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Abstract

Let ¢ be a Hausdorff measure function and let A be an infinite increasing sequence of positive
integers. The Hausdorff-type measure ¢-m, associated to ¢ and A is studied. Let X(r) (r € ®")
be fracticnal Brownian motion of index » in RY. We evaluate the exact ¢-m, measure of the
image and graph set of X(¢). A necessary and sufficient condition on the sequence A is given so
that the uvsual Hausdorff measure functions for X([0,1]") and GrX([0.1]") are still the correct
measure functions. If the sequence A increases faster, then some smaller measure functions
will give positive and finite (. A)-Hausdorff measure for X ([0, 11") and Gr X0, 1 1™ © 1998
Elsevier Science B.V. All rights reserved.

AMS classification: Primary 28A78, 60G15, 60G17
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1. Introduction

Let @ be the class of functions ¢: (0,0)— (0,1) which are right continuous, mono-
tone increasing with ¢(0-+)=10 and such that there exists a finite constant K >0 for
which

Zs .
PES) g for D<s<bo (1.1)
P(s) 2
Functions in @ are usually called Hausdorfl measure functions. For ¢ ¢ @, the ¢-
Hausdorf measure of £ C R¢ is defined by

¢-m(E)= lim inf{z H2r) EC ug(x“,; ), r,-<a}. (1.2)

where B(x,r) denotes the open ball of radius » centered at x. It is known that ¢-m is
a metric outer measure and every Borel set in RY is ¢-m measurable. The Hausdorff
dimensicn of £ is defined by

dimE = inf{a>0: s"-m(£) =0} = sup{x>0: &"-m(E)= ~}.
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The packing measure is defined in a dual way by Taylor and Tricot (1985). For
¢ €@ and E C RY, the ¢-packing measure of £ is defined by

(i)-p(E):inf{qu—P(E,,):EQ UE,,}. (1.3)

where for any E C R,
¢-P(E)= lim sup{z $(2r): B(x;, 1) are disjoint, x; €E, r <£} ) (1.4)

A sequence of closed balls satisfying the conditions in the right-hand side of Eq. (1.4)
is called an ¢-packing of £. The packing dimension of E is defined by

DimE = inf{a>0: s*-p(E)=0} = sup{a>0: s*-p(E) = + >}

We refer to Falconer (1990), Mattila (1995) for more properties of Hausdorff measure,
packing measure and related dimensions, and to Taylor (1986) and Xiao (1997¢) for
applications of Hausdorff measure and packing measure in the studying of sample path
properties of stochastic processes.

Let B(¢) (t € R,;) be a Brownian motion in R“ (4 >2). The exact Hausdorff measure
for the image set of B(¢) was considered by Lévy (1953), who showed that if d>3
and ¢(s)=s"loglog 1/s, then ¢-m(B([0.1])) <. Later, Ciesielski and Taylor (1962)
proved that ¢-m(B([0,1]))>0. For planar Brownian motion, the Hausdorff measure
problem is more difficult due to the neighborhood recurrence of the process. It was
proved by Ray (1964) and Taylor (1964) that the correct Hausdorff measure function is

d(s)=s"log 1/sloglog log 1/s.

The Hausdorff measure of the graph of Brownian motion and Lévy stable processes
were calculated by Jain and Pruitt (1968) in the transient case, by Pruitt and Taylor
(1969) in the recurrent cases.

One natural generalization of Brownian motion is fractional Brownian motion of
index «, i.e. the centered, real-valued Gaussian random field Y(¢) (r € RY) with co-
variance function

E(Y()Y(s)) = 5|t} = |s]* — |t — s/*).
~N
Associated with Y(¢) (1€ R"), one can define a Gaussian random field X (1) (1€ RY)
in R by
X() =X (1),.... Xu(1)),

where Xi,..., Xy are independent copies of Y. The Gaussian random field X (7) is called
d-dimensional fractional Brownian motion of index x or the (N,d,«) Gaussian process
(see Kahane, 1985). When N =1, a= % X(t) is the ordinary d-dimensional Brownian
motion. If = %, d =1, it is the multiparameter Lévy Brownian motion. It is easy to
see that X is a self-similar process of exponent «, i.e. for any a>0,

X(a) L a'x (),
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where X < ¥ means that the two processes X' and Y have the same finite dimensional
distributions.

When a = % N>1and NV <d/2, Goldman (1988) obtained the exact Hausdorff mea-
sure of the ir;lage set X([0,1]"). Talagrand (1995) extended the result to the general
case of 0<a <1 and the proof is much simpler. They proved that if N <ad then with

probability 1,

0<-m(X([0,1]1")) < x. (1.5)
where
d1(s)=s""log log % (1.6)

The Hausdorff measure of the graph set
GrX ([0, 1Y) = {(+.X(1)): 10,11V}

of fractional Brownian motion was calculated by Xiao (1997b) for the cases of N < xd
and N >xd. It is proved that if N <xd, then almost surely

K1 <p1-m(Gr X([0. 11V )) < K>, (1.7)

If N >ad, then almost surely

K3 < ho-m(Gr X ([0, 1] )) <Ky, (1.8)
where Ky, K3, K3, K4 are positive finite constants depending on N,d and x only and
where

\rd N
Po(s) = sV HI—=D) (log log ) . (1.9)
RY

These results have also been extended to a large class of strongly locally nondeter-

problem of finding ¢-m(X([0.1]")) seems more difficult. Recently Talagrand (1996b)
proved that with probability |

s log 1/s log log log 1/s-m(X ([0.11%)) < x.

This is also true for the Hausdorfl measure of the graph set of X(¢). But in both cases,
the lower bound problems remain open.

The purpose of this paper is to study properties of some Hausdorfl-type measures
and generalize the results about the Hausdorfl measure of the image and graph of
fractional Brownian motion. In Section 2, we study the properties of Hausdorff-type
measures associated to an increasing sequence of positive integers. In Section 3, we
prove some lemmas which will be useful in proving the main results. In Section 4, we
study the exact Hausdorff-type measure of the image and graph of fractional Brownian
motion. A necessary and sufficient condition on A is proved so that the usual Hausdorff
measure functions are still the correct measure functions for the image and graph. If the
condition Is not satisfied, then some smaller measure functions will give positive and
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finite (¢. A)-Hausdorff measure for X ([0, 1]¥) and Gr.X([0,1]"). These results extend
those of Lévy (1953), Ciesielski and Taylor (1962), Goldman (1988) and Talagrand
(1995). The proof of the results depend mainly on the refinements of the argument of
Talagrand (1995) and these methods can be applied to more general strongly locally
nondeterministic Gaussian random fields (see Xiao, 1996).

We will use K,K;,K>,... to denote unspecified positive and finite constants, they
may be different in each appearance.

2. Hausdorfi-type measures

Let A={/4} be an increasing sequence of positive integers with A; — oc. For
each k> 1, let #; be the family of (closed) balls of radius 2~% in R? and denote
F1 =2, #i. Then #, is a covering family of R?. For any ¢ € ® and E C R?, we
define

g-ma(E)= lim inf{z s(ED ES|JF. Fe | fk} , @

i=] k=ko

where |F| denotes the diameter of F'. Then ¢-m, is a metric outer measure in the sense
of Carathéodory and hence every Borel set in RY is ¢-m, measurable (see Rogers,
1970). We will call ¢p-m4(E) the (¢, A)-Hausdorff measure of E. If A= N, the set of
all positive integers, then ¢-m, is equivalent to ¢-m, ¢-m™ and ¢-m**, where ¢-m*
and ¢-m** are Hausdorff-type measures defined by Taylor and Tricot (1985) using the
families of dyadic cubes and semidyadic cubes, respectively.

We first summarize some elementary properties of ¢-m,4 in the following lemma.

Lemma 2.1. (1) Let ACN and ¢, € @ with

tim Y8) _ g

0Py

Then for any E CRY, ¢-m4(E)<oo implies y-m4(E) = 0.
(2) Let g€ @. If A, C Ay, then for any E C RY,

(}5-”!/]2(E) < ¢'m/11 (E)

In particular, for any set ECRY, ¢-m(E)< d-mu(E).
(3) For any ACN and any E CR?, ¢-ms(E)< $-p(E).

Proof. (1) and (2) follow directly from definition (2.1). In order to prove (3), by
Eq. (1.3) and the Borel regularities of both measures, it suffices to prove for any

bounded Borel set E,

¢-ma(E)< @-P(E). (2.2)
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For this, we may further assume ¢-P(E)<>c. Then by Eq. (1.4), for any >0, there
is >0 such that for every 0 <<y and every r-packing {E(x,-,r,-)} of E.

> b2r)<P-P(E) + ¢ (2.3)
il

Now the family #; of closed balls B(x,2~ iy with x € E and /4 € A such that 27 % <rq
is a Vitaii covering of £, we can find an ry-packing {B;} in F¢ of E such that for
any n>1
" ~
E\ Usc B
vid f=nt |
where B is the ball with the same center as B; and with radius multiplied by 5. Hence
n 0 " x J
ecUsu B clUsu U Uss
=1 ini il peare | e

where B € .7, with |B; = |B; and J is a constant depending on d only. It follows
from Eq. (2.3) that

X N X
Z Z(f)(\ﬁi;t)—»%/ }: HB) 0 as n— .

et el IESIE S

Hence for n large enough,

n X

J
STaBh+ > D #B,

i1 f=nt1 j=1

V< P-P(E) + 2,

which implies Eq. (2.2).
The Hausdorff dimension, associated to ¢-m,, of £ is defined by

dim ( E = inf{a>0: s*-m(F) =0} = sup{a>0: s*-m4(E) =}

It is easy to verify that dim 4 is a-stable. that is,

dim 4 (U E”) = supdim 4 E,,.
By (3) of Lemma 2.1, we see that for any A CN and any £ C R4,
0<dimE <dim4 £<DimE <d. (2.4)

Inequalities (2.4) can be strict. The following example shows that for any 0<f <1,
there exist A C N and a Cantor type compact set £ C [0, 1] such that

0=dim £ <dim F = Dim £ = fi.

The construction is a special case of Lemmas 3.1 and 3.2 in Talagrand and Xiao
(1996). Let A={/;} be a sequence of positive integers satisfying 4, = I, and

PR, Ly ST )
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We take
Me=2"" my = [2P4], 8y =227 0P

We construct a generalized Cantor set £ C [0, 1] in the following way.

Let Ey=[0,1] and let £, be the union of m; closed subintervals of [0,1]
of length &, which are arranged in such a way that the distance (or gap)
between any two of them is equal to #,. This is possible since m(n; + 6;)<]1.
At the second stage, each interval /;, of E; contains m, closed subintervals L, of
length d; with gaps equal to #,. This is possible since my(n2 + 0,)<d,. Let E; =

nny

Uit UM B, Suppose now that £, has been constructed, E =", -
U""l' 1 liyi,, - Since [/, | =0,_y and by the choice of §,.;, we have m,(n, +
0y )<dy-1, 50 We can construct m, closed subintervals /;..; (i,=1,....m,) of length
0, and gaps equal to n, in /., . We set E, = U;'l”_,l "AU:"":,I,',...,»”. Continuing
this process, we obtain a decreasing sequence {£,} of compact subsets of [0, 1].
Let £= (2, Ex; then E£C[0,1] is compact. By Lemma 3.2 of Talagrand and Xiao
(1996), dim £'=0, Dim E' = fi. The fact that dim4 £ = f§ is a consequence of the def-
inition of the Borel measure in the proof of Lemma 3.2 of Talagrand and Xiao
(1996) and the following density theorem (see also the proof of Theorem 2.1

below).

Lemma 2.2. Let ¢ € @ and let A= {1} be an increasing sequence of positive integers
with Ag — oc. Then there exist positive constants K| and Ky such that for any Borel
measure i on RY and every Borel set E < RY, we have

Kip(E) irelt;{ﬁj{’"‘(x)}”l gd)-m,1(E)ngu([FE‘/)sup{ﬁfﬁ’“”l(x)}“],
YEE EE

where

B ‘ u(B(x,27"))
DZ&,A(X) - llgsmup Th2—mTy

Proof. It is proved in the same way as in Rogers and Taylor (1961) (see also Saint
Raymond and Tricot, 1988).

For any measure function ¢ € @ with limsup,_, ¢(s)/s? <oo, it is easy to verify
that there exists a positive and finite constant K such that for any infinite subsequence
ACN we have ¢-m4(E)<KL,(E) for any Borel set £ C RY, where L, is the Lebesgue
measure in RY. On the other hand, given any two infinite sequences of positive integers
A and I, it is possible to define a piecewisely linear function ¢ € @ (depending on A
and I') with
<Z>( s) _

lim sup ~—
50

but ¢-mp(E)< p-m4(E) for every E CR. Hence the assumptions on the measure func-
tion ¢ in the following theorem is reasonable.
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Theorem 2.1. Let ¢ € @ with ¢(s)=s*L(s), where 0 <u<d and L(s) is slowly varying
at the origin. Then

o-my(E)<oo = ¢-mp(EY<>o  for every EC RY
if and only if there exists p=1 such that ACT + [ p, p].
Proof. Assume that there exists p>1 such that ACT + [—p, p]. We will prove the

following stronger result: there exists a finite constant K >0 depending on ¢, p and d
only such that for every £ C R

¢-m(E)<Kp-ma(E). (2.5)

We may assume ¢-m (E)<oc. For any #>¢-m4(E), we can choose a covering of £,
say, {B(x;,27"), 4, € A}, such that

EC O B(x:,277%)

i=|
and
Yot (26)
i

For each /., there is 7, € I" such that y; — p <Ay <y, + p. Hence each B(x;,27 )
can be covered by at most J =J(p,d) balls of radius 277, that is

oo J
Ec (B2,
il =1

It follows from Egs. (2.6) and (1.1) that
< J x )
Z Z (27 +1 ) < K Z ¢(2'*(/.k, —~pi+l)
=1 j=1 [
<Ky d@ M<Ky,
i=1
Since > ¢-m4(F) is arbitrary, this proves Eq. (2.5).

To prove the necessity, we assume that for each positive integer p, there is 4, € 4
such that

ngtl” y—Apl>p. 2.7)

Thus we can choose a subsequence, still denoted by {4,}. from A such that Eq. (2.7)
and

2—/'4(1 1 2~ spd 2- fp—rd

(p=1) (2.8)

hold. We now proceed to construct a compact set £ < [0,1]¢ such that

¢-my(E)<oc but ¢p-mp(E£)=oc. (2.9)
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For simplicity of the notations, we assume¢ d = 1. The construction for the case of d > 1
is very similar. Let £y =[0, 1]. At the first step, let

1
M= [fﬁ(ﬁ* )J ’

where [x] is the integer part of x. Let £, be the union of M, disjoint closed subintervals
I (iy=1,....My) of length 2~* with distance from each other at least 1¢(2~* ). This

1s possible since by Eq. (2.8)
M2 + 12 )<L

Suppose that £, has been constructed as a union of M, ---M,_, disjoint closed subin-

tervals /;,..;,,_, of length 2~ “»-1 with distance from each other at least
y B2
26(27)
At the pth stage, let
2 Ape
Mp - [d)(—_“l:l .
$2 1)

In each closed interval /;..;, , of E, i, we construct M, disjoint closed subintervals
Ly, (i,=1,2,...,M,) of length 27* with distance from each other at least

62 ")
20027)

This is possible since by Eq. (2.8)

s (27 ) L
M, (275 4270 e ) <27
! ( 2p(27r1)

Continuing the process, we obtain a decreasing sequence {£,} of compact subsets of
[0,1]. Let E= ﬂ;i] E,. Then E C[0,1] is compact and clearly ¢-m (E)<1.

In order to prove the second conclusion in Eq. (2.9), we first define a Borel measure
o on E by distributing mass to £, and then apply Lemma 2.2. For each I, define
a([,-,):Ml“]. In general, for each /;..;, in £, we define o(li...,) =M, ‘--M/,)‘“‘ and
o(R? \E,)=0 for p=1. Then by the mass distribution principle (see Falconer, 1990),
o can be extended to a Borel measure on RY with ¢(£)= 1. For any x € £, there exists
an infinite sequence i =i ---i,--- such that

2*’/',; 1

Now for any y €I, there exists p>1 such that 1, ; <y<A4,. Since B(x,2") can in-
tersect at most

242 1)

2=l |¢(2—/2,,)
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intervals /;,..;,, we have

w(B{x,2)) <

% 2 v \(/)(2 /1_,,71). (2.10)

It follows from Egs. (2.7), (2.10) and the assumptions on ¢(s) that

lmsup LBEIN o 2X Q7))
1m sup —— . X S i
e TG R RD B e S

L2

< limsup 22 0222 ]

gl -E L2 )

= 0.

Hence by Lemma 2.2, we have ¢-mp(E)=-x. This finishes the proof of
Theorem 2.1. [

Remark. If ¢(s)=2s9L(s) with L(s) slowly varying at the origin and lim, . L{s)=oc
it is not known whether the condition in Theorem 2.1 is still necessary.

3. Some estimates

Given ¢ € @ and an infinite increasing sequence A C N, in order to study the exact
(¢, A)-HausdorfT measure of the sample paths of fractional Brownian motion, we need
to generalize the main estimate of Talagrand (1995). We start with the following
elementary lemma.

Lemma 3.1. Let A= {/} be an increasing sequence of positive integers and
X
>
2
k=1 Tk

for some 3>0. For any fixed constant ¢>0, we define a sequence {ir} of positive
integers by

iv=1, =1inf{i: ;=2 4, +clogr,_ } (k=2)
and denote ny = A, Then for every n>=2,
Wy = Hpy ZClog i, (3.1)

and for every 0<e <7y,

) = (3.2)

kol
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Proof. Inequality (3.1) is obvious. For any integer ny> 1, let n; be the largest integer
with #,, <A,,. Then for any N >ny and any 0 <e<y,

lv N clog i

}l < Azn: Z (m+1)'

Z clogm +1
< I’]k

k= 21

at least for ny large enough. This proves Eq. (3.2).

Lemma 3.2. Let A= {;} be an increasing sequence of positive integers and

Jor some y>0. Then for any fixed 0<ec<y, ¢>0 and for any ky>1. there exist
integers ky 2k = ko such that

ka
~
Ay <, and Y o >clog Ay, (3.3)
k=ky K

Proof. Suppose the conclusion is not true. Then for some 0 <e <7y, there exist &y 1
and ¢>0 such that for any k> >k >k with A, Si;,%l (such A4, exists for infinitely
many k{s), we have

ks
1

E — <clog iy, (3.4)
A4

k=k

Then we also have
ka+1

~ 1 .
Y <(e+ Dlog gy (3.5)
k:)k] Ak
Denote
1 ko
S, = S = - k: 1 Y 1 .
ki ;,k] p k /:Z]( /1} ( kl + 1, k2 + )

Then it follows from Eqs. (3.4) and (3.5) that for any ky =k with 2y, </,\ s

ka+1

=Sk = Sk-1)  (Sk,—1=0)

X
fal —
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[ St
ka=ky /\ /*‘[‘H /'}\3.1
: 3]
<c Zlog” (7‘ E) (¢ + )7Ofg/,‘ 4l

K=k, ~h o .

Now we let ng = kg and sy == inf{n: 4, Z/W §
from Eq. (3.6) that for any m=> 1, we can write

T I ny I Hon 1

SR S D S D M
k=nq. "k k=ng ) k e ‘V_l\‘*] /'/" k=1 /'/"
Hy - ] l l

Z IO&./A ('f‘_; ~:—e:> ((' * ) oglnl o R
k=:ng & 4 i1 /‘”

n=| k < | I ) (¢ + 1) log /,

+c Z lOg T S R o -

k=t 1 /1';\ Alk%’l /';"”

] m
Z log 74 (;,:: - ) + (¢ + I)Z 10g/,,/

pa— 2

We will show

o0 .
log 4.,

IR IR
A,

J=1

Then Eqs. (3.7)—(3.9) imply }",%, 1/A; <2c. a contradiction.
Notice that

I 1 7"'2‘:' /1 I )
Pl PRV T
we have

I ! 1
log iy | —— lo ( ————)
( ) 2 e = e

IS

} fork=1. Then 4,, | </i>

(3.6)

. It follows

(3.7)

(3.8)

(3.9)



262 Y. Xiao! Stochastic Processes and their Applications 74 (1998) 251-272

k=ny j Ak
Fpg1— ]

log j < : —> ,
Z VRSV
=g

which 1s convergent as n — oc. This proves Eq. (3.8). The convergence of Eq. (3.9)

follows easily from the definition of /,,. We have completed the proof of Lemma 3.2,

O

Let Y(¢) (1€ RY) be a real-valued fractional Brownian motion of index x (0 <a<1).

We will make use of the fact that there exist two independent scattered Gaussian
random measures on RY, with

E(m(4)*)=E(m'(4)*) = Ly(4)

for all A C RY, where Ly is the Lebesgue measure in RY, such that

‘ ' W dm(x) . dm’(x)
Y(I)ZC(LN)/W(I —cos {t,x )I e + c(a,N) I sin {t, x) R
where c(o, N)>0 is a normalizing constant. For any 0 <a <b, let
) d e
Y(a,b;t)=c(a,N) (1 —cos <tﬁx>)' ’15«)7 + sin {r.x) %(T)%
x|+

Ja<ixl<h

Then for any 0 <a<b<a'<b' <oc, the processes Y(a,b;t) and Y(a’,b’:t) are inde-
pendent. We denote

X(a,b;t)=(X1(a,b;t),...,. Xq(a,b;t)),

where the components are independent copies of Y(a,b;t).

The following two lemmas were proved in Talagrand (1995). For more general
results about the small ball probabilities of Gaussian processes, see Talagrand (1993)
and Monrad and Rootzén (1995).

Lemma 3.3. If 0<e<r”. Then for any 0<a<b we have
roY
P{ sup [X(a,b,0) <& >exp<K< i’ ) ) (3.10)
il <r &

Lemma 3.4. Consider 1 <a<b and 0<r<1. Let

A= g2 |
If A<{r™. Then for any

20
(A log K: )
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we have

P<osup iX(1) — Xa.bot) >u écxp( ;\l_l> (3.11)
HESS &

Now consider an increasing sequence A= {/;} of positive integers. Lel

7 N

; | ;
pp=sups p=2""p’ (log log ~> <2
'(J

Then there exist positive and finite constants K3. K4 such that for & large enough
K327 *(loglog 2" < py <K427 % *(log log 27 )! V. (3.12)

The following estimate, which generalizes Proposition 4.1 of Talagrand (1995), is
essential to our purpose.

Proposition 3.1. Let us be given an increasing sequence A= {/i} of positive integers
with

x

|

el ¢
Ay

k=1
Jor some >0. Then for any fixed constant ¢>0, there exists a constunt K >0 with
the following properiy: for any integer ky=1 there exist integers ky =k, >ky with
A, <75, such that

s N
. 1
P 3k such that ki <k <k» and  sup  |X(1)] <Kp} <log]og ——)
s VN Pk
21 —exp(—clog s ). (3.13)
Proof. By Eq. (3.1), we may and will assume that
Jh] — Ak ZC log 4. (3.14)

where ¢; >0 is a constant which will be chosen later, and by Eq. (3.2) and Lemma
3.2, we will further assume that for any constant ¢; >0 and any integer k,> 1, there
exist integers k» =k >k, such that
/\'3 l
N a2 . . |
Apy Sz, and AZ/ /f/ Z oy log 24,. (3.15)

Now fix such a pair (k,4;). Let f=min(1 — «, %) and let

' NG
U={log— . (3.16)
Pk
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It follows from Eq. (3.12) that K3).,1:’1<U SK4/';,1,‘“. Let

1 U
= and by = —.
Dk U P

ay

Elementary calculations and Eq. (3.14) show that we can take ¢; >0 (depending only
on o« and f§) such that b, <a4y) for every k=1, We denote Xi(£)=X(ay. by t) and
notice that X(¢) can be written as

X(0)=Xe(t) + (X (1) = Xi(1)).
Then the processes X} (k =1.2....) are independent. By Lemma 3.3, we can choose

K >0, depending on v, such that

. ﬁ Py
Pj sup | Xu(0) <Kpj (loglog»——)
It} < VN px Pk

1
= exp <v;~ log log ;/)

K
Z .
A
Thus, by independence of X; (k=1.2....) and Eq. (3.15), we have
I _ 1\ %N
P{ 3k such that &) <k <ky and  sup  |X4(2)| <Kpj <10g10g v)
1 It < VNpy Pk
k7 -
- K
>1 — I
ey
k=k i

s
S
21 - exp<~K Z )
3

=k,
21— exp(—Kc; log 4, ). (3.17)
Let Ay == pZa; " + b, *”. Then
Aepg 7 = (prag) ™ (ki) <20 (3.18)
By Lemma 3.4 and Eq. (3.18), for any

Kp "
u}K(AA log :k )
k

we have

2U2/)'
! ) (3.19)

P( sup ’X(t) """" /\7/(([)(214) < exp(— K/)217
h

[ < VN
By Eq. (3.16) and the first inequality in relation (3.15) we see that for &k} <k <k>

2N
UPlogU)y™1? > <10g log ,_‘_> .
Pk
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Hence we can take

R 2N
u=Kpj (10g log /)—A >

and by Eq. (3.19) we obtain

e N
Ry ) 1

P( sup X (1) Xk(r)>/<ﬂi(loglog-;—> )
%

[t] = VN,

UZ/:
T e 3.20
exp< K(loglog 1/p; )22 > ( )

Combining Egs. (3.17) and (3.20), we have

p — A
, 1
P{Sk such that k) <k <k- and  sup |X(1)|<Kp] (log log [—) }
%k

HE: VN i

\V4

ks i
. (//—/,
- 1 a —Kc¢r log Ag. - - /
(.Xp( ¢y log 4p.) /‘ék CXP( K(log IOg l//,()k )27 N )

\V2

21 —exp(—clog /4. )

for suitably chosen ¢;>1. using the first inequality in Eq. (3.15). This proves
Eg. (3.13).

Remark. The above proof also yields the following result, which will be needed in
proving Theorem 4.2 for the case of N >uxd. Under the conditions of Proposition 3.1,
for any positive constant ¢ there exists some constant K >0 such that for any integer
ko =1 there exist integers kx =k, 2 ko with 7, \\i/‘.f‘ and

P{ﬂk such that k| <k <k» and sup X(1)|<K2 ')"7'(102; log 274 ““}

HESEEEE

=1 - exp(—clog /s, ). (3.21)

4. Hausdorff-type measures for fractional brownian motion

In this section, we consider the (¢, A)-Hausdorff measure of the image and graph
of fractional Brownian motion.

Let X(r) (t€ RY) be a d-dimensional fractional Brownian motion of index x (0<
2<1). For any 0<r<1 and y e R?. let

()= / L (X (1)) dr
TR
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be the sojourn time of X (1) (+€[0,1]") in the open ball B(y,r). If v =0, we write
T(r) for To(r). Similarly, for 1< [0.1]Y and v € R4, define

T((’ F)= / 1{{,\'\.\) -3 «}(\)ds
J B

If (r. v)=1(0,0), we denote 7, . (r,r) by T(rr).
We will need the following lemma, for the proof” of Part (1) see Goldman (1988)
or Xiao (1996), for Part (2) se¢ Xiao (1997b).

Lemma 4.1. (1) If N < ad, then there exists a positive finite constant K, depending
on N, », and d only, suclh that for any u=>0 we have

P(T(ry=rV 7wy <expl - Ku). (4.1)

(2) If' N>uad. then there exists a positive finite constant K, depending on N. z,
and d only, such that for any u>0 we have

P(T(r, pyz N D A ) <exp(—Ku). (4.2)
Now we state and prove the main results of this section. Recall that ¢ (s) and ¢2(s)
arc defined by Eqs. (1.6) and {1.9) respectively.

Theorem 4.1. Ler X(1) (1 € RY) be a d-dimensional fractional Brownian motion of
index a (0<a<l) and N <od. Let A= {4} be an increasing sequence of positive
integers. Then

0<d-ma(X([0.1]Y ) <~x us.

if and only if there exists >0 such thuat

-

x
k=1 "k

Proof. We start the proof with the easy part. If for any 7>0

1
Z‘ = <X
=1
Then by Eq. (4.1), we have
(2 iy o K5
P(T27)z3¢1(2 7)< 5
iy

It follows from the Borel-Cantelli lemma that with probability 1,
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Since y>0 is arbitrary, we have almost surely,

. T(27%)

m sup —————— ==

k—x (/)1(2 )

Since X (f) has stationary increments, we have that for every 4 € [0, 1]", almost surely

: Tyiy(27%)
lim sup ——2——" = (). (4.3)
e
Now we define a random Borel measure x4 on X([0.1]V) as follows. For any Borel
set BC R, let
W(By=Ly{te 0,17, X(1)€ B},

where Ly is the Lebesgue measure in R™. Then u(RY)=u(X([0.1]¥))=1. By
Eq. (4.3), for each fixed 7, =[0, 1]V, with probability 1

. WBX (1),277)) _ .
lim sup —————=-—=> < lim sup ——————— =0, (4.4)
Aaxp G1(277) i ~'x,p Pr(277)

Let E(w)= {X(y): 1o € [0.1]" and Eq. (4.4) holds}. Then E(w)C X ([0.1]"). A Fubini

Gr-m(E(w))=~x.

Now we prove the sufficiency. By Lemma 2.1(i1) and Eq. (1.5), we see that it is
sufficient to prove that there exists a constant K >0 such that with probability |

hr-m 4 (X([0, 1Y) <K. (4.5)

We will make use of Proposition 3.1. Let ¢>0 be a constant whose value will be
determined later. By Proposition 3.1, for each n> 1, there exist integers /, >k, =n
such that /;, </",f” and Eq. (3.13) holds. For each such pair (%, {,). consider the set

R, = {t e€[0,11Y: 3k, <k <1, such that
] — i N
sup X () - X(0)| <Kp; (log]og --—) .
ls—t] < VN P
Then by Eq. (3.13), we have
P(teR)=1 —exp(--clogzy,).

It follows from Fubini’s theorem and Chebyshev’s inequality that

X

ZF'(D,‘,’) <0,

n=1

where D, is the event Ly(R,)=1 —exp(—-5 log 4, ). Hence we have P(£y)=" 1, where

Q) = {(1): Ly(Ry)=1 - exp<v (2~ log /'.,,,) infinitely often} .
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On the other hand, it is well known (see e.g. Kahane, 1985) that there exists an event
Q, such that P(2;)=1 and for all m € Q,, there exists my = mgy(w) large enough such
that for all dyadic cubes (' of order m:=my that meets [0,1]", we have
sup (X(1) — X(&)|<K27""/m. (4.6)
sreC
Now we fix an we 2,MN§; and we will show Eq. (4.5) holds by constructing an
economic covering for X ([0, 1]V). Consider #>myq such that

LN(R//)Z 1 - exp(’_% lOg 2/,,) :

Then for any ¢ € R, there exists £ such that &, <k </, and
. [\ _
sup X (s) — X(D|<Kp] (log log ——-) <K27%, 4.7)
Is— | < VN P
where the last inequality follows from Eq. (3.12). We denote by Cy(r) the dyadic cube
of side j»; that contains . Then by Eq. (4.7) we have

stp |X(s) = X(1)|<K277. (4.8)
SEC(1)
Hence
I
R, CV = V.
k=k,

where each ; is a union of dyadic cubes with side p; for which Eq. (4.8) holds. For
each dyadic cube C}; in F;, X((};) can be covered by at most K (depending on d
only) balls of radius 27", and

I, 1y
D WCICEEIETS o) ot
k=k, | k=k, |

= KL, (V)Y<K. (4.9)

Now notice that [0,1]¥\} can be covered by a union of dyadic cubes of side p; ,
none of which meets R,. There are at most

; (. ; ‘\
Kp,"”' N exp <7 5 log 7;, )

such cubes {C,,},-}. By Eg. (4.6), each X(C,;) is contained in a ball of radius
Kp; \/l—og 1/p;,, and hence can be covered by at most

|2 N
K <log -> (l()g log ) <K),}l “log 74,
P, 1, !

balls of radius 277+, Thercfore X([0,1]¥\}) can be covered by a family of balls of
radius 277 and by taking ¢ >d /2% we have

S g2y <Kp, Yexp( 5 log ;.,,‘) M log sy, pl <1 (4.10)
), 2
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for n large enough. Combining Egs. (4.9) and (4.10), we get Eq. (4.5). This finishes
the proof. [

For the graph set Gr X ([0, 11%) of fractional Brownian motion, we have the following
similar result.

Theorem 4.2. Let X(t) (t ¢ RY) be a d-dimensional fractional Brownian motion of
index o (O<a<l) and let A= {4} be an increasing sequence of positive integers.
Then

0<h-m(GrX(0. 11" N<~  as.

if and only if there exists >0 such that

where ¢(s)=p1(s) if N <xd and ¢(s)= ¢pa(s) if N >ad.

Proof. In the case of N <xd, the proof is very similar to the proof of Theorem 4.1
above. In the case of N >ud, the proof which relies on Lemma 4.1(2) and Eq. (3.21)
is similar to the proof of Theorem 3.1 in Xiao (1997b). We omit the details.

[f the sequence A = {/;} satisfies

for every 7 >0, then by Theorem 4.1 we know that almost surely ¢-m 4(X(]0.1]Y)) =
oc. It is natural to ask whether there is some smaller measure function ¢ such that
the 0 < ¢-m4(X([0,1]Y))< x. The following theorem gives an affirmative answer in
certain cases.

Theorem 4.3. Let X(1) (t€RY) be a d-dimensional fractional Brownian motion of
index x (0<a<1)and let A={i;} with iz =281 and 0<ny<1. If N <ad. then with
probability 1,

0<dy-m(X([0,11" ) <. (4.11)
where ¢3(s) =M logloglog 1/, and

0 < hy-m4(Gr X([0. 1)) < ~. (4.12)
If N >ad, then with probability 1,

0 < Oa-m ((Gr X([0,1]1")) < . (4.13)
where

xd N

$a(s) ="M oglog log 1/s)
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The proof of the upper bounds in Theorem 4.3 depends on the following lemma,
which can be proved in a way similar to the proof of Proposition 3.1.

Lemma 4.2. Let A= {i;} with iy =2""1 and 0<n<1 and let

= aN
| :
r,(_sup{rv?_”’:r"(logloglog ~) <2 ”‘}. (4.14)
,

Then for any fixed constant ¢>0, there exists a constant K >0 with the following
properiy: for every integer ko=

1 — N
F‘{Hk such that ko <k <2ky and  sup |X ()| <Kr} (Iog log log 1~-_-~) }
it <VNR k

=1 — exp(—ck]). (4.15)

Now we sketch the proof of Theorem 4.3. It is easy to verify that there exist positive
and finite constants K¢, K7 such that for £ large enough

Ke 27 *(log loglog 2% )N <y < K727 %7 (log log log 27 )V . (4.16)

Proof of Theorem 4.3. An argument similar to the first half of the proof of Theorem
4.1, ussng Lemmas 2.2 and 4.1, shows that with probability 1, ¢3-m(X([0,1]Y))>0
if N<ad, and ¢q-m(Gr X([0,1]¥))>0 if N>zxd. The proof of the upper bounds
in Egs. (4.11)—-(4.13), using Egs. (4.15), (4.16) and (4.6), is similar to the proof of
Eq. (4.5) and the proot of Theorem 3.1 in Xiao (1997b) respectively. But this time,
the assumption that 0 <x-<1 is essential in obtaining inequalities similar to Eq. (4.10).

Remark. Another important example of Gaussian random fields is Brownian sheet or
the N-parameter Wiener process W (1) (1 € RY), see Orey and Pruitt (1973). The exact
Hausdorff measure of the image and graph set of W were considered by Ehm (1981).
It would be interesting to know whether similar results hold for the Brownian sheet.

The proof of Proposition 3.1. the small ball estimates (sec Talagrand, 1993;
Monrad and Rootzén, 1995) and a zero-one law of Pitt and Tran (1979} imply the
following Chung type laws of iterated logarithm for fractional Brownian motion: Let
A={4:} be an infinite increasing sequence of positive integers and consider the se-
quence f#; =2""% (k=1) (or 14 =2 (k=1)). Then there exists a positive and finite
constant K 4, depending only on A, N and %, such that with probability !

SUP | <y [V r)f

llm inf —— =Ky
= tf(log log )

if and only if there exists >0 such that

o
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Under the conditions of Lemma 4.2, for sequences {#} defined above or {r;} in
Eq. (4.14), we have

o SUpy,| <, [X ()]
lim inf TN T
k—oc fi(logloglog ;)" *

ne

where K, is a positive finite constant depending on n, N and « only.

More generally, let f(¢): R, - R, be a non-decreasing (or non-increasing) function
which tends to oc (or 0) as r -+, it would be interesting to prove an integral test
on f and ¢ such that

Pl sup |[X(O)|= F(kYE(f(k)) for all & large enough | = 1.
< k)

o

Such functions ¢ are called lower functions of X(7) (1€ R"Y) on sequence {f(k)}.
For fractional Brownian motion X (¢) (¢ € R), lower functions in the usual sense were
characterized by Talagrand (1996a).

Acknowledgements

I would like to thank Professor Talagrand for suggesting the problem to me and for
his very helpful discussions.

References

Ciesielski, Z., Taylor, S.J., 1962. First passage times and sojourn times for Brownian motion in space and
the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434--450.

Ehm. W., 1981. Sample function properties of multi-parameter stable processes. Z. Wahrsch verw Gebiete
56 195-228.

Falconer, K.J., 1990. Fractal Geometry - Mathematical Foundations And Applications. Wiley. New York.

Goldman, A., 1988 Mouvement Brownien a plusicurs paramétres: mesure de Hausdorfl des trajectoires.
Astérisque 167.

Kahanc, J-P.. 1985. Some Random Series of Functions. 2nd cd. Cambridge University Press. Cambridge.

Jain, N.C.. Pruitt, S.E., 1968. The correct measure function for the graph of a transicnt stable process. 7.
Wahrsch. verw. Gebiete 9 131-138.

Lévy, P 1953, La mesure de Hausdorfl de la courbe du mouvement brownien. Giorn. Ist. hal. Attuari 16
1-37.

Mattila, P., 1995. Geometry of sets and measures in Euclidean spaccs. Cambridge University Press,
Cambridge.

Monrad, D.. Rootzén, H., 1995. Small values of Gaussian processes and functional laws of the iterated
togarithm. Probab. Theory Related Fields 101 173 192,

Orey. S.. Pruitt, W.E., 1973. Sample functions of the N-parameter Wiener process. Ann. Probab. 1 138-163.

Pitt, L.D., Tran, L.T., 1979, Local sample path propertics of Gaussian fields. Ann. Probab. 7 477 493,

Pruitt. W.E., Taylor, S.J., 1969. Sample path properties of processes with stable components. Z. Wahrsch.
verw. Gebiete 12 267--289.

Ray. D., 1964, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian
motion. Trans. Amer. Math. Soc. 106 436444

Rogers, C.A., 1970. Hausdorff Mcasures. Cambridge University Press, Cambridge

Rogers, C.A.. Taylor, S.J.. 1961. Functions continuous and singular with respect to a Hausdorff measure.
Mathematika 8, [ 31.



272 Y. Xiao! Stochustic Processes and their Applications 74 1 1998) 251-272

Saint Raymond, X., Tricot. (., 1988. Packing regularity of sets in n-space. Math. Proc. Phil. Soc. 103,
133-145.

Talagrand, M., 1993, New Gaussian estimates for enlarged balls. Geom. Funct. Anal. 3, 502- 520.

Talagrand, M., 1995. Hausdorfl measure of the trajectories of multiparameter fractional Brownian motion.
Ann. Probab. 23, 767-775.

Talagrand, M., 1996a. Lower classes tor fractional Brownian motion. J. Theoret. Probab. 9. 191213,

Talagrand. M., 1996b. Multiple points of trajectories of multiparameter fractional Brownian motion. Preprint.

Talagrand, M., Xiao, Y., 1996. Fractional Brownian motion and packing dimension. J. Theoret. Probab. 9
579--593.

Taylor, S..., 1964. The exact Hausdorfl measure of the sample path for planar Brownian motion. Proc.
Cambridge Phil. Soc. 60, 253-258.

Taylor, S.J., 1986. The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100, 383-406.

Taylor, S.J., Tricot, C., 1985, Packing measure and its cvaluation for a Brownian path. Trans. Amer. Math,
Soc. 28%, 679-699.

Xiao. Y., 1996. Hausdorfl measure of the sample paths of Gaussian random ficlds. Osaka | Math. 33,
895-913.

Xiao. Y.. 1997a. Holder conditions for the local times and the Hausdorfl measure of the level sets of Gaussian
random fields. Probab. Theory Related Fields 109. 129-157.

Xiao. Y., 1997b. Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Cambridge
Philos. Soc. 122, 565-576.

Xiao, Y., 1997¢. Fractal measures of the sets associated o Gaussian random fields. In: Trends in Probability
and Related Analysis: Proc, Symp. on Analysis and Probability 1996, in press.

>




