | is the usual Euclidean norm. The following equivalent definitions of Dim x4 and Dim” u in terms
of the potential Fi{x, r) are given by Falconer and Howroyd (1995).

Dim y = sup{¢>0: lim i&lf r~'Fi(x,r) =0 for p-a. a. x € RV}, (2.3)
Dim* p = inf{r > 0: lim inf »~'Fi(x,r) > 0 for y-a. a. x € R"}. (24)

Falconer and Howroyd (1995) also defined the packing dimension profile of u by using the s-dimensional
potential F¥(x,r) by

Dim; y = sup{t=0: 1ir}1_)iélf r~'F*x,r) =0 for p-a. a. x € RV}, (2.5)
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and the upper packing dimension profile of u by
Dim} p = inf {t >0: liI}'lqiglf r'FF(x,r) > 0 for p-a. a. x € RN}. (2.6)

It is easy to see that
0 <Dim, p <Dim] p<s
and if s=N, then
Dim, ¢ = Dim g, Dim; ¢ = Dim™ y ,

see Falconer and Howroyd (1995).
For any analytic set £ C RV, we define M} (E) to be the family of finite Borel measures on E with compact
support in E. Then

DimE = sup{Dim y : u € M (E)}, (2.7)

see Hu and Taylor (1994) for a proof. Motivated by this, Falconer and Howroyd (1995) defined the packing
dimension profile of E CRY by

Dimy E = sup{Dim, u : u € M7 (E)}. (2.8)

Clearly, 0 <Dim £ <s and for any s >N, Dim; £ = DimE.
We use d(s) to denote any one of Dimgy, Dim; u, DimgE.

Lemma 2.1. Let d: R — [0,N] be as above. Then d(s) is continuous.

Proof. This is a consequence of Proposition 18 in Falconer and Howroyd (1995).
The following lemma contains Theorem 6(a) in Falconer and Howroyd (1995) as a special case.

Lemma 2.2. Let I be any cube in R and let f : 1 — R? be a continuous function satisfying a uniform
Hélder condition of order a. Then for any finite Borel measure u on RY with support contained in I, we
have

1
Dim pr < p Dimyg pt, (2.9)
1
Dim* pe < m Dim,, u. (2.10)

Proof. (a) To prove (2.9), we take any y < Dim ¢, then by (2.3), for us-a. a. u € RY, we have

r—0

lim inf r_""/ min{1, »¥[o — |7} dus(v) = 0,
Rd

that is, for y-a. a. x € RV,

r—0

lim inf r~" / min{1, r4|f(») = £() "} du(y) = 0. @.11)
1
Since for any x, y € 1,
f(y) = f)|<K]y —x[",



Y. Xiao/Statistics & Probability Letters 33 (1997) 379-387 383
where K >1 is a constant. We have
min{1, 7[f(y) - f@)| ¢} =K min{l, |y — x| "*}. (2.12)
It follows from (2.11) and (2.12) that for p-a. a. x € RY
lim iélf p"""/ min{1, p®|y —x|"}du(y) =0.
p— RN

This implies Dimyy u 2 ay. Since y < Dim ur is arbitrary, we have (2.9).
(b) For any y > Dim}, 4, we have

lhfi,iglf FF Y (x,r) > 0 for p-a. a. x € RY. (2.13)
By (2.12), for u = f(x) with x € |

F ) =K [ min{L ety =) du).
Hence, for any u = f(x) with x € RV satisfying (2.13), we have

lim inf FTIFE (u,r) 2K lim inf yo /R min{1, 7|y —x|7*}du(y) > 0 .
This implies Dim” uy < Z and hence (2.10). O

Corollary 2.3. If for any ¢ > 0, f :1 — R? satisfies a uniform Hélder condition of order o.— ¢, then (2.9)
and (2.10) still hold.

3. Packing dimension of the image measures

Let X(1) = (Xi(¢),...,X4(t)) (+ € RY) be a fractional Brownian motion of index « (0 < « < 1) in RY,
defined on some probability space (2, #,#). We will use & to denote the expectation with respect to 2.

In this section, we consider the packing dimension of the image measure py of u under X(¢) (¢ € RM)
defined by

ux(B) = u{t € RV : X(¢) € B} for any Borel set BCR?.

The main result is the following theorem.
Theorem 3.1. Let u be any finite Borel measure on RY. Then with probability 1,

1
Dim puy = — Dimy, 1, (3.1)
o
1
Dim* py = 3 Dimy; u. 3.2)

Proof. We only prove (3.1); (3.2) can be proved similarly. For any positive integer n and any ¢ > 0,
X(t) (t € [-n,n]") as. satisfies a uniform Holder condition of order « — ¢ (see Kahane, 1985, Ch. 18). Let
4" be the restriction of y on I, = [—n, n]¥, that is, u(B) = u(BN1I,) for any Borel set B in RY. Then by
Corollary 2.3, we have

)

. |
Dim ) < = Dim,y u™  as.,
%
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which implies
. 1.
Dim uy < — Dimy; u  as. (3.3)
o

To prove the reverse inequality, we observe that for any s € RY, by Fubini’s theorem,

EF(X(s), r):ca@/ min{1, rd|v—X(s)|_d}d,uX(v)
RY

:/ Smin{1,r¢ X () — X ()7} du(t). (3.4)
R‘\
We consider

& min{1,71X (1) — X(s)| 79}

= P{X(1) — X(s)| <r} + EFNX () — X 1ixy—xs)zr) )

d/i2
< min LL"L (L / i.;exp LI
=5 f T \2n) s a5 2l - 5P

- ,{1 K r }+ K / 1 <p2)d
< min {1, —exp|l——= | dp .
=) T l=sp [ . p TP\ 2

= =517

Hence, for any 0 < ¢ < 1,

d—¢
& min{1, #|X(t) - X(5)| 7} <K min{l, |T'r‘s|<T“>} . (3.5)

For any y < Dim,y g, by Lemma 2.1, there exists ¢ > 0 such that y < Dimy—g)p. It follows from (2.5)
that

liminf »~7*

I min{1, 797t — 5|79 N du(r) =0 for p-aa, s € RY. (3.6)
r— R

By (3.4)—(3.6) we have that for p-a.a, s € RY
(f(limiglf pr Fé""(X(s),r)>

<K lim inf =" N min{1, 7%t —s| 49} dp(r)
=0.
By using Fubini’s argument again, we see that with probability 1,
liﬂiglf FT* FR(X(s),r)=0 for p-aa, s € RV,
Hence,
Dim py > é a.s.

Since, 7 can be arbitrarily close to Dimgy i, we have

. 1 .
Dim py > ;Dlmm i as. 3.7
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Combining (3.3) and (3.7), we complete the proof of (3.1). [
If N <ad, Xiao (1993) proved that with probability 1,
Dim X (E) = é Dim E (3.8)

for every Borel set £ECRV. It is easy to deduce from (2.1), (2.2) and (3.8) that a result similar to (3.8)
holds for the packing dimension of the image measures.

Theorem 3.2. If N <ad, then with probability 1,
Dim pyy = i Dim u,
Dim* uy = iDim* u

for every finite Borel measure u on RV.

Remark. In Theorem 3.1, the exceptional null probability set depends on u. But in Theorem 3.2, the excep-
tional null probability set does not depend on u.

4. Packing dimension of the image set

We see from (2.7) and (2.8) that the packing dimension of an analytic set E can be expressed in terms of
the packing dimension of the finite Borel measures supported on E. This allows us to deduce from Theorem
3.1 an analogous result for Dim X(F).

Theorem 4.1. Let X(t) (t € RY) be a fractional Brownian motion of index « in RY. Then for any analytic
set E CRN, with probability 1,

1
Dim X(E) = ~DimyE . 4.1)

The proof of (4.1) is similar to the proof of Theorem 10 in Falconer and Howroyd (1995). We need several
lemmas.

Lemma 4.1. Let ECRY be an analytic set and let f : RYN — RY be a continuous function. If 0<t <
Dim f(E), then there exists a compact set F CE such that t < Dim f(F).

Proof. The proof is the same as that of Lemma 7 in Falconer and Howroyd (1995) with f replacing the
orthogonal projection Py .
The following lemma is Theorem 1.20 in Mattila (1995).

Lemma 4.2. Let F CRY be a compact set and let f: RY — R? be a continuous function. If v is a finite
Borel measure on R? with support in f(F), then there exists a finite Borel measure u on RY such that
v = ur and the support of u is contained in F.

Lemma 4.3. Let ECRY be an analytic set. Then for any continuous function f : RV — R?

Dim f(E) = sup{Dim p; : u € MJ(E)}. (4.2)
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Proof. For any p € M (E), we have pr € M(f(E)). Then (2.7) implies
Dim f(E)= sup{Dim s : y € MJ(E)}. (4.3)

To prove the reverse inequality, let ¢ < Dim f(E). Then by Lemma 4.1 there exists a compact set ' C E such
that Dim f(£) > . Hence, by (2.7) there exists a finite Borel measure v € M (f(F)) such that Dimv > ¢
It follows from Lemma 4.2 that there exists y € M (¥) such that v = gy, this implies sup{Dimp¢ : 4 €
MI(E)} > ¢ . Since ¢ < Dim f(E) is arbitrary, we have

Dim f(E)< sup{Dim y¢ : u € M (E)}. (4.4)
Eq. (4.2) now follows from (4.3} and (4.4).

Proof of Theorem 4.1. Since Dim is o-stable, we may and will assume that E is bounded. Hence, there
exists a cube / such that ECI For any ¢ > 0, X(¢) (¢t € I) as. satisfies a uniform Holder condition of
order « — &. Then by Lemma 2.2, for any p € M (E) we have

1
Dim py < ; Dim,; . a.s.
Hence by (2.8) and (4.2) we have
1
DimX(E)< - Dim,,; E. 4.5)

On the other hand, for any r < % Dimyq E, by (2.8) there exists u € M} (E) such that at < Dimgy p. It
follows from (3.1) that

Dimpuy > ¢t as.

Hence by Lemma 4.3 we have DimX(E) > ¢ as.. Since ¢ < éDimadE is arbitrary, the proof is com-
pleted. O

Remark. (1) If N<ad, then for any analytic set £ C RY, Dim,, £ = Dim E. Hence (4.1) reduces to (1.2).
If EC R, satisfies dim £ = Dim E, then

Dim,,; E = min{ad, Dim £}

and (4.1) also reduces to (1.2).
(2) Let W(z) (+ € RY) be the Brownian sheet in R (see Orey and Pruitt, 1973). Then with a little
modification the above proofs can show that for any analytic set £ C RY,

Dim W(E) = 2Dimgp E  as.

(3) The Hausdorff dimension of the image set of self-similar processes (including fractional Brownian
motion) has been studied by several authors (see Lin and Xiao (1995) and the references therein). It would
be interesting to consider the packing dimension of the image set of general self-similar processes, especially
self-similar stable processes.
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