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1
Basic Probability Models

Further details concerning the first section of the appendix can be found
in most introductory texts in probability and mathematical statistics. The
material in the second and third chapters can be supplemented with Steele
(2001) for further details and many of the proofs.

1.1 BASIC DEFINITIONS

Probabilities are defined on sets or events, usually denoted with capital letters
early in the alphabet such as A↪ B↪ C. These sets are subset of a sample space
or probability space Ω, which one can think of as a space or set containing
all possible outcomes of an experiment. We will say that an event A ⊂ Ω
occurs if one of the outcomes in A (rather than one of the outcomes in Ω but
outside of A) occurs. Not only should we be able to describe the probabilities
of individual events, we should also be able to define probabilities of various
combinations of them, including

1. Union of sets or events: A ∪ B = A or B (occurs whenever A occurs or
B occurs or both A and B occur)

2. Intersection of sets: A ∩ B = A and B (occurs whenever A and B occur)
3. Complement: Ac = not A (occurs when the outcome is not in A)

4. Set differences: A \ B = A ∩ Bc (occurs when A occurs but B does not)
5. Empty set: φ = Ωc (an impossible event—it never occurs since it contains

no outcomes)

Recall De Morgan’s rules of set theory: (∪iAi )
c = ∩iA

c
i and (∩iAi )

c =
∪iA

c
i .

Events are subsets of Ω. We will call F the class of all events (including
φ and Ω).

Definition A probability measure is a set function P : F →[0↪ 1] such that

6. P (Ω) = 1

1
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7. If Ak is a disjoint sequence of events so that Ak ∩Aj = φ↪ for k �= j , then

P (∪∞
i=1Ai) =

∞∑
i=1

P (Ai)

These are the basic axioms of a probability model. From these it is not
difficult to prove the following properties:

1. P (φ) = 0.
2. If Ak↪ k = 1↪ . . . ↪ N , is a finite or countable sequence of disjoint events

so that Ak ∩ Aj = φ↪ k �= j , then

P (∪N
i=1Ai) =

N∑
i=1

P (Ai)

3. P (Ac) = 1 − P (A).

4. Suppose A ⊂ B. Then P (A) ≤ P (B).
5. P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

6. The inclusion-exclusion principle:

P (∪kAk) =
∑

k

P (Ak) −
∑∑

i<j

P (Ai ∩ Aj )

+
∑∑ ∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · · .

7. P (∪∞
i=1Ai) ≤ ∑

i P (Ai ).
8. Suppose A1 ⊂ A2 ⊂ · · · . Then P (∪∞

i=1Ai) = limi→∞ P (Ai).

Counting Techniques

Permutations The number of ways of permuting or arranging n distinct ob-
jects in a row is n! = n(n − 1) · · · 1 and 0!= 1. Define n(r) = n(n − 1) · · · (n −
r + 1) (called “n to r factors”) for arbitrary n, and r a nonnegative in-
teger. This is the number of permutations of n objects taken r at a time.
Define n(0) = 1 and notice that values like ( 1

2 )(3) are well defined (indeed,
( 1

2 )(3) = ( 1
2 )(− 1

2 )(− 3
2 ) = 3

8 ).

For example, the number of distinct ways of rearranging the 15 letters

AAAAABBBBCCCDDE

would be 15! if all 15 letters could be distinguished. Since they cannot, this
calculation counts the two possible orderings of the Ds (e.g., D1D2 or D2D2)
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separately, and the 3! reorderings of the Cs are counted separately, etc. There-
fore, dividing by the number of times each letter has been overcounted, the
number of distinct rearrangements is

15!

5!4!3!2!
=

(
15

5 4 3 2

)

Combinations Suppose the order of selection is not considered to be impor-
tant. We wish, for example, to distinguish only different sets selected, without
regard to the order in which they were selected. Then the number of distinct
sets of r objects that can be constructed from n distinct objects is(

n

r

)
= n(r)

r!

Note this is well defined for r a nonnegative integer for any real number n.

Independent Events Two events A↪ B are said to be independent if

P (A ∩ B) = P (A)P (B) (1.1)

Compare this definition with that of mutually exclusive or disjoint events
A↪ B. Events A↪ B are mutually exclusive if A ∩ B = φ.

Independent experiments are often built from Cartesian products of sam-
ple spaces. For example, if Ω1 and Ω2 are two sample spaces, and A1 ⊂
Ω1↪ A2 ⊂ Ω2↪ then an experiment consisting of both of the above would
have as sample space the Cartesian product

Ω1 × Ω2 = {(ω1↪ ω2); ω1 ∈ Ω1↪ ω2 ∈ Ω2}
Probabilities of events such as A1×A2 are easily defined, in this case as P (A1×
A2) = P1(A1)P2(A2). Verify in this case that an event entirely determined by
the first experiment such as A = A1 × Ω2, is independent of one determined
by the second, B = Ω1 × A2.

Definition A finite or countably infinite set of events A1↪ A2↪ . . . are said to be
mutually independent if

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1 )P (Ai2 ) · · · P (Aik) (1.2)

for any k ≥ 2 and i1 < i2 < · · · < ik.

Independent events have the properties that

1. A↪ B independent implies A↪ Bc independent.
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2. Any Aij can be replaced by Ac
ij

in equation (1.2).

Why not simply require that every pair of events be independent? This
is, as it turns out, too weak an assumption for many of the results we need
in probability and statistics, and does not describe what we intuitively mean
by independence. For example, suppose two fair coins are tossed. Let A =
first coin is heads, B= second coin is heads, C= we obtain exactly one heads.
Then A is independent of B and A is independent of C, but A↪ B↪ C are not
mutually independent. Thus pairwise independence does not imply indepen-
dence. Does it make intuitive sense to say that A↪ B↪ C are independent? If
you know whether A and B occur, then you automatically know whether
or not the event C occurs, so there is a strong dependence among these three
events.

“Lim Sup” of events For a sequence of events An↪ n = 1↪ 2↪ . . ., we define
another event [An i.o.] = lim sup An = ∩∞

m=1 ∪∞
n=m An. Note that this is the

set of all points x that lie in infinitely many of the events A1↪ A2↪ . . . The
notation i.o. stands for “infinitely often” because lim sup An is the set of all
points ω that are in infinitely many of the An↪ n = 1↪ 2↪ . . . . There is a similar
notion, lim inf An = ∪∞

m=1 ∩∞
n=m An, and it is not difficult to show that the

latter set is smaller:
lim inf An ⊂ lim sup An

A point ω is in lim inf An if and only if it is in all of the sets An except
possibly a finite number. For this reason we sometimes denote lim inf An as
[An a.b.f.o.], where a.b.f.o. stands for “all but finitely often.”

Borel Cantelli Lemmas Clearly, if events are individually too small, there is
little or no probability that their lim sup will occur (i.e., that they will occur
infinitely often). This is the essential message of the first of the Borel-Cantelli
lemmas:
Lemma A1 For an arbitrary sequence of events An, if

∑
n P (An) < ∞ then

P [An i.o.] = 0.
Lemma A2 For a sequence of independent events An,

∑
n P (An) = ∞ implies

P [An i.o] = 1.

Conditional Probability Suppose we are interested in the probability of the event
A but we are given some relevant information, namely that another, related
event B occurred. How do we revise the probabilities assigned to points of
Ω in view of this information? If the information does not affect the relative
probability of points in B, then the new probabilities of points outside of B

should be set to 0 and those within B simply rescaled to add to one. This
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is essentially the definition of conditional probability given B. Given that
B occurred, reassign probability 0 to those points outside of B and rescale
those within so that the total probability is 1.

Definition: Conditional Probability For B ∈ F with P (B) > 0, define a new
probability

P (A|B) = P (A ∩ B)

P (B)
(1.3)

This is also a probability measure on the same space (Ω↪ F) and satisfies the
same properties. Note that P (B|B) = 1↪ P (Bc|B) = 0.

Theorem A1 (Bayes’ Rule) If P (∪nBn) = 1 for a disjoint finite or countable
sequence of events Bn all with positive probability, then

P (Bk|A) = P (A|Bk)P (Bk)∑
n P (A|Bn)P (Bn)

(1.4)

Theorem A2 (Multiplication Rule) If A1↪ . . . ↪ An are arbitrary events,

P (A1A2 · · · An) = P (A1)P (A2|A1)P (A3|A2A1) · · · P (An|A1A2 · · · An−1)

(1.5)

Random Variables

Properties of F The class of events F (called a sigma algebra or sigma field)

should be such that the operations normally conducted on events, for exam-
ple, countable unions or intersections, or complements, keeps us within that
class. In particular,

(a) ϕ ∈ F
(b) If A ∈ F then Ac ∈ F
(c) If An ∈ F for all n = 1↪ 2↪ . . .), then ∪∞

n=1 ∈ F
It follows from these properties that Ω ∈ F and F is also closed under

countable intersections, countable intersections of unions, and so on.

Definition Let X be a function from a probability space Ω into the real num-
bers. We say that the function is measurable (in which case we call it a
random variable) if for x ∈ 
, the set {ω; X(ω) ≤ x} ∈ F . Since events in
F are those to which we can attach a probability, this permits us to obtain
probabilities for the event that the random variable X is less than or equal
to any number x.
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Definition: Indicator Random Variables For an arbitrary set A ∈ F define IA(ω) =
1 if ω ∈ A and 0 otherwise. This is called an indicator random variable
(sometimes called a characteristic function in measure theory, but not here).

Definition: Simple Random Variables Consider events Ai ∈ F such that ∪iAi = Ω.
Define X(ω) = ∑n

i=1 ci IAi
(ω), where ci ∈ 
. Then X is measurable and is

consequently a random variable. We normally assume that the sets Ai are
disjoint. Because this is a random variable that can take only finitely many
different values, it is called simple. Any random variable taking only finitely
many possible values can be written in this form.

We will often denote the event {ω ∈ Ω; X(ω) ≤ x} more compactly by
[X ≤ x]. In general, functions of one or more random variables gives us an-
other random variable (provided that function is measurable). For example,
if X1↪ X2 are random variables, so are

1. X1 + X2

2. X1X2

3. min(X1↪ X2).

The cumulative distribution function of a random variable X is defined
to be the function F (x) = P [X ≤ x]↪ for x ∈ 
.

Properties of the Cumulative Distribution Function

1. A cumulative distribution function F (x) is nondecreasing (i.e., F (x) ≥
F (y) whenever x ≥ y).

2. F (x) → 0, as x → −∞.
3. F (x) → 1, x → ∞.
4. F (x) is right continuous: F (x) = limh→0+ F (x + h) (i.e., the limit as h

decreases to 0).

There are two primary types of distributions considered here, discrete
distributions and continuous ones. Discrete distributions are those whose
cumulative distribution function at any point x can be expressed as a finite
or countable sum of values. For example,

F (x) =
∑

{i;xi ≤x}
pi

for some probabilities pi that sum to 1. In this case the cumulative distri-
bution is piecewise constant, with jumps at the values xi that the random
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variable can assume. The values of those jumps are the individual probabili-
ties pi . For example P [X = x] is equal to the size of the jump in the graph of
the cumulative distribution function at the point x. We refer to the function
f (x) = P [X = x] as the probability function of the distribution when the
distribution is discrete.

1.2 SOME SPECIAL DISCRETE DISTRIBUTIONS

The Discrete Uniform Distribution Many of the distributions considered so far
are such that each point is equally likely. For example, suppose the random
variable X takes each of the points a↪ a + 1↪ . . . ↪ b with the same probability

1
b−a+1. Then the cumulative distribution function is

F (x) = x − a + 1

b − a + 1
↪ x = a↪ a + 1↪ . . . ↪ b

and the probability function is f (x) = 1
b−a+1 for x = a↪ a + 1↪ . . . ↪ b and 0

otherwise.

The Hypergeometric Distribution Suppose we have a collection (the population)
of N objects that can be classified into two groups S and F where there are
r of type S and N − r of type F . Suppose we take a random sample of n

items without replacement from this population. Then the probability that
we obtain exactly x items of type S is

f (x) =
(

r
x

)(
N−r
n−x

)(
N
n

) ↪ x = 0↪ 1↪ . . .

The Binomial Distribution The setup is identical to that in the last paragraph,
only now we sample with replacement. Thus, for each member of the sample,
the probability of an S is p = r/N . Then the probability function is

f (x) =
(

n

x

)
px(1 − p)n−x↪ x = 0↪ 1↪ . . . n

With any distribution, the sum of all the probabilities should be 1. Check
that this is the case for the binomial,

n∑
x=0

f (x) = 1
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The hypergeometric distribution is often approximated by the binomial
distribution in the case N large. For the binomial distribution, the two pa-
rameters n↪ p are fixed, and usually known. For fixed sample size n we count
X = “number of S’s in n trials of a simple experiment” (e.g., tossing a coin).

The Negative Binomial Distribution The binomial distribution was generated by
assuming that we repeated trials a fixed number n of times and then counted
the total number of successes X in those n trials. Suppose we decide in ad-
vance that we wish a fixed number (k) of successes instead, and sample
repeatedly until we obtain exactly this number. Then the number of trials X

is random.

f (x) =
(

x − 1

k − 1

)
pk(1 − p)x−k↪ x = k↪ k + 1↪ . . .

A special case of interest is the case k = 1, called the geometric distribu-
tion. Then

f (x) = p(1 − p)x−1↪ x = 1↪ 2↪ . . .

The Poisson Distribution. Suppose a disease strikes members of a large popu-
lation (of n individuals) independently, but in each case it strikes with very
small probability p. If we count X, the number of cases of the disease in the
population, then X has the binomial(n↪ p) distribution. For very large n and
small p this distribution can be again approximated as follows:

Theorem A3 Suppose fn(x) is the probability function of a binomial distri-
bution with p = λ/n for some fixed λ. Then as n → ∞,

fn(x) → f (x) = λxe−λ

x!

for each x = 0↪ 1↪ 2↪ . . ..

The function f (x) above is the probability function of a Poisson distri-
bution, named after a French mathematician. This distribution has a single
parameter, λ, which makes it easier to use than the binomial, since the bi-
nomial requires knowledge or estimation of two parameters. For example,
the size n of the population of individuals who are susceptible to the disease
might be unknown, but the “average” number of cases in a population of a
certain size might be obtainable from medical data.
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1.3 EXPECTED VALUE

An indicator random variable IA takes two values, the value 1 with prob-
ability P (A) and the value 0 otherwise. Its expected value, or average over
many (independent) trials, would therefore be 0(1−P (A))+1P (A) = P (A).
This is the simplest case of an integral or expectation.

Recall that a simple random variable is one that has only finitely many
distinct values ci on the sets Ai , where these sets form a partition of the
sample space (i.e., they are disjoint and their union is Ω).

Expectation of Simple Random Variables For a simple random variable X =∑
i ci IAi

, define E(X) = ∑
i ciP (Ai ). The form is standard:

E(X) =
∑

(values of X) × (probability of values)

Thus, for example, if a random variable X has probability function f (x) =
P [X = x], then E(X) = ∑

x xf (x).

Example The expected value of X, a random variable having the binomial(n↪ p)

distribution, is E(X) = np.

Expectation of Nonnegative Measurable Random Variables

Definition Suppose X is a nonnegative random variable so that X(ω) ≥ 0 for
all ω ∈ Ω. Then we define

E(X) = sup{E(Y ); Y simple and Y ≤ X}

Expected Value: Discrete Case If a random variable X has probability function
f (x) = P [X = x], then the definition of expected value in the case of finitely
many possible values of x is essentially E(X) = ∑

x xf (x). This formula
continues to hold even when X may take a countably infinite number of
values provided that the series

∑
x xf (x) is absolutely convergent.

Notation Note that by
∫

A
X dP we mean E(XIA), where IA is the indicator

of the event A.

Properties of Expectation Assume X↪ Y are nonnegative random variables.
Then

1. If X = ∑
i ci IAi

is simple, then E(X) = ∑
i ciP (Ai ).

2. If X(ω) ≤ Y(ω) for all ω, then E(X) ≤ E(Y).
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3. If Xn is increasing to X, then E(Xn) increases to E(X) (this is usually
called the monotone convergence theorem).

4. For nonnegative numbers α↪ β, E(αX + βY) = αE(X) + βE(Y).

General Definition of Expected Value For an arbitrary random variable X, define
two new random variables X+ = max(X↪ 0), and X− = max(0↪ −X). Note
that X = X+ − X−. Then we define E(X) = E(X+) − E(X−). This is well
defined even if one of E(X+) or E(X−) is equal to ∞ as long as both are
not infinite since the form ∞ − ∞ is meaningless. If both E(X+) < ∞ and
E(X−) < ∞, then we say X is integrable.

Example Define a random variable X such that P [X = x] = 1
x(x+1)

,
x = 1↪ 2↪ . . . Is this random variable integrable? If we write out the expected
value,

∞∑
x=1

xf (x) =
∞∑

x=1

1

x + 1

and this is a divergent sequence, so in this case the random variable is not
integrable.

General Properties of Expectation In the general case, expectation satisfies 1–4
above plus the additional properties

5. If P (A) = 0, then
∫

A
X(ω)dP = 0.

6. If P [X = c] = 1 for some constant c↪ then E(X) = c.

7. If P [X ≥ 0] = 1 then E(X) ≥ 0.

Other Interpretations of Expected Value For a discrete distribution, the distri-
bution is often represented graphically with a bar graph or histogram. If
the values of the random variable are x1 < x2 < x3 < · · · , then rectangles
are constructed around each value, xi , with area equal to the probability
P [X = xi ]. In the usual case where the xi are equally spaced, the rectangle
around xi has as base (

xi−1+xi

2 ↪
xi +xi+1

2 ). In this case, the expected value E(X)

is the x-coordinate of the center of gravity of the probability histogram.
We may also think of expected value as a long-run average over many

independent repetitions of the experiment. Thus, f (x) = P [X = x] is ap-
proximately the long-run proportion of occasions on which we observed the
value X = x, so the long-run average of many independent replications of
X is

∑
x xf (x) = E(X).
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Lemma (Fatou’s Lemma: Limits of Integrals) If Xn is a sequence of nonnegative
random variables,

E[lim inf Xn] ≤ lim inf EXn

It is possible that Xn(ω) → X(ω) for all ω and yet E(Xn) does not
converge to E(X). For example, let Ω = (0↪ 1) and the probability measure
be the Lebesgue measure on the interval. Define X(ω) = n if 0 < ω < 1/n

and otherwise X(ω) = 0. Then Xn(ω) → 0 for all ω, but E(Xn) = 1 does
not converge to the expected value of the limit. This example shows that
some additional condition is required beyond (almost sure) convergence of
the random variables in order to conclude that the expected values converge.
One such condition is given in the following important result.

Theorem A4 (Lebesgue-Dominated Convergence Theorem) If Xn(ω) → X(ω) for
each ω, and there exists integrable Y with |Xn(ω)| ≤ Y(ω) for all n↪ ω, then
X is integrable and E(Xn) → E(X).

Lebesgue-Stieltjes Integral

A basic requirement of any sigma algebra of subsets of the real line for it to
be of much use is that it contain the intervals, since we often wish to compute
probabilities of intervals like [a < X < b].

Definition: Borel Sigma Algebra The smallest sigma algebra that contains all of
the open intervals is called the Borel sigma algebra. The sets in this sigma
algebra are referred to as Borel sets.

Fortunately it is easy to show that this sigma algebra also contains all of
the closed intervals—in fact, all countable unions of intervals of any kind,
open, closed, or half open. We call a function g(x) on the real numbers (i.e.,

 → 
) Borel measurable if for any Borel subset B ⊂ 
↪ the set {x; g(x) ∈ B}
is also a Borel set.

We now consider integration of functions on the real line or Euclidean
space. Suppose g(x) is a Borel measurable function 
 → 
. Suppose F (x)

is a Borel measurable function satisfying

1. F (x) is nondecreasing (i.e., F (x) ≥ F (y) whenever x ≥ y).
2. F (x) is right continuous (i.e., F (x) = lim F (x + h) as h decreases to 0).

Notice that we can use F to define a measure µ on the real line; for
example, the measure of the interval (a↪ b] we can take to be µ((a↪ b]) =
F (b) − F (a). The measure is extended from these intervals to all Borel sets
in the usual way, by first defining the measure on the algebra of finite unions
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of intervals, and then extending this measure to the Borel sigma algebra
generated by this algebra. We will define

∫
g(x)dF (x) or

∫
g(x)dµ exactly

as we did expected values, but with the probability measure P replaced by
µ and X(ω) replaced by g(x). In particular, for a simple function g(x) =∑

i ci IAi
(x), we define

∫
g(x)dF = ∑

i ciµ(Ai ).

Definition: Integration of Borel Measurable Functions Suppose g(x) is a nonnegative
Borel measurable function so that g(x) ≥ 0 for all x ∈ 
. Then we define∫

g(x)dµ = sup

{∫
h(x)dµ; h is simple and h ≤ g

}
For a general function f (x) we write f (x) = f +(x) − f −(x) where both
f + and f − are nonnegative functions. We then define

∫
f dµ = ∫

f + dµ −∫
f − dµ provided that this makes sense (i.e., is not of the form ∞ − ∞).

Finally, we say that f is integrable if both f + and f − have finite integrals,
or equivalently, if

∫ |f (x)|dµ < ∞.

Definition: Absolutely Continuous A measure µ on 
 is absolutely continuous
with respect to Lebesgue measure λ (denoted µ � λ) if there is an integrable
function f (x) such that µ(B) = ∫

B
f (x)dλ for all Borel sets B. The function

f is called the density of the measure µ with respect to λ.
Intuitively, two measures µ↪ λ on the same measurable space (Ω↪ F)

(not necessarily the real line) satisfy µ � λ if the support of the mea-
sure λ includes the support of the measure µ. For a discrete space, the
measure µ simply reweights those points with nonzero probabilities un-
der λ. For example, if λ represents the discrete uniform distribution on
the set Ω = {1↪ 2↪ 3↪ . . . ↪ N} (so that λ(B) is N−1 × the number of inte-
gers in B ∩ {1↪ 2↪ 3↪ . . . ↪ N}) and f (x) = x↪ then if µ(B) = ∫

B
f (x)dλ↪ we

have µ(B) = ∑
x∈B∩{1↪2↪3↪...↪N} x. Note that the measure µ assigns weights

1
N

↪ 2
N

↪ . . . ↪ 1 to the points {1↪ 2↪ 3↪ . . . ↪ N}, respectively.
The so-called continuous distributions, such as the normal, gamma, ex-

ponential, beta, chi-squared and Student’s t , should be called absolutely con-
tinuous with respect to Lebesgue measure rather than just continuous.

Theorem A5 (Radon-Nykodym Theorem) For arbitrary measures µ and λ defined
on the same measure space, the two conditions below are equivalent:

1. µ is absolutely continuous with respect to λ so that there exists a function
f (x) such that

µ(B) =
∫

B

f (x)dλ
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2. For all B↪ λ(B) = 0 implies µ(B) = 0.

The first condition asserts the existence of a “density function,” as it
is usually called in statistics, but it is the second condition that is usually
referred to as absolute continuity. The function f (x) is called the Radon-
Nikodym derivative of µ with respect to λ. We sometimes write f = dµ

dλ
, but

f is not in general unique. Indeed, there are many f (x) corresponding to
a single µ (i.e., many functions f satisfying µ(B) = ∫

B
f (x)dλ for all Borel

B). However, for any two such functions f1↪ f2, λ{x; f1(x) �= f2(x)} = 0.
This means that f1 and f2 are equal almost everywhere (λ).

The so-called discrete distributions in statistics, such as the binomial dis-
tribution, the negative binomial, the geometric, the hypergeometric, the Pois-
son, or indeed any distribution concentrated on the integers, is absolutely
continuous with respect to the counting measure λ(A) = number of inte-
gers in A.

If the measure induced by a cumulative distribution function F (x) is
absolutely continuous with respect to Lebesgue measure, then F (x) is a con-
tinuous function. However, it is possible that F (x) is a continuous function
without the corresponding measure being absolutely continuous with respect
to Lebesgue measure.

Definition: Equivalent Measures Two measures µ and λ defined on the same
measure space are said to be equivalent if both µ � λ and λ � µ. Alter-
natively, they are equivalent if µ(A) = 0 if and only if λ(A) = 0 for all A.

Intuitively, this means that the two measures share exactly the same support
or that the measures are either both positive on a given event or they are
both zero on that event.

In general, there are three different types of probability distributions,
when expressed in terms of the cumulative distribution function.

1. Discrete: For countable xn↪ pn, F (x) = ∑
{n;xn≤x} pn. The correspond-

ing measure has countably many atoms.
2. Continuous singular: F (x) is a continuous function, but for some Borel

set B having Lebesgue measure zero, λ(B) = 0, we have P (X ∈ B) =∫
B

dF (x) = 1.

3. Absolutely continuous (with respect to Lebesgue measure): F (x) =∫ x

−∞ f (x)dλ for some function f called the probability density
function.

There is a general result called the Lebesgue decomposition, which as-
serts that any cumulative distribution function can be expressed as a mixture
of those of the above three types; that is, a (sigma-finite) measure µ on the
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real line can be written
µ = µd + µac + µs

the sum of a discrete measure µd, a measure µac absolutely continuous with
respect to Lebesgue measure, and a measure µs that is continuous singular.
For a variety of reasons of dubious validity, statisticians concentrate on ab-
solutely continuous and discrete distributions, excluding, as a general rule,
those that are singular.

1.4 DISCRETE BIVARIATE AND MULTIVARIATE DISTRIBUTIONS

Definitions For discrete random variables X↪ Y defined on the same proba-
bility space, the function f (x↪ y) = P [X = x↪ Y = y] giving the probability
of all combinations of values of the random variables X↪ Y is called the joint
probability function of X and Y . (Read the comma as the word “and,” the
intersection of two events.) The function F (x↪ y) = P [X ≤ x↪ Y ≤ y] is
called the joint cumulative distribution function. The joint probability func-
tion allows us to compute the probability functions of both X and Y . For
example,

P [X = x] =
∑
all y

f (x↪ y)

We call this the marginal probability function of X, denoted by fX(x) =
P [X = x] = ∑

all y f (x↪ y). Similarly, fY(y) is obtained by adding the joint
probability function over all values of x. Finally, we are often interested in
the conditional probabilities of the form

P [X = x|Y = y] = fX|Y(x|y) = f (x↪ y)

fY(y)

This is called the conditional probability function of X given Y .

Expected Values For a single (discrete) random variable we determined the
expected value of a function of X, say h(X), by

E[h(X)] =
∑
all x

(value of h) × (probability of value) =
∑

x

h(x)f (x)

For two or more random variables we should use a similar approach. How-
ever, when we add over all cases, this requires adding over all values of x

and y. Thus, if h is a function of both X and Y,

E[h(X↪ Y )] =
∑

all x and y

h(x↪ y)f (x↪ y)
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Independent Random Variables Two discrete random variables X↪ Y are said to
be independent if the events [X = x] and [Y = y] are independent for all
x↪ y, that is, if

P [X = x↪ Y = y] = P [X = x]P [Y = y] for all x↪ y

or equivalently if

f (x↪ y) = fX(x)fY(y) for all x↪ y

This definition extends in a natural way to more than two random vari-
ables. For example, we say random variables X1↪ X2↪ . . . ↪ Xn are (mutu-
ally) independent if, for every choice of values x1↪ x2↪ . . . ↪ xn, the events
[X1 = x1]↪ [X2 = x2]↪ . . . ↪ [Xn = xn] are independent events. This holds
if the joint probability function of all n random variables factors into the
product of the n marginal probability functions.

Theorem A6 If X↪ Y are independent random variables, then

E(XY ) = E(X)E(Y)

Definition: Variance The variance of a random variable measures its variabil-
ity about its own expected value. Thus if one random variable has larger
variance than another, it tends to be farther from its own expectation. If we
denote the expected value of X by E(X) = µ, then

var(X) = E[(X − µ)2]

Adding a constant to a random variable does not change its variance, but
multiplying it by a constant does; it multiplies the original variance by the
constant squared.

Example Suppose the random variable X has the binomial(n↪ p) distribution.
Then

E(X) =
n∑

x=0

x
n!

x!(n − x)!
px(1 − p)n−x

=
n∑

x=1

n!

(x − 1)!(n − x)!
px(1 − p)n−x
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= np

n∑
x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x

= np


n−1∑
j=0

(n − 1)!

j !(n − 1 − j )!
pj (1 − p)n−1−j


= np


n−1∑
j=0

(
n − 1

j

)
pj (1 − p)n−1−j


= np

and so E(X) = np. A similar calculation allows us to obtain E[X(X − 1)] =
n(n − 1)p2, from which we can obtain var(X) = np(1 − p).

Definition: Covariance Define the covariance between 2 random variables X↪ Y

as
cov(X↪ Y ) = E[(X − EX)(Y − EY)]

Covariance measures the linear association between two random variables.
Note that the covariance between two independent random variables is 0.
If the covariance is large and positive, there is a tendency for large values
of X to be associated with large values of Y . On the other hand, if large
values of X are associated with small values of Y , the covariance will tend
to be negative. There is an alternative form for covariance, generally eas-
ier for hand calculation but more subject to computer overflow problems:
cov(X↪ Y ) = E(XY ) − (EX)(EY).

Theorem A7 For any two random variables X↪ Y

var(X + Y) = var(X) + var(Y ) + 2 cov(X↪ Y )

One special case is of fundamental importance: the case when X↪ Y are
independent random variables and var(X + Y) = var(X) + var(Y ) since
cov(X↪ Y ) = 0.

Properties of Variance and Covariance For any random variables Xi and con-
stants ai

1. var(X1) = cov(X1↪ X1)

2. var(a1X1 + a2) = a2
1 var(X1)

3. cov(X1↪ X2) = cov(X2↪ X1)

4. cov(X1↪ X2 + X3) = cov(X1↪ X2) + cov(X1↪ X3)

5. cov(a1X1↪ a2X2) = a1a2 cov(X1↪ X2)

6. Similarly, var(
∑n

i=1 aiXi ) = ∑
a2

i var(Xi)+2
∑∑

{(i↪j );i<j} aiaj cov(Xi ↪ Xj )



Probability 17

Correlation Coefficient The covariance has an arbitrary scale factor because of
property 5 above. This means that if we change the units in which something
is measured (for example, a change from imperial to metric units of weight),
the covariance will change. It is desirable to measure covariance in units
free of the effect of scale. To this end, define the standard deviation of X by
SD(X) = √

var(X). Then the correlation coefficient between X and Y is

ρ = cov(X↪ Y )

SD(X)SD(Y)

For any pair of random variables X↪ Y , we have −1 ≤ ρ ≤ 1 with ρ = ±1
if and only if the points (X↪ Y ) always lie on a line, so Y = aX + b (almost
surely) for some constants a↪ b. The fact that ρ ≤ 1 follows from the next
argument, and the argument for −1 ≤ ρ is similar. Consider for any t↪

var(X − tY )= cov(X − tY ↪ X − tY )

= var(X) − 2t cov(X↪ Y ) + t2 var(Y )

Since variance is always ≥ 0↪ this quadratic equation in t cannot have two
real roots, so the discriminant must be nonpositive,

[2 cov(X↪ Y )]2 − 4 var(X) var(Y ) ≤ 0

that is,

|cov(X↪ Y )| ≤
√

var(X) var(Y )

The Multinomial Distribution Suppose an experiment is repeated n times (called
“trials”), where n is fixed in advance. On each trial of the experiment, we
obtain an outcome in one of k different categories A1↪ A2↪ . . . ↪ Ak, with the
probability of outcome Ai given by pi . Here

∑k
i=1 pi = 1. At the end of the

n trials of the experiment consider the count of Xi = number of outcomes in
category i, for i = 1↪ 2↪ . . . ↪ k. Then the random variables (X1↪ X2↪ . . . ↪ Xk)

have a joint multinomial distribution given by the joint probability function

P [X1 = x1↪ X2 = x2↪ . . . ↪ Xk = xk] =
(

n

x1x2 · · · xk

)
p

x1
1 p

x2
2 · · · p

xk
k

= n!

x1!x2! · · · xk!
p

x1
1 p

x2
2 · · · p

xk
k

whenever
∑

i xi = n. Otherwise P [X1 = x1↪ X2 = x2↪ . . . ↪ Xk = xk] is 0.
Note that the marginal distribution of each Xi is binomial (n↪ pi ), and so
E(Xi) = npi .
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Covariance of a Linear Transformation Suppose X = (X1↪ . . . ↪ Xn)′ is a vector
whose components are possibly dependent random variables. We define the
expected value of this random vector by

µ = E(X) =


EX1

.

.

.

.
EXn


and the covariance matrix by

V =


var(X1) cov(X1↪ X2) . . . cov(X1↪ Xn)

cov(X2↪ X1 var(X2) . . . cov(X2↪ Xn

...
...

cov(Xn↪ X1) . . . . . . var(Xn)


Then if A is a q × n matrix of constants, the random vector Y = AX has
mean Aµ and covariance matrix AVA′. In particular, if q = 1↪ the variance
of AX is AVA′ .

1.5 CONTINUOUS DISTRIBUTIONS

Definitions Suppose a random variable X can take any real number in an
interval. Of course, the number that we record is often rounded to some
appropriate number of decimal places, so we don’t actually observe X but
Y = X rounded to the nearest �/2 units. So, for example, the probability
that we record the number Y = y is the probability that X falls in the interval
y−�/2 < X ≤ y+�/2. If F (x) is the cumulative distribution function of X,
this probability is P [Y = y] = F (y + �/2) − F (y − �/2). Suppose now that
� is very small and that the cumulative distribution function is piecewise
continuously differentiable with a derivative given in an interval by

f (x) = F ′(x)

Then F (y +�/2)−F (y −�/2) ≈ f (y)� and so Y is a discrete random vari-
able with probability function given (approximately) by P [Y = y] ≈ �f (y).
The derivative of the cumulative distribution function of X is the probability
density function of the random variable X. Notice that an interval of small
length � around the point y has approximate probability given by length of
interval ×f (y). Thus the probability of a (small) interval is approximately
proportional to the probability density function in that interval, and this is
the motivation behind the term “probability density.”
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Example Suppose X is a random number chosen in the interval [0↪ 1]. We
wish that any interval of length � ⊂ [0↪ 1] will have the same probability �

regardless of where it is located. Then the cumulative distribution function
is given by

F (x) =


0 x < 0
x 0 ≤ x < 1
1 x ≥ 1

The probability density function is given by the derivative of the cumulative
distribution function f (x) = 1 for 0 < x < 1 and f (x) = 0 otherwise. Notice
that F (y) = ∫ y

−∞ f (x)dx for all y, and the probability density function can
be used to determine probabilities as follows:

P [a < X < b] = P [a ≤ X ≤ b] =
∫ b

a

f (x)dx

In particular, notice that F (b) = ∫ b

−∞ f (x)dx for all b.

Example Let F (x) be the binomial(n↪ 1/2) cumulative distribution fun-
ction. Notice that the derivative F ′(x) exists and is continuous (in fact
is zero) except at finitely many points x = 0↪ 1↪ 2↪ 3↪ 4. Is it true that F (b) =∫ b

−∞ F ′(x)dx? In this case the right side is zero since F ′(x) = 0 except at
finitely many points, but the left side is not. Equality is guaranteed only
under further conditions.

Definition: Cumulative Distribution Function Suppose the cumulative distribution
function of a random variable F (x) is such that its derivative f (x) = F ′(x)

exists except at finitely many points. Suppose also that

F (b) =
∫ b

−∞
f (x)dx (1.6)

for all b ∈ 
. Then the distribution is absolutely continuous and the function
f (x) is called the probability density function.

Example Is it really necessary to impose the additional requirement (1.6), or
this just a consequence of the fundamental theorem of calculus? Consider the
case F (x) = 0↪ x < 0↪ and F (x) = 1↪ for x ≥ 0. This cumulative distribution
function is piecewise differentiable (the only point where the derivative fails
to exist is the point x = 0). But is the function the integral of its derivative?
Since the derivative is zero except at one point where it is not defined, any
sensible notion of integral results in

∫ b

−∞ F ′(x)dx = 0 for any b.
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For a continuous distribution, probabilities are determined by integrat-
ing the probability density function. Thus

P [a < X < b] =
∫ b

a

f (x)dx (1.7)

A probability density function is not unique. For example, we may change
f (x) at finitely many points and it will still satisfy (1.7) above, and all prob-
abilities, determined by integrating the function, remain unchanged. When-
ever possible we will choose a continuous version of a probability density
function; but at a finite number of discontinuity points, it does not matter
how we define the function.

Properties of a Probability Density Function

1. f (x) ≥ 0 for all x ∈ 

2.

∫ ∞
−∞ f (x)dx = 1

The Continuous Uniform Distribution Consider a random variable X that takes
values with a continuous uniform distribution on the interval [a↪ b]. Then
the cumulative distribution function is

F (x) =


0 x < a
x−a
b−a

a ≤ x < b

1 x ≥ b

and so the probability density function is f (x) = 1
b−a

for a < x < b, and
elsewhere the probability density function is 0. Again, notice that the defini-
tion of f at the points a and b does not matter, since altering the definition
at two points will not alter the integral of the function.

Suppose we were to approximate a continuous random variable X hav-
ing probability density function f (x) by a discrete random variable Y ob-
tained by rounding X to the nearest � units. Then the probability function
of the discrete random variable Y is

P [Y = y] = P [y − �/2 ≤ X ≤ y + �/2] ≈ �f (y)

and its expected value is

E(Y) =
∑

y

yP [y − �/2 < X ≤ y + �/2] ≈
∑

y

y�f (y)
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Note that as the interval length � approaches 0, this sum approaches the
integral ∫

xf (x)dx

This argues for the following definition of expected value for continuous
random variables, if it is to be compatible with the expected value of its
discretized or rounded relative Y. For continuous random variables

E(X) =
∫ ∞

−∞
xf (x)dx

and for any function on the real numbers h(x),

E[h(X)] =
∫ ∞

−∞
h(x)f (x)dx

Using this definition, we find that for the uniform density f (x) = 1
b−a

for
a < x < b↪ the expected value is the midpoint between the two ends of the
interval a+b

2 .

The Exponential Distribution Consider a random variable X having probability
density function

f (x) = 1

µ
e−x/µ↪ x > 0

The cumulative distribution function is given by

F (x) = 1 − e−x/µ

and the moments are

E(X) = µ↪ var(X) = µ2

Such a random variable is called the exponential distribution, and it is com-
monly used to model lifetimes of simple components such as fuses and tran-
sistors.

The Normal Distribution

Normal Approximation to the Poisson Distribution Consider a random variable X

that has the Poisson distribution with parameter µ. Recall that E(X) = µ and
var(X) = µ, so SD(X) = µ1/2. We wish to approximate the distribution of
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this random variable for large values of µ. In order to prevent the distribution
from disappearing off to +∞, consider the standardized random variable

Z = X − µ

µ1/2

Then P [Z = z] = P [X = µ + zµ1/2] = µx

x! e−µ, where x = µ + zµ1/2 is an
integer. Using Stirling’s approximation x! ∼ √

2πxxxe−xand taking the limit
of this as µ → ∞, we obtain

µx

x!
e−µ ∼ 1√

2πµ
e−z2/2

where the symbol ∼ is taken to mean that the ratio of the left- to the right-
hand side approaches 1. The function on the right-hand side is a constant
multiple of one of the basic functions in statistics, e−x2/2, which, upon nor-
malization so that it integrates to one, is the standard normal probability
density function.

The Standard Normal Distribution Consider a continuous random variable with
probability density function

φ(x) = 1√
2π

e−x2/2↪ −∞ < x < ∞

Such a distribution we call the standard normal distribution or the N(0↪ 1)

distribution (Figure 1.1). The cumulative distribution function

�(z) =
∫ z

−∞
1√
2π

e−x2/2dx

is not obtainable in simple closed form, and requires either numerical ap-
proximation or a table of values. The probability density function f (x) is
symmetric about 0 and appears roughly as follows.

The integral of the standard normal probability density function is 1,
but to show this requires conversion to polar coordinates. If we square the
integral of the normal probability density function, we obtain(∫ ∞

−∞
1√
2π

e− 1
2 y2

dy

)(∫ ∞

−∞
1√
2π

e− 1
2 x2

dx

)
= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 (x2+y2)dx dy

= 1

2π

∫ ∞

0

∫ 2π

0
e− 1

2 r2
rdθ dr where x = r cos θ and y = r sin θ

= 1

The normal cumulative distribution function is as given in Figure 1.2.
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FIGURE 1.1 The Standard Normal Probability Density Function
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FIGURE 1.2 The Standard Normal Cumulative Distribution Function
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TABLE 1.1 Values of the Standard Normal Cumulative Distribution Function �(x)

x .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. .500 .540 .579 .618 .655 .692 .726 .758 .788 .816
1. .841 .864 .885 .903 .919 .933 .945 .955 .964 .971
2. .977 .982 .986 .989 .992 .994 .995 .997 .997 .998
3. .9987 .9990 .9993 .9995 .9997 .9998 .9998 .9999 .9999 .99995

We usually provide the values of the normal cumulative distribution
function either through a function such as normcdf in Matlab or through a
table of values such as Table A1 (a much more compact version than that
found at the back of most statistics books).

For example, we can obtain

�(1.1) = 0.864 �(0.6) = 0.726
�(−0.5) = 1 − �(0.5) = 1 − 0.692

Note, for example that �(−x) = 1 − �(x) for all x, and if Z has a
standard normal distribution, we can find probabilities of intervals such as

P [−1 < Z < 1] ≈ 0.68 and P [−2 < Z < 2] ≈ 0.954

The General Normal Distribution If we introduce a shift in the location in the
graph of the normal density as well as a change in scale, then the resulting
random variable is of the form

X = µ + σZ↪ Z ∼ N(0↪ 1)

for some constants −∞ < µ < ∞↪ σ > 0. In this case, since

P (X ≤ x) = P

(
Z ≤ x − µ

σ

)
= �

(
x − µ

σ

)
it is easy to show by differentiating this with respect to x that the probability
density function of X is

f (x; µ↪ σ) = 1√
2πσ

e−(x−µ)2/2σ2

If a random variable X has the above normal distribution with location µ
and scale σ, we will denote this by X ∼ N(µ↪ σ2).
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Moments Show that the function f (x; µ↪ σ) integrates to 1 and is therefore
a probability density function. It is not too hard to find the expected value
and variance of a random variable having the probability density function
f (x; µ↪ σ) by integration:

E(X) =
∫ ∞

−∞
xf (x; µ↪ σ)dx = µ

var(X) =
∫ ∞

−∞
(x − µ)2f (x; µ↪ σ)dx = σ2

and this gives meaning to the parameters µ and σ2↪ the former being the
mean or expected value of the distribution and the latter the variance.

Linear Combinations of Normal Random Variables Suppose X1 ∼ N(µ1↪ σ2
1) and

X2 ∼ N(µ2↪ σ2
2) are independent random variables. Then X1 + X2 ∼ N(µ1 +

µ2↪ σ2
1 + σ2

2). More generally if we sum independent random variables, each
having a normal distribution, the sum itself also has a normal distribution.
The expected value of the sum is the sum of the expected values of the
individual random variables, and the variance of the sum is the sum of the
variances.

Problem Suppose Xi ∼ N(µ↪ σ2) are independent random variables. What
is the distribution of the sample mean

Xn =
∑n

i=1 Xi

n

Assume σ = 1 and find the probability P [|Xn − µ| > 0.1] for various values
of n. What happens to this probability as n → ∞?

The Central Limit Theorem

The major reason that the normal distribution is the single most commonly
used distribution is the fact that it tends to approximate the distribution of
sums of random variables. For example, if we throw n dice and Sn is the sum
of the outcomes, what is the distribution of Sn? The tables below provide the
number of ways in which a given value can be obtained. The corresponding
probability is obtained by dividing by 6n. For example, on the throw of
n = 1 die the probable outcomes are 1↪ 2↪ . . . ↪ 6 with probabilities all 1/6 as
indicated in Figure 1.3.

If we sum the values on two fair dice, the possible outcomes are the
values 2,3,. . . ,12 as shown in the following table and the probabilities are
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FIGURE 1.3 The Sum of n = 1 Discrete Uniform {1, 2, 3, 4, 5, 6} Random Variables
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FIGURE 1.4 The Sum of n = 2 Discrete Uniform {1, 2, 3, 4, 5, 6} Random Variables

the values below:

Values 2 3 4 5 6 7 8 9 10 11 12
Probabilities × 36 1 2 3 4 5 6 5 4 3 2 1

The probability histogram of these values is shown in Figure 1.4.
Finally, for the sum of the values on three independent dice, the values

range from 3 to 18 and have probabilities which, when multiplied by 63,
result in the values

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

to which we can fit three separate quadratic functions—one in the middle
region and one in each of the two tails. The histogram of these values in
Figure 1.5 already resembles a normal probability density function.
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FIGURE 1.5 The Distribution of the Sum of Three Discrete Uniform {1, 2, 3, 4, 5, 6}
Random Variables

In general, these distributions show a simple pattern. For n = 1, the
probability function is a constant (polynomial degree 0). For n = 2↪ it is two
linear functions spliced together. For n = 3, it is a spline consisting of three
quadratic pieces (polynomials of degree n − 1). In general, the histogram
for Sn, the sum of the values on n independent dice, consists of n piecewise
polynomials of degree n − 1. These histograms rapidly approach the shape
of the normal probability density function.

Example Let Xi = 0 or 1 when the ith toss of a biased coin is tails or heads,
respectively. What is the distribution of Sn = ∑n

i=1 Xi? Consider the stan-
dardized random variable obtained by subtracting E(Sn) and dividing by its
standard deviation or the square root of var(Sn):

S∗
n = Sn − np√

np(1 − p)

Suppose we approximate the distribution of S∗
n for large values of n.

First, consider a sequence of integers x = xn that are close to the real
number np + √

np(1 − p) in the sense that the difference is bounded by a
constant. Mathematically we write x ∼ np + z

√
np(1 − p) for fixed z and

0 < p < 1. Then as n → ∞, x/n → p. Stirling’s approximation tells us that
n! ∼ √

2πnn+1/2e so that(
n

x

)
∼

√
2πnn+1/2e−n

2πxx+1/2(n − x)n−x+1/2
∼ 1√

2πnp(1 − p)( x
n
)x(1 − x

n
)n−x
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Also using the series expansion ln(1 + x) = x − 1
2 x2 + O

(
x3

)
, setting

σ =
√

p(1−p)
n

↪ and noting that σ → 0 as n → ∞↪

ln

{
px(1 − p)n−x

( x
n
)x(1 − x

n
)n−x

}
= x ln

(
p

p + zσ

)
+ (n − x) ln

(
1 − p

1 − p − zσ

)
= −x ln

(
1 + zσ

p

)
− (n − x) ln

(
1 − zσ

1 − p

)
= −n(p + zσ) ln

(
1 + zσ

p

)
− n(1 − p − zσ) ln

(
1 − zσ

1 − p

)
= −n(p + zσ)

{(
zσ

p

)
− 1

2

(
zσ

p

)2

+ O

(
zσ

p

)3
}

− n(1 − p − zσ)

{
−

(
zσ

1 − p

)
− 1

2

(
zσ

1 − p

)2

+ O

(
zσ

1 − p

)3
}

= −n

{
zσ + z2σ2

p
− 1

2

z2σ2

p
− zσ + z2σ2

1 − p
− 1

2

z2σ2

1 − p
+ O(σ3)

}
= −1

2
z2σ2

(
n

p
+ n

1 − p

)
+ O(n−1/2) = −z2

2
+ O(n−1/2)

Therefore,

P [Sn = x] = P [S∗
n = z] =

(
n

x

)
px(1 − p)n−x

∼
(

n

x

)(x

n

)x (
1 − x

n

)n−x px(1 − p)n−x

( x
n
)x(1 − x

n
)n−x

∼ 1√
np(1 − p)

1√
2π

e−z2/2

This is the standard normal probability density function multiplied by the
distance between consecutive values of S∗

n . In other words, this result says
that the area under the probability histogram for S∗

n for the bar around the
point z can be approximated by the area under the normal curve between
the same two points

(
z ± 1

2
√

np(1−p)

)
.

Theorem A8 Let Xi↪ i = 1↪ . . . ↪ n, be independent random variables all with
the same distribution, and with mean µ and variance σ2. Then the cumulative



Probability 29

20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

f(
x)

Comparison of N(40,24) and Bin(100,.4) probs

FIGURE 1.6 Binomial(100↪ 0.4) Probability Histogram Together with N(40↪ 24)

Probability Density Function

distribution function of

S∗
n =

∑n
i=1 Xi − nµ√

nσ

converges to the cumulative distribution function of a standard normal ran-
dom variable.

Consider, for example, the case where the Xi are independent, each
with a Bernoulli(p) distribution. Then the sum

∑n
i=1 Xi has a binomial

distribution with parameters n↪ p and the above theorem asserts that if
we subtract the mean and divide by the standard deviation of a binomial
random variable, the result is approximately standard normal. In other
words, for large values of n a binomial random variable is approximately
normal(np↪ np(1−p)). To verify this fact, we plot both the binomial(100↪ 0.4)

histogram as well as the normal probability density function in Figure 1.6.

Problem Use the central limit theorem and the normal approximation to a
probability histogram to estimate the probability that the sum of the numbers
on 5 dice is 15. Compare your answer with the exact probability.

The Distribution of a Function of a Random Variable We have seen that if X has
a normal distribution, then a linear function of X↪ say aX + b, also has a
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normal distribution. The parameters are easily determined since E(aX+b) =
aE(X)+b and var(aX+b) = a2 var(X). Is this true of arbitrary functions and
general distributions? For example, is X2 normally distributed? The answer
in general is no. For example, the distribution of X2 must be concentrated
entirely on the positive values of x↪ whereas the normal distributions are
all supported on the whole real line (i.e., the probability density function
f (x) > 0↪ all x ∈ R). In general, the safest method for finding the distribution
of the function of a random variable in the continuous case is to first find
the cumulative distribution of the function and then differentiate to obtain
the probability density function. This allows us to verify the result below.

Theorem A9 Suppose a continuous random variable X has probability density
function fX(x). Then the probability density function of Y = h(X) where
h(.) is a continuous monotone increasing function with inverse function
h−1(y) is

fY(y) = fX(h−1(y))
d

dy
h−1(y)

1.6 MOMENT-GENERATING FUNCTIONS

Consider a random variable X. We have seen several ways of describing its
distribution, using either a cumulative distribution function, a probability
density function (continuous case) or probability function, or a probabil-
ity histogram or table (discrete case). We may also use some transform of
the probability density or probability function. For example, consider the
function

MX(t) = EetX

defined for all values of t such that this expectation exists and is finite. This
function is called the moment-generating function of the (distribution of the)
random variable X. It is a powerful tool for determining the distribution of
sums of independent random variables and for proving the central limit
theorem. In the discrete case we can write MX(t) = ∑

x extP [X = x], and in
the continuous case MX(t) = ∫ ∞

−∞ extf (x)dx. The logarithm of the moment-
generating function ln(MX(t)) is called the cumulant-generating function.

Properties of the Moment-Generating Function For these properties we assume
that the moment-generating function exists at least in some neighborhood
of the value t = 0↪ say for −ε < t < ε for some ε > 0. We also assume that
d
dt

E[XnetX] = E[ d
dt

XnetX] for each value of n = 0↪ 1↪ 2↪ . . . then for −ε <

t < ε. The ability to differentiate under an integral or infinite sum is justified
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under general conditions involving the rate at which the integral or series
converges.

1. M ′(0) = E(X).
2. M(n)(0) = E(Xn)↪ n = 1↪ 2↪ . . ..
3. A moment-generating function uniquely determines a distribution. In

other words, if MX(t) = MY(t) for all −ε < t < ε↪ then X and Y

have the same distribution.
4. MaX+b(t) = ebtMX(at) for constants a↪ b.
5. If X and Y are independent random variables, MX+Y(t) = MX(t)MY(t).

Examples Let X have a distribution as given in the first column of the table
below. Then the moment-generating function of X is as given in column 2.

Distribution Moment-Generating Function MX(t)

Binomial(n↪ p) (pet + 1 − p)n

Poisson(λ ) exp{λ(et − 1)}
Exponential, mean µ 1

1−µt
for t < 1/µ

Normal(µ↪ σ2) exp{µt + σ2t2/2}

Moment-generating functions are useful for showing that a sequence of
cumulative distribution functions converge because of the following result.
The result implies that convergence of the moment-generating functions can
be used to show convergence of the cumulative distribution functions (i.e.,
convergence of the distributions).

Theorem A10 Suppose Zn is a sequence of random variables with moment-
generating functions Mn(t). Let Z be a random variable Z having moment-
generating function M(t). If Mn(t) → M(t) for all t in a neighborhood
of 0↪ then

P [Zn ≤ z] → P [Z ≤ z]

as n → ∞ for all values of z at which the function FZ(z) is continuous.

1.7 JOINT DISTRIBUTIONS AND CONVERGENCE

Consider constructing measures on a product Euclidean space. Given
Lebesgue measure λ, essentially a measure of length on the real line 
, how
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do we construct a similar measure compatible with the notion of area in two-
dimensional Euclidean space? We naturally begin with the measure of rect-
angles or indeed any product set of the form A × B = {(x↪ y); x ∈ A↪ y ∈ B}
for arbitrary (Borel) sets A ⊂ 
↪ B ⊂ 
. The measure of a product set can be
defined as the product of the measure of the two-factor sets µ(A × B) = λ(A)

λ(B). This defines a measure for any product set, and by an extension the-
orem, since the product sets form a Boolean algebra, we can extend this
measure to the sigma algebra generated by the product sets.

More formally, suppose we are given two measure spaces (M↪ M↪ µ) and
(N↪ N ↪ ν) . Define the product space to be the space consisting of pairs of
objects, one from each of M and N ,

Ω = M × N = {(x↪ y); x ∈ M↪ y ∈ N}
The Cartesian product of two sets A ⊂ M↪ B ⊂ N is denoted A × B =
{(a↪ b); a ∈ A↪ b ∈ B}. This is the analogue of a rectangle, a subset of M ×N ,
and it is easy to define a measure for such sets as follows. Define the product
measure of product sets of the above form by π(A × B) = µ(A)ν(B). The
following theorem is a simple consequence of the Caratheodory extension
theorem.

Theorem A11 The product measure π defined on the product sets of the form
{A×B; A ∈ N ↪ B ∈ M} can be extended to a measure on the sigma algebra
σ{A × B; A ∈ N ↪ B ∈ M} of subsets of M × N .

There are two cases of product measure of importance. Consider the
sigma algebra on 
2 generated by the product of the Borel sigma algebras
on 
. This is called the Borel sigma algebra in 
2. We can similarly define
the Borel sigma algebra on 
n.

Similarly, if we are given two probability spaces (Ω1↪ F1↪ P1) and (Ω2↪ F2↪

P2), we can construct a product measure Q on the Cartesian product space
Ω1 × Ω2 such that Q(A × B) = P1(A)P2(B) for all A ∈ F1↪ B ∈ F2. This
guarantees the existence of a product probability space in which events of
the form A × Ω2 are independent of events of the form Ω1 × B for A ∈
F1↪ B ∈ F2.

We say a sequence of random variables X1↪ X2↪ . . . is independent if
the family of sigma algebras σ(X1)↪ σ(X2)↪ . . . are independent; that is, for
Borel sets Bn↪ n = 1↪ . . . ↪ N in 
, the events [Xn ∈ Bn]↪ n = 1↪ . . . ↪ N form a
mutually independent sequence of events so that

P [X1 ∈ B1↪ X2 ∈ B2↪ . . . ,Xn ∈ Bn] = P [X1 ∈ B1]P [X2 ∈ B2] · · · P [Xn ∈ Bn]

The sequence is said to be identically distributed if every random variable
Xn has the same cumulative distribution function.
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We have already seen the following result, but we repeat it here, if only
to get the flavor of the proof.

If X↪ Y are independent integrable random variables on the same prob-
ability space, then XY is also integrable and

E(XY ) = E(X)E(Y)

Proof. Suppose first that X and Y are both simple functions, X = ∑
ci IAi

↪

Y = ∑
dj IBj

. Then X and Y are independent if and only if P (AiBj ) =
P (Ai)P (Bj ) for all i↪ j , and so

E(XY ) = E[(
∑

ci IAi
)(
∑

dj IBj
)]

=
∑∑

cidj E(IAi
IBj

)

=
∑∑

cidj P (Ai)P (Bj )

= E(X)E(Y )

More generally, suppose X↪ Y are nonnegative random variables and consider
independent simple functions Xn increasing to X and Yn increasing to Y. Then
XnYn is a nondecreasing sequence with limit XY. Therefore, by the monotone
convergence theorem,

E(XnYn) → E(XY)

On the other hand,

E(XnYn) = E(Xn)E(Yn) → E(X)E(Y).

Therefore, E(XY ) = E(X)E(Y ). The case of general (positive and negative
random variables X↪ Y we leave as a problem. �

Joint Distributions of More Than Two Random Variables Suppose X1↪ . . . ↪ Xn are
random variables defined on the same probability space (Ω↪ F ↪ P ) (but not
necessarily independent). The joint distribution can be characterized by the
joint cumulative distribution function, a function on 
n defined by

F (x1↪ . . . ↪ xn) = P [X1 ≤ x1↪ . . . ↪ Xn ≤ xn] = P ([X1 ≤ x1] ∩ · · · ∩ [Xn ≤ xn])

The joint cumulative distribution function allows us to find P [a1 < X1 ≤
b1↪ . . . ↪ an < Xn ≤ bn]. By the inclusion-exclusion principle,

P [a1 < X1 ≤ b1↪ . . . ↪ an < Xn ≤ bn] = F (b1↪ b2↪ . . . ↪ bn)

−
∑

j

F (b1↪ . . . ↪ aj ↪ bj+1 ↪ . . . ↪ bn)

+
∑
i<j

F (b1↪ . . . ↪ ai ↪ bi+1↪ . . . ↪ aj ↪ bj+1 ↪ . . . ↪ bn) − · · · (1.8)
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The formula (1.8) above allows us to construct the probability measure
of any product of intervals

C = (a1↪ b1] × (a2↪ b2] × · · · (an↪ bn]

and thereby any disjoint union of finitely many sets of the form C. The class
of all such disjoint unions (including all of 
n) forms an algebra of sets,
closed under complements, finite unions and intersections. In the same way
as we constructed Lebesgue measure on the Euclidean space 
n from the
basic notion of the length of an interval, we can now extend this probability
measure to all sets in the sigma algebra generated by sets C of the form above.
In general, a joint cumulative distribution function defined on 
n allows us to
define a probability measure on n−dimensional Euclidean space. However
in order that a function qualify as a joint c.d.f., the following conditions
need to be satisfied.

Theorem A12 The joint cumulative distribution function has the following
properties:

(a) F (x1↪ . . . ↪ xn) is right-continuous and nondecreasing in each argument
xi when the other arguments xj ↪ j �= i, are fixed.

(b) F (x1↪ . . . ↪ xn) → 1 as min(x1↪ . . . ↪ xn) → ∞ and F (x1↪ . . . ↪ xn) → 0 as
min(x1↪ . . . ↪ xn) → −∞.

(c) The expression on the right-hand side of (1.8) is greater than or equal
to zero for all a1 < b1↪ a2 < b2↪ . . . ↪ an < bn.

The joint probability distribution of the variables X1↪ . . . ↪ Xn is a mea-
sure on Rn. It can be determined from the cumulative distribution function
in the usual fashion, first by defining the measure of intervals and then ex-
tending this to the sigma algebra generated by these intervals. In order to
verify that the random variables are mutually independent, it is sufficient to
verify that the joint cumulative distribution function factors

F (x1↪ . . . ↪ xn) = F1(x1)F2(x2) · · · Fn(xn) = P [X1 ≤ x1] · · · P [Xn ≤ xn]

for all x1↪ . . . ↪ xn ∈ 
.

Theorem A13 If the random variables X1↪ . . . ↪ Xn are mutually independent,
then

E[
n∏

j=1

gj (Xj )] =
n∏

j=1

E[gj (Xj )]

for any Borel measurable functions g1↪ . . . ↪ gn.
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An infinite sequence of random variables X1↪ X2↪ . . . is mutually inde-
pendent if every finite subset is mutually independent.

Definition: Strong (Almost Sure) Convergence Let X and Xn↪ n = 1↪ 2↪ . . . ↪ be
random variables all defined on the same probability space (Ω↪ F). We say
that the sequence Xn converges almost surely (or with probability 1) to X

(denoted Xn → X a.s.) if the event

{ω; Xn(ω) → X(ω)} = ∩∞
m=1

[
|Xn − X| ≤ 1

m
a.b.f.o.

]
has probability 1. Here the notation a.b.f.o., standing for “all but finitely
often,” is the “lim inf” of the events [|Xn − X| ≤ 1

m
].

In order to show that a sequence Xn converges almost surely, we need
that Xn are (measurable) random variables for all n, and to show that there is
some measurable random variable X for which the set {ω; Xn(ω) → X(ω)}
is measurable and hence an event, and that the probability of this event
P [Xn → X] is 1. Alternatively, we can show that for each value of ε > 0↪

P [|Xn − X| > ε i.o.] = 0↪ or in other words, that the probability of the set of
all points ω such that Xn(ω) does not converge to X(ω) is zero. It is sufficient
to consider values of ε of the form ε = 1/m, m = 1↪ 2↪ . . . above.

The law of large numbers (sometimes called the law of averages) is the
best-known result in probability. It says, for example, that the average of
independent Bernoulli random variables, or Poisson, or negative binomial,
or gamma random variables, to name a few, converge to their expected value
with probability 1.

Theorem A14 (Strong Law of Large Numbers) If Xn↪ n = 1↪ 2↪ . . . ↪ is a sequence of
independent identically distributed random variables with E|Xn| < ∞ (i.e.,
they are integrable) and E(Xn) = µ, then

1

n

n∑
i=1

Xi → µ almost surely as n → ∞

1.8 WEAK CONVERGENCE (CONVERGENCE IN DISTRIBUTION)

Consider random variables that are constants: Xn(w) = 1 + 1
n

for all w. By
any sensible definition of convergence, Xn converges to X = 1 as n → ∞.

Does the cumulative distribution function of Xn↪ say Fn↪ converge to the
cumulative distribution function of X pointwise? In this case it is true that
Fn(x) → F (x) at all values of x except the value x = 1, where the function
F (x) has a discontinuity. Convergence in distribution (weak convergence,
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convergence in law) is defined as pointwise convergence of the c.d.f. at all
values of x except those at which F (x) is discontinuous. Of course, if the
limiting distribution is absolutely continuous (for example, the normal dis-
tribution as in the Central Limit Theorem), then Fn(x) → F (x) does hold
for all values of x.

Definition: Weak Convergence If Fn(x)↪ n = 1↪ . . ., is a sequence of cumulative
distribution functions and if F is a cumulative distribution function, we
say that Fn converges to F weakly or in distribution if Fn(x) → F (x)

for all x at which F (x) is continuous. Weak convergence of a sequence of
random variables Xn whose c.d.f. converges in the above sense is denoted
in a variety of ways, such as Xn ⇒ X or Xn →D X (here D stands for “in
distribution”).

There are simple examples of cumulative distribution functions that con-
verge pointwise but not to a genuine cumulative distribution because some
of the mass of the distribution escapes to infinity. For example, if Fn is the cu-
mulative distribution function of a point mass at the point n, then Fn(x) → 0
for each fixed value of x < ∞. An additional condition, called tightness, is
needed to ensure that the limiting distribution is a “proper” probability dis-
tribution (i.e., has total measure 1). A sequence of probability measures Pn

on Euclidean space is tight if for all ε > 0↪ there exists a bounded rectangle
K such that Pn(K) > 1 − ε for all n. A sequence of cumulative distribution
functions Fn defined on R is tight if, for every ε > 0↪ there is a real number
M < ∞ such that the probabilities of interval [−M↪ M] are greater than
than 1 − ε↪

Fn(M) − Fn(−M) ≤ 1 − ε for all n = 1↪ 2↪ ...

Tightness is a condition that ensures that none of the probability mass es-
capes to infinity. For example suppose a sequence of cumulative distribution
functions Fn(x) converges to some limiting right-continuous function F (x)

at all continuity points x of F and suppose the sequence Fn is tight. Then it is
easy to show that the limiting function F is a proper cumulative distribution
function (i.e. has total mass 1) and the convergence is in distribution.

There is an alternative definition of weak convergence that is more ap-
propriate for more general spaces of random elements such as spaces of
continuous time stochastic processes.

General Definition of Weak Convergence A sequence of random elements of a
metric space Xn converges weakly to X (i.e., Xn ⇒ X) if and only if
E[f (Xn)] → E[f (X)] for all bounded continuous functions f .
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Definition: Convergence in Probability We say a sequence of random variables
Xn → X in probability if for all ε > 0, P [|Xn − X| > ε] → 0 as n → ∞.

Convergence in probability is in general a somewhat more demanding
concept than weak convergence, but less demanding than almost sure con-
vergence. In other words, convergence almost surely implies convergence in
probability, and convergence in probability implies weak convergence.

Theorem A15 If Xn → X almost surely, then Xn → X in probability.

However, convergence in probability does not imply convergence almost
surely, but it does imply weak convergence.

Theorem A16 If Xn → X in probability, then Xn →D X.

The converse of this theorem holds under one condition, when the con-
vergence in distribution s to a constant.

Theorem A17 If Xn →D converges in distribution to some constant c, then
Xn → c in probability.

The next result, Fubini’s theorem, allows us to change the order of inte-
gration as long as the function being integrated is, in fact, integrable.

Theorem A18 (Fubini’s Theorem) Suppose g(x↪ y) is integrable with respect to a
product measure π = µ × ν on M × N . Then∫

M×N

g(x↪ y)dπ =
∫

M

[∫
N

g(x↪ y)dν

]
dµ =

∫
N

[∫
M

g(x↪ y)dµ

]
dν

Convolutions Consider two independent random variables X↪ Y , both having
a discrete distribution. Suppose we wish to find the probability function of
the sum Z = X + Y . Then

P [Z = z] =
∑

x

P [X = x]P [Y = z − x] =
∑

x

fX(x)fY(z − x)

Similarly, if X↪ Y are independent, absolutely continuous distributions with
probability density functions fX↪ fY, respectively, then we find the proba-
bility density function of the sum Z = X + Y by

fZ(z) =
∫ ∞

−∞
fX(x)fY(z − x)dx
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In both the discrete and continuous cases, we can rewrite the above in terms
of the cumulative distribution function FZ of Z. In either case,

FZ(z) = E[FY(z − X)] =
∫



FY(z − x)FX(dx)

We use the last form as a more general definition of a convolution between
two cumulative distribution functions F ↪ G. We define the convolution of
F and G to be F ∗ G(x) = ∫ ∞

−∞ F (x − y)dG(y).

Properties of Convolution

(a) If F ↪ G are cumulative distributions functions, then so is F ∗ G.
(b) F ∗ G = G ∗ F .
(c) If either F or G is absolutely continuous with respect to Lebesgue mea-

sure, then F ∗ G is absolutely continuous with respect to Lebesgue
measure.

The convolution of two cumulative distribution functions F ∗ G repre-
sents the c.d.f of the sum of two independent random variables, one with
c.d.f. F and the other with c.d.f. G.

1.9 STOCHASTIC PROCESSES

A stochastic process is an indexed family of random variables Xt for t rang-
ing over some index set T , such as the integers or an interval of the real line.
For example, a sequence of independent random variables is a stochastic
process, as is a Markov chain. For an example of a continuous-time stochas-
tic process, define Xt to be the price of a stock at time t (assuming trading
occurs continuously over time).

Markov Chains Consider a sequence of (discrete) random variables X1↪ X2↪ . . . ↪

each of which takes integer values 1↪ 2↪ . . . ↪ N (called states). We assume that
for a certain matrix P (called the transition probability matrix), the condi-
tional probabilities are given by corresponding elements of the matrix,

P [Xn+1 = j |Xn = i] = Pij ↪ i = 1↪ . . . ↪ N↪ j = 1↪ . . . ↪ N

and furthermore that the chain cares only about the last state occupied in
determining its future:

P
[
Xn+1 = j |Xn = i↪ Xn−1 = i1↪ Xn−2 = i2 · · · Xn−l = il

]
= P [Xn+1 = j |Xn = i] = Pij
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for all j ↪ i↪ i1↪ i2↪ . . . ↪ il ↪ and l = 2↪ 3↪ . . .. Then the sequence of random vari-
ables Xn is called a Markov chain. Markov chain models are the most com-
mon simple models for dependent variables, including weather (precipita-
tion, temperature), movements of security prices, and others. They allow the
future of the process to depend on the present state of the process, but the
past behavior can influence the future only through the present.

Properties of the Transition Matrix P Note that Pij ≥ 0 for all i↪ j and
∑

j Pij =
1 for all i. This last property implies that the N × N matrix P − I (where
I is the identity matrix) has rank at most N − 1 because the sum of the N

columns of P − I is identically 0.

Example: Rain/No Rain Suppose that the probability that tomorrow is rainy
given that today is not is α, and the probability that tomorrow is dry given
that today is rainy is β. Then if we assume that tomorrow’s weather depends
on the past only through whether today is wet or dry, the chain given by

Xn =
{

1 Day n is wet
0 Day n is dry

is a Markov chain having transition matrix

P =
(

1 − α α
β 1 − β

)
The Distribution of Xn Suppose that the chain is started by randomly choosing
a state for X0 with distribution P [X0 = i] = qi ↪ i = 1↪ 2↪ . . . ↪ N . Then the
distribution of X1 is given by

P (X1 = j ) =
N∑

i=1

P (X1 = j ↪ X0 = i)

=
N∑

i=1

P (X1 = j |X0 = i)P (X0 = i)

=
N∑

i=1

Pij qi

and this is the j th element of the vector q′P , where q is the column vector of
values qi . Similarly the distribution of Xn is the vector q′P n, where P n is the
product of the matrix P with itself n times. Under very general conditions, it
can be shown that these probabilities converge, and in many such cases the
limit does not depend on the initial distribution q.
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Definition A limiting distribution of a Markov chain is a vector (π, say) of
long-run probabilities of the individual states so that

πi = lim
t→∞P [Xt = i]

Definition A stationary distribution of a Markov chain is the column vector
(π, say) of probabilities of the individual states such that

π′P = π′

Theorem A19 Any limiting distribution of a Markov chain must be a station-
ary distribution.

Proof. Note that π′ = limn→∞ q′P n = limn→∞(q′P n)P = (limn→∞ q′P n)P =
π′P. �

Example: Binary Information Suppose that X1↪ X2↪ . . . is a sequence of binary in-
formation (Bernoulli random variables) taking values either 0 or 1. Suppose
that the probability that a 0 is followed by a 1 is p and the probability that
a 1 is followed by a 0 is given by q, where 0 < p↪ q < 1. Then the transition
matrix for the Markov chain is

P =
(

1 − p p

q 1 − q

)
The limiting distribution for this Markov chain is

π =
(

q
p+q

p
p+q

)

So, for example, the long-run proportion of zeros in the sequence is q
p+q

.

When is the limiting distribution of a Markov chain unique and inde-
pendent of the initial state of the chain?

Definition: Irreducible, Aperiodic We say that a Markov chain is irreducible if
every state can be reached from every other state. In other words, for every
pair i↪ j there is some m such that P

(m)
i↪j > 0. We say that the chain is aperiodic

if, for each state i↪ there is no regular or periodic pattern for the values of k

for which P
(k)
ii > 0. For example, if P

(1)
ii = 0↪ P

(2)
ii > 0↪ P

(3)
ii = 0↪ P

(4)
ii > 0

and this pattern continues indefinitely, then the greatest common divisor of
the values k such that P

(N)
ii > 0 is evidently 2. We write this mathematically

as gcd{k; P
(k)
ii > 0} = 2, and this chain is not aperiodic; it has period 2.



Probability 41

On the other hand, if for all states i↪ gcd{k; P
(k)
ii > 0} = 1↪ we say the

chain is aperiodic. For a periodic chain (i.e., one that is not aperiodic, so the
period gcd{k; P

(k)
ii > 0} is greater than 1), returns to a state can occur only

at multiples of the period gcd{N; P
(N)
ii > 0}.

Theorem A20 If a Markov chain is irreducible and aperiodic, then there exists
a unique limiting distribution π. In this case, as n → ∞↪ P n → π′1, the
matrix whose rows are all identically π′.

Generating Functions

Definition: Generating Function Let a0↪ a1↪ a2↪ . . . be a finite or infinite sequence
of real numbers. Suppose the power series

A(t) =
∞∑

i=0

ai t
i

converges for all −ε < t < ε for some value of ε > 0. Then we say that the
sequence has a generating function A(t).

Note: Every bounded sequence has a generating function since the series∑∞
i=0 t i converges whenever |t | < 1. Thus, discrete probability functions

have generating functions. The generating function of a random variable X

or its associated probability function fX(x) = P [X = x] is given by

FX(t) =
∑

x

fX(x)tx = E(tX)

Note that if the random variable has finite expected value, then this converges
on the interval t ∈ [−1↪ 1].

The advantage of generating functions is that they provide a transform
of the original distribution to a space where many operations are made much
easier. We will give examples of this later. The most important single property
is that they are in one-to-one correspondence with distributions such that the
series converges; for each distribution there is a unique generating function,
and for each generating function, there is a unique distribution.

As a consequence of this representation and the following theorem, we
can use generating functions to determine distributions that would otherwise
be difficult to identify.

Theorem A21 Suppose a random variable X has generating function FX(t)

and Y has generating function FY(t). Suppose that X and Y are independent.
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Then the generating function of the random variable W = X + Y is FW(t) =
FX(t)FY(t).

Notice that whenever a moment-generating function exists, we can re-
cover the generating function from it by replacing et by t.

Example One of six different varieties of coupons is placed in each box of
cereal. Find the distribution of the number of cereal boxes you need to buy to
obtain all six coupons. Suppose X1 is the number of boxes you need before
you collect your first coupon, Then since X1 = 1↪ the generating function X1

is
E(tX1) = t.

Similarly if X2 is the number of additional boxes required to obtain a new
coupon, since P (X2 = j ) = (

5
6

) (
1
6

)j−1
the generating function of X2 is

∞∑
j=1

(
5

6

)(
1

6

)j−1

t j = 5t

6 − t

To obtain the third new coupon we will need X3 boxes and X3 has generating
function

∞∑
j=1

(
4

6

)(
2

6

)j−1

t j = 4t

6 − 2t

Similarly we obtain the generating function of X4↪ X5↪ X6 and since the total
number of boxes required is the sum of the six independent random variables
X1 + X2 + ... + X6, it has generating function obtained as the product

t × 5t

6 − t
× 4t

6 − 2t
× ... × t

6 − 5t
= 5!t6

(6 − t)(6 − 2t)(6 − 3t)(6 − 4t)(6 − 5t)

= 5

324
t6 + 25

648
t7 + 175

2916
t8 + 875

11 664
t9 + 11 585

139 968
t10 + 875

10 368
t11 + O

(
t12

)
from which we discover that the probability of only six cereal boxes is 5

324 ↪

the probability of seven is 25
648 ↪ and so on.

The Poisson Process

One of the simplest continuous-time stochastic processes is the Poisson pro-
cess. Suppose Nt denotes the total number of arrivals into a system (such as
the number of customers arriving at a queue) until time t . Note that the num-
ber of arrivals in time interval (a↪ b] is then Nb − Na. Assume the following
properties:
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(a) The probability of exactly one arrival in a small interval of length
�t is λ�t + o(�t). (Note that the probability does not depend on where the
interval is, only on its length.)

(b) The probability of two or more arrivals in an interval of length �t

is o(�t), where by definition of the o notation, o(�t)/�t → 0 as �t → 0.

(c) For disjoint intervals Ii = (ai ↪ bi ] (so Ii ∩ Ij = φ↪ i �= j ), the numbers
of arrivals in these intervals Yi = Nbi

−Nai
are mutually independent random

variables.

Theorem A22 Under the above conditions, (a)–(c), the distribution of the
process Nt↪ t ∈ T is that of a Poisson process. This means that the num-
ber of arrivals Nb − Na in an interval (a↪ b] has a Poisson distribution with
parameter λ(b−a) = λ× the length of the interval, and the number of arrivals
in disjoint time intervals are independent random variables. The parameter
λ specifies the rate of the Poisson process.

We can easily show that if N(t) is a Poisson process and T1↪ T2↪ . . . are the
time of the first event, the time between the first and second events, and so on,
then T1↪ T2↪ . . . are independent random variables, each with an exponential
distribution with expected value 1/λ. Moreover, if T1↪ T2↪ . . . ↪ Tn are inde-
pendent random variables each with an exponential(1) distribution, then the
sum

∑n
i=1 Ti has a (gamma) probability density function with probability

density function

f (x) = 1

(n − 1)!
xn−1e−x↪ for x > 0

This means that the event times for a Poisson process are gamma distributed.

Poisson Process in Space In an analogous way we may define a Poisson process
in space as a distribution governing the occurrence of random points with
the properties indicated above: The number of points in a given set S has a
Poisson distribution with parameter λ × |S|, where |S| is the area or volume
of the set, and if Y1↪ Y2↪ . . . are the number of points occurring in disjoint sets
S1↪ S2↪ . . . , they are mutually independent random variables.



2
Conditional Expectation and

Martingales
2.1 CONDITIONAL EXPECTATION FOR SQUARE INTEGRABLE

RANDOM VARIABLES

Information in probability and its applications is related to the notion of
sigma algebras. For example, if I wish to predict whether tomorrow will be
wet or dry (X2 = 1 or 0) based only on similar results for today (X1) and
yesterday (X0)↪ then I am restricted to random variables that are functions
g(X0↪ X1) of the state on these two days. In other words, the random variable
must be measurable with respect to the sigma algebra generated by X0↪ X1.
Our objective is, in some sense, to get as close as possible to the unobserved
value of X2 using only random variables that are measurable with respect
to this sigma algebra. This is essentially one way of defining conditional
expectation. It provides the closest approximation to a random variable X

if we restrict ourselves to random variables Y measurable with respect so
some coarser sigma algebra.

Conditional Expectation

Theorem A23 Let G ⊂ F be sigma algebras and X a random variable on
(Ω↪ F ↪ P ). Assume E(X2) < ∞. Then there exists an almost surely unique
G-measurable Y such that

E[(X − Y)2] = inf
Z

E(X − Z)2 (2.1)

where the infimum (greatest lower bound) is over all G-measurable random
variables. Note: We denote the minimizing Y by E(X|G).

For two such minimizing Y1↪ Y2 (i.e., random variables Y that satisfy
(2.1)), we have P [Y1 = Y2] = 1. This implies that conditional expectation is
almost surely unique.

Suppose G = {ϕ↪ Ω}. What is E(X|G)? What random variables are mea-
surable with respect to G? Any nontrivial random variable that takes two
or more possible values generates a nontrivial sigma algebra that includes

44
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sets other than the empty set that are strict subsets of the probability space
Ω. Only a constant random variable is measurable with respect to the triv-
ial sigma algebra G. So the question becomes, what constant is as close
as possible to all of the values of the random variable X in the sense of
mean squared error? The obvious answer is the correct one, the expected
value of X, because this leads to the same minimization discussed before,
mincE[(X − c)2] = minc{var(X) + (EX − c)2}, which results in c = E(X).

Example Suppose G = {ϕ↪ A↪ Ac↪ ω} for some event A. What is E(X|G)?
Consider a candidate random variable Z taking the value a on A and b

on the set Ac. Then

E[(X − Z)2] = E[(X − a)2IA] + E[(X − b)2IAc ]

= E(X2IA) − 2aE(XIA) + a2P (A)

+ E(X2IAc ) − 2bE(XIAc ) + b2P (Ac)

Minimizing this with respect to both a and b results in

a = E(XIA)/P (A)

b = E(XIAc )/P (Ac)

These values a and b are usually referred to in elementary probability as
E(X|A) and E(X|Ac), respectively. Thus, the conditional expected value can
be written

E(X|G)(ω) =
{

E(X|A) if ω ∈ A

E(X|Ac) if ω ∈ Ac

As a special case consider X to be an indicator random variable X = IB .

Then we usually denote E(IB |G) by P (B|G) and

P (B|G)(ω) =
{

P (B|A) if ω ∈ A

P (B|Ac) if ω ∈ Ac

Note: Expected value is a constant, but the conditional expected value
E(X|G)is a random variable measurable with respect to G. Its value on the
atoms (the distinct elementary subsets) of G is the average of the random
variable X over these atoms.

Example Suppose G is generated by a finite partition {A1↪ A2↪ . . . ↪ An} of the
probability space Ω. What is E(X|G)?
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In this case, any G-measurable random variable is constant on the sets
in the partition Aj ↪ j = 1↪ 2↪ . . . ↪ n, and an argument similar to the one above
shows that the conditional expectation is the simple random variable

E(X|G)(ω) =
n∑

i=1

ci IAi
(ω) where ci = E(X|Ai) = E(XIAi

)

P (Ai)

Example Consider the probability space Ω = (0↪ 1] together with P =
Lebesgue measure and the Borel sigma algebra. Suppose the function X(ω)

is Borel measurable. Assume that G is generated by the intervals ( j−1
n

↪ j
n

] for
j = 1↪ 2↪ . . . ↪ n. What is E(X|G)?

In this case

E(X|G)(ω) = n

∫ j/n

(j−1)/n

X(s)ds when ω ∈
(

j − 1

n
↪

j

n

]
= average of X values over the relevant interval

Theorem A24 (Properties of Conditional Expectation)

(a) If a random variable X is G-measurable, E(X|G) = X.
(b) If a random variable X is independent of a sigma algebra G, then E(X|G) =

E(X).
(c) For any square integrable G-measurable Z, E(ZX) = E[ZE(X|G)].
(d) (special case of (c))

∫
A

X dP = ∫
A

E(X|G]dP for all A ∈ G.
(e) E(X) = E[E(X|G)].
(f) If a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0 for all

other G-measurable random variables Y , then Z = E(X|G).
(g) If Y1↪ Y2 are distinct G-measurable random variables both minimizing

E(X − Y )2, then P (Y1 = Y2) = 1.
(h) Additive: E(X + Y |G) = E(X|G) + E(Y |G).

Linearity: E(cX + d|G) = cE(X|G) + d.
(i) If Z is G-measurable, E(ZX|G) = ZE(X|G) a.s.
(j) If H ⊂ G are sigma algebras, E[E(X|G)|H] = E(X|H).
(k) If X ≤ Y , E(X|G) ≤ E(Y |G) a.s.
(l) Conditional Lebesgue dominated convergence. If Xn → X a.s. and

|Xn| ≤ Y for some integrable random variable Y , then E(Xn|G) →
E(X|G) in distribution.

Note: In general, we define E(X|Z) = E(X|σ(Z))↪ the conditional ex-
pected value given the sigma algebra generated by X↪ σ(X). We can define
the conditional variance var(X|G) = E{(X − E(X|G))2|G}.
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Proof.

(a) Notice that for any random variable Z that is G-measurable, E(X−Z)2 ≥
E(X − X)2 = 0, and so the minimizing Z is X (by definition, this is
E(X|G)).

(b) Consider a random variable Y measurable with respect G and therefore
independent of X. Then

E(X − Y )2 = E[(X − EX + EX − Y )2]

= E[(X − EX)2] + 2E[(X − EX)(EX − Y)] + E[(EX − Y)2]

= E[(X − EX)2] + E[(EX − Y)2] by independence

≥ E[(X − EX)2]

It follows that E(X − Y )2 is minimized when we choose Y = EX, and
so E(X|G) = E(X).

(c) For any G-measurable square integrable random variable Z↪ we may
define a quadratic function of λ by

g(λ) = E[(X − E(X|G) − λZ)2]

By definition of E(X|G)↪ this function is minimized over all real values
of λ at the point λ = 0, and therefore g′(0) = 0. Setting its derivative
g′(0) = 0 results in the equation

E(Z(X − E(X|G))) = 0

or E(ZX) = E[ZE(X|G)].
(d) If in (c) we put Z = IA, where A ∈ G↪ we obtain

∫
A

X dP = ∫
A

E(X|G]dP.

(e) Again, this is a special case of property (c) corresponding to Z = 1.

(f) Suppose a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0
for all other G-measurable random variables Y . Consider in particular
Y = E(X|G) − Z and define

g(λ) = E[(X − Z − λY)2]

= E((X − Z)2 − 2λE[(X − Z)Y ] + λ2E(Y 2)

= E(X − Z)2 + λ2E(Y 2)

≥ E(X − Z)2 = g(0)

In particular, g(1) = E[(X−E(X|G))2] ≥ g(0) = E(X−Z)2, and by the
uniqueness of conditional expectation in Theorem A23, Z = E(X|G)

almost surely.
(g) This is just deja vu (Theorem A23) all over again.
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(h) Consider, for an arbitrary G-measurable random variable Z↪

E[Z(X + Y − E(X|G) − E(Y |G))] = E[Z(X − E(X|G))]

+ E[Z(Y − E(Y |G))] = 0 by property (c).

It therefore follows from property (f) that E(X + Y |G) = E(X|G) +
E(Y |G).
By a similar argument we may prove E(cX + d|G) = cE(X|G) + d.

(i)–(l) We leave the proof of these properties as exercises �

2.2 CONDITIONAL EXPECTATION FOR INTEGRABLE
RANDOM VARIABLES

We have defined conditional expectation as a projection (i.e., a G-measurable
random variable that is the closest to X) only for random variables with
finite variance. It is fairly easy to extend this definition to random vari-
ables X on a probability space (Ω↪ F ↪ P ) that are integrable (i.e., for which
E(|X|) < ∞). We wish to define E(X|G) where the sigma algebra G ⊂ F .

First, for nonnegative integrable X, we may choose a sequence of simple
random variables Xn ↑ X. Since simple random variables have only finitely
many values, they have finite variance, and we can use the definition above
for their conditional expectation. Then E(Xn|G) is an increasing sequence
of random variables and so it converges. Define E(X|G) to be the limit. In
general, for random variables taking positive and negative values, we define
E(X|G) = E(X+|G) − E(X−|G). There are a number of details that need to
be ironed out. First we need to show that this new definition is consistent
with the old one when the random variable happens to be square integrable.
We can also show that properties (a)–(i) above all hold under this new defini-
tion of conditional expectation. We close with the more common definition
of conditional expectation found in most probability and measure theory
texts, essentially property (d) above. It is, of course, equivalent to the defini-
tion as a projection that we used above when the random variable is square
integrable, and when it is only integrable, it reduces to the aforementioned
limit of the conditional expectations of simple functions.

Theorem A25 Consider a random variable X defined on a probability space
(Ω↪ F ↪ P ) for which E(|X|) < ∞. Suppose the sigma algebra G ⊂ F . Then
there is a unique (almost surely P ) G-measurable random variable Z satis-
fying ∫

A

X dP =
∫

A

Z dP for all A ∈ G
Any such Z we call the conditional expectation and denote by E(X|G).
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2.3 MARTINGALES IN DISCRETE TIME

In this section all random variables are defined on the same probability space
(Ω↪ F ↪ P ). Partial information about these random variables may be obtained
from the observations so far, and in general, the “history” of a process up
to time t is expressed through a sigma algebra Ht ⊂ F . We are interested in
stochastic processes or sequences of random variables called martingales—
intuitively, the total fortune of an individual participating in a “fair game.”
In order for the game to be “fair,” the expected value of your future fortune
given the history of the process up to and including the present should be
equal to your present wealth. In a sense you are tending to neither increase
nor decrease your wealth over time; any fluctuations are purely random.
Suppose your fortune at time s is denoted Xs . The values of the process of
interest and any other related processes up to time s generate a sigma algebra
Hs . Then the assertion that the game is fair implies that the expected value
of our future fortune given this history of the process up to the present is
exactly our present wealth E(Xt|Hs) = Xs for t > s. In what follows, we
will sometimes state our definitions to cover the discrete-time case in which t

ranges through the integers {0↪ 1↪ 2↪ 3↪ . . .} or a subinterval of the real numbers
such as T = [0↪ ∞). In either case, T represents the set of possible indices t.

Definition {(Xt↪ Ht); t ∈ T } is a martingale if

(a) Ht is an increasing (in t) family of sigma algebras.
(b) Each Xt is Ht-measurable and E|Xt| < ∞.
(c) For each s < t↪ where s↪ t ∈ T ↪ we have E(Xt|Hs) = Xs a.s.

Example Suppose Zt are independent random variables with expectation 0.
Define Ht = σ(Z1↪ Z2↪ . . . ↪ Zt) for t = 1↪ 2↪ . . . and St = ∑t

i=1 Zi . Then notice
that for integer s < t↪

E[St|Hs] = E[
t∑

i=1

Zi |Hs]

=
t∑

i=1

E[Zi |Hs]

=
s∑

i=1

Zi

because E[Zi |Hs] = Zi if i ≤ s and otherwise, if i > s↪ E[Zi |Hs] =
0. Therefore, {(St↪ Ht)↪ t = 1↪ 2↪ . . . ↪ } is a (discrete-time) martingale. As an
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exercise you might show that if E(Z2
t ) = σ2 < ∞↪ then {(S2

t − tσ2↪ Ht)↪ t =
1↪ 2↪ . . .} is also a discrete-time martingale.

Example Let X be any integrable random variable, and Ht an increasing
family of sigma algebras for t in some index set T . Set Xt = E(X|Ht). Then
notice that for s < t↪

E[Xt|Hs] = E[E[X|Ht]|Hs] = E[X|Hs] = Xs

So (Xt↪ Ht) is a martingale.
Technically, a sequence or set of random variables is not a martingale un-

less each random variable Xt is integrable. Of course, unless Xt is integrable,
the concept of conditional expectation E[Xt|Hs] is not even defined. You
might think of reasons in each of the above two examples why the random
variables Xt above and St in the previous example are indeed integrable.

Definition Let {(Mt↪ Ht); t = 1↪ 2↪ . . .} be a martingale and At a sequence of
random variables measurable with respect to Ht−1. Then the sequence At is
called non-anticipating (an alternative term is predictable, but this will have
a slightly different meaning in continuous time).

In gambling, we must determine our stakes and our strategy on the tth
play of a game based on the information available to use at time t − 1. Sim-
ilarly, in investment, we must determine the weights on various components
in our portfolio at the end of day (or hour or minute) t − 1 before the
random marketplace determines our profit or loss for that period of time.
In this sense, both gambling and investment strategies must be determined
by non-anticipating sequences of random variables (although both gamblers
and investors often dream otherwise).

Definition: Martingale Transform Let {(Mt↪ Ht)↪ t = 0↪ 1↪ 2↪ . . .} be a martingale,
and let At be a bounded non-anticipating sequence with respect to Ht. Then
the sequence

M̃t = A1(M1 − M0) + · · · + At(Mt − Mt−1) (2.2)

is called a martingale transform of Mt.

The martingale transform is sometimes denoted A ◦ M, and it is one
simple transformation that preserves the martingale property.

Theorem A26 The martingale transform {(M̃t↪ Ht)↪ t = 1↪ 2↪ . . .} is a
martingale.
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Proof.

E[M̃j − M̃j−1 |Hj−1 ] = E[Aj (Mj − Mj−1 |Hj−1 ]

= Aj E[(Mj − Mj−1 |Hj−1 ] since Aj is Hj−1 -measurable

= 0 a.s.

Therefore,

E[M̃j |Hj−1 ] = M̃j−1 a.s. �

Consider a random variable τ that determines when we stop betting or
investing. Its value can depend arbitrarily on the outcomes in the past, as
long as the decision to stop at time τ = t depends only on the results at time
t↪ t − 1↪ . . . . Such a random variable is called an optional stopping time.

Definition A random variable τ taking values in {0↪ 1↪ 2↪ . . .} ∪ {∞} is a (op-
tional) stopping time for a martingale {(Xt↪ Ht)↪ t = 0↪ 1↪ 2↪ . . .} if for each
n, [τ ≤ t] ∈ Ht.

If we stop a martingale at some random stopping time, the result con-
tinues to be a martingale, as the following theorem shows.

Theorem A27 Suppose {(Mt↪ Ht)↪ t = 1↪ 2↪ . . .} is a martingale and τ is an
optional stopping time. Define a new sequence of random variables Yt =
Mt∧τ = Mmin(t↪τ) for t = 0↪ 1↪ 2↪ . . ..Then {(Yt↪ Ht)↪ t = 1↪ 2↪ . . .} is a martin-
gale.

Proof. Notice that

Mt∧τ = M0 +
t∑

j=1

(Mj − Mj−1 )I (τ ≥ j )

Letting Aj = I (τ ≥ j ), this is a bounded Hj−1 -measurable sequence and
therefore

∑n
j=1 (Mj − Mj−1 )I (τ ≥ j ) is a martingale transform. By Theorem

A26, it is a martingale. �

Example (Ruin Probabilities) A random walk is a sequence of partial sums of
the form Sn = S0 +∑n

i=1 Xi where the random variables Xi are independent
identically distributed. Suppose P (Xi = 1) = p↪ P (Xi = −1) = q↪ P (Xi =
0) = 1 − p − q for 0 < p + q ≤ 1↪ and p �= q. This is a model for our
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total fortune after we play n games, each game independent, and resulting
either in a win of $1↪ a loss of $1, or break-even (no money changes hands).
However we assume that the game is not fair, so that the probability of a
win and the probability of a loss are different. We can show that

Mt = (q/p)St ↪ t = 0↪ 1↪ 2↪ . . .

is a martingale with respect to the usual history process Ht = σ(X1↪ Z2↪ . . . ↪

Xt). Suppose that our initial fortune lies in some interval A < S0 < B and
define the optional stopping time τ as the first time we hit either of two
barriers at A or B. Then Mt∧τ is a martingale. Suppose we wish to determine
the probability of hitting the two barriers A and B in the long run. Since
E(Mτ) = limt→∞ E(Mt∧τ) = (q/p)S0 , by dominated convergence we have

(q/p)ApA + (q/p)BpB = (q/p)S0 (2.3)

where pA and pB = 1−pA are the probabilities of hitting absorbing barriers
at A or B, respectively. Solving, it follows that

((q/p)A − (q/p)B)pA = (q/p)S0 − (q/p)B (2.4)

or that

pA = (q/p)S0 − (q/p)B

(q/p)A − (q/p)B
(2.5)

In the case p = q↪ a similar argument provides

pA = B − S0

B − A
(2.6)

These are often referred to as ruin probabilities and are of critical importance
in the study of the survival of financial institutions such as insurance firms.

Definition For an optional stopping time τ, define the sigma algebra corre-
sponding to the history up to the stopping time Hτ to be the set of all events
A ∈ H for which

A ∩ [τ ≤ t] ∈ Ht for all t ∈ T (2.7)

Theorem A28 Hτ is a sigma-algebra.

Proof. Clearly, since the empty set ϕ ∈ Ht for all t↪ the same applies ϕ∩[τ ≤ t]
and so ϕ ∈ Hτ. We also need to show that if A ∈ Hτ, then the same applies
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the complement Ac. Notice that for each n↪

[τ ≤ t]∩{A ∩ [τ ≤ t]}c

= [τ ≤ t] ∩ {Ac ∪ [τ > t]}
= Ac ∩ [τ ≤ t]

and since each of the sets [τ ≤ t] and A∩ [τ ≤ t] are Ht-measurable, so must
be the set Ac ∩ [τ ≤ t]. Since this holds for all t , it follows that whenever
A ∈ Hτ, then so it is for Ac. Finally, consider a sequence of sets Am ∈ Hτ for
all m = 1↪ 2↪ . . . . We need to show that the countable union ∪∞

m=1Am ∈ Hτ.

But
{∪∞

m=1Am} ∩ [τ ≤ t] = ∪∞
m=1{Am ∩ [τ ≤ t]}

and by assumption the sets {Am ∩ [τ ≤ t]} ∈ Ht for each t. Therefore,

∪∞
m=1{Am ∩ [τ ≤ t]} ∈ Ht

and since this holds for all t↪ ∪∞
m=1Am ∈ Hτ. �

There are several generalizations of the notion of a martingale that are
quite common. In general, they modify the strict rule that the conditional
expectation of the future given the present E[Xt|Hs] is exactly equal to the
present value Xs for s < t. One, a submartingale, models a process in which
the conditional expectation satisfies an inequality compatible with a game
that is either fair or is in your favor so that your fortune is expected either
to remain the same or to increase.

Definition {(Xt↪ Ht); t ∈ T } is a submartingale if

(a) Ht is an increasing (in t) family of sigma algebras.
(b) Each Xt is Ht-measurable and E|Xt| < ∞.
(c) For each s < t↪ E(Xt|Hs) ≥ Xs a.s.

Note that every martingale is a submartingale.
There is a very useful inequality, Jensen’s inequality, referred to in most

elementary probability texts. Consider a real-valued function φ(x) with the
property that for any 0 < p < 1↪ and for any two points x1↪ x2 in the domain
of the function, the inequality

φ(px1 + (1 − p)x2) ≤ pφ(x1) + (1 − p)φ(x2)

holds. Roughly, this says that the function evaluated at the average is less
than the average of the function at the two endpoints or that the line seg-
ment joining the two points (x1↪ φ(x1)) and (x2↪ φ(x2)) lies above or on the
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graph of the function everywhere. Such a function is called a convex func-
tion. Functions like φ(x) = ex and φ(x) = xp ↪ p ≥ 1, are convex functions,
but φ(x) = ln(x) and φ(x) = √

x are not convex (in fact, they are concave).
Notice that if a random variable X took two possible values x1↪ x2 with prob-
abilities p↪ 1 − p, respectively, then this inequality asserts that the function
at the point E(X) is less than or equal Eφ(X)↪

φ(EX) ≤ Eφ(X)

There is also a version of Jensen’s inequality for conditional expectation that
generalizes this result, and we will prove this more general version.

Theorem A29 (Jensen’s Inequality) Let φ be a convex function. Then for any
random variable X and sigma field H↪

φ(E(X|H)) ≤ E(φ(X)|H) (2.8)

Proof. Consider the set L of linear functions L(x) = a + bx that lie entirely
below the graph of the function φ(x). It is easy to see that for a convex
function

φ(x) = sup{L(x); L ∈ L}
For any such line,

E(φ(X)|H) ≥ E(L(X)|H)

≥ L(E(X)|H))

If we take the supremum over all L ∈ L , we obtain

E(φ(X)|H) ≥ φ(E(X)|H)) �

The standard version of Jensen’s inequality follows on taking H above
to be the trivial sigma field. Now from Jensen’s inequality we can obtain
a relationship among various commonly used norms for random variables.
Define the norm ||X||p = {E(|X|p)}1/p for all p ≥ 1. The norm allows us to
measure distances between two random variables; for example, a distance
between X and Y can be expressed as

||X − Y ||p
It is well known that

||X||p ≤ ||X||q whenever 1 ≤ p < q (2.9)
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This is easy to show since the function φ(x) = |x|q/p is convex provided that
q ≥ p, and by Jensen’s inequality,

E(|X|q) = E(φ(|X|p) ≥ φ(E(|X|p)) = |E(|X|p)|q/p

A similar result holds when we replace expectations with conditional
expectations. Let X be any random variable and H be a sigma field. Then
for 1 ≤ p ≤ q < ∞,

{E(|X|p |H)}1/p ≤ {E(|X|q|H)}1/q (2.10)

Proof. Consider the function φ(x) = |x|q/p. This function is convex provided
that q ≥ p, and by the conditional form of Jensen’s inequality,

E(|X|q|H) = E(φ(|X|p)|H) ≥ φ(E(|X|p |H)) = |E(|X|p |H)|q/p a.s. �

In the special case that H is the trivial sigma field, this is the inequality

||X||p ≤ ||X||q (2.11)

Theorem A30 (Constructing Submartingales) Let {(St↪ Ht)↪ t = 1↪ 2↪ ...} be a mar-
tingale. Then (|St|p ↪ Ht) is a submartingale for any p ≥ 1 provided that
E|St|p < ∞ for all t. Similarly, ((St − a)+↪ Ht) is a submartingale for any
constant a.

Proof. Since the function φ(x) = |x|p is convex for p ≥ 1↪ it follows from
the conditional form of Jensen’s inequality that

E(|St+1|p |Ht) = E(φ(St+1)|Ht) ≥ φ(E(St+1|Ht)) = φ(St) = |St|p a.s. �

Various other operations on submartingales will produce another sub-
martingale. For example, if Xn is a submartingale and φ is a convex nonde-
creasing function with Eφ(Xn) < ∞↪ then φ(Xn) is a submartingale.

Theorem A31 (Doob’s Maximal Inequality) Suppose (Mn↪ Hn) is a nonnegative sub-
martingale. Then for λ > 0 and p ≥ 1↪

P

(
sup

0≤m≤n

Mm ≥ λ

)
≤ λ−pE(Mp

n )
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Proof. We prove this in the case p = 1. The general case we leave as a
problem. Define a stopping time

τ = min{m; Mm ≥ λ}
so that τ ≤ n if and only if the maximum has reached the value λ by time n,
or

P

[
sup

0≤m≤n

Mm ≥ λ

]
= P [τ ≤ n]

Now on the set [τ ≤ n]↪ the maximum Mτ ≥ λ, so

λI (τ ≤ n) ≤ MτI (τ ≤ n) =
n∑

i=1

MiI (τ = i) (2.12)

By the submartingale property, for any i ≤ n and A ∈ Hi↪

E(MiIA) ≤ E(MnIA)

Therefore, taking expectations on both sides of (2.12), and noting that for
all i ≤ n

E(MiI (τ = i)) ≤ E(MnI (τ = i))

we obtain

λP (τ ≤ n) ≤ E(MnI (τ ≤ n)) ≤ E(Mn) �

Once again define the norm ||X||p = {E(|X|p)}1/p . Then the following in-
equality permits a measure of the norm of the maximum of a submartingale.

Theorem A32 (Doob’s Lp Inequality) Suppose (Mn↪ Hn) is a nonnegative sub-
martingale and set M∗

n = sup0≤m≤n Mn. Then for p > 1↪ and all n

||M∗
n ||p ≤ p

p − 1
||Mn||p

One of the main theoretical properties of martingales is that they con-
verge under fairly general conditions. Conditions are clearly necessary. For
example, consider a simple random walk Sn = ∑n

i=1 Zi , where Zi are inde-
pendent identically distributed with P (Zi = 1) = P (Zi = −1) = 1

2 . Starting
with an arbitrary value of S0↪ say S0 = 0, this is a martingale, but as n → ∞
it does not converge almost surely or in probability.
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On the other hand, consider a Markov chain with the property P (Xn+1 =
j |Xn = i) = 1

2i+1 for j = 0↪ 1↪ . . . ↪ 2i . Notice that this is a martingale, and
beginning with a positive value, say X0 = 10↪ it is a nonnegative martingale.
Does it converge almost surely? If so, the only possible limit is X = 0 because
the nature of the process is such that P [|Xn+1 − Xn| ≥ 1|Xn = i] ≥ 2

3 unless
i = 0. Convergence to i �= 0 is impossible since in that case there is a high
probability of jumps of magnitude at least 1. However, Xn does converge
almost surely, a consequence of the martingale convergence theorem. Does
it converge in L1, that is, in the sense that E[|Xn − X|] → 0 as n → ∞? If it
did, then E(Xn) → E(X) = 0, and this contradicts the martingale property
of the sequence, which implies E(Xn) = E(X0) = 10. This is an example of
a martingale that converges almost surely but not in L1.

Lemma A4 If (Xt↪ Ht)↪ t = 1↪ 2↪ ...↪ n, is a (sub)martingale and if α↪ β are
optional stopping times with values in {1↪ 2↪ ...↪ n} such that α ≤ β, then

E(Xβ|Hα) ≥ Xα

with equality if Xt is a martingale.

Proof. It is sufficient to show that∫
A

(Xβ − Xα)dP ≥ 0

for all A ∈ Hα. Note that if we define Zi = Xi −Xi−1 to be the submartingale
differences, the submartingale condition implies

E(Zj |Hi) ≥ 0 a.s. whenever i < j

Therefore, for each j = 1↪ 2↪ . . . ↪ n and A ∈ Hα↪∫
A∩[α=j ]

(Xβ − Xα)dP =
∫

A∩[α=j ]

n∑
i=1

ZiI (α < i ≤ β)dP

=
∫

A∩[α=j ]

n∑
i=j+1

ZiI (α < i ≤ β)dP

=
∫

A∩[α=j ]

n∑
i=j+1

E(Zi |Hi−1)I (α < i)I (i ≤ β)dP

≥ 0 a.s.
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since I (α < i), I (i ≤ β), and A∩ [α = j ] are all measurable with respect to
Hi−1 and E(Zi |Hi−1) ≥ 0 a.s. If we add over all j = 1↪ 2↪ . . . ↪ n, we obtain
the desired result. �

The following inequality is needed to prove a version of the submartin-
gale convergence theorem.

Theorem A33 (Doob’s Up-Crossing Inequality) Let Mn be a submartingale and for
a < b, define Nn(a↪ b) to be the number of complete up-crossings of the
interval (a↪ b) in the sequence Mj ↪ j = 0↪ 1↪ 2↪ . . . ↪ n. This is the largest k

such that there are integers i1 < j1 < i2 < j2 . . . < jk ≤ n for which

Mil ≤ a and Mjl ≥ b for all l = 1↪ . . . ↪ k

Then
(b − a)ENn(a↪ b) ≤ E{(Mn − a)+ − (M0 − a)+}

Proof. By Theorem A29, we may replace Mn by Xn = (Mn − a)+ and this is
still a submartingale. Then we wish to count the number of up-crossings of
the interval [0↪ b′] where b′ = b − a. Define stopping times for this process
by α0 = 0.

α1 = min{j ; 0 ≤ j ≤ n↪ Xj = 0}
α2 = min{j ; α1 ≤ j ≤ n↪ Xj ≥ b′}

...

α2k−1 = min{j ; α2k−2 ≤ j ≤ n↪ Xj = 0}
α2k = min{j ; α2k−1 ≤ j ≤ n↪ Xj ≥ b′}

In any case, if αk is undefined because we do not again cross the given
boundary, we define αk = n. Now each of these random variables is an
optional stopping time. If there is an up-crossing between Xαj

and Xαj+1

(where j is odd), then the distance traveled is

Xαj+1 − Xαj
≥ b′

If Xαj
is well defined (i.e., it is equal to 0) and there is no further up-crossing,

then Xαj+1 = Xn and

Xαj+1 − Xαj
= Xn − 0 ≥ 0

Similarly, if j is even, since by the above lemma (Xαj
↪ Hαj

) is a submartingale,

E(Xαj+1 − Xαj
) ≥ 0
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Adding over all values of j and using the fact that α0 = 0 and αn = n↪

E

n∑
j=0

(Xαj+1 − Xαj
) ≥ b′ENn(a↪ b)

E(Xn − X0) ≥ b′ENn(a↪ b)

In terms of the original submartingale, this gives

(b − a)ENn(a↪ b) ≤ E(Mn − a)+ − E(M0 − a)+ �

Doob’s martingale convergence theorem that follows is one of the nicest
results in probability and is one of the reasons martingales are so frequently
used in finance, econometrics, clinical trials, and life testing.

Theorem A34 (Submartingale Convergence Theorem) Let (Mn↪ Hn)↪ n = 1↪ 2↪ . . .,
be a submartingale such that supn→∞ EM+

n < ∞. Then there is an integrable
random variable M such that Mn → M a.s. If supn E(|Mn|p) < ∞ for some
p > 1, then ||Mn − M||p → 0.

Proof. The proof is an application of the up-crossing inequality. Consider
any interval a < b with rational endpoints. By the up-crossing inequality,

E(Na(a↪ b)) ≤ 1

b − a
E(Mn − a)+ ≤ 1

b − a
[|a| + E(M+

n )]. (2.13)

Let N(a↪ b) be the total number of times that the martingale completes an up-
crossing of the interval [a↪ b] over the infinite time interval [1↪ ∞), and note
that Nn(a↪ b) ↑ N(a↪ b) as n → ∞. Therefore, by monotone convergence
E(Na(a↪ b)) → EN(a↪ b) and by (2.13),

E(N(a↪ b)) ≤ 1

b − a
lim sup[a + E(M+

n )] < ∞

This implies
P [N(a↪ b) < ∞] = 1

Therefore,
P (lim inf Mn ≤ a < b ≤ lim sup Mn) = 0

for every rational a < b, and this implies that Mn converges almost surely to
a (possibly infinite) random variable. Call this limit M. We need to show that
this random variable is almost surely finite. Because E(Mn) is nondecreasing,

E(M+
n ) − E(M−

n ) ≥ E(M0)
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and so
E(M−

n ) ≤ E(M+
n ) − E(M0)

But by Fatou’s lemma,

E(M+) = E(lim infM+
n ) ≤ lim infEM+

n < ∞
Therefore, E(M−) < ∞, and consequently the random variable M is finite
almost surely. The convergence in Lp norm follows from the results on uni-
form integrability of the sequence. �

Theorem A35 (Lp Martingale Convergence Theorem) Let (Mn↪ Hn)↪ n = 1↪ 2↪ . . ., be
a martingale such that supn→∞ E|Mn|p < ∞↪ p > 1. Then there is a random
variable M such that Mn → M a.s. and in Lp.

Example (The Galton-Watson Process) Consider a population of Zn individuals in
generation n, each of which produces a random number ξ of offspring in the
next generation so that the distribution of Zn+1 is that of ξ1 + . . . + ξZn

for
independent identically distributed ξ. This process Zn↪ n = 1↪ 2↪ . . ., is called
the Galton-Watson process. Let E(ξ) = µ. Assume we start with a single
individual in the population Z0 = 1 (otherwise, if there are j individuals in
the population to start, then the population at time n is the sum of j inde-
pendent terms, the offspring of each). Then the following properties hold:

1. The sequence Zn/µn is a martingale.
2. If µ < 1↪ Zn → 0 and Zn = 0 for all sufficiently large n.

3. If µ = 1 and P (ξ �= 1) > 0↪ then Zn = 0 for all sufficiently large n.

4. If µ > 1↪ then P (Zn = 0 for some n) = ρ, where ρ is the unique value
< 1 satisfying E(ρξ) = ρ.

Definition: Supermartingale {(Xt↪ Ht); t ∈ T } is a supermartingale if

(a) Ht is an increasing (in t) family of sigma algebras.
(b) Each Xt is Ht-measurable and E|Xt| < ∞.
(c) For each s < t↪ s↪ t ∈ T , E(Xt|Hs) ≤ Xs a.s.

The properties of supermartingales are very similar to those of sub-
martingales, except that the expected value is a nonincreasing sequence. For
example, if An ≥ 0 is a predictable (non-anticipating) bounded sequence and
(Mn↪ Hn) is a supermartingale, then the supermartingale transform A ◦ M is
a supermartingale. Similarly, if in addition the supermartingale is nonneg-
ative Mn ≥ 0, then there is a random variable M such that Mn → M a.s.
with E(M) ≤ E(M0). The following example shows that a nonnegative
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supermartingale may converge almost surely and yet not converge in ex-
pected value.

Example Let Sn be a simple symmetric random walk with S0 = 1 and define
the optional stopping time N = {n; Sn = 0}. Then

Xn = Sn∧N

is a nonnegative (super)martingale, and therefore Xn converges almost surely.
The limit (call it X) must be 0 because if Xn > 0 infinitely often↪ then |Xn+1 −
Xn| = 1 for infinitely many n, and this contradicts the convergence. However,
in this case, E(Xn) = 1 whereas E(X) = 0, so the convergence is not in the
L1 norm (in other words, ||X − Xn||1 � 0) or in expected value.

A martingale under a reversal of the direction of time is a reverse mar-
tingale. The sequence {(Xt↪ Ht); t ∈ T } is a reverse martingale if

(a) Ht is a decreasing (in t) family of sigma algebras.
(b) Each Xt is Ht-measurable and E|Xt| < ∞.
(c) For each s < t↪ E(Xs |Ht) = Xt a.s.

It is easy to show that if X is any integrable random variable, and if
Ht is any decreasing family of sigma algebras, then Xt = E(X|Ht) is a re-
verse martingale. Reverse martingales require even fewer conditions than do
martingales for almost sure convergence.

Theorem A36 (Reverse Martingale Convergence Theorem) If (Xn↪ Hn)↪ n = 1↪ 2↪ . . . ↪

is a reverse martingale, then as n → ∞↪ Xn converges almost surely to the
random variable E(X1| ∩∞

n=1 Hn).

The reverse martingale convergence theorem can be used to give a par-
ticularly simple proof of the strong law of large numbers because if Yi ↪ i =
1↪ 2↪ . . ., are independent identically distributed random variables and we de-
fine Hn to be the sigma algebra σ(Ȳn↪ Yn+1↪ Yn+2↪ . . .), where Ȳn = 1

n

∑n
i=1 Yi ,

then Hn is a decreasing family of sigma fields and Ȳn = E(Y1|Hn) is a reverse
martingale.

2.4 UNIFORM INTEGRABILITY

Definition A set of random variables {Xi↪ i = 1↪ 2↪ . . .} is uniformly integrable
if

sup
i

E(|Xi |I (|Xi | > c) → 0 as c → ∞
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Some Properties of Uniform Integrability

1. Any finite set of integrable random variables is uniformly integrable.
2. Any infinite sequence of random variables that converges in L1 is uni-

formly integrable.
3. Conversely, if a sequence of random variables converges almost surely

and is uniformly integrable, then it also converges in L1.

4. If X is integrable on a probability space (Ω↪ H) and Ht is any family of
sub-sigma fields, then {E(X|Ht)} is uniformly integrable.

5. If {Xn↪ n = 1↪ 2↪ . . .} is uniformly integrable, then supn E(Xn) < ∞.

Uniform integrability is the bridge between convergence almost surely
or in probability, and convergence in expectation, as the following result
shows.

Theorem A37 Suppose a sequence of random variables satisfies Xn → X in
probability. Then the following are all equivalent:

1. {Xn↪ n = 1↪ 2↪ . . .} is uniformly integrable.
2. Xn → X in L1.

3. E(|Xn|) → E(|X|).
As a result a uniformly integrable submartingale {Xn↪ n = 1↪ 2↪ . . .} not

only converges almost surely to a limit X as n → ∞, but it converges in
expectation and in L1 as well; in other words E(Xn) → E(X) and E(|Xn −
X|) → 0 as n → ∞. There is one condition useful for demonstrating uniform
integrability of a set of random variables:

Lemma A5 Suppose there exists a function φ(x) such that limx→∞ φ(x)/x

= ∞ and Eφ(|Xt|) ≤ B < ∞ for all t ≥ 0. Then the set of random variables
{Xt; t ≥ 0} is uniformly integrable.

One of the most common methods for showing uniform integrability,
used in results such as the Lebesgue dominated convergence theorem, is
to require that a sequence of random variables be dominated by a single
integrable random variable X. This is, in fact, a special use of the above
lemma because if X is an integrable random variable, then there exists a
convex function φ(x) such that limx→∞ φ(x)/x = ∞ and E(φ(|X|) < ∞.



3
Stochastic Integration and

Continuous-Time Models

3.1 BROWNIAN MOTION

The single most important continuous-time process in the construction of
financial models is the Brownian motion process. Brownian motion is the
oldest continuous-time model used in finance and goes back to Bachelier
(1900), around the turn of the last century. It is also the most common
building block for more sophisticated continuous-time models called diffu-
sion processes.

The Brownian motion process is a random continuous-time process
denoted W(t) or Wt↪ defined for t ≥ 0 such that W(0) takes some pre-
determined value, usually 0, and for each 0 ≤ s < t↪ W(t) − W(s) has
a normal distribution with mean µ(t − s) and variance σ2(t − s). The pa-
rameters µ and σ are the drift and the diffusion parameters of the Brownian
motion, and in the special case µ = 0↪ σ = 1↪ W(t) is often referred to as
a standard Brownian motion or a Wiener process. Further properties of the
Brownian motion process that are important are

■ A Brownian motion process exists such that the sample paths are each
continuous functions of t (with probability 1).

■ The joint distribution of any finite number of increments W(t2) − W(t1),
W(t4) − W(t3)↪ . . . ↪ W(tk) − W(tk−1)are independent normal random
variables provided that 0 ≤ t1 < t2 ≤ t3 < t4 ≤ · · · ≤ tk−1 < tk.

Further Properties of the (Standard) Brownian Motion Process

The covariance between W(t) and W(s), cov(W(t)↪ W(s)) = min(s↪ t). Brow-
nian motion is an example of a Gaussian process, a process for which every
finite-dimensional distribution such as (W(t1)↪ W(t2)↪ ...↪ W(tk)) is normal
(multivariate or univariate). In fact, Gaussian processes are uniquely deter-
mined by their covariance structure. In particular, if a Gaussian process has

63
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E(Xt) = 0 and cov(X(t)↪ X(s)) = min(s↪ t)↪ then it has independent incre-
ments. If in addition it has continuous sample paths and if X0 = 0↪ then it is
standard Brownian motion.

Toward the construction of a Brownian motion process, define the tri-
angular function

�(t) =


2t for 0 ≤ t ≤ 1
2

2(1 − t) for 1
2 ≤ t ≤ 1

0 otherwise

and similar functions with base of length 2−j

�j↪k (t) = �(2j t − k) for j = 1↪ 2↪ . . . ↪ k = 0↪ 1↪ . . . ↪ 2j − 1

�0↪0(t) = t↪ 0 ≤ t ≤ 1

Theorem A38 (Wavelet Construction of Brownian Motion) Suppose the random vari-
ables Zj↪k are independent N(0↪ 1) random variables. Then the series below
converges uniformly (almost surely) to a standard Brownian motion process
B(t) on the interval [0↪ 1].

B(t) =
∞∑

j=0

2j −1∑
k=0

2−j/2−1 Zj↪k �j↪k (t)

The standard Brownian motion process can be extended to the whole in-
terval [0↪ ∞) by generating independent Brownian motion processes B(n) on
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FIGURE 3.1 A Sample Path for the Standard Brownian Motion (Wiener) Process
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the interval [0↪ 1] and defining W(t) = ∑n
j=1 B(j) (1)+B(n+1)(t −n) whenever

n ≤ t < n + 1.

Figure 3.1 gives a sample path of the standard Brownian motion. Evi-
dently the path is continuous, but if you examine it locally it appears to be
just barely continuous, having no higher-order smoothness properties. For
example, derivatives do not appear to exist because of the rapid fluctuations
of the process everywhere. There are various modifications of the Brownian
motion process that result in a process with exactly the same distribution.

Theorem A39 If W(t) is a standard Brownian motion process on [0↪ ∞)↪ then
so are the processes Xt = 1√

a
W(at) and Yt = tW(1/t) for any a > 0.

A standard Brownian motion process is an example of a continuous-time
martingale, because, for s < t↪

E[W(t)|Hs]= E[W(t) − W(s)|Hs] + E[W(s)|Hs]

= 0 + W(s)

since the increment W(t) − W(s) is independent of the past and normally
distributed with expected value 0. In fact, it is a continuous martingale in
the sense that sample paths are continuous (with probability 1) functions of
t. It is not the only continuous martingale, however. For example, it is not
difficult to show that both Xt = W 2

t − t and exp(αWt − α2t/2)↪ for α any
real number, are continuous martingales. Of course, neither is a Gaussian
process. Their finite-dimensional distributions cannot be normal since both
processes are restricted to values in the positive reals. We discussed earlier the
ruin probabilities for a random walk using martingale theory, and a similar
theory can be used to establish the boundary crossing probabilities for a
Brownian motion process. The following theorem establishes the relative
probability that a Brownian motion hits each of two boundaries, one above
the initial value and the other below.

Theorem A40 (Ruin Probabilities for Brownian Motion) If W(t) is a standard
Brownian motion and the stopping time τ is defined by

τ = inf{t; W(t) = −b or a}
where a and b are positive numbers, then P (τ < ∞) = 1 and

P [Wτ = a) = b

a + b

Although this establishes which boundary is hit with what probability,
it says nothing about the time at which the boundary is first hit. The distri-
bution of this hitting time (the first passage time distribution) is particularly
simple:
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Theorem A41 (Hitting Times for a Flat Boundary) If W(t) is a standard Brownian
motion and the stopping time τ is defined by

τa = inf{t; W(t) = a}
where a > 0, then

Theorem A42

1. P (τa < ∞) = 1
2. τa has a Laplace transform given by

E(e−λτa ) = e−
√

2λ|a|

3. The probability density function of τa is

f (t) = at−3/2φ(at−1/2)

where φ is the standard normal probability density function.
4. The cumulative distribution function of τa is given by

P [τa ≤ t] = 2P [W(t) > a] = 2[1 − �(at−1/2)] for t > 0

and zero otherwise.
5. E(τa) = ∞

The last property is surprising. The standard Brownian motion has no
general tendency to rise or fall, but because of the fluctuations it is guaran-
teed to strike a barrier placed at any level a > 0. However, the time before
this barrier is struck can be very long, so long that the expected time is infi-
nite. The following corollary provides an interesting connection between the
maximum of a Brownian motion over an interval and its value at the end of
the interval.

Corollary If W ∗
t = max{W(s); 0 < s < t}, then for a ≥ 0↪

P [W ∗
t > a] = P [τa ≤ t] = 2P [W(t) > a]

Theorem A43 (Time of Last Return to 0) Consider the random time L = sup{t ≤ 1;
W(t) = 0}. Then L has cumulative distribution function

P [L ≤ s] = 2

π
arcsin(

√
s)↪ 0 < s < 1
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and corresponding probability density function

d

ds

2

π
arcsin(

√
s) = 1

π
√

s(1 − s)
↪ 0 < s < 1

3.2 CONTINUOUS-TIME MARTINGALES

As usual, the value of the stochastic process at time t may be denoted by
X(t) or by Xt for t ∈ [0↪ ∞), and let Ht be a sub-sigma field of H such that
Hs ⊂ Ht whenever s ≤ t . We call such a sequence a filtration. Xt is said to
be adapted to the filtration if X(t) is Ht-measurable for all t ∈ [0↪ ∞).

Henceforth, we assume that all stochastic processes under consideration
are adapted to the filtration Ht. We also assume that the filtration Ht is right
continuous, is, that ⋂

ε>0

Ht+ε = Ht (3.1)

We can make this assumption without loss of generality because if Ht is any
filtration, then we can make it right continuous by replacing it with

Ht+ =
⋂
ε>0

Ht+ε (3.2)

We use the fact that the intersection of sigma fields is a sigma field. Note that
any process that was adapted to the original filtration is also adapted to the
new filtration Ht+. We also typically assume, by analogy to the definition of
Lebesgue measurable sets, that if A is any set with P (A) = 0↪ then A ∈ H0.

These two conditions, that the filtration is right continuous and contains the
P−null sets, are referred to as the standard conditions. The definition of a
martingale is, in continuous time, essentially the same as in discrete time.

Definition Let X(t) be a continuous-time stochastic process adapted to a
right-continuous filtration Ht, where 0 ≤ t < ∞. Then X is a martingale
if E|X(t)| < ∞ for all t and

E [X(t)|Hs] = X(s) (3.3)

for all s < t . The process X(t) is a submartingale (respectively, a supermartin-
gale) if the equality is replaced by ≥ (respectively, ≤).

Definition A random variable τ taking values in [0↪ ∞] is a stopping time for a
martingale (Xt↪ Ht) if for each t ≥ 0, the event [τ ≤ t] is in the sigma algebra
Ht.
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FIGURE 3.2 The Process W̃(t) Obtained by Reflecting a Brownian Motion about
W(τ)

Stopping a martingale at a sequence of nondecreasing stopping times pre-
serves the martingale property, but there are some operations with Brownian
motion that preserve the Brownian motion measure:

Theorem A44 (Reflection and Strong Markov Property) If τ is a stopping time with
respect to the usual filtration of a standard Brownian motion W(t)↪ then the
process

W̃(t) =
{

W(t) t < τ
2W(τ) − W(t) t ≥ τ

is a standard Brownian motion.

The process W̃(t) is obtained from the Brownian motion process as fol-
lows: Up to time τ the original Brownian motion is left alone, and for t > τ↪

the process W̃(t) is the reflection of W(t) about a horizontal line drawn at
y = W(τ). This is shown in Figure 3.2.

Theorem A45 Let {(Mt↪ Ht)↪ t ≥ 0} be a (right-)continuous martingale and
assume that the filtration satisfies the standard conditions. If τ is a stopping
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time, then the process
Xt = Mt∧τ

is also a continuous martingale with respect to the same filtration.
Various other results are essentially the same in discrete or continuous

time. For example, Doob’s Lp inequality∣∣∣∣∣∣∣∣ sup
0≤t≤T

Mt

∣∣∣∣∣∣∣∣
p

≤ p

p − 1
||MT ||p ↪ if p > 1

holds for right-continuous nonnegative submartingales and p ≥ 1. Similarly,
the submartingale convergence theorem holds as stated earlier, but with n →
∞ replaced by t → ∞.

3.3 INTRODUCTION TO STOCHASTIC INTEGRALS

The stochastic integral arose from attempts to use the techniques of Riemann-
Stieltjes integration for stochastic processes. However, Riemann integration
requires that the integrating function have locally bounded variation in order
that the Riemann-Stieltjes sum converge.

Definition: Locally Bounded Variation If the process At can be written as the differ-
ence of two nondecreasing processes, it is called a process of locally bounded
variation. A function is said to have locally bounded variation if it can be
written as the difference of two nondecreasing processes.

For any function G of locally bounded variation, random or not, in-
tegrals such as

∫ T

0 f dG are easy to define because, since we can write
G = G1 −G2 as the difference between two nondecreasing functions G1↪ G2↪

the Rieman-Stieltjes sum

n∑
i=1

f (si )[G(ti ) − G(ti−1)]

where 0 = t0 < t1 < t2 < · · · < tn = T is a partition of [0↪ T ], and
ti−1 ≤ si ≤ ti will converge to the same value regardless of where we place
si in the interval (ti−1↪ ti ) as the mesh size maxi |ti − ti−1| → 0.

By contrast, many stochastic processes do not have paths of bounded
variation. Consider, for example, a hypothetical integral of the form∫ T

0
f dW



70 3.3. Introduction to Stochastic Integrals

where f is a nonrandom function of t ∈ [0↪ T ] and W is a standard Brownian
motion. The Riemann-Stieljes sum for this integral would be

n∑
i=1

f (si )[W(ti ) − W(ti−1)]

where again 0 = t0 < t1 < t2 < · · · < tn = T , and ti−1 ≤ si ≤ ti . In this case as
maxi |ti − ti−1| → 0, the Riemann-Stieljes sum will not converge because the
Brownian motion paths are not of bounded variation. When f has bounded
variation, we can circumvent this difficulty by formally defining the integral
using integration by parts. Thus if we formally write∫ T

0
f dW = f (T )W(T ) − f (0)W(0) −

∫ T

0
W df

then the right-hand side is well defined and can be used as the definition of
the left-hand side. Unfortunately, this simple interpretation of the stochas-
tic integral does not work for many applications. The integrand f is often
replaced by some function of W or another stochastic process that does not
have bounded variation. There are other difficulties. For example, integra-
tion by parts to evaluate the integral∫ T

0
W dW

leads to
∫ T

0 W dW = W 2(T )/2, which is not the Ito stochastic integral.
Suppose we return to the possible limiting values of the Riemann Stieltjes
sums

Iα =
n∑

i=1

f (si ){W(ti ) − W(ti−1)} (3.4)

where si = ti−1+α(ti −ti−1) for some 0 ≤ α ≤ 1. If the Riemann integral were
well defined, then I1 − I0 → 0 in probability. However, when f (s) = W(s)↪

I1 − I0 =
n∑

i=1

[W(ti ) − W(ti−1)]2

and this cannot possibly converge to zero because, in fact, the expected value
is

E

(
n∑

i=1

[W(ti ) − W(ti−1)]2

)
=

n∑
i=1

(ti − ti−1) = T
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Since these increments [W(ti ) − W(ti−1)]2 are independent, we can show
by a version of the law of large numbers that

n∑
i=1

[W(ti ) − W(ti−1)]2 →p T

and more generally Iα − I0 → αT in probability as the partition grows finer.
In other words, unlike the case for the Riemann-Stieltjes integral, it

makes a difference where we place the point si in the interval (ti−1↪ ti ) for
a stochastic integral. The Ito stochastic integral corresponds to α = 0 and
approximates the integral

∫ T

0 W dW with partial sums of the form

n∑
i=1

W(ti−1)[W(ti ) − W(ti−1)]

the limit of which is, as the mesh size decreases, 1
2 (W 2(T ) − T ). If we eva-

luate the integrand at the right endpoint of the interval (i.e., taking α = 1),
we obtain 1

2 (W 2(T ) + T ). Another natural choice is α = 1/2 (called the
Stratonovich integral), and note that this definition gives the answer W 2(T )/2,
which is the same result obtained from the usual Riemann integration by
parts. Which definition is “correct”? The Stratonovich integral has the ad-
vantage that it satisfies most of the traditional rules of deterministic calculus;
for example, if the integral below is a Stratonovich integral,∫ T

0
exp(Wt)dWt = exp(WT) − 1

While all definitions of a stochastic integral are useful, the main appli-
cations in finance are those in which the values f (si ) appearing in (3.4)
are the weights on various investments in a portfolio, and the increment
[W(ti ) − W(ti−1)] represents the changes in price of the components of that
portfolio over the next interval of time. Obviously, one must commit to one’s
investments before observing the changes in the values of those investments.
For this reason the Ito integral (α = 0) seems the most natural for these
applications.

We now define the class of functions f to which this integral will apply.
We assume that Ht is a standard Brownian filtration and that the interval
[0↪ T ] is endowed with its Borel sigma field. Let H2 be the set of functions
f (ω↪ t) on the product space Ω × [0↪ T ] such that

1. f is measurable with respect to the product sigma field on Ω × [0↪ T ].
2. For each t ∈ [0↪ T ]↪ f (.↪ t) is Ht-measurable (in other words, the stochas-

tic process f (.↪ t) is adapted to Ht).
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FIGURE 3.3 A Typical Step Function f (ω↪ t)

3. E[
∫ T

0 f 2(ω↪ t)dt] < ∞.

The set of processes H2 is the natural domain of the Ito integral. How-
ever, before we define the stochastic integral on H2, we need to define it in
the obvious way on the step functions in H2. Let H2

0 be the subset of H2

consisting of functions of the form

f (ω↪ t) =
n−1∑
i=0

ai (ω)1(ti < t ≤ ti+1)

where the random variables ai are measurable with respect to Hti and 0 =
t0 < t1 < · · · < tn = T. These functions f are predictable in that their value
ai (ω) in the interval (ti ↪ ti+1] is determined before we reach this interval. A
typical step function is graphed in Figure 3.3.

For such functions, the stochastic integral has only one natural defini-
tion: ∫ T

0
f (ω↪ t)dW(t) =

n−1∑
i=0

ai (ω)(W(ti+1) − W(ti ))

and note that considered as a function of T ↪ this forms a continuous-time
square integrable martingale.
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There is a simple definition of an of inner product between two square
integrable random variables X and Y , namely E(XY), and we might ask how
this inner product behaves when applied to the random variables obtained
from stochastic integration, such as XT(ω) = ∫ T

0 f (ω↪ t)dW(t) and YT(ω) =∫ T

0 g(ω↪ t)dW(t). The answer is simple, in fact, and lies at the heart of Ito’s
definition of a stochastic integral. For reasons that will become a little clearer
later, let us define the predictable covariation process to be the stochastic
process described by

<X↪ Y >T (ω) =
∫ T

0
f (ω↪ t)g(ω↪ t)dt

Theorem A46 For functions f and g in H2
0↪

E{<X↪ Y >T} = E{XTYT}. (3.5)

and

E(<X↪ X >T) = E{
∫ T

0
f 2(ω↪ t)dt} = E(X2

T) (3.6)

These identities establish an isometry, a relationship between inner prod-
ucts, at least for two functions in H2

0. The norm on stochastic integrals defined
by ∣∣∣∣∣∣∣∣∫ T

0
f dW

∣∣∣∣∣∣∣∣2

L(P )

= E

(∫ T

0
f (ω↪ t)dW(t)

)2

agrees with the usual L2 norm on the space of random functions,

||f ||22 = E

{∫ T

0
f 2(ω↪ t)dt

}
We use the notation ||f ||22 = E{∫ T

0 f 2(ω↪ t)dt}. If we now wish to define
a stochastic integral for a general function f ∈ H2↪ the method is fairly
straightforward. First we approximate any f ∈ H2 using a sequence of step
functions fn ∈ H2

0 such that

||f − fn||22 → 0

To construct the approximating sequence fn, we can construct a mesh
ti = i

2n T for i = 0↪ 1↪ . . . ↪ 2n − 1 and define

fn(ω↪ t) =
n−1∑
i=0

ai (ω)1(ti < t ≤ ti+1) (3.7)
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with

ai (ω) = 1

ti − ti−1

∫ ti

ti−1

f (ω↪ s)ds

the average of the function over the previous interval.
The definition of a stochastic integral for any f ∈ H2 is now clear from

this approximation. Choose a sequence fn ∈ H2
0 such that ||f − fn||22 → 0.

Since the sequence fn is Cauchy, the isometry property (3.6) shows that the
stochastic integrals

∫ T

0 fn dW also forms a Cauchy sequence in L2(P ). Since
this space is complete (in the sense that Cauchy sequences converge to a
random variable in the space), we can define

∫ T

0 f dW to be the limit of the
sequence

∫ T

0 fn dW as n → ∞. Of course, there is some technical work to be
done; for example, we need to show that two approximating sequences lead
to the same integral and that the Ito isometry (3.5) still holds for functions
f and g in H2. The details can be found in Steele (2001).

So far we have defined integrals
∫ T

0 f dW for a fixed value of T ↪ but
how should we define the stochastic process Xt = ∫ t

0 f dW for t < T ? To do
so we define a similar integral but with the function set to 0 for s > t .

Theorem A47 (Ito Integral as a Continuous Martingale) For any f in H2↪ there exists
a continuous martingale Xt adapted to the standard Brownian filtration Ht

such that

Xt =
∫ T

0
f (ω↪ s)1(s ≤ t)dW(s) for all t ≤ T

This continuous martingale we will denote by
∫ t

0 f dW.

So far we have defined a stochastic integral only for functions f that
are square integral, that is, satisfy E[

∫ T

0 f 2(ω↪ t)dt] < ∞, but this condition
is too restrictive for some applications. A larger class of functions to which
we can extend the notion of integral is the set of locally square integrable
functions, L2

LOC. The word “local” in martingale and stochastic integration
theory is a bit of a misnomer. A property holds locally if there is a sequence
of stopping times νn each of which is finite but the νn → ∞, and the property
holds when restricted to times t ≤ νn.

Definition Let L2
LOC be the set of functions f (ω↪ t) on the product space

Ω × [0↪ T ] such that

1. f is measurable with respect to the product sigma field on Ω × [0↪ T ].
2. For each t ∈ [0↪ T ]↪ f (.↪ t) is Ht-measurable (in other words, the stochas-

tic process f (.↪ t) is adapted to Ht).
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3. P (
∫ T

0 f 2(ω↪ s)ds < ∞) = 1.

Clearly, this space includes H2 and arbitrary continuous functions of
a Brownian motion. For any function f in L2

LOC↪ it is possible to define a
sequence of stopping times

νn = min

(
T ↪ inf

{
s;

∫ s

0
f 2(ω↪ t)dt ≥ n

})
that acts as a localizing sequence for f. Such a sequence has the properties

1. νn is a nondecreasing sequence of stopping times.
2. P [νn = T for some n] = 1.
3. The functions fn(ω↪ t) = f (ω↪ t)1(t ≤ νn) ∈ H2 for each n.

The purpose of the localizing sequence is essentially to provide approx-
imations of a function f in L2

LOC with functions f (ω↪ t)1(t ≤ νn) that are
in H2 and therefore have a well-defined Ito integral as described above. The
integral of f is obtained by taking the limit as n → ∞ of the functions
f (ω↪ t)1(t ≤ νn):∫ t

0
f (ω↪ s)dWs = lim

n→∞

∫ t

0
f (ω↪ t)1(t ≤ νn)dWs

If f happens to be a continuous nonrandom function on [0↪ T ]↪ the
integral

∫ T

0 f (s)dWs is a limit in probability of the Riemann sums,∑
f (si )(Wti+1 − Wti )

for any ti ≤ si ≤ tt+1. The integral is the limit of sums of the independent nor-
mal zero-mean random variables f (si )(Wti+1 −Wti ) and is therefore normally
distributed. In fact,

Xt =
∫ t

0
f (s)dWs

is a zero-mean Gaussian process with cov(Xs↪ Xt) = ∫ min(s↪t)

0 f 2(u)du. Such
Gaussian processes are essentially time-changed Brownian motion processes
according to the following.

Theorem A48 (Time Change to Brownian Motion) Suppose f (s) is a continuous
nonrandom function on [0↪ ∞) such that∫ ∞

0
f 2(s)ds = ∞
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Define the function t (u) = ∫ u

0 f 2(s)ds and its inverse function τ(t) =
inf{u; t (u) ≥ t}. Then

Y (t) =
∫ τ(t)

0
f (s)dWs

is a standard Brownian motion.

Definition: Local Martingale The process M(t) is a local martingale with respect
to the filtration Ht if there exists a nondecreasing sequence of stopping times
τk → ∞ a.s. such that the processes

M
(k)
t = M(min(t↪ τk)) − M(0)

are martingales with respect to the same filtration.
In general, for f ∈ L2

LOC↪ stochastic integrals are local martingales, or
more formally, there is a continuous local martingale equal (with probabil-
ity 1) to the stochastic integral

∫ t

0 f (ω↪ s)dWs for all t. We do not usually
distinguish among processes that differ on a set of probability zero, so we
assume that

∫ t

0 f (ω↪ s)dWs is a continuous local martingale. There is a fa-
mous converse to this result, the martingale representation theorem, which
asserts that a martingale can be written as a stochastic integral. We assume
that Ht is the standard filtration of a Brownian motion Wt.

Theorem A49 (Martingale Representation Theorem) Let Xt be an Ht martingale
with E(X2

T) < ∞. Then there exists φ ∈ H2 such that

Xt = X0 +
∫ t

0
φ(ω↪ s)dWs for 0 < t < T

and this representation is unique.

3.4 DIFFERENTIAL NOTATION AND ITO’S FORMULA

Summary 1: Rules of Box Algebra
It is common to use differential notation for stochastic differential equations
such as

dXt = µ(t↪ Xt)dt + σ(t↪ Xt)dWt

to indicate (this is its only possible meaning) a stochastic process Xt, which
is a solution of the equation written in integral form:

Xt = X0 +
∫ t

0
µ(s↪ Xs)ds +

∫ t

0
µ(s↪ Xs)dWs
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We assume that the functions µ and σ are such that these two integrals, one a
regular Riemann integral and the other a stochastic integral, are well defined,
and we would like conditions on µ↪ σ such that existence and uniqueness
of a solution is guaranteed. The following result is a standard one in this
direction.

Theorem A50 (Existence and Uniqueness of Solutions of SDE) Consider the stochastic
DE

dXt = µ(t↪ Xt)dt + σ(t↪ Xt)dWt (3.8)

with initial condition X0 = x0. Suppose for all 0 < t < T ↪

|µ(t↪ x) − µ(t↪ y)|2 + |σ(t↪ x) − σ(t↪ y)|2 ≤ K|x − y|2

and
|µ(t↪ x)|2 + |σ(t↪ x)|2 ≤ K(1 + |x|2)

Then there is a unique (with probability 1) continuous adapted solution to
(3.8) and it satisfies

sup
0<t<T

E(X2
t ) < ∞.

It is not difficult to show that some condition is required in the above
theorem to ensure that the solution is unique. For example, if we consider the
purely deterministic equation dXt = 3X

2/3
t dt with initial condition X(0) =

0, it has possible solutions Xt = 0↪ t ≤ a, and Xt = (t − a)3↪ t > a, for
arbitrary a > 0. There are at least as many distinct solutions as there are
possible values of a.

Now suppose a process Xt is a solution of (3.8) and we are interested an
a new stochastic process defined as a function of Xt, say Yt = f (t↪ Xt). Ito’s
formula is used to write Yt with a stochastic differential equation similar to
(3.8). Suppose we attempt this using a Taylor series expansion where we
will temporarily regard differentials such as dt↪ dXt as small increments of
time and the process, respectively (notation such as �t↪ �W might have been
preferable here). Let the partial derivatives of f be denoted by

f1(t↪ x) = ∂f

∂t
↪ f2(t↪ x) = ∂f

∂x
↪ f22(t↪ x) = ∂2f

∂x2

and so on. Then the Taylor series expansion can be written

dYt = f1(t↪ Xt)dt + 1

2
f11(t↪ Xt)(dt)2 + · · · (3.9)

+ f2(t↪ Xt)dXt + 1

2
f22(t↪ Xt)(dXt)

2 + · · ·
+ f12(t↪ Xt)(dt)(dXt) + · · ·
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and although there are infinitely many terms in this expansion, all but a few
turn out to be negligible. The contribution of these terms is largely deter-
mined by some simple rules, often referred to as the rules of box algebra. In
an expansion to terms of order dt↪ as dt → 0 higher-order terms such as
(dt)j are all negligible for j > 0. For example, (dt)2 = o(dt) as dt → 0
(intuitively this means that (dt)2 goes to zero faster than dt does). Similarly,
cross terms such as (dt)(dWt) are negligible because the increment dWt

is normally distributed with mean 0 and standard deviation (dt)1/2, and
so (dt)(dWt) has standard deviation (dt)3/2 = o(dt). We summarize some
of these order arguments with the oversimplified rules below, where the sym-
bol ∼ is taken to mean “is order of, as dt → 0."

(dt)(dt)∼ 0

(dt)(dWt)∼ 0

(dWt)(dWt)∼ dt

From these we can obtain, for example,

(dXt)(dXt)= [µ(t↪ Xt)dt + σ(t↪ Xt)dWt][µ(t↪ Xt)dt + σ(t↪ Xt)dWt]

= µ2(t↪ Xt)(dt)2 + 2µ(t↪ Xt)σ(t↪ Xt)(dt)(dWt)

+ σ2(t↪ Xt)(dWt)(dWt) ∼ σ2(t↪ Xt)dt

which indicates the order of the small increments in the process Xt. If we
now use these rules to evaluate (3.9), we obtain

dYt ∼ f1(t↪ Xt)dt + f2(t↪ Xt)dXt + 1

2
f22(t↪ Xt)(dXt)

2

∼ f1(t↪ Xt)dt + f2(t↪ Xt)(µ(t↪ Xt)dt + σ(t↪ Xt)dWt)

+ 1

2
f22(t↪ Xt)σ

2(t↪ Xt)dt

which is the differential expression of Ito’s formula.

Theorem A51 (Ito’s Formula) Suppose Xt satisfies dXt = µ(t↪ Xt)dt+σ(t↪ Xt)dWt.

Then for any function f such that f1 and f22 are continuous, the process
f (t↪ Xt) satisfies the stochastic differential equation

df (t↪ Xt) = {µ(t↪ Xt)f2(t↪ Xt) + f1(t↪ Xt) + 1

2
f22(t↪ Xt)σ

2(t↪ Xt)}dt

+ f2(t↪ Xt)σ(t↪ Xt)dWt

Example: Geometric Brownian Motion Suppose Xt satisfies

dXt = aXt dt + σXt dWt
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and f (t↪ Xt) = ln(Xt). Then substituting in Ito’s formula, since f1 = 0↪ f2 =
X−1

t ↪ f22 = −X−2
t ↪

dYt = X−1
t aXt dt − 1

2
X−2

t σ2X2
t dt + X−1

t σXt dWt

=
(

a − σ2

2

)
dt + σ dWt

and so Yt = ln(Xt) is a Brownian motion with drift a − σ2

2 and volatility σ.

Example: Ornstein-Uhlenbeck Process Consider the stochastic process defined as

Xt = x0e−αt + σe−αt

∫ t

0
eαs dWs

for parameters α↪ σ > 0. Then,

dXt = (−α)x0e−αtdt + (−α)σe−αt

∫ t

0
eαs dWs + σe−αteαt dWt

= −αXt dt + σ dWt.

with the initial condition X0 = x0. This process has Gaussian increments
and covariance structure cov(Xs↪ Xt) = σ2

∫ s

0 e−α(s+t−u)ds↪ for s < t , and is
called the Ornstein-Uhlenbeck process.

Example: Brownian Bridge Consider the process defined as

Xt = (1 − t)

∫ t

0

1

1 − s
dWs↪ for 0 < t < 1

subject to the initial condition X0 = 0. Then

dXt = −
∫ t

0

1

1 − s
dWs + (1 − t)

1

1 − t
dWt

= − Xt

1 − t
dt + dWt

This process satisfying X0 = X1 = 0 and

dXt = − Xt

1 − t
dt + dWt

is called the Brownian bridge. It can also be constructed as Xt = Wt −
tW1. The distribution of the Brownian bridge is identical to the conditional
distribution of a standard Brownian motion Wt given that W0 = 0 and
W1 = 0. The Brownian bridge is a Gaussian process with covariance
cov(Xs↪ Xt) = s(1 − t) for s < t.
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Theorem A52 (Ito’s Formula for Two Processes) If

dXt = a(t↪ Xt)dt + b(t↪ Xt)dWt

dYt = α(t↪ Yt)dt + β(t↪ Yt)dWt

then

df (Xt↪ Yt) =f1(Xt↪ Yt)dXt + f2(Xt↪ Yt)dYt

+ 1

2
f11(Xt↪ Yt)b

2 dt + 1

2
f22(Xt↪ Yt)β

2 dt

+ f12(Xt↪ Yt)bβ dt

There is an immediate application of this result to obtain the product
rule for differentiation of diffusion processes. If we put f (x↪ y) = xy above,
we obtain

d(XtYt) = Yt dXt + Xt dYt + bβ dt

This product rule reduces to the usual with either β or b identically 0.

3.5 QUADRATIC VARIATION

One way of defining the variation of a process Xt is to choose a partition
π = {0 = t0 ≤ t1 ≤ · · · ≤ tn = t} and then define Qπ(Xt) = ∑

i (Xti − Xti−1)
2.

For a diffusion process

dXt = µ(t↪ Xt)dt + σ(t↪ Xt)dWt

satisfying standard conditions, as the mesh size max |ti − ti−1| converges
to zero, we have Qπ(Xt) → ∫ t

0 σ2(s↪ Xs)ds in probability. This limit∫ t

0 σ2(s↪ Xs)ds is the process that we earlier denoted <X↪ X >t . For brevity,
the redundancy in the notation is usually removed, and the process <X↪ X >t

is denoted <X >t . For diffusion processes, variation of lower order such as∑
i |Xti − Xti−1| approaches infinity and variation of higher order, for exam-

ple,
∑

i (Xti − Xti−1)
4, converges to zero as the mesh size converges. We will

return to the definition of the predictable covariation process <X↪ Y>t in a
more general setting shortly.

The Stochastic Exponential Suppose Xt is a diffusion process and consider a
stochastic differential equation

dYt = Yt dXt (3.10)
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with initial condition Y0 = 1. If Xt were an ordinary differentiable function,
we could solve this equation by integrating both sides of

dYt

Yt

= dXt

to obtain the exponential function

Yt = c exp(Xt) (3.11)

where c is a constant of integration. We might try and work backward from
(3.11) to see if this is the correct solution in the general case in which Xt is
a diffusion. Letting f (Xt) = exp(Xt) and using Ito’s formula,

df (Xt) =
{

exp(Xt) + 1

2
exp(Xt)σ

2(t↪ Xt)

}
dt + exp(Xt)σ(t↪ Xt)dWt

�= f (Xt)dXt

so this solution is not quite right. There is, however, a minor fix of the
exponential function that does provide a solution. Suppose we try a solution
of the form

Yt = f (t↪ Xt) = exp(Xt + h(t))

where h(t) is some differentiable stochastic process. Then again using Ito’s
lemma, since f1(t↪ Xt) = Yth

′(t) and f2(t↪ Xt) = f22(t↪ Xt) = Yt↪

dYt = f1(t↪ Xt)dt + f2(t↪ Xt)dXt − 1

2
f22(t↪ Xt)σ

2(t↪ Xt)dt

= Yt{h′(t) + µ(t↪ Xt) + 1

2
σ2(t↪ Xt)}dt + Ytσ(t↪ Xt))dWt

and if we choose just the right function h so that h′(t) = − 1
2σ2(t↪ Xt)↪ we

can get a solution to (3.10). Since h(t) = − 1
2

∫ t

0 σ2(s↪ Xs)ds the solution is

Yt = exp

(
Xt − 1

2

∫ t

0
σ2(s↪ Xs)ds

)
= exp

{
Xt − 1

2
< X >t

}
We may denote this solution Y = E(X).We saw earlier that E(αW) is a mar-
tingale for W a standard Brownian motion and α real. Since the solution to
this equation is an exponential in the ordinary calculus, the term “stochastic
exponential” seems justified. The “extra” term in the exponent 1

2 <X >t is
a consequence of the infinite local variation of the process Xt. One of the
most common conditions for E(X) to be a martingale is the following:

Novikov’s Condition Suppose that for g ∈ L2
LOC

E exp

{
1

2

∫ T

0
g2(w↪ ss)ds

}
< ∞

Then Mt = E(
∫ t

0 g(ω↪ s)dWs) is a martingale.
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3.6 SEMIMARTINGALES

Suppose Mt is a continuous martingale adapted to a filtration Ht, and At is
a continuous adapted process that is nondecreasing. It is easy to see that the
sum At + Mt is a submartingale. But can this argument be reversed? If we
are given a submartingale Xt, is it possible to find a nondecreasing process
At and a martingale Mt such that Xt = At + Mt? The fundamental result in
this direction is the Doob-Meyer decomposition.

Theorem A53 (Doob-Meyer Decomposition) Let X be a continuous submartingale
adapted to a filtration Ht. Then X can be uniquely written as Xt = At+Mt,
where Mt is a local martingale and At is an adapted nondecreasing process
such that A0 = 0.

Recall that if Mt is a square integrable martingale, then M2
t is a sub-

martingale (this follows from Jensen’s inequality). Then according to the
Doob-Meyer decomposition, we can decompose M2

t into two components,
one a martingale and the other a nondecreasing continuous adapted process,
which we call the (predictable) quadratic variation process <M >t . In other
words,

M2
t − <M >t

is a continuous martingale. We may take this as the the more general defi-
nition of the process < M >, encountered earlier for processes obtained as
stochastic integrals. For example, suppose

Xt(ω) =
∫ t

0
f (ω↪ t)dW(t)

where f ∈ H2. Then with < X >t=
∫ t

0 f 2(ω↪ t)dt and Mt = X2
t − < X >t↪

notice that for s < t

E[Mt − Ms |Hs] = E

[{∫ t

s

f (ω↪ u)dW(u)

}2

−
∫ t

s

f 2(ω↪ u)du|Hs

]
= 0

by (3.5). This means that our earlier definition of the process <X > coincides
with the current one. For two martingales X↪ Y , we can define the predictable
covariation process <X↪ Y > as

<X↪ Y >t= 1

4
{<X + Y >t − <X − Y >t}

and once again this agrees with the earlier definition in Section 3.3, since if
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X and Y are defined as

Xt(ω) =
∫ t

0
f (ω↪ t)dW(t)

Yt(ω) =
∫ t

0
g(ω↪ t)dW(t)

the predictable covariation is

<X↪ Y >t (ω) =
∫ t

0
f (ω↪ t)g(ω↪ t)dt

This also follows from the Ito isometry.

Definition: Semimartingale A continuous adapted process Xt is a semimartingale
if it can be written as the sum Xt = At +Mt of a continuous adapted process
At of locally bounded variation, and a continuous local martingale Mt.

The stochastic integral for square integrable martingales can be extended
to the class of semimartingales. Let Xt = At + Mt be a continuous semi-
martingale. We define∫

h(t)dXt =
∫

h(t)dAt +
∫

h(t)dMt (3.12)

The first integral on the right-hand side of (3.12) is understood to be a
Lebesgue-Stieltjes integral while the second is an Ito stochastic integral. There
are a number of details that need to be checked with this definition — for
example, whether when we decompose a semimartingale into the two com-
ponents, one with bounded variation and one a local martingale in two
different ways (this decomposition is not unique), the same integral is ob-
tained.

3.7 GIRSANOV’S THEOREM

Consider the Brownian motion defined by

dXt = µ dt + dWt

with µ a constant drift parameter and denote by Eµ(.) the expectation when
the drift is µ. Let fµ(x) be the N(µ↪ T ) probability density function. Then we
can compute expectations under nonzero drift µ using a Brownian motion
that has drift zero since

Eµ(g(XT)) = E0{g(XT)MT(X)}
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where

Mt(X) = E(µX) = exp

{
µXt − 1

2
µ2t

}
.

This is easy to check since the stochastic exponential MT(X) happens to
be the ratio of the N(µT ↪ T ) probability density function to the N(0↪ T )

density. The implications are many and useful. We can, for example, calculate
moments or simulate under the condition µ = 0 and apply the results to the
case µ �= 0. By a similar calculation, for a bounded Borel measurable function
g(Xt1↪ . . . ↪ Xtn)↪ where 0 ≤ t1 ≤ · · · ≤ tn↪

Eµ{g(Xt1↪ . . . ↪ Xtn)} = E0{g(Xt1↪ . . . ↪ Xtn)Mtn(X)}

Theorem A54 (Girsanov’s Theorem for Brownian Motion) Consider a Brownian mo-
tion with drift µ defined by

Xt = µt + Wt

Then for any bounded measurable function g defined on the space C[0↪ T ]
of the paths, we have

Eµ[g(X)] = E0[g(X)MT(X)]

where again MT(X) is the exponential martingale E(µX) = exp
(
µXT −

1
2µ2T

)
.

Note that if we let P0↪ Pµ denote the measures on the function space
corresponding to drift 0 and µ, respectively, we can formally write

Eµ[g(X)] =
∫

g(x)dPµ =
∫

g(x)
dPµ

dP0
dP0

= E0

{
g(X)

dPµ

dP0

}
which means that MT(X) plays the role of a likelihood ratio,

dPµ

dP0

for a restriction of the process to the interval [0↪ T ]. If g(X) depended only on
the process up to time t < T , then, from the martingale property of Mt(X)↪

Eµ[g(X)] = E0[g(X)MT(X)]

= E0{E[g(X)MT(X)|Ht]}
= E0{g(X)Mt(X)}
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which shows that Mt(X) plays the role of a likelihood ratio for a restriction
of the process to the interval [0↪ t].

We can argue for the form of Mt(X) and show that it “should” be a
martingale under µ = 0 by considering the limit of the ratio of the finite-
dimensional probability density functions such as

fµ(xt1↪ ...↪ xtn)

f0(xt1↪ ...↪ xtn)

where fµ denotes the joint probability density function of Xt1↪ Xt2↪ . . . ↪ Xtn for
t1 < t2 < · · · < tn = T. These likelihood ratios are discrete-time martingales
under P0. For a more general diffusion, provided that the diffusion terms are
identical, we can still express the Radon-Nikodym derivative as a stochastic
exponential.

Theorem A55 (Girsanov’s Theorem) Suppose P is the measure on C[0↪ T ] induced
by X0 = 0↪ and

dXt = µ(ω↪ t)dt + σ(ω↪ t)dWt

under P. Assume the standard conditions so that the corresponding stochas-
tic integrals are well defined. Assume that the function

θ(ω↪ t) = µ(ω↪ t) − ν(ω↪ t)

σ(ω↪ t)

is bounded. Then the stochastic exponential

Mt = E
(

−
∫ t

0
θ(ω↪ s)dWs

)
= exp

{
−

∫ t

0
θ(ω↪ s)dWs − 1

2

∫ t

0
θ2(ω↪ s)ds

}
is a martingale under P . Suppose we define a measure Q on C[0↪ T ] by

dQ

dP
= MT

or, equivalently, for measurable subsets A↪

Q(A) = EP [1(A)MT]

Then under the measure Q↪ the process W ′
t defined by

W ′
t = Wt −

∫ t

0
θ(ω↪ s)dWs

is a standard Brownian motion, and Xt has the representation

dXt = ν(ω↪ t)dt + σ(ω↪ t)dW ′
t


