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Abstract. Consider 0 < o < 1 and the Gaussian process Y(z) on RY
with covariance E(Y(s)Y(¢)) = |t + |s|* — |t — s|**, where |¢| is the
Euclidean norm of ¢. Consider independent copies X',..., X4 of ¥
and the process X(f) = (X'(¢),...,X9(¢)) valued in IR?Y. When
kN < (k— 1)ad, we show that the trajectories of X do not have k-
multiple points. If N < ad and kN > (k — 1)ad, the set of k-multiple
points of the trajectories X is a countable union of sets of finite
Hausdorff measure associated with the function ¢(g) = N/*-(k-1d
(loglog(1/€))". If N = ad, we show that the set of k-multiple points of
the trajectories of X is a countable union of sets of finite Hausdorff
measure  associated ~ with  the function ¢(e) = &/(log(1/e)
logloglog1/¢)*. (This includes the case k = 1.)

Mathematics Subject Classification (1991): 60G15, 60G17, 60G18,
28A78

1. Introduction

Classical results [R], [T], [C — T}, indicate that a portion R of the tra-
jectory of R valued Brownian motion satisfies 0 < 1y (R) < oo, where
1, 1s Hausdorfl measure associated with the function ¢ given by

*Work partially supported by an NSF grant.
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¢(e) = e*loglog(1/¢) for d > 3 and () = &*log(1/¢)logloglog(1/e)
for d = 2. Classical results indicate [D-E-K-1] that no double points of
the trajectories exist for d > 4, that double points, but not triple
points exist for d = 3, [D-E-K-T] and that multiple points of all orders
exist for d = 2 [D-E-K-2]. More recently, the size (with respect to
Hausdorff measure) of the set of double points (for d = 3) or of k-
multiple points (d = 2) was completely clarified [LG].

The basic process considered in this paper is the Gaussian process
X(¢) from RY to R? such that

E(|X(6) = X(s)I") = dlt — s

where 0 < a < 1, and where |.| denotes the Euclidean norm. Following
[K], we call this process the (N,d,o) Gaussian process. Brownian
motion is the (l,d,%) Gaussian process; Lévy’s multiparameter
Brownian motion is the (N, d, 1) process; Fractional Brownian motion
is the (1,d,o) process. The components of the (N,d,o) Gaussian
process are independent (N, 1,a) processes.

It would be hard to argue that Brownian motion is not the most
important (N,d, o) Gaussian process. It is also extraordinary special.
As soon as N > 1 or d # %, crucial properties (such as the Markov
property) are lost, and the resemblance of the corresponding process
with Brownian motion is only superficial. Our motivation for ex-
tending results classical for Brownian motion to the (N, d, o) Gaussian
process is not the importance of this process, but rather that the case
of Brownian motion suffers from an over abundance of special
properties; and that moving away from these forces to find proofs that
rely upon general principles, and arguably lie at a more fundamental
level. Fractional Brownian motion might not be an object of central
mathematical importance but abstract principles are.

In the transient case (N < ad) it was shown in [T], following nu-
merous previous results, that if L is a compact set of nonempty inte-
rior, then a.s., 0 < p,(L) <oo, where i, denotes the Hausdorff
measure associated to the function ¢(e) = £¥/*1loglog(1/e). The pur-
pose of the present paper is to extend the upper bound part of this
result to the case of multiple points and to the critical case N = ad.
The problem of lower bounds, that rely upon different techniques, and
are possibly more difficult, remains open.

We say that a point x of R is a k-multiple point of the trajectory of
X if we can find k points 7,...,4 of R?, all different, such that
x=X(t) for all £ < k.

Theorem 1.1. If kN < (k — 1)od, a.s. there exist no k-multiple points.
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Comment. Take N =1,k =2, 0= %,d =4 for a classical result. To
obtain Theorem 1.1 in the equality case AN = (k — 1)ad was part of
the motivation behind the previous work [T2]. When trying to tackle
the case of 4-dimensional Brownian motion the natural idea is first to
control the Hausdorff measure of trajectories, and then, using inde-
pendence, to show that an independent trajectory does not hit these
sets; thus the results of [T2] were conceivably a first step towards
Theorem 1.1. Unfortunately this approach, when attempted if either
N#1ora 75% runs into apparently untractable conditioning prob-
lems. Rather we will use a direct ““global” approach, relying heavily
upon the arguments of [T1]. This approach leads in fact to the fol-
lowing.

Theorem 1.2. If kN < (k — 1)ad, given any 1 > n > 0, the set of points x
of RY that can be written as x = X(t;) = --- = X (&) for

n<ltl,. .l <n 'l =4l >0 if i#) (1.1)

is a.s. of finite measure for the Hausdorff measure associated with the
function

o) = N/ =k=Dd(1og1og 1/e)* .

Next, we turn to the critical case N = ad.

Theorem 1.3. If N = ad, a.s. for each compact L of R, the set X(L) is
a.s. of finite measure for the Hausdorff measure associated to the
function

o(e) = &' log(1/¢) logloglog(1/e) .

This result seems to lie quite deeper than the corresponding result
for N < ad. The proof relies on a lower bound for a certain sojorn
time. While this bound is not surprising, its proof contains the most
creative arguments of the paper. We conjecture that if L has non
empty interior, X (L) has positive Hausdorff measure for the measure
described in Theorem 1.3.

Theorem 1.4. Assume N = ad. Then given 1 > n > 0, the set of points x
of R? that can be written as x = X (t;) = - - - =X (&) for t1,...,t; sat-
isfying (1.1) is a.s. of finite measure for the Hausdorff measure associ-
ated to the function

p(e) = ¢! (log(1/e) logloglog(l/e))k )
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The paper is organized as follows. In Section 2, we list some of the
abstract results we need. In Section 3, we prove Theorems 1.1 and 1.2.
In Section 4, we prove the key sojorn time estimate; and in Section 5,
we prove Theorem 1.3 and sketch the proof of Theorem 1.4. While the
proofs use many known ideas, they do require rather substantial
technical inventiveness, and should provide ample reward for the
motivated reader.

2. Preliminaries

Consider a set S and a Gaussian process (Z(?)),.g valued in R?(d > 1).
We provide S with the canonical distance

d(s,1) = |1Z(s) — Z(1)||, = (EZ(5) — Z(s)P)* .

We denote by N(S,¢) the smallest number of open d-balls of radius ¢
needed to cover S. The proof of Theorems 1.1 and 1.2 will heavily rely
upon the following;

Lemma 2.1. Consider a function Y, such that for all ¢ > 0 and some
C > 0 we have

W(2)/C < W(e) < CY¥(g/2) .
Assume that N(S,¢e) < Y(e) for all ¢ > 0. Then we have

P(sup |Z(t) — Z(s)| < u) > exp(— \P[(:)> )

s,tes

where K depends upon C,d only.

In the case d = 1, this is proved in [T1]. The proof in the general
case (via Sidak’s lemma and chaining) is identical.

In order to work with the (N, 1,a) process and to prove its exis-
tence, it is very useful to have a concrete representation of it. Such a
representation is based upon the fact that if 0 <« < 1, there is a
constant ¢ depending upon o, N only such that for each ¢ in R we
have

dx

’x’2tx+N : (22)

] = 2 /]RN(I — cos(t,x))

Consider two independent scattered Gaussian random measures m
and m’ on RY, with, for each 4 ¢ RY

E(m(4)*) = E(m'(4)*) = 4(4) .



Multiple points of trajectories 549

There, as well as in the rest of the paper, 4 denotes Lebesgue measure.
(We will not distinguish in the notation on which space 4 lives; this
should be clear from the context.) The process

. 3 . dm(x) ot dm' (x)
Y(t) = /]RN(I cos(t,x)) N + sin(¢, >—|x!“+%

is a version of the (N, 1,a) process, as is seen by checking through
(2.2) that E(Y(¢) — Y(s))* = |t — s|™. (At this point we must apologize
for the uncomplete formula (3.2) of [T2], a mistake that fortunately
does not affect the rest of that paper.) To solve independence prob-
lems, we consider for a,b € [0,00) the process

d . dnt
Y(t,a,b) = ¢ / (1 — cos(t, ) X | gingr x4
a<|x|<b |)C’0H_7 |)C’OH_7

We denote by X(t,a,b) the R?-valued process consisting of d inde-
pendent copies of Y(z,a,b). If b<d, the processes X(¢ a,b),
X(t,d,b') are independent.

Only minor modifications to the argument of [T2], Corollary 3.3
are needed to obtain the following

Lemma 2.2. Consider r,d,b > 0 and A = r*a>>* + b=>*. If 4 < r**, for

27‘2“
uZK(AlogA> ,

o=

we have for all t € RY

u2
P( sup |X(¢) —X(¢) — (X(¢,a,b) — X({,a,b))| > u) < eXp<_/1A> .

[ —t|<r

Here, as well as in the rest of the paper, K denotes a constant
depending upon N,«,d, only, that may vary at each occurrence.
(Specific constants are denoted by K, K>, .. ..)

The following standard estimate will also be used.

Lemma 2.3. Given R, there is a number K(R), depending only upon
R,N,d, o such that, for ¢ < %

P(w, {eRY,|t,|/| <R -] <e
= IX(1) - X(!)] < K(R)e*(logh)?) > 1 -2 .
Of crucial importance will be the following lemma of L. Pitt. [P]

Lemma 2.4. Consider t € RY u > 0. The conditional variance of Y(t)
given all Y(?) for |¢ —t| > u is at least K~ min(u, |¢])**.
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3. Proofs of Theorems 1.1 and 1.2

Consider 7 > 0 and 1,...,#4 in RY with

mina| > minls =4 =0 (3.1)

Given p > 0, we consider the random set
M(p)={xeRY Vi<k Ju,|u—t;| <px=Xu)=--=X(u)}.
(Of course M(p) depends also upon ¢, ...,#). We will show the fol-

lowing.

Proposition 3.1. a) If p is small enough, and if kN = (k — 1)od,M(p) is
almost surely empty. b) If kN < (k — 1)od, then for some constant K(n),
that depends upon n,0,N,d, but NOT upon p, we have

Ep,(M(p)) < K(n)p™

where w, is the Hausdorff measure associated to the function ¢ of
Theorem 1.2.
It should be clear that this implies Theorems 1.1 and 1.2. For i < %,
we set
Bi={uecR Ju—t|<pl; B ={ucR"ju-1t <2} .

We will determine p later on. We start the proof by a strange move;
for each i < k, we select a point # with |t; — #{| = 3p. The motivation
for this is as follows.

Lemma 3.2. For some number C| (depending possibly upon ti,..., 1,
0,n,N,a,d) we have, for all i < k

up,up € Bl = |E((Y(u1) — Y(u2)) Y (#))] < Ciluy — ua| .
Proof. This follows from the fact that

E(Y (u)X(6)) = 6 + [u™ + |1} — uf*
and that we have taken care to ensure |ff—u|>p (and |u| >
n=2p). O

The previous lemma would not work for # = ¢,.
We now denote by X, the g-algebra generated by (X (7),i < k). We
set

X2 (0) = EX(1)|Z2); X' (1) =X (1) = X°(0) .
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The processes X! (¢) and X?(¢) are independent. The main construction
will depend only upon the process X'(¢); given that process, we will
then use an averaging argument upon X>(z).

The bad news is that the process X!(¢) is somewhat more myste-
rious than the process X(¢), because it is not really clear what the
conditioning does. The good news is that for our purposes X'(¢) is a
very small perturbation of X (¢), and we will be able to deduce all the
information we need about X' (¢) from the study of X (¢).

Lemma 3.3. For some constant C, (possibly depending upon
Hyoooste,n, p, N, o, d) we have, for i <k and uy,up € B :
X2 (1) = X2 (u2)| < Colur — u maxi< [X(1)] -
Proof. This follows from Lemma 3.2, since
Xu) =Y ayEX ()X ()X ()
i,j<k

for numbers a;; depending only upon 7, ..., .

The main estimate is as follows.

Proposition 3.4. There is a constant 6 > 0 with the following property.
Given ry < 0, and for i < k a point u; in RY, we have

1 —a/N
Pl 3} <r<rpsup sup |[X(¢)—X(w) <Kr* (log log—>
i<k |t—u;|<2v/Nr r

>1—exp (— (logr—lo>%> . (3.2)

Comment. The term 2+v/N, that plays no important role, is simply for
convenience when replacing balls by cubes.

Proof. First we prove that given r,

U

P(sup sup | X (1) — X(w)| < u) > exp(—Klr> . (3.3)

1=k Jt—u;| <2V/Nr g
To see this, we simply apply Lemma 2.1 to the R* valued process
Z(tr, k) = (X(t))i<s
defined for |t; — u;| < 2v/Nr, keeping in mind that
E|Z(t1,... ) = Z(ty,. ... )P <> |t — £

i<k
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to see that we can use W(s) = Kr/ex.

Once (3.3) is obtained, the rest of the argument is very similar to
the proof of Proposition 4.1 of [T2], and there seems to be no point in
reproducing it. Ll

We now start the main construction. For p > 1, consider the set

R :{(ul,...,uk)EB/l X ... x B, 3r, 27X < p <L 2P,

1 —o/N
sup  sup | X(¢) — X(w)| < Kxr® (loglog—> } .
i<k |t—u,~\§2\/ﬁr r
It then follows from Fubini’s theorem and Proposition 3.4 that we

have »_ P(Q,,) < oo, where @, is the event

HRy) = HB x ... x B'k)<1 _exp(—\/;)) .

To apply Lemma 3.3, we consider § > 0 with « + f < 1 and the event
Q,, given by

max X (2)] < 2%

i<k
so that ) P(€Q,,) < co. It follows from Lemma 3.3 that there is py
such that 1f p > py, then on the event Q,3 = Q, 1 NQ, >, we have

(ur,...,up) ER, = I, 27 < p <277,

sup  sup | X'(1) — X' ()| < K3r* <log log —) . (34
i<k || <2v/Nr r

Let us recall that a dyadic cube of order ¢ is a product of intervals
[m2=¢, (m +1)27‘[. For u in R", denote by C,(u) the dyadic cube of
order ¢ that contains u. For wuj,...,u; in RY, denote by
Co(ur, ... ux) = Co(uy) X ... x Cy(ux) the dyadic cube of order ¢ of
R* that contains (uy,...,u;) € R®™. We say that Cy(u;) x --- x
Ci(uy) is a good cube of order ¢ if it has the property that

Vi <k, sup  |X(s) —X'(0)| < dp , (3.5)

5,0€Cy(u;)NB;

where d; = 8K32 *(loglog2’) V. It follows from (3.4) that (if
p > po), each point (uy,...,u;) of R, is contained in a good dyadic
cube of order ¢, with p < ¢ < 2p. Thus, we can find a covering of R, by
a disjoint family #; of good dyadic cubes. This family depends only
upon the process X'!(¢). Consider the family #, of dyadic cubes of
order 2p of R®| that meet By X --- x By, but are not contained in any
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cube of . For p large enough, these cubes are contained in
B x --- x B}, and hence in B} x --- x B;\R,, so that (when Q,3, oc-
curs) their number is at most

Ci2*MP exp ( — \/Tp ) (3.6)

when Cj; does not depend upon p.

We set # = #1UAH,. This family of dyadic cubes covers
By x -+ x B, and is always well defined (although we cannot say
much about it unless €, 3 occurs).

Next, we proceed to the construction of a certain family of balls of
R?. For each cube in 4 in # we pick a distinguished point v, in 4, say
U4 = (V415 Uak)s Va, € RY for i < k. We consider the ball B, of R
defined as follows:

— If A € #, is a dyadic cube of order ¢, we take for B, the ball of
center X (vy4,1), of radius ry = 4d,
— If A € A, (this is a dyadic cube of order 2p), B, is the ball of center

X(v4,1) of radius r4 = K427 /logp.

There we choose Ky large enough that 2121 P(Q,4) < oo where Q4 is
the following event:

For each dyadic cube C of order 27% of R" that meets |J,., B;, we
have -

sup |X (¢) — X (u)| < Ks272\/p .

tueC

This is possible by Lemma 2.3. We consider the event Q, = Q,3 N Q, 4.
For each 4 in s, we define the event Q, as

Vi,2 S i S k, ‘X(UAJ) —X(UA,[)‘ S rq . (37)
We consider the family % of balls B,(4 € »#°) for which Q4 occurs.

Lemma 3.5. On Q,, 7 covers M(p).

Proof. Consider x in M(p). By definition, we can find for i < k a point
u; in B; such that X (u;) = x. The point (uy, ..., u;) belongs to a certain
cube 4 of . We will show that B, contains x, and that B, belongs to
Z . We will consider only the case 4 € 5. (The similar case 4 €
is left to the reader.) Consider the distinguished point (v41, ..., v4x) Of
A. By (3.5) we have

Vi<k, |X'(v4;)—X'(w) <ds .
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Thus (if p > pp) by Lemma 3.3 we have
X (v4:) — X (u;)] < 2dy.
Since X (u;) = x, this implies that Q4 occurs, and that x € By. ]

Consider the function

f(x) = N2 (log logi)k.

Lemma 3.6. If Q, occurs, and p is large enough, we have

> fra) SKABy x - x By) .

AeH
Proof. If A € ', is a dyadic cube of order ¢, simple estimates show
that

frq) < K27V,

If 4 € 5, (is thus a dyadic cube of order 2p) we have

S(ra) < K272PN PV log p)t
Recalling (3.6) yields the result. |

We now denote by X; the o-algebra generated by the process
(X'(¢)). Thus # depends upon X; only. The basis of the averaging
argument is as follows.

Lemma 3.7. If p is small enough, for some constant K (n) depending only
upon 11, N,d, o, we have

P(Qu[Z1) < K™

Proof. Given v; € B; for i < k, it suffices to show that if » is small, for
any choice of a; in R? we have

P(Vi,2<i<k, |X*v1)—X2(v;)—a]<r)<K(@n)rhHd
With obvious notation, using independence, it suffices to prove that
P(Vi,2<i<k, [V(0)—Y(v;)—bi| <r) <K@r" .

Proceeding by induction over £, it suffices to show that the conditional
variance of Y?(v;) given Y*(v1),...,Y?(v;,_1) remains bounded below
by a number depending only upon «,#. But this follows easily from
the fact that E|Y (v;) — Y(t§)|2 < (2p)* and Lemma 2.4. O

Assume now kN < (k — 1)ad, and consider the function
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o(x) = AN/~ (1og logi)k .

Lemma 3.8. If p is small enough that Lemma 3.7 holds true, we have for
p large enough

E<lgp > (p(rA)> < K(n)A(By x -+ x By) .
AeF

Proof. We compute the left-hand side by first taking expectation
conditionally in X, and combining Lemmas 3.6 and 3.7. O

It is now routine to deduce Proposition 3.1 from Lemmas 3.5 and
3.8.

4. Sojourn time estimate

We now start the study of the critical case, N = ad. The proof of
Theorem 1.3 is based upon an estimate for the tails of the “sojourn
time”’

T, = A{t € RY; 7] <1, |X(2)| <e}) .
Theorem 4.1. For 1 <u < %log % and ¢ < % we have
P(T, > ue’logl) > e % . (4.1)

The proof of Theorem 1.4 is based upon the following extension of
Theorem 4.1.

Theorem 4.2. Consider t,....t; € RY, and n= infi.; |t; — t;]. For
a <n/2, &> 0 consider

T=2({(w,...,w) € R Vi <k, u; — 1] < a,|X(6) = X (w;)| < &}).

Then we have, for all ¢ < a”/2, all 1 <u < +log% that
d a*\k —Ku
P(T > (ue“log®)") > e :

If the processes (X(2)),5 (Bi={t;|t—1t|<a}) were inde-
pendent, Theorem 4.2 would follow from Theorem 4.1. (Since, how-
ever, Theorem 4.1 relies upon arguments for which independence is
the worst case lack of independence is not an issue.)
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The standard way to write down these results would consist of
providing the proof of Theorem 4.2, arguing that Theorem 4.1 is a
special case.

This would make the proof harder to read; which would be a pity,
since it is the argument in the paper that seems to require the most
imagination. Thus, we have decided rather to write down the proof of
Theorem 4.1, and to leave the pretty straightforward extension re-
quired by Theorem 4.2 to the interested reader.

The starting point of our approach is the following simple result.

Lemma 4.3. Consider a r.v. X > 0, and assume

EX" > n"/K!;  EX* < K2"(2n)™
Then

n 1
PlxX>_—"|>__~— .
< _2K1> ~ (16K,K3)"

Comment. Thus P(X > u) > e X for u = T

Proof. The (elementary) Paley-Zygmund inequality states that, for a
r.v. Y >0, we have

2
(D)t
We use this for ¥ = X". We get
P(X" > > 1 /Ky 1 . O
T2K7) T ARM(2n) T (16KK3)"

We will use Lemma 4.3 with X = T;; thus we have to get upper and
lower bounds for ET}, that will be obtained respectively in (4.5) and
(4.12) below. As is classical, we write

]:Sn — / H l{lX(li)\SS} dl(l], - ,tn)
n i<n
where
Co={t1,...,t;;Vi<mt;| <1},
and thus
ET—/ POV <m | X(1)| < &) diltr, . 8) . (43)

n

To find an upper bound, we observe that by Lemma 2.4 we have
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Kef
tn|a 1/ninl'<n |tn - ti|
(4.4)

P(X () | <elVi<n—1,1X(6)] <¢) < 1
max (e,

)ocd :

We observe that, setting p = 0, we have
1 —od 1
max ( ], min 1, — z,-|> < 3 max(eh o — o)
i<n N
0<j<n
Combining with (4.3), and since N = ad, we get the induction relation
ET! < Kne’ logLE(T")

from which it follows that

ET" < (Knelogh)" . (4.5)

Next, we turn to the more delicate task of finding a lower bound for
ET!" of the correct order. It suffices to consider the case n = 27. For
k <p, weset Fp={t1,...,tx}.

Lemma 4.4. Assume |t;|* > 27P¢, and assume that d(t;, ;)" > €257 for
k< p, 28 <i <2 Then

1 [e\" 1
P(Yi < n, |X(1)] < &) > —— <—> L
|t1| K 0<11p 2k<1:[2k+1 d(tiaFk)

Proof. Step 1. For k > 0 and 2% < i < 2%, we consider 1 < a(i) < 2
such that [t; — t,;| = d(t;, F;). We observe that if

Xy | <e27F (4.6)
Vk <p, Vi, 2t <i<2" X, —X, | <2t (4.7)
then
Vi<2P, X, | <2 .

Step 2. We recall Sidak’s theorem: for any family (Y;) of jointly
gaussian centered r.v., we have

P9y Y < &) > [[PUYI < &) - (4.8)

We denote by (Y‘(t)),-, the components of X(r). Thus, by (4.8) the
probability that (4.6) and (4.7) occur is at least
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11 <|Yf 1 |<_>H 11 (yé ye(;al_)|§£f/k;>] . (4.9)

1<d k<p 2k <ij<2k+1

Step 3. We recall the elementary fact that

| n
P(|Y (u) = Y(0)| <n) > — 1
>0, POV - Y] <) > gmin(1 )

as follows simply from the fact that normal law has density of order 1
close to zero. Thus (4.9) is bounded below by

T T1 o120 )
min|l,—
\/_‘tl k<p 2k<j<2k+1 \/g‘ti - ta(i)‘a

_ d k— d
. 1 (2 p8> H H g2 P
K\ ")\ e i [t = ta]”

To conclude, it suffices to observe that

2—PH2(k—P)2k > K", n

k<p

Lemma 4.5. Assume n < logi. Then there exists a subset D of Cy with
the following properties

Every (#1,...,t») in D satisfies the condition of Lemma 4.4. (4.10)

1 1
T od ﬁdi(fl,...,tzﬁ) (411)
/(f|~,~~7l2ﬁ>€D ‘tl‘ dlgzzk}:[%*' d(tiﬂf}c) ¢

> @)nH(zW log%> 2k]‘[(z’f)! .

k<p k<p

Before the reader tries to swallow this condition, it might be helpful
to see why this finishes the proof of Theorem 4.1. Indeed, combining
with Lemma 4.4, we see that

" e\ 52 ned  1\"
ET" > (E) <log ) [[2 9% 22" > <?logg> L (412)

k<p

Proof of Lemma 4.5. To construct D, we set

g = 1272
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Observe that ¢, decreases, and that
k41 —ptk—1
+Ho_ 2
&k
Thus
Ek+1
&k

<" <

(4.13)

0| —

if n = 27 satisfies n < £logl. Define
Hk(l) :{XGIRN; &1 < |x—t| Ssk/4}.

We define D by the following conditions. We require that ¢; € Hy(0).
Next, if 28 < ¢ < 2¥1 for 0 < k < p, we require that there is an index
a(f) < 2% such thatt, € H;(t4(c))- Moreover, the map £ — a() is one to
one. It might be useful to think of D as being constructed recursively.
Once (), £ < 2¥ has been constructed, one then throws a point exactly
in each of the sets Hy(t;),¢ < 2F. If 2% < ¢ < 2%, we now show that
err1 < d(ty, Fy) < g /4. The right hand side inequality is obvious. To
prove the left hand side inequality one simply observes by induction
over k using (4.13), that |t, — tp| > & if £ # ¢/, 4,0 < 2%, To prove the
condition of Lemma 4.4, it suffices to observe that for 0 < k < p, we
have

1 —pthk+1 _
gl = g+2 ) > gkr

Indeed, as k increases, ¢4 decreases while 2* increases; thereby, it
suffices to check the above inequality for £ = p — 1 where it becomes
¢ >¢/2. To check that D C Cy», we simply use the fact that (by in-
duction on k) if i <251 then |1,] <>, .4 &/4, so that by (4.13)
;] < 269 < 2¢/e. o

Finally, it remains to prove (4.11). But this is an easy consequence
of the fact that

1 1 1
/ — dt > —2"P*log— . ]
1€t (0) || K &

5. End of proofs in the critical case

Throughout this section, we set R, = 22" As a first step, we have to
prove a result of the nature of Proposition 3.4. This is somewhat more
delicate that what one would hope.

Proposition 5.1. We can find f,1 < p < 1/a,xo > 0 and py such that if
p > po and xo < x < p the event
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d
1
I, Ry <r <R, ;({t;yzygrﬁ,p((z)\gsr})z’%log; (5.1)

has a probability at least 1 — 2-(1+d)2770™

Proof. Cons1der y > 1 to be determined later (as well as f), and
ry =2"". Thus Ry <1 <R, for 2% <y < 22”1t follows from
Theorem 4.1 (and rescaling) that the event

rd 1
Al < 5 X @] < ) 2 (1 - 2) 3 log

has probability >27* if x > xo. As £ varies, these events are not in-
dependent. To create independence, we replace the process X (¢) by the
process X(t,as,by) where a; b, will be chosen later. Set
Ay = rﬁﬂ ~2% 4+ ;2. We see that if we arrange that 4, < 2réﬁ for
some ' > 1, then Lemma 2.2 implies that for p large enough

1
P sup |X(t)—X(t,a/;,bg)|ng SeXp —m .
Kr,

B
\t|§r[

This suggests the choice by =7, B/ rz_(ﬂ/_ﬁ)/(l_“). Since 7o =7y,
we see that given y, we can choose B >1 and B> 1/« such that
by < ayy for each £. The events
y o0 )
A6t < s X (8, ae, by)| < 2re}) 2 x(1 = off) - -log
re
are independent, and each has a probability >2="! if p, is large
enough. For y < 2, there are at least 27 /K logy such events. Thus the
probability that one such event occurs is at least

| — (1 — 2 1)2/Klogy 5 ¢ _ exp(—2%*/K logy)
Z 1 _ %27(1+d)22p+x—x0

if y has been chosen close enough to one. But then (if py is large
enough) the probability that

Ew,rg < Rzp, sup ’X(t) —X(l, ag,bg)‘ >

le|<r”
is at most
1

Lzﬂ’exp( I/KR2,B' 2) Zo (1+d) 2255 .
logy

l\)

(In summary, we choose 7, then 8 and f, then py!.) O
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Comment. Proposition 5.1 will be used mostly for x = p. A difficulty
there is that for this choice of x it does not seem possible to guarantee
that the probability that (5.1) does not happen is less than (say)
1/1og(R;,) =2 272" This makes it impossible to control (as we did in
the transient case) the contribution of the points where (5.1) fails by
the modules of continuity. (To circumvent the difficulty, we will use a
two stage procedure).

We now complete the proof of Theorem 1.3. We set
By = {#;]¢| < 1}. Using Fubini’s theorem, we see that >, P(€2)) < oo
where Q, is the event defined by the following conditions

WUp) > (1=272)2(381) (5.2)
where

U, = {t € 3By; 3Ry, < r < Rp; A{us Ju — 8] <7 |X (1) — X (u)| < 4r})

411 1 1
Zp%log; > Erd log;logloglog;} .
AV, > (1 =272y 0By (5.3)

where
V, = {t € 2BI,E|I/',R4P < r < Ryp;
M{us fu— o) < PN (1) = X ()] < 4r}) > g logt }

If C is a dyadic cube of order ¢ > 22¥ that meets By, its image under
X(-) has diameter at most K2~*//. (5.4)

To ensure (5.2), we use Proposition 5.1 with x = p; and with x = x
(and 2p rather than p) to ensure (5.3). As for (5.4), this of course
follows from Lemma 2.3.

Before we finish the proof, let us recall the following standard fact.

Lemma 5.2. Given a family of balls F of bounded radius of R?, there is
a disjoint subfamily F' such that if one enlarges the radius of the balls of
F' by a factor 5 (without changing their centers) the resulting family F"
covers F .

Proof. Think of Vitali’s covering theorem. O

We now continue the proof of Theorem 1.3. For a ball 4 of RY, we
denote by ry its radius. Consider the family % of balls 4 of IR?, of
radius Ry, < ry < R, that satisfy

d
A({u€3B; X(u) € 4}) > r—Alogilogloglogi . (5.5)
K ry ry



562 M. Talagrand

Consider the disjoint subfamily | of #, and the family # given by
Lemma 5.2. Consider the family %, of balls 4 of RY, of radius
R4, < ry < Ry, that are disjoint from the balls of #7 and that satisfy

H({u € 2B X () € 4)) > ﬁlogl | (5.6)
¥4

and the disjoint subfamily #7 and the family #7 given by Lemma 5.2.
First, we observe from (5.5) that

1 1
Z rj logalog log loga <K . (5.7)

AeT

Next, we observe that if X(u) € 4 for 4 € #,, then we must have
u¢ U, (for otherwise there is r,Ry, < r < R,, such that the ball of
center X (1) and radius r belongs to %, and thus is contained in the
union of the balls of Z). Thus

U {u€2Bi;:X(u) € 4} C 3B\U,

g
AeF,

and combining with (5.6), (5.2),

Z rAlog <K2’2p .

Ale

Since loglog log% < Kp for 4 € 77, we get

1 1
Z M logalog log loga <K (5.8)

a!
AeF)

(with huge room to spare) Consider now the smallest integer ¢ such
that K2=*\/¢ < Ry4,, where K is the constant of (5.4). Thus £ < K227,

Consider the family G of balls obtained by taking each ball of
F, 7", and tripling its radius. If u € By is such that X (u) does not
belong to the union of G, the dyadic cube of order ¢ that contains it is
entirely in 2B;\¥,. There are at most M = K2V2-2"(1+4) dyadic cubes
of order ¢ contained in 2B;\V¥,. The image of each of them has a
diameter < K27*+/f := ry. Thus the part of X(B;) not covered by G
can be covered by M balls of radius »y, and

1 1
Mrdlog—logloglog— < KM2 Ngip
ro ro

<Kp2 "' <k .
The proof is complete. O
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As for the proof of Theorem 1.4, it is best described by saying that
one combines the methods of Theorem 1.2 and Theorem 1.3; or, al-
ternatively, that this proof is to Theorem 1.3 what Theorem 1.2 is to
the results of [T2]. There is however one difficulty, namely that (with
the notation of Theorem 1.2) one controls |X?(¢) — X?(s)| only by
K|t —s|, while in the argument of Theorem 1.3, there are points
possibly at distance of order one, the images of which are put together
in one of the balls of our covering. This difficulty is solved by a
refinement of the covering principle of Lemma 5.2 (using balls in
RV rather than IR%). The details are better left to the interested
reader.
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