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Chapter 1

Introduction to Probability Theory

1.1 The Binomial Asset Pricing Model

The binomial asset pricing model provides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall use it for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock price S�. There are two positive numbers, d and u, with

� � d � u� (1.1)

such that at the next period, the stock price will be either dS� or uS�. Typically, we take d and u
to satisfy � � d � � � u, so change of the stock price from S� to dS� represents a downward
movement, and change of the stock price from S� to uS� represents an upward movement. It is
common to also have d � �

u , and this will be the case in many of our examples. However, strictly
speaking, for what we are about to do we need to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model
we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let us imagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a “Tail,” the price moves down. We
denote the price at time � by S��H� � uS� if the toss results in head (H), and by S��T � � dS� if it

11
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 1.1: Binomial tree of stock prices with S� � �, u � ��d � �.

results in tail (T). After the second toss, the price will be one of:

S��HH� � uS��H� � u�S�� S��HT � � dS��H� � duS��

S��TH� � uS��T � � udS�� S��TT � � dS��T � � d�S��

After three tosses, there are eight possible coin sequences, although not all of them result in different
stock prices at time �.

For the moment, let us assume that the third toss is the last one and denote by

	 � fHHH�HHT�HTH�HTT�THH�THT�TTH�TTTg
the set of all possible outcomes of the three tosses. The set 	 of all possible outcomes of a ran-
dom experiment is called the sample space for the experiment, and the elements � of 	 are called
sample points. In this case, each sample point � is a sequence of length three. We denote the k-th
component of � by �k. For example, when � � HTH , we have �� � H , �� � T and �� � H .

The stock price Sk at time k depends on the coin tosses. To emphasize this, we often write Sk���.
Actually, this notation does not quite tell the whole story, for while S � depends on all of �, S�
depends on only the first two components of �, S� depends on only the first component of �, and
S� does not depend on � at all. Sometimes we will use notation such S����� ��� just to record more
explicitly how S� depends on � � ���� ��� ���.

Example 1.1 Set S� � �, u � � and d � �
� . We have then the binomial “tree” of possible stock

prices shown in Fig. 1.1. Each sample point � � ���� ��� ��� represents a path through the tree.
Thus, we can think of the sample space 	 as either the set of all possible outcomes from three coin
tosses or as the set of all possible paths through the tree.

To complete our binomial asset pricing model, we introduce a money market with interest rate r;
$1 invested in the money market becomes 
�� � r� in the next period. We take r to be the interest
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rate for both borrowing and lending. (This is not as ridiculous as it first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knows in advance
which she will be doing; in such an application, she should take r to be the rate of interest for her
activity.) We assume that

d � � � r � u� (1.2)

The model would not make sense if we did not have this condition. For example, if �� r � u, then
the rate of return on the money market is always at least as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequality d � � � r cannot happen
unless either r is negative (which never happens, except maybe once upon a time in Switzerland) or
d � �. In the latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest rate r and invest in the stock,
since even in the worst case, the stock price rises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consider a European call option with strike price
K 	 � and expiration time �. This option confers the right to buy the stock at time � for K dollars,
and so is worth S� �K at time � if S� �K is positive and is otherwise worth zero. We denote by

V���� � �S�����K��
�
� maxfS�����K� �g

the value (payoff) of this option at expiration. Of course, V���� actually depends only on ��, and
we can and do sometimes write V����� rather than V����. Our first task is to compute the arbitrage
price of this option at time zero.

Suppose at time zero you sell the call for V� dollars, where V� is still to be determined. You now
have an obligation to pay off �uS� � K�� if �� � H and to pay off �dS� � K�� if �� � T . At
the time you sell the option, you don’t yet know which value �� will take. You hedge your short
position in the option by buying � � shares of stock, where �� is still to be determined. You can use
the proceeds V� of the sale of the option for this purpose, and then borrow if necessary at interest
rate r to complete the purchase. If V� is more than necessary to buy the �� shares of stock, you
invest the residual money at interest rate r. In either case, you will have V����S� dollars invested
in the money market, where this quantity might be negative. You will also own �� shares of stock.

If the stock goes up, the value of your portfolio (excluding the short position in the option) is

��S��H� � �� � r��V����S���

and you need to have V��H�. Thus, you want to choose V� and �� so that

V��H� � ��S��H� � �� � r��V� ���S��� (1.3)

If the stock goes down, the value of your portfolio is

��S��T � � �� � r��V� ���S���

and you need to have V��T �. Thus, you want to choose V� and �� to also have

V��T � � ��S��T � � �� � r��V����S��� (1.4)
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These are two equations in two unknowns, and we solve them below

Subtracting (1.4) from (1.3), we obtain

V��H�� V��T � � ���S��H�� S��T ��� (1.5)

so that

�� �
V��H�� V��T �

S��H�� S��T �
� (1.6)

This is a discrete-time version of the famous “delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. This formula is so pervasive the when a practitioner says “delta”, she means the
derivative (in the sense of calculus) just described. Note, however, that my definition of �� is the
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of �� itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V�. After some simplification, this leads to the formula

V� �
�

� � r

�
� � r � d

u � d
V��H� �

u� �� � r�

u� d
V��T �

�
� (1.7)

This is the arbitrage price for the European call option with payoff V � at time �. To simplify this
formula, we define

�p
�
�

� � r � d

u� d
� �q

�
�
u� �� � r�

u� d
� �� �p� (1.8)

so that (1.7) becomes

V� �
�

�� r

�pV��H� � �qV��T ��� (1.9)

Because we have taken d � u, both �p and �q are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), both �p and �q are in the interval ��� ��, and because they sum to �, we can regard
them as probabilities of H and T , respectively. They are the risk-neutral probabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilities of getting H or T on the coin tosses. In fact, at this point, they are nothing more than
a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays off K dollars at time �. At expiration, the payoff of

this option is V�
�
� �S� � K��, where V� and S� depend on �� and ��, the first and second coin

tosses. We want to determine the arbitrage price for this option at time zero. Suppose an agent sells
the option at time zero for V� dollars, where V� is still to be determined. She then buys �� shares
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of stock, investing V� ���S� dollars in the money market to finance this. At time �, the agent has
a portfolio (excluding the short position in the option) valued at

X�
�
� ��S� � �� � r��V� ���S��� (1.10)

Although we do not indicate it in the notation, S � and therefore X� depend on ��, the outcome of
the first coin toss. Thus, there are really two equations implicit in (1.10):

X��H�
�
� ��S��H� � �� � r��V� ���S���

X��T �
�
� ��S��T � � �� � r��V� ���S���

After the first coin toss, the agent has X� dollars and can readjust her hedge. Suppose she decides to
now hold �� shares of stock, where �� is allowed to depend on �� because the agent knows what
value �� has taken. She invests the remainder of her wealth, X� � ��S� in the money market. In
the next period, her wealth will be given by the right-hand side of the following equation, and she
wants it to be V�. Therefore, she wants to have

V� � ��S� � �� � r��X� ���S��� (1.11)

Although we do not indicate it in the notation, S � and V� depend on �� and ��, the outcomes of the
first two coin tosses. Considering all four possible outcomes, we can write (1.11) as four equations:

V��HH� � ���H�S��HH� � �� � r��X��H�����H�S��H���

V��HT � � ���H�S��HT � � �� � r��X��H�����H�S��H���

V��TH� � ���T �S��TH� � �� � r��X��T �����T �S��T ���

V��TT � � ���T �S��TT � � �� � r��X��T �����T �S��T ���

We now have six equations, the two represented by (1.10) and the four represented by (1.11), in the
six unknowns V�, ��, ���H�, ���T �, X��H�, and X��T �.

To solve these equations, and thereby determine the arbitrage price V� at time zero of the option and
the hedging portfolio ��, ���H� and ���T �, we begin with the last two

V��TH� � ���T �S��TH� � �� � r��X��T �����T �S��T ���

V��TT � � ���T �S��TT � � �� � r��X��T �����T �S��T ���

Subtracting one of these from the other and solving for ���T �, we obtain the “delta-hedging for-
mula”

���T � �
V��TH�� V��TT �

S��TH�� S��TT �
� (1.12)

and substituting this into either equation, we can solve for

X��T � �
�

� � r

�pV��TH� � �qV��TT ��� (1.13)
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Equation (1.13), gives the value the hedging portfolio should have at time � if the stock goes down
between times � and �. We define this quantity to be the arbitrage value of the option at time � if
�� � T , and we denote it by V��T �. We have just shown that

V��T �
�
�

�

� � r

�pV��TH� � �qV��TT ��� (1.14)

The hedger should choose her portfolio so that her wealth X��T � if �� � T agrees with V��T �
defined by (1.14). This formula is analgous to formula (1.9), but postponed by one step. The first
two equations implicit in (1.11) lead in a similar way to the formulas

���H� �
V��HH�� V��HT �

S��HH�� S��HT �
(1.15)

and X��H� � V��H�, where V��H� is the value of the option at time � if �� � H , defined by

V��H�
�
�

�

� � r

�pV��HH� � �qV��HT ��� (1.16)

This is again analgous to formula (1.9), postponed by one step. Finally, we plug the valuesX��H� �
V��H� and X��T � � V��T � into the two equations implicit in (1.10). The solution of these equa-
tions for �� and V� is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of periods. If Vk denotes the value at
time k of a derivative security, and this depends on the first k coin tosses ��� � � � � �k, then at time
k � �, after the first k � � tosses ��� � � � � �k�� are known, the portfolio to hedge a short position
should hold �k������ � � � � �k��� shares of stock, where

�k������ � � � � �k��� �
Vk���� � � � � �k��� H�� Vk���� � � � � �k��� T �
Sk���� � � � � �k��� H�� Sk���� � � � � �k��� T �

� (1.17)

and the value at time k � � of the derivative security, when the first k � � coin tosses result in the
outcomes ��� � � � � �k��, is given by

Vk������ � � � � �k��� �
�

� � r

�pVk���� � � � � �k��� H� � �qVk���� � � � � �k��� T ��

(1.18)

1.2 Finite Probability Spaces

Let 	 be a set with finitely many elements. An example to keep in mind is

	 � fHHH�HHT�HTH�HTT�THH�THT�TTH�TTTg (2.1)

of all possible outcomes of three coin tosses. Let F be the set of all subsets of 	. Some sets in F
are �, fHHH�HHT�HTH�HTTg, fTTTg, and 	 itself. How many sets are there in F?
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Definition 1.1 A probability measure IP is a function mapping F into 
�� �� with the following
properties:

(i) IP �	� � �,

(ii) If A�� A�� � � � is a sequence of disjoint sets in F , then

IP

� ��
k��

Ak

�
�

�X
k��

IP �Ak��

Probability measures have the following interpretation. Let A be a subset of F . Imagine that 	 is
the set of all possible outcomes of some random experiment. There is a certain probability, between
� and �, that when that experiment is performed, the outcome will lie in the set A. We think of
IP �A� as this probability.

Example 1.2 Suppose a coin has probability �
� for H and �

� for T . For the individual elements of
	 in (2.1), define

IPfHHHg �
�
�
�

��
� IPfHHTg �

�
�
�

�� ��
�

�
�

IPfHTHg �
�
�
�

�� ��
�

�
� IPfHTTg �

�
�
�

��
�
�

��
�

IPfTHHg �
�
�
�

�� �
�
�

�
� IPfTHTg �

�
�
�

��
�
�

��
�

IPfTTHg �
�
�
�

��
�
�

��
� IPfTTTg �

�
�
�

��
�

For A � F , we define

IP �A� �
X
��A

IPf�g� (2.2)

For example,

IPfHHH�HHT�HTH�HTTg�
�
�

�

��
� �

�
�

�

����
�

�
�

�
�

�

��
�

�

��
�

�

�
�

which is another way of saying that the probability of H on the first toss is �
� .

As in the above example, it is generally the case that we specify a probability measure on only some
of the subsets of 	 and then use property (ii) of Definition 1.1 to determine IP �A� for the remaining
setsA � F . In the above example, we specified the probability measure only for the sets containing
a single element, and then used Definition 1.1(ii) in the form (2.2) (see Problem 1.4(ii)) to determine
IP for all the other sets in F .

Definition 1.2 Let 	 be a nonempty set. A �-algebra is a collection G of subsets of 	 with the
following three properties:

(i) � � G,
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(ii) If A � G, then its complement Ac � G,

(iii) If A�� A�� A�� � � � is a sequence of sets in G, then ��k��Ak is also in G.

Here are some important �-algebras of subsets of the set 	 in Example 1.2:

F� �

	
��	



�

F� �

	
��	� fHHH�HHT�HTH�HTTg� fTHH� THT�TTH�TTTg



�

F� �

	
��	� fHHH�HHTg� fHTH�HTTg� fTHH� THTg� fTTH�TTTg�

and all sets which can be built by taking unions of these



�

F� � F � The set of all subsets of 	�

To simplify notation a bit, let us define

AH
�
� fHHH�HHT�HTH�HTTg� fH on the first tossg�

AT
�
� fTHH� THT�TTH� TTTg� fT on the first tossg�

so that
F� � f��	� AH� ATg�

and let us define

AHH
�
� fHHH�HHTg� fHH on the first two tossesg�

AHT
�
� fHTH�HTTg� fHT on the first two tossesg�

ATH
�
� fTHH� THTg� fTH on the first two tossesg�

ATT
�
� fTTH� TTTg� fTT on the first two tossesg�

so that

F� � f��	� AHH� AHT � ATH� ATT �

AH � AT � AHH � ATH � AHH � ATT � AHT � ATH � AHT � ATT �

Ac
HH � A

c
HT � A

c
TH� A

c
TTg�

We interpret �-algebras as a record of information. Suppose the coin is tossed three times, and you
are not told the outcome, but you are told, for every set in F� whether or not the outcome is in that
set. For example, you would be told that the outcome is not in � and is in 	. Moreover, you might
be told that the outcome is not in AH but is in AT . In effect, you have been told that the first toss
was a T , and nothing more. The �-algebra F� is said to contain the “information of the first toss”,
which is usually called the “information up to time �”. Similarly, F� contains the “information of
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the first two tosses,” which is the “information up to time �.” The �-algebra F� � F contains “full
information” about the outcome of all three tosses. The so-called “trivial” �-algebra F� contains no
information. Knowing whether the outcome � of the three tosses is in � (it is not) and whether it is
in 	 (it is) tells you nothing about �

Definition 1.3 Let	 be a nonempty finite set. A filtration is a sequence of �-algebrasF��F��F�� � � � �Fn

such that each �-algebra in the sequence contains all the sets contained by the previous �-algebra.

Definition 1.4 Let 	 be a nonempty finite set and let F be the �-algebra of all subsets of 	. A
random variable is a function mapping 	 into IR.

Example 1.3 Let 	 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
S� � �, u � � and d � �

� . Then S�, S�, S� and S� are all random variables. For example,
S��HHT � � u�S� � ��. The “random variable” S� is really not random, since S���� � � for all
� � 	. Nonetheless, it is a function mapping 	 into IR, and thus technically a random variable,
albeit a degenerate one.

A random variable maps 	 into IR, and we can look at the preimage under the random variable of
sets in IR. Consider, for example, the random variable S� of Example 1.1. We have

S��HHH� � S��HHT � � ���

S��HTH� � S��HTT � � S��THH� � S��THT � � ��

S��TTH� � S��TTT � � ��

Let us consider the interval 
�� ���. The preimage under S� of this interval is defined to be

f� � 	�S���� � 
�� ���g� f� � 	� � � S� � ��g � Ac
TT �

The complete list of subsets of 	 we can get as preimages of sets in IR is:

��	� AHH� AHT �ATH � ATT �

and sets which can be built by taking unions of these. This collection of sets is a �-algebra, called
the �-algebra generated by the random variable S�, and is denoted by ��S��. The information
content of this �-algebra is exactly the information learned by observing S�. More specifically,
suppose the coin is tossed three times and you do not know the outcome �, but someone is willing
to tell you, for each set in ��S��, whether � is in the set. You might be told, for example, that � is
not in AHH , is in AHT �ATH , and is not in ATT . Then you know that in the first two tosses, there
was a head and a tail, and you know nothing more. This information is the same you would have
gotten by being told that the value of S���� is �.

Note that F� defined earlier contains all the sets which are in ��S��, and even more. This means
that the information in the first two tosses is greater than the information in S�. In particular, if you
see the first two tosses, you can distinguishAHT from ATH , but you cannot make this distinction
from knowing the value of S� alone.
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Definition 1.5 Let 	 be a nonemtpy finite set and let F be the �-algebra of all subsets of 	. Let X
be a random variable on �	�F�. The �-algebra ��X� generated by X is defined to be the collection
of all sets of the form f� � 	�X��� � Ag, where A is a subset of IR. Let G be a sub-�-algebra of
F . We say that X is G-measurable if every set in ��X� is also in G.

Note: We normally write simply fX � Ag rather than f� � 	�X��� � Ag.

Definition 1.6 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be
a probabilty measure on �	�F�, and let X be a random variable on 	. Given any set A � IR, we
define the induced measure of A to be

LX�A�
�
� IPfX � Ag�

In other words, the induced measure of a set A tells us the probability that X takes a value in A. In
the case of S� above with the probability measure of Example 1.2, some sets in IR and their induced
measures are:

LS���� � IP ��� � ��

LS��IR� � IP �	� � ��

LS� 
���� � IP �	� � ��

LS� 
�� �� � IPfS� � �g � IP �ATT � �

�
�

�

��
�

In fact, the induced measure of S� places a mass of size
�
�
�

��
� �

� at the number ��, a mass of size

�
� at the number �, and a mass of size

�
�
�

��
� �

� at the number �. A common way to record this

information is to give the cumulative distribution function F S��x� of S�, defined by

FS��x�
�
� IP �S� � x� �

����
����
�� if x � ��
�
� � if � � x � ��
	
� � if � � x � ���
�� if �� � x�

(2.3)

By the distribution of a random variable X , we mean any of the several ways of characterizing
LX . If X is discrete, as in the case of S� above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variables X which have densities, in which case the induced measure of a set A � IR is the integral
of the density over the set A.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitions to make a clear distinction between random variables and their distributions.

A random variable is a mapping from 	 to IR, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion above, S��TTH� � S��TTT � � �,
regardless of whether the probability for H is �

� or �
� .
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The distribution of a random variable is a measure LX on IR, i.e., a way of assigning probabilities
to sets in IR. It depends on the random variableX and the probability measure IP we use in 	. If we
set the probability of H to be �

� , thenLS� assigns mass �
� to the number ��. If we set the probability

of H to be �
� , then LS� assigns mass �

� to the number ��. The distribution of S� has changed, but
the random variable has not. It is still defined by

S��HHH� � S��HHT � � ���

S��HTH� � S��HTT � � S��THH� � S��THT � � ��

S��TTH� � S��TTT � � ��

Thus, a random variable can have more than one distribution (a “market” or “objective” distribution,
and a “risk-neutral” distribution).

In a similar vein, two different random variables can have the same distribution. Suppose in the
binomial model of Example 1.1, the probability of H and the probability of T is �

� . Consider a
European call with strike price �� expiring at time �. The payoff of the call at time � is the random
variable �S� � ����, which takes the value � if � � HHH or � � HHT , and takes the value � in
every other case. The probability the payoff is � is �

� , and the probability it is zero is �
� . Consider also

a European put with strike price � expiring at time �. The payoff of the put at time � is ��� S��
�,

which takes the value � if � � TTH or � � TTT . Like the payoff of the call, the payoff of the
put is � with probability �

� and � with probability �
� . The payoffs of the call and the put are different

random variables having the same distribution.

Definition 1.7 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be
a probabilty measure on �	�F�, and let X be a random variable on 	. The expected value of X is
defined to be

IEX
�
�
X
��


X���IPf�g� (2.4)

Notice that the expected value in (2.4) is defined to be a sum over the sample space 	. Since 	 is a
finite set, X can take only finitely many values, which we label x�� � � � � xn. We can partition 	 into
the subsets fX� � x�g� � � � � fXn � xng, and then rewrite (2.4) as

IEX
�
�

X
��


X���IPf�g

�
nX

k��

X
��fXk�xkg

X���IPf�g

�
nX

k��

xk
X

��fXk�xkg
IPf�g

�
nX

k��

xkIPfXk � xkg

�
nX

k��

xkLXfxkg�
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Thus, although the expected value is defined as a sum over the sample space 	, we can also write it
as a sum over IR.

To make the above set of equations absolutely clear, we consider S� with the distribution given by
(2.3). The definition of IES� is

IES� � S��HHH�IPfHHHg� S��HHT �IPfHHTg
�S��HTH�IPfHTHg� S��HTT �IPfHTTg
�S��THH�IPfTHHg� S��THT �IPfTHTg
�S��TTH�IPfTTHg� S��TTT �IPfTTTg

� �� � IP �AHH� � � � IP �AHT �ATH� � � � IP �ATT �

� �� � IPfS� � ��g� � � IPfS� � �g� � � IPfS� � �g
� �� � LS�f��g� � � LS�f�g� � � LS�f�g
� �� � �

�
� � � �

�
� � � �

�

�
��

�
�

Definition 1.8 Let 	 be a nonempty, finite set, let F be the �-algebra of all subsets of 	, let IP be a
probabilty measure on �	�F�, and let X be a random variable on 	. The variance of X is defined
to be the expected value of �X � IEX��, i.e.,

Var�X�
�
�
X
��


�X���� IEX��IPf�g� (2.5)

One again, we can rewrite (2.5) as a sum over IR rather than over 	. Indeed, if X takes the values
x�� � � � � xn, then

Var�X� �
nX

k��

�xk � IEX��IPfX � xkg �
nX

k��

�xk � IEX��LX�xk��

1.3 Lebesgue Measure and the Lebesgue Integral

In this section, we consider the set of real numbers IR, which is uncountably infinite. We define the
Lebesgue measure of intervals in IR to be their length. This definition and the properties of measure
determine the Lebesgue measure of many, but not all, subsets of IR. The collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collection of Borel sets defined
below.

We use Lebesgue measure to construct the Lebesgue integral, a generalization of the Riemann
integral. We need this integral because, unlike the Riemann integral, it can be defined on abstract
spaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the space IR only; the generalization to
other spaces will be given later.
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Definition 1.9 The Borel �-algebra, denoted B�IR�, is the smallest �-algebra containing all open
intervals in IR. The sets in B�IR� are called Borel sets.

Every set which can be written down and just about every set imaginable is inB�IR�. The following
discussion of this fact uses the �-algebra properties developed in Problem 1.3.

By definition, every open interval �a� b� is in B�IR�, where a and b are real numbers. Since B�IR� is
a �-algebra, every union of open intervals is also in B�IR�. For example, for every real number a,
the open half-line

�a��� �
��
n��

�a� a� n�

is a Borel set, as is

���� a� �
��
n��

�a� n� a��

For real numbers a and b, the union

���� a� � �b���

is Borel. Since B�IR� is a �-algebra, every complement of a Borel set is Borel, so B�IR� contains


a� b� �
�
���� a� � �b���

�c
�

This shows that every closed interval is Borel. In addition, the closed half-lines


a��� �
��
n��


a� a� n�

and

���� a� �
��
n��


a� n� a�

are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

�a� b� � ���� b�	 �a����

Every set which contains only one real number is Borel. Indeed, if a is a real number, then

fag �
��
n��

�
a� �

n
� a�

�

n

�
�

This means that every set containing finitely many real numbers is Borel; if A � fa�� a�� � � � � ang,
then

A �
n�

k��

fakg�
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In fact, every set containing countably infinitely many numbers is Borel; if A � fa�� a�� � � �g, then

A �
n�

k��

fakg�

This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.) This example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit interval 
�� ��, and remove the middle half, i.e., remove the open interval

A�
�
�

�
�

�
�
�

�

�
�

The remaining set

C� �

�
��

�

�

�
�
�
�

�
� �

�
has two pieces. From each of these pieces, remove the middle half, i.e., remove the open set

A�
�
�

�
�

��
�
�

��

�����
��
�
��

��

�
�

The remaining set

C� �

�
��

�

��

��� �
��
�
�

�

����
�
�
��

��

�����
��
� �

�
�

has four pieces. Continue this process, so at stage k, the set Ck has �k pieces, and each piece has
length �

�k
. The Cantor set

C
�
�

��
k��

Ck

is defined to be the set of points not removed at any stage of this nonterminating process.

Note that the length of A�, the first set removed, is �
� . The “length” of A�, the second set removed,

is �
	 �

�
	 � �

� . The “length” of the next set removed is � � �
�� � �

	 , and in general, the length of the
k-th set removed is ��k . Thus, the total length removed is

�X
k��

�

�k
� ��

and so the Cantor set, the set of points not removed, has zero “length.”

Despite the fact that the Cantor set has no “length,” there are lots of points in this set. In particular,
none of the endpoints of the pieces of the sets C�� C�� � � � is ever removed. Thus, the points

��
�

�
�
�

�
� ��

�

��
�
�

��
�
��

��
�
��

��
�
�

��
� � � �

are all in C. This is a countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. 
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Definition 1.10 Let B�IR� be the �-algebra of Borel subsets of IR. A measure on �IR�B�IR�� is a
function 
 mapping B into 
���� with the following properties:

(i) 
��� � �,

(ii) If A�� A�� � � � is a sequence of disjoint sets in B�IR�, then




� ��
k��

Ak

�
�

�X
k��


�Ak��

Lebesgue measure is defined to be the measure on �IR�B�IR�� which assigns the measure of each
interval to be its length. Following Williams’s book, we denote Lebesgue measure by 
�.

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarily � (in fact, 
��IR� ��), one no longer has the equation


�Ac� � �� 
�A�

in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:

(v) If A�� A�� � � � is a sequence of sets in B�IR� with A� � A� � � � � and 
�A�� ��, then




� ��
k��

Ak

�
� lim

n��
�An��

To see that the additional requirment 
�A�� �� is needed in (v), consider

A� � 
����� A� � 
����� A� � 
����� � � � �

Then 	�k��Ak � �, so 
��	�k��Ak� � �, but limn�� 
��An� ��.

We specify that the Lebesgue measure of each interval is its length, and that determines the Lebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since

fag �
�
a� �

n
� a�

�

n

�
for every positive integer n, we must have

� � 
�fag � 
�

�
a � �

n
� a�

�

n

�
�

�

n
�

Letting n��, we obtain

�fag � ��
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A � fa�� a�� � � �g, then


��A� �
�X
k��


�fakg �
�X
k��

� � ��

The Lebesgue measure of a set containing uncountably many points can be either zero, positive and
finite, or infinite. We may not compute the Lebesgue measure of an uncountable set by adding up
the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. The integral was invented to get around this problem.

In order to think about Lebesgue integrals, we must first consider the functions to be integrated.

Definition 1.11 Let f be a function from IR to IR. We say that f is Borel-measurable if the set
fx � IR� f�x� � Ag is in B�IR� whenever A � B�IR�. In the language of Section 2, we want the
�-algebra generated by f to be contained in B�IR�.

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don’t exist. Hencefore, “function mapping IR to IR” will mean “Borel-measurable function
mapping IR to IR” and “subset of IR” will mean “Borel subset of IR”.

Definition 1.12 An indicator function g from IR to IR is a function which takes only the values �
and �. We call

A
�
� fx � IR� g�x� � �g

the set indicated by g. We define the Lebesgue integral of g to beZ
IR
g d
�

�
� 
��A��

A simple function h from IR to IR is a linear combination of indicators, i.e., a function of the form

h�x� �
nX

k��

ckgk�x��

where each gk is of the form

gk�x� �

	
�� if x � Ak �
�� if x �� Ak �

and each ck is a real number. We define the Lebesgue integral of h to beZ
R
h d
�

�
�

nX
k��

ck

Z
IR
gkd
� �

nX
k��

ck
��Ak��

Let f be a nonnegative function defined on IR, possibly taking the value � at some points. We
define the Lebesgue integral of f to beZ

IR
f d
�

�
� sup

�Z
IR
h d
�� h is simple and h�x� � f�x� for every x � IR

�
�
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It is possible that this integral is infinite. If it is finite, we say that f is integrable.

Finally, let f be a function defined on IR, possibly taking the value � at some points and the value
�� at other points. We define the positive and negative parts of f to be

f��x�
�
� maxff�x�� �g� f��x� �

� maxf�f�x�� �g�
respectively, and we define the Lebesgue integral of f to beZ

IR
f d
�

�
�

Z
IR
f� d
� � �

Z
IR
f� d
��

provided the right-hand side is not of the form ���. If both
R
IR f

� d
� and
R
IR f

� d
� are finite
(or equivalently,

R
IR jf j d
� ��, since jf j � f� � f�), we say that f is integrable.

Let f be a function defined on IR, possibly taking the value � at some points and the value �� at
other points. Let A be a subset of IR. We defineZ

A
f d
�

�
�
Z
IR
lIAf d
��

where

lIA�x�
�
�

	
�� if x � A�
�� if x �� A�

is the indicator function of A.

The Lebesgue integral just defined is related to the Riemann integral in one very important way: if
the Riemann integral

R b
a f�x�dx is defined, then the Lebesgue integral

R
�a�b� f d
� agrees with the

Riemann integral. The Lebesgue integral has two important advantages over the Riemann integral.
The first is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 LetQ be the set of rational numbers in 
�� ��, and consider f �
� lIQ. Being a countable

set, Q has Lebesgue measure zero, and so the Lebesgue integral of f over 
�� �� isZ
�����

f d
� � ��

To compute the Riemann integral
R �
� f�x�dx, we choose partition points � � x� � x� � � � � �

xn � � and divide the interval 
�� �� into subintervals 
x�� x��� 
x�� x��� � � � � 
xn��� xn�. In each
subinterval 
xk��� xk� there is a rational point qk , where f�qk� � �, and there is also an irrational
point rk, where f�rk� � �. We approximate the Riemann integral from above by the upper sum

nX
k��

f�qk��xk � xk��� �
nX

k��

� � �xk � xk��� � ��

and we also approximate it from below by the lower sum

nX
k��

f�rk��xk � xk��� �
nX

k��

� � �xk � xk��� � ��
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No matter how fine we take the partition of 
�� ��, the upper sum is always � and the lower sum is
always �. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. 


Example 1.6 Consider the function

f�x�
�
�

	
�� if x � ��
�� if x 
� ��

This is not a simple function because simple function cannot take the value �. Every simple
function which lies between � and f is of the form

h�x�
�
�

	
y� if x � ��
�� if x 
� ��

for some y � 
����, and thus has Lebesgue integralZ
IR
h d
� � y
�f�g � ��

It follows thatZ
IR
f d
� � sup

�Z
IR
h d
�� h is simple and h�x� � f�x� for every x � IR

�
� ��

Now consider the Riemann integral
R�
�� f�x� dx, which for this function f is the same as the

Riemann integral
R �
�� f�x� dx. When we partition 
��� �� into subintervals, one of these will contain

the point �, and when we compute the upper approximating sum for
R �
�� f�x� dx, this point will

contribute� times the length of the subinterval containing it. Thus the upper approximating sum is
�. On the other hand, the lower approximating sum is �, and again the Riemann integral does not
exist. 


The Lebesgue integral has all linearity and comparison properties one would expect of an integral.
In particular, for any two functions f and g and any real constant c,Z

IR
�f � g� d
� �

Z
IR
f d
� �

Z
IR
g d
��Z

IR
cf d
� � c

Z
IR
f d
��

and whenever f�x� � g�x� for all x � IR, we haveZ
IR
f d
� �

Z
IR
gd d
��

Finally, if A and B are disjoint sets, thenZ
A�B

f d
� �
Z
A
f d
� �

Z
B
f d
��
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There are three convergence theorems satisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functions fn� n � �� �� � � � converging pointwise to a limiting
function f . Pointwise convergence just means that

lim
n�� fn�x� � f�x� for every x � IR�

There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing function f is too often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densities, each with variance � and the n-th having
mean n:

fn�x�
�
�

�p
��

e�
�x�n��

� �

These converge pointwise to the function

f�x� � � for every x � IR�

We have
R
IR fnd
� � � for every n, so limn��

R
IR fnd
� � �, but

R
IR f d
� � �. 


Example 1.8 Consider a sequence of normal densities, each with mean � and the n-th having vari-
ance �

n :

fn�x�
�
�

r
n

��
e�

x�

�n �

These converge pointwise to the function

f�x�
�
�

	
�� if x � ��
�� if x 
� ��

We have again
R
IR fnd
� � � for every n, so limn��

R
IR fnd
� � �, but

R
IR f d
� � �. The

function f is not the Dirac delta; the Lebesgue integral of this function was already seen in Example
1.6 to be zero. 


Theorem 3.1 (Fatou’s Lemma) Let fn� n � �� �� � � � be a sequence of nonnegative functions con-
verging pointwise to a function f . ThenZ

IR
f d
� � lim inf

n��

Z
IR
fn d
��

If limn��
R
IR fn d
� is defined, then Fatou’s Lemma has the simpler conclusionZ

IR
f d
� � lim

n��

Z
IR
fn d
��

This is the case in Examples 1.7 and 1.8, where

lim
n��

Z
IR
fn d
� � ��
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while
R
IR f d
� � �. We could modify either Example 1.7 or 1.8 by setting gn � fn if n is even,

but gn � �fn if n is odd. Now
R
IR gn d
� � � if n is even, but

R
IR gn d
� � � if n is odd. The

sequence fRIR gn d
�g�n�� has two cluster points, � and �. By definition, the smaller one, �, is
lim infn��

R
IR gn d
� and the larger one, �, is lim supn��

R
IR gn d
�. Fatou’s Lemma guarantees

that even the smaller cluster point will be greater than or equal to the integral of the limiting function.

The key assumption in Fatou’s Lemma is that all the functions take only nonnegative values. Fatou’s
Lemma does not assume much but it is is not very satisfying because it does not conclude thatZ

IR
f d
� � lim

n��

Z
IR
fn d
��

There are two sets of assumptions which permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theorem) Let fn� n � �� �� � � � be a sequence of functions
converging pointwise to a function f . Assume that

� � f��x� � f��x� � f��x� � � � � for every x � IR�

Then Z
IR
f d
� � lim

n��

Z
IR
fn d
��

where both sides are allowed to be �.

Theorem 3.3 (Dominated Convergence Theorem) Let fn� n � �� �� � � � be a sequence of functions,
which may take either positive or negative values, converging pointwise to a function f . Assume
that there is a nonnegative integrable function g (i.e.,

R
IR g d
� ��) such that

jfn�x�j � g�x� for every x � IR for every n�

Then Z
IR
f d
� � lim

n��

Z
IR
fn d
��

and both sides will be finite.

1.4 General Probability Spaces

Definition 1.13 A probability space �	�F � IP � consists of three objects:

(i) 	, a nonempty set, called the sample space, which contains all possible outcomes of some
random experiment;

(ii) F , a �-algebra of subsets of 	;

(iii) IP , a probability measure on �	�F�, i.e., a function which assigns to each set A � F a number
IP �A� � 
�� ��, which represents the probability that the outcome of the random experiment
lies in the set A.
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Remark 1.1 We recall from Homework Problem 1.4 that a probability measure IP has the following
properties:

(a) IP ��� � �.

(b) (Countable additivity) If A�� A�� � � � is a sequence of disjoint sets in F , then

IP

� ��
k��

Ak

�
�

�X
k��

IP �Ak��

(c) (Finite additivity) If n is a positive integer and A�� � � � � An are disjoint sets in F , then

IP �A� � � � � �An� � IP �A�� � � � �� IP �An��

(d) If A and B are sets in F and A � B, then

IP �B� � IP �A� � IP �B nA��
In particular,

IP �B� � IP �A��

(d) (Continuity from below.) If A�� A�� � � � is a sequence of sets in F with A� � A� � � � � , then

IP

� ��
k��

Ak

�
� lim

n�� IP �An��

(d) (Continuity from above.) If A�� A�� � � � is a sequence of sets in F with A� � A� � � � � , then

IP

� ��
k��

Ak

�
� lim

n�� IP �An��

We have already seen some examples of finite probability spaces. We repeat these and give some
examples of infinite probability spaces as well.

Example 1.9 Finite coin toss space.
Toss a coin n times, so that 	 is the set of all sequences of H and T which have n components.
We will use this space quite a bit, and so give it a name: 	n. Let F be the collection of all subsets
of 	n. Suppose the probability of H on each toss is p, a number between zero and one. Then the

probability of T is q �
� �� p. For each � � ���� ��� � � � � �n� in 	n, we define

IPf�g �
� pNumber of H in � � qNumber of T in ��

For each A � F , we define

IP �A�
�
�
X
��A

IPf�g� (4.1)

We can define IP �A� this way because A has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). 
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Example 1.10 Infinite coin toss space.
Toss a coin repeatedly without stopping, so that 	 is the set of all nonterminating sequences of H
and T . We call this space 	�. This is an uncountably infinite space, and we need to exercise some
care in the construction of the �-algebra we will use here.

For each positive integer n, we define Fn to be the �-algebra determined by the first n tosses. For
example, F� contains four basic sets,

AHH
�
� f� � ���� ��� ��� � � ����� � H��� � Hg
� The set of all sequences which begin with HH�

AHT
�
� f� � ���� ��� ��� � � ����� � H��� � Tg
� The set of all sequences which begin with HT�

ATH
�
� f� � ���� ��� ��� � � ����� � T� �� � Hg
� The set of all sequences which begin with TH�

ATT
�
� f� � ���� ��� ��� � � ����� � T� �� � Tg
� The set of all sequences which begin with TT�

Because F� is a �-algebra, we must also put into it the sets �, 	, and all unions of the four basic
sets.

In the �-algebra F , we put every set in every �-algebra Fn, where n ranges over the positive
integers. We also put in every other set which is required to make F be a �-algebra. For example,
the set containing the single sequence

fHHHHH � � �g � fH on every tossg
is not in any of the Fn �-algebras, because it depends on all the components of the sequence and
not just the first n components. However, for each positive integer n, the set

fH on the first n tossesg
is in Fn and hence in F . Therefore,

fH on every tossg �
��
n��

fH on the first n tossesg

is also in F .

We next construct the probability measure IP on �	��F� which corresponds to probability p �

�� �� for H and probability q � � � p for T . Let A � F be given. If there is a positive integer n
such that A � Fn, then the description of A depends on only the first n tosses, and it is clear how to
define IP �A�. For example, supposeA � AHH �ATH , where these sets were defined earlier. Then
A is in F�. We set IP �AHH� � p� and IP �ATH� � qp, and then we have

IP �A� � IP �AHH � ATH� � p� � qp � �p� q�p � p�

In other words, the probability of a H on the second toss is p.
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Let us now consider a set A � F for which there is no positive integer n such that A � F . Such
is the case for the set fH on every tossg. To determine the probability of these sets, we write them
in terms of sets which are in Fn for positive integers n, and then use the properties of probability
measures listed in Remark 1.1. For example,

fH on the first tossg � fH on the first two tossesg
� fH on the first three tossesg
� � � � �

and
��
n��

fH on the first n tossesg � fH on every tossg�

According to Remark 1.1(d) (continuity from above),

IPfH on every tossg � lim
n�� IPfH on the first n tossesg � lim

n�� pn�

If p � �, then IPfH on every tossg � �; otherwise, IPfH on every tossg � �.

A similar argument shows that if � � p � � so that � � q � �, then every set in 	� which contains
only one element (nonterminating sequence of H and T ) has probability zero, and hence very set
which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabilty in 	� are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random variables Y�� Y�� � � � by

Yk���
�
�

	
� if �k � H�

� if �k � T�

and we also define the random variable

X��� �
nX

k��

Yk���

�k
�

Since each Yk is either zero or one,X takes values in the interval 
�� ��. Indeed, X�TTTT � � � � � �,
X�HHHH � � � � � � and the other values of X lie in between. We define a “dyadic rational
number” to be a number of the form m

�k
, where k and m are integers. For example, �

� is a dyadic
rational. Every dyadic rational in (0,1) corresponds to two sequences � � 	�. For example,

X�HHTTTTT � � � � � X�HTHHHHH � � � � � �

�
�

The numbers in (0,1) which are not dyadic rationals correspond to a single � � 	�; these numbers
have a unique binary expansion.
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Whenever we place a probability measure IP on �	�F�, we have a corresponding induced measure
LX on 
�� ��. For example, if we set p � q � �

� in the construction of this example, then we have

LX
�
��

�

�

�
� IPfFirst toss is Tg � �

�
�

LX
�
�

�
� �

�
� IPfFirst toss is Hg � �

�
�

LX
�
��

�

�

�
� IPfFirst two tosses are TTg � �

�
�

LX
�
�

�
�
�

�

�
� IPfFirst two tosses are THg � �

�
�

LX
�
�

�
�
�

�

�
� IPfFirst two tosses are HTg � �

�
�

LX
�
�

�
� �

�
� IPfFirst two tosses are HHg � �

�
�

Continuing this process, we can verify that for any positive integers k and m satisfying

� � m� �

�k
�

m

�k
� ��

we have

LX
�
m� �

�k
�
m

�k

�
�

�

�k
�

In other words, the LX -measure of all intervals in 
�� �� whose endpoints are dyadic rationals is the
same as the Lebesgue measure of these intervals. The only way this can be is for LX to be Lebesgue
measure.

It is interesing to consider what LX would look like if we take a value of p other than �
� when we

construct the probability measure IP on 	.

We conclude this example with another look at the Cantor set of Example 3.2. Let 	pairs be the
subset of 	 in which every even-numbered toss is the same as the odd-numbered toss immediately
preceding it. For example, HHTTTTHH is the beginning of a sequence in 	pairs, but HT is not.
Consider now the set of real numbers

C� �� fX����� � 	pairsg�

The numbers between ��� �
�
�� can be written as X���, but the sequence � must begin with either

TH or HT . Therefore, none of these numbers is in C�. Similarly, the numbers between � �
�
 �

�
�
�

can be written as X���, but the sequence � must begin with TTTH or TTHT , so none of these
numbers is in C �. Continuing this process, we see thatC � will not contain any of the numbers which
were removed in the construction of the Cantor set C in Example 3.2. In other words, C � � C.
With a bit more work, one can convince onself that in fact C � � C, i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those points in 
�� �� which were removed in the
Cantor set construction of Example 3.2. 
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probability spaces which correspond to different
ways of picking a number at random.

Example 1.11
Suppose we choose a number from IR in such a way that we are sure to get either �, � or ��.
Furthermore, we construct the experiment so that the probability of getting � is �

� , the probability of
getting � is �

� and the probability of getting �� is �
� . We describe this random experiment by taking

	 to be IR, F to be B�IR�, and setting up the probability measure so that

IPf�g � �

�
� IPf�g � �

�
� IPf��g � �

�
�

This determines IP �A� for every set A � B�IR�. For example, the probability of the interval ��� ��
is 	

� , because this interval contains the numbers � and �, but not the number ��.

The probability measure described in this example is LS� , the measure induced by the stock price
S�, when the initial stock price S� � � and the probability ofH is �

� . This distributionwas discussed
immediately following Definition 2.8. 


Example 1.12 Uniform distribution on 
�� ��.
Let 	 � 
�� �� and let F � B�
�� ���, the collection of all Borel subsets containined in 
�� ��. For
each Borel setA � 
�� ��, we define IP �A� � 
��A� to be the Lebesgue measure of the set. Because

�
�� �� � �, this gives us a probability measure.

This probability space corresponds to the random experiment of choosing a number from 
�� �� so
that every number is “equally likely” to be chosen. Since there are infinitely mean numbers in 
�� ��,
this requires that every number have probabilty zero of being chosen. Nonetheless, we can speak of
the probability that the number chosen lies in a particular set, and if the set has uncountably many
points, then this probability can be positive. 


I know of no way to design a physical experiment which corresponds to choosing a number at
random from 
�� �� so that each number is equally likely to be chosen, just as I know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximations to reality.

Example 1.13 Standard normal distribution.
Define the standard normal density

��x�
�
�

�p
��

e
�
x�

� �

Let 	 � IR, F � B�IR� and for every Borel set A � IR, define

IP �A�
�
�
Z
A
�d
�� (4.2)
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If A in (4.2) is an interval 
a� b�, then we can write (4.2) as the less mysterious Riemann integral:

IP 
a� b�
�
�

Z b

a

�p
��

e
�
x�

� dx�

This corresponds to choosing a point at random on the real line, and every single point has probabil-
ity zero of being chosen, but if a set A is given, then the probability the point is in that set is given
by (4.2). 


The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgue integral. We repeat this construction below.

Definition 1.14 Let �	�F � IP � be a probability space, and letX be a random variable on this space,
i.e., a mapping from 	 to IR, possibly also taking the values ��.

� If X is an indicator, i.e,

X��� � lIA��� �

	
� if � � A�

� if � � Ac�

for some set A � F , we define Z


X dIP

�
� IP �A��

� If X is a simple function, i.e,

X��� �
nX

k��

cklIAk����

where each ck is a real number and each Ak is a set in F , we defineZ


X dIP

�
�

nX
k��

ck

Z


lIAk dIP �

nX
k��

ckIP �Ak��

� If X is nonnegative but otherwise general, we defineZ


X dIP

�
� sup

�Z


Y dIP � Y is simple and Y ��� � X��� for every � � 	

�
�

In fact, we can always construct a sequence of simple functions Yn� n � �� �� � � � such that

� � Y���� � Y���� � Y���� � � � � for every � � 	�

and Y ��� � limn�� Yn��� for every � � 	. With this sequence, we can defineZ


X dIP

�
� lim

n��

Z


Yn dIP�
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� If X is integrable, i.e, Z


X� dIP ���

Z


X� dIP ���

where
X����

�
� maxfX���� �g� X���� �

� maxf�X���� �g�
then we define Z



X dIP

�
�
Z


X� dIP � �

Z


X� dIP�

If A is a set in F and X is a random variable, we defineZ
A
X dIP

�
�

Z


lIA �X dIP�

The expectation of a random variable X is defined to be

IEX
�
�
Z


X dIP�

The above integral has all the linearity and comparison properties one would expect. In particular,
if X and Y are random variables and c is a real constant, thenZ



�X � Y � dIP �

Z


X dIP �

Z


Y dIP�Z



cX dIP � c

Z


X dP�

If X��� � Y ��� for every � � 	, thenZ


X dIP �

Z


Y dIP�

In fact, we don’t need to have X��� � Y ��� for every � � 	 in order to reach this conclusion; it is
enough if the set of � for which X��� � Y ��� has probability one. When a condition holds with
probability one, we say it holds almost surely. Finally, if A and B are disjoint subsets of 	 and X
is a random variable, then Z

A�B
X dIP �

Z
A
X dIP �

Z
B
X dIP�

We restate the Lebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditions don’t need to hold for every �; almost surely is enough.

Theorem 4.4 (Fatou’s Lemma) Let Xn� n � �� �� � � � be a sequence of almost surely nonnegative
random variables converging almost surely to a random variable X . ThenZ



X dIP � lim inf

n��

Z


Xn dIP�

or equivalently,
IEX � lim inf

n�� IEXn�
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Theorem 4.5 (Monotone Convergence Theorem) Let Xn� n � �� �� � � � be a sequence of random
variables converging almost surely to a random variable X . Assume that

� � X� � X� � X� � � � � almost surely�

Then Z


X dIP � lim

n��

Z


XndIP�

or equivalently,
IEX � lim

n�� IEXn�

Theorem 4.6 (Dominated Convergence Theorem) Let Xn� n � �� �� � � � be a sequence of random
variables, converging almost surely to a random variable X . Assume that there exists a random
variable Y such that

jXnj � Y almost surely for every n�

Then Z


X dIP � lim

n��

Z


Xn dIP�

or equivalently,
IEX � lim

n�� IEXn�

In Example 1.13, we constructed a probability measure on �IR�B�IR�� by integrating the standard
normal density. In fact, whenever� is a nonnegative function defined onR satisfying

R
IR�d
� � �,

we call � a density and we can define an associated probability measure by

IP �A�
�
�
Z
A
�d
� for every A � B�IR�� (4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related this way. We say
that � in (4.3) is the Radon-Nikodym derivative of dIP with respect to 
�, and we write

� �
dIP

d
�
� (4.4)

The probability measure IP weights different parts of the real line according to the density �. Now
suppose f is a function on �R�B�IR�� IP �. Definition 1.14 gives us a value for the abstract integralZ

IR
f dIP�

We can also evaluate Z
IR
f� d
��

which is an integral with respec to Lebesgue measure over the real line. We want to show thatZ
IR
f dIP �

Z
IR
f� d
�� (4.5)
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an equation which is suggested by the notation introduced in (4.4) (substitute dIP
d��

for � in (4.5) and
“cancel” the d
�). We include a proof of this because it allows us to illustrate the concept of the
standard machine explained in Williams’s book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assume that f is an indicator function, i.e., f�x� � lIA�x� for some Borel set A � IR. In
that case, (4.5) becomes

IP �A� �

Z
A
�d
��

This is true because it is the definition of IP �A�.

Step 2. Now that we know that (4.5) holds when f is an indicator function, assume that f is a
simple function, i.e., a linear combination of indicator functions. In other words,

f�x� �
nX

k��

ckhk�x��

where each ck is a real number and each hk is an indicator function. ThenZ
IR
f dIP �

Z
IR

�
nX

k��

ckhk

�
dIP

�
nX

k��

ck

Z
IR
hk dIP

�
nX

k��

ck

Z
IR
hk�d
�

�

Z
IR

�
nX

k��

ckhk

�
�d
�

�

Z
IR
f� d
��

Step 3. Now that we know that (4.5) holds when f is a simple function, we consider a general
nonnegative function f . We can always construct a sequence of nonnegative simple functions
fn� n � �� �� � � � such that

� � f��x� � f��x� � f��x� � � � � for every x � IR�

and f�x� � limn�� fn�x� for every x � IR. We have already proved thatZ
IR
fn dIP �

Z
IR
fn�d
� for every n�

We let n�� and use the Monotone Convergence Theorem on both sides of this equality to
get Z

IR
f dIP �

Z
IR
f� d
��
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Step 4. In the last step, we consider an integrable function f , which can take both positive and
negative values. By integrable, we mean thatZ

IR
f� dIP ���

Z
IR
f� dIP ���

¿From Step 3, we have Z
IR
f� dIP �

Z
IR
f��d
��Z

IR
f� dIP �

Z
IR
f��d
��

Subtracting these two equations, we obtain the desired result:Z
IR
f dIP �

Z
IR
f� dIP �

Z
IR
f� dIP

�
Z
IR
f��d
� �

Z
IR
f��d
�

�
Z
R
f� d
��

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
�	�F � IP �, although most of the examples we give will be for coin toss space.

1.5.1 Independence of sets

Definition 1.15 We say that two sets A � F and B � F are independent if

IP �A 	 B� � IP �A�IP �B��

Suppose a random experiment is conducted, and � is the outcome. The probability that � � A is
IP �A�. Suppose you are not told �, but you are told that � � B. Conditional on this information,
the probability that � � A is

IP �AjB�
�
�
IP �A 	B�

IP �B�
�

The sets A and B are independent if and only if this conditional probability is the uncondidtional
probability IP �A�, i.e., knowing that � � B does not change the probability you assign to A. This
discussion is symmetric with respect to A and B; if A and B are independent and you know that
� � A, the conditional probability you assign to B is still the unconditional probability IP �B�.

Whether two sets are independent depends on the probability measure IP . For example, suppose we
toss a coin twice, with probability p for H and probability q � �� p for T on each toss. To avoid
trivialities, we assume that � � p � �. Then

IPfHHg � p�� IPfHTg � IPfTHg � pq� IPfTTg � q�� (5.1)
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Let A � fHH�HTg and B � fHT� THg. In words, A is the set “H on the first toss” and B is the
set “one H and one T .” Then A 	 B � fHTg. We compute

IP �A� � p� � pq � p�

IP �B� � �pq�

IP �A�IP �B� � �p�q�

IP �A 	B� � pq�

These sets are independent if and only if �p�q � pq, which is the case if and only if p � �
� .

If p � �
� , then IP �B�, the probability of one head and one tail, is �

� . If you are told that the coin
tosses resulted in a head on the first toss, the probability of B, which is now the probability of a T
on the second toss, is still �

� .

Suppose however that p � ����. By far the most likely outcome of the two coin tosses is TT , and
the probability of one head and one tail is quite small; in fact, IP �B� � ������. However, if you
are told that the first toss resulted in H , it becomes very likely that the two tosses result in one head
and one tail. In fact, conditioned on getting a H on the first toss, the probability of one H and one
T is the probability of a T on the second toss, which is ����.

1.5.2 Independence of�-algebras

Definition 1.16 Let G andH be sub-�-algebras ofF . We say that G andH are independent if every
set in G is independent of every set inH, i.e,

IP �A 	 B� � IP �A�IP �B� for every A � H� B � G�

Example 1.14 Toss a coin twice, and let IP be given by (5.1). Let G � F� be the �-algebra
determined by the first toss: G contains the sets

��	� fHH�HTg� fTH�TTg�

Let H be the �-albegra determined by the second toss: H contains the sets

��	� fHH�THg� fHT�TTg�

These two �-algebras are independent. For example, if we choose the set fHH�HTg from G and
the set fHH� THg from H, then we have

IPfHH�HTgIPfHH� THg� �p� � pq��p� � pq� � p��

IP
�
fHH�HTg	 fHH� THg

�
� IPfHHg � p��

No matter which set we choose in G and which set we choose inH, we will find that the product of
the probabilties is the probability of the intersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tosses is
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a particular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilities this way. It is also
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 Define IP for the individual elements of 	 � fHH�HT�TH�TTg to be

IPfHHg � �

�
� IPfHTg � �

�
� IPfTHg � �

�
� IPfTTg � �

�
�

and for every set A � 	, define IP �A� to be the sum of the probabilities of the elements in A. Then
IP �	� � �, so IP is a probability measure. Note that the sets fH on first tossg � fHH�HTg and
fH on second tossg � fHH� THg have probabilities IPfHH�HTg � �

� and IPfHH� THg �
�
� , so the product of the probabilities is �

�� . On the other hand, the intersection of fHH�HTg
and fHH� THg contains the single element fHHg, which has probability �

� . These sets are not
independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variables X and Y are independent if the �-algebras they
generate ��X� and ��Y � are independent.

In the probability space of three independent coin tosses, the price S� of the stock at time � is
independent of S�

S�
. This is because S� depends on only the first two coin tosses, whereas S�

S�
is

either u or d, depending on whether the third coin toss is H or T .

Definition 1.17 says that for independent random variables X and Y , every set defined in terms of
X is independent of every set defined in terms of Y . In the case of S� and S�

S�
just considered, for ex-

ample, the sets fS� � udS�g � fHTH�HTTg and
n
S�
S�

� u
o
� fHHH�HTH� THH�TTHg

are indepedent sets.

Suppose X and Y are independent random variables. We defined earlier the measure induced by X
on IR to be

LX�A�
�
� IPfX � Ag� A � IR�

Similarly, the measure induced by Y is

LY �B�
�
� IPfY � Bg� B � IR�

Now the pair �X� Y � takes values in the plane IR�, and we can define the measure induced by the
pair

LX�Y �C� � IPf�X� Y � � Cg� C � IR��

The set C in this last equation is a subset of the plane IR�. In particular, C could be a “rectangle”,
i.e, a set of the form A� B, where A � IR and B � IR. In this case,

f�X� Y � � A�Bg � fX � Ag 	 fY � Bg�
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and X and Y are independent if and only if

LX�Y �A� B� � IP
�
fX � Ag 	 fY � Bg

�
� IPfX � AgIPfY � Bg (5.2)

� LX�A�LY �B��

In other words, for independent random variablesX and Y , the joint distribution represented by the
measure LX�Y factors into the product of the marginal distributions represented by the measures
LX and LY .

A joint density for �X� Y � is a nonnegative function fX�Y �x� y� such that

LX�Y �A�B� �
Z
A

Z
B
fX�Y �x� y� dx dy�

Not every pair of random variables �X� Y � has a joint density, but if a pair does, then the random
variables X and Y have marginal densities defined by

fX�x� �

Z �

��
fX�Y �x� �� d�� fY �y�

Z �

��
fX�Y �
� y� d
�

These have the properties

LX�A� �
Z
A
fX�x� dx� A � IR�

LY �B� �

Z
B
fY �y� dy� B � IR�

Suppose X and Y have a joint density. Then X and Y are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent to independence of X and Y . Take A � ���� x� and B � ���� y�, write (5.1) in terms
of densities, and differentiate with respect to both x and y.

Theorem 5.7 Suppose X and Y are independent random variables. Let g and h be functions from
IR to IR. Then g�X� and h�Y � are also independent random variables.

PROOF: Let us denote W � g�X� and Z � h�Y �. We must consider sets in ��W � and ��Z�. But
a typical set in ��W � is of the form

f��W ��� � Ag � f� � g�X���� � Ag�
which is defined in terms of the random variable X . Therefore, this set is in ��X�. (In general,
we have that every set in ��W � is also in ��X�, which means that X contains at least as much
information as W . In fact, X can contain strictly more information thanW , which means that ��X�
will contain all the sets in ��W � and others besides; this is the case, for example, if W � X �.)

In the same way that we just argued that every set in ��W � is also in ��X�, we can show that
every set in ��Z� is also in ��Y �. Since every set in ��X� is independent of every set in ��Y �, we
conclude that every set in ��W � is independent of every set in ��Z�. 
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Definition 1.18 Let X�� X�� � � � be a sequence of random variables. We say that these random
variables are independent if for every sequence of sets A� � ��X��� A� � ��X��� � � � and for every
positive integer n,

IP �A� 	 A� 	 � � �An� � IP �A��IP �A�� � � �IP �An��

1.5.4 Correlation and independence

Theorem 5.8 If two random variablesX and Y are independent, and if g and h are functions from
IR to IR, then

IE
g�X�h�Y �� � IEg�X� � IEh�Y ��

provided all the expectations are defined.

PROOF: Let g�x� � lIA�x� and h�y� � lIB�y� be indicator functions. Then the equation we are
trying to prove becomes

IP
�
fX � Ag 	 fY � Bg

�
� IPfX � AgIPfY � Bg�

which is true because X and Y are independent. Now use the standard machine to get the result for
general functions g and h. 

The variance of a random variable X is defined to be

Var�X�
�
� IE
X � IEX ���

The covariance of two random variables X and Y is defined to be

Cov�X� Y � �
� IE

h
�X � IEX��Y � IEY �

i
� IE
XY �� IEX � IEY�

According to Theorem 5.8, for independent random variables, the covariance is zero. If X and Y
both have positive variances, we define their correlation coefficient

��X� Y �
�
�

Cov�X� Y �p
Var�X�Var�Y �

�

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable, let Z be independent of X and have
the distribution IPfZ � �g � IPfZ � ��g � �. Define Y � XZ. We show that Y is also a
standard normal random variable, X and Y are uncorrelated, but X and Y are not independent.

The last claim is easy to see. If X and Y were independent, so would be X � and Y �, but in fact,
X� � Y � almost surely.
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We next check that Y is standard normal. For y � IR, we have

IPfY � yg � IPfY � y and Z � �g� IPfY � y and Z � ��g
� IPfX � y and Z � �g� IPf�X � y and Z � ��g
� IPfX � ygIPfZ � �g� IPf�X � ygIPfZ � ��g
�

�

�
IPfX � yg� �

�
IPf�X � yg�

Since X is standard normal, IPfX � yg � IPfX � �yg, and we have IPfY � yg � IPfX � yg,
which shows that Y is also standard normal.

Being standard normal, both X and Y have expected value zero. Therefore,

Cov�X� Y � � IE
XY � � IE
X�Z� � IEX� � IEZ � � � � � ��

Where in IR� does the measure LX�Y put its mass, i.e., what is the distribution of �X� Y �?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. Indeed, if X and Y are independent and Z � X � Y ,
then

Var�Z� �
� IE

h
�Z � IEZ��

i
� IE

�
X � Y � IEX � IEY ��

i
� IE

h
�X � IEX�� � ��X � IEX��Y � IEY � � �Y � IEY ��

i
� Var�X� � �IE
X � IEX �IE
Y � IEY � � Var�Y �

� Var�X� � Var�Y ��

This argument extends to any finite number of random variables. If we are given independent
random variables X�� X�� � � � � Xn, then

Var�X� �X� � � � ��Xn� � Var�X�� � Var�X�� � � � �� Var�Xn�� (5.3)

1.5.5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams’s book, page 88; we shall need only
the second assertion of the property:

(k) If a random variable X is independent of a �-algebra H, then

IE
X jH� � IEX�

The point of this statement is that if X is independent of H, then the best estimate of X based on
the information in H is IEX , the same as the best estimate of X based on no information.
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To show this equality, we observe first that IEX is H-measurable, since it is not random. We must
also check the partial averaging propertyZ

A
IEX dIP �

Z
A
X dIP for every A � H�

If X is an indicator of some set B, which by assumption must be independent ofH, then the partial
averaging equation we must check isZ

A
IP �B� dIP �

Z
A
lIB dIP�

The left-hand side of this equation is IP �A�IP �B�, and the right hand side isZ


lIAlIB dIP �

Z


lIA�B dIP � IP �A 	B��

The partial averaging equation holds because A and B are independent. The partial averaging
equation for general X independent of H follows by the standard machine.

1.5.6 Law of Large Numbers

There are two fundamental theorems about sequences of independent random variables. Here is the
first one.

Theorem 5.9 (Law of Large Numbers)Let X�� X�� � � � be a sequence of independent, identically
distributed random variables, each with expected value 
 and variance � �. Define the sequence of
averages

Yn
�
�
X� �X� � � � ��Xn

n
� n � �� �� � � � �

Then Yn converges to 
 almost surely as n��.

We are not going to give the proof of this theorem, but here is an argument which makes it plausible.
We will use this argument later when developing stochastic calculus. The argument proceeds in two
steps. We first check that IEYn � 
 for every n. We next check that Var�Yn� � � as n � �. In
other words, the random variables Yn are increasingly tightly distributed around 
 as n��.

For the first step, we simply compute

IEYn �
�

n

IEX� � IEX� � � � �� IEXn� �

�

n


� 
� � � �� 
�� �z �

n times

� 
�

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variables is the sum of their variances. Therefore,

Var�Yn� �
nX

k��

Var
�
Xk

n

�
�

nX
k��

��

n�
�
��

n
�

As n��, we have Var�Yn�� �.
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1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition of Yn is so large that the variance of Yn converges to zero. If we want
to prevent this, we should divide by

p
n rather than n. In particular, if we again have a sequence of

independent, identically distributed random variables, each with expected value 
 and variance ��,
but now we set

Zn
�
�

�X� � 
� � �X� � 
� � � � �� �Xn � 
�p
n

�

then each Zn has expected value zero and

Var�Zn� �
nX

k��

Var
�
Xk � 
p

n

�
�

nX
k��

��

n
� ���

As n � �, the distributions of all the random variables Zn have the same degree of tightness, as
measured by their variance, around their expected value �. The Central Limit Theorem asserts that
as n��, the distribution of Zn approaches that of a normal random variable with mean (expected
value) zero and variance ��. In other words, for every set A � IR,

lim
n�� IPfZn � Ag � �

�
p
��

Z
A
e
� x�

��� dx�
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Chapter 2

Conditional Expectation

Please see Hull’s book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denoted S�. At each time step, the stock price either goes up by a factor of u
or down by a factor of d. It will be useful to visualize tossing a coin at each time step, and say that

� the stock price moves up by a factor of u if the coin comes out heads (H), and

� down by a factor of d if it comes out tails (T ).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

	 � fHHH�HHT�HTH�HTT� THH�THH� THT� TTH� TTTg�

A typical sequence of 	 will be denoted �, and �k will denote the kth element in the sequence �.
We write Sk��� to denote the stock price at “time” k (i.e. after k tosses) under the outcome �. Note
that Sk��� depends only on ��� ��� � � � � �k. Thus in the 3-coin-toss example we write for instance,

S����
�
� S����� ��� ���

�
� S������

S����
�
� S����� ��� ���

�
� S����� ����

Each Sk is a random variable defined on the set 	. More precisely, let F � P�	�. Then F is a
�-algebra and �	�F� is a measurable space. Each Sk is an F -measurable function 	�IR, that is,
S��k is a function B�F where B is the Borel �-algebra on IR. We will see later that Sk is in fact

49
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0

0

Figure 2.1: A three coin period binomial model.

measurable under a sub-�-algebra ofF . Recall that the Borel �-algebraB is the �-algebra generated
by the open intervals of IR. In this course we will always deal with subsets of IR that belong to B.

For any random variable X defined on a sample space 	 and any y � IR, we will use the notation:

fX � yg �� f� � 	�X��� � yg�
The sets fX � yg� fX � yg� fX � yg� etc, are defined similarly. Similarly for any subset B of IR,
we define

fX � Bg �
� f� � 	�X��� � Bg�

Assumption 2.1 u 	 d 	 �.

2.2 Information

Definition 2.1 (Sets determined by the firstk tosses.)We say that a set A � 	 is determined by
the first k coin tosses if, knowing only the outcome of the first k tosses, we can decide whether the
outcome of all tosses is in A. In general we denote the collection of sets determined by the first k
tosses by Fk. It is easy to check that F k is a �-algebra.

Note that the random variable Sk is Fk-measurable, for each k � �� �� � � � � n.

Example 2.1 In the 3 coin-toss example, the collection F� of sets determined by the first toss consists of:
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1. AH
�
� fHHH�HHT�HTH�HTTg,

2. AT
�
� fTHH� THT� TTH� TTTg,

3. �,

4. �.

The collectionF� of sets determined by the first two tosses consists of:

1. AHH
�
� fHHH�HHTg,

2. AHT
�
� fHTH�HTTg,

3. ATH
�
� fTHH� THTg,

4. ATT
�
� fTTH� TTTg,

5. The complements of the above sets,

6. Any union of the above sets (including the complements),

7. � and �.

Definition 2.2 (Information carried by a random variable.) Let X be a random variable 	�IR.
We say that a set A � 	 is determined by the random variable X if, knowing only the value X���
of the random variable, we can decide whether or not � � A. Another way of saying this is that for
every y � IR, either X���y� � A or X���y� 	 A � �. The collection of susbets of 	 determined
by X is a �-algebra, which we call the �-algebra generated by X , and denote by ��X�.

If the random variable X takes finitely many different values, then ��X� is generated by the collec-
tion of sets

fX���X����j� � 	g�
these sets are called the atoms of the �-algebra ��X�.

In general, if X is a random variable 	�IR, then ��X� is given by

��X� � fX���B��B � Bg�

Example 2.2 (Sets determined byS�) The �-algebra generated by S� consists of the following sets:

1. AHH � fHHH�HHTg � f� � ��S���� � u�S�g,

2. ATT � fTTH� TTTg � fS� � d�S�g�
3. AHT �ATH � fS� � udS�g�
4. Complements of the above sets,

5. Any union of the above sets,

6. � � fS���� � �g,

7. � � fS���� � IRg.
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space 	. Let us define

� p � ��� �� is the probability of H ,

� q
�
� ��� p� is the probability of T ,

� the coin tosses are independent, so that, e.g., IP �HHT � � p�q� etc.

� IP �A�
�
�
P
��A IP ���, �A � 	.

Definition 2.3 (Expectation.)

IEX
�
�
X
��	

X���IP ����

If A � 	 then

IA���
�
�

	
� if � � A
� if � 
� A

and
IE�IAX� �

Z
A
XdIP �

X
��A

X���IP ����

We can think of IE�IAX� as a partial average of X over the set A.

2.3.1 An example

Let us estimate S�, given S�. Denote the estimate by IE�S�jS��. From elementary probability,
IE�S�jS�� is a random variable Y whose value at � is defined by

Y ��� � IE�S�jS� � y��

where y � S����. Properties of IE�S�jS��:

� IE�S�jS�� should depend on �, i.e., it is a random variable.

� If the value of S� is known, then the value of IE�S�jS�� should also be known. In particular,

– If � � HHH or � � HHT , then S���� � u�S�. If we know that S���� � u�S�, then
even without knowing �, we know that S���� � uS�. We define

IE�S�jS���HHH� � IE�S�jS���HHT � � uS��

– If � � TTT or � � TTH , then S���� � d�S�. If we know that S���� � d�S�, then
even without knowing �, we know that S���� � dS�. We define

IE�S�jS���TTT � � IE�S�jS���TTH� � dS��
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– If � � A � fHTH�HTT�THH� THTg, then S���� � udS�. If we know S���� �
udS�, then we do not know whether S� � uS� or S� � dS�. We then take a weighted
average:

IP �A� � p�q � pq� � p�q � pq� � �pq�

Furthermore, Z
A
S�dIP � p�quS� � pq�uS� � p�qdS� � pq�dS�

� pq�u� d�S�

For � � A we define

IE�S�jS����� �
R
A S�dIP

IP �A�
� �

��u� d�S��

Then Z
A
IE�S�jS��dIP �

Z
A
S�dIP�

In conclusion, we can write
IE�S�jS����� � g�S������

where

g�x� �

��
��
uS� if x � u�S�
�
��u� d�S� if x � udS�
dS� if x � d�S�

In other words, IE�S�jS�� is random only through dependence on S�. We also write

IE�S�jS� � x� � g�x��

where g is the function defined above.

The random variable IE�S�jS�� has two fundamental properties:

� IE�S�jS�� is ��S��-measurable.

� For every set A � ��S��, Z
A
IE�S�jS��dIP �

Z
A
S�dIP�

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let �	�F � IP � be a probability space, and let G be a sub-�-algebra ofF . LetX be a random variable
on �	�F � IP �. Then IE�X jG� is defined to be any random variable Y that satisfies:

(a) Y is G-measurable,
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(b) For every set A � G, we have the “partial averaging property”Z
A
Y dIP �

Z
A
XdIP�

Existence. There is always a random variable Y satisfying the above properties (provided that
IEjX j ��), i.e., conditional expectations always exist.

Uniqueness.There can be more than one random variable Y satisfying the above properties, but if
Y � is another one, then Y � Y � almost surely, i.e., IPf� � 	� Y ��� � Y ����g � ��

Notation 2.1 For random variables X� Y , it is standard notation to write

IE�X jY � �� IE�X j��Y ���

Here are some useful ways to think about IE�X jG�:

� A random experiment is performed, i.e., an element � of 	 is selected. The value of � is
partially but not fully revealed to us, and thus we cannot compute the exact value of X���.
Based on what we know about �, we compute an estimate of X���. Because this estimate
depends on the partial information we have about �, it depends on �, i.e., IE
X jY ���� is a
function of �, although the dependence on � is often not shown explicitly.

� If the �-algebra G contains finitely many sets, there will be a “smallest” set A in G containing
�, which is the intersection of all sets in G containing �. The way � is partially revealed to us
is that we are told it is in A, but not told which element of A it is. We then define IE
X jY ����
to be the average (with respect to IP ) value of X over this set A. Thus, for all � in this set A,
IE
X jY ���� will be the same.

2.3.3 Further discussion of Partial Averaging

The partial averaging property isZ
A
IE�X jG�dIP �

Z
A
XdIP� �A � G� (3.1)

We can rewrite this as

IE
IA�IE�X jG�� � IE
IA�X �� (3.2)

Note that IA is a G-measurable random variable. In fact the following holds:

Lemma 3.10 If V is any G-measurable random variable, then provided IEjV�IE�XjG�j ��,

IE
V�IE�XjG�� � IE
V�X �� (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) when V is a simple
G-measurable random variable, i.e., V is of the form V �

Pn
k�� ckIAK , where each Ak is in G and

each ck is constant. Next consider the case that V is a nonnegative G-measurable random variable,
but is not necessarily simple. Such a V can be written as the limit of an increasing sequence
of simple random variables Vn; we write (3.3) for each Vn and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) for V . Finally, the general G-
measurable random variable V can be written as the difference of two nonnegative random-variables
V � V � � V �, and since (3.3) holds for V � and V � it must hold for V as well. Williams calls
this argument the “standard machine” (p. 56).

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For every G-measurable random-variable V , we have

IE
V�IE�X jG�� � IE
V�X �� (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(a) IE�IE�X jG�� � IE�X��
Proof: Just take A in the partial averaging property to be 	.

The conditional expectation of X is thus an unbiased estimator of the random variable X .

(b) If X is G-measurable, then
IE�X jG� � X�

Proof: The partial averaging property holds trivially when Y is replaced by X . And since X
is G-measurable, X satisfies the requirement (a) of a conditional expectation as well.

If the information content of G is sufficient to determine X , then the best estimate of X based
on G is X itself.

(c) (Linearity)
IE�a�X� � a�X�jG� � a�IE�X�jG� � a�IE�X�jG��

(d) (Positivity) If X � � almost surely, then

IE�X jG� � ��

Proof: TakeA � f� � 	� IE�X jG���� � �g. This set is inG since IE�X jG� isG-measurable.
Partial averaging implies

R
A IE�X jG�dIP �

R
AXdIP . The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unless IP �A� � �. Therefore,
IP �A� � �.
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(h) (Jensen’s Inequality) If � � R�R is convex and IEj��X�j��, then

IE���X�jG� � ��IE�X jG���

Recall the usual Jensen’s Inequality: IE��X� � ��IE�X���

(i) (Tower Property) If H is a sub-�-algebra of G, then

IE�IE�X jG�jH� � IE�X jH��

H is a sub-�-algebra of G means that G contains more information thanH. If we estimate X
based on the information in G, and then estimate the estimator based on the smaller amount
of information in H, then we get the same result as if we had estimated X directly based on
the information inH.

(j) (Taking out what is known) If Z is G-measurable, then

IE�ZX jG� � Z�IE�X jG��

When conditioning on G, the G-measurable random variable Z acts like a constant.

Proof: Let Z be a G-measurable random variable. A random variable Y is IE�ZX jG� if and
only if

(a) Y is G-measurable;

(b)
R
A Y dIP �

R
A ZXdIP� �A � G.

Take Y � Z�IE�X jG�. Then Y satisfies (a) (a product of G-measurable random variables is
G-measurable). Y also satisfies property (b), as we can check below:Z

A
Y dIP � IE�IA�Y �

� IE
IAZIE�X jG��
� IE
IAZ�X � ((b’) with V � IAZ

�
Z
A
ZXdIP�

(k) (Role of Independence) If H is independent of ����X��G�, then

IE�X j��G�H�� � IE�X jG��

In particular, if X is independent of H, then

IE�X jH� � IE�X��

If H is independent of X and G, then nothing is gained by including the information content
of H in the estimation of X .
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2.3.5 Examples from the Binomial Model

Recall that F� � f��AH� AT �	g. Notice that IE�S�jF�� must be constant on AH and AT .

Now since IE�S�jF�� must satisfy the partial averaging property,Z
AH

IE�S�jF��dIP �

Z
AH

S�dIP�

Z
AT

IE�S�jF��dIP �

Z
AT

S�dIP�

We compute Z
AH

IE�S�jF��dIP � IP �AH ��IE�S�jF�����

� pIE�S�jF������ �� � AH �

On the other hand, Z
AH

S�dIP � p�u�S� � pqudS��

Therefore,
IE�S�jF����� � pu�S� � qudS�� �� � AH �

We can also write

IE�S�jF����� � pu�S� � qudS�

� �pu� qd�uS�

� �pu� qd�S����� �� � AH

Similarly,
IE�S�jF����� � �pu� qd�S����� �� � AT �

Thus in both cases we have

IE�S�jF����� � �pu� qd�S����� �� � 	�

A similar argument one time step later shows that

IE�S�jF����� � �pu� qd�S�����

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

IE
IE�S�jF��jF�� � IE
�pu� qd�S�jF��

� �pu� qd�IE�S�jF�� (linearity)

� �pu� qd��S��

This final expression is IE�S�jF��.
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2.4 Martingales

The ingredients are:

� A probability space �	�F� IP �.
� A sequence of �-algebras F��F�� � � � �Fn, with the property that F � � F� � � � � � Fn �
F . Such a sequence of �-algebras is called a filtration.

� A sequence of random variables M��M�� � � � �Mn. This is called a stochastic process.

Conditions for a martingale:

1. Each Mk is F k-measurable. If you know the information in Fk, then you know the value of
Mk. We say that the process fMkg is adapted to the filtration fF kg.

2. For each k, IE�Mk��jFk� � Mk . Martingales tend to go neither up nor down.

A supermartingale tends to go down, i.e. the second condition above is replaced by IE�M k��jFk� �
Mk; a submartingale tends to go up, i.e. IE�Mk��jFk� �Mk.

Example 2.3 (Example from the binomial model.)For k � �� � we already showed that

IE�Sk��jFk� � �pu� qd�Sk�

For k � �, we set F� � f���g, the “trivial �-algebra”. This �-algebra contains no information, and any
F�-measurable random variable must be constant (nonrandom). Therefore, by definition, IE�S�jF�� is that
constant which satisfies the averaging propertyZ

�
IE�S�jF��dIP �

Z
�
S�dIP�

The right hand side is IES� � �pu� qd�S�, and so we have

IE�S�jF�� � �pu� qd�S��

In conclusion,

� If �pu� qd� � � then fSk�Fk� k � �� �� �� 	g is a martingale.

� If �pu� qd� � � then fSk�Fk� k � �� �� �� 	g is a submartingale.

� If �pu� qd� � � then fSk�Fk� k � �� �� �� 	g is a supermartingale.



Chapter 3

Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model

Please see:

� Cox, Ross and Rubinstein, J. Financial Economics, 7(1979), 229–263, and

� Cox and Rubinstein (1985), Options Markets, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Suppose u � �� d � ��
� r � �
�(interest rate), S� � 
�. (In this
and all examples, the interest rate quoted is per unit time, and the stock prices S�� S�� � � � are indexed by the
same time periods). We know that

S���� �

�
��� if �� � H
�
 if �� � T

Find the value at time zero of a call option to buy one share of stock at time 1 for $50 (i.e. the strike price is
$50).

The value of the call at time 1 is

V���� � �S���� � 
��� �

�

� if �� � H
� if �� � T

Suppose the option sells for $20 at time 0. Let us construct a portfolio:

1. Sell 3 options for $20 each. Cash outlay is ��
��
2. Buy 2 shares of stock for $50 each. Cash outlay is $100.

3. Borrow $40. Cash outlay is �����
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This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

�� � H �� � T
Pay off option ��
� ��
Sell stock ����� ��
�
Pay off debt �
� �
�

�� �� � � �� ��
�� ��

The arbitrage pricing theory (APT) value of the option at time 0 is V� � ��.

Assumptions underlying APT:

� Unlimited short selling of stock.

� Unlimited borrowing.

� No transaction costs.

� Agent is a “small investor”, i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilities of H
and T .

3.2 General one-step APT

Suppose a derivative security pays off the amount V� at time 1, where V� is an F�-measurable
random variable. (This measurability condition is important; this is why it does not make sense
to use some stock unrelated to the derivative security in valuing it, at least in the straightforward
method described below).

� Sell the security for V� at time 0. (V� is to be determined later).

� Buy �� shares of stock at time 0. (�� is also to be determined later)

� Invest V� � ��S� in the money market, at risk-free interest rate r. (V� � ��S� might be
negative).

� Then wealth at time 1 is

X�
�
� ��S� � �� � r��V����S��

� �� � r�V� ����S� � �� � r�S���

� We want to choose V� and �� so that

X� � V�

regardless of whether the stock goes up or down.
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The last condition above can be expressed by two equations (which is fortunate since there are two
unknowns):

�� � r�V�� ���S��H�� �� � r�S�� � V��H� (2.1)

�� � r�V� ����S��T �� �� � r�S�� � V��T � (2.2)

Note that this is where we use the fact that the derivative security value Vk is a function of Sk ,
i.e., when Sk is known for a given �, Vk is known (and therefore non-random) at that � as well.
Subtracting the second equation above from the first gives

�� �
V��H�� V��T �

S��H�� S��T �
� (2.3)

Plug the formula (2.3) for �� into (2.1):

�� � r�V� � V��H�����S��H�� �� � r�S��

� V��H�� V��H�� V��T �

�u� d�S�
�u� �� r�S�

�
�

u � d

�u� d�V��H�� �V��H�� V��T ���u� �� r��

�
� � r � d

u � d
V��H� �

u� �� r

u � d
V��T ��

We have already assumed u 	 d 	 �. We now also assume d � � � r � u (otherwise there would
be an arbitrage opportunity). Define

�p
�
�

� � r � d

u� d
� �q

�
�
u� �� r

u� d
�

Then �p 	 � and �q 	 �. Since �p � �q � �, we have � � �p � � and �q � � � �p. Thus, �p� �q are like
probabilities. We will return to this later. Thus the price of the call at time 0 is given by

V� �
�

�� r

�pV��H� � �qV��T ��� (2.4)

3.3 Risk-Neutral Probability Measure

Let 	 be the set of possible outcomes from n coin tosses. Construct a probability measure fIP on 	
by the formula fIP ���� ��� � � � � �n�

�
� �p�fj��j�Hg�q�fj��j�Tg

fIP is called the risk-neutral probability measure. We denote by fIE the expectation under fIP . Equa-
tion 2.4 says

V� � fIE � �

� � r
V�

�
�
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Theorem 3.11 UnderfIP , the discounted stock price process f���r��kSk�Fkgnk�� is a martingale.

Proof:

fIE
�� � r���k���Sk��jFk �

� �� � r���k�����pu� �qd�Sk

� �� � r���k���
�
u�� � r� d�

u� d
�
d�u� �� r�

u � d

�
Sk

� �� � r���k���
u � ur � ud� du� d� dr

u� d
Sk

� �� � r���k���
�u� d��� � r�

u� d
Sk

� �� � r��kSk�

3.3.1 Portfolio Process

The portfolio process is � � ������� � � � ��n���, where

� �k is the number of shares of stock held between times k and k � �.

� Each �k is Fk-measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Process�

� Start with nonrandom initial wealth X�, which need not be 0.

� Define recursively

Xk�� � �kSk�� � �� � r��Xk ��kSk� (3.1)

� �� � r�Xk ��k�Sk�� � �� � r�Sk�� (3.2)

� Then each Xk is Fk-measurable.

Theorem 3.12 UnderfIP , the discounted self-financing portfolioprocess value f�� � r��kXk�Fkgnk��
is a martingale.

Proof: We have

�� � r���k���Xk�� � �� � r��kXk � �k

�
�� � r���k���Sk�� � �� � r��kSk

�
�
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Therefore, fIE
�� � r���k���Xk��jFk�

� fIE
�� � r��kXkjFk�

�fIE
�� � r���k����kSk��jFk�

�fIE
�� � r��k�kSkjFk�

� �� � r��kXk (requirement (b) of conditional exp.)

��k
fIE
�� � r���k���Sk��jFk� (taking out what is known)

��� � r��k�kSk (property (b))

� �� � r��kXk (Theorem 3.11)

3.4 Simple European Derivative Securities

Definition 3.1 () A simple European derivative security with expiration timem is anFm-measurable
random variable Vm. (Here, m is less than or equal to n, the number of periods/coin-tosses in the
model).

Definition 3.2 () A simple European derivative security Vm is said to be hedgeable if there exists
a constant X� and a portfolio process � � ���� � � � ��m��� such that the self-financing value
process X�� X�� � � � � Xm given by (3.2) satisfies

Xm��� � Vm���� �� � 	�

In this case, for k � �� �� � � � � m, we call Xk the APT value at time k of Vm.

Theorem 4.13 (Corollary to Theorem 3.12)If a simple European security Vm is hedgeable, then
for each k � �� �� � � � � m, the APT value at time k of Vm is

Vk
�
� �� � r�kfIE
�� � r��mVmjFk�� (4.1)

Proof: We first observe that if fMk� Fk� k � �� �� � � � � mg is a martingale, i.e., satisfies the
martingale property fIE
Mk��jFk� � Mk

for each k � �� �� � � � � m� �, then we also havefIE
MmjFk� � Mk � k � �� �� � � � � m� �� (4.2)

When k � m� �, the equation (4.2) follows directly from the martingale property. For k � m� �,
we use the tower property to writefIE
MmjFm��� � fIE
fIE
MmjFm���jFm���

� fIE
Mm��jFm���
� Mm���
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We can continue by induction to obtain (4.2).

If the simple European security Vm is hedgeable, then there is a portfolio process whose self-
financing value process X�� X�� � � � � Xm satisfies Xm � Vm. By definition, Xk is the APT value
at time k of Vm. Theorem 3.12 says that

X�� ��� r���X�� � � � � �� � r��mXm

is a martingale, and so for each k,

�� � r��kXk � fIE
�� � r��mXmjFk� � fIE
�� � r��mVmjFk ��

Therefore,
Xk � �� � r�kfIE
�� � r��mVmjFk ��

3.5 The Binomial Model is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer
is “yes”, the model is said to be complete. If the answer is “no”, the model is called incomplete.

Theorem 5.14 The binomial model is complete. In particular, let Vm be a simple European deriva-
tive security, and set

Vk���� � � � � �k� � �� � r�kfIE
�� � r��mVmjFk����� � � � � �k�� (5.1)

�k���� � � � � �k� �
Vk������ � � � � �k� H�� Vk������ � � � � �k� T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
� (5.2)

Starting with initial wealth V� � fIE
�� � r��mVm�, the self-financing value of the portfolio process
������ � � � ��m�� is the process V�� V�� � � � � Vm.

Proof: Let V�� � � � � Vm�� and ��� � � � ��m�� be defined by (5.1) and (5.2). Set X� � V� and
define the self-financing value of the portfolio process ��� � � � ��m�� by the recursive formula 3.2:

Xk�� � �kSk�� � �� � r��Xk ��kSk��

We need to show that

Xk � Vk� �k � f�� �� � � � � mg� (5.3)

We proceed by induction. For k � �, (5.3) holds by definition of X�. Assume that (5.3) holds for
some value of k, i.e., for each fixed ���� � � � � �k�, we have

Xk���� � � � � �k� � Vk���� � � � � �k��
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We need to show that

Xk������ � � � � �k� H� � Vk������ � � � � �k� H��

Xk������ � � � � �k� T � � Vk������ � � � � �k� T ��

We prove the first equality; the second can be shown similarly. Note first that

fIE
�� � r���k���Vk��jFk� � fIE
fIE
�� � r��mVmjFk���jFk�

� fIE
�� � r��mVmjFk�

� �� � r��kVk

In other words, f�� � r��kVkgnk�� is a martingale under fIP . In particular,

Vk���� � � � � �k� � fIE
�� � r���Vk��jFk����� � � � � �k�

�
�

� � r
��pVk������ � � � � �k� H� � �qVk������ � � � � �k� T �� �

Since ���� � � � � �k� will be fixed for the rest of the proof, we simplify notation by suppressing these
symbols. For example, we write the last equation as

Vk �
�

� � r
��pVk���H� � �qVk���T �� �

We compute

Xk���H�

� �kSk���H� � �� � r��Xk ��kSk�

� �k �Sk���H�� �� � r�Sk� � �� � r�Vk

�
Vk���H�� Vk���T �

Sk���H�� Sk���T �
�Sk���H�� �� � r�Sk�

��pVk���H� � �qVk���T �

�
Vk���H�� Vk���T �

uSk � dSk
�uSk � �� � r�Sk�

��pVk���H� � �qVk���T �

� �Vk���H�� Vk���T ��

�
u� �� r

u� d

�
� �pVk���H� � �qVk���T �

� �Vk���H�� Vk���T �� �q � �pVk���H� � �qVk���T �

� Vk���H��
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Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall that Vm is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vk � �� � r�kfIE
�� � r��mVmjFk�� k � �� �� � � � � m� ��

�k���� � � � � �k� �
Vk������ � � � � �k� H�� Vk������ � � � � �k� T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
� k � �� �� � � � � m� ��

Example 4.1 (Lookback Option) u � �� d � ��
� r � ���
� S� � �� �p � ��r�d
u�d � ��
� �q � � � �p � ��
�

Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

V� � max
��k��

�Sk � 
���

Notice that
V��HH� � ��� V��HT � � 	 �� V��TH� � �� V��TT � � ��

The payoff is thus “path dependent”. Working backward in time, we have:

V��H� �
�

� � r
��pV��HH� � �qV��HT �� �

�



���
� �� � ��
� 	� � 
�
��

V��T � �
�



���
� � � ��
� �� � ��

V� �
�



���
� 
�
� � ��
� �� � �����

Using these values, we can now compute:

�� �
V��H� � V��T �

S��H� � S��T �
� ���	�

���H� �
V��HH�� V��HT �

S��HH�� S��HT �
� ��
��
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 4.1: Stock price underlying the lookback option.

���T � �
V��TH�� V��TT �

S��TH�� S��TT �
� ��

Working forward in time, we can check that

X��H� � ��S��H� � �� � r��X� ���S�� � 
�
�� V��H� � 
�
��

X��T � � ��S��T � � �� � r��X� ���S�� � ����� V��T � � ��

X��HH� � ���H�S��HH� � �� � r��X��H�����H�S��H�� � ������ V��HH� � ���

etc.

Example 4.2 (European Call) Let u � �� d � �
� � r �

�
� � S� � �� �p � �q � �

� , and consider a European call
with expiration time 2 and payoff function

V� � �S� � 
���

Note that
V��HH� � ��� V��HT � � V��TH� � �� V��TT � � ��

V��H� �
�



��� ��� �

�
� ��� � ����

V��T � �
�



��� �� �

�
� ��� � �

V� �
�



��� � ���� � �

� � �� � ���
�

Define vk�x� to be the value of the call at time k when Sk � x. Then

v��x� � �x� 
��

v��x� �
�



���v���x� �

�
�v��x�����

v��x� �
�



���v���x� �

�
�v��x�����
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In particular,
v���
� � ��� v���� � �� v���� � ��

v���� �
�



��� ��� �

�
� ��� � �����

v���� �
�



��� �� �

�
� ��� � ��

v� �
�



��� � ���� � �

� � �� � ���
�

Let �k�x� be the number of shares in the hedging portfolio at time k when Sk � x. Then

�k�x� �
vk����x�� vk���x���

�x� x��
� k � �� ��

4.2 Computational Issues

For a model with n periods (coin tosses), 	 has �n elements. For period k, we must solve �k

equations of the form

Vk���� � � � � �k� �
�

� � r

�pVk������ � � � � �k� H� � �qVk������ � � � � �k� T ���

For example, a three-month option has 66 trading days. If each day is taken to be one period, then
n � �� and �

 � �� ����.

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that

V� � �� � r��nfIEVn�
and so we could compute V� by simulation. More specifically, we could simulate n coin
tosses � � ���� � � � � �n� under the risk-neutral probability measure. We could store the
value of Vn���. We could repeat this several times and take the average value of Vn as an
approximation to fIEVn.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We’ll get to that.

3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has
three possible values v������ v����� v����, rather than four possible valuesV��HH�� V��HT �� V��TH�� V��TT �.
If there were 66 periods, then in period 66 there would be 67 possible stock price values (since
the final price depends only on the number of up-ticks of the stock price – i.e., heads – so far)
and hence only 67 possible option values, rather than �

 � �� ����.



70

4.3 Markov Processes

Technical condition always present:We consider only functions on IR and subsets of IR which are
Borel-measurable, i.e., we only consider subsetsA of IR that are in B and functions g � IR�IR such
that g�� is a function B�B.

Definition 4.1 () Let �	�F�P� be a probability space. Let fFkgnk�� be a filtration under F . Let
fXkgnk�� be a stochastic process on �	�F�P�. This process is said to be Markov if:

� The stochastic process fXkg is adapted to the filtration fF kg, and

� (The Markov Property). For each k � �� �� � � � � n� �, the distribution of Xk�� conditioned
on Fk is the same as the distribution of Xk�� conditioned on Xk.

4.3.1 Different ways to write the Markov property

(a) (Agreement of distributions). For every A � B �
� B�IR�, we have

IP �Xk�� � AjFk� � IE
IA�Xk���jFk �

� IE
IA�Xk���jXk�

� IP 
Xk�� � AjXk��

(b) (Agreement of expectations of all functions). For every (Borel-measurable) function h � IR�IR
for which IEjh�Xk���j ��, we have

IE
h�Xk���jFk� � IE
h�Xk���jXk��

(c) (Agreement of Laplace transforms.) For every u � IR for which IEeuXk�� ��, we have

IE

�
euXk��

����Fk

�
� IE

�
euXk��

����Xk

�
�

(If we fix u and define h�x� � eux, then the equations in (b) and (c) are the same. However in
(b) we have a condition which holds for every function h, and in (c) we assume this condition
only for functionsh of the form h�x� � eux. A main result in the theory of Laplace transforms
is that if the equation holds for every h of this special form, then it holds for every h, i.e., (c)
implies (b).)

(d) (Agreement of characteristic functions) For every u � IR, we have

IE
h
eiuXk�� jFk

i
� IE

h
eiuXk�� jXk

i
�

where i �
p��. (Since jeiuxj � j cosx�sin xj � � we don’t need to assume that IEjeiuxj �

�.)
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Remark 4.1 In every case of the Markov properties where IE
� � � jXk� appears, we could just as
well write g�Xk� for some function g. For example, form (a) of the Markov property can be restated
as:

For every A � B, we have

IP �Xk�� � AjFk� � g�Xk��

where g is a function that depends on the set A.

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a “current” time k and one future time k � �. Conditions (a)-(d) are also equivalent to conditions
involving the process at time k and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov property.Let j be a positive integer.

(A) For every Ak�� � IR� � � � �Ak�j � IR,

IP 
Xk�� � Ak��� � � � � Xk�j � Ak�j jFk� � IP 
Xk�� � Ak��� � � � � Xk�j � Ak�j jXk��

(A’) For every A � IRj ,

IP 
�Xk��� � � � � Xk�j� � AjFk� � IP 
�Xk��� � � � � Xk�j� � AjXk��

(B) For every function h � IRj�IR for which IEjh�Xk��� � � � � Xk�j�j ��, we have

IE
h�Xk��� � � � � Xk�j�jFk� � IE
h�Xk��� � � � � Xk�j�jXk��

(C) For every u � �uk��� � � � � uk�j� � IRj for which IEjeuk��Xk�������uk�jXk�j j ��, we have

IE
euk��Xk�������uk�jXk�j jFk� � IE
euk��Xk�������uk�jXk�j jXk��

(D) For every u � �uk��� � � � � uk�j� � IRj we have

IE
ei�uk��Xk�������uk�jXk�j�jFk� � IE
ei�uk��Xk�������uk�jXk�j�jXk��

Once again, every expression of the form IE�� � � jXk� can also be written as g�Xk�, where the
function g depends on the random variable represented by � � � in this expression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) �� (A). (with j � � in (A)) Assume (b). Then (a) also holds (take h � IA).
Consider

IP 
Xk�� � Ak��� Xk�� � Ak��jFk�

� IE
IAk��
�Xk���IAk��

�Xk���jFk�

(Definition of conditional probability)

� IE
IE
IAk��
�Xk���IAk��

�Xk���jFk���jFk �

(Tower property)

� IE
IAk��
�Xk����IE
IAk��

�Xk���jFk���jFk�

(Taking out what is known)

� IE
IAk��
�Xk����IE
IAk��

�Xk���jXk���jFk �

(Markov property, form (a).)

� IE
IAk��
�Xk����g�Xk���jFk�

(Remark 4.1)

� IE
IAk��
�Xk����g�Xk���jXk�

(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditioned on ��X k�, and
use the tower property on the left, to obtain

IP 
Xk�� � Ak��� Xk�� � Ak��jXk� � IE
IAk��
�Xk����g�Xk���jXk�� (3.1)

Since both
IP 
Xk�� � Ak��� Xk�� � Ak��jFk �

and
IP 
Xk�� � Ak��� Xk�� � Ak��jXk�

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A) with j � �.

Example 4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove this later. If we want to estimate the distribution of Sk�� based on the information in
Fk, the only relevant piece of information is the value of Sk. For example,eIE�Sk��jFk� � ��pu� �qd�Sk � �� � r�Sk (3.2)

is a function of Sk. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that for any function h, eIE�h�Sk���jFk�

is a function of Sk. Equation (3.2) is the case of h�x� � x.

Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

V�� �
�

	
�S�� � S�� � S����
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The value of this security at time 50 is

V�� � �� � r��� eIE��� � r����V��jF���

� �� � r���� eIE�V��jS����

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, the F��-measurable random variable V�� can be written as

V������ � � � � ���� � g�S������ � � � � �����

for some function g, which we can determine with a bit of work.

4.4 Showing that a process is Markov

Definition 4.2 (Independence)Let �	�F �P� be a probability space, and let G and H be sub-�-
algebras of F . We say that G and H are independent if for every A � G and B � H, we have

IP �A 	 B� � IP �A�IP �B��

We say that a random variable X is independent of a �-algebra G if ��X�, the �-algebra generated
by X , is independent of G.

Example 4.4 Consider the two-period binomial model. Recall that F � is the �-algebra of sets determined
by the first toss, i.e., F� contains the four sets

AH
�
� fHH�HTg� AT

�
� fTH� TTg� �� ��

Let H be the �-algebra of sets determined by the second toss, i.e., H contains the four sets

fHH�THg� fHT� TTg� ����

Then F� and H are independent. For example, if we take A � fHH�HTg from F� and B � fHH�THg
from H, then IP �A �B� � IP �HH� � p� and

IP �A�IP �B� � �p� � pq��p� � pq� � p��p� q�� � p��

Note that F� and S� are not independent (unless p � � or p � �). For example, one of the sets in ��S�� is
f��S���� � u�S�g � fHHg. If we take A � fHH�HTg from F� and B � fHHg from ��S��, then
IP �A �B� � IP �HH� � p�, but

IP �A�IP �B� � �p� � pq�p� � p��p� q� � p��

The following lemma will be very useful in showing that a process is Markov:

Lemma 4.15 (Independence Lemma)Let X and Y be random variables on a probability space
�	�F�P�. Let G be a sub-�-algebra of F . Assume
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� X is independent of G;

� Y is G-measurable.

Let f�x� y� be a function of two variables, and define

g�y�
�
� IEf�X� y��

Then
IE
f�X� Y �jG� � g�Y ��

Remark. In this lemma and the following discussion, capital letters denote random variables and
lower case letters denote nonrandom variables.

Example 4.5 (Showing the stock price process is Markov)Consider an n-period binomial model. Fix a

time k and define X
�
�

Sk��
Sk

and G �
� Fk. Then X � u if �k�� � H and X � d if �k�� � T . Since X

depends only on the �k� ��st toss, X is independent of G. Define Y
�
� Sk, so that Y is G-measurable. Let h

be any function and set f�x� y�
�
� h�xy�. Then

g�y�
�
� IEf�X� y� � IEh�Xy� � ph�uy� � qh�dy��

The Independence Lemma asserts that

IE�h�Sk���jFk� � IE�h

�
Sk��
Sk

�Sk

�
jFk�

� IE�f�X�Y �jG�
� g�Y �

� ph�uSk� � qh�dSk��

This shows the stock price is Markov. Indeed, if we condition both sides of the above equation on ��Sk� and
use the tower property on the left and the fact that the right hand side is ��Sk�-measurable, we obtain

IE�h�Sk���jSk� � ph�uSk� � qh�dSk��

Thus IE�h�Sk���jFk� and IE�h�Sk���jXk� are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
IE�h�Sk���jFk� as a function of Sk. This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider an n-period binomial model. Define the running maximum of the stock price to be

Mk
�
� max

��j�k
Sj �

Consider a simple European derivative security with payoff at time n of vn�Sn�Mn�.

Examples:
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� vn�Sn�Mn� � �Mn �K�� (Lookback option);

� vn�Sn�Mn� � IMn	B�Sn �K�� (Knock-in Barrier option).

Lemma 5.16 The two-dimensional process f�Sk�Mk�gnk�� is Markov. (Here we are working under
the risk-neutral measure IP, although that does not matter).

Proof: Fix k. We have
Mk�� � Mk � Sk���

where � indicates the maximum of two quantities. Let Z
�
�
Sk��
Sk

, so

fIP �Z � u� � �p� fIP �Z � d� � �q�

and Z is independent of F k . Let h�x� y� be a function of two variables. We have

h�Sk���Mk��� � h�Sk���Mk � Sk���
� h�ZSk�Mk � �ZSk���

Define

g�x� y�
�
� fIEh�Zx� y � �Zx��

� �ph�ux� y � �ux�� � �qh�dx� y � �dx���

The Independence Lemma implies

fIE
h�Sk���Mk���jFk � � g�Sk�Mk� � �ph�uSk�Mk � �uSk�� � �qh�dSk�Mk��

the second equality being a consequence of the fact that Mk � dSk � Mk . Since the RHS is a
function of �Sk�Mk�, we have proved the Markov property (form (b)) for this two-dimensional
process.

Continuing with the exotic option of the previous Lemma... Let Vk denote the value of the derivative
security at time k. Since �� � r��kVk is a martingale under fIP , we have

Vk �
�

� � r
fIE
Vk��jFk�� k � �� �� � � � � n� ��

At the final time, we have
Vn � vn�Sn�Mn��

Stepping back one step, we can compute

Vn�� �
�

�� r
fIE
vn�Sn�Mn�jFn���

�
�

� � r

�pvn�uSn��� uSn�� �Mn��� � �qvn�dSn���Mn���� �
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This leads us to define

vn���x� y�
�
�

�

�� r

�pvn�ux� ux � y� � �qvn�dx� y��

so that
Vn�� � vn���Sn���Mn����

The general algorithm is

vk�x� y� �
�

� � r

�
�pvk���ux� ux � y� � �qvk���dx� y�

�
�

and the value of the option at time k is vk�Sk�Mk�. Since this is a simple European option, the
hedging portfolio is given by the usual formula, which in this case is

�k �
vk���uSk� �uSk��Mk�� vk���dSk�Mk�

�u� d�Sk
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Stopping Times and American Options

5.1 American Pricing

Let us first review the European pricing formula in a Markov model . Consider the Binomial
model with n periods. Let Vn � g�Sn� be the payoff of a derivative security. Define by backward
recursion:

vn�x� � g�x�

vk�x� �
�

� � r

�pvk���ux� � �qvk���dx���

Then vk�Sk� is the value of the option at time k, and the hedging portfolio is given by

�k �
vk���uSk�� vk���dSk�

�u� d�Sk
� k � �� �� �� � � � � n� ��

Now consider an American option. Again a function g is specified. In any period k, the holder
of the derivative security can “exercise” and receive payment g�Sk�. Thus, the hedging portfolio
should create a wealth process which satisfies

Xk � g�Sk�� �k� almost surely.

This is because the value of the derivative security at time k is at least g�Sk�, and the wealth process
value at that time must equal the value of the derivative security.

American algorithm.

vn�x� � g�x�

vk�x� � max

�
�

� � r
��pvk���ux� � �qvk���dx��� g�x�

�
Then vk�Sk� is the value of the option at time k.

77
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2

Figure 5.1: Stock price and final value of an American put option with strike price 5.

Example 5.1 See Fig. 5.1. S� � �� u � �� d � �
� � r �

�
� � �p � �q � �

� � n � �. Set v��x� � g�x� � �
 � x��.
Then

v���� � max

�
�




�
�
�
�� � �

�
��
�
� �
� ���

�
� max

�
�



� �

�
� ����

v���� � max

�
�




�
�
� �� �

�
� ��
�
� �
� ���

�
� maxf�� 	g
� 	���

v���� � max

�
�




�
�
� ������ �

�
� ��	���

�
� �
� ���

�
� maxf��	
� �g
� ��	


Let us now construct the hedging portfolio for this option. Begin with initial wealth X � � ��	
. Compute
�� as follows:

���� � v��S��H��

� S��H��� � �� � r��X� ���S��

� ��� �



�
���	
� ����

� 	�� � ���� �	 �� � ����	
	��� � v��S��T ��

� S��T ��� � �� � r��X� ���S��

� ��� �



�
���	
� ����

� �	�� � ���� �	 �� � ����	
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Using �� � ����	 results in

X��H� � v��S��H�� � ����� X��T � � v��S��T �� � 	���

Now let us compute �� (Recall that S��T � � �):

� � v����

� S��TH����T � � �� � r��X��T � ����T �S��T ��

� ����T � �



�
�	� ����T ��

� ��
���T � � 	��
 �	 ���T � � ����	
� � v����

� S��TT ����T � � �� � r��X��T � ����T �S��T ��

� ���T � �



�
�	� ����T ��

� ���
���T � � 	��
 �	 ���T � � ����


We get different answers for ���T �! If we had X��T � � �, the value of the European put, we would have

� � ��
���T � � ��
 �	 ���T � � ���

� � ���
���T � � ��
 �	 ���T � � ���

5.2 Value of Portfolio Hedging an American Option

Xk�� � �kSk�� � �� � r��Xk � Ck ��kSk�

� �� � r�Xk ��k�Sk�� � �� � r�Sk�� �� � r�Ck

Here, Ck is the amount “consumed” at time k.

� The discounted value of the portfolio is a supermartingale.

� The value satisfies Xk � g�Sk�� k � �� �� � � � � n.

� The value process is the smallest process with these properties.

When do you consume? If

fIE��� � r���k���vk���Sk���jFk� � �� � r��kvk�Sk��

or, equivalently, fIE�
�

� � r
vk���Sk���jFk� � vk�Sk�
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and the holder of the American option does not exercise, then the seller of the option can consume
to close the gap. By doing this, he can ensure that Xk � vk�Sk� for all k, where vk is the value
defined by the American algorithm in Section 5.1.

In the previous example, v��S��T �� � �� v��S��TH�� � � and v��S��TT �� � �. Therefore,

fIE

�

� � r
v��S��jF���T � �

�

�

h
�
� �� �

�
� ��
i

�
�

�

�
�

�

�
� ��

v��S��T �� � ��

so there is a gap of size 1. If the owner of the option does not exercise it at time one in the state
�� � T , then the seller can consume 1 at time 1. Thereafter, he uses the usual hedging portfolio

�k �
vk���uSk�� vk���dSk�

�u� d�Sk

In the example, we have v��S��T �� � g�S��T ��. It is optimal for the owner of the American option
to exercise whenever its value vk�Sk� agrees with its intrinsic value g�Sk�.

Definition 5.1 (Stopping Time) Let �	�F�P� be a probability space and let fFkgnk�� be a filtra-
tion. A stopping time is a random variable � � 	�f�� �� �� � � � � ng � f�g with the property that:

f� � 	� ���� � kg � Fk� �k � �� �� � � � � n���

Example 5.2 Consider the binomial model with n � �� S� � �� u � �� d � �
� � r � �

� , so �p � �q � �
� . Let

v�� v�� v� be the value functions defined for the American put with strike price 5. Define

� ��� � minfk� vk�Sk� � �
� Sk�
�g�

The stopping time � corresponds to “stopping the first time the value of the option agrees with its intrinsic
value”. It is an optimal exercise time. We note that

� ��� �

�
� if � � AT

� if � � AH

We verify that � is indeed a stopping time:

f�� � ��� � �g � � � F�

f�� � ��� � �g � AT � F�

f�� � ��� � �g � AH � F�

Example 5.3 (A random time which is not a stopping time) In the same binomial model as in the previous
example, define

���� � minfk�Sk��� � m����g�
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where m�
�
� min��j�� Sj . In other words, � stops when the stock price reaches its minimum value. This

random variable is given by

���� �

�
� � if � � AH �
� if � � TH�
� if � � TT

We verify that � is not a stopping time:

f�� ���� � �g � AH �� F�

f�� ���� � �g � fTHg �� F�

f�� ���� � �g � fTTg � F�

5.3 Information up to a Stopping Time

Definition 5.2 Let � be a stopping time. We say that a set A � 	 is determined by time � provided
that

A 	 f�� ���� � kg � Fk � �k�
The collection of sets determined by � is a �-algebra, which we denote by F � .

Example 5.4 In the binomial model considered earlier, let

� � minfk� vk�Sk� � �
� Sk�
�g�

i.e.,

� ��� �

�
� if � � AT

� if � � AH

The set fHTg is determined by time � , but the set fTHg is not. Indeed,

fHTg � f�� � ��� � �g � � � F�

fHTg � f�� � ��� � �g � � � F�

fHTg � f�� � ��� � �g � fHTg � F�

but
fTHg � f�� � ��� � �g � fTHg �� F��

The atoms of F� are
fHTg� fHHg� AT � fTH� TTg�

Notation 5.1 (Value of Stochastic Process at a Stopping Time)If �	�F�P� is a probability space,
fFkgnk�� is a filtration under F , fXkgnk�� is a stochastic process adapted to this filtration, and � is
a stopping time with respect to the same filtration, then X� is an F� -measurable random variable
whose value at � is given by

X����
�
� X��������
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Theorem 3.17 (Optional Sampling) Suppose that fYk�Fkg�k�� (or fYk �Fkgnk��) is a submartin-
gale. Let � and � be bounded stopping times, i.e., there is a nonrandom number n such that

� � n� � � n� almost surely.

If � � � almost surely, then
Y� � IE�Y�jF���

Taking expectations, we obtain IEY� � IEY�, and in particular,Y� � IEY� � IEY�. If fYk�Fkg�k��
is a supermartingale, then � � � implies Y� � IE�Y�jF� �.
If fYk �Fkg�k�� is a martingale, then � � � implies Y� � IE�Y�jF� �.

Example 5.5 In the example 5.4 considered earlier, we define ���� � � for all � � �. Under the risk-neutral
probability measure, the discounted stock price process ��� �

�kSk is a martingale. We compute

eIE ���



��
S�

����F�

�
�

The atoms of F� are fHHg� fHTg� and AT . Therefore,

eIE ���



��
S�

����F�

�
�HH� �

�
�




��
S��HH��

eIE ���



��
S�

����F�

�
�HT � �

�
�




��
S��HT ��

and for � � AT ,

eIE ���



��
S�

����F�

�
��� � �

�

�
�




��
S��TH� � �

�

�
�




��
S��TT �

� �
� � ��

 � �

� � ��
�

� ��
�

In every case we have gotten (see Fig. 5.2)

eIE ���



��
S�

����F�

�
��� �

�
�




����	
S���	����
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S  = 40

1

2

2

2

2

S  (HH) = 10.24

S  (HT)  = 2.56

S  (TH)  = 2.56

S  (TT)  = 0.64

1S  (T)  = 1.60(4/5)

S  (H) = 6.40(4/5)

(16/25)

(16/25)

(16/25)

(16/25)

Figure 5.2: Illustrating the optional sampling theorem.
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Chapter 6

Properties of American Derivative
Securities

6.1 The properties

Definition 6.1 An American derivative security is a sequence of non-negative random variables
fGkgnk�� such that each Gk is Fk-measurable. The owner of an American derivative security can
exercise at any time k, and if he does, he receives the payment Gk.

(a) The value Vk of the security at time k is

Vk � max
�

�� � r�kfIE
�� � r���G� jFk��

where the maximum is over all stopping times � satisfying � � k almost surely.

(b) The discounted value process f�� � r��kVkgnk�� is the smallest supermartingale which satisfies

Vk � Gk� �k� almost surely.

(c) Any stopping time � which satisfies

V� � fIE
�� � r���G� �

is an optimal exercise time. In particular

�
�
� minfk�Vk � Gkg

is an optimal exercise time.

(d) The hedging portfolio is given by

�k���� � � � � �k� �
Vk������ � � � � �k� H�� Vk������ � � � � �k� T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
� k � �� �� � � � � n� ��
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(e) Suppose for some k and �, we have Vk��� � Gk���. Then the owner of the derivative security
should exercise it. If he does not, then the seller of the security can immediately consume

Vk���� �

� � r
fIE
Vk��jFk����

and still maintain the hedge.

6.2 Proofs of the Properties

Let fGkgnk�� be a sequence of non-negative random variables such that each Gk is Fk-measurable.
Define Tk to be the set of all stopping times � satisfying k � � � n almost surely. Define also

Vk
�
� �� � r�kmax

��Tk
fIE 
�� � r���G� jFk� �

Lemma 2.18 Vk � Gk for every k.

Proof: Take � � Tk to be the constant k.

Lemma 2.19 The process f�� � r��kVkgnk�� is a supermartingale.

Proof: Let �
 attain the maximum in the definition of Vk��, i.e.,

�� � r���k���Vk�� � fIE h�� � r����G��jFk��

i
�

Because �
 is also in Tk, we have

fIE
�� � r���k���Vk��jFk � � fIE hfIE
�� � r���
�
G��jFk���jFk

i
� fIE
�� � r���

�
G��jFk �

� max
��Tk

fIE 
�� � r���G� jFk�

� �� � r��kVk�

Lemma 2.20 If fYkgnk�� is another process satisfying

Yk � Gk� k � �� �� � � � � n� a.s.,

and f�� � r��kYkgnk�� is a supermartingale, then

Yk � Vk� k � �� �� � � � � n� a.s.
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Proof: The optional sampling theorem for the supermartingale f�� � r��kYkgnk�� implies

fIE
�� � r���Y� jFk � � �� � r��kYk � �� � Tk�

Therefore,

Vk � �� � r�k max
��Tk

fIE
�� � r���G� jFk�

� �� � r�k max
��Tk

fIE
�� � r���Y� jFk �

� �� � r��k�� � r�kYk

� Yk�

Lemma 2.21 Define

Ck � Vk � �

� � r
fIE
Vk��jFk �

� �� � r�k
n
�� � r��kVk �fIE
�� � r���k���Vk��jFk �

o
�

Since f�� � r��kVkgnk�� is a supermartingale,Ck must be non-negative almost surely. Define

�k���� � � � � �k� �
Vk������ � � � � �k� H�� Vk������ � � � � �k� T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
�

Set X� � V� and define recursively

Xk�� � �kSk�� � �� � r��Xk � Ck ��kSk��

Then
Xk � Vk �k�

Proof: We proceed by induction on k. The induction hypothesis is that X k � Vk for some
k � f�� �� � � � � n� �g, i.e., for each fixed ���� � � � � �k� we have

Xk���� � � � � �k� � Vk���� � � � � �k��

We need to show that

Xk������ � � � � �k� H� � Vk������ � � � � �k� H��

Xk������ � � � � �k� T � � Vk������ � � � � �k� T ��

We prove the first equality; the proof of the second is similar. Note first that

Vk���� � � � � �k�� Ck���� � � � � �k�

�
�

� � r
fIE
Vk��jFk����� � � � � �k�

�
�

� � r
��pVk������ � � � � �k� H� � �qVk������ � � � � �k� T �� �



88

Since ���� � � � � �k� will be fixed for the rest of the proof, we will suppress these symbols. For
example, the last equation can be written simply as

Vk � Ck �
�

� � r
��pVk���H� � �qVk���T �� �

We compute

Xk���H� � �kSk���H� � �� � r��Xk � Ck ��kSk�

�
Vk���H�� Vk���T �

Sk���H�� Sk���T �
�Sk���H�� �� � r�Sk�

��� � r��Vk � Ck�

�
Vk���H�� Vk���T �

�u� d�Sk
�uSk � �� � r�Sk�

��pVk���H� � �qVk���T �

� �Vk���H�� Vk���T ���q � �pVk���H� � �qVk���T �

� Vk���H��

6.3 Compound European Derivative Securities

In order to derive the optimal stopping time for an American derivative security, it will be useful to
study compound European derivative securities, which are also interesting in their own right.

A compound European derivative security consists of n � � different simple European derivative
securities (with the same underlying stock) expiring at times �� �� � � � � n; the security that expires
at time j has payoff Cj . Thus a compound European derivative security is specified by the process
fCjgnj��, where each Cj is F j-measurable, i.e., the process fCjgnj�� is adapted to the filtration
fFkgnk��.

Hedging a short position (one payment). Here is how we can hedge a short position in the j’th
European derivative security. The value of European derivative security j at time k is given by

V
�j�
k � �� � r�kfIE
�� � r��jCj jFk�� k � �� � � � � j�

and the hedging portfolio for that security is given by

�
�j�
k ���� � � � � �k� �

V
�j�
k������ � � � � �k� H�� V

�j�
k������ � � � � �k� T �

S
�j�
k������ � � � � �k� H�� S

�j�
k������ � � � � �k� T �

� k � �� � � � � j � ��

Thus, starting with wealth V
�j�
� , and using the portfolio ��

�j�
� � � � � ��

�j�
j���, we can ensure that at

time j we have wealth Cj .

Hedging a short position (all payments).Superpose the hedges for the individual payments. In
other words, start with wealth V� �

Pn
j�� V

�j�
� . At each time k � f�� �� � � � � n� �g, first make the

payment Ck and then use the portfolio

�k � �k
�k��� � �k

�k��� � � � �� �k
�n�
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corresponding to all future payments. At the final time n, after making the final payment Cn, we
will have exactly zero wealth.

Suppose you own a compound European derivative securityfCjgnj��. Compute

V� �
nX
j��

V
�j�
� � fIE

�� nX
j��

�� � r��jCj

��
and the hedging portfolio is f�kgn��k�� . You can borrow V� and consume it immediately. This leaves
you with wealth X� � �V�. In each period k, receive the payment Ck and then use the portfolio
��k . At the final time n, after receiving the last payment Cn, your wealth will reach zero, i.e., you
will no longer have a debt.

6.4 Optimal Exercise of American Derivative Security

In this section we derive the optimal exercise time for the owner of an American derivative security.
Let fGkgnk�� be an American derivative security. Let � be the stopping time the owner plans to
use. (We assume that each Gk is non-negative, so we may assume without loss of generality that the
owner stops at expiration – time n– if not before). Using the stopping time � , in period j the owner
will receive the payment

Cj � If��jgGj �

In other words, once he chooses a stopping time, the owner has effectively converted the American
derivative security into a compound European derivative security, whose value is

V
���
� � fIE

�� nX
j��

�� � r��jCj

��
� fIE

�� nX
j��

�� � r��jIf��jgGj

��
� fIE
�� � r���G� ��

The owner of the American derivative security can borrow this amount of money immediately, if
he chooses, and invest in the market so as to exaclty pay off his debt as the payments fCjgnj�� are

received. Thus, his optimal behavior is to use a stopping time � which maximizes V ���
� .

Lemma 4.22 V
���
� is maximized by the stopping time

�
 � minfk�Vk � Gkg�

Proof: Recall the definition

V�
�
� max

��T�
fIE 
�� � r���G� � � max

��T�
V
���
�
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Let � � be a stopping time which maximizes V ���
� , i.e., V� � fIE h�� � r��� �G� �

i
�Because f�� � r��kVkgnk��

is a supermartingale, we have from the optional sampling theorem and the inequality Vk � Gk, the
following:

V� � fIE h�� � r��� �V� �jF�

i
� fIE h�� � r���

�
V� �
i

� fIE h�� � r��� �G� �
i

� V��

Therefore,
V� � fIE h�� � r��� �V� �

i
� fIE h�� � r��� �G� �

i
�

and
V� � � G� �� a.s.

We have just shown that if � � attains the maximum in the formula

V� � max
��T�

fIE 
�� � r���G� � � (4.1)

then
V� � � G� �� a.s.

But we have defined
�
 � minfk�Vk � Gkg�

and so we must have � 
 � � � � n almost surely. The optional sampling theorem implies

�� � r����G�� � �� � r����V��

� fIE h�� � r���
�
V� �jF��

i
� fIE h�� � r��� �G� �jF��

i
�

Taking expectations on both sides, we obtain

fIE h�� � r����G��
i
� fIE h�� � r��� �G� �

i
� V��

It follows that � 
 also attains the maximum in (4.1), and is therefore an optimal exercise time for
the American derivative security.



Chapter 7

Jensen’s Inequality

7.1 Jensen’s Inequality for Conditional Expectations

Lemma 1.23 If � � IR�IR is convex and IEj��X�j��, then

IE
��X�jG� � ��IE
X jG���

For instance, if G � f��	g� ��x� � x�:

IEX� � �IEX���

Proof: Since � is convex we can express it as follows (See Fig. 7.1):

��x� � max
h��

h is linear

h�x��

Now let h�x� � ax� b lie below �. Then,

IE
��X�jG� � IE
aX � bjG�
� aIE
X jG� � b

� h�IE
X jG��

This implies

IE
��X�jG� � max
h��

h is linear

h�IE
X jG��

� ��IE
X jG���
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ϕ

Figure 7.1: Expressing a convex function as a max over linear functions.

Theorem 1.24 If fYkgnk�� is a martingale and � is convex then f��Yk�gnk�� is a submartingale.

Proof:

IE
��Yk���jFk� � ��IE
Yk��jFk ��

� ��Yk��

7.2 Optimal Exercise of an American Call

This follows from Jensen’s inequality.

Corollary 2.25 Given a convex function g � 
�����IR where g��� � �. For instance, g�x� �
�x�K�� is the payoff function for an American call. Assume that r � �. Consider the American
derivative security with payoff g�Sk� in period k. The value of this security is the same as the value
of the simple European derivative security with final payoff g�Sn�, i.e.,fIE 
�� � r��ng�Sn�� � max

�
fIE 
�� � r���g�S��� �

where the LHS is the European value and the RHS is the American value. In particular � � n is an
optimal exercise time.

Proof: Because g is convex, for all � � 
�� �� we have (see Fig. 7.2):

g��x� � g��x� ��� �����

� �g�x� � ��� ���g���

� �g�x��
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( x, g(x))λλ

( x, g( x))λ λ

(x,g(x))

x

Figure 7.2: Proof of Cor. 2.25

Therefore,

g

�
�

� � r
Sk��

�
� �

� � r
g�Sk���

and

fIE h�� � r���k���g�Sk���jFk

i
� �� � r��kfIE � �

� � r
g�Sk���jFk

�
� �� � r��kfIE �g� �

� � r
Sk��

�
jFk

�
� �� � r��kg

�fIE � �

� � r
Sk��jFk

��
� �� � r��kg�Sk��

So f�� � r��kg�Sk�gnk�� is a submartingale. Let � be a stopping time satisfying � � � � n. The
optional sampling theorem implies

�� � r���g�S�� � fIE 
�� � r��ng�Sn�jF� � �

Taking expectations, we obtainfIE 
�� � r���g�S��� � fIE �fIE 
�� � r��ng�Sn�jF� �
�

� fIE 
�� � r��ng�Sn�� �

Therefore, the value of the American derivative security is

max
�
fIE 
�� � r���g�S��� � fIE 
�� � r��ng�Sn�� �

and this last expression is the value of the European derivative security. Of course, the LHS cannot
be strictly less than the RHS above, since stopping at time n is always allowed, and we conclude
that

max
�
fIE 
�� � r���g�S��� � fIE 
�� � r��ng�Sn�� �
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 7.3: A three period binomial model.

7.3 Stopped Martingales

Let fYkgnk�� be a stochastic process and let � be a stopping time. We denote by fYk��gnk�� the
stopped process

Yk��������� k � �� �� � � � � n�

Example 7.1 (Stopped Process)Figure 7.3 shows our familiar 3-period binomial example.

Define

� ��� �

�
� if �� � T�
� if �� � H�

Then

S�����	��� �

���
���
S��HH� � �
 if � � HH�
S��HT � � � if � � HT�
S��T � � � if � � TH�
S��T � � � if � � TT�

Theorem 3.26 A stopped martingale (or submartingale, or supermartingale) is still a martingale
(or submartingale, or supermartingale respectively).

Proof: Let fYkgnk�� be a martingale, and � be a stopping time. Choose some k � f�� �� � � � � ng.
The set f� � kg is in F k, so the set f� � k � �g � f� � kgc is also in F k. We compute

IE
h
Y�k����� jFk

i
� IE

h
If��kgY� � If�	k��gYk��jFk

i
� If��kgY� � If�	k��gIE
Yk��jFk �

� If��kgY� � If�	k��gYk
� Yk�� �
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Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample space 	 is the set of all infinite sequences
� � ���� ��� � � �� of H and T . Assume the tosses are independent, and on each toss, the probability
of H is �

� , as is the probability of T . Define

Yj��� �

	
� if �j � H�
�� if �j � T�

M� � ��

Mk �
kX

j��

Yj � k � �� �� � � �

The process fMkg�k�� is a symmetric random walk (see Fig. 8.1) Its analogue in continuous time is
Brownian motion.

Define
� � minfk � ��Mk � �g�

If Mk never gets to 1 (e.g., � � �TTTT � � � �), then � � �. The random variable � is called the
first passage time to 1. It is the first time the number of heads exceeds by one the number of tails.

8.2 � is almost surely finite

It is shown in a Homework Problem that fMkg�k�� and fNkg�k�� where

Nk � exp

	
�Mk � k log

�
e� � e��

�

�


� e�Mk

�
�

e� � e��

�k
97
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Mk

k

Figure 8.1: The random walk process Mk

e + e
2

θ −θ

θ

1

θ

1

2

e + eθ −θ

Figure 8.2: Illustrating two functions of �

are martingales. (Take Mk � �Sk in part (i) of the Homework Problem and take � � �� in part
(v).) Since N� � � and a stopped martingale is a martingale, we have

� � IENk�� � IE

�
e�Mk��

�
�

e� � e��

�k���
(2.1)

for every fixed � � IR (See Fig. 8.2 for an illustration of the various functions involved). We want
to let k�� in (2.1), but we have to worry a bit that for some sequences � � 	, ���� ��.

We consider fixed � 	 �, so �
�

e� � e��

�
� ��

As k��, �
�

e� � e��

�k��
�
	 �

�
e��e��

��
if � ���

� if � ��
Furthermore, Mk�� � �, because we stop this martingale when it reaches 1, so

� � e�Mk�� � e�
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and

� � e�Mk��
�

�

e� � e��

�k��
� e��

In addition,

lim
k��

e�Mk��
�

�

e� � e��

�k��
�

	
e�
�

�
e��e��

��
if � ���

� if � ���

Recall Equation (2.1):

IE

�
e�Mk��

�
�

e� � e��

�k���
� �

Letting k��, and using the Bounded Convergence Theorem, we obtain

IE

�
e�
�

�

e� � e��

��
If���g

�
� �� (2.2)

For all � � ��� ��, we have

� � e�
�

�

e� � e��

��
If���g � e�

so we can let ��� in (2.2), using the Bounded Convergence Theorem again, to conclude

IE
h
If� ��g

i
� ��

i.e.,
IPf� ��g � ��

We know there are paths of the symmetric random walk fMkg�k�� which never reach level 1. We
have just shown that these paths collectively have no probability. (In our infinite sample space 	,
each path individually has zero probability). We therefore do not need the indicator If� ��g in

(2.2), and we rewrite that equation as

IE

��
�

e� � e��

���
� e�� � (2.3)

8.3 The moment generating function for�

Let � � ��� �� be given. We want to find � 	 � so that

� �

�
�

e� � e��

�
�

Solution:
�e� � �e�� � � � �

��e���� � �e�� � � � �
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e�� �
�� p

�� ��

�
�

We want � 	 �, so we must have e�� � �. Now � � � � �, so

� � ��� ��� � ��� �� � �� ���

�� � �
p
�� ���

��
p
�� �� � ��

�� p
�� ��

�
� �

We take the negative square root:

e�� �
�� p

�� ��

�
�

Recall Equation (2.3):

IE

��
�

e� � e��

���
� e�� � � 	 ��

With � � ��� �� and � 	 � related by

e�� �
�� p

�� ��

�
�

� �

�
�

e� � e��

�
�

this becomes

IE�� �
�� p

�� ��

�
� � � � � �� (3.1)

We have computed the moment generating function for the first passage time to 1.

8.4 Expectation of�

Recall that

IE�� �
��p�� ��

�
� � � � � ��

so

d

d�
IE�� � IE�������

�
d

d�

�
��p�� ��

�

�

�
��p�� ��

��
p
�� ��

�
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Using the Monotone Convergence Theorem, we can let ��� in the equation

IE������� �
��p�� ��

��
p
�� ��

�

to obtain

IE� ���

Thus in summary:

�
�
� minfk�Mk � �g�

IPf� ��g � ��

IE� ���

8.5 The Strong Markov Property

The random walk process fMkg�k�� is a Markov process, i.e.,

IE 
 random variable depending only on Mk���Mk��� � � � j Fk �

� IE 
 same random variable jMk� �

In discrete time, this Markov property implies the Strong Markov property:

IE 
 random variable depending only on M����M���� � � � j F� �

� IE 
 same random variable j M� � �

for any almost surely finite stopping time � .

8.6 General First Passage Times

Define

�m
�
� minfk � ��Mk � mg� m � �� �� � � �

Then �� � �� is the number of periods between the first arrival at level 1 and the first arrival at level
2. The distribution of �� � �� is the same as the distribution of �� (see Fig. 8.3), i.e.,

IE������ �
�� p

�� ��

�
� � � ��� ���
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τ1

τ1

τ2

τ2

Mk

k

−

Figure 8.3: General first passage times.

For � � ��� ��,

IE 
��� jF�� � � IE
�
��������� jF��

�
� ���IE
������ jF�� �

(taking out what is known)

� ���IE
������ jM�� �

(strong Markov property)

� ���IE
������ �
�M�� � �� not random �

� ���

�
��p�� ��

�

�
�

Take expectations of both sides to get

IE��� � IE��� �

�
�� p

�� ��

�

�

�

�
�� p

�� ��

�

��

In general,

IE��m �

�
��p�� ��

�

�m
� � � ��� ���

8.7 Example: Perpetual American Put

Consider the binomial model, with u � �� d � �
� � r � �

� , and payoff function ��� Sk�
�. The risk

neutral probabilities are �p � �
� , �q � �

� , and thus

Sk � S�u
Mk �
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where Mk is a symmetric random walk under the risk-neutral measure, denoted by fIP . Suppose
S� � �. Here are some possible exercise rules:

Rule 0: Stop immediately. �� � �� V ���� � �.

Rule 1: Stop as soon as stock price falls to 2, i.e., at time

���
�
� minfk�Mk � ��g�

Rule 2: Stop as soon as stock price falls to 1, i.e., at time

���
�
� minfk�Mk � ��g�

Because the random walk is symmetric under fIP , ��m has the same distribution under fIP as the
stopping time �m in the previous section. This observation leads to the following computations of
value. Value of Rule 1:

V ����� � fIE ��� � r�������� S����
��

� ��� ���IE
h
����

���

i
� ��

��
q
�� ����

�

�
�

�
�

�
�

Value of Rule 2:

V ����� � ��� ���fIE h�������

i
� ������

�

� ��

This suggests that the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
falls to 2, and the value of the put is �

� if S� � �.

Suppose instead we start with S� � �, and stop the first time the price falls to 2. This requires 2
down steps, so the value of this rule with this initial stock price is

��� ���fIE h�������

i
� ������

� �
�

�
�

In general, if S� � �j for some j � �, and we stop when the stock price falls to 2, then j � � down
steps will be required and the value of the option is

��� ���fIE h�������j���

i
� ������

j���

We define
v��j�

�
� ������

j��� j � �� �� �� � � �
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If S� � �j for some j � �, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the put is

v��j�
�
� �� �j � j � �� �������� � � �

Proposed exercise rule:Exercise the put whenever the stock price is at or below 2. The value of
this rule is given by v��j� as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. This leads us to make the following:

Conjecture 1 The value of the perpetual put at time k is v�Sk�.

How do we recognize the value of an American derivative security when we see it?

There are three parts to the proof of the conjecture. We must show:

(a) v�Sk� � ��� Sk�� �k�

(b)
n
����

kv�Sk�
o�
k��

is a supermartingale,

(c) fv�Sk�g�k�� is the smallest process with properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the form S� � �j , so Sk is
always of the form �j , with a possibly different j.

Proof: (a). Just check that

v��j�
�
� ������

j�� � ��� �j�� for j � ��

v��j�
�
� �� �j � ��� �j�� for j � ��

This is straightforward.

Proof: (b). We must show that

v�Sk� � fIE h��v�Sk���jFk

i
� �

� �
�
�v��Sk� �

�
� �

�
�v�

�
�Sk��

By assumption, Sk � �j for some j. We must show that

v��j� � �
�v��

j��� � �
�v��

j����

If j � �, then v��j� � ������
j�� and

�
�v��

j��� � �
�v��

j���
� �

� ����
�
��
j � �

� ����
�
��
j��

� ��

�
�
� �
�

�
� �

�

�
����

j��

� ���� ��
�
��
j��

� v��j��
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If j � �, then v��j� � v��� � � and

�
�v��

j��� � �
�v��

j���
� �

�v��� �
�
�v���

� �
� ���

�
� �

�
� ��

� ��� � ���

� ��� � v��� � �

There is a gap of size �
� .

If j � �, then v��j� � �� �j and

�
�v��

j��� � �
�v��

j���
� �

���� �j��� � �
���� �j���

� �� �
��� � ���j��

� �� �j � v��j� � �� �j �

There is a gap of size 1. This concludes the proof of (b).

Proof: (c). Suppose fYkgnk�� is some other process satisfying:

(a’) Yk � ��� Sk�� �k�
(b’) f����kYkg�k�� is a supermartingale.

We must show that

Yk � v�Sk� �k� (7.1)

Actually, since the put is perpetual, every time k is like every other time, so it will suffice to show

Y� � v�S��� (7.2)

provided we letS� in (7.2) be any number of the form �j . With appropriate (but messy) conditioning
on Fk, the proof we give of (7.2) can be modified to prove (7.1).

For j � �,
v��j� � �� �j � ��� �j���

so if S� � �j for some j � �, then (a’) implies

Y� � ��� �j�� � v�S���

Suppose now that S� � �j for some j � �, i.e., S� � �. Let

� � minfk�Sk � �g
� minfk�Mk � j � �g�
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Then

v�S�� � v��j� � ������
j��

� IE
h
����

���� S� �
�
i
�

Because f����kYkg�k�� is a supermartingale

Y� � IE
h
����

�Y�
i
� IE

h
����

� ��� S��
�
i
� v�S���

Comment on the proof of (c): If the candidate value process is the actual value of a particular
exercise rule, then (c) will be automatically satisfied. In this case, we constructed v so that v�Sk� is
the value of the put at time k if the stock price at time k is Sk and if we exercise the put the first time
(k, or later) that the stock price is 2 or less. In such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock prices which can fall at any point in �����, not just at points of the form � j for
integers j, then we can imagine the function v�x�, defined for all x 	 �, which gives the value of
the perpetual American put when the stock price is x. This function should satisfy the conditions:

(a) v�x� � �K � x��� �x,

(b) v�x� � �
��r 
�pv�ux� � �qv�dx�� � �x�

(c) At each x, either (a) or (b) holds with equality.

In the example we worked out, we have

For j � � � v��j� � ������
j�� �

�

�j
�

For j � � � v��j� � �� �j �

This suggests the formula

v�x� �

	


x � x � ��
�� x� � � x � ��

We then have (see Fig. 8.4):

(a) v�x� � ��� x��� �x�

(b) v�x� � �
�

h
�
�v��x� �

�
�v�

x
��
i

for every x except for � � x � �.
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5

5
v(x)

x

(3,2)

Figure 8.4: Graph of v�x�.

Check of condition (c):

� If � � x � �, then (a) holds with equality.

� If x � �, then (b) holds with equality:

�
�

�
�
�v��x� �

�
�v�

x

�
�

�
� �

�

�
�
�

�

�x
� �

�

��

x

�
�

�

x
�

� If � � x � � or � � x � �, then both (a) and (b) are strict. This is an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (a) or (b) holds with equality at every point.

8.9 Distribution of First Passage Times

Let fMkg�k�� be a symetric random walk under a probability measure IP , with M� � �. Defining

� � minfk � ��Mk � �g�

we recall that

IE�� �
��p�� ��

�
� � � � � ��

We will use this moment generating function to obtain the distribution of � . We first obtain the
Taylor series expasion of IE�� as follows:
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f�x� � ��p�� x� f��� � �

f ��x� � �
���� x��

�
� � f ���� � �

�

f ���x� �
�

�
��� x��

�
� � f ����� �

�

�

f ����x� �
�

�
��� x��

�
� � f ������ �

�

�
� � �

f �j��x� �
�� �� � � �� ��j � ��

�j
��� x��

��j���
� �

f �j���� �
�� �� � � �� ��j � ��

�j

�
�� �� � � �� ��j � ��

�j
�
�� �� � � �� ��j � ��

�j���j � ���

�
�
�
�

��j�� ��j � ���

�j � ���

The Taylor series expansion of f�x� is given by

f�x� � �� p
�� x

�
�X
j��

�

j�
f �j����xj

�
�X
j��

�
�
�

��j�� ��j � ���

j��j � ���
xj

�
x

�
�

�X
j��

�
�
�

��j�� �

�j � ��

�
�j � �

j

�
xj �

So we have

IE�� �
��p�� ��

�

�
�

�
f����

�
�

�
�

�X
j��

�
�

�

��j�� �

�j � ��

�
�j � �

j

�
�

But also,

IE�� �
�X
j��

��j��IPf� � �j � �g�
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Figure 8.5: Reflection principle.

Figure 8.6: Example with j � �.

Therefore,

IPf� � �g � �
� �

IPf� � �j � �g �

�
�

�

��j�� �

�j � ��

�
�j � �

j

�
� j � �� �� � � �

8.10 The Reflection Principle

To count how many paths reach level 1 by time �j � �, count all those for which M�j�� � � and
double count all those for which M�j�� � �. (See Figures 8.5, 8.6.)
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In other words,

IPf� � �j � �g � IPfM�j�� � �g� �IPfM�j�� � �g
� IPfM�j�� � �g� IPfM�j�� � �g� IPfM�j�� � ��g
� �� IPfM�j�� � ��g�

For j � �,

IPf� � �j � �g � IPf� � �j � �g � IPf� � �j � �g
� 
�� IPfM�j�� � ��g�� 
�� IPfM�j�� � ��g�
� IPfM�j�� � ��g � IPfM�j�� � ��g
�

�
�
�

��j�� ��j � ���

�j � ����j � ���
�
�
�
�

��j�� ��j � ���

j��j � ���

�
�
�
�

��j�� ��j � ���

j��j � ���

�j�j � ��� ��j � ����j � ���

�
�
�
�

��j�� ��j � ���

j��j � ���

�j��j � ��� ��j � ����j � ���

�
�
�
�

��j�� ��j � ���

j��j � ���

�
�
�
�

��j�� �

�j � ��

�
�j � �

j

�
�



Chapter 9

Pricing in terms of Market Probabilities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym) Let IP and fIP be two probability measures on a space �	�F�.
Assume that for every A � F satisfying IP �A� � �, we also have fIP �A� � �. Then we say thatfIP is absolutely continuous with respect to IP. Under this assumption, there is a nonegative random
variable Z such that

fIP �A� �

Z
A
ZdIP� �A � F � (1.1)

and Z is called the Radon-Nikodym derivative of fIP with respect to IP.

Remark 9.1 Equation (1.1) implies the apparently stronger conditionfIEX � IE
XZ�

for every random variable X for which IEjXZj ��.

Remark 9.2 If fIP is absolutely continuous with respect to IP, and IP is absolutely continuous with
respect to fIP , we say that IP andfIP are equivalent. IP and fIP are equivalent if and only if

IP �A� � � exactly when fIP �A� � �� �A � F �
If IP and fIP are equivalent and Z is the Radon-Nikodym derivative of fIP w.r.t. IP, then �

Z is the

Radon-Nikodym derivative of IP w.r.t. fIP , i.e.,fIEX � IE
XZ� �X� (1.2)

IEY � fIE
Y�
�

Z
� �Y� (1.3)

(Let X and Y be related by the equation Y � XZ to see that (1.2) and (1.3) are the same.)

111
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Example 9.1 (Radon-Nikodym Theorem)Let � � fHH�HT� TH� TTg, the set of coin toss sequences
of length 2. Let P correspond to probability �

� for H and �
� for T , and let eIP correspond to probability �

� for

H and �
� for T . Then Z��� �

eIP ��	
IP ��	 , so

Z�HH� �
�

�
� Z�HT � �

�

�
� Z�TH� �

�

�
� Z�TT � �

�

�

�

9.2 Radon-Nikodym Martingales

Let 	 be the set of all sequences of n coin tosses. Let IP be the market probability measure and letfIP be the risk-neutral probability measure. Assume

IP ��� 	 �� fIP ��� 	 �� �� � 	�

so that IP and fIP are equivalent. The Radon-Nikodym derivative of fIP with respect to IP is

Z��� �
fIP ���

IP ���
�

Define the IP-martingale

Zk
�
� IE
ZjFk �� k � �� �� � � � � n�

We can check that Zk is indeed a martingale:

IE
Zk��jFk� � IE 
IE
ZjFk���jFk�

� IE
ZjFk �

� Zk �

Lemma 2.28 If X is Fk-measurable, then fIEX � IE
XZk�.

Proof: fIEX � IE
XZ�

� IE 
IE
XZjFk��

� IE 
X�IE
ZjFk��

� IE
XZk��

Note that Lemma 2.28 implies that if X is F k-measurable, then for any A � Fk,fIE
IAX � � IE
ZkIAX ��

or equivalently, Z
A
XdfIP �

Z
A
XZkdIP�
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0

1

1

2

2

2

2

Z  = 1

Z  (H) = 3/2

Z  (T)  = 3/4

Z  (HH) = 9/4

Z  (HT)  = 9/8

Z  (TH)  = 9/8

Z  (TT)  = 9/16

2/3

1/3

1/3

2/3

1/3

2/3

Figure 9.1: Showing theZk values in the 2-period binomial model example. The probabilities shown
are for IP, not fIP .

Lemma 2.29 If X is Fk-measurable and � � j � k, then

fIE
X jFj � �
�

Zj
IE
XZkjFj ��

Proof: Note first that �
Zj

IE
XZkjFj � is F j-measurable. So for any A � Fj , we have

Z
A

�

Zj
IE
XZkjFj �dfIP �

Z
A
IE
XZkjFj �dIP (Lemma 2.28)

�
Z
A
XZkdIP (Partial averaging)

�
Z
A
XdfIP (Lemma 2.28)

Example 9.2 (Radon-Nikodym Theorem, continued)We show in Fig. 9.1 the values of the martingaleZk.
We always have Z� � �, since

Z� � IEZ �

Z
�
ZdIP � eIP ��� � ��

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the following state price density process:

�k � �� � r��kZk� k � �� � � � � n�
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We then have the following pricing formulas: For a Simple European derivative securitywith
payoff Ck at time k,

V� � fIE h�� � r��kCk

i
� IE

h
�� � r��kZkCk

i
(Lemma 2.28)

� IE
�kCk��

More generally for � � j � k,

Vj � �� � r�jfIE h�� � r��kCkjFj

i
�

�� � r�j

Zj
IE
h
�� � r��kZkCkjFj

i
(Lemma 2.29)

�
�

�j
IE
�kCkjFj �

Remark 9.3 f�jVjgkj�� is a martingale under IP, as we can check below:

IE
�j��Vj��jFj � � IE 
IE
�kCkjFj���jFj �

� IE
�kCkjFj �

� �jVj �

Now for an American derivative security fGkgnk��:

V� � sup
��T�

fIE 
�� � r���G� �

� sup
��T�

IE 
�� � r���Z�G� �

� sup
��T�

IE
��G� ��

More generally for � � j � n,

Vj � �� � r�j sup
��Tj

fIE 
�� � r���G� jFj �

� �� � r�j sup
��Tj

�

Zj
IE 
�� � r���Z�G� jFj �

�
�

�j
sup
��Tj

IE
��G� jFj ��

Remark 9.4 Note that

(a) f�jVjgnj�� is a supermartingale under IP,

(b) �jVj � �jGj �j�
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S  = 4
0

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

ζ   = 1.00

ζ  (Η) = 1.20

ζ  (Τ) = 0.6

ζ  (ΗΗ) = 1.44

ζ  (ΗΤ) = 0.72

ζ  (ΤΗ) = 0.72

ζ  (ΤΤ) = 0.36

0

1

1

2

2

2

2

1/3

2/3

1/3

2/3

1/3

2/3

Figure 9.2: Showing the state price values �k . The probabilities shown are for IP, not fIP .

(c) f�jVjgnj�� is the smallest process having properties (a) and (b).

We interpret �k by observing that �k���IP ��� is the value at time zero of a contract which pays $1
at time k if � occurs.

Example 9.3 (Radon-NikodymTheorem, continued)We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabilities. Recall that p � �

� , q � �
� . The

state price values 	k are shown in Fig. 9.2.

For a European Call with strike price 5, expiration time 2, we have

V��HH� � ��� 	��HH�V��HH� � ����� �� � �
����

V��HT � � V��TH� � V��TT � � ��

V� �
�

	
� �

	
� �
��� � ���
�

	��HH�

	��HH�
V��HH� �

����

����
� �� � ����� �� � �	���

V��H� �
�

	
� �	��� � ����

Compare with the risk-neutral pricing formulas:

V��H� � �
�V��HH� � �

�V��HT � � �
� � �� � �����

V��T � �
�
�V��TH� � �

�V��TT � � ��

V� �
�
�V��H� � �

�V��T � �
�
� � ���� � ���
�

Now consider an American put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
	k�
� Sk�

�. We compute the value of the put under various stopping times � :

(0) Stop immediately: value is 1.

(1) If � �HH� � � �HT � � �� � �TH� � � �TT � � �, the value is

�

	
� �

� � ���� � �
� � ���� � ��	
�
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(5-S0)+=1ζ0

(5-S0)+=1

(5 - S1(H))+= 0

(H)ζ1

(5 - S +(HH)) = 02
(5 - S +(HH)) = 02ζ2(HH)

1/3

2/3

1/3

2/3

1/3

2/3

ζ1

(5 - S1
+

(5 - S1
+(T))

(T))

(T)

= 3

= 1.80

(5 - S1(H))+= 0
(5 - S +

2

(5 - S +
2ζ2

(5 - S +
2

(5 - S +
2ζ2

(5 - S +
2

(5 - S +
2ζ2

(HT))

(HT) (HT))

= 1

= 0.72

(TH))

(TH) (TH))

= 1

= 0.72

(TT))

(TT) (TT))

= 4

= 1.44

Figure 9.3: Showing the values �k��� Sk�� for an American put. The probabilities shown are for
IP, not fIP .

(2) If we stop at time 2, the value is

�

	
� �

� � ���� � �
� �

�

	
� ���� � �

� � �
� � ���� � ���


We see that (1) is optimal stopping rule.

9.4 Stochastic Volatility Binomial Model

Let 	 be the set of sequences of n tosses, and let � � dk � ��rk � uk, where for each k, dk� uk� rk
are Fk-measurable. Also let

�pk �
� � rk � dk
uk � dk

� �qk �
uk � �� � rk�

uk � dk
�

Let fIP be the risk-neutral probability measure:

fIPf�� � Hg � �p��fIP f�� � Tg � �q��

and for � � k � n, fIP 
�k�� � H jFk� � �pk�fIP 
�k�� � T jFk� � �qk �

Let IP be the market probability measure, and assume IPf�g 	 � �� � 	. Then IP and fIP are
equivalent. Define

Z��� �
fIP ���

IP ���
�� � 	�
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Zk � IE
ZjFk �� k � �� �� � � � � n�

We define the money market price process as follows:

M� � ��

Mk � �� � rk���Mk��� k � �� � � � � n�

Note that Mk is Fk��-measurable.

We then define the state price process to be

�k �
�

Mk
Zk� k � �� � � � � n�

As before the portfolio process is f�kgn��k�� . The self-financing value process (wealth process)
consists of X�, the non-random initial wealth, and

Xk�� � �kSk�� � �� � rk��Xk ��kSk�� k � �� � � � � n� ��

Then the following processes are martingales under fIP :�
�

Mk
Sk

�n
k��

and
�

�

Mk
Xk

�n
k��

�

and the following processes are martingales under IP:

f�kSkgnk�� and f�kXkgnk���

We thus have the following pricing formulas:

Simple European derivative security with payoff Ck at time k:

Vj � Mj
fIE � Ck

Mk

����Fj

�
�

�

�j
IE 
�kCkjFj �

American derivative security fGkgnk��:

Vj � Mj sup
��Tj

fIE �G�

M�

����F j

�
�

�

�j
sup
��Tj

IE 
��G� jFj � �

The usual hedging portfolio formulas still work.
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9.5 Another Applicaton of the Radon-Nikodym Theorem

Let �	�F� Q� be a probability space. Let G be a sub-�-algebra of F , and let X be a non-negative
random variable with

R
	X dQ � �. We construct the conditional expectation (under Q) of X

given G. On G, define two probability measures

IP �A� � Q�A� �A � G�

fIP �A� �

Z
A
XdQ �A � G�

Whenever Y is a G-measurable random variable, we haveZ
	
Y dIP �

Z
	
Y dQ�

if Y � �A for some A � G, this is just the definition of IP , and the rest follows from the “standard
machine”. If A � G and IP �A� � �, then Q�A� � �, sofIP �A� � �. In other words, the measurefIP
is absolutely continuous with respect to the measure fIP . The Radon-Nikodym theorem implies that
there exists a G-measurable random variable Z such that

fIP �A�
�
�
Z
A
Z dIP �A � G�

i.e., Z
A
X dQ �

Z
A
Z dIP �A � G�

This shows that Z has the “partial averaging” property, and since Z is G-measurable, it is the con-
ditional expectation (under the probability measure Q) of X given G. The existence of conditional
expectations is a consequence of the Radon-Nikodym theorem.



Chapter 10

Capital Asset Pricing

10.1 An Optimization Problem

Consider an agent who has initial wealth X� and wants to invest in the stock and money markets so
as to maximize

IE logXn�

Remark 10.1 Regardless of the portfolio used by the agent, f�kXkg�k�� is a martingale under IP, so

IE�nXn � X� �BC�

Here, (BC) stands for “Budget Constraint”.

Remark 10.2 If 
 is any random variable satisfying (BC), i.e.,

IE�n
 � X��

then there is a portfolio which starts with initial wealth X � and produces Xn � 
 at time n. To see
this, just regard 
 as a simple European derivative security paying off at time n. Then X� is its value
at time 0, and starting from this value, there is a hedging portfolio which produces Xn � 
.

Remarks 10.1 and 10.2 show that the optimal Xn for the capital asset pricing problem can be
obtained by solving the following

Constrained Optimization Problem:
Find a random variable 
 which solves:

Maximize IE log 


Subject to IE�n
 � X��

Equivalently, we wish to
Maximize

X
��	

�log 
���� IP ���
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Subject to
X
��	

�n���
���IP ��� � X� � ��

There are �n sequences � in 	. Call them ��� ��� � � � � ��n . Adopt the notation

x� � 
����� x� � 
����� � � � � x�n � 
���n��

We can thus restate the problem as:

Maximize
�nX
k��

�log xk�IP ��k�

Subject to
�nX
k��

�n��k�xkIP ��k� � Xo � ��

In order to solve this problem we use:

Theorem 1.30 (Lagrange Multiplier) If �x
�� � � � � x
m� solve the problem

Maxmize f�x�� � � � � xm�

Subject to g�x�� � � � � xm� � ��

then there is a number � such that

�

�xk
f�x
�� � � � � x



m� � �

�

�xk
g�x
�� � � � � x



m�� k � �� � � � � m� (1.1)

and

g�x
�� � � � � x


m� � �� (1.2)

For our problem, (1.1) and (1.2) become

�

x
k
IP ��k� � ��n��k�IP ��k�� k � �� � � � � �n� ������

�nX
k��

�n��k�x


kIP ��k� � X�� ������

Equation (1.1’) implies

x
k �
�

��n��k�
�

Plugging this into (1.2’) we get

�

�

�nX
k��

IP ��k� � X� �� �

�
� X��
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Therefore,

x
k �
X�

�n��k�
� k � �� � � � � �n�

Thus we have shown that if 

 solves the problem

Maximize IE log 

Subject to IE��n
� � X��

(1.3)

then



 �
X�

�n
� (1.4)

Theorem 1.31 If 

 is given by (1.4), then 

 solves the problem (1.3).

Proof: Fix Z 	 � and define
f�x� � log x� xZ�

We maximize f over x 	 �:

f ��x� �
�

x
� Z � � �� x �

�

Z
�

f ���x� � � �

x�
� �� �x � IR�

The function f is maximized at x
 � �
Z , i.e.,

log x� xZ � f�x
� � log
�

Z
� �� �x 	 �� �Z 	 �� (1.5)

Let 
 be any random variable satisfying

IE��n
� � X�

and let



 �
X�

�n
�

From (1.5) we have

log 
 � 


�
�n
X�

�
� log

�
X�

�n

�
� ��

Taking expectations, we have

IE log 
 � �

X�
IE��n
� � IE log 

 � ��

and so
IE log 
 � IE log 

�
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In summary, capital asset pricing works as follows: Consider an agent who has initial wealth X�

and wants to invest in the stock and money market so as to maximize

IE logXn�

The optimal Xn is Xn � X�

�n
, i.e.,

�nXn � X��

Since f�kXkgnk�� is a martingale under IP, we have

�kXk � IE
�nXnjFk � � X�� k � �� � � � � n�

so

Xk �
X�

�k
�

and the optimal portfolio is given by

�k���� � � � � �k� �

X�

�k������ � � � � �k�H�
� X�

�k������ � � � � �k�T �

Sk������ � � � � �k� H�� Sk������ � � � � �k� T �
�



Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variable X � 	�IR defined on the probability space �	�F�P�. Recall
that:

� F is a �-algebra of subsets of 	.

� IP is a probability measure on F , i.e., IP �A� is defined for every A � F .

A function X � 	�IR is a random variable if and only if for every B � B�IR� (the �-algebra of
Borel subsets of IR), the set

fX � Bg �
� X���B�

�
� f��X��� � Bg � F �

i.e., X � 	�IR is a random variable if and only if X�� is a function from B�IR� to F(See Fig.
11.1)

Thus any random variable X induces a measure 
X on the measurable space �IR�B�IR�� defined
by


X�B� � IP
�
X���B�

�
�B � B�IR��

where the probabiliy on the right is defined since X���B� � F . 
X is often called the Law of X –
in Williams’ book this is denoted by LX .

11.2 Density of a Random Variable

The density of X (if it exists) is a function fX � IR�
���� such that


X�B� �
Z
B
fX�x� dx �B � B�IR��

123



124

R

ΩB}ε
B

X

{X

Figure 11.1: Illustrating a real-valued random variable X .

We then write
d
X�x� � fX�x�dx�

where the integral is with respect to the Lebesgue measure on IR. fX is the Radon-Nikodym deriva-
tive of 
X with respect to the Lebesgue measure. Thus X has a density if and only if 
X is
absolutely continuous with respect to Lebesgue measure, which means that whenever B � B�IR�
has Lebesgue measure zero, then

IPfX � Bg � ��

11.3 Expectation

Theorem 3.32 (Expectation of a function ofX) Let h � IR�IR be given. Then

IEh�X�
�
�

Z
	
h�X���� dIP ���

�
Z
IR
h�x� d
X�x�

�
Z
IR
h�x�fX�x� dx�

Proof: (Sketch). If h�x� � �B�x� for some B � IR, then these equations are

IE�B�X�
�
� PfX � Bg
� 
X�B�

�

Z
B
fX�x� dx�

which are true by definition. Now use the “standard machine” to get the equations for general h.
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Ωε

(X,Y)

{ (X,Y) C}

C

x

y

Figure 11.2: Two real-valued random variables X� Y .

11.4 Two random variables

Let X� Y be two random variables 	�IR defined on the space �	�F�P�. Then X� Y induce a
measure on B�IR�� (see Fig. 11.2) called the joint law of �X� Y �, defined by


X�Y �C�
�
� IPf�X� Y � � Cg �C � B�IR���

The joint density of �X� Y � is a function

fX�Y � IR��
����

that satisfies


X�Y �C� �
ZZ
C

fX�Y �x� y� dxdy �C � B�IR���

fX�Y is the Radon-Nikodym derivative of 
X�Y with respect to the Lebesgue measure (area) on IR�.

We compute the expectation of a function of X� Y in a manner analogous to the univariate case:

IEk�X� Y �
�
�

Z
	
k�X���� Y ���� dIP ���

�

ZZ
IR�

k�x� y� d
X�Y �x� y�

�

ZZ
IR�

k�x� y�fX�Y �x� y� dxdy
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11.5 Marginal Density

Suppose �X� Y � has joint density fX�Y . Let B � IR be given. Then


Y �B� � IPfY � Bg
� IPf�X� Y � � IR� Bg
� 
X�Y �IR� B�

�

Z
B

Z
IR
fX�Y �x� y� dxdy

�

Z
B
fY �y� dy�

where

fY �y�
�
�
Z
IR
fX�Y �x� y� dx�

Therefore, fY �y� is the (marginal) density for Y .

11.6 Conditional Expectation

Suppose �X� Y � has joint density fX�Y . Let h � IR�IR be given. Recall that IE
h�X�jY � �
�

IE
h�X�j��Y �� depends on � through Y , i.e., there is a function g�y� (g depending on h) such that

IE
h�X�jY ���� � g�Y �����

How do we determine g?

We can characterize g using partial averaging: Recall that A � ��Y ���A � fY � Bg for some
B � B�IR�. Then the following are equivalent characterizations of g:Z

A
g�Y � dIP �

Z
A
h�X� dIP �A � ��Y �� (6.1)

Z
	
�B�Y �g�Y � dIP �

Z
	
�B�Y �h�X� dIP �B � B�IR�� (6.2)

Z
IR
�B�y�g�y�
Y �dy� �

ZZ
IR�

�B�y�h�x� d
X�Y �x� y� �B � B�IR�� (6.3)

Z
B
g�y�fY �y� dy �

Z
B

Z
IR
h�x�fX�Y �x� y� dxdy �B � B�IR�� (6.4)
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11.7 Conditional Density

A function fXjY �xjy� � IR��
���� is called a conditional density for X given Y provided that for
any function h � IR�IR:

g�y� �
Z
IR
h�x�fXjY �xjy� dx� (7.1)

(Here g is the function satisfying
IE 
h�X�jY � � g�Y ��

and g depends on h, but fXjY does not.)

Theorem 7.33 If �X� Y � has a joint density fX�Y , then

fXjY �xjy� �
fX�Y �x� y�

fY �y�
� (7.2)

Proof: Just verify that g defined by (7.1) satisfies (6.4): For B � B�IR��Z
B

Z
IR
h�x�fXjY �xjy� dx� �z �

g�y�

fY �y� dy �
Z
B

Z
IR
h�x�fX�Y �x� y� dxdy�

Notation 11.1 Let g be the function satisfying

IE
h�X�jY � � g�Y ��

The function g is often written as

g�y� � IE
h�X�jY � y��

and (7.1) becomes

IE
h�X�jY � y� �

Z
IR
h�x�fXjY �xjy� dx�

In conclusion, to determine IE
h�X�jY � (a function of �), first compute

g�y� �
Z
IR
h�x�fXjY �xjy� dx�

and then replace the dummy variable y by the random variable Y :

IE
h�X�jY ���� � g�Y �����

Example 11.1 (Jointly normal random variables) Given parameters: �� 
 �� �� 
 ���� � � � �. Let
�X�Y � have the joint density

fX�Y �x� y� �
�

������
p
�� ��

exp

�
� �

���� ���

�
x�

���
� ��

x

��

y

��
�

y�

���

��
�
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The exponent is

� �

���� ���

�
x�

���
� ��

x

��

y

��
�

y�

���

�
� � �

���� ���

��
x

��
� �

y

��

��
�

y�

���
��� ���

�

� � �

���� ���

�

���

�
x� ���

��
y

��
� �

�

y�

���
�

We can compute the Marginal density of Y as follows

fY �y� �
�

������
p
�� ��

Z �

��

e
� �

������	���

�
x� ���

��
y
��

dx�e
��

�
y�

���

�
�

����

Z �

��

e�
u�

� du�e
��

�
y�

���

using the substitutionu � �p
������

�
x� ���

��
y
�

, du � dxp
������

�
�p
�� ��

e
��

�
y�

��� �

Thus Y is normal with mean 0 and variance ���.

Conditional density. From the expressions

fX�Y �x� y� �
�

������
p
�� ��

e
� �

�������
�

��
�

�
x�

���
��

y
��
e
��

�
y�

��� �

fY �y� �
�p
�� ��

e
��

�
y�

��� �

we have

fXjY �xjy� �
fX�Y �x� y�

fY �y�

�
�p
�� ��

�p
�� ��

e
� �

������	
�
��

�

�
x� ���

��
y
��
�

In the x-variable, fXjY �xjy� is a normal density with mean ���
��

y and variance ��� ������. Therefore,

IE�XjY � y� �

Z �

��

xfXjY �xjy� dx �
���
��

y�

IE

��
X � ���

��
y

�� ����Y � y

�

�

Z �

��

�
x� ���

��
y

��

fXjY �xjy� dx

� �� � �������
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From the above two formulas we have the formulas

IE�XjY � �
���
��

Y� (7.3)

IE

��
X � ���

��
Y

�� ����Y
�
� ��� ������� (7.4)

Taking expectations in (7.3) and (7.4) yields

IEX �
���
��

IEY � �� (7.5)

IE

��
X � ���

��
Y

���
� ��� ������� (7.6)

Based on Y , the best estimator of X is ���
��

Y . This estimator is unbiased (has expected error zero) and the
expected square error is ��� ������. No other estimator based on Y can have a smaller expected square error
(Homework problem 2.1).

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variables �X�� X�� � � � � Xn�
T , and x the corresponding

column vector of values �x�� x�� � � � � xn�T . X has a multivariate normal distribution if and only if
the random variables have the joint density

fX�x� �

p
detA

����n��
exp

n
��

��X� ��T�A��X� ��
o
�

Here,

�
�
� �
�� � � � � 
n�

T � IEX
�
� �IEX�� � � � � IEXn�

T �

and A is an n � n nonsingular matrix. A�� is the covariance matrix

A�� � IE
h
�X� ����X� ��T

i
�

i.e. the �i� j�th element of A�� is IE�Xi�
i��Xj�
j�. The random variables inX are independent
if and only if A�� is diagonal, i.e.,

A�� � diag����� �
�
�� � � � � �

�
n��

where ��j � IE�Xj � 
j�� is the variance of Xj .



130

11.9 Bivariate normal distribution

Take n � � in the above definitions, and let

�
�
�
IE�X� � 
���X� � 
��

����
�

Thus,

A�� �

�
��� �����

����� ���

�
�

A �

�� �
	��������

� �
	�	�������

� �
	�	�������

�
	��������

�� �
p
detA �

�

����
p
�� ��

�

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

fX��X��x�� x�� �
�

������
p
�� ��

exp

	
� �

���� ���

�
�x� � 
��

�

���
� ���x�� 
���x� � 
��

����
�

�x� � 
��
�

���

�

�

11.10 MGF of jointly normal random variables

Let u � �u�� u�� � � � � un�
T denote a column vector with components in IR, and let X have a

multivariate normal distribution with covariance matrix A�� and mean vector �. Then the moment
generating function is given by

IEeu
T �X �

Z �

��
� � �

Z �

��
eu

T �XfX�� X�� � � � � Xn
�x�� x�� � � � � xn� dx� � � � dxn

� exp
n
�
�u

TA��u� uT�
o
�

If any n random variables X�� X�� � � � � Xn have this moment generating function, then they are
jointly normal, and we can read out the means and covariances. The random variables are jointly
normal and independent if and only if for any real column vector u � �u�� � � � � un�T

IEeu
T �X �

� IE exp

�
�
nX
j��

ujXj

 !" � exp

�
�
nX
j��


���
�
ju

�
j � uj
j �

 !" �



Chapter 12

Semi-Continuous Models

12.1 Discrete-time Brownian Motion

Let fYjgnj�� be a collection of independent, standard normal random variables defined on �	�F�P�,
where IP is the market measure. As before we denote the column vector �Y�� � � � � Yn�T by Y. We
therefore have for any real colum vector u � �u�� � � � � un�

T ,

IEeu
T
Y � IE exp

�
�
nX
j��

ujYj

 !" � exp

�
�
nX
j��

�
�u

�
j

 !" �

Define the discrete-time Brownian motion (See Fig. 12.1):

B� � ��

Bk �
kX

j��

Yj � k � �� � � � � n�

If we knowY�� Y�� � � � � Yk, then we knowB�� B�� � � � � Bk. Conversely, if we knowB�� B�� � � � � Bk,
then we know Y� � B�� Y� � B� � B�� � � � � Yk � Bk �Bk��. Define the filtration

F� � f��	g�
Fk � ��Y�� Y�� � � � � Yk� � ��B�� B�� � � � � Bk�� k � �� � � � � n�

Theorem 1.34 fBkgnk�� is a martingale (under IP).

Proof:

IE 
Bk��jFk � � IE 
Yk�� � Bk jFk�

� IEYk�� � Bk

� Bk �
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Figure 12.1: Discrete-time Brownian motion.

Theorem 1.35 fBkgnk�� is a Markov process.

Proof: Note that
IE
h�Bk���jFk� � IE
h�Yk�� � Bk�jFk��

Use the Independence Lemma. Define

g�b� � IEh�Yk�� � b� �
�p
��

Z �

��
h�y � b�e�

�
�y

�
dy�

Then
IE
h�Yk�� �Bk�jFk� � g�Bk��

which is a function of Bk alone.

12.2 The Stock Price Process

Given parameters:

� 
 � IR, the mean rate of return.

� � 	 �, the volatility.

� S� 	 �, the initial stock price.

The stock price process is then given by

Sk � S� exp
n
�Bk � �
� �

��
��k
o
� k � �� � � � � n�

Note that
Sk�� � Sk exp

n
�Yk�� � �
� �

��
��
o
�
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IE
Sk��jFk � � SkIE
e�Yk�� jFk ��e
���

�	
�

� Ske
�
��

�
e��

�
�	

�

� e�Sk�

Thus


 � log
IE
Sk��jFk�

Sk
� log IE

�
Sk��
Sk

����Fk

�
�

and

var

�
log

Sk��
Sk

�
� var

�
�Yk�� � �
� �

��
��
�
� ���

12.3 Remainder of the Market

The other processes in the market are defined as follows.

Money market process:
Mk � erk� k � �� �� � � � � n�

Portfolio process:

� ������ � � � ��n���

� Each �k is Fk-measurable.

Wealth process:

� X� given, nonrandom.

�

Xk�� � �kSk�� � er�Xk ��kSk�

� �k�Sk�� � erSk� � erXk

� Each Xk is Fk-measurable.

Discounted wealth process:

Xk��
Mk��

� �k

�
Sk��
Mk��

� Sk
Mk

�
� Xk
Mk

�

12.4 Risk-Neutral Measure

Definition 12.1 Let fIP be a probability measure on �	�F�, equivalent to the market measure IP. Ifn
Sk
Mk

on
k��

is a martingale under fIP , we say that fIP is a risk-neutral measure.
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Theorem 4.36 IffIP is a risk-neutral measure, then every discounted wealth process
n
Xk
Mk

on
k��

is

a martingale under fIP , regardless of the portfolio process used to generate it.

Proof:

fIE �Xk��
Mk��

����Fk

�
� fIE ��k

�
Sk��
Mk��

� Sk
Mk

�
� Xk
Mk

����Fk

�
� �k

�fIE � Sk��Mk��

����Fk

�
� Sk
Mk

�
� Xk
Mk

� Xk
Mk

�

12.5 Risk-Neutral Pricing

Let Vn be the payoff at time n, and say it is Fn-measurable. Note that Vn may be path-dependent.

Hedging a short position:

� Sell the simple European derivative security Vn.

� Receive X� at time 0.

� Construct a portfolio process ��� � � � ��n�� which starts with X� and ends with Xn � Vn.

� If there is a risk-neutral measure fIP , then

X� � fIE Xn
Mn

� fIE Vn
Mn

�

Remark 12.1 Hedging in this “semi-continuous” model is usually not possible because there are
not enough trading dates. This difficulty will disappear when we go to the fully continuous model.

12.6 Arbitrage

Definition 12.2 An arbitrage is a portfolio which starts with X� � � and ends with Xn satisfying

IP �Xn � �� � �� IP �Xn 	 �� 	 ��

(IP here is the market measure).

Theorem 6.37 (Fundamental Theorem of Asset Pricing: Easy part)If there is a risk-neutral mea-
sure, then there is no arbitrage.
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Proof: LetfIP be a risk-neutral measure, let X� � �, and let Xn be the final wealth corresponding

to any portfolio process. Since
n
Xk
Mk

on
k��

is a martingale under fIP ,

fIE Xn
Mn

� fIE X�
M�

� �� (6.1)

Suppose IP �Xn � �� � �. We have

IP �Xn � �� � � �� IP �Xn � �� � � �� fIP �Xn � �� � � �� fIP �Xn � �� � ��
(6.2)

(6.1) and (6.2) implyfIP �Xn � �� � �. We have

fIP �Xn � �� � � �� fIP �Xn 	 �� � � �� IP �Xn 	 �� � ��

This is not an arbitrage.

12.7 Stalking the Risk-Neutral Measure

Recall that

� Y�� Y�� � � � � Yn are independent, standard normal random variables on some probability space
�	�F �P�.

� Sk � S� exp
n
�Bk � �
� �

��
��k
o

.

�

Sk�� � S� exp
n
��Bk � Yk��� � �
� �

��
���k � ��

o
� Sk exp

n
�Yk�� � �
� �

��
��
o
�

Therefore,
Sk��
Mk��

� Sk
Mk

� exp
n
�Yk�� � �
 � r � �

��
��
o
�

IE

�
Sk��
Mk��

����Fk

�
� Sk

Mk
�IE 
exp f�Yk��g jFk � � expf
 � r � �

��
�g

� Sk
Mk

� expf����g� expf
� r � �
��

�g
� e��r � Sk

Mk
�

If 
 � r, the market measure is risk neutral. If 
 
� r, we must seek further.
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Sk��
Mk��

� Sk
Mk

� exp
n
�Yk�� � �
� r � �

��
��
o

� Sk
Mk

� exp
n
��Yk�� �

��r
	 �� �

��
�
o

� Sk
Mk

� exp
n
� �Yk�� � �

��
�
o
�

where
�Yk�� � Yk�� �

��r
	 �

The quantity ��r
	 is denoted � and is called the market price of risk.

We want a probability measure fIP under which �Y�� � � � � �Yn are independent, standard normal ran-
dom variables. Then we would have

fIE � Sk��Mk��

����Fk

�
� Sk

Mk
�fIE hexpf� �Yk��gjFk

i
� expf��

��
�g

� Sk
Mk

� expf����g� expf��
��

�g

� Sk
Mk

�

Cameron-Martin-Girsanov’s Idea: Define the random variable

Z � exp

�� nX
j��

���Yj � �
��

��

�� �
Properties of Z:

� Z � �.

�

IEZ � IE exp

�
�
nX
j��

���Yj�
 !" � exp

�
�n
�
��
�

� exp

�
n

�
��
�
� exp

�
�n
�
��
�
� ��

Define fIP �A� �

Z
A
Z dIP �A � F �

Then fIP �A� � � for all A � F and

fIP �	� � IEZ � ��

In other words, fIP is a probability measure.



CHAPTER 12. Semi-Continuous Models 137

We show that fIP is a risk-neutral measure. For this, it suffices to show that

�Y � � Y� � �� � � � � �Yn � Yn � �

are independent, standard normal under fIP .

Verification:

� Y�� Y�� � � � � Yn: Independent, standard normal under IP, and

IE exp

�� nX
j��

ujYj

�� � exp

�� nX
j��

�
�u

�
j

�� �

� �Y � Y� � �� � � � � �Yn � Yn � ��

� Z 	 � almost surely.

� Z � exp
hPn

j�����Yj � �
��

��
i
�

fIP �A� �
Z
A
Z dIP �A � F �

fIEX � IE�XZ� for every random variable X .

� Compute the moment generating function of � �Y�� � � � � �Yn� under fIP :

fIE exp

�� nX
j��

uj �Yj

�� � IE exp

�� nX
j��

uj�Yj � �� �
nX
j��

���Yj � �
��

��

��
� IE exp

�� nX
j��

�uj � ��Yj

�� � exp
�� nX
j��

�uj� � �
��

��

��
� exp

�� nX
j��

�
��uj � ���

�� � exp
�� nX
j��

�uj� � �
��

��

��
� exp

�� nX
j��

�
���u

�
j � uj� �

�
��

�� � �uj� � �
��

��
���

� exp

�� nX
j��

�
�u

�
j

�� �
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12.8 Pricing a European Call

Stock price at time n is

Sn � S� exp
n
�Bn � �
� �

��
��n
o

� S� exp

�
��
nX
j��

Yj � �
� �
��

��n

 !"
� S� exp

�
��
nX
j��

�Yj �
��r
	 �� �
� r�n� �
� �

��
��n

 !"
� S� exp

�
��
nX
j��

�Yj � �r� �
��

��n

 !" �

Payoff at time n is �Sn �K��. Price at time zero is

fIE �Sn �K��

Mn
� fIE

��e�rn
#$S� exp

�
��
nX
j��

�Yj � �r � �
��

��n

 !"�K

%A���
�

Z �

��
e�rn

�
S� exp

n
�b� �r� �

��
��n
o
�K

��
�

�p
��n

e�
b�

�n� db

since
Pn

j��
�Yj is normal with mean 0, variance n, underfIP .

This is the Black-Scholes price. It does not depend on 
.



Chapter 13

Brownian Motion

13.1 Symmetric Random Walk

Toss a fair coin infinitely many times. Define

Xj��� �

	
� if �j � H�

�� if �j � T�

Set

M� � �

Mk �
kX

j��

Xj � k � ��

13.2 The Law of Large Numbers

We will use the method of moment generating functions to derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

�

k
Mk�� almost surely, as k���
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Proof:

�k�u� � IE exp

�
u

k
Mk

�

� IE exp

�
�
kX

j��

u

k
Xj

 !" (Def. of Mk �)

�
kY

j��

IE exp

�
u

k
Xj

�
(Independence of the Xj’s)

�
�
�
�e

u
k � �

�e
�u
k

�k
�

which implies,

log�k�u� � k log
�
�
�e

u
k � �

�e
�u
k

�
Let x � �

k . Then

lim
k��

log �k�u� � lim
x��

log
�
�
�e

ux � �
�e
�ux
�

x

� lim
x��

u
� e

ux � u
�e
�ux

�
�e

ux � �
�e
�ux (L’Hôpital’s Rule)

� ��

Therefore,

lim
k��

�k�u� � e� � ��

which is the m.g.f. for the constant 0.

13.3 Central Limit Theorem

We use the method of moment generating functions to prove the Central Limit Theorem.

Theorem 3.39 (Central Limit Theorem)

�p
k
Mk� Standard normal, as k���

Proof:

�k�u� � IE exp

�
up
k
Mk

�
�
�
�
�e

up
k � �

�e
� up

k

�k
�
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so that,

log�k�u� � k log
�
�
�e

up
k � �

�e
� up

k

�
�

Let x � �p
k

. Then

lim
k��

log�k�u� � lim
x��

log
�
�
�e

ux � �
�e
�ux
�

x�

� lim
x��

u
�e

ux � u
�e
�ux

�x
�
�
�e

ux � �
�e
�ux
� (L’Hôpital’s Rule)

� lim
x��

�
�
�e

ux � �
�e
�ux � limx��

u
�e

ux � u
� e
�ux

�x

� lim
x��

u
�e

ux � u
� e
�ux

�x

� lim
x��

u�

� e
ux � u�

� e
�ux

�
(L’Hôpital’s Rule)

� �
�u

��

Therefore,

lim
k��

�k�u� � e
�
�u

�

�

which is the m.g.f. for a standard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks

Let n be a positive integer. If t � � is of the form k
n , then set

B�n��t� �
�p
n
Mtn �

�p
n
Mk�

If t � � is not of the form k
n , then define B�n��t� by linear interpolation (See Fig. 13.1).

Here are some properties of B������t�:
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k/n (k+1)/n
Figure 13.1: Linear Interpolation to define B �n��t�.

Properties of B�������� �

B�������� �
�

��

���X
j��

Xj (Approximately normal)

IEB�������� �
�

��

���X
j��

IEXj � ��

var�B��������� �
�

���

���X
j��

var�Xj� � �

Properties of B�������� �

B�������� �
�

��

���X
j��

Xj (Approximately normal)

IEB�������� � ��

var�B��������� � ��

Also note that:

� B�������� and B���������B�������� are independent.

� B������t� is a continuous function of t.

To get Brownian motion, let n�� in B�n��t�� t � �.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)
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t

(Ω,F,P)

ω

B(t) = B(t,ω)

Figure 13.2: Continuous-time Brownian Motion.

A random variable B�t� (see Fig. 13.2) is called a Brownian Motion if it satisfies the following
properties:

1. B��� � �,

2. B�t� is a continuous function of t;

3. B has independent, normally distributed increments: If

� � t� � t� � t� � � � � � tn

and

Y� � B�t���B�t��� Y� � B�t���B�t��� � � � Yn � B�tn��B�tn����

then

� Y�� Y�� � � � � Yn are independent,
� IEYj � � �j�
� var�Yj� � tj � tj�� �j�

13.6 Covariance of Brownian Motion

Let � � s � t be given. Then B�s� and B�t� � B�s� are independent, so B�s� and B�t� �
�B�t�� B�s�� �B�s� are jointly normal. Moreover,

IEB�s� � �� var�B�s�� � s�

IEB�t� � �� var�B�t�� � t�

IEB�s�B�t� � IEB�s�
�B�t��B�s�� �B�s��

� IEB�s��B�t�� B�s��� �z �
�

� IEB��s�� �z �
s

� s�
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Thus for any s � �, t � � (not necessarily s � t), we have

IEB�s�B�t� � s � t�

13.7 Finite-Dimensional Distributions of Brownian Motion

Let
� � t� � t� � � � � � tn

be given. Then
�B�t��� B�t��� � � � � B�tn��

is jointly normal with covariance matrix

C �

�&&&�
IEB��t�� IEB�t��B�t�� � � � IEB�t��B�tn�

IEB�t��B�t�� IEB��t�� � � � IEB�t��B�tn�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

IEB�tn�B�t�� IEB�tn�B�t�� � � � IEB��tn�

�'''�

�

�&&&�
t� t� � � � t�
t� t� � � � t�
� � � � � � � � � � � � � � �
t� t� � � � tn

�'''�

13.8 Filtration generated by a Brownian Motion

fF�t�gt	�
Required properties:

� For each t, B�t� is F�t�-measurable,

� For each t and for t � t� � t� � � � �� tn, the Brownian motion increments

B�t���B�t�� B�t���B�t��� � � � � B�tn��B�tn���

are independent of F�t�.

Here is one way to construct F�t�. First fix t. Let s � 
�� t� and C � B�IR� be given. Put the set

fB�s� � Cg � f� � B�s� �� � Cg
in F�t�. Do this for all possible numbers s � 
�� t� and C � B�IR�. Then put in every other set
required by the �-algebra properties.

This F�t� contains exactly the information learned by observing the Brownian motion upto time t.
fF�t�gt	� is called the filtration generated by the Brownian motion.
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13.9 Martingale Property

Theorem 9.40 Brownian motion is a martingale.

Proof: Let � � s � t be given. Then

IE
B�t�jF�s�� � IE
�B�t�� B�s�� �B�s�jF�s��

� IE
B�t�� B�s�� � B�s�

� B�s��

Theorem 9.41 Let � � IR be given. Then

Z�t� � exp
n
��B�t� � �

��
�t
o

is a martingale.

Proof: Let � � s � t be given. Then

IE
Z�t�jF�s�� � IE

�
expf���B�t� �B�s� �B�s��� �

��
���t� s� � s�g

����F�s�

�
� IE

�
Z�s� expf���B�t� � B�s��� �

��
��t � s�g

����F�s�

�
� Z�s�IE

h
expf���B�t� � B�s��� �

��
��t� s�g

i
� Z�s� exp

n
�
������ var�B�t�� B�s��� �

��
��t� s�

o
� Z�s��

13.10 The Limit of a Binomial Model

Consider the n’th Binomial model with the following parameters:

� un � � � �p
n
� “Up” factor. (� 	 �).

� dn � �� �p
n
� “Down” factor.

� r � �.

� �pn � ��dn
un�dn � ��

p
n

���
p
n
� �

� .

� �qn � �
� .
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Let �k�H� denote the number of H in the first k tosses, and let �k�T � denote the number of T in the
first k tosses. Then

�k�H� � �k�T � � k�

�k�H�� �k�T � � Mk�

which implies,

�k�H� � �
��k �Mk�

�k�T � �
�
��k �Mk��

In the n’th model, take n steps per unit time. Set S�n�
� � �. Let t � k

n for some k, and let

S�n��t� �

�
� �

�p
n

��
� �nt�Mnt� �

�� �p
n

��
� �nt�Mnt�

�

UnderfIP , the price process S�n� is a martingale.

Theorem 10.42As n��, the distribution of S �n��t� converges to the distribution of

expf�B�t� � �
��

�tg�
where B is a Brownian motion. Note that the correction � �

��
�t is necessary in order to have a

martingale.

Proof: Recall that from the Taylor series we have

log�� � x� � x � �
�x

� � O�x���

so

logS�n��t� � �
��nt �Mnt� log�� �

�p
n
� � �

��nt �Mnt� log��� �p
n
�

� nt

�
�
� log�� �

�p
n
� � �

� log���
�p
n
�

�
�Mnt

�
�
� log�� �

�p
n
�� �

� log���
�p
n
�

�
� nt

�
�
�

�p
n
� �

�

��

n
� �

�

�p
n
� �

�

��

n
�O�n�����

�

�Mnt

�
�
�

�p
n
� �

�

��

n
� �

�

�p
n
�

�

�

��

n
�O�n�����

�

� ��
��

�t� O�n�
�
� �

� �

�
�p
n
Mnt

�
� �z �

�Bt

�

�
�

n
Mnt

�
� �z �
��

O�n�
�
� �

As n��, the distribution of logS �n��t� approaches the distribution of �B�t� � �
��

�t.
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B(t) = B(t,ω)

tω
x

(Ω, F,  P )x

Figure 13.3: Continuous-time Brownian Motion, starting at x 
� �.

13.11 Starting at Points Other Than 0

(The remaining sections in this chapter were taught Dec 7.)

For a Brownian motion B�t� that starts at 0, we have:

IP �B��� � �� � ��

For a Brownian motion B�t� that starts at x, denote the corresponding probability measure by IP x

(See Fig. 13.3), and for such a Brownian motion we have:

IPx�B��� � x� � ��

Note that:

� If x 
� �, then IPx puts all its probability on a completely different set from IP.

� The distribution of B�t� under IP x is the same as the distribution of x�B�t� under IP.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43Brownian motion has the Markov property.

Proof:

Let s � �� t � � be given (See Fig. 13.4).

IE

�
h�B�s � t��

����F�s�

�
� IE

�&&�h�B�s� t��B�s�� �z �
Independent of F�s�

� B�s�� �z �
F�s�-measurable

�

����F�s�

�''�
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s s+t

restart

B(s)

Figure 13.4: Markov Property of Brownian Motion.

Use the Independence Lemma. Define

g�x� � IE 
h�B�s� t� �B�s� � x ��

� IE

�&&�h� x� B�t�� �z �
same distribution as B�s� t��B�s�

�

�''�
� IExh�B�t���

Then

IE

�
h �B�s � t� �

����F�s�

�
� g�B�s��

� EB�s�h�B�t���

In fact Brownian motion has the strong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fix x 
 � and define

� � minft � �� B�t� � xg �

Then we have:

IE

�
h�B�� � t� �

����F�� �� � g�B�� �� � IExh�B�t���
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τ + t

restart

τ

x

Figure 13.5: Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p�t� x� y� be the probability that the Brownian motion changes value from x to y in time t, and
let � be defined as in the previous section.

p�t� x� y� �
�p
��t

e�
�y�x��

�t

g�x� � IExh�B�t�� �

�Z
��

h�y�p�t� x� y� dy�

IE

�
h�B�s� t��

����F�s�

�
� g�B�s�� �

�Z
��

h�y�p�t� B�s�� y� dy�

IE

�
h�B�� � t��

����F���

�
�

�Z
��

h�y�p�t� x� y� dy�

13.14 First Passage Time

Fix x 	 �. Define
� � min ft � �� B�t� � xg �

Fix � 	 �. Then

exp
n
�B�t � ��� �

��
��t � ��

o
is a martingale, and

IE exp
n
�B�t � ��� �

��
��t � ��

o
� ��
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We have

lim
t�� exp

n
��

��
��t � ��

o
�

�
�e�
�
� �

�� if � ���

� if � ���
(14.1)

� � expf�B�t � ��� �
��

��t � ��g � e�x�

Let t�� in (14.1), using the Bounded Convergence Theorem, to get

IE
h
expf�x� �

��
��g�f���g

i
� ��

Let ��� to get IE�f���g � �, so

IPf� ��g � ��

IE expf��
��

��g � e��x� (14.2)

Let � � �
��

�. We have the m.g.f.:

IEe�
� � e�x
p
�
� � 	 �� (14.3)

Differentiation of (14.3) w.r.t. � yields

�IE ��e�
� � � � xp
��

e�x
p
�
�

Letting ���, we obtain

IE� ��� (14.4)

Conclusion.Brownian motion reaches level x with probability 1. The expected time to reach level
x is infinite.

We use the Reflection Principle below (see Fig. 13.6).

IPf� � t� B�t� � xg � IPfB�t� 	 xg
IPf� � tg � IPf� � t� B�t� � xg� IPf� � t� B�t� 	 xg

� IPfB�t� 	 xg� IPfB�t� 	 xg
� �IPfB�t� 	 xg

�
�p
��t

�Z
x

e�
y�

�t dy
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τ

x

shadow path

Brownian motion

t

Figure 13.6: Reflection Principle in Brownian Motion.

Using the substitution z � yp
t
� dz � dyp

t
we get

IPf� � tg � �p
��

�Z
xp
t

e�
z�

� dz�

Density:

f� �t� �
�

�t
IPf� � tg � xp

��t�
e�

x�

�t �

which follows from the fact that if

F �t� �

bZ
a�t�

g�z� dz�

then
�F

�t
� ��a

�t
g�a�t���

Laplace transform formula:

IEe�
� �

�Z
�

e�
tf� �t�dt � e�x
p
�
�



152



Chapter 14

The It ô Integral

The following chapters deal with Stochastic Differential Equations in Finance. References:

1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag,1995

2. J. Hull, Options, Futures and other Derivative Securities, Prentice Hall, 1993.

14.1 Brownian Motion

(See Fig. 13.3.) �	�F�P� is given, always in the background, even when not explicitly mentioned.
Brownian motion, B�t� �� � 
����� 	�IR, has the following properties:

1. B��� � �� Technically, IPf��B��� �� � �g � �,

2. B�t� is a continuous function of t,

3. If � � t� � t� � � � � � tn, then the increments

B�t���B�t��� � � � � B�tn��B�tn���

are independent,normal, and

IE
B�tk���� B�tk�� � ��

IE
B�tk���� B�tk��
� � tk�� � tk �

14.2 First Variation

Quadratic variation is a measure of volatility. First we will consider first variation, FV �f�, of a
function f�t�.
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t

t

1

2
t

f(t)

T

Figure 14.1: Example function f�t�.

For the function pictured in Fig. 14.1, the first variation over the interval 
�� T � is given by:

FV���T ��f� � 
f�t��� f����� 
f�t��� f�t��� � 
f�T �� f�t���

�

t�Z
�

f ��t� dt�
t�Z
t�

��f ��t�� dt�
TZ

t�

f ��t� dt�

�

TZ
�

jf ��t�j dt�

Thus, first variation measures the total amount of up and down motion of the path.

The general definition of first variation is as follows:

Definition 14.1 (First Variation) Let � � ft�� t�� � � � � tng be a partition of 
�� T �, i.e.,

� � t� � t� � � � � � tn � T�

The mesh of the partition is defined to be

jj�jj � max
k������ �n��

�tk�� � tk��

We then define

FV���T ��f� � lim
jj�jj��

n��X
k��

jf�tk���� f�tk�j�

Suppose f is differentiable. Then the Mean Value Theorem implies that in each subinterval 
tk� tk���,
there is a point t
k such that

f�tk���� f�tk� � f ��t
k��tk�� � tk��
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Then
n��X
k��

jf�tk���� f�tk�j �
n��X
k��

jf ��t
k�j�tk�� � tk��

and

FV���T ��f� � lim
jj�jj��

n��X
k��

jf ��t
k�j�tk�� � tk�

�

TZ
�

jf ��t�j dt�

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) The quadratic variation of a function f on an interval 
�� T �
is

hfi�T � � lim
jj�jj��

n��X
k��

jf�tk���� f�tk�j��

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f is differentiable, then hfi�T � �
�, because

n��X
k��

jf�tk���� f�tk�j� �
n��X
k��

jf ��t
k�j��tk�� � tk�
�

� jj�jj�
n��X
k��

jf ��t
k�j��tk�� � tk�

and

hfi�T � � lim
jj�jj��

jj�jj� lim
jj�jj��

n��X
k��

jf ��t
k�j��tk�� � tk�

� lim
jj�jj��

jj�jj
TZ
�

jf ��t�j� dt

� ��

Theorem 3.44

hBi�T � � T�

or more precisely,
IPf� � 	� hB��� ��i�T � � Tg � ��

In particular, the paths of Brownian motion are not differentiable.



156

Proof: (Outline) Let � � ft�� t�� � � � � tng be a partition of 
�� T �. To simplify notation, set Dk �
B�tk����B�tk�. Define the sample quadratic variation

Q� �
n��X
k��

D�
k�

Then

Q� � T �
n��X
k��


D�
k � �tk�� � tk���

We want to show that
lim

jj�jj��
�Q� � T � � ��

Consider an individual summand

D�
k � �tk�� � tk� � 
B�tk���� B�tk��

� � �tk�� � tk��

This has expectation 0, so

IE�Q� � T � � IE
n��X
k��


D�
k � �tk�� � tk�� � ��

For j 
� k, the terms
D�
j � �tj�� � tj� and D�

k � �tk�� � tk�

are independent, so

var�Q� � T � �
n��X
k��

var
D�
k � �tk�� � tk��

�
n��X
k��

IE
D�
k � ��tk�� � tk�D

�
k � �tk�� � tk�

��

�
n��X
k��


��tk�� � tk�
� � ��tk�� � tk�

� � �tk�� � tk�
��

(if X is normal with mean 0 and variance ��, then IE�X�� � ���)

� �
n��X
k��

�tk�� � tk�
�

� �jj�jj
n��X
k��

�tk�� � tk�

� �jj�jj T�

Thus we have

IE�Q� � T � � ��

var�Q� � T � � �jj�jj�T�
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As jj�jj��, var�Q� � T ���, so

lim
jj�jj��

�Q� � T � � ��

Remark 14.2 (Differential Representation) We know that

IE
�B�tk����B�tk��
� � �tk�� � tk�� � ��

We showed above that

var
�B�tk����B�tk��
� � �tk�� � tk�� � ��tk�� � tk�

��

When �tk�� � tk� is small, �tk�� � tk�
� is very small, and we have the approximate equation

�B�tk���� B�tk��
� � tk�� � tk �

which we can write informally as
dB�t� dB�t� � dt�

14.4 Quadratic Variation as Absolute Volatility

On any time interval 
T�� T��, we can sample the Brownian motion at times

T� � t� � t� � � � � � tn � T�

and compute the squared sample absolute volatility

�

T� � T�

n��X
k��

�B�tk����B�tk��
��

This is approximately equal to

�

T� � T�

hBi�T��� hBi�T��� � T� � T�

T� � T�
� ��

As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion has absolute volatility 1.

Furthermore, consider the equation

hBi�T � � T �

TZ
�

� dt� �T � ��

This says that quadratic variation for Brownian motion accumulates at rate 1 at all times along
almost every path.
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14.5 Construction of the Itô Integral

The integrator is Brownian motion B�t�� t � �, with associated filtration F�t�� t � �, and the
following properties:

1. s � t�� every set in F�s� is also in F�t�,

2. B�t� is F�t�-measurable, �t,
3. For t � t� � � � � � tn, the increments B�t��� B�t�� B�t��� B�t��� � � � � B�tn�� B�tn���

are independent of F�t�.

The integrand is ��t�� t � �, where

1. ��t� is F�t�-measurable �t (i.e., � is adapted)

2. � is square-integrable:

IE

TZ
�

���t� dt ��� �T�

We want to define the It ô Integral:

I�t� �

tZ
�

��u� dB�u�� t � ��

Remark 14.3 (Integral w.r.t. a differentiable function) If f�t� is a differentiable function, then
we can define

tZ
�

��u� df�u� �

Z t

�
��u�f ��u� du�

This won’t work when the integrator is Brownian motion, because the paths of Brownian motion
are not differentiable.

14.6 Itô integral of an elementary integrand

Let � � ft�� t�� � � � � tng be a partition of 
�� T �, i.e.,

� � t� � t� � � � � � tn � T�

Assume that ��t� is constant on each subinterval 
tk � tk��� (see Fig. 14.2). We call such a � an
elementary process.

The functions B�t� and ��tk� can be interpreted as follows:

� Think of B�t� as the price per unit share of an asset at time t.
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t )δ(

t )δ(
δ( ) δ( t )=t
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0=t0
t t t =  T2 3 4t1

0

δ( t )= 1

δ( t )= 2

δ( t )= 3

Figure 14.2: An elementary function �.

� Think of t�� t�� � � � � tn as the trading dates for the asset.

� Think of ��tk� as the number of shares of the asset acquired at trading date tk and held until
trading date tk��.

Then the Itô integral I�t� can be interpreted as the gain from trading at time t; this gain is given by:

I�t� �

�����
�����
��t��
B�t�� B�t��� �z �

�B�����

�� � � t � t�

��t��
B�t��� B�t��� � ��t��
B�t��B�t���� t� � t � t�

��t��
B�t��� B�t��� � ��t��
B�t���B�t��� � ��t��
B�t�� B�t���� t� � t � t��

In general, if tk � t � tk��,

I�t� �
k��X
j��

��tj�
B�tj����B�tj�� � ��tk�
B�t�� B�tk���

14.7 Properties of the It̂o integral of an elementary process

AdaptednessFor each t� I�t� is F�t�-measurable.

Linearity If

I�t� �

tZ
�

��u� dB�u�� J�t� �

tZ
�

��u� dB�u�

then

I�t�� J�t� �
Z t

�
���u�� ��u�� dB�u�
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. . . . .

Figure 14.3: Showing s and t in different partitions.

and

cI�t� �
Z t

�
c��u�dB�u��

Martingale I�t� is a martingale.

We prove the martingale property for the elementary process case.

Theorem 7.45 (Martingale Property)

I�t� �
k��X
j��

��tj�
B�tj����B�tj�� � ��tk�
B�t��B�tk��� tk � t � tk��

is a martingale.

Proof: Let � � s � t be given. We treat the more difficult case that s and t are in different
subintervals, i.e., there are partition points t� and tk such that s � 
t�� t���� and t � 
tk� tk��� (See
Fig. 14.3).

Write

I�t� �
���X
j��

��tj�
B�tj����B�tj�� � ��t��
B�t�����B�t���

�
k��X
j����

��tj�
B�tj����B�tj�� � ��tk�
B�t��B�tk��

We compute conditional expectations:

IE

�����X
j��

��tj��B�tj���� B�tj��

����F�s�

�� �
���X
j��

��tj��B�tj����B�tj���

IE

�
��t���B�t�����B�t���

����F�s�

�
� ��t�� �IE
B�t����jF�s��� B�t���

� ��t��
B�s��B�t���
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These first two terms add up to I�s�. We show that the third and fourth terms are zero.

IE

�� k��X
j����

��tj��B�tj���� B�tj��

����F�s�

�� �
k��X
j����

IE

�
IE

�
��tj��B�tj���� B�tj��

����F�tj�

� ����F�s�

�

�
k��X
j����

IE

�&���tj� �IE
B�tj���jF�tj��� B�tj��� �z �
��

����F�s�

�'�
IE

�
��tk��B�t��B�tk��

����F�s�

�
� IE

�&���tk� �IE
B�t�jF�tk��� B�tk��� �z �
��

����F�s�

�'�

Theorem 7.46 (It̂o Isometry)

IEI��t� � IE

Z t

�
���u� du�

Proof: To simplify notation, assume t � tk , so

I�t� �
kX

j��

��tj�
B�tj���� B�tj�� �z �
Dj

�

Each Dj has expectation 0, and different Dj are independent.

I��t� �

#$ kX
j��

��tj�Dj

%A�

�
kX

j��

���tj�D
�
j � �

X
i�j

��ti���tj�DiDj �

Since the cross terms have expectation zero,

IEI��t� �
kX

j��

IE
���tj�D
�
j �

�
kX

j��

IE

�
���tj�IE

�
�B�tj���� B�tj��

�
����F�tj�

��

�
kX

j��

IE���tj��tj�� � tj�

� IE
kX

j��

tj��Z
tj

���u� du

� IE

Z t

�
���u� du
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0=t0
t t t =  T2 3 4t1
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Figure 14.4: Approximating a general process by an elementary process ��, over 
�� T �.

14.8 Itô integral of a general integrand

Fix T 	 �. Let � be a process (not necessarily an elementary process) such that

� ��t� is F�t�-measurable, �t � 
�� T �,

� IE
R T
� ���t� dt ���

Theorem 8.47 There is a sequence of elementary processes f�ng�n�� such that

lim
n�� IE

Z T

�
j�n�t�� ��t�j� dt � ��

Proof: Fig. 14.4 shows the main idea.

In the last section we have defined

In�T � �
Z T

�
�n�t� dB�t�

for every n. We now define

Z T

�
��t� dB�t� � lim

n��

Z T

�
�n�t� dB�t��
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The only difficulty with this approach is that we need to make sure the above limit exists. Suppose
n and m are large positive integers. Then

var�In�T �� Im�T �� � IE

�Z T

�

�n�t�� �m�t�� dB�t�

��

(Itô Isometry:) � IE

Z T

�

�n�t�� �m�t��

� dt

� IE

Z T

�

 j�n�t�� ��t�j� j��t�� �m�t�j �� dt

��a� b�� � �a� � �b� �� � �IE

Z T

�
j�n�t�� ��t�j� dt� �IE

Z T

�
j�m�t�� ��t�j� dt�

which is small. This guarantees that the sequence fIn�T �g�n�� has a limit.

14.9 Properties of the (general) It̂o integral

I�t� �

Z t

�
��u� dB�u��

Here � is any adapted, square-integrable process.

Adaptedness.For each t, I�t� is F�t�-measurable.

Linearity. If

I�t� �

tZ
�

��u� dB�u�� J�t� �

tZ
�

��u� dB�u�

then

I�t�� J�t� �
Z t

�
���u�� ��u�� dB�u�

and

cI�t� �
Z t

�
c��u�dB�u��

Martingale. I�t� is a martingale.

Continuity. I�t� is a continuous function of the upper limit of integration t.

It ô Isometry. IEI��t� � IE
R t
� �

��u� du.

Example 14.1 () Consider the Itô integral Z T

�

B�u� dB�u��

We approximate the integrand as shown in Fig. 14.5
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T/4 2T/4 3T/4 T

Figure 14.5: Approximating the integrandB�u� with ��, over 
�� T �.

�n�u� �

�����
�����
B��� � � if � � u � T�n�

B�T�n� if T�n � u � �T�n�

� � �

B
�
�n��	T

T

�
if �n��	T

n � u � T�

By definition, Z T

�

B�u� dB�u� � lim
n
�

n��X
k
�

B

�
kT

n

��
B

�
�k � ��T

n

�
� B

�
kT

n

��
�

To simplify notation, we denote

Bk
�
� B

�
kT

n

�
�

so Z T

�
B�u� dB�u� � lim

n
�

n��X
k
�

Bk�Bk�� � Bk��

We compute

�
�

n��X
k
�

�Bk�� � Bk�
� � �

�

n��X
k
�

B�
k�� �

n��X
k
�

BkBk�� �
�
�

n��X
k
�

B�
k

� �
�
B�
n � �

�

n��X
j
�

B�
j �

n��X
k
�

BkBk�� �
�
�

n��X
k
�

B�
k

� �
�B

�
n �

n��X
k
�

B�
k �

n��X
k
�

BkBk��

� �
�B

�
n �

n��X
k
�

Bk�Bk�� � Bk��
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Therefore,
n��X
k
�

Bk�Bk�� �Bk� �
�
�B

�
n � �

�

n��X
k
�

�Bk�� �Bk�
��

or equivalently

n��X
k
�

B

�
kT

n

��
B

�
�k � ��T

n

�
�B

�
kT

n

��
� �

�B
��T �� �

�

n��X
k
�

�
B

�
�k � ��T

n

��
k

T

���
�

Let n
� and use the definition of quadratic variation to getZ T

�

B�u� dB�u� � �
�
B��T � � �

�
T�

Remark 14.4 (Reason for the��T term) If f is differentiable with f��� � �, thenZ T

�
f�u� df�u� �

Z T

�
f�u�f ��u� du

� �
�f

��u�

����T
�

� �
�f

��T ��

In contrast, for Brownian motion, we haveZ T

�
B�u�dB�u� � �

�B
��T �� �

�T�

The extra term �
�T comes from the nonzero quadratic variation of Brownian motion. It has to be

there, because

IE

Z T

�
B�u� dB�u� � � (Itô integral is a martingale)

but
IE �

�B
��T � � �

�T�

14.10 Quadratic variation of an Itô integral

Theorem 10.48 (Quadratic variation of Itô integral) Let

I�t� �
Z t

�
��u� dB�u��

Then

hIi�t� �
Z t

�
���u� du�
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This holds even if � is not an elementary process. The quadratic variation formula says that at each
time u, the instantaneous absolute volatility of I is � ��u�. This is the absolute volatility of the
Brownian motion scaled by the size of the position (i.e. ��t�) in the Brownian motion. Informally,
we can write the quadratic variation formula in differential form as follows:

dI�t� dI�t� � ���t� dt�

Compare this with
dB�t� dB�t� � dt�

Proof: (For an elementary process �). Let � � ft�� t�� � � � � tng be the partition for �, i.e., ��t� �
��tk� for tk � t � tk��. To simplify notation, assume t � tn. We have

hIi�t� �
n��X
k��


hIi�tk���� hIi�tk�� �

Let us compute hIi�tk���� hIi�tk�. Let � � fs�� s�� � � � � smg be a partition

tk � s� � s� � � � �� sm � tk���

Then

I�sj���� I�sj� �

sj��Z
sj

��tk� dB�u�

� ��tk� 
B�sj���� B�sj�� �

so

hIi�tk���� hIi�tk� �
m��X
j��


I�sj���� I�sj��
�

� ���tk�
m��X
j��


B�sj����B�sj��
�

jj�jj�������� ���tk��tk�� � tk��

It follows that

hIi�t� �
n��X
k��

���tk��tk�� � tk�

�
n��X
k��

tk��Z
tk

���u� du

jj�jj���������
Z t

�
���u� du�



Chapter 15

It ô’s Formula

15.1 Itô’s formula for one Brownian motion

We want a rule to “differentiate” expressions of the form f�B�t��, where f�x� is a differentiable
function. If B�t� were also differentiable, then the ordinary chain rule would give

d

dt
f�B�t�� � f ��B�t��B��t��

which could be written in differential notation as

df�B�t�� � f ��B�t��B��t� dt
� f ��B�t��dB�t�

However, B�t� is not differentiable, and in particular has nonzero quadratic variation, so the correct
formula has an extra term, namely,

df�B�t�� � f ��B�t�� dB�t� � �
�f

���B�t�� dt��z�
dB�t� dB�t�

�

This is Itô’s formula in differential form. Integrating this, we obtain Itô’s formula in integral form:

f�B�t��� f�B����� �z �
f���

�
Z t

�
f ��B�u�� dB�u� � �

�

Z t

�
f ���B�u�� du�

Remark 15.1 (Differential vs. Integral Forms) The mathematically meaningful form of Itô’s for-
mula is Itô’s formula in integral form:

f�B�t��� f�B���� �
Z t

�
f ��B�u�� dB�u� � �

�

Z t

�
f ���B�u�� du�
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This is because we have solid definitions for both integrals appearing on the right-hand side. The
first, Z t

�
f ��B�u�� dB�u�

is an Itô integral, defined in the previous chapter. The second,

Z t

�
f ���B�u�� du�

is a Riemann integral, the type used in freshman calculus.

For paper and pencil computations, the more convenient form of Itô’s rule is Itô’s formula in differ-
ential form:

df�B�t�� � f ��B�t�� dB�t� � �
�f

���B�t�� dt�

There is an intuitive meaning but no solid definition for the terms df�B�t��� dB�t� and dt appearing
in this formula. This formula becomes mathematically respectable only after we integrate it.

15.2 Derivation of Itô’s formula

Consider f�x� � �
�x

�, so that

f ��x� � x� f ���x� � ��

Let xk� xk�� be numbers. Taylor’s formula implies

f�xk���� f�xk� � �xk�� � xk�f
��xk� � �

��xk�� � xk�
�f ���xk��

In this case, Taylor’s formula to second order is exact because f is a quadratic function.

In the general case, the above equation is only approximate, and the error is of the order of �xk���
xk��. The total error will have limit zero in the last step of the following argument.

Fix T 	 � and let � � ft�� t�� � � � � tng be a partition of 
�� T �. Using Taylor’s formula, we write:

f�B�T ��� f�B����

� �
�B

��T �� �
�B

����

�
n��X
k��


f�B�tk����� f�B�tk���

�
n��X
k��


B�tk����B�tk�� f
��B�tk�� �

�
�

n��X
k��


B�tk����B�tk��
� f ���B�tk��

�
n��X
k��

B�tk� 
B�tk���� B�tk�� �
�
�

n��X
k��


B�tk����B�tk��
� �
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We let jj�jj�� to obtain

f�B�T ��� f�B���� �
Z T

�
B�u� dB�u� � �

� hBi�T �� �z �
T

�

Z T

�
f ��B�u�� dB�u� � �

�

Z T

�
f ���B�u��� �z �

�

du�

This is Itô’s formula in integral form for the special case

f�x� � �
�x

��

15.3 Geometric Brownian motion

Definition 15.1 (Geometric Brownian Motion) Geometric Brownian motion is

S�t� � S��� exp
n
�B�t� �

�

� �

��
�
�
t
o
�

where 
 and � 	 � are constant.

Define

f�t� x� � S��� exp
n
�x�

�

� �

��
�
�
t
o
�

so

S�t� � f�t� B�t���

Then

ft �
�

� �

��
�
�
f� fx � �f� fxx � ��f�

According to Itô’s formula,

dS�t� � df�t� B�t��

� ftdt� fxdB � �
�fxx dBdB� �z �

dt

� �
� �
��

��f dt� �f dB � �
��

�f dt

� 
S�t�dt� �S�t� dB�t�

Thus, Geometric Brownian motion in differential form is

dS�t� � 
S�t�dt� �S�t� dB�t��

and Geometric Brownian motion in integral form is

S�t� � S��� �
Z t

�

S�u� du�

Z t

�
�S�u� dB�u��
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15.4 Quadratic variation of geometric Brownian motion

In the integral form of Geometric Brownian motion,

S�t� � S����

Z t

�

S�u� du�

Z t

�
�S�u� dB�u��

the Riemann integral

F �t� �

Z t

�

S�u� du

is differentiable with F ��t� � 
S�t�. This term has zero quadratic variation. The Itô integral

G�t� �

Z t

�
�S�u� dB�u�

is not differentiable. It has quadratic variation

hGi�t� �
Z t

�
��S��u� du�

Thus the quadratic variation of S is given by the quadratic variation of G. In differential notation,
we write

dS�t� dS�t� � �
S�t�dt� �S�t�dB�t��� � ��S��t� dt

15.5 Volatility of Geometric Brownian motion

Fix � � T� � T�. Let � � ft�� � � � � tng be a partition of 
T�� T��. The squared absolute sample
volatility of S on 
T�� T�� is

�

T� � T�

n��X
k��


S�tk���� S�tk��
� � �

T� � T�

T�Z
T�

��S��u� du

� ��S��T��

As T� � T�, the above approximation becomes exact. In other words, the instantaneous relative
volatility of S is ��. This is usually called simply the volatility of S.

15.6 First derivation of the Black-Scholes formula

Wealth of an investor. An investor begins with nonrandom initial wealth X� and at each time t,
holds ��t� shares of stock. Stock is modelled by a geometric Brownian motion:

dS�t� � 
S�t�dt� �S�t�dB�t��



CHAPTER 15. Itô’s Formula 171

��t� can be random, but must be adapted. The investor finances his investing by borrowing or
lending at interest rate r.

Let X�t� denote the wealth of the investor at time t. Then

dX�t� � ��t�dS�t� � r 
X�t����t�S�t��dt

� ��t� 

S�t�dt� �S�t�dB�t�� � r 
X�t����t�S�t��dt

� rX�t�dt � ��t�S�t� �
� r�� �z �
Risk premium

dt � ��t�S�t��dB�t��

Value of an option. Consider an European option which pays g�S�T �� at time T . Let v�t� x� denote
the value of this option at time t if the stock price is S�t� � x. In other words, the value of the
option at each time t � 
�� T � is

v�t� S�t���

The differential of this value is

dv�t� S�t�� � vtdt� vxdS � �
�vxxdS dS

� vtdt� vx 

S dt � �S dB� � �
�vxx�

�S� dt

�
h
vt � 
Svx �

�
��

�S�vxx
i
dt � �SvxdB

A hedging portfolio starts with some initial wealth X � and invests so that the wealth X�t� at each
time tracks v�t� S�t��. We saw above that

dX�t� � 
rX ���
� r�S� dt� �S�dB�

To ensure that X�t� � v�t� S�t�� for all t, we equate coefficients in their differentials. Equating the
dB coefficients, we obtain the �-hedging rule:

��t� � vx�t� S�t���

Equating the dt coefficients, we obtain:

vt � 
Svx �
�
��

�S�vxx � rX � ��
� r�S�

But we have set � � vx, and we are seeking to causeX to agree with v. Making these substitutions,
we obtain

vt � 
Svx �
�
��

�S�vxx � rv � vx�
� r�S�

(where v � v�t� S�t�� and S � S�t�) which simplifies to

vt � rSvx �
�
��

�S�vxx � rv�

In conclusion, we should let v be the solution to the Black-Scholes partial differential equation

vt�t� x� � rxvx�t� x� �
�
��

�x�vxx�t� x� � rv�t� x�

satisfying the terminal condition
v�T� x� � g�x��

If an investor starts with X� � v��� S���� and uses the hedge ��t� � vx�t� S�t��, then he will have
X�t� � v�t� S�t�� for all t, and in particular, X�T � � g�S�T ��.
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15.7 Mean and variance of the Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross model for interest rates is

dr�t� � a�b� cr�t��dt� �
q
r�t� dB�t��

where a� b� c� � and r��� are positive constants. In integral form, this equation is

r�t� � r��� � a

Z t

�
�b� cr�u�� du� �

Z t

�

q
r�u� dB�u��

We apply Itô’s formula to compute dr��t�. This is df�r�t��, where f�x� � x�. We obtain

dr��t� � df�r�t��

� f ��r�t�� dr�t� � �
�f

���r�t�� dr�t� dr�t�

� �r�t�

�
a�b� cr�t�� dt� �

q
r�t� dB�t�

�
�

�
a�b� cr�t�� dt� �

q
r�t� dB�t�

��
� �abr�t� dt� �acr��t� dt� ��r

�
� �t� dB�t� � ��r�t� dt

� ��ab� ���r�t� dt� �acr��t� dt� ��r
�
� �t� dB�t�

The mean ofr�t�. The integral form of the CIR equation is

r�t� � r��� � a

Z t

�
�b� cr�u�� du� �

Z t

�

q
r�u� dB�u��

Taking expectations and remembering that the expectation of an Itô integral is zero, we obtain

IEr�t� � r��� � a

Z t

�
�b� cIEr�u�� du�

Differentiation yields
d

dt
IEr�t� � a�b� cIEr�t�� � ab� acIEr�t��

which implies that

d

dt

h
eactIEr�t�

i
� eact

�
acIEr�t� �

d

dt
IEr�t�

�
� eactab�

Integration yields

eactIEr�t�� r��� � ab

Z t

�
eacu du �

b

c
�eact � ���

We solve for IEr�t�:

IEr�t� �
b

c
� e�act

�
r���� b

c

�
�

If r��� � b
c , then IEr�t� � b

c for every t. If r��� 
� b
c , then r�t� exhibits mean reversion:

lim
t�� IEr�t� �

b

c
�
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Variance of r�t�. The integral form of the equation derived earlier for dr��t� is

r��t� � r���� � ��ab� ���
Z t

�
r�u� du� �ac

Z t

�
r��u� du� ��

Z t

�
r
�
� �u� dB�u��

Taking expectations, we obtain

IEr��t� � r���� � ��ab� ���

Z t

�
IEr�u� du� �ac

Z t

�
IEr��u� du�

Differentiation yields

d

dt
IEr��t� � ��ab� ���IEr�t�� �acIEr��t��

which implies that

d

dt
e�actIEr��t� � e�act

�
�acIEr��t� �

d

dt
IEr��t�

�
� e�act��ab� ���IEr�t��

Using the formula already derived for IEr�t� and integrating the last equation, after considerable
algebra we obtain

IEr��t� �
b��

�ac�
�
b�

c�
�

�
r���� b

c

��
��

ac
�

�b

c

�
e�act

�

�
r���� b

c

�� ��
ac
e��act �

��

ac

�
b

�c
� r���

�
e��act�

var r�t� � IEr��t�� �IEr�t���

�
b��

�ac�
�

�
r���� b

c

�
��

ac
e�act �

��

ac

�
b

�c
� r���

�
e��act�

15.8 Multidimensional Brownian Motion

Definition 15.2 (d-dimensional Brownian Motion) A d-dimensional Brownian Motion is a pro-
cess

B�t� � �B��t�� � � � � Bd�t��

with the following properties:

� Each Bk�t� is a one-dimensional Brownian motion;

� If i 
� j, then the processes Bi�t� and Bj�t� are independent.

Associated with a d-dimensional Brownian motion, we have a filtration fF�t�g such that

� For each t, the random vector B�t� is F�t�-measurable;

� For each t � t� � � � � � tn, the vector increments

B�t��� B�t�� � � � � B�tn�� B�tn���

are independent of F�t�.
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15.9 Cross-variations of Brownian motions

Because each componentBi is a one-dimensional Brownian motion, we have the informal equation

dBi�t� dBi�t� � dt�

However, we have:

Theorem 9.49 If i 
� j,
dBi�t� dBj�t� � �

Proof: Let � � ft�� � � � � tng be a partition of 
�� T �. For i 
� j, define the sample cross variation
of Bi and Bj on 
�� T � to be

C� �
n��X
k��


Bi�tk����Bi�tk�� 
Bj�tk����Bj�tk�� �

The increments appearing on the right-hand side of the above equation are all independent of one
another and all have mean zero. Therefore,

IEC� � ��

We compute var�C��. First note that

C�
� �

n��X
k��

�
Bi�tk���� Bi�tk�

���
Bj�tk���� Bj�tk�

��

� �
n��X
��k


Bi�t�����Bi�t��� 
Bj�t����� Bj�t��� � 
Bi�tk����Bi�tk�� 
Bj�tk����Bj�tk��

All the increments appearing in the sum of cross terms are independent of one another and have
mean zero. Therefore,

var�C�� � IEC�
�

� IE
n��X
k��


Bi�tk���� Bi�tk��
� 
Bj�tk����Bj�tk��

� �

But 
Bi�tk���� Bi�tk��
� and 
Bj�tk����Bj�tk��

� are independent of one another, and each has
expectation �tk�� � tk�. It follows that

var�C�� �
n��X
k��

�tk�� � tk�
� � jj�jj

n��X
k��

�tk�� � tk� � jj�jj�T�

As jj�jj��, we have var�C����, so C� converges to the constant IEC� � �.
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15.10 Multi-dimensional Itô formula

To keep the notation as simple as possible, we write the Itô formula for two processes driven by a
two-dimensional Brownian motion. The formula generalizes to any number of processes driven by
a Brownian motion of any number (not necessarily the same number) of dimensions.

Let X and Y be processes of the form

X�t� � X����

Z t

�
��u� du�

Z t

�
����u� dB��u� �

Z t

�
����u� dB��u��

Y �t� � Y ��� �

Z t

�
��u� du�

Z t

�
����u� dB��u� �

Z t

�
����u� dB��u��

Such processes, consisting of a nonrandom initial condition, plus a Riemann integral, plus one or
more Itô integrals, are called semimartingales. The integrands ��u�� ��u�� and �ij�u� can be any
adapted processes. The adaptedness of the integrands guarantees that X and Y are also adapted. In
differential notation, we write

dX � � dt� ��� dB� � ��� dB��

dY � � dt� ��� dB� � ��� dB��

Given these two semimartingales X and Y , the quadratic and cross variations are:

dX dX � �� dt� ��� dB� � ��� dB��
��

� ���� dB� dB�� �z �
dt

�������� dB� dB�� �z �
�

����� dB� dB�� �z �
dt

� ����� � �����
� dt�

dY dY � �� dt� ��� dB� � ��� dB��
�

� ����� � �����
� dt�

dX dY � �� dt� ��� dB� � ��� dB���� dt � ��� dB� � ��� dB��

� ������� � ������� dt

Let f�t� x� y� be a function of three variables, and let X�t� and Y �t� be semimartingales. Then we
have the corresponding Itô formula:

df�t� x� y� � ft dt � fx dX � fy dY � �
� 
fxx dX dX � �fxy dX dY � fyy dY dY � �

In integral form, with X and Y as decribed earlier and with all the variables filled in, this equation
is

f�t� X�t�� Y �t��� f��� X���� Y ����

�

Z t

�

ft � �fx � �fy �

�
���

�
�� � �����fxx � ������� � �������fxy �

�
���

�
�� � �����fyy � du

�
Z t

�

���fx � ���fy � dB� �

Z t

�

���fx � ���fy � dB��

where f � f�u�X�u�� Y �u�, for i� j � f�� �g, �ij � �ij�u�, and Bi � Bi�u�.
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Chapter 16

Markov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider the stochastic differential equation:

dX�t� � a�t� X�t�� dt� ��t� X�t�� dB�t�� (SDE)

Here a�t� x� and ��t� x� are given functions, usually assumed to be continuous in �t� x� and Lips-
chitz continuous in x,i.e., there is a constant L such that

ja�t� x�� a�t� y�j � Ljx� yj� j��t� x�� ��t� y�j � Ljx� yj
for all t� x� y.

Let �t�� x� be given. A solution to (SDE) with the initial condition �t �� x� is a process fX�t�gt	t�
satisfying

X�t�� � x�

X�t� � X�t�� �

tZ
t�

a�s�X�s�� ds�

tZ
t�

��s�X�s�� dB�s�� t � t�

The solution process fX�t�gt	t� will be adapted to the filtration fF�t�gt	� generated by the Brow-
nian motion. If you know the path of the Brownian motion up to time t, then you can evaluate
X�t�.

Example 16.1 (Drifted Brownian motion) Let a be a constant and � � �, so

dX�t� � a dt� dB�t��

If �t�� x� is given and we start with the initial condition

X�t�� � x�

177
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then

X�t� � x� a�t� t�� � �B�t� �B�t���� t � t��

To compute the differential w.r.t. t, treat t� and B�t�� as constants:

dX�t� � a dt� dB�t��

Example 16.2 (Geometric Brownian motion) Let r and � be constants. Consider

dX�t� � rX�t� dt� �X�t� dB�t��

Given the initial condition

X�t�� � x�

the solution is

X�t� � x exp
(
��B�t� �B�t��� � �r � �

��
���t� t��

)
�

Again, to compute the differential w.r.t. t, treat t� and B�t�� as constants:

dX�t� � �r � �
��

��X�t� dt� �X�t� dB�t� � �
��

�X�t� dt

� rX�t� dt� �X�t� dB�t��

16.2 Markov Property

Let � � t� � t� be given and let h�y� be a function. Denote by

IEt��xh�X�t���

the expectation of h�X�t���, given that X�t�� � x. Now let 
 � IR be given, and start with initial
condition

X��� � 
�

We have the Markov property

IE���
�
h�X�t���

����F�t��

�
� IEt��X�t��h�X�t����

In other words, if you observe the path of the driving Brownian motion from time 0 to time t�, and
based on this information, you want to estimate h�X�t���, the only relevant information is the value
of X�t��. You imagine starting the �SDE� at time t� at value X�t��, and compute the expected
value of h�X�t���.
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16.3 Transition density

Denote by
p�t�� t�� x� y�

the density (in the y variable) of X�t��, conditioned on X�t�� � x. In other words,

IEt��xh�X�t��� �

Z
IR
h�y�p�t�� t�� x� y� dy�

The Markov property says that for � � t� � t� and for every 
,

IE���
�
h�X�t���

����F�t��

�
�
Z
IR
h�y�p�t�� t�� X�t��� y� dy�

Example 16.3 (Drifted Brownian motion) Consider the SDE

dX�t� � a dt� dB�t��

Conditioned on X�t�� � x, the random variable X�t�� is normal with mean x � a�t� � t�� and variance
�t� � t��, i.e.,

p�t�� t�� x� y� �
�p

���t� � t��
exp

�
� �y � �x� a�t� � t�����

��t� � t��

�
�

Note that p depends on t� and t� only through their difference t� � t�. This is always the case when a�t� x�
and ��t� x� don’t depend on t.

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE

dX�t� � rX�t� dt� �X�t� dB�t��

with initial condition X�t�� � x, is Geometric Brownian motion:

X�t�� � x exp
(
��B�t��� B�t��� � �r � �

��
���t� � t��

)
�

The random variable B�t�� �B�t�� has density

IP fB�t�� �B�t�� � dbg � �p
���t� � t��

exp

�
� b�

��t� � t��

�
db�

and we are making the change of variable

y � x exp
(
�b� �r � �

��
���t� � t��

)
or equivalently,

b �
�

�

h
log

y

x
� �r � �

��
���t� � t��

i
�

The derivative is
dy

db
� �y� or equivalently, db �

dy

�y
�
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Therefore,

p�t�� t��x� y� dy � IP fX�t�� � dyg

�
�

�y
p
���t� � t��

exp

�
� �

��t� � t����

h
log

y

x
� �r � �

��
���t� � t��

i��
dy�

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

IEt�x�X�T � �K�� �

Z �

�

�y �K��p�t� T �x� y� dy

� er�T�t	xN

�
�

�
p
T � t

h
log

x

K
� r�T � t� � �

��
��T � t�

i�
�KN

�
�

�
p
T � t

h
log

x

K
� r�T � t�� �

��
��T � t�

i�
where

N �
� �
�p
��

Z �

��

e�
�
�x

�

dx �
�p
��

Z �

��

e�
�
�x

�

dx�

Therefore,

IE���

�
e�r�T�t	�X�T � �K��

����F�t�� � e�r�T�t	IEt�X�t	�X�T � �K��

� X�t�N

�
�

�
p
T � t

�
log

X�t�

K
� r�T � t� � �

��
��T � t�

��
� e�r�T�t	K N

�
�

�
p
T � t

�
log

X�t�

K
� r�T � t� � �

��
��T � t�

��

16.4 The Kolmogorov Backward Equation

Consider
dX�t� � a�t� X�t�� dt� ��t� X�t�� dB�t��

and let p�t�� t�� x� y� be the transition density. Then the Kolmogorov Backward Equation is:

� �

�t�
p�t�� t�� x� y� � a�t�� x�

�

�x
p�t�� t�� x� y� �

�
��

��t�� x�
��

�x�
p�t�� t�� x� y��

(KBE)

The variables t� and x in �KBE� are called the backward variables.

In the case that a and � are functions of x alone, p�t�� t�� x� y� depends on t� and t� only through
their difference � � t� � t�. We then write p�� � x� y� rather than p�t�� t�� x� y�, and �KBE�
becomes

�

��
p�� � x� y� � a�x�

�

�x
p�� � x� y� � �

��
��x�

��

�x�
p�� � x� y�� (KBE’)
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Example 16.5 (Drifted Brownian motion)

dX�t� � a dt� dB�t�

p�� � x� y� �
�p
���

exp

�
� �y � �x� a� ���

��

�
�

�

��
p � p� �

�
�

��

�p
���

�
exp

�
� �y � x� a� ��

��

�
�
�
�

��

�y � x� a� ��

��

�
�p
���

exp

�
� �y � x� a� ��

��

�
�

�
� �

��
�
a�y � x� a� �

�
�

�y � x� a� �

���

�
p�

�

�x
p � px �

y � x� a�

�
p�

��

�x�
p � pxx �

�
�

�x

y � x� a�

�

�
p�

y � x� a�

�
px

� ��

�
p�

�y � x� a� ��

��
p�

Therefore,

apx �
�
�pxx �

�
a�y � x� a� �

�
� �

��
�

�y � x� a� ��

���

�
p

� p� �

This is the Kolmogorov backward equation.

Example 16.6 (Geometric Brownian motion)

dX�t� � rX�t� dt� �X�t� dB�t��

p�� � x� y� �
�

�y
p
���

exp

�
� �

����

h
log

y

x
� �r � �

��
���
i��

�

It is true but very tedious to verify that p satisfies the KBE

p� � rxpx �
�
��

�x�pxx�

16.5 Connection between stochastic calculus and KBE

Consider

dX�t� � a�X�t�� dt� ��X�t�� dB�t�� (5.1)

Let h�y� be a function, and define

v�t� x� � IEt�xh�X�T ���
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where � � t � T . Then

v�t� x� �
Z
h�y� p�T � t� x� y� dy�

vt�t� x� � �
Z
h�y� p� �T � t� x� y� dy�

vx�t� x� �
Z
h�y� px�T � t� x� y� dy�

vxx�t� x� �
Z
h�y� pxx�T � t� x� y� dy�

Therefore, the Kolmogorov backward equation implies

vt�t� x� � a�x�vx�t� x� �
�
��

��x�vxx�t� x� �Z
h�y�

h
�p� �T � t� x� y� � a�x�px�T � t� x� y� � �

��
��x�pxx�T � t� x� y�

i
dy � �

Let ��� 
� be an initial condition for the SDE (5.1). We simplify notation by writing IE rather than
IE���.

Theorem 5.50 Starting at X��� � 
, the process v�t� X�t�� satisfies the martingale property:

IE

�
v�t� X�t��

����F�s�

�
� v�s�X�s��� � � s � t � T�

Proof: According to the Markov property,

IE

�
h�X�T ��

����F�t�

�
� IEt�X�t�h�X�T �� � v�t� X�t���

so

IE 
v�t� X�t��jF�s�� � IE

�
IE

�
h�X�T ��

����F�t�

� ����F�s�

�
� IE

�
h�X�T ��

����F�s�

�
� IEs�X�s�h�X�T �� (Markov property)

� v�s�X�s���

Itô’s formula implies

dv�t� X�t�� � vtdt� vxdX � �
�vxxdX dX

� vtdt� avxdt� �vxdB � �
��

�vxxdt�
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In integral form, we have

v�t� X�t�� � v��� X����

�

Z t

�

h
vt�u�X�u��� a�X�u��vx�u�X�u�� � �

��
��X�u��vxx�u�X�u��

i
du

�

Z t

�
��X�u��vx�u�X�u�� dB�u��

We know that v�t� X�t�� is a martingale, so the integral
R t
�

h
vt � avx �

�
��

�vxx
i
du must be zero

for all t. This implies that the integrand is zero; hence

vt � avx �
�
��

�vxx � ��

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on Itô’s formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac)Define

v�t� x� � IEt�xh�X�T ��� � � t � T�

where
dX�t� � a�X�t�� dt� ��X�t�� dB�t��

Then

vt�t� x� � a�x�vx�t� x� �
�
��

��x�vxx�t� x� � � (FK)

and
v�T� x� � h�x��

The Black-Scholes equation is a special case of this theorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use Itô’s formula to prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes

Consider the SDE
dS�t� � rS�t� dt� �S�t� dB�t��

With initial condition
S�t� � x�

the solution is

S�u� � x exp
n
��B�u��B�t�� � �r � �

��
���u� t�

o
� u � t�
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Define

v�t� x� � IEt�xh�S�T ��

� IEh
�
x exp

n
��B�T �� B�t�� � �r � �

��
���T � t�

o�
�

where h is a function to be specified later.

Recall the Independence Lemma: If G is a �-field, X is G-measurable, and Y is independent of G,
then

IE

�
h�X� Y �

����G� � ��X��

where

��x� � IEh�x� Y ��

With geometric Brownian motion, for � � t � T , we have

S�t� � S��� exp
n
�B�t� � �r � �

��
��t
o
�

S�T � � S��� exp
n
�B�T � � �r� �

��
��T
o

� S�t���z�
F�t�-measurable

exp
n
��B�T �� B�t�� � �r� �

��
���T � t�

o
� �z �

independent of F�t�

We thus have

S�T � � XY�

where

X � S�t�

Y � exp
n
��B�T ��B�t�� � �r � �

��
���T � t�

o
�

Now

IEh�xY � � v�t� x��

The independence lemma implies

IE

�
h�S�T ��

����F�t�

�
� IE 
h�XY �jF�t��

� v�t� X�

� v�t� S�t���
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We have shown that

v�t� S�t�� � IE

�
h�S�T ��

����F�t�

�
� � � t � T�

Note that the random variable h�S�T �� whose conditional expectation is being computed does not
depend on t. Because of this, the tower property implies that v�t� S�t��� �� t � T , is a martingale:
For � � s � t � T ,

IE

�
v�t� S�t��

����F�s�

�
� IE

�
IE

�
h�S�T ��

����F�t�

� ����F�s�

�
� IE

�
h�S�T ��

����F�s�

�
� v�s� S�s���

This is a special case of Theorem 5.51.

Because v�t� S�t�� is a martingale, the sum of the dt terms in dv�t� S�t�� must be 0. By Itô’s
formula,

dv�t� S�t�� �
h
vt�t� S�t�� dt� rS�t�vx�t� S�t�� �

�
��

�S��t�vxx�t� S�t��
i
dt

� �S�t�vx�t� S�t�� dB�t��

This leads us to the equation

vt�t� x� � rxvx�t� x� �
�
��

�x�vxx�t� x� � �� � � t � T� x � ��

This is a special case of Theorem 5.51 (Feynman-Kac).

Along with the above partial differential equation, we have the terminal condition

v�T� x� � h�x�� x � ��

Furthermore, if S�t� � � for some t � 
�� T �, then also S�T � � �. This gives us the boundary
condition

v�t� �� � h���� � � t � T�

Finally, we shall eventually see that the value at time t of a contingent claim paying h�S�T �� is

u�t� x� � e�r�T�t�IEt�xh�S�T ��

� e�r�T�t�v�t� x�

at time t if S�t� � x. Therefore,

v�t� x� � er�T�t�u�t� x��

vt�t� x� � �rer�T�t�u�t� x� � er�T�t�ut�t� x��

vx�t� x� � er�T�t�ux�t� x��

vxx�t� x� � er�T�t�uxx�t� x��
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Plugging these formulas into the partial differential equation for v and cancelling the er�T�t� ap-
pearing in every term, we obtain the Black-Scholes partial differential equation:

�ru�t� x� � ut�t� x� � rxux�t� x� �
�
��

�x�uxx�t� x� � �� � � t � T� x � ��
(BS)

Compare this with the earlier derivation of the Black-Scholes PDE in Section 15.6.

In terms of the transition density

p�t� T � x� y� �
�

�y
p
���T � t�

exp

	
� �

��T � t���

�
log

y

x
� �r � �

��
���T � t�

��


for geometric Brownian motion (See Example 16.4), we have the “stochastic representation”

u�t� x� � e�r�T�t�IEt�xh�S�T �� (SR)

� e�r�T�t�
Z �

�
h�y�p�t� T � x� y� dy�

In the case of a call,
h�y� � �y �K��

and

u�t� x� � x N

�
�

�
p
T � t

�
log

x

K
� r�T � t� � �

��
��T � t�

��
� e�r�T�t�K N

�
�

�
p
T � t

�
log

x

K
� r�T � t�� �

��
��T � t�

��
Even if h�y� is some other function (e.g., h�y� � �K � y��, a put), u�t� x� is still given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholes with price-dependent volatility

dS�t� � rS�t� dt� ��S�t�� dB�t��

v�t� x� � e�r�T�t�IEt�x�S�T ��K���

The Feynman-Kac Theorem now implies that

�rv�t� x� � vt�t� x� � rxvx�t� x� �
�
��

��x�vxx�t� x� � �� � � t � T� x 	 ��

v also satisfies the terminal condition

v�T� x� � �x�K��� x � ��
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and the boundary condition
v�t� �� � �� � � t � T�

An example of such a process is the following from J.C. Cox, Notes on options pricing I: Constant
elasticity of variance diffusions, Working Paper, Stanford University, 1975:

dS�t� � rS�t� dt� �S
�t� dB�t��

where � � � � �. The “volatility” �S
���t� decreases with increasing stock price. The corre-
sponding Black-Scholes equation is

�rv � vt � rxvx �
�
��

�x�
vxx � �� � � t � T x 	 ��

v�t� �� � �� � � t � T

v�T� x� � �x�K��� x � ��
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Chapter 17

Girsanov’s theorem and the risk-neutral
measure

(Please see Oksendal, 4th ed., pp 145–151.)

Theorem 0.52 (Girsanov, One-dimensional)Let B�t�� � � t � T , be a Brownian motion on
a probability space �	�F �P�. Let F�t�� � � t � T , be the accompanying filtration, and let
��t�� � � t � T , be a process adapted to this filtration. For � � t � T , define

eB�t� �

Z t

�
��u� du� B�t��

Z�t� � exp

�
�
Z t

�
��u� dB�u�� �

�

Z t

�
���u� du

�
�

and define a new probability measure by

fIP �A� �

Z
A
Z�T � dIP� �A � F �

Under fIP , the process eB�t�� � � t � T , is a Brownian motion.

Caveat: This theorem requires a technical condition on the size of �. If

IE exp

	
�
�

Z T

�
���u� du



���

everything is OK.

We make the following remarks:

Z�t� is a matingale. In fact,

dZ�t� � ���t�Z�t� dB�t� � �
��

��t�Z�t� dB�t� dB�t� � �
��

��t�Z�t� dt

� ���t�Z�t� dB�t��

189
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fIP is a probability measure. Since Z��� � �, we have IEZ�t� � � for every t � �. In particular

fIP �	� �

Z


Z�T � dIP � IEZ�T � � ��

so fIP is a probability measure.fIE in terms of IE. LetfIE denote expectation under fIP . If X is a random variable, thenfIEZ � IE 
Z�T �X � �

To see this, consider first the case X � �A, where A � F . We have

fIEX � fIP �A� �

Z
A
Z�T � dIP �

Z


Z�T ��A dIP � IE 
Z�T �X � �

Now use Williams’ “standard machine”.fIP and IP . The intuition behind the formulafIP �A� �
Z
A
Z�T � dIP �A � F

is that we want to have fIP ��� � Z�T� ��IP ����

but since IP ��� � � andfIP ��� � �, this doesn’t really tell us anything useful about fIP . Thus,
we consider subsets of 	, rather than individual elements of 	.

Distribution of eB�T �. If � is constant, then

Z�T � � exp
n
��B�T � � �

��
�T
o

eB�T � � �T �B�T ��

Under IP , B�T � is normal with mean 0 and variance T , so eB�T � is normal with mean �T and
variance T :

IP � eB�T � � d�b� �
�p
��T

exp

	
���b� �T ��

�T



d�b�

Removal of Drift from eB�T �. The change of measure from IP tofIP removes the drift from eB�T �.
To see this, we computefIE eB�T � � IE 
Z�T ���T � B�T ���

� IE
h
exp

n
��B�T � � �

��
�T
o

��T �B�T ��
i

�
�p
��T

Z �

��
��T � b� expf��b� �

��
�Tg exp

	
� b�

�T



db

�
�p
��T

Z �

��
��T � b� exp

	
��b� �T ��

�T



db

�y � �T � b� �
�p
��T

Z �

��
y exp

	
�y

�

�



dy (Substitute y � �T � b)

� ��
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We can also see that fIE eB�T � � � by arguing directly from the density formula

IP
n eB�t� � d�b

o
�

�p
��T

exp

	
���b� �T ��

�T



d�b�

Because

Z�T � � expf��B�T � � �
��

�Tg
� expf��� eB�T �� �T �� �

��
�Tg

� expf�� eB�T � � �
��

�Tg�

we have

fIP n eB�T � � d�b
o
� IP

n eB�T � � d�b
o

exp
n
���b � �

��
�T
o

�
�p
��T

exp

	
���b� �T ��

�T
� ��b� �

��
�T



d�b�

�
�p
��T

exp

	
�

�b�

�T



d�b�

Under fIP , eB�T � is normal with mean zero and variance T . Under IP , eB�T � is normal with
mean �T and variance T .

Means change, variances don’t.When we use the Girsanov Theorem to change the probability
measure, means change but variances do not. Martingales may be destroyed or created.
Volatilities, quadratic variations and cross variations are unaffected. Check:

d eB d eB � ���t� dt� dB�t��� � dB�dB � dt�

17.1 Conditional expectations underfIP
Lemma 1.53 Let � � t � T . If X is F�t�-measurable, then

fIEX � IE
X�Z�t���

Proof:

fIEX � IE
X�Z�T �� � IE 
 IE
X�Z�T �jF�t�� �
� IE 
X IE
Z�T �jF�t�� �
� IE
X�Z�t��

because Z�t�� � � t � T , is a martingale under IP .
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Lemma 1.54 (Baye’s Rule)If X is F�t�-measurable and � � s � t � T , then

fIE
X jF�s�� � �

Z�s�
IE
XZ�t�jF�s��� (1.1)

Proof: It is clear that �
Z�s�IE
XZ�t�jF�s�� is F�s�-measurable. We check the partial averaging

property. For A � F�s�, we haveZ
A

�

Z�s�
IE
XZ�t�jF�s�� dfIP � fIE ��A �

Z�s�
IE
XZ�t�jF�s��

�
� IE 
�AIE
XZ�t�jF�s��� (Lemma 1.53)

� IE 
IE
�AXZ�t�jF�s��� (Taking in what is known)

� IE
�AXZ�t��

� fIE
�AX � (Lemma 1.53 again)

�

Z
A
X dfIP �

Although we have proved Lemmas 1.53 and 1.54, we have not proved Girsanov’s Theorem. We
will not prove it completely, but here is the beginning of the proof.

Lemma 1.55 Using the notation of Girsanov’s Theorem, we have the martingale property

fIE
 eB�t�jF�s�� � eB�s�� � � s � t � T�

Proof: We first check that eB�t�Z�t� is a martingale under IP . Recall

d eB�t� � ��t� dt� dB�t��

dZ�t� � ���t�Z�t� dB�t��

Therefore,

d� eBZ� � eB dZ � Z d eB � d eB dZ

� � eB�Z dB � Z� dt� Z dB � �Z dt

� �� eB�Z � Z� dB�

Next we use Bayes’ Rule. For � � s � t � T ,

fIE
 eB�t�jF�s�� � �

Z�s�
IE
 eB�t�Z�t�jF�s��

�
�

Z�s�
eB�s�Z�s�

� eB�s��
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Definition 17.1 (Equivalent measures)Two measures on the same probability space which have
the same measure-zero sets are said to be equivalent.

The probability measures IP and fIP of the Girsanov Theorem are equivalent. Recall that fIP is
defined by

fIP �A� �

Z
Z�T � dIP� A � F �

If IP �A� � �, then
R
A Z�T � dIP � �� Because Z�T � 	 � for every �, we can invert the definition

offIP to obtain

IP �A� �
Z
A

�

Z�T �
dfIP � A � F �

If fIP �A� � �, then
R
A

�
Z�T � dIP � ��

17.2 Risk-neutral measure

As usual we are given the Brownian motion: B�t�� � � t � T , with filtration F�t�� � � t � T ,
defined on a probability space �	�F �P�. We can then define the following.

Stock price:

dS�t� � 
�t�S�t� dt� ��t�S�t� dB�t��

The processes 
�t� and ��t� are adapted to the filtration. The stock price model is completely
general, subject only to the condition that the paths of the process are continuous.

Interest rate: r�t�� � � t � T . The process r�t� is adapted.

Wealth of an agent, starting with X��� � x. We can write the wealth process differential in
several ways:

dX�t� � ��t� dS�t�� �z �
Capital gains from Stock

� r�t�
X�t����t�S�t�� dt� �z �
Interest earnings

� r�t�X�t� dt� ��t�
dS�t�� rS�t� dt�

� r�t�X�t� dt� ��t� �
�t�� r�t��� �z �
Risk premium

S�t� dt���t���t�S�t� dB�t�

� r�t�X�t� dt� ��t���t�S�t�

�&&&&� 
�t� � r�t�

��t�� �z �
Market price of risk=��t�

dt� dB�t�

�''''�
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Discounted processes:

d

�
e�
R t
�
r�u� duS�t�

�
� e�

R t
�
r�u� du
�r�t�S�t� dt� dS�t��

d

�
e�
R t
�
r�u� duX�t�

�
� e�

R t
�
r�u� du
�r�t�X�t� dt� dX�t��

� ��t�d

�
e�
R t
�
r�u� duS�t�

�
�

Notation:

��t� � e
R t
�
r�u� du�

�

��t�
� e�

R t
�
r�u� du�

d��t� � r�t���t� dt� d

�
�

��t�

�
� � r�t�

��t�
dt�

The discounted formulas are

d

�
S�t�

��t�

�
�

�

��t�

�r�t�S�t� dt � dS�t��

�
�

��t�

�
�t�� r�t��S�t� dt� ��t�S�t� dB�t��

�
�

��t�
��t�S�t� 
��t� dt� dB�t�� �

d

�
X�t�

��t�

�
� ��t� d

�
S�t�

��t�

�
�

��t�

��t�
��t�S�t� 
��t� dt� dB�t���

Changing the measure.Define

eB�t� �

Z t

�
��u� du�B�t��

Then

d

�
S�t�

��t�

�
�

�

��t�
��t�S�t� d eB�t��

d

�
X�t�

��t�

�
�

��t�

��t�
��t�S�t� d eB�t��

UnderfIP , S�t���t� and X�t�
��t� are martingales.

Definition 17.2 (Risk-neutral measure) A risk-neutral measure (sometimes called a martingale
measure) is any probability measure, equivalent to the market measure IP , which makes all dis-
counted asset prices martingales.
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For the market model considered here,

fIP �A� �

Z
A
Z�T � dIP� A � F �

where

Z�t� � exp

�
�
Z t

�
��u� dB�u�� �

�

Z t

�
���u� du

�
�

is the unique risk-neutral measure. Note that because ��t� � ��t��r�t�
��t� � we must assume that ��t� 
�

�.

Risk-neutral valuation. Consider a contingent claim paying an F�T �-measurable random variable
V at time T .

Example 17.1

V � �S�T � �K��� European call

V � �K � S�T ��� � European put

V �

�
�

T

Z T

�

S�u� du�K

��

� Asian call

V � max
��t�T

S�t�� Look back

If there is a hedging portfolio, i.e., a process ��t�� � � t � T , whose corresponding wealth process
satisfies X�T � � V , then

X��� � fIE � V

��T �

�
�

This is because X�t�
��t� is a martingale under fIP , so

X��� �
X���

����
� fIE �X�T �

��T �

�
� fIE � V

��T �

�
�
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Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

See Oksendal, 4th ed., Theorem 4.11, p.50.

Theorem 1.56 Let B�t�� � � t � T� be a Brownian motion on �	�F�P�. Let F�t�� � � t � T , be
the filtration generated by this Brownian motion. Let X�t�� � � t � T , be a martingale (under IP )
relative to this filtration. Then there is an adapted process ��t�� � � t � T , such that

X�t� � X��� �

Z t

�
��u� dB�u�� � � t � T�

In particular, the paths of X are continuous.

Remark 18.1 We already know that if X�t� is a process satisfying

dX�t� � ��t� dB�t��

thenX�t� is a martingale. Now we see that if X�t� is a martingale adapted to the filtration generated
by the Brownian motionB�t�, i.e, the Brownian motion is the only source of randomness inX , then

dX�t� � ��t� dB�t�

for some ��t�.

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppse that F�t�� � � t � T� is
the filtration generated by the Brownian motion B (under IP ). Suppose that Y is a fIP -martingale.
Then there is an adapted process ��t�� � � t � T , such that

Y �t� � Y ��� �
Z t

�
��u� d eB�u�� � � t � T�

197



198

dS�t� � 
�t�S�t� dt� ��t�S�t� dB�t��

��t� � exp

�Z t

�
r�u� du

�
�

��t� �

�t�� r�t�

��t�
�

eB�t� �
Z t

�
��u� du� B�t��

Z�t� � exp

�
�
Z t

�
��u� dB�u�� �

�

Z t

�
���u� du

�
�

fIP �A� �
Z
A
Z�T � dIP� �A � F �

Then

d

�
S�t�

��t�

�
�
S�t�

��t�
��t� d eB�t��

Let ��t�� � � t � T� be a portfolio process. The corresponding wealth process X�t� satisfies

d

�
X�t�

��t�

�
� ��t���t�

S�t�

��t�
d eB�t��

i.e.,

X�t�

��t�
� X��� �

Z t

�
��u���u�

S�u�

��u�
d eB�u�� � � t � T�

Let V be an F�T �-measurable random variable, representing the payoff of a contingent claim at
time T . We want to choose X��� and ��t�� � � t � T , so that

X�T � � V�

Define thefIP -martingale

Y �t� � fIE � V

��T �

����F�t�

�
� � � t � T�

According to Homework Problem 4.5, there is an adapted process ��t�� �� t � T , such that

Y �t� � Y ��� �
Z t

�
��u� d eB�u�� � � t � T�

Set X��� � Y ��� � fIE h V
��T �

i
and choose ��u� so that

��u���u�
S�u�

��u�
� ��u��
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With this choice of ��u�� � � u � T , we have

X�t�

��t�
� Y �t� � fIE � V

��T �

����F�t�

�
� � � t � T�

In particular,

X�T �

��T �
� fIE � V

��T �

����F�T �

�
�

V

��T �
�

so

X�T � � V�

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although
it does not tell us how to compute it. It also justifies the risk-neutral pricing formula

X�t� � ��t�fIE � V

��T �

����F�t�

�
�

��t�

Z�t�
IE

�
Z�T �

��T �
V

����F�t�

�
�

�

��t�
IE

�
��T �V

����F�t�

�
� � � t � T�

where

��t� �
Z�t�

��t�

� exp

�
�
Z t

�
��u� dB�u��

Z t

�
�r�u� � �

��
��u�� du

�

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 (d-dimensional Girsanov) � B�t� � �B��t�� � � � � Bd�t��� � � t � T , a d-
dimensional Brownian motion on �	�F�P�;

� F�t�� � � t � T� the accompanying filtration, perhaps larger than the one generated by B;

� ��t� � ����t�� � � � � �d�t��� � � t � T , d-dimensional adapted process.

For � � t � T� define

eBj�t� �

Z t

�
�j�u� du� Bj�t�� j � �� � � � � d�

Z�t� � exp

�
�
Z t

�
��u�� dB�u�� �

�

Z t

�
jj��u�jj� du

�
�

fIP �A� �
Z
A
Z�T � dIP�
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Then, underfIP , the process

eB�t� � � eB��t�� � � � � eBd�t��� � � t � T�

is a d-dimensional Brownian motion.

18.4 d-dimensional Martingale Representation Theorem

Theorem 4.58 � B�t� � �B��t�� � � � � Bd�t��� � � t � T� a d-dimensional Brownian motion
on �	�F�P�;

� F�t�� � � t � T� the filtration generated by the Brownian motion B.

If X�t�� � � t � T , is a martingale (under IP ) relative to F�t�� � � t � T , then there is a
d-dimensional adpated process ��t� � ����t�� � � � � �d�t��, such that

X�t� � X����
Z t

�
��u�� dB�u�� � � t � T�

Corollary 4.59 If we have a d-dimensional adapted process ��t� � ����t�� � � � � �d�t��� then we can
define eB�Z andfIP as in Girsanov’s Theorem. If Y �t�� � � t � T , is a martingale under fIP relative
to F�t�� � � t � T , then there is a d-dimensional adpated process ��t� � ����t�� � � � � �d�t�� such
that

Y �t� � Y ��� �

Z t

�
��u�� d eB�u�� � � t � T�

18.5 Multi-dimensional market model

Let B�t� � �B��t�� � � � � Bd�t��� � � t � T , be a d-dimensional Brownian motion on some
�	�F�P�, and let F�t�� � � t � T , be the filtration generated by B. Then we can define the
following:

Stocks

dSi�t� � 
i�t�Si�t� dt� Si�t�
dX

j��

�ij�t� dBj�t�� i � �� � � � � m

Accumulation factor

��t� � exp

�Z t

�
r�u� du

�
�

Here, 
i�t�� �ij�t� and r�t� are adpated processes.
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Discounted stock prices

d

�
Si�t�

��t�

�
� �
i�t�� r�t��� �z �

Risk Premium

Si�t�

��t�
dt�

Si�t�

��t�

dX
j��

�ij�t� dBj�t�

�
�
Si�t�

��t�

dX
j��

�ij�t� 
�j�t� � dBj�t��� �z �
deBj�t�

(5.1)

For 5.1 to be satisfied, we need to choose ���t�� � � � � �d�t�, so that

dX
j��

�ij�t��j�t� � 
i�t�� r�t�� i � �� � � � � m� (MPR)

Market price of risk. The market price of risk is an adapted process ��t� � ����t�� � � � � �d�t��
satisfying the system of equations (MPR) above. There are three cases to consider:

Case I: (Unique Solution). For Lebesgue-almost every t and IP -almost every �, (MPR) has a
unique solution ��t�. Using ��t� in the d-dimensional Girsanov Theorem, we define a unique
risk-neutral probability measure fIP . Under fIP , every discounted stock price is a martingale.
Consequently, the discounted wealth process corresponding to any portfolio process is a fIP -
martingale, and this implies that the market admits no arbitrage. Finally, the Martingale
Representation Theorem can be used to show that every contingent claim can be hedged; the
market is said to be complete.

Case II: (No solution.) If (MPR) has no solution, then there is no risk-neutral probability measure
and the market admits arbitrage.

Case III: (Multiple solutions). If (MPR) has multiple solutions, then there are multiple risk-neutral
probability measures. The market admits no arbitrage, but there are contingent claims which
cannot be hedged; the market is said to be incomplete.

Theorem 5.60 (Fundamental Theorem of Asset Pricing) Part I.(Harrison and Pliska, Martin-
gales and Stochastic integrals in the theory of continuous trading, Stochastic Proc. and Applications
11 (1981), pp 215-260.):
If a market has a risk-neutral probability measure, then it admits no arbitrage.

Part II. (Harrison and Pliska, A stochastic calculus model of continuous trading: complete markets,
Stochastic Proc. and Applications 15 (1983), pp 313-316):
The risk-neutral measure is unique if and only if every contingent claim can be hedged.
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Chapter 19

A two-dimensional market model

Let B�t� � �B��t�� B��t��� � � t � T� be a two-dimensional Brownian motion on �	�F�P�. Let
F�t�� � � t � T� be the filtration generated by B.

In what follows, all processes can depend on t and �, but are adapted to F�t�� � � t � T . To
simplify notation, we omit the arguments whenever there is no ambiguity.

Stocks:

dS� � S� 

� dt� �� dB�� �

dS� � S�

�

� dt � ��� dB� �

q
�� �� �� dB�

�
�

We assume �� 	 �� �� 	 �� �� � � � �� Note that

dS� dS� � S�
��

�
� dB� dB� � ���S

�
� dt�

dS� dS� � S�
��

���� dB� dB� � S�
���� ������ dB� dB�

� ���S
�
� dt�

dS� dS� � S���S���� dB� dB� � �����S�S� dt�

In other words,

� dS�
S�

has instantaneous variance ���,

� dS�
S�

has instantaneous variance ���,

� dS�
S�

and dS�
S�

have instantaneous covariance �����.

Accumulation factor:

��t� � exp

�Z t

�
r du

�
�

The market price of risk equations are

���� � 
� � r

����� �
q
�� ������ � 
� � r

(MPR)
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The solution to these equations is

�� �

� � r

��
�

�� �
���
� � r�� ����
� � r�

����
p
�� ��

�

provided�� � � � �.

Suppose�� � � � �. Then (MPR) has a unique solution ���� ���; we define

Z�t� � exp

�
�
Z t

�
�� dB� �

Z t

�
�� dB� � �

�

Z t

�
���� � ���� du

�
�

fIP �A� �

Z
A
Z�T � dIP� �A � F �

fIP is the unique risk-neutral measure. Define

eB��t� �
Z t

�
�� du�B��t��

eB��t� �
Z t

�
�� du�B��t��

Then

dS� � S�
h
r dt � �� d eB�

i
�

dS� � S�

�
r dt� ��� d eB� �

q
�� ����d eB�

�
�

We have changed the mean rates of return of the stock prices, but not the variances and covariances.

19.1 Hedging when�� � � � �

dX � �� dS� � �� dS� � r�X ���S� ���S�� dt

d

�
X

�

�
�

�

�
�dX � rX dt�

�
�

�
���dS� � rS� dt� �

�

�
���dS� � rS� dt�

�
�

�
��S��� d eB� �

�

�
��S�

�
��� d eB� �

q
�� ���� d eB�

�
�

Let V be F�T �-measurable. Define thefIP -martingale

Y �t� � fIE � V

��T �

����F�t�

�
� � � t � T�
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The Martingale Representation Corollary implies

Y �t� � Y ��� �

Z t

�
�� d eB� �

Z t

�
�� d eB��

We have

d

�
X

�

�
�

�
�

�
��S��� �

�

�
��S����

�
d eB�

�
�

�
��S�

q
�� ���� d eB��

dY � �� d eB� � �� d eB��

We solve the equations

�

�
��S��� �

�

�
��S���� � ��

�

�
��S�

q
�� ���� � ��

for the hedging portfolio �������. With this choice of ������� and setting

X��� � Y ��� � fIE V

��T �
�

we have X�t� � Y �t�� � � t � T� and in particular,

X�T � � V�

Every F�T �-measurable random variable can be hedged; the market is complete.

19.2 Hedging when� � �

The case � � �� is analogous. Assume that � � �. Then

dS� � S�

� dt� �� dB��

dS� � S�

� dt� �� dB��

The stocks are perfectly correlated.

The market price of risk equations are

���� � 
� � r

���� � 
� � r
(MPR)

The process �� is free. There are two cases:
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Case I: ���r
��


� ���r
��

� There is no solution to (MPR), and consequently, there is no risk-neutral
measure. This market admits arbitrage. Indeed

d

�
X

�

�
�

�

�
���dS� � rS� dt� �

�

�
���dS� � rS� dt�

�
�

�
��S�
�
� � r� dt� �� dB�� �

�

�
��S�
�
� � r� dt� �� dB��

Suppose ���r
��

	 ���r
��

� Set

�� �
�

��S�
� �� � � �

��S�
�

Then

d

�
X

�

�
�

�

�

�

� � r

��
dt� dB�

�
� �

�

�

� � r

��
dt� dB�

�
�

�

�

�

� � r

��
� 
� � r

��

�
� �z �

Positive

dt

Case II: ���r
��

� ���r
��

� The market price of risk equations

���� � 
� � r

���� � 
� � r

have the solution

�� �

� � r

��
�

� � r

��
�

�� is free; there are infinitely many risk-neutral measures. LetfIP be one of them.

Hedging:

d

�
X

�

�
�

�

�
��S�
�
� � r� dt� �� dB�� �

�

�
��S�
�
� � r� dt� �� dB��

�
�

�
��S���
�� dt� dB�� �

�

�
��S���
�� dt� dB��

�

�
�

�
��S��� �

�

�
��S���

�
d eB��

Notice that eB� does not appear.

Let V be an F�T �-measurable random variable. If V depends on B�, then it can probably not
be hedged. For example, if

V � h�S��T �� S��T ���

and �� or �� depend on B�, then there is trouble.
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More precisely, we define thefIP -martingale

Y �t� � fIE � V

��T �

����F�t�

�
� � � t � T�

We can write

Y �t� � Y ��� �

Z t

�
�� d eB� �

Z t

�
�� d eB��

so

dY � �� d eB� � �� d eB��

To get d
�
X
�

�
to match dY , we must have

�� � ��
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Chapter 20

Pricing Exotic Options

20.1 Reflection principle for Brownian motion

Without drift.

Define

M�T � � max
��t�T

B�t��

Then we have:

IPfM�T � 	 m�B�T � � bg
� IPfB�T � 	 �m� bg

�
�p
��T

Z �

�m�b
exp

	
� x�

�T



dx� m 	 �� b � m

So the joint density is

IPfM�T � � dm�B�T � � dbg � � ��

�m �b

�
�p
��T

Z �

�m�b
exp

	
� x�

�T



dx

�
dm db

� � �

�m

�
�p
��T

exp

	
���m� b��

�T


�
dm db�

�
���m� b�

T
p
��T

exp

	
���m� b��

�T



dm db� m 	 �� b � m�

With drift. Let eB�t� � �t �B�t��
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shadow path

m

Brownian motion

2m-b

b

Figure 20.1: Reflection Principle for Brownian motion without drift

m=b

b

m

(B(T),  M(T))  lies in  here

Figure 20.2: Possible values of B�T ��M�T �.
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where B�t�� � � t � T , is a Brownian motion (without drift) on �	�F �P�. Define

Z�T � � expf��B�T �� �
��

�Tg
� expf���B�T � � �T � � �

��
�Tg

� expf�� eB�t� � �
��

�Tg�fIP �A� �

Z
A
Z�T � dIP� �A � F �

SetfM�T � � max��t�T eB�T ��

UnderfIP � eB is a Brownian motion (without drift), so

fIP ffM�T � � d �m� eB�T � � d�bg � ��� �m� �b�

T
p
��T

exp

	
��� �m� �b��

�T



d �m d�b� �m 	 �� �b � �m�

Let h� �m��b� be a function of two variables. Then

IEh�fM�T �� eB�T �� � fIE h�fM�T �� eB�T ��

Z�T �

� fIE hh�fM�T �� eB�T �� expf� eB�T �� �
��

�Tg
i

�

�m��Z
�m��

�b� �mZ
�b���

h� �m��b� expf��b� �
��

�Tg fIP ffM�T � � d �m� eB�T � � d�bg�

But also,

IEh�fM�T �� eB�T �� �

�m��Z
�m��

�b� �mZ
�b���

h� �m��b� IPffM �T � � d �m� eB�T � � d�bg�

Since h is arbitrary, we conclude that

(MPR)

IPffM�T � � d �m� eB�T � � d�bg
� expf��b� �

��
�Tg fIP ffM�T � � d �m� eB�T � � d�bg

�
��� �m� �b�

T
p
��T

exp

	
��� �m� �b��

�T



� expf��b� �

��
�Tgd �m d�b� �m 	 �� �b � �m�
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20.2 Up and out European call.

Let � � K � L be given. The payoff at time T is

�S�T ��K���fS��T ��Lg�

where
S
�T � � max

��t�T
S�t��

To simplify notation, assume that IP is already the risk-neutral measure, so the value at time zero of
the option is

v��� S���� � e�rT IE
h
�S�T ��K���fS��T ��Lg

i
�

Because IP is the risk-neutral measure,

dS�t� � rS�t� dt� �S�t� dB�t�

S�t� � S� expf�B�t� � �r� �
��

��tg

� S� exp

����
�����
�&&&�B�t� �

�
r

�
� �

�

�
� �z �

�

t

�'''�
 ���!���"

� S� expf� eB�t�g�
where

� �

�
r

�
� �

�

�
�

eB�t� � �t �B�t��

Consequently,

S
�t� � S� expf�fM�t�g�
where,

fM�t� � max
��u�t

eB�u��

We compute,

v��� S���� � e�rT IE
h
�S�T ��K���fS��T ��Lg

i
� e�rT IE

��
S��� expf� eB�T �g �K

��
�fS���expf� eM�T �g� Lg

�
� e�rT IE

��
S��� expf� eB�T �g �K

�
��eB�T ��

�

�
log

K

S���� �z �
�b

� eM�T ��
�

�
log

L

S���� �z �
�m

��



CHAPTER 20. Pricing Exotic Options 213

(B(T),  M(T))  lies in  here

M(T)

B(T)

x

y

b

m

~

~

~

~

x=y

Figure 20.3: Possible values of eB�T �� fM�T �.

We consider only the case

S��� � K � L� so � � �b � �m�

The other case, K � S��� � L leads to �b � � � �m and the analysis is similar.

We compute
R �m
�b

R �m
x � � �dy dx:

v��� S���� � e�rT
Z �m

�b

Z �m

x
�S��� expf�xg �K�

���y � x�

T
p
��T

exp

	
���y � x��

�T
� �x� �

��
�T



dy dx

� �e�rT
Z �m

�b
�S��� expf�xg �K�

�p
��T

exp

	
���y � x��

�T
� �x � �

��
�T


 ����y� �m

y�x
dx

� e�rT
Z �m

�b
�S��� expf�xg �K�

�p
��T

�
exp

	
� x�

�T
� �x � �

��
�T




� exp

	
��� �m� x��

�T
� �x � �

��
�T


�
dx

�
�p
��T

e�rTS���
Z �m

�b
exp

	
�x� x�

�T
� �x � �

��
�T



dx

� �p
��T

e�rTK
Z �m

�b
exp

	
� x�

�T
� �x � �

��
�T



dx

� �p
��T

e�rTS���
Z �m

�b
exp

	
�x� �� �m� x��

�T
� �x � �

��
�T



dx

�
�p
��T

e�rTK
Z �m

�b
exp

	
��� �m� x��

�T
� �x � �

��
�T



dx�

The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just
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give the result for the other three. The exponent in the first integrand is

�x� x�

�T
� �x � �

��
�T

� � �

�T
�x� �T � �T �� � �

��
�T � ��T

� � �

�T

�
x� rT

�
� �T

�

��
� rT�

In the first integral we make the change of variable

y � �x� rT��� �T����
p
T� dy � dx�

p
T�

to obtain

e�rTS���p
��T

Z �m

�b
exp

	
�x� x�

�T
� �x � �

��
�T



dx

�
�p
��T

S���
Z �m

�b
exp

	
� �

�T

�
x� rT

�
� �T

�

��

dx

�
�p
��T

S����

�mp
T
� r

p
T
� ��

p
T

�Z
�bp
T
� r

p
T
� ��

p
T

�

expf�y
�

�
g dy

� S���

�
N

�
�mp
T
� r

p
T

�
� �

p
T

�

�
�N

�
�bp
T
� r

p
T

�
� �

p
T

�

��
�

Putting all four integrals together, we have

v��� S���� � S���

�
N

�
�mp
T
� r

p
T

�
� �

p
T

�

�
�N

�
�bp
T
� r

p
T

�
� �

p
T

�

��

� e�rTK

�
N

�
�mp
T
� r

p
T

�
�
�
p
T

�

�
�N

�
�bp
T
� r

p
T

�
�
�
p
T

�

��

� S���

�
N

�
�mp
T

�
r
p
T

�
�
�
p
T

�

�
�N

�
�� �m� �b�p

T
�
r
p
T

�
�
�
p
T

�

��

� exp

�
�rT � � �m

�
r

�
� �

�

�� �
N

�
�mp
T

�
r
p
T

�
� �

p
T

�

�
�

N

�
�� �m� �b�p

T
�
r
p
T

�
� �

p
T

�

��
�

where
�b �

�

�
log

K

S���
� �m �

�

�
log

L

S���
�
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T

L
v(t,L) = 0

v(T,x) = (x - K)

v(t,0) = 0

+

Figure 20.4: Initial and boundary conditions.

If we let L�� we obtain the classical Black-Scholes formula

v��� S���� � S���

�
��N

�
�bp
T
� r

p
T

�
� �

p
T

�

��

� e�rTK

�
��N

�
�bp
T
� r

p
T

�
�
�
p
T

�

��

� S���N

�
�

�
p
T
log

S���

K
�
r
p
T

�
�
�
p
T

�

�

� e�rTKN

�
�

�
p
T
log

S���

K
�
r
p
T

�
� �

p
T

�

�
�

If we replace T by T � t and replace S��� by x in the formula for v��� S����, we obtain a formula
for v�t� x�, the value of the option at the time t if S�t� � x. We have actually derived the formula
under the assumption x � K � L, but a similar albeit longer formula can also be derived for
K � x � L. We consider the function

v�t� x� � IEt�x
h
e�r�T�t��S�T ��K���fS��T ��Lg

i
� � � t � T� � � x � L�

This function satisfies the terminal condition

v�T� x� � �x�K��� � � x � L

and the boundary conditions

v�t� �� � �� � � t � T�

v�t� L� � �� � � t � T�

We show that v satisfies the Black-Scholes equation

�rv � vt � rxvx �
�
��

�x�vxx� � � t � T� � � x � L�
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Let S��� 	 � be given and define the stopping time

� � minft � �� S�t� � Lg�

Theorem 2.61 The process

e�r�t���v�t � �� S�t� ���� � � t � T�

is a martingale.

Proof: First note that
S
�T � � L�� � 	 T�

Let � � 	 be given, and choose t � 
�� T �. If ���� � t, then

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�

�
��� � ��

But when ���� � t, we have

v�t � ����� S�t� ����� ��� � v�t � ����� L� � ��

so we may write

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�

�
��� � e�r�t������v �t � ����� S�t� ����� ��� �

On the other hand, if ���� 	 t, then the Markov property implies

IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�

�
���

� IEt�S�t���
h
e�rT �S�T ��K���fS��T ��Lg

i
� e�rtv�t� S�t� ���

� e�r�t������v �t � �� S�t� ����� ��� �

In both cases, we have

e�r�t���v�t � �� S�t� ��� � IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�

�
�

Suppose � � u � t � T . Then

IE

�
e�r�t���v�t � �� S�t� ���

����F�u�

�
� IE

�
IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�t�

� ����F�u�

�
� IE

�
e�rT �S�T ��K���fS��T ��Lg

����F�u�

�
� e�r�u���v �u � �� S�u� ��� �
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For � � t � T , we compute the differential

d
�
e�rtv�t� S�t��

�
� e�rt��rv � vt � rSvx �

�
��

�S�vxx� dt� e�rt�Svx dB�

Integrate from � to t � � :

e�r�t���v �t � �� S�t� ��� � v��� S����

�
Z t��

�
e�ru��rv � vt � rSvx �

�
��

�S�vxx� du

�

Z t��

�
e�ru�Svx dB�� �z �

A stopped martingale is still a martingale

Because e�r�t���v �t � �� S�t� ��� is also a martingale, the Riemann integralZ t��

�
e�ru��rv � vt � rSvx �

�
��

�S�vxx� du

is a martingale. Therefore,

�rv�u� S�u��� vt�u� S�u��� rS�u�vx�u� S�u���
�
��

�S��u�vxx�u� S�u�� � �� � � u � t� ��

The PDE
�rv � vt � rxvx �

�
��

�x�vxx � �� � � t � T� � � x � L�

then follows.

The Hedge
d
�
e�rtv�t� S�t��

�
� e�rt�S�t�vx�t� S�t�� dB�t�� � � t � ��

Let X�t� be the wealth process corresponding to some portfolio ��t�. Then

d�e�rtX�t�� � e�rt��t��S�t� dB�t��

We should take
X��� � v��� S����

and
��t� � vx�t� S�t��� � � t � T � ��

Then

X�T � �� � v�T � �� S�T � ���

�

	
v�T� S�T �� � �S�T ��K�� if � 	 T

v��� L� � � if � � T .
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K L x

v(T, x)

0

0 K L x

v(t, x)

Figure 20.5: Practial issue.

20.3 A practical issue

For t � T but t near T , v�t� x� has the form shown in the bottom part of Fig. 20.5.

In particular, the hedging portfolio
��t� � vx�t� S�t��

can become very negative near the knockout boundary. The hedger is in an unstable situation. He
should take a large short position in the stock. If the stock does not cross the barrier L, he covers
this short position with funds from the money market, pays off the option, and is left with zero. If
the stock moves across the barrier, he is now in a region of ��t� � vx�t� S�t�� near zero. He should
cover his short position with the money market. This is more expensive than before, because the
stock price has risen, and consequently he is left with no money. However, the option has “knocked
out”, so no money is needed to pay it off.

Because a large short position is being taken, a small error in hedging can create a significant effect.
Here is a possible resolution.

Rather than using the boundary condition

v�t� L� � �� � � t � T�

solve the PDE with the boundary condition

v�t� L� � �Lvx�t� L� � �� � � t � T�

where � is a “tolerance parameter”, say �%. At the boundary, Lvx�t� L� is the dollar size of the
short position. The new boundary condition guarantees:

1. Lvx�t� L� remains bounded;

2. The value of the portfolio is always sufficient to cover a hedging error of � times the dollar
size of the short position.



Chapter 21

Asian Options

Stock:

dS�t� � rS�t� dt� �S�t� dB�t��

Payoff:

V � h

�Z T

�
S�t� dt

�

Value of the payoff at time zero:

X��� � IE

�
e�rTh

�Z T

�
S�t� dt

��
�

Introduce an auxiliary process Y �t� by specifying

dY �t� � S�t� dt�

With the initial conditions

S�t� � x� Y �t� � y�

we have the solutions

S�T � � x exp
n
��B�T ��B�t�� � �r� �

��
���T � t�

o
�

Y �T � � y �

Z T

t
S�u� du�

Define the undiscounted expected payoff

u�t� x� y� � IEt�x�yh�Y �T ��� � � t � T� x � �� y � IR�
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21.1 Feynman-Kac Theorem

The function u satisfies the PDE

ut � rxux �
�
��

�x�uxx � xuy � �� � � t � T� x � �� y � IR�

the terminal condition
u�T� x� y� � h�y�� x � �� y � IR�

and the boundary condition

u�t� �� y� � h�y�� � � t � T� y � IR�

One can solve this equation. Then

v

�
t� S�t��

Z t

�
S�u� du

�
is the option value at time t, where

v�t� x� y� � e�r�T�t�u�t� x� y��

The PDE for v is

�rv � vt � rxvx �
�
��

�x�vxx � xvy � �� (1.1)

v�T� x� y� � h�y��

v�t� �� y� � e�r�T�t�h�y��

One can solve this equation rather than the equation for u.

21.2 Constructing the hedge

Start with the stock price S���. The differential of the value X�t� of a portfolio ��t� is

dX � � dS � r�X ��S� dt

� �S�r dt� � dB� � rX dt� r�S dt

� ��S dB � rX dt�

We want to have

X�t� � v

�
t� S�t��

Z t

�
S�u� du

�
�

so that

X�T � � v

�
T� S����

Z T

�
S�u� du

�
�

� h

�Z T

�
S�u� du

�
�



CHAPTER 21. Asian Options 221

The differential of the value of the option is

dv

�
t� S�t��

Z t

�
S�u� du

�
� vtdt� vxdS � vyS dt � �

�vxx dS dS

� �vt � rSvx � Svy �
�
��

�S�vxx� dt� �Svx dB

� rv�t� S�t�� dt� vx�t� S�t�� � S�t� dB�t�� (From Eq. 1.1)

Compare this with

dX�t� � rX�t� dt���t� � S�t� dB�t��

Take ��t� � vx�t� S�t��� If X��� � v��� S���� ��, then

X�t� � v

�
t� S�t��

Z t

�
S�u� du

�
� � � t � T�

because both these processes satisfy the same stochastic differential equation, starting from the same
initial condition.

21.3 Partial average payoff Asian option

Now suppose the payoff is

V � h

�Z T

�
S�t� dt

�
�

where � � � � T . We compute

v��� x� y� � IE��x�ye�r�T���h�Y �T ��

just as before. For � � t � � , we compute next the value of a derivative security which pays off

v��� S���� ��

at time � . This value is
w�t� x� � IEt�xe�r���t�v��� S���� ���

The function w satisfies the Black-Scholes PDE

�rw � wt � rxwx �
�
��

�x�wxx � �� � � t � �� x � ��

with terminal condition
w��� x� � v��� x� ��� x � ��

and boundary condition
w�t� �� � e�r�T�t�h���� � � t � T�

The hedge is given by

��t� �

�
�wx�t� S�t��� � � t � ��

vx
�
t� S�t��

R t
� S�u� du

�
� � � t � T�
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Remark 21.1 While no closed-form for the Asian option price is known, the Laplace transform (in
the variable ��

� �T � t�) has been computed. See H. Geman and M. Yor, Bessel processes, Asian
options, and perpetuities, Math. Finance 3 (1993), 349–375.



Chapter 22

Summary of Arbitrage Pricing Theory

A simple European derivative security makes a random payment at a time fixed in advance. The
value at time t of such a security is the amount of wealth needed at time t in order to replicate the
security by trading in the market. The hedging portfolio is a specification of how to do this trading.

22.1 Binomial model, Hedging Portfolio

Let 	 be the set of all possible sequences of n coin-tosses. We have no probabilities at this point.
Let r � �� u 	 r� �� d � ��u be given. (See Fig. 2.1)

Evolution of the value of a portfolio:

Xk�� � �kSk�� � �� � r��Xk ��kSk��

Given a simple European derivative security V ���� ���, we want to start with a nonrandom X� and
use a portfolio processes

��� ���H�� ���T �

so that

X����� ��� � V ���� ��� ���� ��� (four equations)

There are four unknowns: X��������H�����T �. Solving the equations, we obtain:
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X����� �
�

� � r

�&&�� � r � d

u� d
X����� H�� �z �
V ����H�

�
u � �� � r�

u� d
X����� T �� �z �
V ����T �

�''� �
X� �

�

� � r

�
� � r � d

u� d
X��H� �

u� �� � r�

u� d
X��T �

�
�

������ �
X����� H��X����� T �

S����� H�� S����� T �
�

�� �
X��H��X��T �

S��H�� S��T �
�

The probabilities of the stock price paths are irrelevant, because we have a hedge which works on
every path. From a practical point of view, what matters is that the paths in the model include all
the possibilities. We want to find a description of the paths in the model. They all have the property

�logSk�� � logSk�
� �

�
log

Sk��
Sk

��
� �� log u��

� �log u���

Let � � log u 	 �. Then
n��X
k��

�logSk�� � logSk�
� � ��n�

The paths of logSk accumulate quadratic variation at rate �� per unit time.

If we change u, then we change �, and the pricing and hedging formulas on the previous page will
give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation.
Recall:

Xk�� � �kSk�� � �� � r��Xk ��kSk��

Define
�k � �� � r�k�

Then
Xk��

�k��
� �k

Sk��
�k��

�
Xk

�k
��k

Sk
�k
�

i.e.,
Xk��

�k��
� Xk

�k
� �k

�
Sk��
�k��

� Sk
�k

�
�

In continuous time, we will have the analogous equation

d

�
X�t�

��t�

�
� ��t� d

�
S�t�

��t�

�
�
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If we introduce a probability measure fIP under which Sk
�k

is a martingale, then Xk
�k

will also be a
martingale, regardless of the portfolio used. Indeed,

fIE �Xk��

�k��

����Fk

�
� fIE �Xk

�k
��k

�
Sk��
�k��

� Sk
�k

� ����Fk

�
�
Xk

�k
��k

�fIE �Sk��
�k��

����Fk

�
� Sk
�k

�
�� �z �

��

Suppose we want to have X� � V , where V is some F�-measurable random variable. Then we
must have

�

� � r
X� �

X�

��
� fIE �X�

��

����F�

�
� fIE � V

��

����F�

�
�

X� �
X�

��
� fIE �X�

��

�
� fIE � V

��

�
�

To find the risk-neutral probability measure fIP under which Sk
�k

is a martingale, we denote �p �fIP f�k � Hg, �q � fIP f�k � Tg, and compute

fIE �Sk��
�k��

����Fk

�
� �pu

Sk
�k��

� �qd
Sk
�k��

�
�

� � r

�pu� �qd�

Sk
�k
�

We need to choose �p and �q so that

�pu� �qd � � � r�

�p� �q � ��

The solution of these equations is

�p �
� � r� d

u� d
� �q �

u� �� � r�

u� d
�

22.2 Setting up the continuous model

Now the stock price S�t�� � � t � T , is a continuous function of t. We would like to hedge
along every possible path of S�t�, but that is impossible. Using the binomial model as a guide, we
choose � 	 � and try to hedge along every path S�t� for which the quadratic variation of log S�t�
accumulates at rate �� per unit time. These are the paths with volatility � �.

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian
motion, we need a probability measure. However, the only thing about this probability measure
which ultimately matters is the set of paths to which it assigns probability zero.
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Let B�t�� � � t � T , be a Brownian motion defined on a probability space �	�F �P�. For any
� � IR, the paths of

�t� �B�t�

accumulate quadratic variation at rate �� per unit time. We want to define

S�t� � S��� expf�t� �B�t�g�

so that the paths of
log S�t� � logS��� � �t� �B�t�

accumulate quadratic variation at rate �� per unit time. Surprisingly, the choice of � in this definition
is irrelevant. Roughly, the reason for this is the following: Choose � � � 	. Then, for �� � IR,

��t � �B�t� ���� � � t � T�

is a continuous function of t. If we replace �� by ��, then ��t � �B�t� ��� is a different function.
However, there is an �� � 	 such that

��t � �B�t� ��� � ��t � �B�t� ���� � � t � T�

In other words, regardless of whether we use �� or �� in the definition of S�t�, we will see the same
paths. The mathematically precise statement is the following:

If a set of stock price paths has a positive probability when S�t� is defined by

S�t� � S��� expf��t � �B�t�g�

then this set of paths has positive probability when S�t� is defined by

S�t� � S��� expf��t � �B�t�g�

Since we are interested in hedging along every path, except possibly for a set of paths
which has probability zero, the choice of � is irrelevant.

The most convenient choice of � is
� � r� �

��
��

so
S�t� � S��� expfrt� �B�t� � �

��
�tg�

and
e�rtS�t� � S��� expf�B�t� � �

��
�tg

is a martingale under IP . With this choice of �,

dS�t� � rS�t� dt � �S�t� dB�t�
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and IP is the risk-neutral measure. If a different choice of � is made, we have

S�t� � S��� expf�t� �B�t�g�
dS�t� � ��� �

��
��� �z �

�

S�t� dt� �S�t� dB�t��

� rS�t� dt� �
h
��r
	 dt � dB�t�

i
�� �z �

deB�t�

eB has the same paths as B. We can change to the risk-neutral measure fIP , under which eB is a
Brownian motion, and then proceed as if � had been chosen to be equal to r � �

��
�.

22.3 Risk-neutral pricing and hedging

Let fIP denote the risk-neutral measure. Then

dS�t� � rS�t� dt� �S�t� d eB�t��

where eB is a Brownian motion under fIP . Set

��t� � ert�

Then

d

�
S�t�

��t�

�
� �

S�t�

��t�
d eB�t��

so S�t�
��t� is a martingale under fIP .

Evolution of the value of a portfolio:

dX�t� � ��t�dS�t� � r�X�t����t�S�t�� dt� (3.1)

which is equivalent to

d

�
X�t�

��t�

�
� ��t�d

�
S�t�

��t�

�
(3.2)

� ��t��
S�t�

��t�
d eB�t��

Regardless of the portfolio used, X�t�
��t� is a martingale under fIP .

Now suppose V is a given F�T �-measurable random variable, the payoff of a simple European
derivative security. We want to find the portfolio process ��T �� � � t � T , and initial portfolio
value X��� so that X�T � � V . Because X�t�

��t� must be a martingale, we must have

X�t�

��t�
� fIE � V

��T �

����F�t�

�
� � � t � T� (3.3)

This is the risk-neutral pricing formula. We have the following sequence:
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1. V is given,

2. Define X�t�� � � t � T , by (3.3) (not by (3.1) or (3.2), because we do not yet have ��t�).

3. Construct ��t� so that (3.2) (or equivalently, (3.1)) is satisfied by the X�t�� � � t � T ,
defined in step 2.

To carry out step 3, we first use the tower property to show that X�t�
��t� defined by (3.3) is a martingale

underfIP . We next use the corollary to the Martingale Representation Theorem (Homework Problem
4.5) to show that

d

�
X�t�

��t�

�
� ��t� d eB�t� (3.4)

for some proecss �. Comparing (3.4), which we know, and (3.2), which we want, we decide to
define

��t� �
��t���t�

�S�t�
� (3.5)

Then (3.4) implies (3.2), which implies (3.1), which implies that X�t�� � � t � T , is the value of
the portfolio process ��t�� � � t � T .

From (3.3), the definition of X , we see that the hedging portfolio must begin with value

X��� � fIE � V

��T �

�
�

and it will end with value

X�T � � ��T �fIE � V

��T �

����F�T �

�
� ��T �

V

��T �
� V�

Remark 22.1 Although we have taken r and � to be constant, the risk-neutral pricing formula is
still “valid” when r and � are processes adapted to the filtration generated by B. If they depend on
either eB or on S, they are adapted to the filtration generated by B. The “validity” of the risk-neutral
pricing formula means:

1. If you start with

X��� � fIE � V

��T �

�
�

then there is a hedging portfolio ��t�� � � t � T , such that X�T � � V ;

2. At each time t, the value X�t� of the hedging portfolio in 1 satisfies

X�t�

��t�
� fIE � V

��T �

����F�t�

�
�

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the
risk-neutral pricing formula is valid provided there is a unique risk-neutral measure. A probability
measure is said to be risk-neutral provided
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� it has the same probability-zero sets as the original measure;

� it makes all the discounted asset prices be martingales.

To see if the risk-neutral measure is unique, compute the differential of all discounted asset prices
and check if there is more than one way to define eB so that all these differentials have only d eB
terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula

X�t�

��t�
� fIE � V

��T �

����F�t�

�
�

one uses the Markov property. We need to identify some state variables, the stock price and possibly
other variables, so that

X�t� � ��t�fIE � V

��T �

����F�t�

�
is a function of these variables.

Example 22.1 Assume r and � are constant, and V � h�S�T ��. We can take the stock price to be the state
variable. Define

v�t� x� � eIEt�x
h
e�r�T�t	h�S�T ��

i
�

Then

X�t� � ert eIE �e�rTh�S�T ������F�t��
� v�t� S�t���

and X�t	
��t	 � e�rtv�t� S�t�� is a martingale under eIP .

Example 22.2 Assume r and � are constant.

V � h

�Z T

�

S�u� du

�
�

Take S�t� and Y �t� �
R t
�
S�u� du to be the state variables. Define

v�t� x� y� � eIEt�x�y
h
e�r�T�t	h�Y �T ��

i
�

where

Y �T � � y �

Z T

t

S�u� du�
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Then

X�t� � ert eIE �e�rTh�S�T ������F�t��
� v�t� S�t�� Y �t��

and
X�t�

��t�
� e�rtv�t� S�t�� Y �t��

is a martingale under eIP .

Example 22.3 (Homework problem 4.2)

dS�t� � r�t� Y �t�� S�t�dt � ��t� Y �t��S�t� d eB�t��
dY �t� � ��t� Y �t�� dt� ��t� Y �t�� d eB�t��

V � h�S�T ���

Take S�t� and Y �t� to be the state variables. Define

v�t� x� y� � eIEt�x�y

�&&&&&&�exp
	
�
Z T

t

r�u� Y �u�� du



� �z �

��t�
��T �

h�S�T ��

�''''''� �

Then

X�t� � ��t� eIE �h�S�T ��
��T �

����F�t��
� eIE �exp	� Z T

t

r�u� Y �u�� du



h�S�T ��

����F�t�
�

� v�t� S�t�� Y �t���

and

X�t�

��t�
� exp

�
�
Z t

�

r�u� Y �u�� du

�
v�t� S�t�� Y �t��

is a martingale under eIP .

In every case, we get an expression involving v to be a martingale. We take the differential and
set the dt term to zero. This gives us a partial differential equation for v, and this equation must
hold wherever the state processes can be. The d eB term in the differential of the equation is the
differential of a martingale, and since the martingale is

X�t�

��t�
� X��� �

Z t

�
��u��

S�u�

��u�
d eB�u�

we can solve for ��t�. This is the argument which uses (3.4) to obtain (3.5).
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Example 22.4 (Continuation of Example 22.3)

X�t�

��t�
� exp

�
�
Z t

�

r�u� Y �u�� du

�
� �z �

����t	

v�t� S�t�� Y �t��

is a martingale under eIP . We have

d

�
X�t�

��t�

�
�

�

��t�

�
�r�t� Y �t��v�t� S�t�� Y �t�� dt

� vtdt� vxdS � vydY

� �
�
vxxdS dS � vxydS dY � �

�
vyydY dY

�
�

�

��t�

�
��rv � vt � rSvx � �vy �

�
��

�S�vxx � ��Svxy �
�
��

�vyy� dt

� ��Svx � �vy� d eB�
The partial differential equation satisfied by v is

�rv � vt � rxvx � �vy �
�
��

�x�vxx � ��xvxy �
�
��

�vyy � �

where it should be noted that v � v�t� x� y�, and all other variables are functions of �t� y�. We have

d

�
X�t�

��t�

�
�

�

��t�
��Svx � �vy � d eB�t��

where � � ��t� Y �t��, � � ��t� Y �t��, v � v�t� S�t�� Y �t��, and S � S�t�. We want to choose ��t� so that
(see (3.2))

d

�
X�t�

��t�

�
� ��t���t� Y �t��

S�t�

��t�
d eB�t��

Therefore, we should take ��t� to be

��t� � vx�t� S�t�� Y �t�� �
��t� Y �t��

��t� Y �t�� S�t�
vy�t� S�t�� Y �t���
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Chapter 23

Recognizing a Brownian Motion

Theorem 0.62 (Levy) Let B�t�� � � t � T� be a process on �	�F�P�, adapted to a filtration
F�t�� � � t � T , such that:

1. the paths of B�t� are continuous,

2. B is a martingale,

3. hBi�t� � t� � � t � T , (i.e., informally dB�t� dB�t� � dt).

Then B is a Brownian motion.

Proof: (Idea) Let � � s � t � T be given. We need to show that B�t� � B�s� is normal, with
mean zero and variance t � s, and B�t� � B�s� is independent of F�s�. We shall show that the
conditional moment generating function of B�t� � B�s� is

IE

�
eu�B�t��B�s��

����F�s�

�
� e

�
�u

��t�s��

Since the moment generating function characterizes the distribution, this shows that B�t� � B�s�
is normal with mean 0 and variance t � s, and conditioning on F�s� does not affect this, i.e.,
B�t� �B�s� is independent of F�s�.

We compute (this uses the continuity condition (1) of the theorem)

deuB�t� � ueuB�t�dB�t� � �
�u

�euB�t�dB�t� dB�t��

so

euB�t� � euB�s� �
Z t

s
ueuB�v� dB�v� � �

�u
�
Z t

s
euB�v� dv���z�

uses cond. 3

233



234

Now
R t
� ue

uB�v�dB�v� is a martingale (by condition 2), and so

IE

�Z t

s
ueuB�v�dB�v�

����F�s�

�
� �

Z s

�
ueuB�v�dB�v� � IE

�Z t

�
ueuB�v�dB�v�

����F�s�

�
� ��

It follows that

IE

�
euB�t�

����F�s�

�
� euB�s� � �

�u
�
Z t

s
IE

�
euB�v�

����F�s�

�
dv�

We define

��v� � IE

�
euB�v�

����F�s�

�
�

so that

��s� � euB�s�

and

��t� � euB�s� � �
�u

�
Z t

s
��v� dv�

���t� � �
�u

���t��

��t� � ke
�
�u

�t�

Plugging in s, we get

euB�s� � ke
�
�u

�s��k � euB�s���
�u

�s�

Therefore,

IE

�
euB�t�

����F�s�

�
� ��t� � euB�s��

�
�u

��t�s��

IE

�
eu�B�t��B�s��

����F�s�

�
� e

�
�u

��t�s��
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23.1 Identifying volatility and correlation

Let B� and B� be independent Brownian motions and

dS�
S�

� r dt� ��� dB� � ��� dB��

dS�
S�

� r dt� ��� dB� � ��� dB��

Define

�� �
q
���� � �����

�� �
q
���� � �����

� �
������ � ������

����
�

Define processes W� and W� by

dW� �
��� dB� � ��� dB�

��

dW� �
��� dB� � ��� dB�

��
�

Then W� and W� have continuous paths, are martingales, and

dW� dW� �
�

���
����dB� � ���dB��

�

�
�

���
�����dB� dB� � ����dB� dB��

� dt�

and similarly

dW� dW� � dt�

Therefore, W� and W� are Brownian motions. The stock prices have the representation

dS�
S�

� r dt� �� dW��

dS�
S�

� r dt� �� dW��

The Brownian motionsW� and W� are correlated. Indeed,

dW� dW� �
�

����
����dB� � ���dB������dB� � ���dB��

�
�

����
������� � ������� dt

� � dt�
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23.2 Reversing the process

Suppose we are given that

dS�
S�

� r dt � ��dW��

dS�
S�

� r dt � ��dW��

where W� and W� are Brownian motions with correlation coefficient �. We want to find

� �

�
��� ���
��� ���

�

so that

��� �

�
��� ���
��� ���

� �
��� ���
��� ���

�

�

�
���� � ���� ������ � ������

������ � ������ ���� � ����

�

�

�
��� �����

����� ���

�

A simple (but not unique) solution is (see Chapter 19)

��� � ��� ��� � ��

��� � ���� ��� �
q
�� �� ���

This corresponds to

�� dW� � ��dB���dB� � dW��

�� dW� � ��� dB� �
q
�� ���� dB�

�� dB� �
dW� � � dW�p

�� ��
� �� 
� ���

If � � ��, then there is no B� and dW� � � dB� � � dW��

Continuing in the case � 
� ��, we have

dB� dB� � dW� dW� � dt�

dB� dB� �
�

�� ��

�
dW� dW� � �� dW� dW� � ��dW� dW�

�
�

�

�� ��

�
dt� ��� dt� �� dt

�
� dt�
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so both B� and B� are Brownian motions. Furthermore,

dB� dB� �
�p

�� ��
�dW� dW� � �dW� dW��

�
�p

�� ��
�� dt� � dt� � ��

We can now apply an Extension of Levy’s Theoremthat says that Brownian motions with zero
cross-variation are independent, to conclude that B�� B� are independent Brownians.
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Chapter 24

An outside barrier option

Barrier process:

dY �t�

Y �t�
� � dt� �� dB��t��

Stock process:

dS�t�

S�t�
� 
 dt� ��� dB��t� �

q
�� �� �� dB��t��

where �� 	 �� �� 	 �� �� � � � �, and B� and B� are independent Brownian motions on some
�	�F�P�. The option pays off:

�S�T ��K���fY ��T ��Lg

at time T , where

� � S��� � K� � � Y ��� � L�

Y 
�T � � max
��t�T

Y �t��

Remark 24.1 The option payoff depends on both the Y and S processes. In order to hedge it, we
will need the money market and two other assets, which we take to be Y and S. The risk-neutral
measure must make the discounted value of every traded asset be a martingale, which in this case
means the discounted Y and S processes.

We want to find �� and �� and define

d eB� � �� dt � dB�� d eB� � �� dt� dB��

239
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so that

dY

Y
� r dt� ��d eB�

� r dt� ���� dt� �� dB��

dS

S
� r dt� ��� d eB� �

q
�� �� ��d eB�

� r dt� ��� �� dt�
q
�� �� ���� dt

� ��� dB� �
q
�� �� �� dB��

We must have

� � r � ����� (0.1)


 � r � ����� �
q
�� �� ����� (0.2)

We solve to get

�� �
�� r

��
�

�� �

 � r � �����p

�� �� ��
�

We shall see that the formulas for �� and �� do not matter. What matters is that (0.1) and (0.2)
uniquely determine �� and ��. This implies the existence and uniqueness of the risk-neutral measure.
We define

Z�T � � exp
n
���B��T �� ��B��T �� �

���
�
� � ����T

o
�

fIP �A� �

Z
A
Z�T � dIP� �A � F �

Under fIP , eB� and eB� are independent Brownian motions (Girsanov’s Theorem). fIP is the unique
risk-neutral measure.

Remark 24.2 Under both IP and fIP , Y has volatility ��, S has volatility �� and

dY dS

Y S
� ����� dt�

i.e., the correlation between dY
Y and dS

S is �.

The value of the option at time zero is

v��� S���� Y ���� � fIE he�rT �S�T ��K���fY ��T ��Lg
i
�

We need to work out a density which permits us to compute the right-hand side.
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Recall that the barrier process is

dY

Y
� r dt� �� d eB��

so

Y �t� � Y ��� exp
n
rt� �� eB��t�� �

��
�
�t
o
�

Set

b� � r��� � �����bB�t� � b�t� eB��t��cM�T � � max
��t�T

bB�t��

Then

Y �t� � Y ��� expf�� bB�t�g�
Y 
�T � � Y ��� expf��cM�T �g�

The joint density of bB�T � and cM�T �, appearing in Chapter 20, is

fIP f bB�T � � d�b� cM�T � � d �mg

�
��� �m� �b�

T
p
��T

exp

	
��� �m� �b��

�T
� b��b� �

�
b��T
 d�b d �m�

�m 	 ���b � �m�

The stock process.

dS

S
� r dt� ���d eB� �

q
�� �� ��d eB��

so

S�T � � S��� expfrT � ��� eB��T �� �
��

����T �
q
�� �� �� eB��T �� �

���� ������Tg
� S��� expfrT � �

��
�
�T � ��� eB��T � �

q
�� �� �� eB��T �g

From the above paragraph we have

eB��T � � �b�T � bB�T ��

so

S�T � � S��� expfrT � ��� bB�T �� �
��

�
�T � ���b�T �

q
�� �� �� eB��T �g



242

24.1 Computing the option value

v��� S���� Y ���� � fIE he�rT �S�T ��K���fY ��T ��Lg
i

� e�rTfIE� �S��� exp��r� �
��

�
� � ���b��T � ��� bB�T � �

q
�� �� �� eB��T �

�
�K

��
��fY ��� exp��� bM�T ���Lg

�

We know the joint density of � bB�T �� cM �T ��. The density of eB��T � is

fIP f eB��T � � d�bg � �p
��T

exp

	
�

�b�

�T



d�b� �b � IR�

Furthermore, the pair of random variables � bB�T �� cM�T �� is independent of eB��T � because eB� andeB� are independent underfIP . Therefore, the joint density of the random vector � eB��T �� bB�T �� cM�T ��
is

fIP f eB��T � � d�b� bB�T � � d�b� cM�T � � d �m� g � fIPf eB��T � � d�bg�fIP f bB�T � � d�b� cM�T � � d �mg

The option value at time zero is

v��� S���� Y ����

� e�rT

�
��

log L
Y ���Z

�

�mZ
��

�Z
��

�
S��� exp

�
�r� �

��
�
� � ���b��T � ����b�

q
�� �����b

�
�K

��

�
�p
��T

exp

	
�
�b�

�T




�
��� �m� �b�

T
p
��T

exp

	
��� �m� �b��

�T
� b��b� �

�
b��T


�d�b d�b d �m�

The answer depends on T� S��� and Y ���. It also depends on ��� ��� �� r�K and L. It does not
depend on �� 
� ��� nor ��. The parameter b� appearing in the answer is b� � r

��
� ��

� �

Remark 24.3 If we had not regarded Y as a traded asset, then we would not have tried to set its
mean return equal to r. We would have had only one equation (see Eqs (0.1),(0.2))


 � r� ����� �
q
�� �� ���� (1.1)

to determine �� and ��. The nonuniqueness of the solution alerts us that some options cannot be
hedged. Indeed, any option whose payoff depends on Y cannot be hedged when we are allowed to
trade only in the stock.
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If we have an option whose payoff depends only on S, then Y is superfluous. Returning to the
original equation for S,

dS

S
� 
 dt� ��� dB� �

q
�� �� �� dB��

we should set
dW � � dB� �

q
�� ��dB��

so W is a Brownian motion under IP (Levy’s theorem), and

dS

S
� 
 dt� ��dW�

Now we have only Brownian motion, there will be only one �, namely,

� �

� r

��
�

so with dfW � � dt� dW� we have

dS

S
� r dt� �� dfW�

and we are on our way.

24.2 The PDE for the outside barrier option

Returning to the case of the option with payoff

�S�T ��K���fY ��T ��Lg�

we obtain a formula for

v�t� x� y� � e�r�T�t�fIEt�x�y h
�S�T ��K���fmaxt�u�T Y �u� � Lg�

i
by replacing T , S��� and Y ��� by T � t, x and y respectively in the formula for v��� S���� Y ����.
Now start at time 0 at S��� and Y ���. Using the Markov property, we can show that the stochastic
process

e�rtv�t� S�t�� Y �t��

is a martingale under fIP . We compute

d
h
e�rtv�t� S�t�� Y �t��

i
� e�rt

� �
�rv � vt � rSvx � rY vy �

�
��

�
�S

�vxx � �����SY vxy �
�
��

�
�Y

�vyy
�
dt

� ���Svx d eB� �
q
�� �� ��Svx d eB� � ��Y vyd eB�

�
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L

v(t, 0, 0) = 0

x

y

v(t, x, L) = 0,  x  >=  0

Figure 24.1: Boundary conditions for barrier option. Note that t � 
�� T � is fixed.

Setting the dt term equal to 0, we obtain the PDE

� rv � vt � rxvx � ryvy �
�
��

�
�x

�vxx

� �����xyvxy �
�
��

�
�y

�vyy � ��

� � t � T� x � �� � � y � L�

The terminal condition is

v�T� x� y� � �x�K��� x � �� � � y � L�

and the boundary conditions are

v�t� �� �� � �� � � t � T�

v�t� x� L� � �� � � t � T� x � ��
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x � � y � �
�rv � vt � ryvy �

�
��

�
�y

�vyy � � �rv � vt � rxvx �
�
��

�
�x

�vxx � �

This is the usual Black-Scholes formula
in y.

This is the usual Black-Scholes formula
in x.

The boundary conditions are The boundary condition is
v�t� �� L� � �� v�t� �� �� � �� v�t� �� �� � e�r�T�t����K�� � ��
the terminal condition is the terminal condition is
v�T� �� y� � ���K�� � �� y � �� v�T� x� �� � �x�K��� x � ��

On the x � � boundary, the option value
is v�t� �� y� � �� � � y � L�

On the y � � boundary, the barrier is ir-
relevant, and the option value is given by
the usual Black-Scholes formula for a Eu-
ropean call.

24.3 The hedge

After setting the dt term to 0, we have the equation

d
h
e�rtv�t� S�t�� Y �t��

i
� e�rt

�
���Svx d eB� �

q
�� �� ��Svx d eB� � ��Y vyd eB�

�
�

where vx � vx�t� S�t�� Y �t��, vy � vy�t� S�t�� Y �t��, and eB�� eB�� S� Y are functions of t. Note
that

d
h
e�rtS�t�

i
� e�rt 
�rS�t� dt� dS�t��

� e�rt
�
���S�t� d eB��t� �

q
�� �� ��S�t� d eB��t�

�
�

d
h
e�rtY �t�

i
� e�rt 
�rY �t� dt� dY �t��

� e�rt��Y �t� d eB��t��

Therefore,

d
h
e�rtv�t� S�t�� Y �t��

i
� vxd
e

�rtS� � vyd
e
�rtY ��

Let ���t� denote the number of shares of stock held at time t, and let ���t� denote the number of
“shares” of the barrier process Y . The value X�t� of the portfolio has the differential

dX � ��dS ���dY � r
X ���S ���Y � dt�
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This is equivalent to

d
e�rtX�t�� � ���t�d
e
�rtS�t�� � ���t�d
e

�rtY �t���

To get X�t� � v�t� S�t�� Y �t�� for all t, we must have

X��� � v��� S���� Y ����

and
���t� � vx�t� S�t�� Y �t���

���t� � vy�t� S�t�� Y �t���



Chapter 25

American Options

This and the following chapters form part of the course Stochastic Differential Equations for Fi-
nance II.

25.1 Preview of perpetual American put

dS � rS dt � �S dB

Intrinsic value at time t � �K � S�t����

Let L � 
�� K� be given. Suppose we exercise the first time the stock price is L or lower. We define

�L � minft � ��S�t� � Lg�
vL�x� � IEe�r�L�K � S��L��

�

�

	
K � x if x � L,

�K � L�IEe�r�L if x 	 L�

The plan is to comute vL�x� and then maximize over L to find the optimal exercise price. We need
to know the distribution of �L.

25.2 First passage times for Brownian motion: first method

(Based on the reflection principle)

Let B be a Brownian motion under IP , let x 	 � be given, and define

� � minft � ��B�t� � xg�

� is called the first passage time to x. We compute the distribution of � .
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Figure 25.1: Intrinsic value of perpetual American put

Define

M�t� � max
��u�t

B�u��

From the first section of Chapter 20 we have

IPfM�t� � dm�B�t� � dbg � ���m� b�

t
p
��t

exp

	
���m� b��

�t



dm db� m 	 �� b � m�

Therefore,

IPfM�t� � xg �
Z �

x

Z m

��
���m� b�

t
p
��t

exp

	
���m� b��

�t



db dm

�
Z �

x

�p
��t

exp

	
���m� b��

�t


 ����b�m
b���

dm

�
Z �

x

�p
��t

exp

	
�m

�

�t



dm�

We make the change of variable z � mp
t

in the integral to get

�
Z �

x�
p
t

�p
��

exp

	
�z

�

�



dz�

Now

� � t��M�t� � x�
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so

IPf� � dtg � �

�t
IPf� � tg dt

�
�

�t
IP fM�t� � xg dt

�

�
�

�t

Z �

x�
p
t

�p
��

exp

	
�z

�

�



dz

�
dt

� � �p
��

exp

	
�x

�

�t



�
�

�t

�
xp
t

�
dt

�
x

t
p
��t

exp

	
�x

�

�t



dt�

We also have the Laplace transform formula

IEe�
� �
Z �

�
e�
tIPf� � dtg

� e�x
p
�
� � 	 �� (See Homework)

Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.

25.3 Drift adjustment

Reference: Karatzas/Shreve, Brownian motion and Stochastic Calculus, pp 196–197.

For � � t ��, define eB�t� � �t � B�t��

Z�t� � expf��B�t� � �
��

�tg�
� expf�� eB�t� � �

��
�tg�

Define

�� � minft � �� eB�t� � xg�
We fix a finite time T and change the probability measure “only up to T”. More specifically, with
T fixed, define fIP �A� �

Z
A
Z�T � dP� A � F�T ��

UnderfIP , the process eB�t�� � � t � T , is a (nondrifted) Brownian motion, sofIP f�� � dtg � IPf� � dtg

�
x

t
p
��t

exp

	
�x

�

�t



dt� � � t � T�
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For � � t � T we have

IPf�� � tg � IE
h
�f���tg

i
� fIE ��f���tg �

Z�T �

�
� fIE h�f���tg expf� eB�T �� �

��
�Tg

i
� fIE ��f���tgfIE �expf� eB�T �� �

��
�Tg

����F��� � t�

��
� fIE h�f���tg expf� eB��� � t�� �

��
���� � t�g

i
� fIE h�f���tg expf�x � �

��
���g
i

�

Z t

�
expf�x� �

��
�sgfIPf�� � dsg

�

Z t

�

x

s
p
��s

exp

	
�x � �

��
�s � x�

�s



ds

�

Z t

�

x

s
p
��s

exp

	
��x� �s��

�s



ds�

Therefore,

IPf�� � dtg � x

t
p
��t

exp

	
��x� �t��

�t



dt� � � t � T�

Since T is arbitrary, this must in fact be the correct formula for all t 	 �.

25.4 Drift-adjusted Laplace transform

Recall the Laplace transform formula for

� � minft � ��B�t� � xg

for nondrifted Brownian motion:

IEe�
� �

Z �

�

x

t
p
��t

exp

	
��t � x�

�t



dt � e�x

p
�
� � 	 �� x 	 ��

For

�� � minft � �� �t�B�t� � xg�
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the Laplace transform is

IEe�
�� �
Z �

�

x

t
p
��t

exp

	
��t � �x� �t��

�t



dt

�
Z �

�

x

t
p
��t

exp

	
��t � x�

�t
� x� � �

��
�t



dt

� ex�
Z �

�

x

t
p
��t

exp

	
���� �

��
��t� x�

�t



dt

� ex��x
p
�
��� � � 	 �� x 	 ��

where in the last step we have used the formula for IEe�
� with � replaced by �� �
��

�.

If ����� ��, then
lim

�� e

�
����� � ��

if ����� ��, then e�
����� � � for every � 	 �, so

lim

�� e

�
����� � ��

Therefore,
lim

�� e

�
����� � ������

Letting ��� and using the Monotone Convergence Theorem in the Laplace transform formula

IEe�
�� � ex��x
p
�
��� �

we obtain
IPf�� ��g � ex��x

p
�� � ex��xj�j�

If � � �, then
IPf�� ��g � ��

If � � �, then
IPf�� ��g � e�x� � ��

(Recall that x 	 �).

25.5 First passage times: Second method

(Based on martingales)

Let � 	 � be given. Then
Y �t� � expf�B�t� � �

��
�tg
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is a martingale, so Y �t � �� is also a martingale. We have

� � Y �� � ��
� IEY �t � ��
� IE expf�B�t � ��� �

��
��t � ��g�

� lim
t�� IE expf�B�t � ��� �

��
��t � ��g�

We want to take the limit inside the expectation. Since

� � expf�B�t � ��� �
��

��t � ��g � ex�

this is justified by the Bounded Convergence Theorem. Therefore,

� � IE lim
t�� expf�B�t � ��� �

��
��t � ��g�

There are two possibilities. For those � for which ���� ��,

lim
t�� expf�B�t � ��� �

��
��t � ��g � e�x�

�
��

�� �

For those � for which ���� ��,

lim
t�� expf�B�t � ��� �

��
��t � ��g � lim

t�� expf�x� �
��

�tg � ��

Therefore,

� � IE lim
t�� expf�B�t � ��� �

��
��t � ��g

� IE

�
e�x�

�
��

��
����

�
� IEe�x�

�
��

�� �

where we understand e�x�
�
��

�� to be zero if � ��.

Let � � �
��

�, so � �
p
��. We have again derived the Laplace transform formula

e�x
p
�
 � IEe�
� � � 	 �� x 	 ��

for the first passage time for nondrifted Brownian motion.

25.6 Perpetual American put

dS � rS dt� �S dB

S��� � x

S�t� � x expf�r� �
��

��t� �B�t�g

� x exp

����
�����
�&&&�
�
r

�
� �

�

�
� �z �

�

t� B�t�

�'''�
 ���!���" �
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Intrinsic value of the put at time t: �K � S�t���.

Let L � 
�� K� be given. Define for x � L,

�L � minft � �� S�t� � Lg
� minft � �� �t �B�t� �

�

�
log

L

x
g

� minft � �� ��t � B�t� �
�

�
log

x

L
g

Define

vL � �K � L�IEe�r�L

� �K � L� exp

�
� �

�
log

x

L
� �

�
log

x

L

p
�r � ��

�
� �K � L�

�
x

L

�� �
�� �

�
p
�r���

�

We compute the exponent

� �

�
� �

�

p
�r� �� � � r

��
� �

� �
�

�

s
�r �

�
r

�
� ���

��
� � r

��
� �

� �
�

�

s
�r �

r�

��
� r � ����

� � r

��
� �

� �
�

�

s
r�

��
� r � ����

� � r

��
� �

� �
�

�

s�
r

�
� ���

��
� � r

��
� �

� �
�

�

�
r

�
� ���

�
� ��r

��
�

Therefore,

vL�x� �

�
��K � x�� � � x � L�

�K � L�
�
x
L

���r���

� x � L�

The curves �K � L�
�
x
L

���r���

� are all of the form Cx��r��
�
.

We want to choose the largest possible constant. The constant is

C � �K � L�L�r���
�
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Figure 25.2: Value of perpetual American put
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Figure 25.3: Curves.
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and

�C

�L
� �L �r

�� �
�r

��
�K � L�L

�r

����

� L
�r

��

�
�� � �r

��
�K � L�

�

L

�
� L

�r

��

�
�
�
� �

�r

��

�
�

�r

��
K

L

�
�

We solve

�
�
� �

�r

��

�
�

�r

��
K

L
� �

to get

L �
�rK

�� � �r
�

Since � � �r � �� � �r� we have
� � L � K�

Solution to the perpetual American put pricing problem (see Fig. 25.4):

v�x� �

�
��K � x�� � � x � L
�
�K � L
�

�
x
L�
���r���

� x � L
�

where

L
 �
�rK

�� � �r
�

Note that

v��x� �

	
��� � � x � L
�
� �r
�� �K � L�
�L
��r���

x��r������ x 	 L
�

We have

lim
x�L� v

��x� � �� r

��
�K � L
�

�

L


� �� r

��

�
K � �rK

�� � �r

�
�� � �r

�rK

� �� r

��

�
�� � �r� �r

�� � �r

�
�� � �r

�r

� ��
� lim

x�L� v
��x��
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Figure 25.4: Solution to perpetual American put.

25.7 Value of the perpetual American put

Set

� �
�r

��
� L
 �

�rK

�� � �r
�

�

� � �
K�

If � � x � L
, then v�x� � K � x. If L
 � x ��, then

v�x� � �K � L
��L
��� �z �
C

x�� (7.1)

� IEx
h
e�r� �K � L
���f���g

i
� (7.2)

where

S��� � x (7.3)

� � minft � �� S�t� � L
g� (7.4)

If � � x � L
, then

�rv�x� � rxv��x� � �
��

�x�v���x� � �r�K � x� � rx���� � �rK�

If L
 � x ��, then

�rv�x� � rxv��x� � �
��

�x�v���x�

� C
�rx�� � rx�x���� � �
��

�x����� � ��x�����

� Cx�� 
�r � r� � �
��

����� � ���

� C��� � ��x��
�
r � �

��
�
�
�r

��

��
� ��

In other words, v solves the linear complementarity problem: (See Fig. 25.5).
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�
�
�
�
�
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�
�
�

Figure 25.5: Linear complementarity

For all x � IR, x 
� L
,

rv � rxv� � �
��

�x�v�� � �� (a)

v � �K � x��� (b)

One of the inequalities (a) or (b) is an equality. (c)

The half-line 
���� is divided into two regions:

C � fx� v�x� 	 �K � x��g�
S � fx� rv � rxv� � �

��
�x�v�� 	 �g�

and L
 is the boundary between them. If the stock price is in C, the owner of the put should not
exercise (should “continue”). If the stock price is in S or at L
, the owner of the put should exercise
(should “stop”).

25.8 Hedging the put

Let S��� be given. Sell the put at time zero for v�S����. Invest the money, holding ��t� shares of
stock and consuming at rate C�t� at time t. The value X�t� of this portfolio is governed by

dX�t� � ��t� dS�t� � r�X�t����t�S�t�� dt � C�t� dt�

or equivalently,

d�e�rtX�t�� � �e�rtC�t� dt� e�rt��t��S�t� dB�t��
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The discounted value of the put satisfies

d
�
e�rtv�S�t��

�
� e�rt

h
�rv�S�t�� � rS�t�v��S�t�� � �

��
�S��t�v���S�t��

i
dt

� e�rt�S�t�v��S�t�� dB�t�

� �rKe�rt�fS�t��L�gdt� e�rt�S�t�v��S�t�� dB�t��

We should set

C�t� � rK�fS�t��L�g�

��t� � v��S�t���

Remark 25.1 If S�t� � L
, then

v�S�t�� � K � S�t�� ��t� � v��S�t�� � ���
To hedge the put when S�t� � L
, short one share of stock and hold K in the money market. As
long as the owner does not exercise, you can consume the interest from the money market position,
i.e.,

C�t� � rK�fS�t��L�g�

Properties of e�rtv�S�t��:

1. e�rtv�S�t�� is a supermartingale (see its differential above).

2. e�rtv�S�t�� � e�rt�K � S�t���, � � t ��;

3. e�rtv�S�t�� is the smallest process with properties 1 and 2.

Explanation of property 3. Let Y be a supermartingale satisfying

Y �t� � e�rt�K � S�t���� � � t ��� (8.1)

Then property 3 says that

Y �t� � e�rtv�S�t��� � � t ��� (8.2)

We use (8.1) to prove (8.2) for t � �, i.e.,

Y ��� � v�S����� (8.3)

If t is not zero, we can take t to be the initial time and S�t� to be the initial stock price, and then
adapt the argument below to prove property (8.2).

Proof of (8.3), assumingY is a supermartingale satisfying (8.1):

Case I:S��� � L
� We have

Y ��� ���z�
�	���

�K � S����� � v�S�����
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Case II: S��� 	 L
: For T 	 �, we have

Y ��� � IEY �� � T � (Stopped supermartingale is a supermartingale)

� IE
h
Y �� � T ��f���g

i
� (Since Y � �)

Now let T�� to get

Y ��� � lim
T��

IE
h
Y �� � T ��f���g

i
� IE

h
Y ����f���g

i
(Fatou’s Lemma)

� IE

�&�e�r� �K � S���� �z �
L�

���f���g

�'� (by 8.1)

� v�S����� (See eq. 7.2)

25.9 Perpetual American contingent claim

Intinsic value: h�S�t��.

Value of the American contingent claim:

v�x� � sup
�
IEx �e�r�h�S����� �

where the supremum is over all stopping times.

Optimal exercise rule: Any stopping time � which attains the supremum.

Characterization of v:

1. e�rtv�S�t�� is a supermartingale;

2. e�rtv�S�t�� � e�rth�S�t��� � � t ��;

3. e�rtv�S�t�� is the smallest process with properties 1 and 2.

25.10 Perpetual American call

v�x� � sup
�
IEx �e�r� �S����K��

�
Theorem 10.63

v�x� � x �x � ��
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Proof: For every t,

v�x� � IEx
h
e�rt�S�t��K��

i
� IEx

h
e�rt�S�t��K�

i
� IEx

h
e�rtS�t�

i
� e�rtK

� x� e�rtK�

Let t�� to get v�x� � x.

Now start with S��� � x and define

Y �t� � e�rtS�t��

Then:

1. Y is a supermartingale (in fact, Y is a martingale);

2. Y �t� � e�rt�S�t��K��� � � t ��.

Therefore, Y ��� � v�S����, i.e.,
x � v�x��

Remark 25.2 No matter what � we choose,

IEx �e�r� �S����K��
�
� IEx �e�r�S���� � x � v�x��

There is no optimal exercise time.

25.11 Put with expiration

Expiration time: T 	 �.

Intrinsic value: �K � S�t���.

Value of the put:

v�t� x� � (value of the put at time t if S�t� � x)

� sup
t���T� �z �

� �stopping time

IExe�r���t��K � S������

See Fig. 25.6. It can be shown that v� vt� vx are continuous across the boundary, while vxx has a
jump.

Let S��� be given. Then
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�

�

x

t

L


T

K

v 	 K � x

�rv � vt � rxvx �
�
��

�x�vxx � �

v�T� x� � �� x � K

v � K � x

vt � �� vx � ��� vxx � �

�rv � vt � rxvx �
�
��

�x�vxx � �rK

v�T� x� � K � x� � � x � K

Figure 25.6: Value of put with expiration

1. e�rtv�t� S�t��� � � t � T� is a supermartingale;

2. e�rtv�t� S�t��� e�rt�K � S�t���� � � t � T ;

3. e�rtv�t� S�t�� is the smallest process with properties 1 and 2.

25.12 American contingent claim with expiration

Expiration time: T 	 �.

Intrinsic value: h�S�t��.

Value of the contingent claim:

v�t� x� � sup
t���T

IExe�r���t�h�S�����

Then

rv � vt � rxvx � �
��

�x�vxx � �� (a)

v � h�x�� (b)

At every point �t� x� � 
�� T �� 
����, either (a) or (b) is an equality. (c)

Characterization of v: Let S��� be given. Then
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1. e�rtv�t� S�t��� � � t � T� is a supermartingale;

2. e�rtv�t� S�t��� e�rth�S�t��;

3. e�rtv�t� S�t�� is the smallest process with properties 1 and 2.

The optimal exercise time is

� � minft � �� v�t� S�t�� � h�S�t��g

If ���� ��, then there is no optimal exercise time along the particular path �.
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Options on dividend-paying stocks

26.1 American option with convex payoff function

Theorem 1.64 Consider the stock price process

dS�t� � r�t�S�t� dt� ��t�S�t� dB�t��

where r and � are processes and r�t� � �� � � t � T� a.s. This stock pays no dividends.
Let h�x� be a convex function of x � �, and assume h��� � �. (E.g., h�x� � �x � K��). An
American contingent claim paying h�S�t�� if exercised at time t does not need to be exercised
before expiration, i.e., waiting until expiration to decide whether to exercise entails no loss of value.

Proof: For � � � � � and x � �, we have

h��x� � h���� ��� � �x�

� ��� ��h��� � �h�x�

� �h�x��

Let T be the time of expiration of the contingent claim. For � � t � T ,

� � ��t�

��T �
� exp

	
�
Z T

t
r�u� du



� �

and S�T � � �, so

h

�
��t�

��T �
S�T �

�
� ��t�

��T �
h�S�T ��� (*)

Consider a European contingent claim paying h�S�T �� at time T . The value of this claim at time
t � 
�� T � is

X�t� � ��t� IE

�
�

��T �
h�S�T ��

����F�t�

�
�
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Figure 26.1: Convex payoff function

Therefore,

X�t�

��t�
�

�

��t�
IE

�
��t�

��T �
h�S�T ��

����F�t�

�
� �

��t�
IE

�
h

�
��t�

��T �
S�T �

�����F�t�

�
(by (*))

� �

��t�
h

�
��t� IE

�
S�T �

��T �

����F�t�

��
(Jensen’s inequality)

�
�

��t�
h

�
��t�

S�t�

��t�

�
(
S

�
is a martingale)

�
�

��t�
h�S�t���

This shows that the value X�t� of the European contingent claim dominates the intrinsic value
h�S�t�� of the American claim. In fact, except in degenerate cases, the inequality

X�t� � h�S�t��� � � t � T�

is strict, i.e., the American claim should not be exercised prior to expiration.

26.2 Dividend paying stock

Let r and � be constant, let � be a “dividend coefficient” satisfying

� � � � ��
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Let T 	 � be an expiration time, and let t� � ��� T � be the time of dividend payment. The stock
price is given by

S�t� �

	
S��� expf�r� �

��
��t� �B�t�g� � � t � t��

��� ��S�t�� expf�r� �
��

���t� t�� � ��B�t�� B�t���g� t� � t � T�

Consider an American call on this stock. At times t � �t�� T �, it is not optimal to exercise, so the
value of the call is given by the usual Black-Scholes formula

v�t� x� � xN�d��T � t� x�� � Ke�r�T�t�N�d��T � t� x��� t� � t � T�

where

d��T � t� x� �
�

�
p
T � t

�
log

x

K
� �T � t��r � �����

�
�

At time t�, immediately after payment of the dividend, the value of the call is

v�t�� ��� ��S�t����

At time t�, immediately before payment of the dividend, the value of the call is

w�t�� S�t����

where
w�t�� x� � max

(
�x�K��� v�t�� ��� ��x

)
�

Theorem 2.65 For � � t � t�, the value of the American call is w�t� S�t��, where

w�t� x� � IEt�x
h
e�r�t��t�w�t�� S�t���

i
�

This function satisfies the usual Black-Scholes equation

�rw � wt � rxwx �
�
��

�x�wxx � �� � � t � t�� x � ��

(where w � w�t� x�) with terminal condition

w�t�� x� � max
(
�x�K��� v�t�� ��� ��x�

)
� x � ��

and boundary condition
w�t� �� � �� � � t � T�

The hedging portfolio is

��t� �

	
wx�t� S�t��� � � t � t��

vx�t� S�t��� t� � t � T�

Proof: We only need to show that an American contingent claim with payoff w�t�� S�t��� at time
t� need not be exercised before time t�. According to Theorem 1.64, it suffices to prove

1. w�t�� �� � �,
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2. w�t�� x� is convex in x.

Since v�t�� �� � �, we have immediately that

w�t�� �� � max
(
���K��� v�t�� ��� ����

)
� ��

To prove thatw�t�� x� is convex in x, we need to show that v�t�� �����x� is convex is x. Obviously,
�x � K�� is convex in x, and the maximum of two convex functions is convex. The proof of the
convexity of v�t�� ��� ��x� in x is left as a homework problem.

26.3 Hedging at timet�

Let x � S�t��.

Case I:v�t�� ��� ��x� � �x�K��.
The option need not be exercised at time t� (should not be exercised if the inequality is strict). We
have

w�t�� x� � v�t�� ��� ��x��

��t�� � wx�t�� x� � ��� ��vx�t�� ��� ��x� � ��� ����t����

where
��t��� � lim

t�t�
��t�

is the number of shares of stock held by the hedge immediately after payment of the dividend. The
post-dividend position can be achieved by reinvesting in stock the dividends received on the stock
held in the hedge. Indeed,

��t��� �
�

�� �
��t�� � ��t�� �

�

�� �
��t��

� ��t�� �
���t��S�t��

��� ��S�t��

� # of shares held when dividend is paid �
dividends received

price per share when dividend is reinvested

Case II: v�t�� ��� ��x� � �x�K��.
The owner of the option should exercise before the dividend payment at time t� and receive �x�K�.
The hedge has been constructed so the seller of the option has x �K before the dividend payment
at time t�. If the option is not exercised, its value drops from x�K to v�t�� �����x�, and the seller
of the option can pocket the difference and continue the hedge.
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Bonds, forward contracts and futures

Let fW �t��F�t�� � � t � Tg be a Brownian motion (Wiener process) on some �	�F�P�. Con-
sider an asset, which we call a stock, whose price satisfies

dS�t� � r�t�S�t� dt� ��t�S�t� dW �t��

Here, r and � are adapted processes, and we have already switched to the risk-neutral measure,
which we call IP . Assume that every martingale under IP can be represented as an integral with
respect to W .

Define the accumulation factor

��t� � exp

�Z t

�
r�u� du

�
�

A zero-coupon bond, maturing at time T , pays 1 at time T and nothing before time T . According
to the risk-neutral pricing formula, its value at time t � 
�� T � is

B�t� T � � ��t� IE

�
�

��T �

����F�t�

�
� IE

�
��t�

��T �

����F�t�

�
� IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
�

Given B�t� T � dollars at time t, one can construct a portfolio of investment in the stock and money
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market so that the portfolio value at time T is 1 almost surely. Indeed, for some process �,

B�t� T � � ��t� IE

�
�

��T �

����F�t�

�
� �z �

martingale

� ��t�

�
IE

�
�

��T �

�
�

Z t

�
��u� dW �u�

�
� ��t�

�
B��� T � �

Z t

�
��u� dW �u�

�
�

dB�t� T � � r�t���t�

�
B��� T � �

Z t

�
��u� dW �u�

�
dt � ��t���t� dW �t�

� r�t�B�t� T � dt � ��t���t� dW �t��

The value of a portfolio satisfies

dX�t� � ��t� dS�t� � r�t�
X�t����t�S�t��dt

� r�t�X�t� dt� ��t���t�S�t� dW �t��

(*)

We set

��t� �
��t���t�

��t�S�t�
�

If, at any time t, X�t� � B�t� T � and we use the portfolio ��u�� t � u � T , then we will have

X�T � � B�T� T � � ��

If r�t� is nonrandom for all t, then

B�t� T � � exp

	
�
Z T

t
r�u� du



�

dB�t� T � � r�t�B�t� T � dt�

i.e., � � �. Then � given above is zero. If, at time t, you are given B�t� T � dollars and you always
invest only in the money market, then at time T you will have

B�t� T � exp

	Z T

t
r�u� du



� ��

If r�t� is random for all t, then � is not zero. One generally has three different instruments: the
stock, the money market, and the zero coupon bond. Any two of them are sufficient for hedging,
and the two which are most convenient can depend on the instrument being hedged.
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27.1 Forward contracts

We continue with the set-up for zero-coupon bonds. The T -forward price of the stock at time
t � 
�� T � is the F�t�-measurable price, agreed upon at time t, for purchase of a share of stock at
time T , chosen so the forward contract has value zero at time t. In other words,

IE

�
�

��T �
�S�T �� F �t��

����F�t�

�
� �� � � t � T�

We solve for F �t�:

� � IE

�
�

��T �
�S�T �� F �t��

����F�t�

�
� IE

�
S�T �

��T �

����F�t�

�
� F �t�

��t�
IE

�
��t�

��T �

����F�t�

�
�
S�t�

��t�
� F �t�

��t�
B�t� T ��

This implies that

F �t� �
S�t�

B�t� T �
�

Remark 27.1 (Value vs. Forward price) The T -forward price F �t� is not the value at time t of
the forward contract. The value of the contract at time t is zero. F �t� is the price agreed upon at
time t which will be paid for the stock at time T .

27.2 Hedging a forward contract

Enter a forward contract at time 0, i.e., agree to pay F ��� � S���
B���T � for a share of stock at time T .

At time zero, this contract has value 0. At later times, however, it does not. In fact, its value at time
t � 
�� T � is

V �t� � ��t� IE

�
�

��T �
�S�T �� F ����

����F�t�

�
� ��t� IE

�
S�T �

��T �

����F�t�

�
� F ��� IE

�
��t�

��T �

����F�t�

�
� ��t�

S�t�

��t�
� F ���B�t� T �

� S�t�� F ���B�t� T ��

This suggests the following hedge of a short position in the forward contract. At time 0, short F ���
T -maturity zero-coupon bonds. This generates income

F ���B��� T � �
S���

B��� T �
B��� T � � S����
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Buy one share of stock. This portfolio requires no initial investment. Maintain this position until
time T , when the portfolio is worth

S�T �� F ���B�T� T � � S�T �� F ����

Deliver the share of stock and receive payment F ���.

A short position in the forward could also be hedged using the stock and money market, but the
implementation of this hedge would require a term-structure model.

27.3 Future contracts

Future contracts are designed to remove the risk of default inherent in forward contracts. Through
the device of marking to market, the value of the future contract is maintained at zero at all times.
Thus, either party can close out his/her position at any time.

Let us first consider the situation with discrete trading dates

� � t� � t� � � � � � tn � T�

On each 
tj � tj���, r is constant, so

��tk��� � exp

�Z tk��

�
r�u� du

�

� exp

�
�
kX

j��

r�tj��tj�� � tj�

 !"
is F�tk�-measurable.

Enter a future contract at time tk, taking the long position, when the future price is ��tk�. At time
tk��, when the future price is ��tk���, you receive a payment ��tk��� � ��tk�. (If the price has
fallen, you make the payment ����tk��� � ��tk��. ) The mechanism for receiving and making
these payments is the margin account held by the broker.

By time T � tn, you have received the sequence of payments

��tk���� ��tk�� ��tk���� ��tk���� � � � � ��tn�� ��tn���

at times tk��� tk��� � � � � tn. The value at time t � t� of this sequence is

��t� IE

��n��X
j�k

�

��tj���
���tj���� ��tj��

����F�t�

�� �
Because it costs nothing to enter the future contract at time t, this expression must be zero almost
surely.
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The continuous-time version of this condition is

��t� IE

�Z T

t

�

��u�
d��u�

����F�t�

�
� �� � � t � T�

Note that ��tj��� appearing in the discrete-time version is F�tj�-measurable, as it should be when
approximating a stochastic integral.

Definition 27.1 The T -future price of the stock is any F�t�-adapted stochastic process

f��t�� � � t � Tg �
satisfying

��T � � S�T � a.s., and (a)

IE

�Z T

t

�

��u�
d��u�

����F�t�

�
� �� � � t � T� (b)

Theorem 3.66 The unique process satisfying (a) and (b) is

��t� � IE

�
S�T �

����F�t�

�
� � � t � T�

Proof: We first show that (b) holds if and only if � is a martingale. If � is a martingale, thenR t
�

�
��u� d��u� is also a martingale, so

IE

�Z T

t

�

��u�
d��u�

����F�t�

�
� IE

�Z t

�

�

��u�
d��u�

����F�t�

�
�
Z t

�

�

��u�
d��u�

� ��

On the other hand, if (b) holds, then the martingale

M�t� � IE

�Z T

�

�

��u�
d��u�

����F�t�

�

satisfies

M�t� �
Z t

�

�

��u�
d��u� � IE

�Z T

t

�

��u�
d��u�

����F�t�

�

�
Z t

�

�

��u�
d��u�� � � t � T�

this implies

dM�t� �
�

��t�
d��t��

d��t� � ��t� dM�t��
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and so � is a martingale (its differential has no dt term).

Now define

��t� � IE

�
S�T �

����F�t�

�
� � � t � T�

Clearly (a) is satisfied. By the tower property, � is a martingale, so (b) is also satisfied. Indeed, this
� is the only martingale satisfying (a).

27.4 Cash flow from a future contract

With a forward contract, entered at time 0, the buyer agrees to pay F ��� for an asset valued at S�T �.
The only payment is at time T .

With a future contract, entered at time 0, the buyer receives a cash flow (which may at times be
negative) between times 0 and T . If he still holds the contract at time T , then he pays S�T � at time
T for an asset valued at S�T �. The cash flow received between times 0 and T sums toZ T

�
d��u� � ��T �� ���� � S�T �� �����

Thus, if the future contract holder takes delivery at time T , he has paid a total of

������ S�T �� � S�T � � ����

for an asset valued at S�T �.

27.5 Forward-future spread

Future price: ��t� � IE

�
S�T �

����F�t�

�
.

Forward price:

F �t� �
S�t�

B�t� T �
�

S�t�

��t�IE

�
�

��T �

����F�t�

� �
Forward-future spread:

����� F ��� � IE
S�T ��� S���

IE
h

�
��T �

i
�

�

IE
�

�
��T �

� �IE � �

��T �

�
IE �S�T ��� IE

�
S�T �

��T �

��
�

If �
��T � and S�T � are uncorrelated,

���� � F ����
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If �
��T � and S�T � are positively correlated, then

���� � F ����

This is the case that a rise in stock price tends to occur with a fall in the interest rate. The owner
of the future tends to receive income when the stock price rises, but invests it at a declining interest
rate. If the stock price falls, the owner usually must make payments on the future contract. He
withdraws from the money market to do this just as the interest rate rises. In short, the long position
in the future is hurt by positive correlation between �

��T � and S�T �. The buyer of the future is
compensated by a reduction of the future price below the forward price.

27.6 Backwardation and contango

Suppose
dS�t� � 
S�t� dt� �S�t� dW �t��

Define � � ��r
� � fW �t� � �t �W �t�,

Z�T � � expf��W �T �� �
��

�Tg
fIP �A� � Z

A
Z�T � dIP� �A � F�T ��

Then fW is a Brownian motion under fIP , and

dS�t� � rS�t� dt� �S�t� dfW �t��

We have

��t� � ert

S�t� � S��� expf�
� �
��

��t � �W �t�g
� S��� expf�r� �

��
��t� �fW �t�g

Because �
��T � � e�rT is nonrandom, S�T � and �

��T � are uncorrelated underfIP . Therefore,

��t� � fIE
S�T �

����F�t��

� F �t�

�
S�t�

B�t� T �
� er�T�t�S�t��

The expected future spot price of the stock under IP is

IES�T � � S���e�TIE
h
exp

n
��

��
�T � �W �T �

oi
� e�TS����
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The future price at time � is
���� � erTS����

If 
 	 r, then ���� � IES�T �� This situation is called normal backwardation (see Hull). If 
 � r,
then ���� 	 IES�T �. This is called contango.
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Term-structure models

Throughout this discussion, fW �t�� � � t � T 
g is a Brownian motion on some probability space
�	�F�P�, and fF �t�� � � t � T 
g is the filtration generated by W .

Suppose we are given an adapted interest rate process fr�t�� � � t � T 
g. We define the accumu-
lation factor

��t� � exp

�Z t

�
r�u� du

�
� � � t � T 
�

In a term-structure model, we take the zero-coupon bonds (“zeroes”) of various maturities to be the
primitive assets. We assume these bonds are default-free and pay $1 at maturity. For � � t � T �
T 
, let

B�t� T � � price at time t of the zero-coupon bond paying $1 at time T .

Theorem 0.67 (Fundamental Theorem of Asset Pricing)A term structure model is free of arbi-
trage if and only if there is a probability measure fIP on 	 (a risk-neutral measure) with the same
probability-zero sets as IP (i.e., equivalent to IP ), such that for each T � ��� T 
�, the process

B�t� T �

��t�
� � � t � T�

is a martingale under fIP .

Remark 28.1 We shall always have

dB�t� T � � 
�t� T �B�t� T � dt� ��t� T �B�t� T � dW �t�� � � t � T�

for some functions 
�t� T � and ��t� T �. Therefore

d

�
B�t� T �

��t�

�
� B�t� T � d

�
�

��t�

�
�

�

��t�
dB�t� T �

� 

�t� T �� r�t��
B�t� T �

��t�
dt� ��t� T �

B�t� T �

��t�
dW �t��
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so IP is a risk-neutral measure if and only if 
�t� T �, the mean rate of return of B�t� T � under IP , is
the interest rate r�t�. If the mean rate of return of B�t� T � under IP is not r�t� at each time t and for
each maturity T , we should change to a measure fIP under which the mean rate of return is r�t�. If
such a measure does not exist, then the model admits an arbitrage by trading in zero-coupon bonds.

28.1 Computing arbitrage-free bond prices: first method

Begin with a stochastic differential equation (SDE)

dX�t� � a�t� X�t�� dt � b�t� X�t�� dW �t��

The solution X�t� is the factor. If we want to have n-factors, we let W be an n-dimensional
Brownian motion and let X be an n-dimensional process. We let the interest rate r�t� be a function
of X�t�. In the usual one-factor models, we take r�t� to be X�t� (e.g., Cox-Ingersoll-Ross, Hull-
White).

Now that we have an interest rate process fr�t�� � � t � T 
g, we define the zero-coupon bond
prices to be

B�t� T � � ��t� IE

�
�

��T �

����F�t�

�
� IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
� � � t � T � T 
�

We showed in Chapter 27 that

dB�t� T � � r�t�B�t� T � dt� ��t���t� dW �t�

for some process �. Since B�t� T � has mean rate of return r�t� under IP , IP is a risk-neutral measure
and there is no arbitrage.

28.2 Some interest-rate dependent assets

Coupon-paying bond: Payments P�� P�� � � � � Pn at times T�� T�� � � � � Tn. Price at time t isX
fk�t�Tkg

PkB�t� Tk��

Call option on a zero-coupon bond: Bond matures at time T . Option expires at time T� � T .
Price at time t is

��t� IE

�
�

��T��
�B�T�� T ��K��

����F�t�

�
� � � t � T��
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28.3 Terminology

Definition 28.1 (Term-structure model) Any mathematical model which determines, at least the-
oretically, the stochastic processes

B�t� T �� � � t � T�

for all T � ��� T 
�.

Definition 28.2 (Yield to maturity) For � � t � T � T
, the yield to maturity Y �t� T � is the
F�t�-measurable random-variable satisfying

B�t� T � exp f�T � t�Y �t� T �g � ��

or equivalently,

Y �t� T � � � �

T � t
logB�t� T ��

Determining
B�t� T �� � � t � T � T 
�

is equivalent to determining
Y �t� T �� � � t � T � T 
�

28.4 Forward rate agreement

Let � � t � T � T � � � T 
 be given. Suppose you want to borrow $1 at time T with repayment
(plus interest) at time T � �, at an interest rate agreed upon at time t. To synthesize a forward-rate
agreement to do this, at time t buy a T -maturity zero and short B�t�T �

B�t�T��� �T � ��-maturity zeroes.
The value of this portfolio at time t is

B�t� T �� B�t� T �

B�t� T � ��
B�t� T � �� � ��

At time T , you receive $1 from the T -maturity zero. At time T � �, you pay $ B�t�T �
B�t�T���. The

effective interest rate on the dollar you receive at time T is R�t� T� T � �� given by

B�t� T �

B�t� T � ��
� expf� R�t� T� T � ��g�

or equivalently,

R�t� T� T � �� � � logB�t� T � ��� logB�t� T �

�
�

The forward rate is

f�t� T � � lim
��� R�t� T� T � �� � � �

�T
logB�t� T �� (4.1)
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This is the instantaneous interest rate, agreed upon at time t, for money borrowed at time T .

Integrating the above equation, we obtainZ T

t
f�t� u� du � �

Z T

t

�

�u
logB�t� u� du

� � logB�t� u�

����u�T
u�t

� � logB�t� T ��

so

B�t� T � � exp

	
�
Z T

t
f�t� u� du



�

You can agree at time t to receive interest rate f�t� u� at each time u � 
t� T �. If you invest $B�t� T �
at time t and receive interest rate f�t� u� at each time u between t and T , this will grow to

B�t� T � exp

	Z T

t
f�t� u� du



� �

at time T .

28.5 Recovering the interestr�t� from the forward rate

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
�

�

�T
B�t� T � � IE

�
�r�T � exp

	
�
Z T

t
r�u� du


 ����F�t�

�
�

�

�T
B�t� T �

����
T�t

� IE

�
�r�t�

����F�t�

�
� �r�t��

On the other hand,

B�t� T � � exp

	
�
Z T

t
f�t� u� du



�

�

�T
B�t� T � � �f�t� T � exp

	
�
Z T

t
f�t� u� du



�

�

�T
B�t� T �

����
T�t

� �f�t� t��

Conclusion: r�t� � f�t� t�.
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28.6 Computing arbitrage-free bond prices: Heath-Jarrow-Morton
method

For each T � ��� T
�, let the forward rate be given by

f�t� T � � f��� T � �

Z t

�
��u� T � du�

Z t

�
��u� T � dW �u�� � � t � T�

Here f��u� T �� � � u � Tg and f��u� T �� � � u � Tg are adapted processes.

In other words,
df�t� T � � ��t� T � dt� ��t� T � dW �t��

Recall that

B�t� T � � exp

	
�
Z T

t
f�t� u� du



�

Now

d

	
�
Z T

t
f�t� u� du



� f�t� t� dt�

Z T

t
df�t� u� du

� r�t� dt�
Z T

t

��t� u� dt� ��t� u� dW �t�� du

� r�t� dt�
�Z T

t
��t� u� du

�
� �z �


��t�T �

dt �
�Z T

t
��t� u� du

�
� �z �

���t�T �

dW �t�

� r�t� dt� �
�t� T � dt� �
�t� T � dW �t��

Let
g�x� � ex� g��x� � ex� g���x� � ex�

Then

B�t� T � � g

�
�
Z T

t
f�t� u� du

�
�

and

dB�t� T � � dg

�
�
Z T

t
f�t� u� du

�

� g�
�
�
Z T

t
f�t� u� du

�
�r dt� �
 dt� �
 dW �

� �
�g
��
�
�
Z T

t
f�t� u� du

�
��
�� dt

� B�t� T �
h
r�t�� �
�t� T � � �

� ��

�t� T ���

i
dt

� �
�t� T �B�t� T � dW �t��
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28.7 Checking for absence of arbitrage

IP is a risk-neutral measure if and only if

�
�t� T � � �
� ��


�t� T ��� � � � t � T � T 
�

i.e., Z T

t
��t� u� du � �

�

�Z T

t
��t� u� du

��
� � � t � T � T 
� (7.1)

Differentiating this w.r.t. T , we obtain

��t� T � � ��t� T �

Z T

t
��t� u� du� � � t � T � T 
� (7.2)

Not only does (7.1) imply (7.2), (7.2) also implies (7.1). This will be a homework problem.

Suppose (7.1) does not hold. Then IP is not a risk-neutral measure, but there might still be a risk-
neutral measure. Let f��t�� � � t � T
g be an adapted process, and define

fW �t� �
Z t

�
��u� du � W �t��

Z�t� � exp

�
�
Z t

�
��u� dW �u� � �

�

Z t

�
���u� du

�
�

fIP �A� �

Z
A
Z�T 
� dIP �A � F�T 
��

Then

dB�t� T � � B�t� T �
h
r�t�� �
�t� T � � �

���

�t� T ���

i
dt

� �
�t� T �B�t� T � dW �t�

� B�t� T �
h
r�t�� �
�t� T � � �

���

�t� T ���� �
�t� T ���t�

i
dt

� �
�t� T �B�t� T � dfW �t�� � � t � T�

In order for B�t� T � to have mean rate of return r�t� underfIP , we must have

�
�t� T � � �
���


�t� T ���� �
�t� T ���t�� � � t � T � T 
� (7.3)

Differentiation w.r.t. T yields the equivalent condition

��t� T � � ��t� T ��
�t� T � � ��t� T ���t�� � � t � T � T 
� (7.4)

Theorem 7.68 (Heath-Jarrow-Morton) For each T � ��� T
�, let ��u� T �� � � u � T� and
��u� T �� � � u � T , be adapted processes, and assume ��u� T � 	 � for all u and T . Let
f��� T �� � � t � T 
, be a deterministic function, and define

f�t� T � � f��� T � �
Z t

�
��u� T � du�

Z t

�
��u� T � dW �u��
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Then f�t� T �� � � t � T � T 
 is a family of forward rate processes for a term-structure model
without arbitrage if and only if there is an adapted process ��t�� � � t � T 
, satisfying (7.3), or
equivalently, satisfying (7.4).

Remark 28.2 Under IP , the zero-coupon bond with maturity T has mean rate of return

r�t�� �
�t� T � � �
���


�t� T ���

and volatility �
�t� T �. The excess mean rate of return, above the interest rate, is

��
�t� T � � �
���


�t� T ����

and when normalized by the volatility, this becomes the market price of risk

��
�t� T � � �
���


�t� T ���

�
�t� T �
�

The no-arbitrage condition is that this market price of risk at time t does not depend on the maturity
T of the bond. We can then set

��t� � �
���
�t� T � � �

���

�t� T ���

�
�t� T �

�
�

and (7.3) is satisfied.

(The remainder of this chapter was taught Mar 21)

Suppose the market price of risk does not depend on the maturity T , so we can solve (7.3) for �.
Plugging this into the stochastic differential equation for B�t� T �, we obtain for every maturity T :

dB�t� T � � r�t�B�t� T � dt� �
�t� T �B�t� T � dfW �t��

Because (7.4) is equivalent to (7.3), we may plug (7.4) into the stochastic differential equation for
f�t� T � to obtain, for every maturity T :

df�t� T � � 
��t� T ��
�t� T � � ��t� T ���t�� dt� ��t� T � dW �t�

� ��t� T ��
�t� T � dt � ��t� T � dfW �t��

28.8 Implementation of the Heath-Jarrow-Morton model

Choose

�
�t� T �� � � t � T � T 
�
��t�� � � t � T 
�
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These may be stochastic processes, but are usually taken to be deterministic functions. Define

��t� T � � ��t� T ��
�t� T � � ��t� T ���t��

fW �t� �

Z t

�
��u� du�W �t��

Z�t� � exp

�
�
Z t

�
��u� dW �u�� �

�

Z t

�
���u� du

�
�

fIP �A� �

Z
A
Z�T 
� dIP �A � F�T 
��

Let f��� T �� � � T � T 
� be determined by the market; recall from equation (4.1):

f��� T � � � �

�T
logB��� T �� � � T � T 
�

Then f�t� T � for � � t � T is determined by the equation

df�t� T � � ��t� T ��
�t� T � dt� ��t� T � dfW �t�� (8.1)

this determines the interest rate process

r�t� � f�t� t�� � � t � T 
� (8.2)

and then the zero-coupon bond prices are determined by the initial conditions B��� T �� � � T �
T 
, gotten from the market, combined with the stochastic differential equation

dB�t� T � � r�t�B�t� T � dt� �
�t� T �B�t� T � dfW �t�� (8.3)

Because all pricing of interest rate dependent assets will be done under the risk-neutral measure fIP ,
under which fW is a Brownian motion, we have written (8.1) and (8.3) in terms of fW rather than
W . Written this way, it is apparent that neither ��t� nor ��t� T � will enter subsequent computations.
The only process which matters is ��t� T �� � � t � T � T 
, and the process

�
�t� T � �
Z T

t
��t� u� du� � � t � T � T 
� (8.4)

obtained from ��t� T �.

From (8.3) we see that �
�t� T � is the volatility at time t of the zero coupon bond maturing at time
T . Equation (8.4) implies

�
�T� T � � �� � � T � T 
� (8.5)

This is because B�T� T � � � and so as t approaches T (from below), the volatility in B�t� T � must
vanish.

In conclusion, to implement the HJM model, it suffices to have the initial market data B��� T �� � �
T � T 
� and the volatilities

�
�t� T �� � � t � T � T 
�
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We require that �
�t� T � be differentiable in T and satisfy (8.5). We can then define

��t� T � �
�

�T
�
�t� T ��

and (8.4) will be satisfied because

�
�t� T � � �
�t� T �� �
�t� t� �
Z T

t

�

�u
�
�t� u� du�

We then let fW be a Brownian motion under a probability measure fIP , and we let B�t� T �� � � t �
T � T 
, be given by (8.3), where r�t� is given by (8.2) and f�t� T � by (8.1). In (8.1) we use the
initial conditions

f��� T � � � �

�T
logB��� T �� � � T � T 
�

Remark 28.3 It is customary in the literature to write W rather than fW and IP rather than fIP ,
so that IP is the symbol used for the risk-neutral measure and no reference is ever made to the
market measure. The only parameter which must be estimated from the market is the bond volatility
�
�t� T �, and volatility is unaffected by the change of measure.
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Chapter 29

Gaussian processes

Definition 29.1 (Gaussian Process)A Gaussian process X�t�, t � �, is a stochastic process with
the property that for every set of times � � t� � t� � � � � � tn, the set of random variables

X�t��� X�t��� � � � � X�tn�

is jointly normally distributed.

Remark 29.1 If X is a Gaussian process, then its distribution is determined by its mean function

m�t� � IEX�t�

and its covariance function

��s� t� � IE
�X�s��m�s�� � �X�t��m�t����

Indeed, the joint density of X�t��� � � � � X�tn� is

IPfX�t�� � dx�� � � � � X�tn� � dxng
�

�

����n��
p
det �

exp
n
��

��x�m�t�� � ��� � �x�m�t��T
o
dx� � � � dxn�

where � is the covariance matrix

� �

�&&&�
��t�� t�� ��t�� t�� � � � ��t�� tn�
��t�� t�� ��t�� t�� � � � ��t�� tn�
� � � � � � � � � � � �

��tn� t�� ��tn� t�� � � � ��tn� tn�

�'''�
x is the row vector 
x�� x�� � � � � xn�, t is the row vector 
t�� t�� � � � � tn�, andm�t� � 
m�t��� m�t��� � � � � m�tn��.

The moment generating function is

IE exp

	
nX

k��

ukX�tk�



� exp

n
u �m�t�T � �

�u �� � uT
o
�

where u � 
u�� u�� � � � � un�.
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29.1 An example: Brownian Motion

Brownian motionW is a Gaussian process withm�t� � � and ��s� t� � s� t. Indeed, if � � s � t,
then

��s� t� � IE 
W �s�W �t�� � IE
h
W �s� �W �t��W �s�� �W ��s�

i
� IEW �s��IE �W �t� �W �s�� � IEW ��s�

� IEW ��s�

� s � t�

To prove that a process is Gaussian, one must show that X�t��� � � � � X�tn� has either a density or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually call s and t. We will want to show that

IE exp fu�X�s� � u�X�t�g � exp

	
u�m� � u�m� �

�
� 
u� u��

�
��� ���
��� ���

� �
u�
u�

�

�

Theorem 1.69 (Integral w.r.t. a Brownian) Let W �t� be a Brownian motion and ��t� a nonran-
dom function. Then

X�t� �
Z t

�
��u� dW �u�

is a Gaussian process with m�t� � � and

��s� t� �

Z s�t

�
���u� du�

Proof: (Sketch.) We have
dX � � dW�

Therefore,

deuX�s� � ueuX�s���s� dW �s� � �
�u

�euX�s����s� ds�

euX�s� � euX��� � u

Z s

�
euX�v���v� dW �v�� �z �

Martingale

��
�u

�
Z s

�
euX�v����v� dv�

IEeuX�s� � � � �
�u

�
Z s

�
���v�IEeuX�v� dv�

d

ds
IEeuX�s� � �

�u
����s�IEeuX�s��

IEeuX�s� � euX��� exp

�
�
�u

�
Z s

�
���v� dv

�
(1.1)

� exp

�
�
�u

�
Z s

�
���v� dv

�
�

This shows that X�s� is normal with mean 0 and variance
R s
� �

��v� dv.
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Now let � � s � t be given. Just as before,

deuX�t� � ueuX�t���t� dW �t� � �
�u

�euX�t����t� dt�

Integrate from s to t to get

euX�t� � euX�s� � u

Z t

s
��v�euX�v� dW �v� � �

�u
�
Z t

s
���v�euX�v� dv�

Take IE
� � � jF�s�� conditional expectations and use the martingale property

IE

�Z t

s
��v�euX�v� dW �v�

����F�s�

�
� IE

�Z t

�
��v�euX�v� dW �v�

����F�s�

�
�
Z s

�
��v�euX�v� dW �v�

� �

to get

IE

�
euX�t�

����F�s�

�
� euX�s� � �

�u
�
Z t

s
���v�IE

�
euX�v�

����F�s�

�
dv

d

dt
IE

�
euX�t�

����F�s�

�
� �

�u
����t�IE

�
euX�t�

����F�s�

�
� t � s�

The solution to this ordinary differential equation with initial time s is

IE

�
euX�t�

����F�s�

�
� euX�s� exp

�
�
�u

�
Z t

s
���v� dv

�
� t � s� (1.2)

We now compute the m.g.f. for �X�s�� X�t��, where � � s � t:

IE

�
eu�X�s��u�X�t�

����F�s�

�
� eu�X�s�IE

�
eu�X�t�

����F�s�

�
�1.2�
� e�u��u��X�s� exp

�
�
�u

�
�

Z t

s
���v� dv

�
�

IE
h
eu�X�s��u�X�t�

i
� IE

�
IE

�
eu�X�s��u�X�t�

����F�s�

��
� IE

n
e�u��u��X�s�

o
� exp

�
�
�u

�
�

Z t

s
���v� dv

�
(1.1)
� exp

�
�
��u� � u��

�
Z s

�
���v� dv � �

�u
�
�

Z t

s
���v� dv

�
� exp

�
�
��u

�
� � �u�u��

Z s

�
���v� dv � �

�u
�
�

Z t

�
���v� dv

�
� exp

	
�
� 
u� u��

�R s
� �

�
R s
� �

�R s
� �

�
R t
� �

�

� �
u�
u�

�

�

This shows that �X�s�� X�t�� is jointly normal with IEX�s� � IEX�t� � �,

IEX��s� �
Z s

�
���v� dv� IEX��t� �

Z t

�
���v� dv�

IE
X�s�X�t�� �
Z s

�
���v� dv�
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, is to prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

X�t� �

Z t

�
��u� dW �u�

is a martingale and X��� � �, so

m�t� � IEX�t� � � �t � ��

For fixed s � �,

IEX��s� �
Z s

�
���v� dv

by the Itô isometry. For � � s � t,

IE
X�s��X�t��X�s��� � IE

�
IE

�
X�s��X�t��X�s��

����F�s�

��

� IE

�&&&�X�s�

�
IE

�
X�t�

����F�s�

�
�X�s�

�
� �z �

�

�'''�
� ��

Therefore,

IE
X�s�X�t�� � IE
X�s��X�t��X�s�� �X��s��

� IEX��s� �
Z s

�
���v� dv�

If � were a stochastic proess, the Itô isometry says

IEX��s� �
Z s

�
IE���v� dv

and the same argument used above shows that for � � s � t,

IE
X�s�X�t�� � IEX��s� �
Z s

�
IE���v� dv�

However, when � is stochastic, X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 When � is nonrandom,

X�t� �

Z t

�
��u� dW �u�

is also Markov. We proved this before, but note again that the Markov property follows immediately
from (1.2). The equation (1.2) says that conditioned on F�s�, the distribution of X�t� depends only
on X�s�; in fact, X�t� is normal with mean X�s� and variance

R t
s �

��v� dv.
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Figure 29.1: Range of values of y� z� v for the integrals in the proof of Theorem 1.70.

Theorem 1.70 Let W �t� be a Brownian motion, and let ��t� and h�t� be nonrandom functions.
Define

X�t� �
Z t

�
��u� dW �u�� Y �t� �

Z t

�
h�u�X�u� du�

Then Y is a Gaussian process with mean functionmY �t� � � and covariance function

�Y �s� t� �

Z s�t

�
���v�

�Z s

v
h�y� dy

��Z t

v
h�y� dy

�
dv� (1.3)

Proof: (Partial) Computation of �Y �s� t�: Let � � s � t be given. It is shown in a homework
problem that �Y �s�� Y �t�� is a jointly normal pair of random variables. Here we observe that

mY �t� � IEY �t� �
Z t

�
h�u� IEX�u� du � ��

and we verify that (1.3) holds.
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We have

�Y �s� t� � IE 
Y �s�Y �t��

� IE

�Z s

�
h�y�X�y� dy�

Z t

�
h�z�X�z� dz

�
� IE

Z s

�

Z t

�
h�y�h�z�X�y�X�z� dy dz

�
Z s

�

Z t

�
h�y�h�z�IE 
X�y�X�z�� dy dz

�
Z s

�

Z t

�
h�y�h�z�

Z y�z

�
���v� dv dy dz

�

Z s

�

Z t

z
h�y�h�z�

�Z z

�
���v� dv

�
dy dz

�

Z s

�

Z s

y
h�y�h�z�

�Z y

�
���v� dv

�
dz dy (See Fig. 29.1(a))

�
Z s

�
h�z�

�Z t

z
h�y� dy

��Z z

�
���v� dv

�
dz

�

Z s

�
h�y�

�Z s

y
h�z� dz

��Z y

�
���v� dv

�
dy

�
Z s

�

Z z

�
h�z����v�

�Z t

z
h�y� dy

�
dv dz

�

Z s

�

Z y

�
h�y����v�

�Z s

y
h�z� dz

�
dv dy

�
Z s

�

Z s

v
h�z����v�

�Z t

z
h�y� dy

�
dz dv

�
Z s

�

Z s

v
h�y����v�

�Z s

y
h�z� dz

�
dy dv (See Fig. 29.1(b))

�
Z s

�
���v�

�Z s

v

Z t

z
h�y�h�z� dy dz

�
dv

�
Z s

�
���v�

�Z s

v

Z s

y
h�y�h�z� dz dy

�
dv

�
Z s

�
���v�

�Z s

v

Z t

v
h�y�h�z� dy dz

�
dv (See Fig. 29.1(c))

�

Z s

�
���v�

�Z s

v
h�y� dy

��Z t

v
h�z� dz

�
dv

�

Z s

�
���v�

�Z s

v
h�y� dy

��Z t

v
h�y� dy

�
dv

Remark 29.4 Unlike the process X�t� �
R t
� ��u� dW �u�, the process Y �t� �

R t
� X�u� du is
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neither Markov nor a martingale. For � � s � t,

IE
Y �t�jF�s�� �
Z s

�
h�u�X�u� du� IE

�Z t

s
h�u�X�u� du

����F�s�

�
� Y �s� �

Z t

s
h�u�IE
X�u�

����F�s�� du

� Y �s� �
Z t

s
h�u�X�s� du

� Y �s� �X�s�
Z t

s
h�u� du�

where we have used the fact that X is a martingale. The conditional expectation IE
Y �t�jF�s�� is
not equal to Y �s�, nor is it a function of Y �s� alone.
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Chapter 30

Hull and White model

Consider
dr�t� � ���t�� ��t�r�t�� dt � ��t� dW �t��

where ��t�, ��t� and ��t� are nonrandom functions of t.

We can solve the stochastic differential equation. Set

K�t� �
Z t

�
��u� du�

Then

d
�
eK�t�r�t�

�
� eK�t�

�
��t�r�t� dt� dr�t�

�
� eK�t� ���t� dt � ��t� dW �t�� �

Integrating, we get

eK�t�r�t� � r����

Z t

�
eK�u���u� du�

Z t

�
eK�u���u� dW �u��

so

r�t� � e�K�t�
�
r��� �

Z t

�
eK�u���u� du�

Z t

�
eK�u���u� dW �u�

�
�

From Theorem 1.69 in Chapter 29, we see that r�t� is a Gaussian process with mean function

mr�t� � e�K�t�
�
r��� �

Z t

�
eK�u���u� du

�
(0.1)

and covariance function

�r�s� t� � e�K�s��K�t�
Z s�t

�
e�K�u����u� du� (0.2)

The process r�t� is also Markov.

293
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We want to study
R T
� r�t� dt. To do this, we define

X�t� �
Z t

�
eK�u���u� dW �u�� Y �T � �

Z T

�
e�K�t�X�t� dt�

Then

r�t� � e�K�t�
�
r��� �

Z t

�
eK�u���u� du

�
� e�K�t�X�t��Z T

�
r�t� dt �

Z T

�
e�K�t�

�
r��� �

Z t

�
eK�u���u� du

�
dt� Y �T ��

According to Theorem 1.70 in Chapter 29,
R T
� r�t� dt is normal. Its mean is

IE

Z T

�
r�t� dt �

Z T

�
e�K�t�

�
r��� �

Z t

�
eK�u���u� du

�
dt� (0.3)

and its variance is

var

�Z T

�
r�t� dt

�
� IEY ��T �

�

Z T

�
e�K�v����v�

�Z T

v
e�K�y� dy

��

dv�

The price at time 0 of a zero-coupon bond paying $1 at time T is

B��� T � � IE exp

	
�
Z T

�
r�t� dt




� exp

	
����IE

Z T

�
r�t� dt� �

������ var
�Z T

�
r�t� dt

�


� exp

�
�r���

Z T

�
e�K�t� dt�

Z T

�

Z t

�
e�K�t��K�u���u� du dt

� �
�

Z T

�
e�K�v����v�

�Z T

v
e�K�y� dy

��
dv

�
� expf�r���C��� T ��A��� T �g�

where

C��� T � �
Z T

�
e�K�t� dt�

A��� T � �
Z T

�

Z t

�
e�K�t��K�u���u� du dt� �

�

Z T

�
e�K�v����v�

�Z T

v
e�K�y� dy

��
dv�
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u

t
u =

 t

T

Figure 30.1: Range of values of u� t for the integral.

30.1 Fiddling with the formulas

Note that (see Fig 30.1)Z T

�

Z t

�
e�K�t��K�u���u� du dt

�
Z T

�

Z T

u
e�K�t��K�u���u� dt du

�y � t� v � u� �
Z T

�
eK�v���v�

�Z T

v
e�K�y� dy

�
dv�

Therefore,

A��� T � �

Z T

�

��eK�v���v�

�Z T

v
e�K�y� dy

�
� �

�e
�K�v����v�

�Z T

v
e�K�y� dy

���� dv�

C��� T � �

Z T

�
e�K�y� dy�

B��� T � � exp f�r���C��� T �� A��� T �g �

Consider the price at time t � 
�� T � of the zero-coupon bond:

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
�

Because r is a Markov process, this should be random only through a dependence on r�t�. In fact,

B�t� T � � exp f�r�t�C�t� T �� A�t� T �g �
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where

A�t� T � �

Z T

t

��eK�v���v�

�Z T

v
e�K�y� dy

�
� �

�e
�K�v����v�

�Z T

v
e�K�y� dy

���� dv�

C�t� T � � eK�t�
Z T

t
e�K�y� dy�

The reason for these changes is the following. We are now taking the initial time to be t rather than
zero, so it is plausible that

R T
� � � � dv should be replaced by

R T
t � � � dv� Recall that

K�v� �

Z v

�
��u� du�

and this should be replaced by

K�v��K�t� �

Z v

t
��u� du�

Similarly, K�y� should be replaced by K�y� � K�t�. Making these replacements in A��� T �, we
see that the K�t� terms cancel. In C��� T �, however, the K�t� term does not cancel.

30.2 Dynamics of the bond price

Let Ct�t� T � and At�t� T � denote the partial derivatives with respect to t. From the formula

B�t� T � � exp f�r�t�C�t� T ��A�t� T �g �

we have

dB�t� T � � B�t� T �
h
�C�t� T � dr�t�� �

�C
��t� T � dr�t� dr�t�� r�t�Ct�t� T � dt� At�t� T � dt

i
� B�t� T �

�
� C�t� T � ���t� � ��t�r�t��dt

� C�t� T ���t� dW �t�� �
�C

��t� T ����t� dt

� r�t�Ct�t� T � dt�At�t� T � dt

�
�

Because we have used the risk-neutral pricing formula

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�

to obtain the bond price, its differential must be of the form

dB�t� T � � r�t�B�t� T � dt� �� � �� dW �t��
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Therefore, we must have

�C�t� T � ���t�� ��t�r�t��� �
�C

��t� T ����t�� r�t�Ct�t� T ��At�t� T � � r�t��

We leave the verification of this equation to the homework. After this verification, we have the
formula

dB�t� T � � r�t�B�t� T � dt� ��t�C�t� T �B�t� T � dW �t��

In particular, the volatility of the bond price is ��t�C�t� T �.

30.3 Calibration of the Hull & White model

Recall:

dr�t� � ���t�� ��t�r�t�� dt� ��t� dB�t��

K�t� �
Z t

�
��u� du�

A�t� T � �

Z T

t

��eK�v���v�

�Z T

v
e�K�y� dy

�
� �

�e
�K�v����v�

�Z T

v
e�K�y� dy

��
�� dv�

C�t� T � � eK�t�
Z T

t
e�K�y� dy�

B�t� T � � exp f�r�t�C�t� T ��A�t� T �g �

Suppose we obtain B��� T � for all T � 
�� T 
� from market data (with some interpolation). Can we
determine the functions ��t�, ��t�, and ��t� for all t � 
�� T 
�? Not quite. Here is what we can do.

We take the following input data for the calibration:

1. B��� T �� � � T � T 
;

2. r���;

3. ����;

4. ��t�� � � t � T 
 (usually assumed to be constant);

5. ����C��� T �� � � T � T 
, i.e., the volatility at time zero of bonds of all maturities.

Step 1.From 4 and 5 we solve for

C��� T � �
Z T

�
e�K�y� dy�
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We can then compute

�

�T
C��� T � � e�K�T �

�� K�T � � � log
�

�T
C��� T ��

�

�T
K�T � �

�

�T

Z T

�
��u� du � ��T ��

We now have ��T � for all T � 
�� T 
�.

Step 2.From the formula

B��� T � � expf�r���C��� T �� A��� T �g�
we can solve for A��� T � for all T � 
�� T 
�. Recall that

A��� T � �
Z T

�

��eK�v���v�

�Z T

v
e�K�y� dy

�
� �

�e
�K�v����v�

�Z T

v
e�K�y� dy

���� dv�

We can use this formula to determine ��T �� � � T � T 
 as follows:

�

�T
A��� T � �

Z T

�

�
eK�v���v�e�K�T � � e�K�v����v�e�K�T �

�Z T

v
e�K�y� dy

��
dv�

eK�T � �

�T
A��� T � �

Z T

�

�
eK�v���v�� e�K�v����v�

�Z T

v
e�K�y� dy

��
dv�

�

�T

�
eK�T � �

�T
A��� T �

�
� eK�T ���T ��

Z T

�
e�K�v����v� e�K�T � dv�

eK�T � �

�T

�
eK�T � �

�T
A��� T �

�
� e�K�T ���T ��

Z T

�
e�K�v����v� dv�

�

�T

�
eK�T � �

�T

�
eK�T � �

�T
A��� T �

��
� ���T �e�K�T � � ���T ���T �e�K�T �� e�K�T ����T �� � � T � T 
�

This gives us an ordinary differential equation for �, i.e.,

���t�e�K�t� � ���t���t�e�K�t�� e�K�t����t� � known function of t�

From assumption 4 and step 1, we know all the coefficients in this equation. From assumption 3,
we have the initial condition ����. We can solve the equation numerically to determine the function
��t�� � � t � T 
.

Remark 30.1 The derivation of the ordinary differential equation for ��t� requires three differ-
entiations. Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives. Consider, for example,

f�x� � � �x � IR�

g�x� �
sin�����x�

���
�x � IR�
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Then

jf�x�� g�x�j � �

���
�x � IR�

but because

g��x� � �� cos�����x��

we have

jf ��x�� g��x�j � ��

for many values of x.

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-
ties. These volatilities can be implied by the prices of options on bonds. We consider now how the
model prices options.

30.4 Option on a bond

Consider a European call option on a zero-coupon bond with strike price K and expiration time T�.
The bond matures at time T� 	 T�. The price of the option at time 0 is

IE

�
e�
R T�
�

r�u� du �B�T�� T���K��
�

� IEe�
R T�
�

r�u� du�expf�r�T��C�T�� T���A�T�� T��g �K���

�

Z �

��

Z �

��
e�x
�
expf�yC�T�� T��� A�T�� T��g �K

��
f�x� y� dx dy�

where f�x� y� is the joint density of
�R T�

� r�u� du� r�T��
�

.

We observed at the beginning of this Chapter (equation (0.3)) that
R T�
� r�u� du is normal with


�
�
� IE

�Z T�

�
r�u� du

�
�

Z T�

�
IEr�u� du

�
Z T�

�

�
r���e�K�v� � e�K�v�

Z v

�
eK�u���u� du

�
dv�

���
�
� var

�Z T�

�
r�u� du

�
�
Z T�

�
e�K�v����v�

�Z T�

v
e�K�y� dy

��

dv�

We also observed (equation (0.1)) that r�T�� is normal with


�
�
� IEr�T�� � r���e�K�T�� � e�K�T��

Z T�

�
eK�u���u� du�

���
�
� var �r�T��� � e��K�T��

Z T�

�
e�K�u����u� du�
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In fact,
�R T�

� r�u� du� r�T��
�

is jointly normal, and the covariance is

����� � IE

�Z T�

�
�r�u�� IEr�u�� du� �r�T��� IEr�T���

�

�
Z T�

�
IE
�r�u�� IEr�u�� �r�T��� IEr�T���� du

�

Z T�

�
�r�u� T�� du�

where �r�u� T�� is defined in Equation 0.2.

The option on the bond has price at time zero of

Z �

��

Z �

��
e�x
�
expf�yC�T�� T��� A�T�� T��g �K

��
� �

������
p
�� ��

exp

	
� �

���� ���

�
x�

���
�

��xy

����
�
y�

���

�

dx dy� (4.1)

The price of the option at time t � 
�� T�� is

IE

�
e�
R T�
t

r�u� du �B�T�� T���K��
����F�t�

�
� IE

�
e�
R T�
t

r�u� du�expf�r�T��C�T�� T��� A�T�� T��g �K��
����F�t�

�
(4.2)

Because of the Markov property, this is random only through a dependence on r�t�. To compute

this option price, we need the joint distribution of
�R T�

t r�u� du� r�T��
�

conditioned on r�t�. This
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pair of random variables has a jointly normal conditional distribution, and


��t� � IE

�Z T�

t
r�u� du

����F�t�

�

�

Z T�

t

�
r�t�e�K�v��K�t� � e�K�v�

Z v

t
eK�u���u� du

�
dv�

����t� � IE

���Z T�

t
r�u� du� 
��t�

�� ����F�t�

��
�

Z T�

t
e�K�v����v�

�Z T�

v
e�K�y� dy

��

dv�


��t� � IE

�
r�T��

����r�t��
� r�t�e�K�T���K�t� � e�K�T��

Z T�

t
eK�u���u� du�

����t� � IE

�
�r�T��� 
��t��

�
����F�t�

�
� e��K�T��

Z T�

t
e�K�u����u� du�

��t����t����t� � IE

��Z T�

t
r�u� du� 
��t�

�
�r�T��� 
��t��

����F�t�

�

�

Z T�

t
e�K�u��K�T��

Z u

t
e�K�v����v� dv du�

The variances and covariances are not random. The means are random through a dependence on
r�t�.

Advantages of the Hull & White model:

1. Leads to closed-form pricing formulas.

2. Allows calibration to fit initial yield curve exactly.

Short-comings of the Hull & White model:

1. One-factor, so only allows parallel shifts of the yield curve, i.e.,

B�t� T � � exp f�r�t�C�t� T ��A�t� T �g �
so bond prices of all maturities are perfectly correlated.

2. Interest rate is normally distributed, and hence can take negative values. Consequently, the
bond price

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
can exceed 1.
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Chapter 31

Cox-Ingersoll-Ross model

In the Hull & White model, r�t� is a Gaussian process. Since, for each t, r�t� is normally distributed,
there is a positive probability that r�t� � �. The Cox-Ingersoll-Ross model is the simplest one which
avoids negative interest rates.

We begin with a d-dimensional Brownian motion �W��W�� � � � �Wd�. Let � 	 � and � 	 � be
constants. For j � �� � � � � d, let Xj��� � IR be given so that

X�
���� �X�

���� � � � ��X�
d��� � ��

and let Xj be the solution to the stochastic differential equation

dXj�t� � ��
��Xj�t� dt�

�
�� dWj�t��

Xj is called the Orstein-Uhlenbeck process. It always has a drift toward the origin. The solution to
this stochastic differential equation is

Xj�t� � e�
�
��t
�
Xj��� �

�
��

Z t

�
e
�
��u dWj�u�

�
�

This solution is a Gaussian process with mean function

mj�t� � e�
�
��tXj���

and covariance function

��s� t� �
�

�
��e�

�
���s�t�

Z s�t

�
e�u du�

Define
r�t�

�
� X�

��t� �X�
��t� � � � ��X�

d�t��

If d � �, we have r�t� � X�
��t� and for each t, IPfr�t� 	 �g � �, but (see Fig. 31.1)

IP

�
There are infinitely many values of t 	 � for which r�t� � �

�
� �
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t

r(t) = X  (t)

x

x

1

2
( X  (t),   X  (t) )1

1
2

2

Figure 31.1: r�t� can be zero.

If d � �, (see Fig. 31.1)

IPfThere is at least one value of t 	 � for which r�t� � �g � ��

Let f�x�� x�� � � � � xd� � x�� � x�� � � � �� x�d. Then

fxi � �xi� fxixj �

	
� if i � j�

� if i 
� j�

Itô’s formula implies

dr�t� �
dX
i��

fxi dXi �
�
�

dX
i��

fxixi dXi dXi

�
dX
i��

�Xi

�
��

��Xi dt�
�
�� dWi�t�

�
�

dX
i��

�

�
�� dWi dWi

� ��r�t� dt� �
dX
i��

Xi dWi �
d��

�
dt

�

�
d��

�
� �r�t�

�
dt � �

q
r�t�

dX
i��

Xi�t�p
r�t�

dWi�t��

Define

W �t� �
dX
i��

Z t

�

Xi�u�p
r�u�

dWi�u��
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Then W is a martingale,

dW �
dX
i��

Xip
r
dWi�

dW dW �
dX
i��

X�
i

r
dt � dt�

so W is a Brownian motion. We have

dr�t� �

�
d��

�
� �r�t�

�
dt � �

q
r�t� dW �t��

The Cox-Ingersoll-Ross (CIR) process is given by

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

We define

d �
��

��
	 ��

If d happens to be an integer, then we have the representation

r�t� �
dX
i��

X�
i �t��

but we do not require d to be an integer. If d � � (i.e., � � �
��

�), then

IPfThere are infinitely many values of t 	 � for which r�t� � �g � ��

This is not a good parameter choice.

If d � � (i.e., � � �
��

�), then

IPfThere is at least one value of t 	 � for which r�t� � �g � ��

With the CIR process, one can derive formulas under the assumption that d � �

�� is a positive

integer, and they are still correct even when d is not an integer.

For example, here is the distribution of r�t� for fixed t 	 �. Let r��� � � be given. Take

X���� � �� X���� � �� � � � � Xd����� � �� Xd��� �
q
r����

For i � �� �� � � � � d� �, Xi�t� is normal with mean zero and variance

��t� t� �
��

��
��� e��t��
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Xd�t� is normal with mean

md�t� � e�
�
��t
q
r���

and variance ��t� t�. Then

r�t� � ��t� t�
d��X
i��

�
Xi�t�p
��t� t�

��

� �z �
Chi-square with d� � � 	��	�

	� degrees of

freedom

� X�
d�t�� �z �

Normal squared and independent of the other

term

(0.1)

Thus r�t� has a non-central chi-square distribution.

31.1 Equilibrium distribution of r�t�

As t��, md�t���. We have

r�t� � ��t� t�
dX
i��

�
Xi�t�p
��t� t�

��

�

As t��, we have ��t� t� � ��

�� , and so the limiting distribution of r�t� is ��

�� times a chi-square

with d � �

�� degrees of freedom. The chi-square density with �


�� degrees of freedom is

f�y� �
�

��
����
�
�

��

�y �����

�� e�y���

We make the change of variable r � ��

�� y. The limiting density for r�t� is

p�r� �
��

��
�

�

��
����
�
�

��

� ���
��

r

� �����

��

e
� ��

�� r

�

�
��

��

� ��

�� �

�
�
�

��

�r �����

�� e
� ��

�� r�

We computed the mean and variance of r�t� in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

dX�t� � b�X�t�� dt� ��X�t�� dW �t��
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�

h

� y

Figure 31.2: The function h�y�

Because we are going to apply the following analysis to the case X�t� � r�t�, we assume that
X�t� � � for all t.

We start at X��� � x � � at time 0. Then X�t� is random with density p��� t� x� y� (in the y

variable). Since 0 and x will not change during the following, we omit them and write p�t� y� rather
than p��� t� x� y�. We have

IEh�X�t�� �

Z �

�
h�y�p�t� y� dy

for any function h.

The Kolmogorov forward equation (KFE) is a partial differential equation in the “forward” variables
t and y. We derive it below.

Let h�y� be a smooth function of y � � which vanishes near y � � and for all large values of y (see
Fig. 31.2). Itô’s formula implies

dh�X�t�� �
h
h��X�t��b�X�t��� �

�h
���X�t�����X�t��

i
dt� h��X�t����X�t�� dW �t��

so

h�X�t�� � h�X�����
Z t

�

h
h��X�s��b�X�s��� �

�h
���X�s�����X�s��

i
ds�Z t

�
h��X�s����X�s�� dW �s��

IEh�X�t�� � h�X����� IE

Z t

�

h
h��X�s��b�X�s�� dt� �

�h
���X�s�����X�s��

i
ds�
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or equivalently,

Z �

�
h�y�p�t� y� dy � h�X�����

Z t

�

Z �

�
h��y�b�y�p�s� y� dy ds�

�
�

Z t

�

Z �

�
h���y����y�p�s� y� dy ds�

Differentiate with respect to t to get

Z �

�
h�y�pt�t� y� dy �

Z �

�
h��y�b�y�p�t� y� dy � �

�

Z �

�
h���y����y�p�t� y� dy�

Integration by parts yields

Z �

�
h��y�b�y�p�t� y� dy � h�y�b�y�p�t� y�

����y��
y��� �z �

��

�
Z �

�
h�y�

�

�y
�b�y�p�t� y�� dy�

Z �

�
h���y����y�p�t� y� dy � h��y����y�p�t� y�

����y��
y��� �z �

��

�
Z �

�
h��y�

�

�y

�
���y�p�t� y�

�
dy

� �h�y� �
�y

�
���y�p�t� y�

� ����y��
y��� �z �

��

�

Z �

�
h�y�

��

�y�

�
���y�p�t� y�

�
dy�

Therefore,

Z �

�
h�y�pt�t� y� dy � �

Z �

�
h�y�

�

�y
�b�y�p�t� y�� dy � �

�

Z �

�
h�y�

��

�y�

�
���y�p�t� y�

�
dy�

or equivalently,

Z �

�
h�y�

�
pt�t� y� �

�

�y
�b�y�p�t� y��� �

�

��

�y�

�
���y�p�t� y�

��
dy � ��

This last equation holds for every function h of the form in Figure 31.2. It implies that

pt�t� y� �
�

�y
��b�y�p�t� y��� �

�

��

�y�

�
���y�p�t� y�

�
� �� (KFE)

If there were a place where (KFE) did not hold, then we could take h�y� 	 � at that and nearby
points, but take h to be zero elsewhere, and we would obtain

Z �

�
h

�
pt �

�

�y
�bp�� �

�

��

�y�
���p�

�
dy 
� ��
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If the process X�t� has an equilibrium density, it will be

p�y� � lim
t�� p�t� y��

In order for this limit to exist, we must have

� � lim
t�� pt�t� y��

Letting t�� in (KFE), we obtain the equilibrium Kolmogorov forward equation

�

�y
�b�y�p�y��� �

�

��

�y�

�
���y�p�y�

�
� ��

When an equilibrium density exists, it is the unique solution to this equation satisfying

p�y� � � �y � ��Z �

�
p�y� dy � ��

31.3 Cox-Ingersoll-Ross equilibrium density

We computed this to be

p�r� � Cr
�����

�� e
� ��

�� r�

where

C �

�
��

��

� ��

�� �

�
�
�

��

� �
We compute

p��r� �
��� ��

��
�
p�r�

r
� ��

��
p�r�

�
�

��r

�
�� �

��
� � �r

�
p�r��

p���r� � � �

��r�

�
�� �

��
� � �r

�
p�r� �

�

��r
����p�r� � �

��r

�
�� �

��
� � �r

�
p��r�

�
�

��r

�
��

r
��� �

��
� � �r�� � �

�

��r
��� �

��
� � �r��

�
p�r�

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

�

�r
���� �r�p�r��� �

�

��

�r�
���rp�r�� � �� (EKFE)
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Now

�

�r
���� �r�p�r�� � ��p�r� � ��� �r�p��r��

��

�r�
���rp�r�� �

�

�r
���p�r� � ��rp��r��

� ���p��r� � ��rp���r��

The LHS of (EKFE) becomes

��p�r� � ��� �r�p��r�� ��p��r�� �
��

�rp���r�

� p�r�

�
�� � ��� �r � ���

�

��r
��� �

��
� � �r�

�
�

r
��� �

��
� � �r� � � � �

��r
��� �

��
� � �r��

�
� p�r�

�
��� �

��
� � �r�

�

��r
��� �

��
� � �r�

� �
��

� �

��r
��� �

��
� � �r�

�
�

r
��� �

��
� � �r�� �

��r
��� �

��
� � �r��

�
� ��

as expected.

31.4 Bond prices in the CIR model

The interest rate process r�t� is given by

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

where r��� is given. The bond price process is

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
�

Because

exp

�
�
Z t

�
r�u� du

�
B�t� T � � IE

�
exp

	
�
Z T

�
r�u� du


����F�t�

�
�

the tower property implies that this is a martingale. The Markov property implies that B�t� T � is
random only through a dependence on r�t�. Thus, there is a functionB�r� t� T � of the three dummy
variables r� t� T such that the process B�t� T � is the function B�r� t� T � evaluated at r�t�� t� T , i.e.,

B�t� T � � B�r�t�� t� T ��
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Because exp
n
� R t� r�u� duoB�r�t�� t� T � is a martingale, its differential has no dt term. We com-

pute

d

�
exp

�
�
Z t

�
r�u� du

�
B�r�t�� t� T �

�
� exp

�
�
Z t

�
r�u� du

��
�r�t�B�r�t�� t� T � dt�Br�r�t�� t� T � dr�t� �

�
�Brr�r�t�� t� T � dr�t� dr�t� � Bt�r�t�� t� T � dt

�
�

The expression in 
� � � � equals

� �rB dt �Br��� �r� dt� Br�
p
r dW

� �
�Brr�

�r dt� Bt dt�

Setting the dt term to zero, we obtain the partial differential equation

� rB�r� t� T � �Bt�r� t� T �� ��� �r�Br�r� t� T ��
�
��

�rBrr�r� t� T � � ��

� � t � T� r � �� (4.1)

The terminal condition is
B�r� T� T � � �� r � ��

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,
we look for a solution of the form

B�r� t� T � � e�rC�t�T ��A�t�T ��

where C�T� T � � �� A�T� T � � �. Then we have

Bt � ��rCt �At�B�

Br � �CB� Brr � C�B�

and the partial differential equation becomes

� � �rB � ��rCt �At�B � ��� �r�CB � �
��

�rC�B

� rB��� � Ct � �C � �
��

�C��� B�At � �C�

We first solve the ordinary differential equation

��� Ct�t� T � � �C�t� T � � �
��

�C��t� T � � �� C�T� T � � ��

and then set

A�t� T � � �

Z T

t
C�u� T � du�
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so A�T� T � � � and
At�t� T � � ��C�t� T ��

It is tedious but straightforward to check that the solutions are given by

C�t� T � �
sinh���T � t��

� cosh���T � t�� � �
�� sinh���T � t��

�

A�t� T � � ���

��
log

�� �e
�
���T�t�

� cosh���T � t�� � �
�� sinh���T � t��

�� �
where

� � �
�

q
�� � ���� sinh u �

eu � e�u

�
� cosh u �

eu � e�u

�
�

Thus in the CIR model, we have

IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�
� B�r�t�� t� T ��

where
B�r� t� T � � exp f�rC�t� T �� A�t� T �g � � � t � T� r � ��

and C�t� T � and A�t� T � are given by the formulas above. Because the coefficients in

dr�t� � ��� �r�t�� dt � �
q
r�t� dW �t�

do not depend on t, the function B�r� t� T � depends on t and T only through their difference � �
T � t. Similarly, C�t� T � and A�t� T � are functions of � � T � t. We write B�r� �� instead of
B�r� t� T �, and we have

B�r� �� � exp f�rC���� A���g � � � �� r � ��

where

C��� �
sinh����

� cosh���� � �
�� sinh����

�

A��� � ���

��
log

�� �e
�
���

� cosh���� � �
�� sinh����

�� �
� � �

�

q
�� � ����

We have

B�r���� T � � IE exp

	
�
Z T

�
r�u� du



�

Now r�u� 	 � for each u, almost surely, so B�r���� T � is strictly decreasing in T . Moreover,

B�r���� �� � ��
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lim
T��

B�r���� T � � IE exp

�
�
Z �

�
r�u� du

�
� ��

But also,
B�r���� T � � exp f�r���C�T ��A�T �g �

so

r���C���� A��� � ��

lim
T��


r���C�T � �A�T �� ���

and

r���C�T � � A�T �

is strictly inreasing in T .

31.5 Option on a bond

The value at time t of an option on a bond in the CIR model is

v�t� r�t�� � IE

�
exp

	
�
Z T�

t
r�u� du



�B�T�� T���K��

����F�t�

�
�

where T� is the expiration time of the option, T� is the maturity time of the bond, and � � t � T� �
T�. As usual, exp

n
� R t� r�u� duo v�t� r�t�� is a martingale, and this leads to the partial differential

equation
�rv � vt � ��� �r�vr �

�
��

�rvrr � �� � � t � T�� r � ��

(where v � v�t� r�.) The terminal condition is

v�T�� r� � �B�r� T�� T���K�� � r � ��

Other European derivative securities on the bond are priced using the same partial differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministic time change of CIR model

Process time scale: In this time scale, the interest rate r�t� is given by the constant coefficient CIR
equation

dr�t� � ��� �r�t�� dt� �
q
r�t� dW �t��

Real time scale: In this time scale, the interest rate �r��t� is given by a time-dependent CIR equation

d�r��t� � �����t�� ����t��r��t�� d�t� ����t�
q
�r��t� d �W��t��
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Figure 31.3: Time change function.

There is a strictly increasing time change function t � ���t� which relates the two time scales (See
Fig. 31.3).

Let �B��r� �t� �T� denote the price at real time �t of a bond with maturity �T when the interest rate at time
�t is �r. We want to set things up so

�B��r� �t� �T� � B�r� t� T � � e�rC�t�T ��A�t�T ��

where t � ���t�� T � �� �T �, and C�t� T � and A�t� T � are as defined previously.

We need to determine the relationship between �r and r. We have

B�r���� �� T � � IE exp

	
�
Z T

�
r�t� dt



�

B��r���� �� �T� � IE exp

	
�
Z �T

�
�r��t� d�t



�

With T � �� �T�, make the change of variable t � ���t�, dt � ����t� d�t in the first integral to get

B�r���� �� T � � IE exp

	
�
Z �T

�
r����t������t� d�t



�

and this will be B��r���� �� �T� if we set

�r��t� � r����t�� ����t��
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31.7 Calibration

�B��r��t�� �t� �T� � B

�
�r��t�

����t�
� ���t�� �� �T�

�

� exp

	
��r��t�

C����t�� �� �T��

����t�
� A����t�� �� �T��



� exp

n
��r��t� �C��t� �T�� �A��t� �T�

o
�

where

�C��t� �T� �
C����t�� �� �T��

����t�
�A��t� �T� � A����t�� �� �T��

do not depend on �t and �T only through �T � �t, since, in the real time scale, the model coefficients
are time dependent.

Suppose we know �r��� and �B��r���� �� �T� for all �T � 
�� �T 
�. We calibrate by writing the equation

�B��r���� �� �T� � exp
n
��r��� �C��� �T�� �A��� �T�

o
�

or equivalently,

� log �B��r���� �� �T� �
�r���

�����
C������ ���T�� � A������ ���T���

Take �� � and � so the equilibrium distribution of r�t� seems reasonable. These values determine
the functions C�A. Take ����� � � (we justify this in the next section). For each �T , solve the
equation for �� �T �:

� log �B��r���� �� �T� � �r���C��� ���T�� �A��� �� �T��� (*)

The right-hand side of this equation is increasing in the �� �T� variable, starting at 0 at time � and
having limit� at �, i.e.,

�r���C��� ��� A��� �� � ��

lim
T��


�r���C��� T ��A��� T �� ���

Since � � � log �B��r���� �� �T� ��� (*) has a unique solution for each �T . For �T � �, this solution
is ���� � �. If �T� � �T�, then

� log �B�r���� �� �T�� � � log �B�r���� �� �T���

so �� �T�� � �� �T��. Thus � is a strictly increasing time-change-function with the right properties.
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31.8 Tracking down����� in the time change of the CIR model

Result for general term structure models:

� �

�T
logB��� T �

����
T��

� r����

Justification:

B��� T � � IE exp

	
�
Z T

�
r�u� du



�

� logB��� T � � � log IE exp

	
�
Z T

�
r�u� du




� �

�T
logB��� T � �

IE

�
r�T �e�

R T
�
r�u� du

�
IEe�

R T
�
r�u� du

� �

�T
logB��� T �

����
T��

� r����

In the real time scale associated with the calibration of CIR by time change, we write the bond price
as

�B��r���� �� �T��

thereby indicating explicitly the initial interest rate. The above says that

� �

� �T
log �B��r���� �� �T�

����
�T��

� �r����

The calibration of CIR by time change requires that we find a strictly increasing function � with
���� � � such that

� log �B��r���� �� �T� �
�

�����
�r���C��� �T�� � A��� �T��� �T � �� (cal)

where �B��r���� �� �T�, determined by market data, is strictly increasing in �T , starts at 1 when �T � �,
and goes to zero as �T��. Therefore, � log �B��r���� �� �T� is as shown in Fig. 31.4.

Consider the function
�r���C�T � �A�T ��

Here C�T � and A�T � are given by

C�T � �
sinh��T �

� cosh��T � � �
�� sinh��T �

�

A�T � � ���

��
log

�� �e
�
��T

� cosh��T � � �
�� sinh��T �

�� �
� � �

�

q
�� � ����
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�

�
Goes to �

Strictly increasing

�T

� log �B��r���� �� �T�

Figure 31.4: Bond price in CIR model
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� log �B��r���� �� �T�

Figure 31.5: Calibration

The function �r���C�T � � A�T � is zero at T � �, is strictly increasing in T , and goes to � as
T��. This is because the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let us first consider the related equation

� log �B��r���� �� �T� � �r���C��� �T�� �A��� �T��� (cal’)

Fix �T and define �� �T� to be the unique T for which (see Fig. 31.5)

� log �B��r���� �� �T� � �r���C�T � �A�T �

If �T � �, then �� �T� � �. If �T� � �T�, then �� �T�� � �� �T��. As �T��, �� �T ���. We have thus
defined a time-change function � which has all the right properties, except it satisfies (cal’) rather
than (cal).
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We conclude by showing that ����� � � so � also satisfies (cal). From (cal’) we compute

�r��� � � �

� �T
log �B��r���� �� �T�

����
�T��

� �r���C������������ � A������������
� �r���C��������� � A����������

We show in a moment that C ���� � �, A���� � �, so we have

�r��� � �r���������

Note that �r��� is the initial interest rate, observed in the market, and is striclty positive. Dividing by
�r���, we obtain

����� � ��

Computation of C ����:

C���� �
��

� cosh���� � �
�� sinh����

���� cosh���� �� cosh���� � �
�� sinh����

�

� sinh����
�
�� sinh���� � �

��� cosh����
��

C���� �
�

��

h
���� ��� ��� � �

����
i
� ��

Computation of A����:

A���� � ���

��

�
� cosh���� � �

�� sinh����

�e����

�

� ��
� cosh���� � �

�� sinh����
������ e����

�
� cosh���� � �

�� sinh����
�

� �e����
�
�� sinh���� � �

��� cosh����
��
�

A���� � ���

��

�
� � �

�

�
�

�� � ���

�
��

�
�� � ��� ��� � �

����

�
� ���

��
� �

��

�
���

�
� �

���
�

�
� ��



Chapter 32

A two-factor model (Duffie & Kan)

Let us define:

X��t� � Interest rate at time t

X��t� � Yield at time t on a bond maturing at time t � ��

Let X���� 	 �, X���� 	 � be given, and let X��t� and X��t� be given by the coupled stochastic
differential equations

dX��t� � �a��X��t� � a��X��t� � b�� dt� ��

q
��X��t� � ��X��t� � � dW��t�� (SDE1)

dX��t� � �a��X��t� � a��X��t� � b�� dt� ��

q
��X��t� � ��X��t� � � �� dW��t� �

q
�� �� dW��t���

(SDE2)

where W� and W� are independent Brownian motions. To simplify notation, we define

Y �t�
�
� ��X��t� � ��X��t� � ��

W��t�
�
� �W��t� �

q
�� ��W��t��

Then W� is a Brownian motion with

dW��t� dW��t� � � dt�

and

dX� dX� � ���Y dt� dX� dX� � ���Y dt� dX� dX� � �����Y dt�
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32.1 Non-negativity ofY

dY � �� dX� � �� dX�

� ���a��X� � ��a��X� � ��b�� dt� ���a��X� � ��a��X� � ��b�� dt

�
p
Y ����� dW� � ����� dW� � ��

q
�� ���� dW��

� 
���a�� � ��a���X� � ���a�� � ��a���X�� dt� ���b� � ��b�� dt

� �����
�
� � ���������� � ����

�
��

�
�

q
Y �t� dW��t�

where

W��t� �
����� � ������W��t� � ��

p
�� ����W��t�q

����
�
� � ���������� � ����

�
�

is a Brownian motion. We shall choose the parameters so that:

Assumption 1: For some �, ��a�� � ��a�� � ���� ��a�� � ��a�� � ����

Then

dY � 
���X� � ���X� � ��� dt� ���b� � ��b� � ��� dt

� �����
�
� � ���������� � ����

�
��

�
�
p
Y dW�

� �Y dt� ���b� � ��b� � ��� dt� �����
�
� � ���������� � ����

�
��

�
�
p
Y dW��

From our discussion of the CIR process, we recall that Y will stay strictly positive provided that:

Assumption 2: Y ��� � ��X���� � ��X���� � � 	 ��

and

Assumption 3: ��b� � ��b� � �� � �
���

�
��

�
� � ���������� � ����

�
���

Under Assumptions 1,2, and 3,

Y �t� 	 �� � � t ��� almost surely,

and (SDE1) and (SDE2) make sense. These can be rewritten as

dX��t� � �a��X��t� � a��X��t� � b�� dt� ��

q
Y �t� dW��t�� (SDE1’)

dX��t� � �a��X��t� � a��X��t� � b�� dt� ��

q
Y �t� dW��t�� (SDE2’)
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32.2 Zero-coupon bond prices

The value at time t � T of a zero-coupon bond paying $1 at time T is

B�t� T � � IE

�
exp

	
�
Z T

t
X��u� du


 ����F�t�

�
�

Since the pair �X�� X�� of processes is Markov, this is random only through a dependence on
X��t�� X��t�. Since the coefficients in (SDE1) and (SDE2) do not depend on time, the bond price
depends on t and T only through their difference � � T � t. Thus, there is a function B�x�� x�� ��
of the dummy variables x�� x� and � , so that

B�X��t�� X��t�� T � t� � IE

�
exp

	
�
Z T

t
X��u� du


 ����F�t�

�
�

The usual tower property argument shows that

exp

�
�
Z t

�
X��u� du

�
B�X��t�� X��t�� T � t�

is a martingale. We compute its stochastic differential and set the dt term equal to zero.

d

�
exp

�
�
Z t

�
X��u� du

�
B�X��t�� X��t�� T � t�

�
� exp

�
�
Z t

�
X��u� du

��
�X�B dt �Bx� dX� � Bx� dX� � B� dt

� �
�Bx�x� dX� dX� � Bx�x� dX� dX� �

�
�Bx�x� dX� dX�

�
� exp

�
�
Z t

�
X��u� du

���
�X�B � �a��X� � a��X� � b��Bx� � �a��X� � a��X� � b��Bx� � B�

� �
��

�
�Y Bx�x� � �����Y Bx�x� �

�
��

�
�Y Bx�x�

�
dt

� ��
p
Y Bx� dW� � ��

p
Y Bx� dW�

�
The partial differential equation for B�x�� x�� �� is

�x�B�B���a��x��a��x��b��Bx���a��x��a��x��b��Bx��
�
��

�
����x����x����Bx�x�

� ��������x� � ��x� � ��Bx�x� �
�
��

�
����x� � ��x� � ��Bx�x� � �� (PDE)

We seek a solution of the form

B�x�� x�� �� � exp f�x�C����� x�C�����A���g �
valid for all � � � and all x�� x� satisfying

��x� � ��x� � � 	 �� (*)
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We must have
B�x�� x�� �� � �� �x�� x� satisfying (*)�

because � � � corresponds to t � T . This implies the initial conditions

C���� � C���� � A��� � �� (IC)

We want to find C����� C����� A��� for � 	 �. We have

B� �x�� x�� �� �
��x�C������ x�C

�
����� A����

�
B�x�� x�� ���

Bx��x�� x�� �� � �C����B�x�� x�� ���

Bx��x�� x�� �� � �C����B�x�� x�� ���

Bx�x��x�� x�� �� � C�
����B�x�� x�� ���

Bx�x��x�� x�� �� � C����C����B�x�� x�� ���

Bx�x��x�� x�� �� � C�
����B�x�� x�� ���

(PDE) becomes

� � B�x�� x�� ��

�
�x� � x�C

�
���� � x�C

�
���� �A����� �a��x� � a��x� � b��C����

� �a��x� � a��x� � b��C����

� �
��

�
����x� � ��x� � ��C�

���� � ��������x� � ��x� � ��C����C����

� �
��

�
����x� � ��x� � ��C�

����

�
� x�B�x�� x�� ��

�
� � � C������ a��C����� a��C����

� �
��

�
���C

�
���� � �������C����C���� �

�
��

�
���C

�
����

�
� x�B�x�� x�� ��

�
C������ a��C����� a��C����

� �
��

�
���C

�
���� � �������C����C���� �

�
��

�
���C

�
����

�
� B�x�� x�� ��

�
A����� b�C����� b�C����

� �
��

�
��C

�
���� � ������C����C���� �

�
��

�
��C

�
����

�
We get three equations:

C����� � � � a��C���� � a��C����� �
��

�
���C

�
����� �������C����C����� �

��
�
���C

�
�����

(1)

C���� � ��

C����� � a��C���� � a��C����� �
��

�
���C

�
����� �������C����C����� �

��
�
���C

�
����� (2)

C���� � ��

A���� � b�C���� � b�C����� �
��

�
��C

�
����� ������C����C����� �

��
�
��C

�
����� (3)

A��� � ��
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We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A���.

32.3 Calibration

Let �� 	 � be given. The value at time t of a bond maturing at time t� �� is

B�X��t�� X��t�� ��� � expf�X��t�C������X��t�C������A����g

and the yield is

� �

��
logB�X��t�� X��t�� ��� �

�

��

X��t�C����� �X��t�C����� � A����� �

But we have set up the model so that X��t� is the yield at time t of a bond maturing at time t� ��.
Thus

X��t� �
�

��

X��t�C����� �X��t�C����� � A����� �

This equation must hold for every value of X��t� and X��t�, which implies that

C����� � �� C����� � ��� A��� � ��

We must choose the parameters

a��� a��� b�� a��� a��� b�� ��� ��� �� ��� �� ���

so that these three equations are satisfied.
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Chapter 33

Change of nuḿeraire

Consider a Brownian motion driven market model with time horizon T 
. For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS�t� � r�t� S�t� dt � ��t�S�t� dW �t�� (0.1)

where the interest rate process r�t� and the volatility process ��t� are adapted to some filtration
fF�t�� � � t � T 
g. W is a Brownian motion relative to this filtration, but fF�t�� � � t � T 
g
may be larger than the filtration generated by W .

This is not a geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by a term structure model we have not yet specified.

We shall work only under the risk-neutral measure, which is reflected by the fact that the mean rate
of return for the stock is r�t�.

We define the accumulation factor

��t� � exp

�Z t

�
r�u� du

�
�

so that the discounted stock price S�t�
��t� is a martingale. Indeed,

d

�
S�t�

��t�

�
�
S�t�

��t�
��t� dW �t��

The zero-coupon bond prices are given by

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


 ����F�t�

�

� IE

�
��t�

��T �

����F�t�

�
�
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so

B�t� T �

��t�
� IE

�
�

��T �

����F�t�

�
is also a martingale (tower property).

The T -forward price F �t� T � of the stock is the price set at time t for delivery of one share of stock
at time T with payment at time T . The value of the forward contract at time t is zero, so

� � IE

�
��t�

��T �
�S�T �� F �t� T ��

����F�t�

�
� ��t�IE

�
S�T �

��T �

����Ft�� F �t� T �IE

�
��t�

��T �

����F�t�

�
� ��t�

S�t�

��t�
� F �t� T �B�t� T �

� S�t�� F �t� T �B�t� T �

Therefore,

F �t� T � �
S�t�

B�t� T �
�

Definition 33.1 (Numéraire) Any asset in the model whose price is always strictly positive can be
taken as the numéraire. We then denominate all other assets in units of this numéraire.

Example 33.1 (Money market as num´eraire) The money market could be the numéraire. At time t, the
stock is worth S�t	

��t	 units of money market and the T -maturity bond is worth B�t�T 	
��t	 units of money market.

Example 33.2 (Bond as num´eraire) The T -maturity bond could be the numéraire. At time t � T , the stock
is worth F �t� T � units of T -maturity bond and the T -maturity bond is worth 1 unit.

We will say that a probability measure IPN is risk-neutral for the numéraire N if every asset price,
divided by N , is a martingale under IPN . The original probability measure IP is risk-neutral for the
numéraire � (Example 33.1).

Theorem 0.71 Let N be a numéraire, i.e., the price process for some asset whose price is always
strictly positive. Then IPN defined by

IPN �A� �
�

N���

Z
A

N�T 
�
��T 
�

dIP� �A � F�T 
��

is risk-neutral for N .
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Note: IP and IPN are equivalent, i.e., have the same probability zero sets, and

IP �A� � N���
Z
A

��T 
�
N�T 
�

dIPN � �A � F�T 
��

Proof: Because N is the price process for some asset, N�� is a martingale under IP . Therefore,

IPN �	� �
�

N���

Z
	

N�T 
�
��T 
�

dIP

�
�

N���
�IE

�
N�T 
�
��T 
�

�
�

�

N���

N���

����

� ��

and we see that IPN is a probability measure.

Let Y be an asset price. Under IP , Y�� is a martingale. We must show that under IPN , Y�N is
a martingale. For this, we need to recall how to combine conditional expectations with change of
measure (Lemma 1.54). If � � t � T � T
 and X is F�T �-measurable, then

IEN

�
X

����F�t�

�
�
N�����t�

N�t�
IE

�
N�T �

N�����T �
X

����F�t�

�
�

��t�

N�t�
IE

�
N�T �

��T �
X

����F�t�

�
�

Therefore,

IEN

�
Y �T �

N�T �

����F�t�

�
�

��t�

N�t�
IE

�
N�T �

��T �

Y �T �

N�T �

����F�t�

�
�

��t�

N�t�

Y �t�

��t�

�
Y �t�

N�t�
�

which is the martingale property for Y�N under IPN .

33.1 Bond price as nuḿeraire

Fix T � ��� T 
� and let B�t� T � be the numéraire. The risk-neutral measure for this numéraire is

IPT �A� �
�

B��� T �

Z
A

B�T� T �

��T �
dIP

�
�

B��� T �

Z
A

�

��T �
dIP �A � F�T ��
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Because this bond is not defined after time T , we change the measure only “up to time T”, i.e.,
using �

B���T �
B�T�T �
��T � and only for A � F�T �.

IPT is called the T -forward measure. Denominated in units of T -maturity bond, the value of the
stock is

F �t� T � �
S�t�

B�t� T �
� � � t � T�

This is a martingale under IPT , and so has a differential of the form

dF �t� T � � �F �t� T �F �t� T � dWT �t�� � � t � T� (1.1)

i.e., a differential without a dt term. The process fWT � � � t � Tg is a Brownian motion under
IPT . We may assume without loss of generality that �F �t� T � � �.

We write F �t� rather than F �t� T � from now on.

33.2 Stock price as nuḿeraire

Let S�t� be the numéraire. In terms of this numéraire, the stock price is identically 1. The risk-
neutral measure under this numéraire is

IPS�A� �
�

S���

Z
A

S�T 
�
��T 
�

dIP� �A � F�T 
��

Denominated in shares of stock, the value of the T -maturity bond is

B�t� T �

S�t�
�

�

F �t�
�

This is a martingale under IPS , and so has a differential of the form

d

�
�

F �t�

�
� ��t� T �

�
�

F �t�

�
dWS�t�� (2.1)

where fWS�t�� � � t � T 
g is a Brownian motion under IPS . We may assume without loss of
generality that ��t� T �� �.

Theorem 2.72 The volatility ��t� T � in (2.1) is equal to the volatility �F �t� T � in (1.1). In other
words, (2.1) can be rewritten as

d

�
�

F �t�

�
� �F �t� T �

�
�

F �t�

�
dWS�t�� (2.1’)
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Proof: Let g�x� � ��x, so g��x� � ���x�� g���x� � ��x�. Then

d

�
�

F �t�

�
� dg�F �t��

� g��F �t�� dF �t� � �
�g
���F �t�� dF �t� dF �t�

� � �

F ��t�
�F �t� T �F �t� T � dWT �t� �

�

F ��t�
��F �t� T �F

��t� T � dt

�
�

F �t�

h
��F �t� T � dWT �t� � ��F �t� T � dt

i
� �F �t� T �

�
�

F �t�

�

�dWT �t� � �F �t� T � dt��

Under IPT � �WT is a Brownian motion. Under this measure, �
F �t� has volatility �F �t� T � and mean

rate of return ��F �t� T �. The change of measure from IPT to IPS makes �
F �t� a martingale, i.e., it

changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,
��t� T � in (2.1) must be �F �t� T � and WS must be

WS�t� � �WT �t� �
Z t

�
�F �u� T � du�

33.3 Merton option pricing formula

The price at time zero of a European call is

V ��� � IE

�
�

��T �
�S�T ��K��

�
� IE

�
S�T �

��T �
�fS�T ��Kg

�
�KIE

�
�

��T �
�fS�T ��Kg

�
� S���

Z
fS�T ��Kg

S�T �

S�����T �
dIP �KB��� T �

Z
fS�T ��Kg

�

B��� T ���T �
dIP

� S���IPSfS�T � 	 Kg �KB��� T �IPTfS�T � 	 Kg
� S���IPSfF �T � 	 Kg �KB��� T �IPTfF �T � 	 Kg
� S���IPS

�
�

F �T �
�

�

K

�
�KB��� T �IPTfF �T � 	 Kg�
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This is a completely general formula which permits computation as soon as we specify �F �t� T �. If
we assume that �F �t� T � is a constant �F , we have the following:

�

F �T �
�
B��� T �

S���
exp

n
�FWS�T �� �

��
�
FT
o
�

IPS

�
�

F �T �
�

�

K

�
� IPS

�
�FWS�T �� �

��
�
FT � log

S���

KB��� T �

�
� IPS

�
WS�T �p

T
�

�

�F
p
T
log

S���

KB��� T �
� �

��F
p
T

�
� N�����

where

�� �
�

�F
p
T

�
log

S���

KB��� T �
� �

��
�
FT

�
�

Similarly,

F �T � �
S���

B��� T �
exp

n
�FWT �T �� �

��
�
FT
o
�

IPT fF �T � 	 Kg � IPT

�
�FWT �T �� �

��
�
FT 	 log

KB��� T �

S���

�
� IPT

�
WT �T �p

T
	

�

�F
p
T

�
log

KB��� T �

S���
� �

��
�
FT

��
� IPT

��WT �T �p
T

�
�

�F
p
T

�
log

S���

KB��� T �
� �

��
�
FT

��
� N�����

where

�� �
�

�F
p
T

�
log

S���

KB��� T �
� �

��
�
FT

�
�

If r is constant, then B��� T � � e�rT ,

�� �
�

�F
p
T

�
log

S���

K
� �r� �

��
�
F �T

�
�

�� �
�

�F
p
T

�
log

S���

K
� �r� �

��
�
F �T

�
�

and we have the usual Black-Scholes formula. When r is not constant, we still have the explicit
formula

V ��� � S���N�����KB��� T �N�����
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As this formula suggests, if �F is constant, then for � � t � T , the value of a European call expiring
at time T is

V �t� � S�t�N����t���KB�t� T �N����t���

where

���t� �
�

�F
p
T � t

�
log

F �t�

K
� �

��
�
F �T � t�

�
�

���t� �
�

�F
p
T � t

�
log

F �t�

K
� �

��
�
F �T � t�

�
�

This formula also suggests a hedge: at each time t, hold N����t�� shares of stock and short
KN����t�� bonds.

We want to verify that this hedge is self-financing. Suppose we begin with $ V ��� and at each time
t hold N����t�� shares of stock. We short bonds as necessary to finance this. Will the position in
the bond always be �KN����t��? If so, the value of the portfolio will always be

S�t�N����t���KB�t� T �N����t�� � V �t��

and we will have a hedge.

Mathematically, this question takes the following form. Let

��t� � N����t���

At time t, hold ��t� shares of stock. If X�t� is the value of the portfolio at time t, then X�t� �
��t�S�t� will be invested in the bond, so the number of bonds owned is X�t����t�

B�t�T � S�t� and the
portfolio value evolves according to

dX�t� � ��t� dS�t� �
X�t����t�

B�t� T �
S�t� dB�t� T �� (3.1)

The value of the option evolves according to

dV �t� � N����t�� dS�t� � S�t� dN����t�� � dS�t� dN����t��

�KN����t�� dB�t� T ��K dB�t� T � dN����t���KB�t� T � dN����t��� (3.2)

If X��� � V ���, will X�t� � V �t� for � � t � T?

Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change of numéraire.
This change is justified by the following theorem.

Theorem 3.73 Changes of numéraire affect portfolio values in the way you would expect.

Proof: Suppose we have a model with k assets with prices S�� S�� � � � � Sk. At each time t, hold
�i�t� shares of asset i, i � �� �� � � � � k � �, and invest the remaining wealth in asset k. Begin with
a nonrandom initial wealth X���, and let X�t� be the value of the portfolio at time t. The number
of shares of asset k held at time t is

�k�t� �

�
X�t��Pk��

i�� �i�t�Si�t�
�

Sk�t�
�
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and X evolves according to the equation

dX �
k��X
i��

�i dSi �

�
X �

k��X
i��

�iSi

�
dSk
Sk

�
kX
i��

�i dSi�

Note that

Xk�t� �
kX
i��

�i�t�Si�t��

and we only get to specify ��� � � � ��k��, not �k , in advance.

Let N be a numéraire, and define

bX�t� �
X�t�

N�t�
� cSi�t� � Si�t�

N�t�
� i � �� �� � � � � k�

Then

d bX �
�

N
dX �X d

�
�

N

�
� dX d

�
�

N

�

�
�

N

kX
i��

�i dSi �

�
kX
i��

�iSi

�
d

�
�

N

�
�

kX
i��

�i dSi d

�
�

N

�

�
kX
i��

�i

�
�

N
dSi � Sid

�
�

N

�
� dSi d

�
�

N

��

�
kX
i��

�i dcSi�
Now

�k �

�
X �Pk��

i�� �iSi
�

Sk

�

�
X�N �Pk��

i�� �iSi�N
�

Sk�N

�
bX �Pk��

i�� �i
cSicSk �

Therefore,

d bX �
kX
i��

�i dcSi �
� bX �

k��X
i��

�i
cSi
�
dcSkcSk
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This is the formula for the evolution of a portfolio which holds� i shares of asset i, i � �� �� � � � � k�
�, and all assets and the portfolio are denominated in units of N .

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as numéraire. We still hold ��t� � N����t�� shares of stock at each time t.
In terms of the new numéraire, the asset values are

Stock:
S�t�

B�t� T �
� F �t��

Bond:
B�t� T �

B�t� T �
� ��

The portfolio value evolves according to

d bX�t� � ��t� dF �t� � � bX�t����t��
d���

�
� ��t� dF �t�� (3.1’)

In the new numéraire, the option value formula

V �t� � N����t��S�t��KB�t� T �N����t��

becomes bV �t� �
V �t�

B�t� T �
� N����t��F �t��KN����t���

and

d bV � N����t�� dF �t� � F �t� dN����t�� � dN����t�� dF �t��K dN����t���
(3.2’)

To show that the hedge works, we must show that

F �t� dN����t�� � dN����t�� dF �t��K dN����t�� � ��

This is a homework problem.
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Chapter 34

Brace-Gatarek-Musiela model

34.1 Review of HJM under risk-neutral IP

f�t� T � � Forward rate at time t for borrowing at time T�

df�t� T � � ��t� T ��
�t� T � dt � ��t� T � dW �t��

where

�
�t� T � �
Z T

t
��t� u� du

The interest rate is r�t� � f�t� t�. The bond prices

B�t� T � � IE

�
exp

	
�
Z T

t
r�u� du


����F�t�

�

� exp

	
�
Z T

t
f�t� u� du



satisfy

dB�t� T � � r�t� B�t� T � dt� �
�t� T �� �z �
volatility of T -maturity bond.

B�t� T � dW �t��

To implement HJM, you specify a function

��t� T �� � � t � T�

A simple choice we would like to use is

��t� T � � �f�t� T �

where � 	 � is the constant “volatility of the forward rate”. This is not possible because it leads to

�
�t� T � � �

Z T

t
f�t� u� du�

df�t� T � � ��f�t� T �

�Z T

t
f�t� u� du

�
dt� �f�t� T � dW �t��
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and Heath, Jarrow and Morton show that solutions to this equation explode before T .

The problem with the above equation is that the dt term grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

f ��t� � f��t��

where f��� � c 	 �. We have

f ��t�
f��t�

� ��

� d

dt

�

f�t�
� ��

� �

f�t�
�

�

f���
�

Z t

�
� du � t

� �

f�t�
� t� �

f���
� t� ��c �

ct� �

c
�

f�t� �
c

�� ct
�

This solution explodes at t � ��c.

34.2 Brace-Gatarek-Musiela model

New variables:

Current time t

Time to maturity � � T � t�

Forward rates:

r�t� �� � f�t� t� ��� r�t� �� � f�t� t� � r�t�� (2.1)

�

��
r�t� �� �

�

�T
f�t� t� �� (2.2)

Bond prices:

D�t� �� � B�t� t � �� (2.3)

� exp

�
�
Z t��

t
f�t� v� dv

�
�u � v � t� du � dv� � � exp

�
�
Z �

�
f�t� t� u� du

�
� exp

�
�
Z �

�
r�t� u� du

�
�

��
D�t� �� �

�

�T
B�t� t � �� � �r�t� ��D�t� ��� (2.4)
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We will now write ��t� �� � ��t� T � t� rather than ��t� T �. In this notation, the HJM model is

df�t� T � � ��t� ���
�t� �� dt � ��t� �� dW �t�� (2.5)

dB�t� T � � r�t�B�t� T � dt� �
�t� ��B�t� T � dW �t�� (2.6)

where

�
�t� �� �
Z �

�
��t� u� du� (2.7)

�

��
�
�t� �� � ��t� ��� (2.8)

We now derive the differentials of r�t� �� and D�t� ��, analogous to (2.5) and (2.6) We have

dr�t� �� � df�t� t� ��� �z �
differential applies only to first argument

�
�

�T
f�t� t� �� dt

(2.5),(2.2)
� ��t� ���
�t� �� dt� ��t� �� dW �t� �

�

��
r�t� �� dt

(2.8)
�

�

��

h
r�t� �� � �

���

�t� ����

i
dt� ��t� �� dW �t�� (2.9)

Also,

dD�t� �� � dB�t� t� ��� �z �
differential applies only to first argument

�
�

�T
B�t� t� �� dt

(2.6),(2.4)
� r�t� B�t� t � �� dt� �
�t� ��B�t� t� �� dW �t�� r�t� ��D�t� �� dt

(2.1)
� 
r�t� ��� r�t� ���D�t� �� dt� �
�t� ��D�t� �� dW �t�� (2.10)

34.3 LIBOR

Fix � 	 � (say, � � �
� year). $ D�t� �� invested at time t in a �t� ��-maturity bond grows to $ 1 at

time t � �. L�t� �� is defined to be the corresponding rate of simple interest:

D�t� ���� � �L�t� ��� � ��

� � �L�t� �� �
�

D�t� ��
� exp

	Z �

�
r�t� u� du



�

L�t� �� �
exp

nR �
� r�t� u� du

o
� �

�
�
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34.4 Forward LIBOR

� 	 � is still fixed. At time t, agree to invest $ D�t���
�
D�t��� at time t � � , with payback of $1 at time

t � � � �. Can do this at time t by shorting D�t���
�
D�t��� bonds maturing at time t � � and going long

one bond maturing at time t � � � �. The value of this portfolio at time t is

�D�t� � � ��

D�t� ��
D�t� �� �D�t� � � �� � ��

The forward LIBOR L�t� �� is defined to be the simple (forward) interest rate for this investment:

D�t� � � ��

D�t� ��
�� � �L�t� ��� � ��

� � �L�t� �� �
D�t� ��

D�t� � � ��
�

exp f� R �� r�t� u� dug
exp

n
� R ��
� r�t� u� du

o
� exp

	Z ��


�
r�t� u� du



�

L�t� �� �
exp

nR ��

� r�t� u� du

o
� �

�
� (4.1)

Connection with forward rates:

�

��
exp

	Z ��


�
r�t� u� du


 ����

��

� r�t� � � �� exp

	Z ��


�
r�t� u� du


����

��

� r�t� ���

so

f�t� t� �� � r�t� �� � lim

��

exp
nR ��


� r�t� u� du
o
� �

�

L�t� �� �
exp

nR ��

� r�t� u� du

o
� �

�
� � 	 � fixed�

(4.2)

r�t� �� is the continuously compounded rate. L�t� �� is the simple rate over a period of duration �.

We cannot have a log-normal model for r�t� �� because solutions explode as we saw in Section 34.1.
For fixed positive �, we can have a log-normal model for L�t� ��.

34.5 The dynamics ofL�t� � �

We want to choose ��t� ��� t � �� � � �, appearing in (2.5) so that

dL�t� �� � �� � �� dt� L�t� �� ��t� �� dW �t�
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for some ��t� ��� t � �� � � �. This is the BGM model, and is a subclass of HJM models,
corresponding to particular choices of ��t� ��.

Recall (2.9):

dr�t� �� �
�

�u

h
r�t� u� � �

���

�t� u���

i
dt � ��t� u� dW �t��

Therefore,

d

�Z ��


�
r�t� u� du

�
�
Z ��


�
dr�t� u� du (5.1)

�
Z ��


�

�

�u

h
r�t� u� � �

���

�t� u���

i
du dt�

Z ��


�
��t� u� du dW �t�

�
h
r�t� � � ��� r�t� �� � �

���

�t� � � ���� � �

���

�t� ����

i
dt

� 
�
�t� � � ��� �
�t� ��� dW �t�

and

dL�t� ��
�����
� d

��exp
nR ��


� r�t� u� du
o
� �

�

��
�

�

�
exp

	Z ��


�
r�t� u� du



d

Z ��


�
r�t� u� du

�
�

��
exp

	Z ��


�
r�t� u� du


 �
d

Z ��


�
r�t� u� du

��

(4.1), (5.1)
�

�

�

� � �L�t� ���� (5.2)

�
�

r�t� � � ��� r�t� �� � �

���

�t� � � ���� � �

���

�t� ����� dt

� 
�
�t� � � ��� �
�t� ��� dW �t�

� �
� 
�


�t� � � ��� �
�t� ���� dt
�

�
�

�

� � �L�t� ���

�

r�t� � � ��� r�t� ��� dt

� �
�t� � � ��
�
�t� � � ��� �
�t� ��� dt

� �
�
�t� � � ��� �
�t� ��� dW �t�

�
�
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But

�

��
L�t� �� �

�

��

��exp
nR ��


� r�t� u� du
o
� �

�

��
� exp

	Z ��


�
r�t� u� du



�
r�t� � � ��� r�t� ���

�
�

�

� � �L�t� ���
r�t� � � ��� r�t� ����

Therefore,

dL�t� �� �
�

��
L�t� �� dt�

�

�

� � �L�t� ���
�
�t� � � ��� �
�t� ����
�
�t� � � �� dt� dW �t���

Take ��t� �� to be given by

��t� ��L�t� �� �
�

�

� � �L�t� ���
�
�t� � � ��� �
�t� ���� (5.3)

Then

dL�t� �� � 

�

��
L�t� �� � ��t� ��L�t� ���
�t� � � ��� dt� ��t� ��L�t� �� dW �t��

(5.4)

Note that (5.3) is equivalent to

�
�t� � � �� � �
�t� �� �
�L�t� ����t� ��

� � �L�t� ��
� (5.3’)

Plugging this into (5.4) yields

dL�t� �� �

�
�

��
L�t� �� � ��t� ��L�t� ���
�t� �� �

�L��t� �����t� ��

� � �L�t� ��

�
dt

� ��t� ��L�t� �� dW �t�� (5.4’)

34.6 Implementation of BGM

Obtain the initial forward LIBOR curve

L��� ��� � � ��

from market data. Choose a forward LIBOR volatility function (usually nonrandom)

��t� ��� t � �� � � ��
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Because LIBOR gives no rate information on time periods smaller than �, we must also choose a
partial bond volatility function

�
�t� ��� t � �� � � � � �

for maturities less than � from the current time variable t.

With these functions, we can for each � � 
�� �� solve (5.4’) to obtain

L�t� ��� t � �� � � � � ��

Plugging the solution into (5.3’), we obtain �
�t� �� for � � � � ��. We then solve (5.4’) to obtain

L�t� ��� t � �� � � � � ���

and we continue recursively.

Remark 34.1 BGM is a special case of HJM with HJM’s �
�t� �� generated recursively by (5.3’).
In BGM, ��t� �� is usually taken to be nonrandom; the resulting �
�t� �� is random.

Remark 34.2 (5.4) (equivalently, (5.4’)) is a stochastic partial differential equation because of the
�
��L�t� �� term. This is not as terrible as it first appears. Returning to the HJM variables t and T ,
set

K�t� T � � L�t� T � t��

Then

dK�t� T � � dL�t� T � t�� �

��
L�t� T � t� dt

and (5.4) and (5.4’) become

dK�t� T � � ��t� T � t�K�t� T � 
�
�t� T � t � �� dt� dW �t��

� ��t� T � t�K�t� T �

�
�
�t� T � t� dt �

�K�t� T ���t� T � t�

� � �K�t� T �
dt� dW �t�

�
�

(6.1)

Remark 34.3 From (5.3) we have

��t� ��L�t� �� � 
� � �L�t� ���
�
�t� � � ��� �
�t� ��

�
�

If we let ���, then

��t� ��L�t� ��� �

��
�
�t� � � ��

����

��

� ��t� ���

and so
��t� T � t�K�t� T ����t� T � t��

We saw before (eq. 4.2) that as ���,

L�t� ���r�t� �� � f�t� t� ���
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so

K�t� T ��f�t� T ��

Therefore, the limit as ��� of (6.1) is given by equation (2.5):

df�t� T � � ��t� T � t� 
�
�t� T � t� dt � dW �t�� �

Remark 34.4 Although the dt term in (6.1) has the term 
���t�T�t�K��t�T �
��K�t�T � involvingK�, solutions

to this equation do not explode because

����t� T � t�K��t� T �

� � �K�t� T �
� ����t� T � t�K��t� T �

�K�t� T �

� ���t� T � t�K�t� T ��

34.7 Bond prices

Let ��t� � exp
nR t

� r�u� du
o
� From (2.6) we have

d

�
B�t� T �

��t�

�
�

�

��t�

�r�t�B�t� T � dt� dB�t� T ��

� �B�t� T �

��t�
�
�t� T � t� dW �t��

The solution B�t�T �
��t� to this stochastic differential equation is given by

B�t� T �

��t�B��� T �
� exp

�
�
Z t

�
�
�u� T � u� dW �u�� �

�

Z t

�
��
�u� T � u��� du

�
�

This is a martingale, and we can use it to switch to the forward measure

IPT �A� �
�

B��� T �

Z
A

�

��T �
dIP

�
Z
A

B�T� T �

��T �B��� T �
dIP �A � F�T ��

Girsanov’s Theorem implies that

WT �t� � W �t� �
Z t

�
�
�u� T � u� du� � � t � T�

is a Brownian motion under IPT .
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34.8 Forward LIBOR under more forward measure

From (6.1) we have

dK�t� T � � ��t� T � t�K�t� T � 
�
�t� T � t� �� dt� dW �t��

� ��t� T � t�K�t� T � dWT�
�t��

so

K�t� T � � K��� T � exp

�Z t

�
��u� T � u� dWT�
�u�� �

�

Z t

�
���u� T � u� du

�

and

K�T� T � � K��� T � exp

	Z T

�
��u� T � u� dWT�
�u�� �

�

Z T

�
���u� T � u� du



(8.1)

� K�t� T � exp

	Z T

t
��u� T � u� dWT�
�u�� �

�

Z T

t
���u� T � u� du



�

We assume that � is nonrandom. Then

X�t� �
Z T

t
��u� T � u� dWT�
�u�� �

�

Z T

t
���u� T � u� du (8.2)

is normal with variance

���t� �
Z T

t
���u� T � u� du

and mean ��
��

��t�.

34.9 Pricing an interest rate caplet

Consider a floating rate interest payment settled in arrears. At time T � �, the floating rate interest
payment due is �L�T� �� � �K�T� T �� the LIBOR at time T . A caplet protects its owner by
requiring him to pay only the cap �c if �K�T� T � 	 �c. Thus, the value of the caplet at time T � �
is ��K�T� T �� c��. We determine its value at times � � t � T � �.

Case I:T � t � T � �.

CT�
�t� � IE

�
��t�

��T � ��
��K�T� T �� c��

����F�t�

�
(9.1)

� ��K�T� T �� c��IE

�
��t�

��T � ��

����F�t�

�
� ��K�T� T �� c��B�t� T � ���
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Case II: � � t � T .
Recall that

IPT�
�A� �
Z
A
Z�T � �� dIP� �A � F�T � ���

where

Z�t� �
B�t� T � ��

��t�B��� T � ��
�

We have

CT�
�t� � IE

�
��t�

��T � ��
��K�T� T �� c��

����F�t�

�

� �B�t� T � ��
��t�B��� T � ��

B�t� T � ��� �z �
�

Z�t�

IE

�&&&&� B�T � �� T � ��

��T � ��B��� T � ��� �z �
Z�T�
�

�K�T� T �� c��
����F�t�

�''''�
� �B�t� T � ��IET�


�
�K�T� T �� c��

����F�t�

�
From (8.1) and (8.2) we have

K�T� T � � K�t� T � expfX�t�g�
where X�t� is normal under IPT�
 with variance ���t� �

R T
t ���u� T � u� du and mean ��

��
��t�.

Furthermore, X�t� is independent of F�t�.

CT�
�t� � �B�t� T � ��IET�


�
�K�t� T � expfX�t�g � c��

����F�t�

�
�

Set

g�y� � IET�


h
�y expfX�t�g � c��

i
� y N

�
�

��t�
log

y

c
� �

���t�

�
� c N

�
�

��t�
log

y

c
� �

���t�

�
�

Then

CT�
�t� � � B�t� T � �� g�K�t� T ��� � � t � T � �� (9.2)

In the case of constant �, we have
��t� � �

p
T � t�

and (9.2) is called the Black caplet formula.
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34.10 Pricing an interest rate cap

Let
T� � �� T� � �� T� � ��� � � � � Tn � n��

A cap is a series of payments

��K�Tk� Tk�� c�� at time Tk��� k � �� �� � � � � n� ��

The value at time t of the cap is the value of all remaining caplets, i.e.,

C�t� �
X

k�t�Tk
CTk�t��

34.11 Calibration of BGM

The interest rate caplet c on L��� T � at time T � � has time-zero value

CT�
��� � �B��� T � �� g�K��� T ���

where g (defined in the last section) depends onZ T

�
���u� T � u� du�

Let us suppose � is a deterministic function of its second argument, i.e.,

��t� �� � �����

Then g depends on Z T

�
���T � u� du �

Z T

�
���v� dv�

If we know the caplet price CT�
���, we can “back out” the squared volatility
R T
� ���v� dv. If we

know caplet prices
CT��
���� CT��
���� � � � � CTn�
����

where T� � T� � � � � � Tn, we can “back out”Z T�

�
���v� dv�

Z T�

T�

���v� dv �
Z T�

�
���v� dv �

Z T�

�
���v� dv�

� � � �

Z Tn

Tn��

���v� dv� (11.1)

In this case, we may assume that � is constant on each of the intervals

��� T��� �T�� T��� � � � � �Tn��� Tn��
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and choose these constants to make the above integrals have the values implied by the caplet prices.

If we know caplet prices CT�
��� for all T � �, we can “back out”
R T
� ���v� dv and then differen-

tiate to discover ����� and ���� �
p
����� for all � � �.

To implement BGM, we need both ����� � � �, and

�
�t� ��� t � �� � � � � ��

Now �
�t� �� is the volatility at time t of a zero coupon bond maturing at time t � � (see (2.6)).
Since � is small (say �

� year), and � � � � �, it is reasonable to set

�
�t� �� � �� t � �� � � � � ��

We can now solve (or simulate) to get

L�t� ��� t � �� � � ��

or equivalently,
K�t� T �� t � �� T � ��

using the recursive procedure outlined at the start of Section 34.6.

34.12 Long rates

The long rate is determined by long maturity bond prices. Let n be a large fixed positive integer, so
that n� is 20 or 30 years. Then

�

D�t� n��
� exp

	Z n


�
r�t� u� du




�
nY

k��

exp

	Z k


�k���

r�t� u� du




�
nY

k��


� � �L�t� �k� ������

where the last equality follows from (4.1). The long rate is

�

n�
log

�

D�t� n��
�

�

n�

nX
k��

log
� � �L�t� �k� ������

34.13 Pricing a swap

Let T� � � be given, and set

T� � T� � �� T� � T� � ��� � � � � Tn � T� � n��
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The swap is the series of payments

��L�Tk� ��� c� at time Tk��� k � �� �� � � � � n� ��

For � � t � T�, the value of the swap is
n��X
k��

IE

�
��t�

��Tk���
��L�Tk� ��� c�

����F�t�

�
�

Now

� � �L�Tk� �� �
�

B�Tk � Tk���
�

so

L�Tk� �� �
�

�

�
�

B�Tk� Tk���
� �

�
�

We compute

IE

�
��t�

��Tk���
��L�Tk� ��� c�

����F�t�

�
� IE

�
��t�

��Tk���

�
�

B�Tk� Tk���
� �� �c

� ����F�t�

�

� IE

�&&&&� ��t�

��Tk�B�Tk� Tk���
IE

�
��Tk�

��Tk���

����F�Tk�

�
� �z �

B�Tk�Tk���

����F�t�

�''''�� �� � �c�B�t� Tk���

� IE

�
��t�

��Tk���

����F�t�

�
� �� � �c�B�t� Tk���

� B�t� Tk�� �� � �c�B�t� Tk����

The value of the swap at time t is
n��X
k��

IE

�
��t�

��Tk���
��L�Tk� ��� c�

����F�t�

�

�
n��X
k��


B�t� Tk�� �� � �c�B�t� Tk����

� B�t� T��� �� � �c�B�t� T�� �B�t� T��� �� � �c�B�t� T�� � � � �� B�t� Tn���� �� � �c�B�t� Tn�

� B�t� T��� �cB�t� T��� �cB�t� T��� � � �� �cB�t� Tn��B�t� Tn��

The forward swap rate wT��t� at time t for maturity T� is the value of c which makes the time-t
value of the swap equal to zero:

wT��t� �
B�t� T���B�t� Tn�

� 
B�t� T�� � � � ��B�t� Tn��
�

In contrast to the cap formula, which depends on the term structure model and requires estimation
of �, the swap formula is generic.
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Chapter 35

Notes and References

35.1 Probability theory and martingales.

Probability theory is usually learned in two stages. In the first stage, one learns that a discrete ran-
dom variable has a probability mass function and a continuous random variable has a density. These
can be used to compute expectations and variances, and even conditional expectations. Furthermore,
one learns how transformations of continuous random variables cause changes in their densities. A
well-written book which contains all these things is DeGroot (1986).

The second stage of probability theory is measure theoretic. In this stage one views a random
variable as a function from a sample space 	 to the set of real numbers IR. Certain subsets of 	 are
called events, and the collection of all events forms a �-algebraF . Each setA inF has a probability
IP �A�. This point of view handles both discrete and continuous random variables within the same
unifying framework. A conditional expectation is itself a random variable, measurable with respect
to the conditioning�-algebra. This point of view is indispensible for treating the rather complicated
conditional expectations which arise in martingale theory. A well-written book on measure-theoretic
probability is Billingsley (1986). A succinct book on measure-theoretic probability and martingales
in discrete time is Williams (1991). A more detailed book is Chung (1968).

The measure-theoretic view of probability theory was begun by Kolmogorov (1933). The term
martingale was apparently first used by Ville (1939), although the concept dates back to 1934 work
of Lévy. The first complete account of martingale theory is Doob (1953).

35.2 Binomial asset pricing model.

The binomial asset pricing model was developed by Cox, Ross & Rubinstein (1979). Accounts of
this model can be found in several places, including Cox & Rubinstein (1985), Dothan (1990) and
Ritchken (1987). Many models are first developed and understood in continuous time, and then
binomial versions are developed for purposes of implementation.

349
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35.3 Brownian motion.

In 1828 Robert Brown observed irregular movement of pollen suspended in water. This motion is
now known to be caused by the buffeting of the pollen by water molecules, as explained by Einstein
(1905). Bachelier (1900) used Brownian motion (not geometric Brownian motion) as a model of
stock prices, even though Brownian motion can take negative values. Lévy (1939, 1948) discov-
ered many of the nonintuitive properties of Brownian motion. The first mathematically rigorous
construction of Brownian motion was carried out by Wiener (1923, 1924).

Brownian motion and its properties are presented in a numerous texts, including Billingsley (1986).
The development in this course is a summary of that found in Karatzas & Shreve (1991).

35.4 Stochastic integrals.

The integral with respect to Brownian motion was developed by Itô (1944). It was introduced to
finance by Merton (1969). A mathematical construction of this integral, with a minimum of fuss, is
given by Øksendal (1995).

The quadratic variation of martingales was introduced by Fisk (1966) and developed into the form
used in this course by Kunita & Watanabe (1967).

35.5 Stochastic calculus and financial markets.

Stochastic calculus begins with Itô (1944). Many finance books, including (in order of increasing
mathematical difficulty) Hull (1993), Dothan (1990) and Duffie (1992), include sections on Itô’s
integral and formula. Some other books on dynamic models in finance are Cox & Rubinstein (1985),
Huang & Litzenberger (1988), Ingersoll (1987), and Jarrow (1988). An excellent reference for
practitioners, now in preprint form, is Musiela & Rutkowski (1996). Some mathematics texts on
stochastic calculus are Øksendal (1995), Chung & Williams (1983), Protter (1990) and Karatzas &
Shreve (1991).

Samuelson (1965, 1973) presents the argument that geometric Brownian motion is a good model
for stock prices. This is often confused with the efficient market hypothesis, which asserts that all
information which can be learned from technical analysis of stock prices is already reflected in those
prices. According to this hypothesis, past stock prices may be useful to estimate the parameters of
the distribution of future returns, but they do not provide information which permits an investor to
outperform the market. The mathematical formulation of the efficient market hypothesis is that there
is a probability measure under which all discounted stock prices are martingales, a much weaker
condition than the claim that stock prices follow a geometric Brownian motion. Some empirical
studies supporting the efficient market hypothesis are Kendall (1953), Osborne (1959), Sprenkle
(1961), Boness (1964), Alexander (1961) and Fama (1965). The last of these papers discusses
other distributions which fit stock prices better than geometric Brownian motion. A criticism of the
efficient market hypothesis is provided by LeRoy (1989). A provocative article on the source of
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stock price movements is Black (1986).

The first derivation of the Black-Scholes formula given in this course, using only Itô’s formula,
is similar to that originally given by Black & Scholes (1973). An important companion paper is
Merton (1973), which makes good reading even today. (This and many other papers by Merton
are collected in Merton (1990).) Even though geometric Brownian motion is a less than perfect
model for stock prices, the Black-Scholes option hedging formula seems not to be very sensitive to
deficiencies in the model.

35.6 Markov processes.

Markov processes which are solutions to stochastic differential equations are called diffusion pro-
cesses. A good introduction to this topic, including discussions of the Kolmogorov forward and
backward equations, is Chapter 15 of Karlin & Taylor (1981). The other books cited previously,
Øksendal (1995), Protter (1990), Chung & Williams (1983), and Karatzas & Shreve (1991), all treat
this subject. Kloeden & Platen (1992) is a thorough study of the numerical solution of stochastic
differential equations.

The constant elasticity of variance model for option pricing appears in Cox & Ross (1976). Another
alternative model for the stock price underlying options, due to Föllmer & Schweizer (1993), has
the geometric Ornstein-Uhlenbeck process as a special case.

The Feynman-Kac Theorem, connecting stochastic differential equations to partial differential equa-
tions, is due to Feyman (1948) and Kac (1951). A numerical treatment of the partial differential
equations arising in finance is contained in Wilmott, Dewynne and Howison (1993, 1995) and also
Duffie (1992).

35.7 Girsanov’s theorem, the martingale representation theorem, and
risk-neutral measures.

Girsanov’s Theorem in the generality stated here is due to Girsanov (1960), although the result for
constant � was established much earlier by Cameron & Martin (1944). The theorem requires a
technical condition to ensure that IEZ�T � � �, so that fIP is a probability measure; see Karatzas &
Shreve (1991), page 198.

The form of the martingale representation theorem presented here is from Kunita & Watanabe
(1967). It can also be found in Karatzas & Shreve (1991), page 182.

The application of the Girsanov Theorem and the martingale representation theorem to risk-neutral
pricing is due to Harrison & Pliska (1981). This methodology frees the Brownian-motion driven
model from the assumption of constant interest rate and volatility; these parameters can be random
through dependence on the path of the underlying asset, or even through dependence on the paths of
other assets. When both the interest rate and volatility of an asset are allowed to be stochastic, the
Brownian-motion driven model is mathematically the most general possible for asset prices without
jumps.
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When asset processes have jumps, risk-free hedging is generally not possible. Some works on
hedging and/or optimization in models which allow for jumps are Aase (1993), Back (1991), Bates
(1988,1992), Beinert & Trautman (1991), Elliott & Kopp (1990), Jarrow & Madan (1991b,c), Jones
(1984), Madan & Seneta (1990), Madan & Milne (1991), Mercurio & Runggaldier (1993), Merton
(1976), Naik & Lee (1990), Schweizer (1992a,b), Shirakawa (1990,1991) and Xue (1992).

The Fundamental Theorem of Asset Pricing, as stated here, can be found in Harrison & Pliska (1981,
1983). It is tempting to believe the converse of Part I, i.e., that the absence of arbitrage implies the
existence of a risk-neutral measure. This is true in discrete-time models, but in continuous-time
models, a slightly stronger condition is needed to guarantee existence of a risk-neutral measure. For
the continuous-time case, results have been obtained by many authors, including Stricker (1990),
Delbaen (1992), Lakner (1993), Delbaen & Schachermayer (1994a,b), and Fritelli & Lakner (1994,
1995).

In addition to the fundamental papers of Harrison & Kreps (1979), and Harrison & Pliska (1981,
1983), some other works on the relationship between market completeness and uniqueness of the
risk-neutral measure are Artzner & Heath (1990), Delbaen (1992), Jacka (1992), Jarrow & Madan
(1991a), Müller (1989) and Taqqu & Willinger (1987).

35.8 Exotic options.

The reflection principle, adjusted to account for drift, is taken from Karatzas & Shreve (1991), pages
196–197.

Explicit formulas for the prices of barrier options have been obtained by Rubinstein & Reiner (1991)
and Kunitomo & Ikeda (1992). Lookback options have been studied by Goldman, Sosin & Gatto
(1979), Goldman, Sosin & Shepp (1979) and Conzé & Viswanathan (1991).

Because it is difficult to obtain explicit formulas for the prices of Asian options, most work has
been devoted to approximations. We do not provide an explicit pricing formula here, although the
partial differential equation given here by the Feynman-Kac Theorem characterizes the exact price.
Bouaziz, Bryis & Crouhy (1994) provide an approximate pricing formula, Rogers & Shi (1995)
provide a lower bound, and Geman & Yor (1993) obtain the Laplace transform of the price.

35.9 American options.

A general arbitrage-based theory for the pricing of American contingent claims and options begins
with the articles of Bensoussan (1984) and Karatzas (1988); see Myneni (1992) for a survey and
additional references. The perpetual American put problem was solved by McKean (1965).

Approximation and/or numerical solutions for the American option problem have been proposed
by several authors, including Black (1975), Brennan & Schwartz (1977) (see Jaillet et al. (1990)
for a treatment of the American option optimal stopping problem via variational inequalities, which
leads to a justification of the Brennan-Schwartz algorithm), by Cox, Ross & Rubinstein (1979) (see
Lamberton (1993) for the convergence of the associated binomial and/or finite difference schemes)
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and by Parkinson (1977), Johnson (1983), Geske & Johnson (1984), MacMillan (1986), Omberg
(1987), Barone-Adesi & Whalley (1987), Barone-Adesi & Elliott (1991), Bunch & Johnson (1992),
Broadie & Detemple (1994), and Carr & Faguet (1994).

35.10 Forward and futures contracts.

The distinction between futures contracts and daily resettled forward contracts has only recently
been recognized (see Margrabe (1976), Black (1976)) and even more recently understood. Cox,
Ingersoll & Ross (1981) and Jarrow & Oldfield (1981) provide a discrete-time arbitrage-based anal-
ysis of the relationship between forwards and futures, whereas Richard & Sundaresan (1981) study
these claims in a continuous-time, equilibrium setting. Our presentation of this material is similar to
that of Duffie & Stanton (1992), which also considers options on futures, and to Chapte 7 of Duffie
(1992). For additional reading on forward and futures contracts, one may consult Duffie (1989).

35.11 Term structure models.

The Hull & White (1990) model is a generalization of the constant-coefficent Vasicek (1977) model.
Implementations of the model appear in Hull & White (1994a,b). The Cox-Ingersoll-Ross model is
presented in (1985a,b). The presentations of these given models here is taken from Rogers (1995).
Other surveys of term structure models are Duffie & Kan (1994) and Vetzal (1994). A partial list of
other term structure models is Black, Derman & Toy (1990), Brace & Musiela (1994a,b), Brennan
& Schwartz (1979, 1982) (but see Hogan (1993) for discussion of a problem with this model), Duffie
& Kan (1993), Ho & Lee (1986), Jamshidian (1990), and Longstaff & Schwartz (1992a,b).

The continuous-time Heath-Jarrow-Morton model appears in Heath, Jarrow & Morton (1992), and
a discrete-time version is provided by Heath, Jarrow & Morton (1990). Carverhill & Pang (1995)
discuss implementation. The Brace-Gatarek-Musiela variation of the HJM model is taken from
Brace, et al. (1995). A summary of this model appears as Reed (1995). Related works on term
structure models and swaps are Flesaker & Hughston (1995) and Jamshidian (1996).

35.12 Change of nuḿeraire.

This material in this course is taken from Geman, El Karoui and Rochet (1995). Similar ideas were
used by by Jamshidian (1989). The Merton option pricing formula appears in Merton (1973).

35.13 Foreign exchange models.

Foreign exchange options were priced by Biger & Hull (1983) and Garman & Kohlhagen (1983).
The prices for differential swaps have been worked out by Jamshidian (1993a, 1993b) and Brace &
Musiela (1994a).
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