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Abstract. Consider 0 < a < 1 and the Gaussian process Y �t� on RN

with covariance E�Y �s�Y �t�� � jtj2a � jsj2a ÿ jt ÿ sj2a, where jtj is the
Euclidean norm of t. Consider independent copies X 1; . . . ;X d of Y
and the process X �t� � �X 1�t�; . . . ;X d�t�� valued in Rd . When
kN � �k ÿ 1�ad, we show that the trajectories of X do not have k-
multiple points. If N < ad and kN > �k ÿ 1�ad, the set of k-multiple
points of the trajectories X is a countable union of sets of ®nite
Hausdor� measure associated with the function u�e� � ekN=aÿ�kÿ1�d

�log log�1=e��k. If N � ad, we show that the set of k-multiple points of
the trajectories of X is a countable union of sets of ®nite Hausdor�
measure associated with the function u�e� � ed�log�1=e�
log log log 1=e�k. (This includes the case k � 1:)

Mathematics Subject Classi®cation (1991): 60G15, 60G17, 60G18,
28A78

1. Introduction

Classical results �R�; �T �; �C ÿ T �; indicate that a portion R of the tra-
jectory of Rd valued Brownian motion satis®es 0 < lu�R� <1, where
lu is Hausdor� measure associated with the function u given by
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u�e� � e2 log log�1=e� for d � 3 and u�e� � e2 log�1=e� log log log�1=e�
for d � 2. Classical results indicate [D-E-K-1] that no double points of
the trajectories exist for d � 4, that double points, but not triple
points exist for d � 3, [D-E-K-T] and that multiple points of all orders
exist for d � 2 [D-E-K-2]. More recently, the size (with respect to
Hausdor� measure) of the set of double points (for d � 3) or of k-
multiple points (d � 2) was completely clari®ed [LG].

The basic process considered in this paper is the Gaussian process
X �t� from RN to Rd such that

E�jX �t� ÿ X �s�j2� � djt ÿ sj2a

where 0 < a < 1, and where j:j denotes the Euclidean norm. Following
[K], we call this process the �N ; d; a� Gaussian process. Brownian
motion is the �1; d; 12� Gaussian process; LeÂ vy's multiparameter
Brownian motion is the �N ; d; 12� process; Fractional Brownian motion
is the �1; d; a� process. The components of the �N ; d; a� Gaussian
process are independent �N ; 1; a� processes.

It would be hard to argue that Brownian motion is not the most
important �N ; d; a� Gaussian process. It is also extraordinary special.
As soon as N > 1 or d 6� 1

2, crucial properties (such as the Markov
property) are lost, and the resemblance of the corresponding process
with Brownian motion is only super®cial. Our motivation for ex-
tending results classical for Brownian motion to the �N ; d; a�Gaussian
process is not the importance of this process, but rather that the case
of Brownian motion su�ers from an over abundance of special
properties; and that moving away from these forces to ®nd proofs that
rely upon general principles, and arguably lie at a more fundamental
level. Fractional Brownian motion might not be an object of central
mathematical importance but abstract principles are.

In the transient case �N < ad� it was shown in [T], following nu-
merous previous results, that if L is a compact set of nonempty inte-
rior, then a.s., 0 < lu�L� <1, where lu denotes the Hausdor�
measure associated to the function u�e� � eN=a log log�1=e�. The pur-
pose of the present paper is to extend the upper bound part of this
result to the case of multiple points and to the critical case N � ad.
The problem of lower bounds, that rely upon di�erent techniques, and
are possibly more di�cult, remains open.

We say that a point x of Rd is a k-multiple point of the trajectory of
X if we can ®nd k points t1; . . . ; tk of Rd , all di�erent, such that
x � X �t`� for all ` � k.

Theorem 1.1. If kN � �k ÿ 1�ad, a.s. there exist no k-multiple points.
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Comment. Take N � 1; k � 2; a � 1
2 ; d � 4 for a classical result. To

obtain Theorem 1.1 in the equality case kN � �k ÿ 1�ad was part of
the motivation behind the previous work [T2]. When trying to tackle
the case of 4-dimensional Brownian motion the natural idea is ®rst to
control the Hausdor� measure of trajectories, and then, using inde-
pendence, to show that an independent trajectory does not hit these
sets; thus the results of [T2] were conceivably a ®rst step towards
Theorem 1.1. Unfortunately this approach, when attempted if either
N 6� 1 or a 6� 1

2 runs into apparently untractable conditioning prob-
lems. Rather we will use a direct ``global'' approach, relying heavily
upon the arguments of [T1]. This approach leads in fact to the fol-
lowing.

Theorem 1.2. If kN < �k ÿ 1�ad, given any 1 > g > 0, the set of points x
of Rd that can be written as x � X �t1� � � � � � X �tk� for

g � jt1j; . . . ; jtkj � gÿ1; jti ÿ tjj � g if i 6� j �1:1�

is a.s. of ®nite measure for the Hausdor� measure associated with the
function

u�e� � ekN=aÿ�kÿ1�d�log log 1=e�k :

Next, we turn to the critical case N � ad.

Theorem 1.3. If N � ad, a.s. for each compact L of RN ; the set X �L� is
a.s. of ®nite measure for the Hausdor� measure associated to the
function

u�e� � ed log�1=e� log log log�1=e� :

This result seems to lie quite deeper than the corresponding result
for N < ad. The proof relies on a lower bound for a certain sojorn
time. While this bound is not surprising, its proof contains the most
creative arguments of the paper. We conjecture that if L has non
empty interior, X �L� has positive Hausdor� measure for the measure
described in Theorem 1.3.

Theorem 1.4. Assume N � ad. Then given 1 > g > 0, the set of points x
of Rd that can be written as x � X �t1� � � � � � X �tk� for t1; . . . ; tk sat-
isfying (1.1) is a.s. of ®nite measure for the Hausdor� measure associ-
ated to the function

u�e� � ed log�1=e� log log log�1=e�� �k :
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The paper is organized as follows. In Section 2, we list some of the
abstract results we need. In Section 3, we prove Theorems 1.1 and 1.2.
In Section 4, we prove the key sojorn time estimate; and in Section 5,
we prove Theorem 1.3 and sketch the proof of Theorem 1.4. While the
proofs use many known ideas, they do require rather substantial
technical inventiveness, and should provide ample reward for the
motivated reader.

2. Preliminaries

Consider a set S and a Gaussian process �Z�t��t2S valued in Rd�d � 1�.
We provide S with the canonical distance

d�s; t� � kZ�s� ÿ Z�t�k2 � �EjZ�t� ÿ Z�s�j2�12 :
We denote by N�S; e� the smallest number of open d-balls of radius e
needed to cover S. The proof of Theorems 1.1 and 1.2 will heavily rely
upon the following;

Lemma 2.1. Consider a function W, such that for all e > 0 and some
C > 0 we have

W�2e�=C � W�e� � CW�e=2� :
Assume that N�S; e� � W�e� for all e > 0. Then we have

P
�
sup
s;t2S
jZ�t� ÿ Z�s�j � u

�
� exp ÿW�u�

K

� �
;

where K depends upon C; d only.

In the case d � 1, this is proved in [T1]. The proof in the general
case (via Sidak's lemma and chaining) is identical.

In order to work with the �N ; 1; a� process and to prove its exis-
tence, it is very useful to have a concrete representation of it. Such a
representation is based upon the fact that if 0 < a < 1, there is a
constant c depending upon a;N only such that for each t in RN we
have

jtj2a � c2
Z

RN
�1ÿ cosht; xi� dx

jxj2a�N : �2:2�

Consider two independent scattered Gaussian random measures m
and m0 on RN , with, for each A � RN

E�m�A�2� � E�m0�A�2� � k�A� :
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There, as well as in the rest of the paper, k denotes Lebesgue measure.
(We will not distinguish in the notation on which space k lives; this
should be clear from the context.) The process

Y �t� � c
Z

RN
�1ÿ cosht; xi� dm�x�

jxja�N
2

� sinht; xi dm0�x�
jxja�N

2

is a version of the �N ; 1; a� process, as is seen by checking through
(2.2) that E�Y �t� ÿ Y �s��2 � jt ÿ sj2a. (At this point we must apologize
for the uncomplete formula (3.2) of [T2], a mistake that fortunately
does not a�ect the rest of that paper.) To solve independence prob-
lems, we consider for a; b 2 �0;1� the process

Y �t; a; b� � c
Z

a�jxj<b
�1ÿ cosht; xi� dm�x�

jxja�N
2

� sinht; xi dm0�x�
jxja�N

2

;

We denote by X �t; a; b� the Rd-valued process consisting of d inde-
pendent copies of Y �t; a; b�. If b � a0, the processes X �t; a; b�;
X �t; a0; b0� are independent.

Only minor modi®cations to the argument of [T2], Corollary 3.3
are needed to obtain the following

Lemma 2.2. Consider r; d; b > 0 and A � r2a2ÿ2a � bÿ2a. If A � r2a, for

u � K A log
2r2a

A

� �1
2

;

we have for all t 2 RN

P sup
jt0ÿtj�r

jX �t� ÿ X �t0� ÿ �X �t; a; b� ÿ X �t0; a; b��j � u

 !
� exp ÿ u2

kA

� �
:

Here, as well as in the rest of the paper, K denotes a constant
depending upon N ; a; d, only, that may vary at each occurrence.
(Speci®c constants are denoted by K1;K2; . . ..)

The following standard estimate will also be used.

Lemma 2.3. Given R, there is a number K�R�, depending only upon
R;N ; d; a such that, for e � 1

2

P
�
8t; t0 2 RN ; jtj; jt0j � R; jt ÿ t0j � e

) jX �t� ÿ X �t0�j � K�R�ea log 1
e

ÿ �1
2� � 1ÿ e :

Of crucial importance will be the following lemma of L. Pitt. [P]

Lemma 2.4. Consider t 2 RN ; u > 0. The conditional variance of Y �t�
given all Y �t0� for jt0 ÿ tj � u is at least Kÿ1 min�u; jtj�2a.
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3. Proofs of Theorems 1.1 and 1.2

Consider g > 0 and t1; . . . ; tk in RN with

min
i�k
jtij � g; min

i6�j
jti ÿ tjj � g : �3:1�

Given q > 0, we consider the random set

M�q� � fx 2 Rd ; 8i � k; 9ui; jui ÿ tij � q; x � X �u1� � � � � � X �uk�g :
(Of course M�q� depends also upon t1; . . . ; tk). We will show the fol-
lowing.

Proposition 3.1. a) If q is small enough, and if kN � �k ÿ 1�ad;M�q� is
almost surely empty. b) If kN < �k ÿ 1�ad, then for some constant K�g�,
that depends upon g; a;N ; d, but NOT upon q, we have

Elu�M�q�� � K�g�qkN

where lu is the Hausdor� measure associated to the function u of
Theorem 1.2.

It should be clear that this implies Theorems 1.1 and 1.2. For i � k,
we set

Bi � fu 2 RN ; juÿ tij � qg; B0i � fu 2 RN ; juÿ tij � 2qg :
We will determine q later on. We start the proof by a strange move;
for each i � k, we select a point t0i with jti ÿ t0ij � 3q. The motivation
for this is as follows.

Lemma 3.2. For some number C1 (depending possibly upon t1; . . . ; tk;
q; g;N ; a; d) we have, for all i � k

u1; u2 2 B0i ) jE��Y �u1� ÿ Y �u2��Y �t0i��j � C1ju1 ÿ u2j :

Proof. This follows from the fact that

E�Y �u�X �t0i�� � jt0ij2a � juj2a � jt0i ÿ uj2a

and that we have taken care to ensure jt0i ÿ uj � q (and juj �
gÿ 2q�. (

The previous lemma would not work for t0i � ti.
We now denote by R2 the r-algebra generated by �X �t0i�; i � k�. We

set

X 2�t� � E�X �t�jR2�; X 1�t� � X �t� ÿ X 2�t� :
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The processes X 1�t� and X 2�t� are independent. The main construction
will depend only upon the process X 1�t�; given that process, we will
then use an averaging argument upon X 2�t�.

The bad news is that the process X 1�t� is somewhat more myste-
rious than the process X �t�, because it is not really clear what the
conditioning does. The good news is that for our purposes X 1�t� is a
very small perturbation of X �t�, and we will be able to deduce all the
information we need about X 1�t� from the study of X �t�.
Lemma 3.3. For some constant C2 (possibly depending upon
t1; . . . ; tk; g; q;N ; a; d) we have, for i � k and u1; u2 2 B0i :

jX 2�u1� ÿ X 2�u2�j � C2ju1 ÿ u2jmaxi�k jX �t0i�j :

Proof. This follows from Lemma 3.2, since

X 2�u� �
X
i;j�k

aijE�X �u�X �t0i��X �t0j�

for numbers aij depending only upon t01; . . . ; t0k:

The main estimate is as follows.

Proposition 3.4. There is a constant d > 0 with the following property.
Given r0 � d, and for i � k a point ui in RN , we have

P 9r; r20 � r � r0; sup
i�k

sup
jtÿuij�2

���
N
p

r

jX �t� ÿ X �ui�j � K1ra log log
1

r

� �ÿa=N
 !

� 1ÿ exp ÿ log
1

r0

� �1
2

 !
: �3:2�

Comment. The term 2
����
N
p

, that plays no important role, is simply for
convenience when replacing balls by cubes.

Proof. First we prove that given r,

P sup
t�k

sup
jtÿuij�2

���
N
p

r
jX �t� ÿ X �ui�j � u

 !
� exp ÿKr

u
1
a

� �
: �3:3�

To see this, we simply apply Lemma 2.1 to the Rkd valued process

Z�t1; . . . ; tk� � �X �ti��i�k

de®ned for jti ÿ uij � 2
����
N
p

r, keeping in mind that

EjZ�t1; . . . ; tk� ÿ Z�t01; . . . ; t0d�j2 �
X
i�k

jti ÿ t0ij2a
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to see that we can use W�e� � Kr=e
1
a.

Once (3.3) is obtained, the rest of the argument is very similar to
the proof of Proposition 4.1 of [T2], and there seems to be no point in
reproducing it. (

We now start the main construction. For p � 1, consider the set

Rp �
�
�u1; . . . ; uk� 2 B01 � . . .� B0k;9r; 2ÿ2p � r � 2ÿp;

sup
i�k

sup
jtÿuij�2

���
N
p

r

jX �t� ÿ X �ui�j � K2ra log log
1

r

� �ÿa=N�
:

It then follows from Fubini's theorem and Proposition 3.4 that we
have

P
p P �Xc

p;1� <1, where Xp;1 is the event

k�Rp� � k�B01 � . . .� B0k� 1ÿ exp ÿ
���
p
p
4

� �� �
:

To apply Lemma 3.3, we consider b > 0 with a� b < 1 and the event
Xp;2 given by

max
i�k
jX �t0i�j � 2bp

so that
P

p P�Xc
p;2� <1. It follows from Lemma 3.3 that there is p0

such that if p � p0, then on the event Xp;3 � Xp;1 \ Xp;2, we have

�u1; . . . ; uk� 2 Rp ) 9r; 2ÿ2p � r � 2ÿp;

sup
i�k

sup
jtÿuij�2

���
N
p

r
jX 1�t� ÿ X 1�ui�j � K3ra log log

1

r

� �ÿa=N

: �3:4�

Let us recall that a dyadic cube of order ` is a product of intervals
�m2ÿ`; �m� 1�2ÿ`�. For u in RN , denote by C`�u� the dyadic cube of
order ` that contains u. For u1; . . . ; uk in RN , denote by
C`�u1; . . . ; uk� � C`�u1� � . . .� C`�uk� the dyadic cube of order ` of
RkN that contains �u1; . . . ; uk� 2 RkN . We say that C`�u1� � � � � �
C`�uk� is a good cube of order ` if it has the property that

8i � k; sup
s;t2C`�ui�\Bi

jX 1�s� ÿ X 1�t�j � d` ; �3:5�

where d` � 8K32
ÿ`a�log log 2`�ÿa=N . It follows from (3.4) that (if

p � p0), each point �u1; . . . ; uk� of Rp is contained in a good dyadic
cube of order `;with p � ` � 2p. Thus, we can ®nd a covering of Rp by
a disjoint family H1 of good dyadic cubes. This family depends only
upon the process X 1�t�. Consider the family H2 of dyadic cubes of
order 2p of RkN , that meet B1 � � � � � Bk, but are not contained in any
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cube of H. For p large enough, these cubes are contained in
B01 � � � � � B0k, and hence in B01 � � � � � B0knRp, so that (when Xp;3, oc-
curs) their number is at most

Ck2
2Nkp exp

�
ÿ

���
p
p
4

�
�3:6�

when Ck does not depend upon p.
We set H �H1 [H2. This family of dyadic cubes covers

B1 � � � � � Bk, and is always well de®ned (although we cannot say
much about it unless Xp;3 occurs).

Next, we proceed to the construction of a certain family of balls of
Rd . For each cube in A inH we pick a distinguished point vA in A, say
vA � �vA;1; . . . ; vA;k�; vA;i 2 RN for i � k. We consider the ball BA of Rd

de®ned as follows:

± If A 2H1 is a dyadic cube of order `, we take for BA the ball of
center X �vA;1�, of radius rA � 4d`

± If A 2H2 (this is a dyadic cube of order 2p), BA is the ball of center
X �vA;1� of radius rA � K42

ÿ2ap
����������
log p

p
.

There we choose K4 large enough that
P

p�1 P �Xp;4� <1 where Xp;4 is
the following event:

For each dyadic cube C of order 2ÿ2p of RN that meets
S

i�k Bi, we
have

sup
t;u2C
jX �t� ÿ X �u�j � K42

ÿ2ap ���
p
p

:

This is possible by Lemma 2.3. We consider the event Xp � Xp;3 \ Xp;4.
For each A in H, we de®ne the event XA as

8i; 2 � i � k; jX �vA;1� ÿ X �vA;i�j � rA : �3:7�
We consider the family F of balls BA�A 2H� for which XA occurs.

Lemma 3.5. On Xp, F covers M�q�.

Proof. Consider x in M�q�. By de®nition, we can ®nd for i � k a point
ui in Bi such that X �ui� � x. The point �u1; . . . ; uk� belongs to a certain
cube A of H. We will show that BA contains x, and that BA belongs to
F. We will consider only the case A 2H1. (The similar case A 2H2

is left to the reader.) Consider the distinguished point �vA;1; . . . ; vA;k� of
A. By (3.5) we have

8i � k; jX 1�vA;i� ÿ X 1�ui�j � d` :
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Thus (if p � p0) by Lemma 3.3 we have

jX �vA;i� ÿ X �ui�j � 2d`:

Since X �ui� � x, this implies that XA occurs, and that x 2 BA. (
Consider the function

f �x� � xkN=2 log log 1
x

ÿ �k
:

Lemma 3.6. If Xp occurs, and p is large enough, we haveX
A2H

f �rA� � Kk�B1 � � � � � Bk� :

Proof. If A 2H1 is a dyadic cube of order `, simple estimates show
that

f �rA� � K2ÿ`kN :

If A 2H2 (is thus a dyadic cube of order 2p) we have

f �rA� � K2ÿ2pkN pkN=2a�log p�k :

Recalling (3.6) yields the result. (
We now denote by R1 the r-algebra generated by the process

�X 1�t��. Thus H depends upon R1 only. The basis of the averaging
argument is as follows.

Lemma 3.7. If q is small enough, for some constant K�g� depending only
upon g;N ; d; a, we have

P�XAjR1� � K�g�r�kÿ1�dA :

Proof. Given vi 2 Bi for i � k, it su�ces to show that if r is small, for
any choice of ai in Rd we have

P�8i; 2 � i � k; jX 2�v1� ÿ X 2�vi� ÿ aij � r� � K�g�r�kÿ1�d :

With obvious notation, using independence, it su�ces to prove that

P �8i; 2 � i � k; jY 2�v1� ÿ Y 2�vi� ÿ bij � r� � K�g�rkÿ1 :

Proceeding by induction over k, it su�ces to show that the conditional
variance of Y 2�vi� given Y 2�v1�; . . . ; Y 2�viÿ1� remains bounded below
by a number depending only upon a; g. But this follows easily from
the fact that EjY �vi� ÿ Y �t0i�j2 � �2q�2a and Lemma 2.4. (

Assume now kN � �k ÿ 1�ad, and consider the function
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u�x� � xkN=aÿ�kÿ1�d log log 1
x

ÿ �k
:

Lemma 3.8. If q is small enough that Lemma 3.7 holds true, we have for
p large enough

E 1Xp

X
A2F

u�rA�
 !

� K�g�k�B1 � � � � � Bk� :

Proof. We compute the left-hand side by ®rst taking expectation
conditionally in R1, and combining Lemmas 3.6 and 3.7. (

It is now routine to deduce Proposition 3.1 from Lemmas 3.5 and
3.8.

4. Sojourn time estimate

We now start the study of the critical case, N � ad. The proof of
Theorem 1.3 is based upon an estimate for the tails of the ``sojourn
time''

Te � k�ft 2 RN ; jtj � 1; jX �t�j � eg� :

Theorem 4.1. For 1 � u � 1
K log 1

e, and e � 1
2, we have

P Te � ued log 1
e

ÿ � � eÿKu : �4:1�

The proof of Theorem 1.4 is based upon the following extension of
Theorem 4.1.

Theorem 4.2. Consider t1; . . . ; tk 2 RN , and g � infi6�j jti ÿ tjj. For
a � g=2; e > 0 consider

T � k�f�u1; . . . ; uk� 2 RkN ; 8i � k; jui ÿ tij � a; jX �ti� ÿ X �ui�j � eg�:

Then we have, for all e � aa=2, all 1 � u � 1
K log aa

e that

P�T � �ued log aa

e �k� � eÿKu :

If the processes �X �t��t2Bi
�Bi � ft; jt ÿ tij � ag� were inde-

pendent, Theorem 4.2 would follow from Theorem 4.1. (Since, how-
ever, Theorem 4.1 relies upon arguments for which independence is
the worst case lack of independence is not an issue.)
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The standard way to write down these results would consist of
providing the proof of Theorem 4.2, arguing that Theorem 4.1 is a
special case.

This would make the proof harder to read; which would be a pity,
since it is the argument in the paper that seems to require the most
imagination. Thus, we have decided rather to write down the proof of
Theorem 4.1, and to leave the pretty straightforward extension re-
quired by Theorem 4.2 to the interested reader.

The starting point of our approach is the following simple result.

Lemma 4.3. Consider a r:v: X � 0, and assume

EX n � nn=Kn
1 ; EX 2n � K2n

2 �2n�2n

Then

P X � n
2K1

� �
� 1

�16K1K2
2 �n

:

Comment. Thus P�X � u� � eÿKu for u � n
2K1

.

Proof. The (elementary) Paley-Zygmund inequality states that, for a
r.v. Y � 0, we have

P Y � EY
2

� �
� 1

4

�EY �2
EY 2

: �4:2�

We use this for Y � X n. We get

P X n � nn

2Kn
1

� �
� 1

4

n2n=Kn
1

K2n
2 �2n�2n �

1

�16K1K2
2 �n

: (

We will use Lemma 4.3 with X � Te; thus we have to get upper and
lower bounds for ET n

e , that will be obtained respectively in (4.5) and
(4.12) below. As is classical, we write

T n
e �

Z
Cn

Y
i�n

1fjX �ti�j�eg dk�t1; . . . ; tn�

where

Cn � ft1; . . . ; tn;8i � n; jtij � 1g ;
and thus

ET n
e �

Z
Cn

P �8i � n; jX �ti�j � e� dk�t1; . . . ; tn� : �4:3�

To ®nd an upper bound, we observe that by Lemma 2.4 we have
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P �jX �tn� j � e j 8i � nÿ 1; jX �ti�j � e� � Ked

max�e1a; jtnj;mini<n jtn ÿ tij�ad :

�4:4�
We observe that, setting t0 � 0, we have

max e
1
a; jtnj;min

i<n
jtn ÿ tij

� �ÿad

�
X
0�j�n

max�e1a; jtn ÿ tjj�ÿad :

Combining with (4.3), and since N � ad, we get the induction relation

ET n
e � Kned log 1

e E�T nÿ1
e �

from which it follows that

ET n
e � Kned log 1

e

ÿ �n
: �4:5�

Next, we turn to the more delicate task of ®nding a lower bound for
ET n

e of the correct order. It su�ces to consider the case n � 2p. For
k < p, we set Fk � ft1; . . . ; t2kg.
Lemma 4.4. Assume jt1ja � 2ÿpe, and assume that d�ti; Fk�a � e2kÿp for
k < p; 2k < i � 2k�1. Then

P�8i � n; jX �ti�j � e� � 1

jt1jad

ed

K

� �n Y
0�k<p

Y
2k<i�2k�1

1

d�ti; Fk�ad :

Proof. Step 1. For k � 0 and 2k < i � 2k�1, we consider 1 � a�i� � 2k

such that jti ÿ ta�i�j � d�ti; Fk�. We observe that if

jXt1 j � e2ÿp �4:6�
8k < p; 8i; 2k < i � 2k�1; jXti ÿ Xta�i� j � e2kÿp �4:7�

then

8i � 2p; jXti j � 2e :

Step 2. We recall Sidak's theorem: for any family �Yj� of jointly
gaussian centered r.v., we have

P �8j; jYjj � ej� �
Y

j

P �jYjj � ej� : �4:8�

We denote by �Y `�t��`�d the components of X �t�. Thus, by (4.8) the
probability that (4.6) and (4.7) occur is at least
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Y
`�d

P jY `�t1�j � e2ÿp���
d
p

� �Y
k<p

Y
2k<i�2k�1

P jY `�ti� ÿ Y `�tai�j �
e2kÿp���

d
p

� �" #
: �4:9�

Step 3. We recall the elementary fact that

8g > 0; P �jY `�u� ÿ Y `�t�j � g� � 1

K
min 1;

g
jt ÿ uja

� �
;

as follows simply from the fact that normal law has density of order 1
close to zero. Thus (4.9) is bounded below by

1

Kn min 1;
e2ÿp���
d
p jt1ja

 !dY
k<p

Y
2k<i�2k�1

min 1;
e2kÿp���

d
p jti ÿ ta�i�ja

 !d

� 1

Kn

2ÿpe
jt1ja

� �d Y
k<p

Y
2k<i�2k�1

e2kÿp

jti ÿ ta�i�ja
 !d

:

To conclude, it su�ces to observe that

2ÿp
Y
k<p

2�kÿp�2k � Kÿn : (

Lemma 4.5. Assume n � 1
K log 1

e. Then there exists a subset D of C2p with
the following properties

Every �t1; . . . ; t2p� in D satis®es the condition of Lemma 4.4. (4.10)Z
�t1;...;t2p �2D

1

jt1jad

Y
k<p

Y
2k<i�2k�1

1

d�ti; Fk�ad dk�t1; . . . ; t2p� �4:11�

� 1

K

� �nY
k<p

2ÿp�k log
1

e

� �2kY
k<p

�2k�! :

Before the reader tries to swallow this condition, it might be helpful
to see why this ®nishes the proof of Theorem 4.1. Indeed, combining
with Lemma 4.4, we see that

ET n
e �

ed

K

� �n

log
1

e

� �nY
k<p

2ÿ�pÿk�2k
2

P
k<p

k2k � ned

K
log

1

e

� �n

: �4:12�

Proof of Lemma 4.5. To construct D, we set

ek � e�1�2
ÿp�k�=2 :
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Observe that ek decreases, and that

ek�1
ek
� e2

ÿp�kÿ1

Thus

ek�1
ek
� e2

ÿpÿ1 � 1

8
�4:13�

if n � 2p satis®es n � 1
K log 1

e. De®ne

Hk�t� � fx 2 RN ; ek�1 � jxÿ tj � ek=4g:
We de®ne D by the following conditions. We require that t1 2 H0�0�.
Next, if 2k < ` � 2k�1 for 0 � k < p, we require that there is an index
a�`� � 2k such that t` 2 Hk�ta�`��. Moreover, the map `! a�`� is one to
one. It might be useful to think of D as being constructed recursively.
Once �t`�; ` � 2k has been constructed, one then throws a point exactly
in each of the sets Hk�t`�; ` � 2k. If 2k < ` � 2k�1, we now show that
ek�1 � d�t`; Fk� � ek=4. The right hand side inequality is obvious. To
prove the left hand side inequality one simply observes by induction
over k using (4.13), that jt` ÿ t`0 j � ek if ` 6� `0; `; `0 � 2k. To prove the
condition of Lemma 4.4, it su�ces to observe that for 0 � k < p, we
have

ek�1 � e
1
2�1�2ÿp�k�1� � e2kÿp :

Indeed, as k increases, ek�1 decreases while 2k increases; thereby, it
su�ces to check the above inequality for k � p ÿ 1 where it becomes
e � e=2. To check that D � C2p , we simply use the fact that (by in-
duction on k) if i � 2k�1, then jtij �

P
0�`�k e`=4, so that by (4.13)

jtij � 2e0 � 2
��
e
p

.
Finally, it remains to prove (4.11). But this is an easy consequence

of the fact that Z
t2Hk�0�

1

jtjad dt � 1

K
2ÿp�k log

1

e
: (

5. End of proofs in the critical case

Throughout this section, we set Rp � 2ÿ2
2p

. As a ®rst step, we have to
prove a result of the nature of Proposition 3.4. This is somewhat more
delicate that what one would hope.

Proposition 5.1. We can ®nd b; 1 < b < 1=a; x0 > 0 and p0 such that if
p � p0 and x0 � x � p the event
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9r; R2p � r � Rp; k�ft; jtj � rb; jX �t�j � 3rg� � xrd

K
log

1

r
�5:1�

has a probability at least 1ÿ 2ÿ�1�d�22p�x0ÿx
.

Proof. Consider c > 1 to be determined later (as well as b), and
r` � 2ÿc` . Thus R2p � r` � Rp for 22

p � c` � 22
2p
. It follows from

Theorem 4.1 (and rescaling) that the event

k�fjtj � rb
` ; jX �t�j � r`g� � x�1ÿ ab� r

d
`

K
log

1

r`

has probability �2ÿx if x � x0. As ` varies, these events are not in-
dependent. To create independence, we replace the process X �t� by the
process X �t; a`; b`� where a`; b` will be chosen later. Set
A` � r2b` a2ÿ2a` � bÿ2a` . We see that if we arrange that A` � 2r2b

0

` for
some b0 > 1, then Lemma 2.2 implies that for p large enough

P sup
jtj�rb

`

jX �t� ÿ X �t; a`; b`�j � r`

0@ 1A � exp ÿ 1

Kr2b
0ÿ2

`

 !
:

This suggests the choice b` � rÿb0=a
` ; a` � rÿ�b

0ÿb�=�1ÿa�
` . Since r`�1 � rc

` ,
we see that given c, we can choose b0 > 1 and b > 1=a such that
b` � a`�1 for each `. The events

k�ft; jtj � rb
` ; jX �t; a`; b`�j � 2r`g� � x�1ÿ ab� r

d
`

K
log

1

r`

are independent, and each has a probability �2ÿxÿ1 if p0 is large
enough. For c � 2, there are at least 22p=K log c such events. Thus the
probability that one such event occurs is at least

1ÿ �1ÿ 2ÿxÿ1�22p=K log c � 1ÿ exp�ÿ22pÿx=K log c�
� 1ÿ 1

2 2
ÿ�1�d�22p�xÿx0

if c has been chosen close enough to one. But then (if p0 is large
enough) the probability that

9`; r` � R2p; sup
jtj�rb

`

jX �t� ÿ X �t; a`; b`�j � r`

is at most

k
log c

22p exp�ÿ1=KR2b0ÿ2
p � � 1

2
2ÿ�1�d�22p�xÿx0 :

(In summary, we choose c, then b and b0, then p0!.) (
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Comment. Proposition 5.1 will be used mostly for x � p. A di�culty
there is that for this choice of x it does not seem possible to guarantee
that the probability that (5.1) does not happen is less than (say)
1= log�Rÿ12p � � 2ÿ2

2p
. This makes it impossible to control (as we did in

the transient case) the contribution of the points where (5.1) fails by
the modules of continuity. (To circumvent the di�culty, we will use a
two stage procedure).

We now complete the proof of Theorem 1.3. We set
B1 � ft; jtj � 1g. Using Fubini's theorem, we see that

P
p P �Xc

p� <1
where Xp is the event de®ned by the following conditions

k�Up� � �1ÿ 2ÿ2
p�k�3B1� �5:2�

where

Up �
�

t 2 3B1; 9R2p � r � Rp; k�fu; juÿ tj � r; jX �t� ÿ X �u�j � 4rg�

� p
rd

K
log

1

r
� 1

K
rd log

1

r
log log log

1

r

�
:

k�Vp� � �1ÿ 2ÿ�1�d�24p�k�2B1� �5:3�
where

Vp �
�

t 2 2B1;9r;R4p � r � R2p;

k�fu; juÿ tj � rb; jX �t� ÿ X �u�j � 4rg� � 1
K rd log 1

r

	
:

If C is a dyadic cube of order ` � 22
4p
that meets B1, its image under

X ��� has diameter at most K2ÿ`a
��̀p
. (5.4)

To ensure (5.2), we use Proposition 5.1 with x � p; and with x � x0
(and 2p rather than p) to ensure (5.3). As for (5.4), this of course
follows from Lemma 2.3.

Before we ®nish the proof, let us recall the following standard fact.

Lemma 5.2. Given a family of balls F of bounded radius of Rd , there is
a disjoint subfamilyF0 such that if one enlarges the radius of the balls of
F0 by a factor 5 (without changing their centers) the resulting familyF00

covers F.

Proof. Think of Vitali's covering theorem. (

We now continue the proof of Theorem 1.3. For a ball A of Rd , we
denote by rA its radius. Consider the family F of balls A of Rd , of
radius R2p � rA � Rp that satisfy

k�fu 2 3B1; X �u� 2 Ag� � rd
A

K
log

1

rA
log log log

1

rA
: �5:5�
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Consider the disjoint subfamily F01 of F1 and the family F001 given by
Lemma 5.2. Consider the family F2 of balls A of Rd , of radius
R4p � rA � R2p, that are disjoint from the balls of F001 and that satisfy

k�fu 2 2B1; X �u� 2 Ag� � rd
A

K
log

1

rA
: �5:6�

and the disjoint subfamilyF02 and the familyF002 given by Lemma 5.2.
First, we observe from (5.5) thatX

A2F01
rd

A log
1

rA
log log log

1

rA
� K : �5:7�

Next, we observe that if X �u� 2 A for A 2F2, then we must have
u j2Up (for otherwise there is r;R2p � r � Rp, such that the ball of
center X �u� and radius r belongs to F1, and thus is contained in the
union of the balls of F001). Thus[

A2F02
fu 2 2B1; X �u� 2 Ag � 3B1nUp

and combining with (5.6), (5.2),X
A2F02

rd
A log

1

rA
� K2ÿ2

p
:

Since log log log 1
rA
� Kp for A 2F02, we getX

A2F02
rd

A log
1

rA
log log log

1

rA
� K �5:8�

(with huge room to spare) Consider now the smallest integer ` such
that K2ÿ`a

��̀p � R4p, where K is the constant of (5.4). Thus ` � K22
4p
.

Consider the family G of balls obtained by taking each ball of
F01;F

0
2, and tripling its radius. If u 2 B1 is such that X �u� does not

belong to the union of G, the dyadic cube of order ` that contains it is
entirely in 2B1nVp. There are at most M � K2N`2ÿ2

4p�1�d� dyadic cubes
of order ` contained in 2B1nVp. The image of each of them has a
diameter � K2ÿ`a

��̀p
:� r0. Thus the part of X �B1� not covered by G

can be covered by M balls of radius r0, and

Mrd
0 log

1

r0
log log log

1

r0
� KM2ÿ`N`1�

d
2p

� Kp2ÿd24pÿ1 � K :

The proof is complete. (
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As for the proof of Theorem 1.4, it is best described by saying that
one combines the methods of Theorem 1.2 and Theorem 1.3; or, al-
ternatively, that this proof is to Theorem 1.3 what Theorem 1.2 is to
the results of [T2]. There is however one di�culty, namely that (with
the notation of Theorem 1.2) one controls jX 2�t� ÿ X 2�s�j only by
Kjt ÿ sj, while in the argument of Theorem 1.3, there are points
possibly at distance of order one, the images of which are put together
in one of the balls of our covering. This di�culty is solved by a
re®nement of the covering principle of Lemma 5.2 (using balls in
RNk�dk rather than Rdk). The details are better left to the interested
reader.
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