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Overview of Stochastic Calculus

These notes provide an overview of results from stochastic calculus that we will be using in this course. Most of
the results should be familiar to you already, but others will be new. We will ignore most of the “technical”
details and take the “engineering” approach to stochastic calculus.

We make the following assumptions throughout.

• There is a probability triple (Ω,F , P ) where

– P is the “true” or physical probability measure

– Ω is the universe of possible outcomes. We use ω ∈ Ω to represent a generic outcome, typically a
sample path(s) of a stochastic process(es).

– the set1 F represents the set of possible events where an event is a subset of Ω.

• There is also a filtration, {F}t≥0, that models the evolution of information through time. So for example,
if it is known by time t whether or not an event, E, has occurred, then we have E ∈ Ft. If we are working
with a finite horizon, [0, T ], then we can take F = FT .

• We also say that a stochastic process, Xt, is Ft-adapted if the value of Xt is known at time t when the
information represented by Ft is known. All the processes we consider will be Ft-adapted so we will not
bother to state this in the sequel.

• In the continuous-time models that we will study, it will be understood that the filtration {F}t≥0 will be
the filtration generated by the Brownian motion(s), Wt, that are specified in the model description.

1 Martingales and Brownian Motion

Definition 1 A stochastic process, {Wt : 0 ≤ t ≤ ∞}, is a standard Brownian motion if

1. W0 = 0

2. It has continuous sample paths

3. It has independent, normally-distributed increments.

Definition 2 An n-dimensional process, Wt = (W (1)
t , . . . ,W

(n)
t ), is a standard n-dimensional Brownian

motion if each W
(i)
t is a standard Brownian motion and the W

(i)
t ’s are independent of each other.

Definition 3 A stochastic process, {Xt : 0 ≤ t ≤ ∞}, is a martingale with respect to the filtration, Ft, and
probability measure, P , if

1. EP [|Xt|] < ∞ for all t ≥ 0

2. EP [Xt+s|Ft] = Xt for all t, s ≥ 0.

1Technically, F is a σ-algebra.
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Example 1 (Brownian martingales)

Let Wt be a Brownian motion. Then Wt , W 2
t − t and exp

(
θWt − θ2t/2

)
are all martingales.

The latter martingale is an example of an exponential martingale. Exponential martingales are of particular
significance since they are positive and may be used to define new probability measures.

Exercise 1 (Conditional expectations as martingales) Let Z be a random variable and set
Xt := E[Z|Ft]. Show that Xt is a martingale.

2 Stochastic Integrals

We now discuss the concept of a stochastic integral, ignoring the various technical conditions that are required
to make our definitions rigorous. In this section, we write Xt(ω) instead of the usual Xt to emphasize that the
quantities in question are stochastic.

Definition 4 A stopping time of the filtration Ft is a random time, τ , such that the event {τ ≤ t} ∈ Ft for all
t > 0.

In non-mathematical terms, we see that a stopping time is a random time whose value is part of the information
accumulated by that time.

Definition 5 We say a process, ht(ω), is elementary if it is piece-wise constant so that there exists a sequence
of stopping times 0 = t0 < t1 < . . . < tn = T and a set of Fti -measurable2 functions, ei(ω), such that

ht(ω) =
∑

i

ei(ω)I[ti,ti+1)(t)

where I[ti,ti+1)(t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Note that our definition of an elementary function assumes that the function, ht(ω), is evaluated at the
left-hand point of the interval in which t falls.

Definition 6 The stochastic integral of an elementary function, ht(ω), with respect to a Brownian motion,
Wt, is defined as ∫ T

0

ht(ω) dWt(ω) :=
n−1∑

i=0

ei(ω)
(
Wti+1(ω)−Wti(ω)

)
. (1)

For a more general process, Xt(ω), we have

∫ T

0

Xt(ω) dWt(ω) := lim
n→∞

∫ T

0

X
(n)
t (ω) dWt(ω)

where X
(n)
t is a sequence of elementary processes that converges (in an appropriate manner) to Xt.

Definition 7 We define the space L2[0, T ] to be the space of processes, Xt(ω), such that

E

[∫ T

0

Xt(ω)2 dt

]
< ∞.

2A function f(ω) is Ft measurable if its value is known by time t.
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Theorem 1 (Itô’s Isometry) For any Xt(ω) ∈ L2[0, T ] we have

E




(∫ T

0

Xt(ω) dWt(ω)

)2

 = E

[∫ T

0

Xt(ω)2 dt

]
.

Exercise 2 Check that Itô’s isometry holds when Xt is an elementary process.

Theorem 2 (Martingale Property of Stochastic Integrals) The stochastic integral,

Yt :=
∫ t

0
Xs(ω) dWs(ω), is a martingale for any Xt(ω) ∈ L2[0, T ].

Exercise 3 Check that
∫ t

0
Xs(ω) dWt(ω) is indeed a martingale when Xt is an elementary process.

3 Stochastic Differential Equations

Definition 8 An n-dimensional Itô process, Xt, is a process that can be represented as

Xt = X0 +
∫ t

0

as ds +
∫ t

0

bs dWs (2)

where W is an m-dimensional standard Brownian motion, and a and b are n-dimensional and n×m-dimensional
Ft-adapted3 processes, respectively4.

We often use the notation
dXt = at dt + btdWt

as shorthand for (2). An n-dimensional stochastic differential equation (SDE) has the form

dXt = a(Xt, t) dt + b(Xt, t) dWt; X0 = x (3)

where as before, Wt is an m-dimensional standard Brownian motion, and a and b are n-dimensional and
n×m-dimensional adapted processes, respectively. Once again, (3) is shorthand for

Xt = x +
∫ t

0

a(Xs, s) dt +
∫ t

0

b(Xs, t) dWs. (4)

While we do not discuss the issue here, various conditions exist to guarantee existence and uniqueness of
solutions to (4). A useful tool for solving SDE’s is Itô’s Lemma which we now discuss.

3at and bt are Ft-‘adapted’ if at and bt are Ft-measurable for all t. We always assume that our processes are Ft-adapted.
4Additional technical conditions on at and bt are also necessary.
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4 Itô’s Lemma

Itô’s Lemma is the most important result in stochastic calculus, the “sine qua non” of the field.

Theorem 3 (Itô’s Lemma for 1-dimensional Itô process) Let Xt be a 1-dimensional Itô process
satisfying the SDE

dXt = µt dt + σt dWt.

If f(t, x) : [0,∞)×R → R is a C1,2 function and Zt := f(t,Xt) then

dZt =
∂f

∂t
(t, Xt) dt +

∂f

∂x
(t, Xt) dXt +

1
2

∂2f

∂x2
(t,Xt) (dXt)2

=
(

∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt) µt +

1
2

∂2f

∂x2
(t,Xt) σ2

t

)
dt +

∂f

∂x
(t,Xt) σt dWt

Example 2

If a stock price, St, satisfies the SDE

dSt = µtSt dt + σtSt dWt.

then we can use the substitution, Yt = log(St) and Itô’s Lemma to find

St = S0 exp
(∫ t

0

(µs − σ2
s/2) ds +

∫ t

0

σs dWs

)
. (5)

Note that St does not appear on the right-hand-side of (5) so that we have indeed solved the SDE.

Example 3 (Ornstein-Uhlenbeck Process)

Let St be a security price and suppose Xt = log(St) satisfies the SDE

dXt = [−γ(Xt − µt) + µ] dt + σdWt.

Then we can apply Itô’s Lemma to Yt := exp(γt)Xt to find that

Xt = X0e
−γt + µt + σe−γt

∫ t

0

eγs dWs. (6)

Once again, note that Xt does not appear on the right-hand-side of (6) so that we have indeed solved the SDE.

Exercise 4 Compute E[Xt] and Var(Xt) in Example 3. How do your answers compare with the corresponding
values for geometric Brownian motion?

Theorem 4 (Itô’s Lemma for n-dimensional Itô process) Let Xt be an n-dimensional Itô process
satisfying the SDE

dXt = µt dt + σt dWt.

where Xt ∈ Rn, µt ∈ Rn, σt ∈ Rn×m and Wt is a standard m-dimensional Brownian motion. If
f(t, x) : [0,∞)×Rn → R is a C1,2 function and Zt := f(t,Xt) then

dZt =
∂f

∂t
(t,Xt) dt +

∑

i

∂f

∂xi
(t,Xt) dX

(i)
t +

1
2

∑

i,j

∂2f

∂xi∂xj
(t,Xt) dX

(i)
t dX

(j)
t

where dW
(i)
t dW

(j)
t = dt dW

(i)
t = 0 for i 6= j and dW

(i)
t dW

(i)
t = dt.
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Exercise 5 Let Xt and Yt satisfy

dXt = µ
(1)
t dt + σ

(1,1)
t dW

(1)
t

dYt = µ
(2)
t dt + σ

(2,1)
t dW

(1)
t + σ

(2,2)
t dW

(2)
t

and define Zt := XtYt. Apply the multi-dimensional version of Itô’s Lemma to find the SDE satisfied by Zt.

5 The Martingale Representation Theorem

The martingale representation theorem is an important result that is particularly useful for constructing
replicating portfolios in financial models.

Theorem 5 Suppose Mt is an Ft-martingale where {Ft}t≥0 is the filtration generated by the n-dimensional

standard Brownian motion, Wt = (W (1)
t , . . . , W

(n)
t ). If E[M2

t ] < ∞ for all t then there exists a unique5

n-dimensional adapted stochastic process, φt, such that

Mt = M0 +
∫ t

0

φT
s dWt for all t ≥ 0.

Exercise 6 Let F = W 3
T and define Mt = Et[F ]. Show that

Mt = 3
∫ t

0

(T − s + W 2
s ) dWs

which is consistent with the Martingale Representation theorem.

6 Gaussian Processes

Definition 9 A process Xt, t ≥ 0, is a Gaussian process if (Xt1 , . . . , Xtn) is jointly normally distributed for
every n and every set of times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn.

If Xt is a Gaussian process, then it is determined by its mean function, m(t), and its covariance function,
ρ(s, t), where

m(t) = E [Xt]
ρ(s, t) = E [(Xs −m(s))(Xt −m(t))] .

In particular, the joint moment generating function (MGF) of (Xt1 , . . . , Xtn) is given by

Mt1,...,tn(θ1, . . . , θn) = exp
(

θT m(t) +
1
2

θT Σθ

)
(7)

where m(t) = (m(t1) . . . m(tn))T and Σi,j = ρ(ti, tj).

5To be precise, additional integrability conditions are required of φs in order to claim that it is unique.
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Example 4 (Brownian motion)

Brownian motion is a Gaussian process with m(t) = 0 and ρ(s, t) = min(s, t) for all s, t ≥ 0.

Theorem 6 (Integration of a deterministic function w.r.t. a Brownian motion) Let Wt be a
Brownian motion and suppose

Xt =
∫ t

0

δs dWs

where δs is a deterministic function. Then Xt is a Gaussian process with m(t) = 0 and ρ(s, t) =
∫ min(s,t)

0
δ2
s ds.

Proof: (Sketch)

(i) First use Itô’s Lemma to show that

E
[
euXt

]
= 1 +

1
2
u2

∫ t

0

δ2
s E

[
euXs

]
ds. (8)

If we set yt := E
[
euXt

]
then we can differentiate across (8) to obtain the ODE

dy

dt
=

1
2
u2δ2

t y.

This is easily solved to obtain the MGF for Xt,

E
[
euXt

]
= exp

(
1
2
u2

∫ t

0

δ2
s ds

)
(9)

which, as expected, is the MGF of a normal random variable with mean 0 and variance
∫ t

0
δ2
s ds.

(ii) We now use (9) and similar computations to show that the joint MGF of (Xt1 , . . . , Xtn) has the form given

in (7) with m(t) = 0 and ρ(s, t) =
∫ min(s,t)

0
δ2
s ds. (See Shreve’s Stochastic Calculus for Finance II for further

details.)

The next theorem again concerns Gaussian processes and is often of interest6 when studying short-rate models.

Theorem 7 Let Wt be a Brownian motion and suppose δt and φt are deterministic functions. If

Xt :=
∫ t

0

δu dWu and Yt :=
∫ t

0

φuXu du

then Yt is a Gaussian process with m(t) = 0 and

ρ(s, t) =
∫ min(s,t)

0

δ2
v

(∫ s

v

φy dy

)(∫ t

v

φy dy

)
dv.

Proof: The proof is tedious but straightforward. (Again, see Shreve’s Stochastic Calculus for Finance II for
further details.)

6See, for example, Hull and White’s one-factor model.
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7 Feynman-Kac Formula

Suppose Xt is a stochastic process satisfying the SDE dXt = µ(t,Xt) dt + σ(t,Xt) dWt. Now consider the
function, f(x, t), given by

f(x, t) = Ex
t

[∫ T

t

φ(t)
s h(Xs, s) ds + φ

(t)
T g(XT )

]

where

φ(t)
s = exp

(
−

∫ s

t

r(Xu, u) du

)

and the notation Ex
t [·] implies that the expectation should be taken conditional on time t information with

Xt = x. Note that f(x, t) may be interpreted as the time t price of a security that pays dividends at a
continuous rate, h(Xs, s) for s ≥ t, and with a terminal payoff g(XT ) at time T . (Of course E[·], r(·, ·) and X
also need to be interpreted appropriately.)

We can show7 that f(·, ·) satisfies the following PDE

∂f

∂t
(t,Xt) +

∂f

∂x
(t, Xt) µt(t,Xt) +

1
2

∂2f

∂x2
(t,Xt) σ2

t (t, Xt)− r(x, t)f(x, t) + h(x, t) = 0, (x, t) ∈ R× [0, T )

f(x, T ) = g(x), x ∈ R

Exercise 7 Derive the Feynman-Kac PDE by using the martingale property of conditional expectations,
Mt := Et[F ], where F is a given random variable.

Exercise 8 Assuming martingale pricing, apply the Feynman-Kac formula to find the PDE satisfied by the
price of a European call option in the Black-Scholes model.

Remark 1 The Feynman-Kac result generalizes easily to the case where Xt is an n-dimensional Itô process
driven by an m-dimensional standard Brownian motion.

8 Change of Probability Measure

Most applications in financial engineering price securities using the EMM, Q, that corresponds to taking the
cash account, Bt, as numeraire. Sometimes, however, it is particularly useful to work with another numeraire,
Nt, and its corresponding EMM, PN say. We now describe how to create new probability measures and how to
switch back and forth between these measures.

Let Q be a given probability measure and Mt a strictly positive Q-martingale such that EQ[Mt] = 1 for all
t ∈ [0, T ]. We may then define a new equivalent probability measure, PM , by defining

PM (A) = EQ [MT 1A] .

Note that

(i) PM (Ω) = 1 and

(ii) the nullsets of Q and PM coincide so PM is indeed an equivalent probability measure.

Expectations with respect to PM then satisfy

EPM
0 [X] = EQ

0 [MT X] . (10)

7Additional technical conditions on µ, σ, r, h, g and f are required.
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Exercise 9 Verify (10) in the case where X(ω) =
∑n

i=1 ciI{ω∈Ai} where the Ai’s form a partition of Ω, i.e.⋃
Ai = Ω and Ai

⋂
Aj = ∅ for i 6= j, and MT is constant on each Ai.

When we define a measure change this way, we use the notation dPM/dQ to refer to MT so that we often write

EPM
0 [X] = EQ

0

[
dPM

dQ
X

]
.

The following result explains how to switch between Q and PM when we are taking conditional expectations. In
particular, we have

EPM
t [X] =

EQ
t

[
dPM

dQ X
]

EQ
t

[
dPM

dQ

] =
EQ

t

[
dPM

dQ X
]

Mt

since Mt is a Q-martingale.

Exercise 10 Show that if X is Ft-measurable, i.e. X is known by time t, then EPM
0 [X] = EQ

0 [MtX].

Remark 2 Since MT is strictly positive we can set X = IA/MT in (10) where IA is the indicator function of

the event A. We then obtain EPM
0 [IA/MT ] = EQ

0 [IA] = Q(A). In particular, we see that dQ/dPM is given by
1/MT .

Remark 3 In the context of security pricing, we can take Mt to be the deflated time t price of a security with
strictly positive payoff, normalized so that its expectation under Q is equal to 1. For example, let ZT

t be the
time t price of a zero-coupon bond maturing at time T , and let8 Bt denote the time t value of the cash
account. We could then set MT := 1/(BT ZT

0 ). The resulting measure, denoted by PT , is sometimes called the
T -forward measure. Note that we have implicitly assumed (why?!) that in this context, Q refers to the EMM
when we take the cash account as numeraire. We discuss PT in further detail in Section 11.

9 Girsanov’s Theorem

Consider the process

Lt := exp
(
−

∫ t

0

ηs dWs − 1
2

∫ t

0

η2
s ds

)
(11)

where ηs is an adapted process. Using Itô’s Lemma we can check that dLt = Ltηt dWt so Lt is a positive
martingale9 with EP [Lt] = 1 for all t.

Theorem 8 (Girsanov’s Theorem) Define an equivalent probability measure, Qh, by setting

Qη(A) := EP [LT 1A]. (12)

Then Ŵt := Wt +
∫ t

0
ηsds is a standard Qη-Brownian motion. Moreover, Ŵt has the martingale representation

property under Qη.

Remark 4 The Girsanov Theorem generalizes easily to the case where Wt is an n-dimensional Brownian
motion.

8We assume the zero-coupon bond has face value $1 and B0 = $1.
9In fact we need ηs to have some additional properties before we can claim Lt is a martingale. A sufficient condition is

Novikov’s Condition which requires E

[
exp

(
1
2

∫ T

0
η2

s ds

)]
< ∞.
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Exercise 11 Let dXt = µt dt + σt dWt. Find a process, ηs, such that Xt is a Qη-martingale.

Remark 5 Note that Girsanov’s Theorem enables us to compute Qh-expectations directly without having to
switch back to the original measure, P .

We can get some intuition for the Girsanov Theorem by considering a random walk, X = {X0, X1, . . . , Xn}
with the interpretation that Xi is the value of the walk at time iT/n. In particular, Xn corresponds to the value
of the random walk at time T . We assume that Xt+1 −Xt ∼ N(0, T/n) under P and is independent of
X0, . . . , Xt. Note that X is an approximation to Brownian motion on [0, T ].

Suppose now that we want to compute θ := EQ
0 [h(X)] where Q denotes the probability measure under which

Xt+1 −Xt ∼ N(µ, T/n), again independently of X0, . . . , Xt.
With a slight abuse of notation, let us write h(X) = h(Y) with Y = (Y0 . . . , Yn) and Yi := Xi −Xi−1 (with
the understanding that Y−1 := 0). This formulation is convenient as the Yi’s are IID ∼ N(0, T/n) under P and
IID ∼ N(µ, T/n) under Q. Let f(·) and g(·) denote the PDF’s of N(µ, T/n) and N(0, T/n) random variables,
respectively.

If we set µ := −Tη/n, we then have

θ = EQ
0 [h(Y)] =

∫

Rn

h(y1, . . . , yn)

(
n∏

i=1

f(yi)

)
dy1 . . . dyn

=
∫

Rn

h(y1, . . . , yn)
∏

i

(
f(yi)
g(yi)

g(yi)
)

dy1 . . . dyn

=

=
∫

Rn

h(y1, . . . , yn)
∏

i

(
f(yi)
g(yi)

) (∏

i

g(yi)

)
dy1 . . . dyn

= EP
0

[
h(y1, . . . , yn)

∏

i

(
f(yi)
g(yi)

)]

= EP
0

[
h(y1, . . . , yn)

∏

i

exp

(
−η

∑

i

yi − η2T

2

)]

which is consistent with our statement of Girsanov’s Theorem in (11) and (12) above.

Remark 6 (i) As in the statement of the Girsanov Theorem itself, we could have chosen µ (and therefore η)
to be adapted, i.e. to depend on prior events, in the random walk.

(ii) Note that Girsanov’s Theorem allows the drift, but not the volatility of the Brownian motion, to change
under the new measure, Qη. It is interesting to see that we are not so constrained in the case of the random
walk. Have you any intuition for why this is so?

The multidimensional version of Girsanov’s Theorem is a straightforward generalization of the one-dimensional
version. In particular let Wt be an n-dimensional standard P -Brownian motion and define

Lt := exp
(
−

∫ t

0

ηs dWs − 1
2

∫ t

0

ηs · ηs ds

)

for t ∈ [0, T ]. Then10 Ŵt := Wt +
∫ t

0
ηsds is a standard Qη-Brownian motion where dQη/dP = LT .

10Again it is necessary to make some further assumptions in order to guarantee that Lt is a martingale. Novikov’s condition
is sufficient.
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10 Martingale Pricing Theory

We use St to denote the time t price of a risky asset and as usual, Bt is the time t value of the cash account.

We assume the risky asset does not11 pay dividends. Let φ
(s)
t and φ

(b)
t denote the number of units of the

security and cash account, respectively, that is held in a portfolio at time t. Then the value of the portfolio at

time t is given by Vt = φ
(s)
t St + φ

(b)
t Bt.

Definition 10 We say φt := (φ(s)
t , φ

(b)
t ) is self-financing if

dVt = φ
(s)
t dSt + φ

(b)
t dBt.

Note that this definition is consistent with our definition for discrete-time models. Our definitions of arbitrage,
numeraire securities, equivalent martingale measures and complete markets is unchanged from the discrete-time
setup. We state12 without proof the principal results of martingale pricing theory in continuous-time models.
These results mirror those from the discrete-time theory.

Theorem 9 There is no arbitrage if and only if there exists an EMM, Q.

A consequence of Theorem 9 is that in the absence of arbitrage, the deflated value process, Vt/Nt, of any
self-financing trading strategy is a Q-martingale. This implies that the deflated price of any attainable security
can be computed as the Q-expectation of the terminal deflated value of the security.

Theorem 10 Assume there exists a security with strictly positive price process and that there are no arbitrage
opportunities. Then the market is complete if and only if there exists exactly one risk-neutral martingale
measure, Q.

This result will only play a background role in this course for several related reasons. First, we will generally
assume that we are working with complete markets. This assumption is motivated in part by the assumption
that zero-coupon bonds of every maturity are traded in the market. Second, when working with term-structure
models we often choose to work directly under an EMM, Q, which is then calibrated to market data. This
approach bypasses the issue of completeness which then only arises when we discuss hedging strategies.

The following example is particularly useful in many financial engineering applications.

Example 5 (Wealth Dynamics and Hedging)

We know Bt satisfies dBt = rtBt dt and suppose in addition that St satisfies

dSt = µtSt dt + σtStdWt. (13)

Then for a portfolio (φ(s)
t , φ

(b)
t ), the portfolio value at time t is Vt := φ

(s)
t St + φ

(b)
t Bt. If φt := (φ(s)

t , φ
(b)
t ) is

self-financing, then we have

dVt = φ
(s)
t dSt + φ

(b)
t dBt

= φ
(s)
t µtSt dt + φ

(s)
t σtSt dWt + φ

(b)
t rtBt dt

= Vt

[
φ

(s)
t St

Vt
µt +

φ
(b)
t Bt

Vt
rt

]
dt +

φ
(s)
t St

Vt
σtVt dWt

= Vt [rt + θt(µt − rt)] dt + θtσtVt dWt (14)
11We could easily adapt our definition of a self-financing trading strategy to accommodate securities that pay dividends.

However, in this course we will generally take St to be the price(s) of a zero-coupon bond(s) that of course does not pay
dividends (coupons).

12Additional technical conditions are generally required to actually prove these results.
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where θt and (1− θt) are the fractions of time t wealth, Vt, invested in the risky asset and cash account,
respectively, at time t.

Exercise 12 Show that the Q-dynamics of any traded asset in an arbitrage-free model must have a drift
coefficient equal to the short rate, rt. (This assumes that the cash account is the numeraire security.)

Exercise 13 Equation (14) gives the wealth dynamics for a self-financing portfolio and this is very useful for
constructing hedging strategies in continuous-time models. Can you see why this might be the case?

Exercise 14 Recall that when we price securities it is necessary to work with an EMM, Q. If the numeraire is
the cash account, then the drift, µt, is replaced by rt in (14) and the P -Brownian motion, Wt, is replaced by

the Q-Brownian motion, Ŵt. Use Girsanov’s Theorem to verify this statement. In particular explain why
dŴt = dWt + ηt dt where ηt = (µt − rt)/σt.

11 The Forward Measure

As usual we let Zτ
t denote the time t price of a zero-coupon bond maturing at time τ ≥ t with face value $1, and

let Q be the EMM corresponding to taking the cash account, Bt, as numeraire. We assume B0 = $1 and now
use Zτ

t to define a new probability measure, P τ , that we call the τ -forward probability measure. To do this, set

dP τ

dQ
=

1
BτZτ

0

. (15)

Exercise 15 Check that (15) does indeed define an equivalent probability measure.

Now let Ct denote the time t price of a contingent claim that expires at time τ . We then have

Ct = BtE
Q
t

[
Cτ

Bτ

]
(16)

=
BtEP τ

t

[
Cτ

Bτ
BτZτ

0

]

EP τ

t [BτZτ
0 ]

=
BtZ

τ
0 EP τ

t [Cτ ]

EQ
t [1] /EQ

t [1/BτZτ
0 ]

= Zτ
t EP τ

t [Cτ ]. (17)

We can now find Ct, either through equation (17) or through equation (16) where we use the cash account as
numeraire. Computing Ct through (16) is our “usual method” and is often very convenient. When pricing
equity derivatives, for example, we usually take interest rates, and hence the cash account, to be deterministic.
This means that the factor 1/Bτ in (16) can be taken outside the expectation so only the Q-distribution of Cτ

is needed to compute Ct.

When interest rates are stochastic we cannot take the factor 1/Bτ outside the expectation in (16) and we
therefore need to find the joint Q-distribution of (Bτ , Cτ ) in order to compute Ct. On the other hand, if we
use equation (17) to compute Ct, then we only need the P τ -distribution of Cτ , regardless of whether or not
interest rates are stochastic. Working with a univariate-distribution is generally much easier than working with a

bivariate-distribution so if we can easily find the P τ -distribution of Cτ , then it can often be very advantageous
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to work with this distribution. The forward measure is therefore particularly useful13 when studying
term-structure models.

Interestingly, the forward-measure approach is not so useful for lattice models, the reason being that the
Markovian feature of the lattice is lost when we work under P τ and so the advantages of a recombining-lattice
are also lost.

Exercise 16 We have seen how easy it is to price a contingent claim in a lattice model using the EMM, Q
(with the cash account as numeraire) and backwards induction. Convince yourself by looking at Example 4 of
Introduction and Binomial Lattice Models that if we price under P τ=2, then we cannot take advantage of the
recombining property of the binomial lattice.

Exercise 17 Consider an equity model with two securities, A and B, whose price processes, S
(a)
t and S

(b)
t

respectively, satisfy the following SDE’s

dS
(a)
t = rS

(a)
t dt + σ1S

(a)
t dW

(1)
t

dS
(b)
t = rS

(b)
t dt + σ2S

(b)
t

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)

where (W (1)
t , W

(2)
t ) is a 2-dimensional Q-standard Brownian motion. We assume the cash account is the

numeraire security corresponding to Q (which is consistent with the Q-dynamics of S
(a)
t and S

(b)
t ) and that the

continuously compounded interest rate, r, is constant. Use the change of numeraire technique to compute the

time 0 price, C0 of a European option that expires at time T with payoff max (0, S
(a)
T − S

(b)
T ).

13Switching to a different numeraire can also be advantageous in other circumstances, even when interest rates are determin-
istic.


