
Appendix B: Statistics
The material in this appendix can be supplemented with the classic text
in statistics The Theory of Point Estimation (New York: Wiley, 1983) by
E. Lehmann.
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3Statistics

1.1 SUFFICIENCY, COMPLETENESS, AND
UNBIASED ESTIMATION

In statistics, we often represent our data, in many cases a sample of size n

from some population, as a random vector X = (X1↪ . . . ↪ Xn). The model
can be written in the form {fθ(x); θ ∈ Ω} , where Ω is the parameter space
or set of permissible values of the parameter and fθ(x) is the probability den-
sity function. A statistic, T (X), is a function of the data that does not depend
on the unknown parameter θ. Although a statistic, T (X), is not a function
of θ, its distribution can depend on θ. An estimator is a statistic considered
for the purpose of estimating a given parameter. One of our objectives is to
find a good estimator of the parameter θ, in some sense of the word “good.”
How do we ensure that a statistic T (X) is estimating the correct parameter
and is not consistently too large or too small, and that as much variability as
possible has been removed? The problem of estimating the correct parameter
is often dealt with by requiring that the estimator be unbiased.

We will denote an expected value under the assumed parameter value θ
by Eθ(.). Thus, in the continuous case,

Eθ[h(X)] =
∫ ∞

−∞
h(x)fθ(x)dx

and in the discrete case,

Eθ[h(X)] =
∑
all x

h(x)fθ(x)

provided the integral/sum converges absolutely. In the discrete case, fθ(x) =
Pθ[X = x], the probability function of X under this parameter value θ.

Definition A statistic T (X) is an unbiased estimator of θ if Eθ[T (X)] = θ for
all θ ∈ Ω.

For example, suppose that Xi are independent, each with the Poisson
distribution with parameter θ↪ i = 1↪ . . . ↪ n. Notice that the statistic

T = 1

n(n + 1)

n∑
i=1

Xi

is such that

Eθ(T ) = 1

n

n∑
i=1

EθXi = 1

n

n∑
i=1

θ

= θ
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and so T is an unbiased estimator of θ. This means that it is centered in the
correct place, but it does not mean it is a best estimator in any sense.

In decision theory, in order to determine whether a given estimator or
statistic T (X) does well for estimating θ, we consider a loss function or dis-
tance function between the estimator and the true value. Call this δ(θ↪ T (X)).
Then this is averaged over all possible values of the data to obtain the risk:

Risk = Eθ{δ(θ↪ T (X))}
A good estimator is one with little risk; a bad estimator is one whose risk is
high. One particular risk function is called mean squared error (MSE) and
corresponds to δ(θ↪ T (X)) = [T (X) − θ]2. The mean squared error has a
useful decomposition into two components, the variance of the estimator
and the square of its bias:

MSE(θ↪ T ) = Eθ{[T (X) − θ]2} = varθ(T (X)) + [EθT (X) − θ]2

For example, if X has a normal(θ↪ 1) distribution, the mean squared error
of T1 = X is 1 for all θ because the bias Eθ{T (X)} − θ is zero. On the other
hand, the estimator T2 = X/2 has bias EθT (X) − θ = θ

2 and variance 1
4 , so

the mean squared error is 1
4 (1 + θ2). Obviously, T2 has smaller mean squared

error provided that θ is around 0 (more precisely, provided θ2 < 3), but for
θ large, T1 is preferable. Of these two estimators, only T1 is unbiased.

In general, in fact, there is usually no one estimator that outperforms all
other estimators at all values of the parameter if we use mean squared error
as our basis for comparison. In order to achieve an optimal estimator, it is
unfortunately necessary to restrict ourselves to a specific class of estimators
and select the best within the class. Of course, the best within this class will
only be as good as the class itself (best in a class of one is not much of a
recommendation), and therefore we must ensure that restricting ourselves
to this class is not unduly restrictive. The class of all estimators is usually
too large to obtain a meaningful solution. One common restriction is to the
class of all unbiased estimators.

Definition An estimator T (X) is said to be a uniformly minimum-variance
unbiased estimator (UMVUE) of the parameter θ if

1 It is an unbiased estimator of θ and
2 Among all unbiased estimators of θ it has the smallest mean squared

error and therefore the smallest variance.

A sufficient statistic is one that, from a certain perspective, contains all
the necessary information for making inferences (e.g., estimating the param-
eter with a point estimator or confidence interval, or conducting a test of a
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hypothesized value) about the unknown parameters in a given model. It is
important to remember that a statistic is sufficient for inference on a spe-
cific parameter. It does not necessarily contain all relevant information in
the data for other inferences. For example, if you wished to test whether the
family of distributions is an adequate fit to the data (a goodness-of-fit test),
the sufficient statistic for the parameter in the model does not contain the
relevant information.

Suppose the data is in a vector X and T = T (X) is a sufficient statistic for
θ. The intuitive basis for sufficiency is that if the conditional distribution of
X given T (X) does not depend on θ, then X provides no additional value in
addition to T for estimating θ. The assumption is that random variables carry
information on a statistical parameter θ only insofar as their distributions
(or conditional distributions) change with the value of the parameter and
that since, given T (X), we can randomly generate values for the X without
knowledge of the parameter and with the correct distribution, these ran-
domly generated values cannot carry additional information. All of this, of
course, assumes that the model is correct and θ is the only unknown. The
distribution of X given a sufficient statistic T will often have value for other
purposes, such as measuring the variability of the estimator or testing the
validity of the model.

Definition A statistic T (X) is sufficient for a statistical model {fθ(x); θ ∈ Ω}
if the distribution of the data (X1↪ . . . ↪ Xn) given T (X) = t does not depend
on the unknown parameter θ.

The use of a sufficient statistic is formalized in the the sufficiency prin-
ciple, which states that if T (X) is a sufficient statistic for a model {fθ(x);
θ ∈ Ω} and x1, x2 are two different possible observations that have identical
values of the sufficient statistic,

T (x1) = T (x2)

then whatever inference we would draw from observing x1 should also be
drawn from observing x2.

Sufficient statistics are not unique. For example, if the sample mean X =
1
n
(X1+X2+· · ·+Xn) is a sufficient statistic, then any other statistic that allows

us to obtain X is also sufficient. This will include all one-to-one functions
of X (these are essentially equivalent) such as X

3
and all statistics T (X) for

which we can write X = g(T ) for some, possibly many-to-one function g.
One result that is normally used to verify whether a given statistic is sufficient
is the factorization criterion for sufficiency: Suppose X = (X1↪ . . . ↪ Xn) has
probability density function {fθ(x); θ ∈ Ω} and T (X) is a statistic. Then
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T (X) is a sufficient statistic for {fθ(x); θ ∈ Ω} if and only if there exist two
nonnegative functions g(.) and h(.) such that we can factor the probability
density function fθ(x) = g(T (x); θ)h(x) for all x. This factorization into two
pieces, one that involves both the statistic T and the unknown parameter θ,
and the other that may be a constant or depend on x but does not depend on
the unknown parameter, need only hold on a set A of possible values of X
that carries the full probability. That is, for some set A with Pθ(X ∈ A) = 1,
for all θ ∈ Ω, we require

fθ(x) = g(T (x); θ)h(x) for all x ∈ A↪ θ ∈ Ω

Definition A statistic T (X) is a minimal sufficient statistic for {fθ(x); θ ∈ Ω}
if it is sufficient and if for any other sufficient statistic U(X), there exists a
function g(.) such that T (X) = g(U(X)).

This definition says in effect that a minimal sufficient statistic can be
recovered from any other sufficient statistic. A statistic T (X) implicitly par-
titions the sample space into events of the form [T (X) = x]for varying x, and
if T (X) is minimal sufficient, it induces the coarsest possible partition (i.e.,
the largest possible sets) in the sample space among all sufficient statistics.
This partition is called the minimal sufficient partition.

The property of completeness is useful for determining the uniqueness of
estimators and verifying in some cases that a minimal sufficient reduction has
been found. It bears no relation to the notion of a complete market in finance,
or the mathematical notion of a complete metric space. Let (X1↪ . . . ↪ Xn)

denote the observations from a distribution with probability density function
{fθ(x); θ ∈ Ω} . Suppose T (X) is a statistic and u(T ), a function of T , is an
unbiased estimator of θ so that Eθ[u(T )] = θ for all θ ∈ Ω. Under what
circumstances is this the only unbiased estimator that is a function of T ? To
answer this question, suppose u1(T )and u2(T )are both unbiased estimators
of θ and consider the difference h(T ) = u1(T ) − u2(T ). Since u1(T ) and
u2(T )are both unbiased estimators of the parameter θ, we have Eθ[h(T )] = 0
for all θ ∈ Ω. Now if the only function h(T )that satisfies Eθ[h(T )] = 0 for all
θ ∈ Ω is the zero function h(t) = 0, then the two unbiased estimators must be
identical. A statistic T with this property is said to be complete. Technically,
it is not the statistic that is complete, but the family of distributions of T in
the model {fθ(x); θ ∈ Ω} .

Definition The statistic T (X) is complete if

Eθ[h(T (X))] = 0↪ for all θ ∈ Ω
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for any function h implies

Pθ[h(T (X)) = 0] = 1 for all θ ∈ Ω

For example, let (X1↪ . . . ↪ Xn) be a random sample from the normal(θ↪ 1)

distribution. Consider T (X) = (X1↪
∑n

i=1 Xi). Then T is sufficient for {fθ(x) ;
θ ∈ Ω} but is not complete. It is easy to see that it is not complete, because
the function

h(T ) = X1 − 1

n

n∑
i=1

Xi

is a function of T that has zero expectation for all values of θ, and yet the
function is not identically zero. The fact that the statistic (X1↪

∑n
i=1 Xi) is

sufficient but not complete is a hint that further reduction is possible, that
it is not minimal sufficient. In fact, in this case, as we will show a little later,
taking only the second component of T, namely

∑n
i=1 Xi , provides a minimal

sufficient, complete statistic.

Theorem B1 If T (X) is a complete and sufficient statistic for the model
{fθ(x); θ ∈ Ω}, then T (X) is a minimal sufficient statistic for the model.

The converse to the above theorem is not true. Let (X1↪ . . . ↪ Xn) be a
random sample from the continuous uniform distribution on the interval
(θ − 1↪ θ + 1). This distribution has probability density function

fθ(x) = 1

2
for θ − 1 < x < θ + 1

Then using the factorization criterion above, the joint probability density
function for a sample of n independent observations from this density is

fθ(x1↪ . . . ↪ xn) = 1

2n
if θ − 1 < x(1) < x(n) < θ + 1↪ and zero otherwise↪

= 1

2n
I (θ − 1 < x(1))I (θ + 1 > x(n))

where I (θ − 1 < x(1)) is 1 or 0 as the inequality holds or does not hold, and
x(1)↪ x(n) are the smallest and the largest values in the sample (x1↪ x2↪ . . . ↪ xn).
Obviously, fθ(x1↪ . . . ↪ xn) can be written as a function
g(T (x); θ) where T (X) = (X(1)↪ X(n)) and so T (X) is sufficient. Moreover,
it is not difficult to show that no further reduction (for example, to X(1)

alone) is possible or we can no longer provide such a factorization, so T (X)

is minimal sufficient. Nevertheless, if T (X) = (X(1)↪ X(n))and the function h

is defined by

h(T ) = X(n) − X(1)

2
− n − 1

n + 1
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(clearly a nonzero function), then Eθ[h(T )] = 0 for all θ ∈ Ω and therefore
T (X) is not a complete statistic.

Theorem B2 For any random variables X and Y ,

Eθ(X) = Eθ[Eθ(X|Y)]

and
varθ(X) = Eθ[varθ(X|Y)] + varθ[Eθ(X|Y)]

In much of what follows, we wish to be able to estimate a general func-
tion of the unknown parameter such as τ(θ) instead of the parameter θ itself.
We have already seen that if T (X) is a complete statistic, then there is at most
one function of T (X) that provides an unbiased estimator of any function
of a given τ(θ). In fact, if we can find such a function, g(T (X)), then it auto-
matically has minimum variance among all possible unbiased estimators of
τ(θ) that are based on the same data.

Theorem B3 If T (X) is a complete sufficient statistic for the model {fθ(x); θ ∈
Ω} and Eθ[g(T (X))] = τ(θ), then g(T (X)) is the UMVUE of τ(θ).

When we have a complete sufficient statistic, and we are able to find an
unbiased estimator, even a bad one, of τ(θ), then there is a simple recipe for
determining the UMVUE of τ(θ).

Theorem B4 If T (X) is a complete sufficient statistic for the model {fθ(x); θ ∈
Ω} and U(X) is any unbiased estimator of τ(θ), then E(U |T ) is the UMVUE
of τ(θ).

Note that we did not subscript the conditional expectation E(U |T ) with
θ because whenever T is a sufficient statistic, the conditional distribution of
U(X) given T does not depend on the underlying value of the parameter θ.

Definition Suppose X = (X1↪ . . . ↪ Xp) has a (joint) probability density func-
tion of the form

fθ(x) = C(θ) exp


k∑

j=1

qj (θ)Tj (x)

 h(x) (1.1)

for functions qj (θ) , Tj (x), h(x) , C(θ). Then we say that the density is a
member of the exponential family of densities. We call (T1(X)↪ . . . ↪ Tk(X))

the natural sufficient statistic.
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A member of the exponential family can be re-expressed in different
ways, and so the natural sufficient statistic is not unique. For example, we
may multiply a given Tj by a constant and divide the corresponding qj by
the same constant, resulting in the same probability density function fθ(x).
Various other conditions need to be applied as well — for example, ensuring
that the Tj (x) are all essentially different functions of the data. One of the
important properties of the exponential family is its closure under repeated
independent sampling. In general, if Xi↪ i = 1↪ . . . ↪ n are independent iden-
tically distributed with an exponential family distribution, then their joint
distribution (X1↪ . . . ↪ Xn) is also an exponential family distribution.

Theorem B5 Let (X1↪ . . . ↪ Xn) be a random sample from the distribution with
probability density function given by (1.). Then (X1↪ . . . ↪ Xn) also has an
exponential family form, with joint probability density function

fθ(x1↪ . . . ↪ xn) = Cn(θ) exp


k∑

j=1

qj (θ)

[
n∑

i=1

Tj (xi )

]
n∏

i=1

h(xi )

In other words, C is replaced by Cn and Tj (x) by
n∑

i=1
Tj (xi ). The natural

sufficient statistic is (
n∑

i=1

T1(Xi)↪ . . . ↪

n∑
i=1

Tk(Xi)

)

It is usual to reparameterize equation (2.1) by replacing qj (θ) by a new
parameter ηj . This results in a more efficient representation, the canonical
form of the exponential family density:

fη(x) = C(η) exp


k∑

j=1

ηj Tj (x)

 h(x)

The natural parameter space in this form is the set of all values of η for which
the above function is integrable, that is,η;

∫ ∞

−∞
exp


k∑

j=1

ηj Tj (x)

 h(x)dx < ∞


We would like this parameter space to be large enough to allow intervals for
each of the components of the vector η, and so we will later need to assume
that the natural parameter space contains a k-dimensional rectangle.
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If the statistic satisfies a linear constraint, for example,
∑k

j=1 Tj (X) = 0
with probability 1, then the number of terms k could be reduced and a
more efficient representation of the probability density function is possible.
Similarly, if the parameters ηj satisfy a linear relationship, they are not all
statistically meaningful because one of the parameters is obtainable from the
others. These are all situations that we would handle by reducing the model
to a more efficient and nonredundant form. So in the remaining discussion,
we will generally assume such a reduction has already been made and that
the exponential family representation is minimal in the sense that neither the
ηj nor the Tj satisfy any linear constraints.

Definition We will say that X has a regular exponential family distribution if
it is in canonical form, is of full rank in the sense that neither the Tj nor the
ηj satisfy any linear constraints permitting a reduction in the value of k, and
the natural parameter space contains a k-dimensional rectangle.

By Theorem B5, if Xi has a regular exponential family distribution, then
X = (X1↪ . . . ↪ Xn) also has a regular exponential family distribution.

The main advantage of identifying a distribution as a member of the
regular exponential family is that it allows us to quickly identify the minimal
sufficient statistic and conclude that it is complete.

Theorem B6 If X has a regular exponential family distribution, then (T1(X)↪

. . . ↪ Tk(X)) is a complete sufficient statistic.

Example Let (X1↪ X2↪ . . . ↪ Xn) be independent observations all from the nor-
mal (µ↪ σ2) distribution. Notice that with the parameter

θ = (µ↪ σ2)

we can write the probability density function of each Xi as

fθ(x) = C exp

{
− (x − µ)2

2σ2

}
= C exp

{
µ

σ2
x − 1

2σ2
x2

}
where C = C(m↪ r2) so the natural parameters are η1 = µ

σ2 and η2 = − 1
2σ2

and the natural sufficient statistic is (X↪ X2). For a sample of size n from
this density we have the same natural parameters, and by the above theo-
rem, a complete sufficient statistic is (

∑n
i=1 Xi↪

∑n
i=1 X2

i ). For example, if you
wished to find a UMVUE of any function of η1↪ η2, such as the parameter
η1 = µ/σ2, we need only find some function of the compete sufficient statistic
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that has the correct expected value. For example, in this case, with the sam-
ple mean X = 1

n

∑n
i=1 Xi and the sample variance S2 = 1

n−1

∑n
i=1(Xi − X)2,

it is not difficult to show that

E

(
X

S2

)
= n − 1

n − 3

µ

σ2

and so, provided n > 3,

n − 3

n − 1

X

S2

is an unbiased estimator of n1 and a function of the complete sufficient
statistic, so it is the desired UMVUE. Suppose one of the parameters, say
σ2, is assumed known. Then the normal distribution is still in the regular
exponential family, since it has a representation

fθ(x) = C(µ↪ σ) exp
{ µ

σ2
x
}

h(x)

with the function h completely known. In this case, for a sample of size n

from this distribution, the statistic
∑n

i=1 Xi is complete sufficient for µ and so
any function of it, say X, that is an unbiased estimator of µ is automatically
UMVUE.

The following table gives various members of the regular exponential
family and the corresponding complete sufficient statistic.

Member of the Regular Complete Sufficient
Exponential Family Statistic

Poisson(θ)
∑n

i=1 Xi

Binomial(n↪ θ)
∑n

i=1 Xi

Negative binomial(k↪ θ)
∑n

i=1 Xi

Geometric(θ)
∑n

i=1 Xi

Normal(µ↪ σ2) σ2 known
∑n

i=1 Xi

µ known
∑n

i=1 (Xi − µ)2(∑n
i=1 Xi↪

∑n
i=1 X2

i

)
Gamma(α↪ β) (includes exponential) α known

∑n
i=1 Xi

β known
∏n

i=1 Xi(∑n
i=1 Xi↪

∏n
i=1 Xi

)



12 1.1. Sufficiency, Completeness, and Unbiased Estimation

Differentiating under the Integral

For a regular exponential family, it is possible to differentiate under the
integral, that is,

∂m

∂ηm
i

∫
C(η) exp


k∑

j=1

ηj Tj (x)

h(x)dx

=
∫

∂m

∂ηm
i

C(η) exp


k∑

j=1

ηj Tj (x)

h(x)dx

for any m = 1↪ 2↪ . . . and any η in the interior of the natural parameter space.
Let X = (X1↪ . . . ↪ Xn) denote observations from a distribution with prob-

ability density function {fθ(x); θ ∈ Ω}, and let U(X) be a statistic. The infor-
mation on the parameter θ is provided by the sensitivity of the distribution,
of a statistic to changes in the parameter. For example, suppose a modest
change in the parameter value leads to a large change in the expected value
of the distribution, resulting in a large shift in the data. Then the parameter
can be estimated fairly precisely. On the other hand, if a statistic U has no
sensitivity at all in distribution to the parameter, then it would appear to
contain little information for point estimation of this parameter. A statistic
of the second kind is called an ancillary statistic.

Definition U(X) is an ancillary statistic if its distribution does not depend on
the unknown parameter θ.

Ancillary statistics are, in a sense, orthogonal or perpendicular to min-
imal sufficient statistics and are analogous to the residuals in a multiple
regression, while the complete sufficient statistics are analogous to the es-
timators of the regression coefficients. It is well known that the residuals
are uncorrelated with the estimators of the regression coefficients (and in-
dependent in the case of normal errors). However, the “irrelevance” of the
ancillary statistic seems to be limited to the case when it is not part of the
minimal (preferably complete) sufficient statistic, as the following example
illustrates.

Example Suppose a fair coin is tossed to determine a random variable N = 1
with probability 1/2 and N = 100otherwise. We then observe a binomial ran-
dom variable X with parameters (N↪ θ). Then the minimal sufficient statistic
is (X↪ N), but N is an ancillary statistic since its distribution does not depend
on the unknown parameter θ. Is N completely irrelevant to inference about
θ? If you reported to your boss an estimator of θ such as X/N without telling
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him or her the value of N , how long would you expect to keep your job?
Clearly, any sensible inference about θ should include information about the
precision of the estimator, and this inevitably requires knowing the value of
N . Although the distribution of N does not depend on the unknown param-
eter θ so that N is ancillary, it carries important information about precision.
The following theorem allows us to use the properties of completeness and
ancillarity to prove the independence of two statistics without finding their
joint distribution.

Theorem B7 (Basu’s Theorem) Consider X with probability density function
{fθ(x); θ ∈ Ω}. Let T (X) be a complete sufficient statistic. Then T (X) is
independent of every ancillary statistic U(X).

Example Assume Xt represents the market price of a given asset such as
a portfolio of stocks at time t , and x0 is the value of the portfolio at the
beginning of a given time period (assume that the analysis is conditional on
x0 so that x0 is fixed and known). The process Xt is assumed to be a Brownian
motion and so the distribution of Xt for any fixed time t is normal(x0 +
µt↪ σ2t) for 0 < t ≤ 1. Suppose that for a period of length 1, we record both
the period high max{0≤t≤1} Xt and the close X1. Define random variables
M = max{t≤1} Xt − x0 and Y = X1 − x0. Then the joint probability density
function of (M↪ Y) can be shown to be

fθ(m↪ y) = 2(2m − y)√
2πσ3

exp{[2µy − µ2 − (2m − y)2]/(2σ2)}
−∞ < y < m↪ m > 0↪ θ = (µ↪ σ2)

It is not hard to show that this is a member of the regular exponential
family of distributions with both parameters assumed unknown. If one pa-
rameter is known, for example, σ2, it is again a regular exponential family
distribution with k = 1. Consequently, if we record independent pairs of ob-
servations (Mi ↪ Yi ), i = 1↪ . . . ↪ n on the portfolio for a total of n distinct time
periods (and if we assume no change in the parameters), then the statistic

Y = 1

n

n∑
i=1

Yi

is a complete sufficient statistic for the drift parameter µ. Since it is also an
unbiased estimator of µ, it is the UMVUE of µ. By Basu’s theorem it will
be independent of any ancillary statistic, i.e. any statistic whose distribution
does not depend on the parameter µ. One such statistic is Z =∑i Mi(Mi −
Yi), which is therefore independent of Y.
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1.2 MAXIMUM-LIKELIHOOD ESTIMATION

Suppose we have observed n independent discrete random variables all with
probability density function

Pθ(X = x) = fθ(x)

where the scalar parameter θ is unknown. Suppose our observations are
x1↪ . . . ↪ xn. Then the probability of the observed data is

n∏
i=1

Pθ(X = xi ) =
n∏

i=1

fθ(xi )

When the observations have been substituted, this becomes a function of the
parameter only, referred to as the likelihood function and denoted L(θ). Its
natural logarithm is usually denoted �(θ) = ln(L(θ)). In the absence of any
other information, it seems logical that we should estimate the parameter θ
using a value most compatible with the data. For example, we might choose
the value maximizing the likelihood function L(θ) or equivalently maximiz-
ing �(θ). We call such a maximizer the maximum-likelihood (ML) estimate
provided it exists and satisfies any restrictions placed on the parameter. We
denote it by θ̂. Obviously, it is a function of the data, that is, θ̂ = θ̂(x). The
corresponding estimator is θ̂ = θ̂(X). In practice we are usually satisfied
with a local maximum of the likelihood function provided that it is reason-
able, partly because the global maximization problem is often quite difficult
and partly because the global maximum is not always better than a local
maximum near a preliminary estimator that is known to be consistent. In
the case of a twice differentiable log-likelihood function on an open interval,
this local maximum is usually found by solving the equation S(θ) = 0 for
a solution θ̂, where S(θ) = �′(θ) is called the score function. The equation
S(θ) = 0 is called the (maximum-) likelihood equation or score equation. To
verify a local maximum we compute the second derivative �′′(θ̂) and show
that it is negative, or alternatively show I (θ̂) = −�′′(θ̂) > 0. The function
I (θ) = −�′′(θ) is called the information function. In a sense to be investi-
gated later, I (θ̂) = −�′′(θ̂), the observed information, indicates how much
information about a parameter is available in a given experiment. The larger
the value, the more curved is the log-likelihood function and the easier it is
to find the maximum.

Although we view the likelihood, log-likelihood, score, and information
functions as functions of θ, they are, of course, also functions of the observed
data x = (x1↪ . . . ↪ xn). When it is important to emphasize the dependence on
the data x we will write L(θ; x), S(θ; x), and so on. Also, when we wish
to determine the sampling properties of these functions as functions of the
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random variable X = (X1↪ . . . ↪ Xn) we will write L(θ; X), S(θ; X), and so
on.

Definition The Fisher or expected information function is the expected value
of the observed information function J (θ) = Eθ[I (θ; X)].

Likelihoods for Continuous Models

Suppose a random variable X has a continuous probability density function
fθ(x) with parameter θ. We will often observe only the value of X rounded
to some degree of precision (say 1 decimal place), in which case the actual
observation is a discrete random variable. For example, suppose we observe
X correct to one decimal place. Then

P (we observe 1.1) =
∫ 1.15

1.05
fθ(x)dx ≈ (0.1)fθ(1.1)

assuming the function fθ(x) is quite smooth over the interval. More generally,
if we observe X rounded to the nearest � (assumed small), then the likelihood
of the observation is approximately �fθ (observation). Since the precision
� of the observation does not depend on the parameter, maximizing the
discrete likelihood of the observation is essentially equivalent to maximizing
the the probability density function fθ(observation) over the parameter. This
partially justifies the use of the probability density function in the continuous
case as the likelihood function.

Similarly, if we observed n independent values x1↪ . . . ↪ xn of a continuous
random variable, we would maximize the likelihood L(θ) =∏n

i=1 fθ(xi ) (or,
more commonly, its logarithm) to obtain the maximum-likelihood estimator
of θ.

The relative-likelihood function R(θ), defined as R(θ) = L(θ)/L(θ̂), is
the ratio of the likelihood to its maximum value and takes on values between
0 and 1. It is used to rank possible parameter values according to their plausi-
bility in light of the data. If R(θ1) = 0.1, say, then θ1 is rather an implausible
parameter value because the data is ten times more likely when θ = θ̂ than
when θ = θ1. The set of θ-values for which R(θ) ≥ p is called a 100p%
likelihood region for θ. When the parameter θ is one-dimensional, and θ0 is
its true value,

−2 log R(θ0; X)

converges in distribution as the sample size n → ∞ to a chi-squared distri-
bution with 1 degree of freedom. More generally, the numbers of degrees
of freedom of the limiting chi-squared distribution is the dimension of the
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parameter θ. We can use this to construct a confidence interval for the un-
known value of the parameter. For example, if b is chosen to be the 0.95
quantile of the chi-squared(1) distribution (b = 3.84), then

{θ : −2 log R(θ; x) < b}= {θ : R(θ; x) > e−b/2}
≈ {θ : R(θ; x) > 0.15}

so a 15% likelihood interval is an approximate 95% confidence interval for
θ. This seems to indicate that the confidence interval tolerates a considerable
difference in the likelihood. The likelihood at a parameter value must differ
from the maximum likelihood by a factor of more than 6 before it is excluded
by a 95% confidence interval or rejected by a test with level of significance
5%.

Properties of the Score and Information

Consider a continuous model with a family of probability density functions
{fθ(x); θ ∈ Ω}. Suppose all of the densities are supported on a common set
{x : fθ(x) > 0} = A. Then ∫

A

fθ(x)dx = 1

and therefore ∫
A

∂

∂θ
fθ(x)dx = ∂

∂θ

∫
A

fθ(x)dx = 0

provided that the integral can be interchanged with the derivative. Models
that permit this interchange, and calculation of the Fisher information, are
called regular models.

Regular Models

Consider a statistical model {fθ(x); θ ∈ Ω}, x ∈ A with each density sup-
ported by a common set A. Suppose Ω is an open interval in the real line and
fθ(x) > 0 for all θ ∈ Ω and x ∈ A. Suppose in addition

1. ln[fθ(x)] is a continuous, three times differentiable function of θ for all
x ∈ A.

2. ∂k

∂θk

∫
A

fθ(x)dx = ∫
A

∂k

∂θk fθ(x)dx, k = 1↪ 2.

3. | ∂3 ln fθ(x)

∂θ3 | < M(x) for some function M(x) satisfying supθ Eθ[M(X)]

< ∞.
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4. 0 < Eθ{[S(θ; X)]2} < ∞.

Then we call this a regular family of distributions or a regular model. Sim-
ilarly, if these conditions hold with X a discrete random variable and the
integrals replaced by sums, the family is also called regular. Conditions like
these permitting the interchange of expected values and derivative are some-
times referred to as the Cramer conditions. In general, they are used to justify
passage of a derivative under an integral.

Theorem B8 If X = (X1↪ . . . ↪ Xn) is a random sample from a regular model
{fθ(x) ;
θεΩ}↪ then

Eθ[S(θ; X)] = 0

and
varθ[S(θ; X)] = Eθ{[S(θ; X)]2} = Eθ[I (θ; X)] = J (θ)

The Multiparameter Case

The case of several parameters is exactly analogous to the scalar parameter
case. Suppose θ = (θ1↪ . . . ↪ θk)′. In this case the “parameter” can be thought
of as a column vector of k scalar parameters. The score function S(θ) is a
k-dimensional column vector whose ith component is the derivative of �(θ)

with respect to the ith component of θ, that is,

S(θ) =
[

∂

∂θ1
�(θ)↪ . . . ↪

∂

∂θk

�(θ)

] ′

The observed information function I (θ) is a k × k matrix whose (i↪ j )

element is − ∂2

∂θi ∂θj
�(θ):

I (θ) = [Iij (θ)]k×k =
[
− ∂2

∂θi ∂θj

�(θ)

]
k×k

↪ i↪ j = 1↪ . . . ↪ k

The Fisher information is a k ×k matrix whose components are component-
wise expectations of the information matrix, that is

Jij (θ) = Eθ[Iij (θ; X)]↪ i↪ j = 1↪ . . . ↪ k

The definition of a regular family of distributions is similarly extended. For
a regular family of distributions

Eθ[S(θ; X)] = (0↪ . . . ↪ 0)′
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and the covariance matrix of the score function varθ[S(θ; X)] is the Fisher
information, that is,

Jij (θ) = Eθ

[
∂

∂θi

�(θ)
∂

∂θj

�(θ)

]

Maximum-Likelihood Estimation in the Exponential Family

Suppose X has a regular exponential family distribution of the form

fη(x) = C(η) exp


k∑

j=1

ηj Tj (x)

h(x)

Then

Eη[Tj (X)] = −∂ ln C(η)

∂ηj

for j = 1↪ . . . ↪ k

and

covη(Ti (X)↪ Tj (X)) = −∂2 ln C(η)

∂ηiδηj

for i↪ j = 1↪ . . . ↪ k

Then the maximum-likelihood estimator of η based on a random sample
(X1↪ . . . ↪ Xn) from fη(x) is the solution to the k equations

Eη[Tj (X)] = 1

n

n∑
i=1

Tj (xi ) for j = 1↪ . . . ↪ k

The maximum-likelihood estimators are obtained by setting the sample mo-
ments of the natural sufficient statistic equal to their expected values and
solving for the value of n.

Finding Maximum-Likelihood Estimates Using Newton’s Method

Suppose the maximum-likelihood estimate θ̂ is determined by the likelihood
equation

S(θ) = 0

It frequently happens that an analytic solution for θ̂ cannot be obtained. If
we begin with an approximate value for the parameter, θ(0), we may update
that value as follows:

θ(i+1) = θ(i) + S(θ(i))

I (θ(i))
↪ i = 0↪ 1↪ 2↪ . . .
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and provided that convergence of θ(i), i → ∞, obtains, it converges to a
solution to the score equation above. In the multiparameter case, where S(θ)

is a vector and J (θ) is a matrix, then Newton’s method becomes

θ(i+1) = θ(i) + I−1(θ(i))S(θ(i))↪ i = 0↪ 1↪ 2↪ . . .

In both of these cases we can replace the information function by the Fisher
information for a similar algorithm.

Suppose we consider estimating a parameter τ(θ), where θ is a scalar,
using an unbiased estimator T (X). Is there any limit to how well an estimator
like this can behave? The answer for unbiased estimators is in the affirmative.
A lower bound on the variance is given by the information inequality.

Information Inequality

Suppose T (X) is an unbiased estimator of the parameter τ(θ) in a regular
statistical model {fθ(x); θ ∈ Ω}. Then

varθ(T ) ≥ [τ′(θ)]2

J (θ)
(1.2)

Equality holds if and only if fθ(x) is regular exponential family with natural
sufficient statistic T (X).

If equality holds in (1.2), then we call T (X) an efficient estimator of τ(θ).
The number on the right-hand side of (1.2),

[τ′(θ)]2

J (θ)

is called the Cramér-Rao lower bound (CRLB). We often express the effi-
ciency of an unbiased estimator using the ratio of (CRLB) to the variance of
the estimator. Large values of the efficiciency (i.e., near 1) indicate that the
variance of the estimator is close to the lower bound.

The special case of the information inequality that is of most interest
is the unbiased estimation of the parameter θ . The above inequality indi-
cates that any unbiased estimator T of θ has variance at least 1/J (θ) . The
lower bound is achieved only when fθ(x) is regular exponential family with
natural sufficient statistic T, so even in the exponential family, only certain
parameters are such that we can find unbiased estimators that achieve the
CRLB, namely those that are expressible as the expected value of the natural
sufficient statistics.



20 1.2. Maximum-Likelihood Estimation

The Multiparameter Case

The right-hand side in the information inequality generalizes naturally to
the multiple-parameter case in which θ is a vector. For example, if θ =
(θ1↪ . . . ↪ θk)′, then the Fisher information J (θ) is a k × k matrix. If τ(θ) is any

real-valued function of θ, then its derivative is a column vector
(

∂τ
∂θ1

↪ . . . ↪ ∂τ
∂θk

) ′
.

Then if T (X) is any unbiased estimator of τ(θ) in a regular model,

varθ(T ) ≥
(

∂τ

∂θ1
↪ . . . ↪

∂τ

∂θk

)
[J (θ)]−1

(
∂τ

∂θ1
↪ . . . ↪

∂τ

∂θk

) ′

for all θ ∈ Ω.

Asymptotic Properties of Maximum-Likelihood Estimators

One of the more successful attempts at justifying estimators and demon-
strating some form of optimality has been through large-sample theory or
the asymptotic behavior of estimators as the sample size n → ∞. One of the
first properties one requires is consistency of an estimator. This means that
the estimator converges to the true value of the parameter as the sample size
(and hence the information) approaches infinity.

Definition Consider a sequence of estimators Tn, where the subscript n in-
dicates that the estimator has been obtained from data (X1↪ . . . ↪ Xn) with
sample size n. Then the sequence is said to be a consistent sequence of esti-
mators of τ(θ) if Tn →p τ(θ) for all θ ∈ Ω.

It is worth a reminder at this point that probability density functions
are used to produce probabilities and are unique only up to a point. For
example, if two probability density functions f (x) and g(x) were such that
they produced the same probabilities, or the same cumulative distribution
function—for example, ∫ x

−∞
f (z)dz =

∫ x

−∞
g(z)dz

for all x—then we would not consider them distinct probability densities,
even though f (x) and g(x) may differ at one or more values of x. When we
parameterize a given statistical model using θ as the parameter, it is natural to
do so in such a way such that different values of the parameter lead to distinct
probability density functions. This means, for example, that the cumulative
distribution functions associated with these densities are distinct. Without
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this assumption, made in the following theorem, it would be impossible to
accurately estimate the parameter since two different parameters could lead
to the same cumulative distribution function and hence exactly the same
behavior of the observations.

Theorem B9 Suppose (X1↪ . . . ↪ Xn) is a random sample from a regular statis-
tical model {fθ(x); θ ∈ Ω}. Assume the densities corresponding to different
values of the parameters are distinct. Let S1(θ; Xi) = ∂

∂θ
lnfθ(Xi). Then with

probability tending to 1 as n → ∞, the likelihood equation

n∑
i=1

S1(θ; Xi) = 0

has a root θ̂n such that θ̂n converges in probability to θ0, the true value of
the parameter, as n → ∞.

The likelihood equation above does not always have a unique root. The
consistency of the maximum-likelihood estimator is one indication that it
performs reasonably well. However, it provides no reason to prefer it to some
other consistent estimator. The following result indicates that maximum-
likelihood estimators perform as well as any reasonable estimator can, at
least in the limit as n → ∞. Most of the proofs of these asymptotic results
can be found in Lehmann (The Theory of Point Estimation, Wiley, New
York, 1983).

Theorem B10 Suppose (X1↪ . . . ↪ Xn) is a random sample from a regular sta-
tistical model {fθ(x); θ ∈ Ω}. Suppose θ̂n is a consistent root of the likelihood
equation as in the theorem above. Let J1(θ) = Eθ{−∂2

∂θ2 lnfθ(X)}, the Fisher

information for a sample of size one. Then

√
n(θ̂n − θ0) →D Y ∼ N

(
0↪

1

J1(θ0)

)
where θ0 is the true value of the parameter.

This result may also be written as√
nJ1(θ0) (θ̂n − θ0) = √J (θ0) (θ̂n − θ0) →D Z ∼ N(0↪ 1)

This theorem asserts that, at least under the regularity required, the maximum-
likelihood estimator is asymptotically unbiased. Moreover, the asymptotic
variance of the maximum-likelihood estimator approaches the Cramér-Rao
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lower bound for unbiased estimators. This justifies the comparison of the
variance of an estimator Tn based on a sample of size n to the value [nJ1(θ0)]−1,
which is the asymptotic variance of the maximum-likelihood estimator and
also the Cramér-Rao lower bound.

It also follows that

√
n[τ(θ̂n) − τ(θ0)] →D W ∼ N

(
0↪

[τ′(θ0)]2

J1(θ0)

)
This indicates that the asymptotic variance of any function τ(θ̂n) of the
maximum-likelihood estimator also achieves the Cramér-Rao lower bound.

Definition Suppose Tn is asymptotically normal with mean θ0 and variance
σ2

T/n. The asymptotic efficiency of Tn is defined to be [σ2
TJ1(θ0)]−1. This is the

ratio of the Cramér-Rao lower bound to the variance of Tn and is typically
less than 1, with a value close to 1 indicating the asymptotic efficiency is
close to that of the maximum-likelihood estimator.

The Multiparameter Case In the case θ = (θ1↪ . . . ↪ θk)′, the score function is
the vector of partial derivatives of the log-likelihood with respect to the
components of θ. Therefore, the likelihood equation is k equations in the k

unknown parameters. Under similar regularity conditions to the univariate
case, the conclusion of Theorem B9 holds in this case; that is, the compo-
nents of θ̂n each converge in probability to the corresponding component of
θ0. Similarly, the asymptotic normality remains valid in this case with little
modification. Let J1(θ) be the Fisher information matrix for a sample of size
1 and assume it is a nonsingular matrix. Then

√
n(θ̂n − θ0) →D Y ∼ MVN (0↪ [J1(θ0)]−1)

where the multivariate normal distribution with k-dimensional mean vec-
tor µ and covariance matrix B(k × k), denoted MV N(µ↪ B)has probability
density function defined on Rk,

f (x) = 1

(2π)k/2|B|1/2
exp

{
−1

2
(x − µ)′B−1(x − µ)

}
It also follows that

√
n[τ(θ̂n) − τ(θ0)] →D W ∼ MVN (0↪ [D(θ0)]′[J1(θ0)]−1D(θ0))

where D(θ) =
(

∂τ
∂θ1

↪ . . . ↪ ∂τ
∂θk

) ′
. Once again, the asymptotic variance-covari-

ance matrix is identical to the lower bound given by the multiparameter case
of the information inequality.
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Joint confidence regions can be constructed based on one of the asymp-
totic results

(θ̂n − θ0)′J (θ̂n)(θ̂n − θ0) →D W ∼ χ2(k)

(θ̂n − θ0)′I (θ̂n)(θ̂n − θ0) →D W ∼ χ2(k)

or
�n(X) = −2 ln R(θ0) →D W ∼ χ2(k)

Confidence intervals for a single parameter, say θi , can be based on the ap-
proximate normality of

{[J −1(θ̂n)]ii }−1/2[(θ̂n)i − (θ0)i ]

or
{[I−1(θ̂n)]ii }−1/2[(θ̂n)i − (θ0)i ]

where (a)i is the ith entry in the vector a and [A−1]ii is the (i↪ i) entry in the
matrix A−1.

Unidentifiability and Singular Information Matrices

Suppose we observe two independent random variables Y1↪ Y2 having nor-
mal distributions with the same variance σ2 and means θ1 + θ2, θ2 + θ3,
respectively. In this case, although the means depend on the parameter θ =
(θ1↪ θ2↪ θ3), the value of this vector parameter is unidentifiable in the sense
that, for some pairs of distinct parameter values, the probability density func-
tions of the observations are identical. For example, the parameter (1↪ 0↪ 1)

leads to exactly the same joint distribution of Y1↪ Y2 as does the parame-
ter (0↪ 1↪ 0). In this case, we we might consider only the two parameters
(φ1↪ φ2) = (θ1 + θ2↪ θ2 + θ3) and anything derivable from this pair estimable,
whereas parameters such as θ2 that cannot be obtained as functions of φ1↪ φ2
are consequently unidentifiable. The solution to the original identifiability
problem is the reparameterization to the new parameter (φ1↪ φ2) in this case,
and in general, unidentifiability usually means one should seek a new, more
parsimonious parameterization.

In the above example, we may compute the Fisher information matrix
for the parameter θ = (θ1↪ θ2↪ θ3) as follows.

The log likelihood is

�(θ) = − 1

2σ2

{
(y1 − θ1 − θ2)2 + (y2 − θ2 − θ3)2

}+ c

and the Fisher information is the covariance matrix of the score vector

S(θ) = 1

σ2

 y1 − θ1 − θ2

y1 + y2 − θ1 − 2θ2 − θ3

y2 − θ2 − θ3


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and this is

J (θ) = 1

σ2

 1 1 0
1 2 1
0 1 1


Notice that J (θ) is, in this case, singular. If you were to attempt to compute
the asymptotic variance of the maximum likleihood estimator of θ by invert-
ing this information matrix, the inversion is impossible. Attempting to invert
a singular matrix is like attempting the inverse of 0, one or more components
of the inverse can be taken to be infinite, indicating that, asymptotically at
least, one of more of the parameters is unidentifiable. When parameters are
unidentifiable, the Fisher information matrix is generally singular. However,
when J (θ) is singular for all values of θ, this may or may not mean that pa-
rameters are unidentifiable for finite sample sizes, but it does usually mean
one should take a careful look at the parameters with a possible view to
adopting another parameterization.

UMVUEs and Maximum-Likelihood Estimators: A Comparison

Which of the two main types of estimators should we use? There is no general
consensus among statisticians.

1. If we are estimating the expectation of a natural sufficient statistic Ti(X)

in a regular exponential family, both maximum-likelihood and unbi-
asedness considerations lead to the use of Ti as an estimator.

2. When sample sizes are large, UMVUEs and maximum-likelihood esti-
mators are essentially the same. In that case use is governed by ease of
computation. Unfortunately how large “large” needs to be is usually un-
known. Some studies have been carried out comparing the behavior of
UMVUEs and maximum-likelihood estimators for various small fixed
sample sizes. The results are, as might be expected, inconclusive.

3. Maximum-likelihood estimators exist “more frequently,” and when they
do they are usually easier to compute than UMVUEs. This is essentially
because of the appealing invariance property of maximum-likelihood
estimators.

4. Simple examples are known for which maximum-likelihood estimators
behave badly even for large samples. This is more often the case when
there are a large number of parameters, some of which, termed “nuisance
parameters,” are of no direct interest, but complicate the estimation.

5. UMVUEs and maximum-likelihood estimators are not necessarily ro-
bust. A small change in the underlying distribution or the data could
result in a large change in the estimator.
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1.3 OTHER ESTIMATION CRITERIA

Best Linear Unbiased Estimators

The problem of finding best unbiased estimators is considerably simpler if we
limit the class in which we search. If we permit any function of the data, then
we usually require the heavy machinery of complete sufficiency to produce
UMVUEs. However, the situation is much simpler if we suggest some initial
random variables and then require that our estimator be a linear combina-
tion of these. Suppose, for example we have random variables Y1↪ Y2↪ Y3 with
E(Y1) = α + θ , E(Y2) = α − θ , E(Y3) = θ , where θ is the parameter of inter-
est and α is another parameter. What linear combinations of the Yi provide
an unbiased estimator of θ, and among these possible linear combinations
which one has the smallest possible variance? To answer these questions, we
need to know the covariances cov(Yi ↪ Yj ) (at least up to some scalar multi-
ple). Suppose cov(Yi ↪ Yj ) = 0, i 	= j , and var(Yj ) = σ2 . Let Y = (Y1↪ Y2↪ Y3)′
and β = (α↪ θ)′ . We can write the model in a form reminiscent of linear re-
gression as

Y = Xβ + ε

where

X =
 1 1

1 −1
0 1


ε = (ε1↪ ε2↪ ε3)′ and the εi are uncorrelated random variables with E(εi ) = 0
and var(εi ) = σ2. Then the linear combination of the components of Y that
has the smallest variance among all unbiased estimators of β is given by the
usual regression formula, β̃ = (α̃↪ θ̃)′ = (X′X)−1X′Y, and θ̃ = 1

3 (Y1 −Y2 +Y3)

provides the best estimator of θ in the sense of smallest variance. In other
words, the linear combination of the components of Y that has the smallest
variance among all unbiased estimators of a′β is a′β̃, where a′ = (0↪ 1).

More generally, we wish to consider a number n of possibly depen-
dent random variables Yi whose expectations may be related to a param-
eter θ. These may, for example, be individual observations or a number
of competing estimators constructed from these observations. We assume
Y = (Y1↪ . . . ↪ Yn)′ has expectation given by

E(Y ) = Xβ

where X is some n×k matrix having rank k and β = (β1↪ . . . ↪ βk)′ is a vector
of unknown parameters. As in multiple regression, the matrix X is known
and nonrandom. Suppose the covariance matrix of Y is σ2B, with B a known
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nonsingular matrix and σ2 a possibly unknown scalar parameter. We wish to
estimate a linear combination of the components of β, say θ = a′β, where a is
a known k-dimensional column vector. We restrict our attention to unbiased
estimators of θ.

Theorem B11: Gauss-Markov Theorem Suppose Y is a random vector with mean
and covariance matrix

E(Y ) = Xβ

cov(Yi ↪ Yj )= σ2B

where matrices X and B are known and the parameters β and σ2 unknown.
Suppose we wish to estimate a linear combination θ = a′β of the components
of β. Then among all linear combinations of the components of Y which are
unbiased estimators of the parameter θ↪ the estimator

θ̃ = a′(X′B−1X)−1X′B−1Y

has the smallest variance. Note that this result does not depend on any as-
sumed normality of the components of Y but only on the first and second
moment behavior, that is, the mean and the covariances. The special case
when B is the identity matrix is the least squares estimator.

Estimating Equations

To find the maximum-likelihood estimator, we usually solve the likelihood
equation

n∑
i=1

S1(θ; Xi) = 0 (1.3)

Note that the function on the left-hand side is a function of both the obser-
vations and the parameter. Such a function is called an estimating function.
Most sensible estimators, like the maximum-likelihood estimator, can be
described easily through an estimating function. For example, if we know
varθ(Xi) = θ for independent identically distributed Xi , then we can use the
estimating function

ψ(θ↪ X) =
n∑

i=1

(Xi − X)2 − (n − 1)θ (1.4)

to estimate the parameter θ, without any other knowledge of the distribu-
tion, its density, mean, and so on. The estimating function is set equal to 0
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and solved for θ. The above estimating function is an unbiased estimating
function in the sense that

Eθ[ψ(θ↪ X)] = 0↪ for all θ (1.5)

This allows us to conclude that the function is at least centered appropriately
for the estimation of the parameter θ. Now suppose that ψ is an unbiased
estimating function corresponding to a large sample. Often it can be written
as the sum of independent components, for example,

ψ(θ↪ X) =
n∑

i=1

ψ(θ↪ Xi ) (1.6)

Now suppose θ̂ is a root of the estimating equation

ψ(θ↪ X) = 0

Then for θ sufficiently close to θ̂,

ψ(θ↪ X) = ψ(θ↪ X) − ψ(θ̂↪ X) ≈ (θ − θ̂)
∂

∂θ
ψ(θ↪ X) (1.7)

Using the Central Limit Theorem, assuming that θ is the true value of the
parameter, and provided ψ is a sum as in (1.6), the left-hand side of (1.7)
is approximately normal with mean 0 and variance equal to varθ[ψ(θ↪ X)].
The term ∂

∂θ
ψ(θ↪ X) is also a sum of similar derivatives of the individual ψi .

If a law of large numbers applies to these terms, then when divided by n this
sum will be asymptotically equivalent to 1

n
Eθ[∂ψ(X↪ θ)/∂θ]. It follows that

the root θ̂ will have an approximate normal distribution with mean θ and
variance

varθ[ψ(θ↪ X)]

{Eθ[∂ψ(θ↪ X)/∂θ]}2

By analogy with the relation between asymptotic variance of the maximum-
likelihood estimator and the Fisher information, we call the reciprocal of
the above asymptotic variance formula the Godambe information of the
estimating function. This information measure is

J (ψ↪ θ) = {Eθ[∂ψ(θ↪ X)/∂θ]}2

varθ[ψ(θ↪ X)]
(1.8)

Godambe (1960) proved the following result.



28 1.4. Bayesian Methods

Theorem B12 Among all unbiased estimating functions satisfying the usual
regularity conditions, an estimating function that maximizes the Godambe
information (1.8) is of the form c(θ)S(θ; X)↪ where c(θ) is nonrandom.

1.4 BAYESIAN METHODS

There are two major schools of thought on the way in which statistical infer-
ence is conducted, the frequentist school and the Bayesian school. Typically,
these schools differ slightly on the actual methodology and the conclusions
that are reached, and more substantially on the philosophy underlying the
treatment of parameters. So far we have considered a parameter as an un-
known constant underlying or indexing the probability density function of
the data. It is only the data, and statistics derived from the data, that are
random.

The Bayesian begins with the assertion that the parameter θ obtains as
the realization of some larger random experiment. The parameter is assumed
to have been generated according to some distribution, the prior distribution
π, and the observations then obtained from the corresponding probability
density function fθ interpreted as the conditional probability density of the
data given the value of θ. The prior distribution π(θ) quantifies information
about θ prior to any further data being gathered. Sometimes π(θ) can be
constructed on the basis of past data. For example, if a quality inspection
program has been running for some time, the distribution of the number of
defectives in past batches can be used as the prior distribution for the number
of defectives in a future batch. The prior can also be chosen to incorporate
subjective information based on an expert’s experience and personal judg-
ment. The purpose is then to adjust this distribution for θ in the light of
the data, to result in the posterior distribution for the parameter. Any con-
clusions about the plausible value of the parameter are to be drawn from
the posterior distribution. For a frequentist, statements like P (1 < θ < 2)

are meaningless; all randomness lies in the data, and the parameter is an
unknown constant. Frequentists are careful to assure students that if an ob-
served 95% confidence interval for the parameter is 1 < θ < 2, this does
not imply P (1 < θ < 2) = 0.95. However, a Bayesian will happily quote
such a probability, usually conditionally on some observations, for example,
P (1 < θ < 2|X) = 0.95. In spite of some distance in the philosophies regard-
ing the (random?) nature of statistical parameters, the two paradigms largely
agree for large sample sizes because the prior assumptions of the Bayesian
tend to be a small contributor to the conclusion.

Posterior Distributions

Suppose the parameter is initially chosen at random according to the prior
distribution π(θ) and then, given the value of the parameter, the observations
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are independent identically distributed, each with conditional probability
(density) function fθ(x). Then the posterior distribution of the parameter is
the conditional distribution of θ given the data x = (x1↪ . . . ↪ xn):

π(θ|x) = cπ(θ)

n∏
i=1

fθ(xi ) = cπ(θ)L(θ)

where c = 1/
∫∞
−∞ π(θ)L(θ)dθ is independent of θ and L(θ) is the likelihood

function. Since Bayesian inference is based on the posterior distribution, it
depends on the data only through the likelihood function.

Example Suppose a coin is tossed n times with probability of heads θ. It
is known that the prior probability of heads is not always identically 1/2
but follows a beta (10↪ 10) distribution. If the n tosses result in x heads,
we wish to find the posterior density function for θ. The prior distribution
for the parameter θ is the beta(10,10) distribution with probability density
function

π(θ) = �(20)

�(10)�(10)
θ9(1 − θ)9↪ 0 < θ < 1

The posterior distribution of θ is therefore proportional to

π(θ)fθ(x) = �(20)

�(10)�(10)
θ9(1 − θ)9

(
n

x

)
θx(1 − θ)n−x

= Cθ9+x(1 − θ)9+n−x↪ 0 < θ < 1

where the constant C may depend on x but does not depend on θ. Therefore
the posterior distribution is also a beta distribution but with parameters
(10 + x↪ 10 + n − x). Notice that the posterior mean is the expected value of
this beta distribution and is

10 + x

10 + n − x

which, for n and x sufficiently large, is reasonably close to the usual estimator
x/n.

Conjugate Prior Distributions

If a prior distribution has the property that the posterior distribution is in the
same family of distributions as the prior, then the prior is called a conjugate
prior.

Suppose (X1↪ . . . ↪ Xn) is a random sample from the exponential family

fθ(x) = C(θ) exp[q(θ)T (x)]h(x)
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and θ is assumed to have the prior distribution given by

π(θ) = k[C(θ)]a exp[bq(θ)] (1.9)

where a and b are parameters and

k = 1∫∞
−∞[C(θ)]a exp[bq(θ)]dθ

Then the posterior distribution of θ, given the data x = (x1↪ . . . ↪ xn), is easily
seen to be given by

π(θ|x) = c[C(θ)]a+n exp

{
q(θ)

[
b +

n∑
i=1

T (xi )

]}

where

c = 1∫∞
−∞[C(θ)]a+n exp{q(θ)[b +∑n

i=1 T (xi )]}dθ

Notice that the posterior distribution is in the same family of distributions
as (1.9) and thus π(θ) is a conjugate prior. The value of the parameters of
the posterior distribution reflect the choice of parameters in the prior.

Example To find the conjugate prior for θ = (α↪ β) for a random sample
(X1↪ . . . ↪ Xn) from the beta(α↪ β) distribution with probability density func-
tion

fθ(x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1↪ 0 < x < 1↪ for α↪ β > 0

we begin by writing this in exponential family form,

fθ(x) = �(α + β)

�(α)�(β)
exp{(α − 1) ln x + (β − 1) ln(1 − x)}

Then the conjugate prior distribution is the joint probability density function
π(α↪ β) on (α↪ β), that is proportional to

π(α↪ β) ∝ { �(α + β)

�(α)�(β)
}a exp{−b1(α − 1) − b2(β − 1)} (1.10)

for parameters a↪ b1↪ b2. The posterior distribution takes the same form as
(1.10) but with the parameters a↪ b1↪ b2 replaced by a+n↪ −b1 +∑n

i=1 ln(Xi)↪

−b2 +∑n
i=1 ln(1 − Xi). Bayesians are sometimes criticized for allowing their
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subjective opinions (in this case leading to the choice of the prior parame-
ters a↪ b1↪ b2) influence the resulting inference, but notice that in this case,
and more generally, as the sample size n grows, the value of the parame-
ters of the posterior distribution is mostly determined by the components
n↪
∑n

i=1 ln(Xi)↪
∑n

i=1 ln(1 − Xi) above, which grow in n, eventually washing
out the influence of the value of the prior parameters.

Noninformative Prior Distributions

The choice of the prior distribution to be the conjugate prior is often moti-
vated by mathematical convenience. However, a Bayesian would also like the
prior to accurately represent the preliminary uncertainty about the plausible
values of the parameter, and this may not be easily translated into one of
the conjugate prior distributions. Noninformative priors are the usual way
of representing ignorance about θ, and they are frequently used in practice.
It can be argued that they are more objective than a subjectively assessed
prior distribution since the latter may contain personal bias as well as back-
ground knowledge. Also, in some applications the amount of prior informa-
tion available is far less than the information contained in the data. In this
case there seems little point in worrying about a precise specification of the
prior distribution.

In the coin tossing example above, we assumed a beta(10,10) prior dis-
tribution for the probability of heads. If were no reason to prefer one value
of θ over any other, then a noninformative or “flat” prior disribution for
θ that could be used is the uniform(0↪ 1) distribution—also, as it turns out,
a special case of the beta distribution. Ignorance may not be bliss, but for
Bayesians it is most often uniformly distributed. For estimating the mean θ
of a N (θ↪ 1) distribution the possible values for θ are (−∞↪ ∞). If we take
the prior distribution to be uniform on (−∞↪ ∞), that is,

π(θ) = c↪ −∞ < θ < ∞
then this is not a proper probability density since∫ ∞

−∞
π(θ)dθ = c

∫ ∞

−∞
dθ = ∞ if c > 0

Prior densities of this type are called improper priors. In this case we could
consider a sequence of prior distributions such as the uniform(−M↪ M),
which approximates this prior as M → ∞. Suppose we call such a prior
density function πM. Then the posterior distribution of the parameter is
given by

π(θ|x) = cπM(θ)L(θ)
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and it is easy to see that as M → ∞, this approaches a constant multiple
of the likelihood function L(θ). For reasonably large sample size, L(θ) is
often an integrable function of θ and can therefore be normalized to produce
a proper posterior distribution, even though the corresponding prior was
improper. This Bayesian development provides an alternative interpretation
of the likelihood function. We can consider it as proportional to the posterior
distribution of the parameter using a uniform improper prior on the whole
real line. The language is somewhat sloppy here since, as we have seen, the
uniform distribution on the whole real line really makes sense only through
taking limits for uniform distributions on finite intervals.

In the case of a scale parameter, which must take positive values such as
the normal variance, it is usual to express ignorance of the prior distribution
of the parameter by assuming that the logarithm of the parameter is uniform
on the real line.

One possible difficulty with using nonformative prior distributions is
the concern of whether the prior distribution should be uniform for θ itself
or some function of θ, such as θ2 or log(θ). The objective when we used
a uniform prior for a probability was to add no more information about
the parameter around one possible value than around some other, and so
it makes sense to use a uniform prior for a parameter that essentially has
uniform information attached to it. For this reason, it is common to use a
uniform prior for τ = h(θ), where h(θ) is the function of θ whose Fisher
information, J ∗(τ), is constant. This idea is due to Jeffreys and leads to a
prior distribution that is proportional to [J (θ)]1/2. Such a prior is referred
to as a Jeffreys’ prior. The reparameterization that leads to a Jeffrey’s prior
can be carried out as follows: Suppose {fθ(x); θ ∈ Ω} is a regular model and
J1(θ) = Eθ

{
−∂2

∂θ2 log fθ(X)
}

is the Fisher information for a single observation.

Then if we choose an abitrary value for θ0 and define the reparameterization

τ(θ) =
∫ θ

θ0

√
J1(u)du (1.11)

then in this case, the Fisher information for the parameter τ, J ∗
1 (τ), equals

1 for all values of τ, and so Jeffry’s prior corresponds to using a uniform
prior distribution on the values of τ. Since the asymptotic variance of the
maximum-likelihood estimator τ̂n is equal to 1/n, which does not depend on
τ, (1.11) is often called a variance-stabilizing transformation.

Bayes Point Estimators

One method of obtaining a point estimator of θ is to use the posterior dis-
tribution and a suitable loss function.
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Theorem B13 The Bayes estimator of θ for squared error loss with respect to
the prior π(θ)given data X is the mean of the posterior distribution given by

θ̃ = θ̃(X) =
∫ ∞

−∞
θπ(θ|X)dθ

This estimator minimizes over all functions θ̃(x) of the data

E[(θ̃ − θ)2|X] =
∫ ∞

−∞

{∫ ∞

−∞

(
θ̃ − θ

)2
fθ(x)dx

}
π(θ)dθ

Example Suppose (X1↪ . . . ↪ Xn) is a random sample from the distribution with
probability density function

fθ(x) = θxθ−1 0 < x < 1↪ θ > 1

Using a conjugate prior for θ, find the Bayes estimator of θ for squared error
loss.

We begin by identifying the conjugate prior distribution. Since

fθ(x) = θ exp{(θ − 1) ln x} 0 < x < 1↪ θ > 1

the conjugate prior density is

π(θ) = kθa exp{bθ}↪ θ > 1

which is evidently a gamma distribution restricted to the interval (1↪ ∞), and
if the prior is to be proper, the parameters must be chosen such that

k−1 =
∫ ∞

1
θa exp{bθ}dθ < ∞

so b ≤ 0. Then the posterior distribution takes the same form as the prior
but with a replaced by a + n and b by b +∑n

i=1 ln(Xi). The Bayes estimate
of θ for squared error loss is the mean of this posterior distribution, or∫∞

1 θa+n+1 exp{(b +∑n
i=1 ln(Xi))θ}dθ∫∞

1 θa+n exp{(b +∑n
i=1 ln(Xi))θ}dθ

Bayesian Interval Estimates

There remains, after many decades, a controversy between Bayesians and
frequentists about which approach to estimation is more suitable to the real
world. The Bayesian has advantages at least in the ease of interpretation of
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the results. For example, a Bayesian can use the posterior distribution given
the data x = (x1↪ . . . ↪ xn) to determine points c1 = c1(x), c2 = c2(x) such
that ∫ c2

c1

π(θ|x)dθ = 0.95

and then give a Bayesian confidence interval (c1↪ c2) for the parameter. If this
results in the interval (2↪ 5), the Bayesian will state that (in a Bayesian model,
subject to the validity of the prior) the conditional probability given the data
that the parameter falls in the interval (2↪ 5) is 0.95. No such probability
can be ascribed to a confidence interval for frequentists, who see no ran-
domness in the parameter to which this probability statement is supposed to
apply. Bayesian confidence regions are also called credible regions in order to
make clear the distinction between the interpretation of Bayesian confidence
regions and frequentist confidence regions.

Suppose π(θ|x) is the posterior distribution of θ given the data x =
(x1↪ . . . ↪ xn) and A is a subset of Ω. If

P (θ ∈ A|x) =
∫

A

π(θ|x)dθ = p

then A is called a p credible region for θ. A credible region can be formed in
many ways. If (a↪ b) is an interval such that

P (θ < a|x) = 1 − p

2
= P (θ > b|x)

then (a↪ b) is called a p equal-tailed credible region. A highest posterior
density (HPD) credible region is constructed in a manner similar to likeli-
hood regions. The p highest posterior density credible region is given by
{θ : π(θ|x) > c}, where c is chosen such that

p =
∫

{θ:π(θ|x)>c}
π(θ|x)dθ

A highest posterior density credible region is optimal in the sense that it is
the shortest p credible interval for a given value of p.

Example Suppose (X1↪ . . . ↪ Xn) is a random sample from the N(µ↪ σ2) distri-
bution, where, σ2 is known and µ has the conjugate prior. Find the p = 0.95
HPD credible region for µ. Compare this to a 95% confidence interval for µ.

Suppose the prior distribution for µ is N(µ0↪ σ2
0) so the prior density is

given by

π(µ) = C1 exp

{
− (µ − µ0)2

2σ2
0

}
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and the posterior density by

π(µ|X) = C2 exp

{
− (µ − µ0)2

2σ2
0

−
n∑

i=1

(Xi − µ)2

2σ2

}

= C3 exp

{
− (µ − µ̃n)2

2̃σ2
n

}
where the constants C1↪ C2 and C3 depend on X↪ σ↪ σ0 but not on µ and where

µ̃n = wX + (1 − w)µ0

w = nσ2
0

nσ2
0 + σ2

and

σ̃2
n = (

1

σ2
0

+ n

σ2
)−1

Then the posterior distribution of µ is N(̃µn↪ σ̃2
n). It follows that the 0.95

H.P.D. credible region is of the form

µ̃n ± 1.96̃σn

Notice that as n → ∞↪ the weight w → 1 and so µ̃n is asymptotically
equivalent to the sample mean X. Similarly, as n → ∞↪ σ̃2

n is asymptotically
equivalent to σ2/n. This means that for large values of n↪ the H.P.D. region
is close to the region

X ± 1.96
σ√
n

and the latter is the 95% confidence interval for µ based on the normal
distribution of the maximum likelihood estimator X.

Finally, although statisticians argue whether the Bayesian or the fre-
quentist approach is better, there is really no one right way to do statistics.
There is something fundamentalist about the Bayesian paradigm, (though the
Reverand Bayes was, as far as we know, far from a fundamentalist) in that it
places all objects, parameters and data, in much the same context and treats
them similarly. It is a coherent philosophy of statistics, and a Bayesian will
vigorously argue that there is an inconsistency in regarding some unknowns
as random and others as deterministic. There are certainly instances in which
a Bayesian approach seems more sensible—particularly, for example, if the
parameter is a measurement on a possibly randomly chosen individual (say
the expected total annual claim of a client of an insurance company).
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1.5 HYPOTHESIS TESTS

Statistical estimation usually concerns the estimation of the value of a pa-
rameter when we know little about it except perhaps that it lies in a given
parameter space, and when we have no a priori reason to prefer one value
of the parameter over another. If, however, we are asked to decide between
two possible values of the parameter, the consequences of one choice of the
parameter value may be quite different from another choice. For example,
if we believe Yi is normally distributed with mean α + βxi and variance σ2

for some explanatory variables xi , then the value β = 0 means there is no
relation between Yi and xi . We need neither collect the values of xi nor build
a model around them. Thus the two choices β = 0 and β = 1 are quite
different in their consequences. This is often the case.

A hypothesis test involves a (usually natural) separation of the parameter
space Ω into two disjoint regions, Ω0 and Ω−Ω0. By the difference between
the two sets we mean those points in the former (Ω) that are not in the latter
(Ω0). This partition of the parameter space corresponds to testing the null
hypothesis that the parameter is in Ω0. We usually write this hypothesis in
the form

H0 : θ ∈ Ω0

The null hypothesis is usually the status quo. For example, in a test of a new
drug, the null hypothesis would be that the drug had no effect, or no more
of an effect than drugs already on the market. The null hypothesis is rejected
only if there is reasonably strong evidence against it. The alternative hypoth-
esis determines what departures from the null hypothesis are anticipated. In
this case, it might be simply

H1 : θ ∈ Ω − Ω0

Since we do not know the true value of the parameter, we must base our
decision on the observed value of X. The hypothesis test is conducted by
determining a partition of the sample space into two sets, the critical or
rejection region R and its complement R̄, which is called the acceptance
region. We declare that H0 is rejected (in favor of the alternative) if we
observe x ∈ R.

Definition The power function of a test with critical region R is the function

β(θ) = Pθ(X ∈ R)

or the probability that the null hypothesis is rejected as a function of the
parameter.
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It is obviously desirable, in order to minimize the two types of possible
errors in our decision, for the power function β(θ) to be small for θ ∈ Ω0

but large otherwise. The probability of rejecting the null hypothesis when
it is true (type I error) is a particularly important type of error that we
attempt to minimize. This probability determines one important measure of
the performance of a test, the level of significance.

Definition A test has level of significance α if β(θ) ≤ α for all θ ∈ Ω0.

The level of significance is simply an upper bound on the probability of
a type I error. There is no assurance that the upper bound is tight, that is,
that equality is achieved somewhere. The lowest such upper bound is often
called the size of the test.

Definition The size of a test is equal to supθ∈Ω0
β(θ).

Uniformly Most Powerful Tests

Tests are often constructed by specifying the size of the test, which in turn
determines the probability of the type I error, and then attempting to mini-
mize the probability that the null hypothesis is accepted when it is false (type
II error). Equivalently, we try and maximize the power function of the test
for θ ∈ Ω − Ω0.

Definition A test with power function β(θ) is a uniformly most powerful
(UMP) test of size α if, for all other tests of the same size α having power
function β∗(θ), we have β(θ) ≥ β∗(θ) for all θ ∈ Ω − Ω0.

The word “uniformly” above refers to the fact that one function domi-
nates another, that is, β(θ) ≥ β∗(θ) uniformly for all θ ∈ Ω − Ω0. When the
alternative Ω − Ω0 consists of a single point {θ1}, then the construction of a
best test is particularly easy. In this case, we may drop the word “uniformly”
and refer to a “most powerful test.” The construction of a best test, by this
definition, is possible under rather special circumstances. First, we often re-
quire a simple null hypothesis. This is the case when Ω0 consists of a single
point {θ0}, and so we are testing the null hypothesis H0 : θ = θ0 against a
simple alternative H1 : θ = θ1.

Lemma B1 (Neyman-Pearson Lemma) Let X have probability (density) function
fθ(x), θ ∈ Ω. Consider testing a simple null hypothesis H0 : θ = θ0 against a
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simple alternative H1 : θ = θ1. For a constant c, suppose the critical region
defined by

R =
{
x; fθ1(x)

fθ0(x)
> c
}

corresponds to a test of size α. Then the test with this critical region is a
most powerful test of size α for testing H0 : θ = θ0against H1 : θ = θ1.

Proof. Consider another critical region R1 with the same size. Then

Pθ0(X ∈ R) = Pθ0(X ∈ R1) = α or
∫

R

fθ0(x)dx =
∫

R1

fθ0(x)dx

Therefore,∫
R∩R1

fθ0(x)dx +
∫

R∩R1

fθ0(x)dx =
∫

R∩R1

fθ0(x)dx +
∫

R∩R1

fθ0(x)dx

and so ∫
R∩R1

fθ0(x)dx =
∫

R∩R1

fθ0(x)dx (1.12)

For x ∈ R ∩ R1,
fθ1(x)

fθ0(x)
> c or fθ1(x) > cfθ0(x)

and thus ∫
R∩R1

fθ1(x)dx > c

∫
R∩R1

fθ0(x)dx (1.13)

For x ∈ R ∩ R1, fθ1(x) ≤ cfθ0(x), and thus

−
∫

R∩R1

fθ1(x)dx ≥ −c

∫
R∩R1

fθ0(x)dx (1.14)

Now

β(θ1) = Pθ1(X ∈ R) = Pθ1(X ∈ R ∩ R1) + Pθ1(X ∈ R ∩ R1)

=
∫

R∩R1

fθ1(x)dx +
∫

R∩R1

fθ1(x)dx

and letting B1 denote the power function of the test with critical region R1,

β1(θ1) = Pθ1(X ∈ R1)

=
∫

R∩R1

fθ1(x)dx +
∫

R∩R1

fθ1(x)dx
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Therefore, using (1.12), (1.13), and (1.14) we have

β(θ1) − β1(θ1) =
∫

R∩R1

fθ1(x)dx −
∫

R∩R1

fθ1(x)dx

≥ c

∫
R∩R1

fθ0(x)dx − c

∫
R∩R1

fθ0(x)dx

= c[
∫

R∩R1

fθ0(x)dx −
∫

R∩R1

fθ0(x)dx] = 0

and the test with critical region R is therefore the most powerful.

Example Suppose we anticipate collecting daily returns from the past n days
of a stock, (X1↪ . . . ↪ Xn) assumed to be distributed according to a nor-
mal(µ�↪ σ2�) distribution. Here � is the length of a day measured in years,
� 
 1/252, and µ↪ σ2 are the annual drift and volatility parameters. We wish
to test whether the stock has zero or positive drift, so we wish to test the
hypothesis H0 :µ = 0 against the alternative H1 :µ > 0 at level of significance
α. We want the probability of the incorrect decision when the drift is 20%
per year to be small, so let us choose it to be α as well, which means that
when µ = 0.2, the power of the test should be at least 1 − α. How large a
sample must be taken to ensure this?

The test itself is easy to express. We reject the null hypothesis if( n

�

) 1
2 X

σ
> zα

where the value zα has been chosen so that P (Z > zα) = α when Z has a
standard normal distribution. The power of the test is the probability

P

[( n

�

) 1
2 X

σ
> zα

]

when the parameter µ1 = 0.2, and this is

P

[( n

�

) 1
2 X − µ1�

σ
> zα − µ1

σ
(n�)1/2

]
= P

[
Z > zα −

√
nµ1�1/2

σ

]
where Z has a standard normal distribution. Since we want the power to be
1 − α, the value

zα − µ1

σ
(n�)1/2
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must be chosen to be −zα. Solving for the value of n,

zα − µ1

σ
(n�)1/2 = −zα

n = 4σ2z2
α

µ2
1�

Now if we try some reasonable values for the parameters, for example,
σ2 = 0.2, � = 1/252, µ1 = 0.2, α = 0.05, then n 
 14↪000, which is about
55 years worth of data, far larger a sample than we could hope to collect.
This example shows that the typical variabilities in the market are so large,
compared with even fairly high rates of return, that it is almost impossible to
distinguish between theoretical rates of return of 0% and 20% per annum
using a hypothesis test with daily data.

Relationship betweeen Hypothesis Tests and Confidence Intervals

There is a close relationship between hypothesis tests and confidence inter-
vals, as the following example illustrates. Suppose (X1↪ . . . ↪ Xn) is a random
sample from the N(θ, 1) distribution and we wish to test the hypothesis
H0 : θ = θ0 against H1 : θ 	= θ0. The critical region R = {x; |x̄ − θ0| > 1.96/√

n} is a size α = 0.05 critical region that has a corresponding acceptance
region R = {x; |x̄ − θ0| ≤ 1.96/

√
n}. Note that the hypothesis H0 : θ = θ0

would not be rejected at the 0.05 level if |x̄ − θ0| ≤ 1.96/
√

n, or equivalently

x̄ − 1.96/
√

n < θ0 < x̄ + 1.96/
√

n

which is a 95% C.I. for θ.

Problem Let (X1↪ . . . ↪ X5) be a random sample from the gamma(2↪ θ) distri-
bution. Show that

R =
{

x;
5∑

i=1

xi < 4.7955θ0 or
5∑

i=1

xi > 17.085θ0

}

is a size α = 0.05 critical region for testing H0 : θ = θ0. Show how this critical
region may be used to construct a 95% C.I. for θ.

Likelihood Ratio Tests

Consider a test of the hypothesis H0 : θ ∈ Ω0 against H1 : θ ∈ Ω−Ω0. We have
seen that for prescribed θ0 ∈ Ω0, θ1 ∈ Ω − Ω0, the most powerful test of the
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simple null hypothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1 is
based on the likelihood ratio fθ1(x)/fθ0(x). By the Neyman-Pearson lemma
it has critical region

R =
{
x; fθ1(x)

fθ0(x)
> c
}

where c is a constant determined by the size of the test. When either the null
or the alternative hypothesis is composite (i.e., contains more than one point)
and there is no uniformly most powerful test, it seems reasonable to use a
test with critical region R for some choice of θ1↪ θ0. The likelihood ratio test
does this with θ1 replaced by θ̂, the maximum-likelihood estimator over all
possible values of the parameter, and θ0 replaced by the maximum-likelihood
estimator of the parameter when it is restricted to Ω0. Thus, the likelihood
ratio test has critical region R = {x; �(x) > c}, where

�(x) = supθ∈Ωfθ(x)

supθ∈Ω0
fθ(x)

= supθ∈ΩL(θ)

supθ∈Ω0
L(θ)

and c is determined by the size of the test. In general, the distribution of
the test statistic �(X) may be difficult to find. Fortunately, however, the
asymptotic distribution is known under fairly general conditions. In a few
cases, we can show that the likelihood ratio test is equivalent to the use of a
statistic with known distribution. However, in many cases, we need to rely
on the asymptotic chi-squared distribution of Theorem B6.

Example Let (X1↪ . . . ↪ Xn) be a random sample from the N(µ↪ σ2) distribu-
tion, where µ and σ2 are unknown. Consider a test of

H0 : µ = 0↪ 0 < σ2 < ∞
against the alternative

H1 : µ 	= 0↪ 0 < σ2 < ∞
We can show that the likelihood ratio test of H0 against H1 has critical region
R = {x; nx̄2/s2 > c}. Under H0 the statistic T = nX

2
/S2 has a F (1↪ n − 1)

distribution and we can thus find a size α = 0.05 test for n = 20.

Theorem B6 Suppose (X1↪ . . . ↪ Xn) is a random sample from a regular statis-
tical model {fθ(x); θ ∈ Ω} with Ω an open set in k-dimensional Euclidean
space. Consider a subset of Ω defined by Ω0 = {θ(η); η ∈ open subset of
q-dimensional Euclidean space}.Then the likelihood ratio statistic defined
by

�n(X) = supθ∈Ω
∏n

i fθ(Xi)

supθ∈Ω0

∏n
i fθ(Xi)

= supθ∈ΩL(θ)

supθ∈Ω0
L(θ)
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is such that, under the hypothesis H0 : θ ∈ Ω0,

2 log �n(X) →D W � χ2(k − q)

Note: The number of degrees of freedom is the difference between the
number of parameters that need to be estimated in the general model and
the number of parameters left to be estimated under the restrictions imposed
by H0.

Significance Tests and p-Values

A hypothesis test is a rule that allows us to decide whether to accept the null
hypothesis H0 or to reject it in favor of the alternative hypothesis H1 based
on the observed data. In situations in which H1 is difficult to specify, a test
of significance could be used. A (pure) test of significance is a procedure for
measuring the strength of the evidence provided by the observed data against
H0. This method usually involves looking at the distribution of a test statisitic
or discrepancy measure T under H0. The p-value or significance level for the
test is the probability, computed under H0, of observing a T value at least as
extreme as the value observed. The smaller the observed p-value, the stronger
the evidence against H0. The difficulty with this approach is finding statistic
with “good properties.” The likelihood ratio statistic provides a general test
statistic that may be used.

Score and Wald Tests

Score Test Score tests can be viewed as a more general class of tests of
H0: θ = θ0 against H1:θ ∈ Ω − {θ0}, which tend to have considerable power
provided that the values of the parameter under the null and the alterna-
tive hypotheses are close. If the usual regularity conditions hold, then under
H0 : θ = θ0 we have

S(θ0; X)[J (θ0)]−1/2 →D Z � N (0↪ 1)

and thus, the square

R(θ0; X) = [S(θ0; X)]2[J (θ0)]−1 →D W � χ2(1)

For a vector θ = (θ1↪ . . . ↪ θk)t, we have a similar result,

R(θ0; X) = [S(θ0; X)]t[J (θ0)]−1S(θ0; X) →D W � χ2(k)

The test based on R(θ0; X) is called a (Rao) score test. It has critical region

R = {x; R(θ0; x) > c}



43Statistics

where c is determined by the size of the test; that is, c satisfies P (W > c) = α,
where W � χ2(k). The test based on R(θ0; X) is asymptotically equivalent
to the likelihood ratio test.

Wald Test Suppose that θ̂ is the maximum-likelihood estimator of θ over all
θ ∈ Ω and we wish to test H0 : θ = θ0 against H1 : θ ∈ Ω − {θ0}. If the usual
regularity conditions hold, then under H0 : θ = θ0

W(θ0; X) = (θ̂ − θ0)tJ (θ0)(θ̂ − θ0) →D W � χ2(k)

A test based on the test statistic W(θ0; X) is called a Wald test. It has critical
region

R = {x; W(θ0; x) > c}
where c is determined by the size of the test. Both the score test and the Wald
test are asymptotically equivalent to the likelihood ratio test and the intuitive
expanation for these equivalences are quite simple. For large values of the
sample size n↪ the maximum likelihood estimator θ̂n is close to the true value
of the parameter θ0 and so the log likelihood can be approximated by the
first two terms in the Taylor series expansion of �(θ) = log L(θ) about θ̂n↪

and so

2 log �n(X) = 2{�(̂θn) − �(θ0)}

 2

{
(̂θn − θ0)′S(̂θn; X) + 1

2
(̂θn − θ0)′I (̂θn)(̂θn − θ0)

}

 (̂θn − θ0)′J (θ0)(̂θn − θ0)

since
S(̂θn; X) = 0

and the observed information I (̂θn) is asymptotically equivalent to the Fisher
information J (θ0). This verifies the equivalence of the likelihood ratio and the
Wald test. J (θ0) may be replaced by I (θ̂) to give an asymptotically equivalent
test statistic.


