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Chapter 1

Introduction to Probability Theory

1.1 The Binomial Asset Pricing Model

The binomial asset pricing model provides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall useit for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock price Sy. There are two positive numbers, d and «, with

0<d<u, 1.D

such that at the next period, the stock price will be either d.5q or u.Sy. Typicaly, we take d and «
tosatisfy 0 < d < 1 < u, so change of the stock price from .S, to d.S, represents a downward
movement, and change of the stock price from Sy to .5y represents an upward movement. It is
common to also have d = 1, and this will be the case in many of our examples. However, strictly
speaking, for what we are about to do we heed to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model

we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let usimagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a“Tail,” the price moves down. We
denotethe priceat time 1 by .S; (H) = u.S, if thetossresultsin head (H), and by S; (7') = dSy if it

11
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/ S,(HH) = 16
=8

\ S(HT) =4

9= / S,(TH) = 4
§M =2

(M =1

Figure 1.1: Binomial tree of stock priceswith Sy = 4, v = 1/d = 2.

resultsintail (T). After the second toss, the price will be one of:

SQ(HH) = uSl(H) = UQSO7 SQ(HT) = dSl(H) = duS(),

52 (TH) = u51 (T) = udS(), 52 (TT) = dSl (T) = dQSo.

After threetosses, there are eight possi ble coin sequences, although not all of them result in different
stock prices at time 3.

For the moment, let us assume that the third tossis the last one and denote by
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT}

the set of all possible outcomes of the three tosses. The set €2 of all possible outcomes of a ran-
dom experiment is called the sample space for the experiment, and the elements w of 2 are caled
sample points. In this case, each sample point w is a sequence of length three. We denote the &-th
component of w by wy.. For example, whenw = HTH,wehavew; = H,wy =T andws = H.

The stock price Sy, at time k depends on the coin tosses. To emphasize this, we often write S (w).
Actualy, this notation does not quite tell the whole story, for while S 3 depends on al of w, S
depends on only the first two components of w, .S; depends on only the first component of w, and
So doesnot depend onw at all. Sometimeswe will use notation such .Sz (wy , we) just to record more
explicitly how S; dependsonw = (wq, w2, ws).

Example 1.1 Set Sy = 4, w = 2 and d = . We have then the binomial “tree” of possible stock
prices shown in Fig. 1.1. Each sample point w = (w1, ws, ws) represents a path through the tree.
Thus, we can think of the sample space €2 as either the set of all possible outcomes from three coin
tosses or asthe set of all possible paths through the tree.

To complete our binomial asset pricing model, we introduce a money market with interest rate r;
$1 invested in the money market becomes $(1 + r) in the next period. We take r to be the interest
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rate for both borrowing and lending. (Thisis not as ridiculous asit first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knowsin advance
which she will be doing; in such an application, she should take r to be the rate of interest for her
activity.) We assume that

d<1l+4r<u. 1.2

The model would not make senseif we did not have this condition. For example, if 1+ r > u, then
the rate of return on the money market is always at |east as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequality d > 1 + r cannot happen
unlesseither r is negative (which never happens, except maybe once upon atimein Switzerland) or
d > 1. Inthe latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest rate » and invest in the stock,
since even in the worst case, the stock pricerises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consider a European call option with strike price
K > 0 and expiration time 1. This option confers theright to buy the stock at time 1 for K dollars,
andsoisworth S, — K attime1if S; — K ispositive and is otherwise worth zero. We denote by

Vi(w) = (S1(w) — K)T 2 max{S;(w) - K,0}

the value (payoff) of this option at expiration. Of course, V;(w) actually depends only on w,, and
we can and do sometimes write V; (w ) rather than V3 (w). Our first task isto compute the arbitrage
price of thisoption at time zero.

Suppose at time zero you sell the call for V; dollars, where V; is still to be determined. You now
have an obligation to pay off (uSo — K)* if w; = H andto pay off (dSo — K)T if w; = T. At
the time you sell the option, you don’t yet know which value w; will take. You hedge your short
positionin the option by buying A o shares of stock, where A isstill to be determined. You can use
the proceeds V; of the sale of the option for this purpose, and then borrow if necessary at interest
rate r to complete the purchase. If V; is more than necessary to buy the A, shares of stock, you
invest theresidual money at interest rate r. In either case, youwill have Vi, — Ay.Sy dollarsinvested
in the money market, where this quantity might be negative. You will also own A, shares of stock.

If the stock goes up, the value of your portfolio (excluding the short positionin the option) is
AoSi(H) + (1+7)(Vo — AoSo),
and you need to have V; (H ). Thus, you want to choose V, and A so that
Vi(H) = AoS1(H) + (1+7)(Vo — ApSo). (1.3
If the stock goes down, the value of your portfoliois
AgS1(T) + (14 7r) (Vo — AoSo),
and you need to have V(7). Thus, you want to choose V;; and A to also have

V1 (T) = A()Sl (T) + (1 + T‘) (Vo - Aoso). (14)
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These are two eguationsin two unknowns, and we solve them below
Subtracting (1.4) from (1.3), we obtain

Vi(H) = Vi(T) = Ao(S1(H) — 51(1)), (1.5

S0 that

_W#H) - W)

Bo = Sy(H) = S((T)

(1.6)

Thisis a discrete-time version of the famous “ delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. Thisformulais so pervasive the when a practitioner says “delta’, she means the
derivative (in the sense of calculus) just described. Note, however, that my definition of A isthe
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of Ay itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V. After some simplification, thisleads to the formula

1 [14+r—-d w—(1+7r)

Vozl—l—r uw—d Vi(H) + uw—d

Vi(T)|. (1.7

Thisis the arbitrage price for the European call option with payoff V', at time 1. To simplify this
formula, we define

alttr—d Lau-(+r) _, o (18)
u—d u—d
so that (1.7) becomes
I N
Vo = Ty [BVi(H) + gVi(T)]. (1.9)

Because we have taken d < u, both p and ¢ are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), both p and ¢ are in the interval (0, 1), and because they sum to 1, we can regard
them as probabilities of H and T', respectively. They are the risk-neutral probabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilitiesof getting H or T' on the coin tosses. In fact, at this point, they are nothing more than
a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays off K dollarsat time 2. At expiration, the payoff of
thisoptionis V5 E (S2 — K)*, where V, and .S, depend on w; and ws, the first and second coin
tosses. We want to determine the arbitrage price for thisoption at time zero. Suppose an agent sells
the option at time zero for V4, dollars, where V4 is till to be determined. She then buys A shares
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of stock, investing Vo — AgSy dollarsin the money market to finance this. At time 1, the agent has
aportfolio (excluding the short position in the option) valued at

X1 é A()Sl + (1 + T‘) (VO - Aoso). (110)

Although we do not indicate it in the notation, .Sy and therefore X; depend on w1, the outcome of
thefirst coin toss. Thus, there are really two equationsimplicitin (1.10):

12

X1(H)
X4(T)

AgSy (H) + (1 + T‘) (VO - A050)7
AoS1(T) + (14 ) (Vo — AoSo).

12

After thefirst coin toss, the agent has X'; dollarsand can readjust her hedge. Suppose she decidesto
now hold A shares of stock, where A isallowed to depend on w; because the agent knows what
value w; hastaken. She investsthe remainder of her wedlth, X; — A5, inthe money market. In
the next period, her wealth will be given by the right-hand side of the following equation, and she
wantsit to be V5. Therefore, she wantsto have

V2 IA152—|—(1—|—T‘)(X1 —Alsl). (111)

Although we do not indicate it in the notation, .S'; and V5 depend on w; and w,, the outcomes of the
first two coin tosses. Considering al four possible outcomes, we can write (1.11) as four equations:

Vo(HH) = A((H)S:(HH)+ (14 r)(Xa(H) — A (H)S1(H)),
Vo (HT) AL(H)S:(HT) + (1 +r)(Xa(H) — A (H)S1(H)),
Vo(TH) A (TYS2(TH) + (14 r) (X1 (T) — A(T)51(T)),
Vo(TT) = A(T)S2(TT) + (14 r)(Xo(T) = AL (T)S1(T)).

We now have six equations, the two represented by (1.10) and the four represented by (1.11), inthe
six unknowns Vo, Ag, Ay (H), Ay(T), Xq(H),and X1 (7).

To solve these equations, and thereby determine the arbitrage price V;, at time zero of the optionand
the hedging portfolio A, Ay (H) and Ay (T’), we begin with the last two

Vo(TH) = A(T)S:(TH) + (1+ r)(Xi(T) — A(T)5:(T)),
Vo(TT) = A(T)So(TT) 4+ (1 4+ r)(Xo(T) = A (T)S1(T)).

Subtracting one of these from the other and solving for A;(7’), we obtain the “ delta-hedging for-
mula’

A(T) = (1.12)

and substituting thisinto either equation, we can solve for

X (T) = H%@VQ(TH) +qVa(TTY]. (1.13)
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Equation (1.13), gives the value the hedging portfolio should have at time 1 if the stock goes down
between times 0 and 1. We define this quantity to be the arbitrage value of the option at time 1 if
wyp = T', and we denoteit by V(7). We have just shown that

.. .
Vi(T) 2 T VAT H) + V(1)) (1.14)
The hedger should choose her portfolio so that her wealth X (7') if wy = T agrees with Vy(T')
defined by (1.14). Thisformulais analgousto formula (1.9), but postponed by one step. The first
two equationsimplicitin (1.11) lead in a similar way to the formulas

Ay(H) = (1.15)
and Xy (H) = Vi(H),where Vi (H) isthevalue of theoptionat time 1 if w; = H, defined by
1
Vi(H) 2 T V2 H) + GV (HT)). (1.16)

Thisisagain analgousto formula(1.9), postponed by one step. Finally, weplugthevalues X', (H ) =
Vi(H) and X;(T) = V4 (T') into the two equationsimplicit in (1.10). The solution of these equa-
tions for Ay and Vj is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of periods. If V;, denotesthe value at

time & of a derivative security, and this depends on the first & coin tosseswy, . . ., wg, then a time
k — 1, after thefirst & — 1 tosseswy, ..., wi_1 are known, the portfolio to hedge a short position
should hold A1 (w1, . . .,wk—1) sharesof stock, where

Vk(wh .. .7Wk_17H) — Vk(wh .. .7Wk_17T)
Sk(wiy . ywp—1, H) = Sp(wr, .., wp—1, 1)

Ak_l(wh .. .7Wk_1) = (117)

and the value at time £ — 1 of the derivative security, when thefirst £ — 1 coin tosses result in the
outcomeswy, . . ., wk_1, isgiven by

1 N N
Vici(wiy ooy wim1) = ——PVi(wr, oy wpm, H) + V(w1 - wimr, 1))

T+r (1.18)
1.2 Finite Probability Spaces
Let Q2 be a set with finitely many elements. An exampleto keepinmindis
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT} (2.1)

of all possible outcomes of three coin tosses. Let F be the set of all subsets of 2. Some setsin 7
ae(), {HHH, HHT,HTH,HTT}, {TTT}, and Q itself. How many sets are therein 7 ?
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Definition 1.1 A probability measure /P is a function mapping F into [0, 1] with the following
properties:

() P(Q) =1,

(i) If Ay, A, ... isasequence of digoint setsin F, then
P (U Ak) = P(Ay).
k=1 k=1

Probability measures have the following interpretation. Let A be a subset of 7. Imagine that 2 is
the set of all possible outcomes of some random experiment. There isa certain probability, between
0 and 1, that when that experiment is performed, the outcome will lie in the set A. We think of
IP(A) asthisprobability.

Example 1.2 Suppose a coin has probability 1 for # and 2 for 7. For the individual elements of
2in(2.1), define

P{HHH} = %)3, P{HHTY = (%)2@)
plarmy = (1) (2). pTry = (3 (3)
P{THHEY = (1) (1), P{rHTY = (1) (2)°
P{TTHY = (1) (%)2 P{TTT} = (%)3

For A € F, wedefine
P(A) = > IP{w}. (2.2)

For example,

P{HHH,HHT,HTH,HTT} = (%)3 +2 (%)2 (;) - (%) (;)2 = %

which is another way of saying that the probability of /7 on thefirst tossis 2.

Asinthe above example, it isgenerally the case that we specify a probability measure on only some
of the subsets of €2 and then use property (ii) of Definition 1.1 to determine /P(A) for the remaining
sets A € F. Intheabove example, we specified the probability measure only for the sets containing
asingleelement, and then used Definition 1.1(ii) in theform (2.2) (see Problem 1.4(ii)) to determine
IP for al the other setsin F.

Definition 1.2 Let 2 be a nonempty set. A o-algebrais a collection G of subsets of © with the
following three properties:

(i) 0eg,
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(i) If A € G,thenitscomplement A° € G,
(i) If Ay, Ay, As, ... isasequenceof setsin G, then U | A, isasoing.

Here are some important o-algebras of subsetsof the set 2 in Example 1.2

Fo = {®79}7

T o= {@7 Q{HHH HHT,HTH,HTT},{THH, THT,TTH, TTT}},
Fy = {(Z), Q{HHH HHTY},{HTH, HTT}, {THH,THT},{TTH,TTT},

and all setswhich can be built by taking unions of these},
F3 = JF = Theset of al subsetsof 2.

To simplify notation a bit, let us define

Ay 2 {HHH,HHT,HTH, HTT} = {H onthefirst toss},
Ar 2 {THH,THT,TTH,TTT} = {T onthefirst toss},

so that
‘7:1 = {®7 Qv AH7 AT}7

and let us define
App 2 {HHH, HHT} = {HH on thefirst two tosses},
Apr 2 {HTH,HTT} = {HT onthefirst two tosses},
Arg 2 {THH,THT} = {TH on thefirst two tosses},
Arr 2 {TTH,TTT} = {TT on thefirst two tosses},

so that

Fo = {0, Apn, Aur, Are, Arr,
A, AT, Arr U At A U Arr, Aar U Are, At U AT,

c c c c
AHH7 AHT7 ATH7 ATT}‘

We interpret o-algebras as arecord of information. Suppose the coin istossed three times, and you
are not told the outcome, but you are told, for every set in 7, whether or not the outcome isin that
set. For example, you would be told that the outcomeisnot in ) and isin 2. Moreover, you might
be told that the outcomeisnot in Az butisin Ar. In effect, you have been told that the first toss
was a T, and nothing more. The o-algebra ; is said to contain the “information of the first toss”,
which is usually called the “information up to time 1”. Similarly, F, contains the “information of



CHAPTER 1. Introduction to Probability Theory 19

the first two tosses,” which isthe “information up to time 2.” The o-algebra 73 = F contains “full
information” about the outcome of al three tosses. The so-called “trivial” o-algebra F, containsno
information. Knowing whether the outcome w of the three tossesisin @ (it is not) and whether it is
in € (itis) tellsyou nothing about w

Definition 1.3 Let 2 beanonempty finiteset. A filtrationisasequenceof o-algebras 7y, F1, 7o, . . .

such that each o-algebrain the sequence contains all the sets contained by the previous o-algebra.

Definition 1.4 Let © be a nonempty finite set and let 7 be the o-algebra of all subsets of 2. A
random variable is afunction mapping €2 into IR.

Example 1.3 Let 2 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
So =4, v =2andd = % Then Sy, S1, Sy and S5 are al random variables. For example,
So(HHT) = u?Sy = 16. The “random variable” Sy isrealy not random, since So(w) = 4 for al
w € €. Nonetheless, it is a function mapping €2 into IR, and thus technically a random variable,

albeit a degenerate one.

A random variable maps €2 into IR, and we can look at the preimage under the random variable of
setsin IR. Consider, for example, the random variable S; of Example 1.1. We have

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Let us consider the interval [4, 27]. The preimage under .S, of thisinterval is defined to be
{w € Qi Sylw) € [4,27]) = {w € V4 < Sy < 27} = Afy.
The complete list of subsets of €2 we can get as preimages of setsin IR is:
0,9, Agn, AuT U Arh, AT,

and sets which can be built by taking unions of these. This collection of setsis a o-algebra, called
the o-algebra generated by the random variable S, and is denoted by o(.S;). The information
content of this o-algebra is exactly the information learned by observing .S;. More specifically,
suppose the coin is tossed three times and you do not know the outcome w, but someone iswilling
to tell you, for each set in o(.S3), whether w isin the set. You might be told, for example, that w is
notin Az, isin Agr U Argr, andisnotin Arr. Thenyou know that in the first two tosses, there
was a head and a tail, and you know nothing more. Thisinformation is the same you would have
gotten by being told that the value of S (w) is4.

Note that F; defined earlier contains all the sets which are in o (.55), and even more. This means
that theinformation in the first two tossesis greater than the informationin S,. In particular, if you
see the first two tosses, you can distinguish A 77 from Az, but you cannot make this distinction
from knowing the value of S, alone.
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Definition 1.5 Let 2 be a nonemtpy finite set and let 7 be the o-algebra of all subsetsof 2. Let X
bearandom variableon (€2, 7). The o-algebra o (X ) generated by X isdefined to be the collection
of all setsof theform {w € Q; X (w) € A}, where A isasubset of IR. Let G be a sub-o-algebra of
F. Wesay that X isG-measurableif every setino(X) isalsoing.

Note: We normally write simply { X € A} rather than {w € Q; X (w) € A}.

Definition 1.6 Let €2 be a nonempty, finite set, let F be the o-algebra of all subsets of €2, let IP be
a probabilty measure on (€2, F), and let X be arandom variable on 2. Givenany set A C IR, we
define the induced measure of A to be

Lx(A) 2 P{X € A}.

In other words, the induced measure of aset A tells usthe probability that X takesavaluein A. In
the case of .S, above with the probability measure of Example 1.2, some setsin /R and their induced
measures are:

£6,[0,3] = P{S, = 1} = P(Agr) = (;)2

2
In fact, the induced measure of Sy places amass of size (%) = L at the number 16, amass of size

-9
2
2 at the number 4, and a mass of size (%) = £ at the number 1. A common way to record this

information is to give the cumulative distribution function /s, (z) of .S;, defined by

[

Fs,(z) = IP(S; <) =

if x <1,
if 1 <a<4,

if4 <z < 16, (2:3)

— OOk O

if 16 < z.

By the distribution of a random variable X, we mean any of the several ways of characterizing
Lx. If X isdiscrete, asin the case of S, above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variables X which have densities, in which case the induced measure of aset A C IR istheintegral
of the density over theset A.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitionsto make a clear distinction between random variables and their distributions.

A random variable is a mapping from €2 to /R, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion above, S, (1TTH) = So(TTT) = 1,
regardless of whether the probability for H is  or 1.
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The distribution of arandom variableisameasure £ x on IR, i.e., away of assigning probabilities
tosetsin IR. It dependson the random variable X and the probability measure IP weusein 2. If we
set the probability of H to be % then L5, assignsmass % to the number 16. If we set the probability
of H tobe % then L, assigns mass i to the number 16. The distribution of .5, has changed, but
the random variable has not. It is still defined by

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Thus, arandom variable can have more than one distribution (a“ market” or “ objective” distribution,
and a“risk-neutral” distribution).

In a similar vein, two different random variables can have the same distribution. Suppose in the
binomia model of Example 1.1, the probability of A and the probability of T is % Consider a
European call with strike price 14 expiring at time 2. The payoff of the call at time 2 isthe random
variable (Sz — 14)T, which takesthevalue2 if w = HH H orw = H HT, and takesthevalue 0 in
every other case. Theprobability the payoff is2 is 1, and the probability itiszerois 2. Consider also
a European put with strike price 3 expiring at time 2. The payoff of the put at time 2 is (3 — S2) T,
which takesthevalue 2 if w = TTH or w = TTT. Likethe payoff of the call, the payoff of the
put is 2 with probability  and 0 with probability 2. The payoffs of the call and the put are different
random variables having the same distribution.

Definition 1.7 Let €2 be a nonempty, finite set, let F be the o-algebra of all subsets of €2, let IP be
aprobabilty measure on (€2, F), and let X be arandom variable on 2. The expected value of X is
defined to be

EX2Y X(w)P{w). (2.4)
wEeN

Notice that the expected valuein (2.4) is defined to be a sum over the sample space 2. Since2 isa
finite set, X can take only finitely many values, whichwelabdl z1, ..., z,,. We can partition €2 into
thesubsets { X'y = =1 },...,{X, = z, }, and then rewrite (2.4) as
EX 2 Y X(w)P{w)
wefl

= Zn: Z X (w)IP{w}

k=1 wE{Xk:l’k}

= Zn:xk Z P{w}

k=1 WE{Xk:xk}

= Z eplP{ Xy = 21}
k=1

= Z eplx{xr}.
k=1
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Thus, although the expected value is defined as a sum over the sample space €2, we can also write it
asasumover IR.

To make the above set of equations absolutely clear, we consider .S, with the distribution given by
(2.3). The definition of IF/.5; is

IESy; = So(HHH)IP{HHH}+ So(HHT)IP{HHT}
+So(HTHYIP{HTH} + So(HTT)IP{HTT}
+So(THH)YIP{THH} + So(THT)IP{THT}
+So(TTHYIP{TTH} 4 Sy (TTT)IP{TTT}

= 16 -P(Agg)+4 - P(Agr U Arm) + 1- IP(A7T)
= 16-IP{Sy =16} +4-IP{So =4} +1-IP{Sy =1}
= 16-Lg,{16}+4- Lo, {4} +1-Ls, {1}

= 16 1+4 4+4 4
- 9 9 9
48
= 5

Definition 1.8 Let 2 be anonempty, finite set, let 7 bethe o-algebraof all subsetsof €2, let IP bea
probabilty measure on (€2, ), and let X be arandom variable on €2. The variance of X is defined
to be the expected value of (X — IFX)?,i.e
Var(X) 2 3 (X (w) - EX)*P{w). (2.5)
wEeN

One again, we can rewrite (2.5) as asum over IR rather than over 2. Indeed, if X takesthe values
Z1,..., Ty, then

= (vp — EX)P{X = a3} = (wr — EX) Ly (1),
k=1 k=1

1.3 Lebesgue Measure and the Lebesgue Integral

In this section, we consider the set of real numbers IR, which isuncountably infinite. We define the
Lebesgue measure of intervalsin IR to be their length. Thisdefinition and the properties of measure
determine the L ebesgue measure of many, but not all, subsets of IR. The collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collection of Borel sets defined
below.

We use Lebesgue measure to construct the Lebesgue integral, a generalization of the Riemann
integral. We need thisintegral because, unlike the Riemann integral, it can be defined on abstract
gpaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the space IR only; the generalization to
other spaces will be given later.
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Definition 1.9 The Borel o-algebra, denoted 5(IR), is the smallest o-algebra containing all open
intervalsin IR. Thesetsin B(IR) are called Borel sets.

Every set which can be written down and just about every set imaginableisin B(IR). Thefollowing
discussion of thisfact uses the o-algebra properties developed in Problem 1.3.

By definition, every openinterval (a, b) isin B(IR), where a and b are real numbers. Since B(IR) is
ac-agebra, every union of open intervalsisalso in B(IR). For example, for every real number «,
the open half-line

(a,a+ n)

(av OO) =

(G

Il
—

n

isaBorel set, asis

(G

(—o0,a) = (a —n,a).

n=1

For real numbers a and &, the union
(=00, a) U (b, 00)

isBorel. Since B(IR) isa c-agebra, every complement of a Borel setisBorel, so B(IR) contains

[, 6] = ((=00,a) U (b)) .

This showsthat every closed interval isBorel. In addition, the closed half-lines

[a,00) = G[a,a—l—n]

n=1

and

o0

(—o0,a] = U [a —n,a]

n=1
are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

(a,b] = (—o0,b] N (a,0).

Every set which containsonly one real number isBorel. Indeed, if « isarea number, then
Py 1 1
{a} _nol (a— g,a—l— ;) .

This means that every set containing finitely many real numbersisBorel; if A = {ay,as,...,a,},
then

A= O {ar}.
k=1
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In fact, every set containing countably infinitely many numbersisBorel; if A = {ay,as,...}, then

A= O {ar}.

k=1
This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.) This example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit interval [0, 1], and remove the middle half, i.e., remove the open interval

AléG,%).
41

1 3
e oo e
has two pieces. Fromeach of these pieces, remove the middle half, i.e., remove the open set
A1l 3 13 15
Ay = | —, — i
? (16’ 16) U (16’ 16)
1 31 3 13 15
i = o5 U 553U 535 Ul
has four pieces. Continue this process, so at stage k, the set C';, has 2% pieces, and each piece has
length . The Cantor set

The remaining set

The remaining set

c2 Ny
k=1

is defined to be the set of points not removed at any stage of this nonterminating process.
Note that the length of A, the first set removed, is % The “length” of A, the second set removed,
ist + & = . The“length” of the next set removed is4 - &> = 1, and in general, the length of the
k-th set removed is 2. Thus, the total length removed is

IE

k=1 Qk 7
and so the Cantor set, the set of points not removed, has zero “ length”

Despitethe fact that the Cantor set hasno “ length,” there are lotsof pointsinthis set. In particular,
none of the endpoints of the pieces of the setsC'y, C, . . . isever removed. Thus, the points

13 1 3 1315 1
0 1, —, —, = = —

are all in C'. Thisisa countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. o
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Definition 1.10 Let B(/R) bethe o-algebra of Borel subsetsof IR. A measureon (IR, B(IR)) isa
function ¢ mapping 5 into [0, oo] with the following properties:

(i) u(®) =0,
(i) If Ay, Ay, ... isasequenceof digoint setsin B(IR), then

I (U Ak) = n(Ap).
k=1 k=1
Lebesgue measure is defined to be the measure on (IR, B(IR)) which assigns the measure of each

interval to beitslength. Following Williams' s book, we denote L ebesgue measure by 4i¢.

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarily 1 (in fact, 1o (/R) = o), one no longer has the equation

p(AD) = 1 = u(A)
in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:
(v) If A1, Aq, ... isasequenceof setsin B(IR) with A1 O A3 D --- and u( A1) < oo, then
0 (ﬁ Ak) = lim p(4y).
k=1
To see that the additional requirment ;.(A;) < oo isneeded in (v), consider
Ay =[1,00), A2 = [2,00), A3 = [3,0), . ...

Then N2, Ar = 0, 0 po (N5, Ag) = 0, but lim,, o, po(4,) = oo.

We specify that the L ebesgue measure of each interval isitslength, and that determinesthe L ebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since
1 1
C i _
oy € (o= poa+ )
for every positiveinteger n, we must have
1 1 2
0 < po{a} < po (a— —7a—l-—) =—.
n n n

Letting n — oo, we obtain
pofay = 0.
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A= {al, ag, .. .}, then

po(A) = i pofar} = i 0=0.
k=1 k=1

The L ebesgue measure of a set containing uncountably many points can be either zero, positiveand
finite, or infinite. We may not compute the L ebesgue measure of an uncountable set by adding up
the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. Theintegral wasinvented to get around this problem.

In order to think about L ebesgue integrals, we must first consider the functionsto be integrated.

Definition 1.11 Let f be afunction from IR to IR. We say that f is Borel-measurableif the set
{z € IR; f(z) € A} isin B(IR) whenever A € B(IR). In the language of Section 2, we want the
o-algebragenerated by f to be contained in B(IR).

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don't exist. Hencefore, “function mapping IR to /R” will mean “Borel-measurable function
mapping IR to IR” and “subset of IR” will mean “Borel subset of IR”.

Definition 1.12 Anindicator function ¢ from IR to IR is a function which takes only the values 0
and 1. We call
AZ{ze Rig(r) =1}

the set indicated by g. We define the Lebesgue integral of ¢ to be
/ gdiio = o A).
R
A simplefunction & from IR to IR isalinear combination of indicators, i.e., a function of the form
h(z) = Z ckgr(x),
k=1
where each gy, is of theform
(x)_ 1, ifz e Ag,
IKEI=N 0, ifx ¢ Ay,
and each ¢, isarea number. We define the Lebesgue integral of & to be

/ h dpo 2 Z Ck/ grdpo = Z cro(Ar)-
R k=1 R k=1

Let f be a nonnegative function defined on IR, possibly taking the value oo a some points. We
define the Lebesgue integral of f to be

/ fdupo 2 sup{/ hdpo; hissimpleand h(z) < f(x) for every z € B}.
R R
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It is possiblethat thisintegral isinfinite. If it isfinite, we say that f isintegrable.

Finally, let f be afunction defined on IR, possibly taking the value oo at some pointsand the value
—oo at other points. We define the positive and negative partsof f to be

FH(z) & max{f(z),0}, f~(x) 2 max{—f(x),0},
respectively, and we define the Lebesgue integral of f to be

| Fduo2 [ 1t dpo == [ 5 do

provided the right-hand sideis not of the form oo — co. If both [, fT du and [, £~ duo are finite
(or equivalently, [ | f| duo < oo, since|f| = fT + f~), wesay that f isintegrable.

Let f beafunction defined on IR, possibly taking the value oo at some pointsand the value —oco at
other points. Let A be a subset of IR. We define

/Nmé/hﬂm
A R

IA(x)é{ 1, ifz e A,

where

0, ifad A,

istheindicator function of A.

The Lebesgue integral just defined isrelated to the Riemann integral in one very important way: if
the Riemann integral fab f(z)dx is defined, then the Lebesgue integral f[mb] f duo agrees with the
Riemann integral. The Lebesgueintegral has two important advantages over the Riemann integral.
Thefirst is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 Let () bethe set of rational numbersin [0, 1], and consider f = 4. Being acountable
set, () has Lebesgue measure zero, and so the Lebesgue integral of f over [0, 1]is

| =0,

[0.1]

To compute the Riemann integral fol f(z)dx, we choose partition points0 = z¢ < z1 < -++ <
z, = 1 and divide the interval [0, 1] into subintervals [z ¢, z1], [z1, 2], ..., [®n—1,2,]. INn each

subinterval [z;_1, 2] thereisarationa point g, where f(g;) = 1, and thereis also an irrational
point r, where f(r) = 0. We approximate the Riemann integral from above by the upper sum

n

> flar)(er — wpmy) =

=1

M=

1 (a2 — 2p—1) =1,

o
o
Il

—

and we a so approximate it from below by the lower sum

NE
=

fr)(@e —2p—1) = ) 0 (zx — 2p—1) = 0.

o
Il
—
o
Il
—
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No matter how fine we take the partition of [0, 1], the upper sum is aways 1 and the lower sum is
aways 0. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. o

Example 1.6 Consider the function

A | oo, ifx=0,
f(x):{ 0, ifa0.

This is not a simple function because simple function cannot take the value co. Every simple
function which lies between 0 and f is of the form

Ay, ifz=0,
h(x)—{ 0, ifz#£0,

for somey € [0, o), and thus has L ebesgue integral
/ hdpo = ypo{0} = 0.
R
It follows that

/ fdug = sup{/ hdpo; hissmpleand h(z) < f(z) forevery z € B} =0.
R R

Now consider the Riemann integral [~ f(x) d«, which for this function f is the same as the
Riemannintegral f_ll f(z) dz. Whenwe partition[—1, 1] into subintervals, one of thesewill contain

the point 0, and when we compute the upper approximating sum for f_ll f(z) dz, this point will
contribute oo times the length of the subinterval containingit. Thusthe upper approximating sumis
oo. On the other hand, the lower approximating sum is 0, and again the Riemann integral does not
exist. o

The Lebesgueintegral has al linearity and comparison properties one would expect of an integral.
In particular, for any two functions f and ¢ and any real constant c,

/R(f-l-g) dpio /deuo + /Bgaluo7
[ efdu = e[ ru

and whenever f(z) < g(z) for al z € IR, we have

[ fduo< [ gdduo.
R R
Finaly, if A and B are digoint sets, then

| sam= [ rduot [ fdu.
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There are three convergence theorems satisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functions f,,, » = 1,2, ... converging pointwise to a limiting
function f. Pointwise convergence just means that

1i_>m fo(z) = f(z) for every z € IR.
There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing function f istoo often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densities, each with variance 1 and the n-th having

mean n:
1 2—n)>

A _
fule) = N

These converge pointwiseto the function
f(z) =0forevery z € IR.
We have [, foduo = 1 forevery n, s0lim, oo [ fadpo =1, but [ fdpe = 0. o

Example 1.8 Consider a sequence of normal densities, each with mean 0 and the n-th having vari-
ance 1:

2

fulz) = 5. €

These converge pointwiseto the function
A ) oo, ifz=0,
f(x)_{(x if 2 £ 0.

We have again [, f.duo = 1 for every n, solim, o [ fudpo = 1, but [ fdpo = 0. The
function f isnot the Dirac delta; the Lebesgueintegral of thisfunction wasalready seenin Example
1.6 to be zero. o

Theorem 3.1 (Fatou'sLemma) Let f,,» = 1,2, ... be a sequence of nhonnegative functions con-
verging pointwiseto a function f. Then

/ fdug < lim inf/ fndio.
R n— 0o R

If lim,— o0 [ fn dito is defined, then Fatou's Lemma has the simpler conclusion

/fduoé lim / Jn dpo.
R n—00 R

Thisisthe casein Examples 1.7 and 1.8, where

Jim [ fudio =1,
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while [}, f dpo = 0. We could modify either Example 1.7 or 1.8 by setting ¢,, = f, if n is even,
but g, = 2f, if nisodd. Now [}, g, duo = 1if n iseven, but [, g, dpo = 2 if n isodd. The
sequence { [, g- dpo}. ., has two cluster points, 1 and 2. By definition, the smaller one, 1, is
liminf, e [ 9n dpio and the larger one, 2, islim sup,,_, .. [ g» dpo. Fatou's Lemma guarantees
that even the smaller cluster point will be greater than or equal to theintegral of thelimiting function.

Thekey assumptionin Fatou'sLemmaisthat all the functionstake only nonnegative values. Fatou's
Lemma does not assume much but it isis not very satisfying because it does not conclude that

[ fduwo =t [ . dp.
R n— 0o R
There are two sets of assumptionswhich permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theorem) Let f,,n = 1,2, ... be a sequence of functions
converging pointwise to a function f. Assume that

0< fi(z) < falz) < f3(z) < --- forevery z € IR.

Then
[ fduo =t [ dpo
R n—00 R

where both sides are allowed to be oc.

Theorem 3.3 (Dominated Convergence Theorem) Let f,,, n = 1,2, ... bea sequence of functions,
which may take either positive or negative values, converging pointwise to a function f. Assume
that there is a nonnegative integrablefunction g (i.e., [ g duo < o) such that

| frn(2)| < g(z) for every 2 € IR for every n.

Then
[ fduo =t [ dpo
R n—00 R

and both sideswill be finite,

1.4 General Probability Spaces

Definition 1.13 A probability space (2, F, IP) consistsof three objects:

() €, anonempty set, called the sample space, which contains all possible outcomes of some
random experiment;

(i) F,ac-algebraof subsetsof €2;

(iii) 1P, aprobability measureon (€2, ), i.e., afunction which assignsto each set A € F anumber
IP(A) € [0, 1], which represents the probability that the outcome of the random experiment
liesinthe set A.
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Remark 1.1 Werecall from Homework Problem 1.4 that a probability measure IP hasthefollowing
properties:

(@) P(0) = 0.
(b) (Countable additivity) If Ay, As, ... isasequence of digoint setsin F, then

r(Ua) =3 rew,
k=1 k=1

(c) (Finite additivity) If n isapositiveinteger and A4, ..., A,, are digoint setsin F, then
P(AU---UA,) =P(A)+ -+ P(A,).

(d) If Aand B aresetsin 7 and A C B, then
P(B) =IP(A)+ IP(B\ A).

In particular,
P(B) > IP(A).

(d) (Continuity from below.) If Ay, Ao, ... isasequenceof setsin F with A; C A, -+, then

P (fj Ak) = lim PP(A,).

k=1

IN

(d) (Continuity from above.) If Ay, Ao, ... isaseguence of setsin F with Ay O A, D - - -, then

P (ﬁ Ak) = lim PP(A,).

k=1

We have already seen some examples of finite probability spaces. We repeat these and give some
examples of infinite probability spaces aswell.

Example 1.9 Finite coin toss space.

Toss a coin n times, so that €2 is the set of all sequences of H and T" which have » components.
We will use this space quite a bit, and so giveit aname: €2,,. Let F be the collection of all subsets
of €2,,. Suppose the probability of H on each tossis p, a number between zero and one. Then the

probability of T"isq 21— p. Foreschw = (wy,ws, ..., w,) INQ,, wedefine

A umber o now umber o now
P{w} a pN b I H . (]N b T ]
For each A € F, we define
A
P(A) 2 3 Pw). (4.1)

weA

We can define IP(A) thisway because A has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). o
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Example 1.10 Infinite coin toss space.

Toss a coin repeatedly without stopping, so that €2 is the set of all nonterminating sequences of H
and 7. We call this space 2.,. Thisisan uncountably infinite space, and we need to exercise some
care in the construction of the o-algebrawe will use here.

For each positive integer n, we define F,, to be the o-algebra determined by the first n tosses. For
example, 7, contains four basic sets,

AHH é {w:(WI7w27w37...);w1:H7w2:H}

= Theset of all sequenceswhich beginwith H H,
AHT é {w:((,Ul7w27w37...);w1:H7w2:T}

= Theset of all sequenceswhich beginwith HT,
ATH é {w:((,Ul7w27w37...);w1:T7w2:H}

= Theset of all sequenceswhich beginwith T H,
ATT é {w:((,Ul7w27w37...);w1:T7w2:T}

The set of all sequences which beginwith 77"
Because F; is a o-algebra, we must also put into it the sets (), €2, and all unions of the four basic
sets.

In the o-algebra 7, we put every set in every o-algebra F,,, where n ranges over the positive
integers. We aso put in every other set which is required to make 7 be a o-algebra. For example,
the set containing the single sequence

{HHHHH ---} ={H onevery toss}

isnot in any of the F,, o-algebras, because it depends on all the components of the sequence and
not just the first n components. However, for each positiveinteger », the set

{H onthefirst n tosses}

isin F, and hencein F. Therefore,

{H onevery toss} = ﬂ {H onthefirst n tosses}

n=1
isalsoin F.

We next construct the probability measure IP on (2., F) which corresponds to probability p €
[0, 1] for H and probability ¢ = 1 — p for T'. Let A € F begiven. If thereis a positive integer n
suchthat A € F,,, thenthe description of A dependson only thefirst » tosses, and itisclear how to
define IP(A). For example, suppose A = A U Arp, where these setswere defined earlier. Then
Alisin Fy. Weset IP(Ap ) = p? and IP(Ary) = gp, and then we have

P(A) :P(AHHUATH) :p2—|—qp: (p—|— q)p:p‘

In other words, the probability of a H on the second tossis p.
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Let usnow consider aset A € F for which there is no positive integer » suchthat A € F. Such
isthe case for the set { H on every toss}. To determine the probability of these sets, we write them
in terms of setswhich are in F,, for positive integers n, and then use the properties of probability
measures listed in Remark 1.1. For example,

{H onthefirst toss} {H on thefirst two tosses}

{H onthefirst three tosses}

(UANIGANI,

)

and

() {H onthefirst n tosses} = {H on every toss}.

n=1

According to Remark 1.1(d) (continuity from above),
IP{H on every toss} = li_>m IP{H onthefirst n tosses} = nh—r>noo .

If p=1, then IP{ H onevery toss} = 1; otherwise, IP{H on every toss} = 0.

A similar argument showsthat if 0 < p < 1 sothat0 < ¢ < 1, then every setin ., which contains
only one element (nonterminating sequence of H and T') has probability zero, and hence very set
which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabilty in €2 ., are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random variables Yy, s, . .. by

Af 1 ifw,=H,
}Mw_{OiM%:ﬂ

and we a so define the random variable

4w@:§5%§f
k=1

Since each Y}, iseither zero or one, X takesvaluesintheinterval [0, 1]. Indeed, X (7777 ---) = 0,
X(HHHH---) = 1 and the other values of X lie in between. We define a “dyadic rational
number” to be a number of the form 7, where k& and m are integers. For example, % isadyadic
rational. Every dyadic rationa in (0,1) correspondsto two sequencesw € €2, . For example,

3
X(HHTTTTT---) = X(HTHHHHH---) = 7.

The numbersin (0,1) which are not dyadic rationals correspond to asinglew € €2..; these numbers
have a unique binary expansion.
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Whenever we place a probability measure /P on (€2, F), we have a corresponding induced measure
Lx on [0, 1]. For example, if we set p = ¢ = 1 in the construction of thisexample, then we have

[ 1] . . 1
Lx 0,5 :P{Flrstt053|sT}:57
1 . _ 1
Lx |5,1| = P{Firsttossis H} = ,
_— | )
Lx 071 :P{Flrst'[WotossasareTT}:17
11 , )
Lx 175] = IP{Firsttwotossesare TH } = T
:1 3 . 1
Lx 3'2 :P{Flrst'[\Notoss&sareHT}:17
3 | X
Lx Z’l :P{FlrsttwotossasareHH}:Z.

Continuing this process, we can verify that for any positive integers k& and m satisfying

m—1 m
we have
m—-—1 m 1
ox [T g =

In other words, the £ x -measure of al intervalsin [0, 1] whose endpointsare dyadic rationalsisthe
same as the L ebesgue measure of theseintervals. The only way thiscan beisfor £ x to be Lebesgue
measure.

It isinteresing to consider what £ x would look like if we take a value of p other than % when we
construct the probability measure IP on 2.

We conclude this example with another look at the Cantor set of Example 3.2. Let Q,,;.5 be the
subset of © in which every even-numbered tossis the same as the odd-numbered toss immediately
preceding it. For example, H HTTT'T H H isthe beginning of a sequencein §2,,,;,5, but HT isnot.
Consider now the set of real numbers

C/ é {X(w),w € Qpairs}-
The numbers between (1, 1) can be written as X (w), but the sequence w must begin with either
TH or HT. Therefore, none of these numbersisin C’. Similarly, the numbers between (75, =)
can be written as X (w), but the sequence w must begin with 7"I"T'H or TT'HT, so none of these
numbersisin C". Continuing thisprocess, we seethat C” will not contain any of the numbers which
were removed in the construction of the Cantor set C' in Example 3.2. In other words, ¢’ C C.
With a bit more work, one can convince onself that in fact C’ = (), i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those pointsin [0, 1] which were removed in the
Cantor set construction of Example 3.2. o
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probability spaces which correspond to different
ways of picking a number at random.

Example 1.11
Suppose we choose a number from IR in such a way that we are sure to get either 1, 4 or 16.
Furthermore, we construct the experiment so that the probability of getting 1 is g the probability of
getting 4 is g and the probability of getting 16 is % We describe this random experiment by taking
Qtobe IR, F tobe B(IR), and setting up the probability measure so that
4 4 1
P{1} ==, IP{4} = =, IP{16} = —.

{1} = 5, P{a} = 5, P{16} =
Thisdetermines IP(A) for every set A € B(IR). For example, the probability of the interval (0, 5]
is £, because thisinterval containsthe numbers 1 and 4, but not the number 16.

The probability measure described in this example is £ 5, , the measure induced by the stock price
Ss, whentheinitial stock price Sy = 4 and the probability of H is % Thisdistributionwas discussed
immediately following Definition 2.8. o

Example 1.12 Uniform distributionon [0, 1].

Let 2 = [0,1] and let 7 = B(][0, 1]), the collection of all Borel subsets containinedin [0, 1]. For
each Borel set A C [0, 1], wedefine IP(A) = uo(A) to bethe Lebesgue measure of the set. Because
tol0, 1] = 1, thisgives us a probability measure.

This probability space corresponds to the random experiment of choosing a number from [0, 1] so
that every number is“equally likely” to be chosen. Sincethere are infinitely mean numbersin [0, 1],
thisreguires that every number have probabilty zero of being chosen. Nonethel ess, we can speak of
the probability that the number chosen liesin a particular set, and if the set has uncountably many
points, then this probability can be positive. o

I know of no way to design a physical experiment which corresponds to choosing a number at
random from [0, 1] so that each number is equally likely to be chosen, just as | know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximationsto reality.

Example 1.13 Standard normal distribution.
Define the standard normal density

$2

a 1 -7

LetQ = IR, 7 = B(IR) and for every Borel set A C IR, define

P2 [ g du. 42)
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If Ain(4.2)isaninterval [a, b], then we can write (4.2) as the less mysterious Riemann integral:

$2

b 1 —
P[a,b]é/ \/ﬂe 2 dx.

This correspondsto choosing a point at random on thereal line, and every single point has probabil-
ity zero of being chosen, but if aset A is given, then the probability the point isin that set is given
by (4.2). 3

The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgueintegral. We repeat this construction bel ow.

Definition 1.14 Let (2, 7, IP) be aprobability space, and let X be arandom variable on this space,
i.e., amapping from €2 to IR, possibly also taking the values .

e If X isanindicator,i.e,

1 ifw e A,
0 ifwe A°,

for someset A ¢ F, wedefine
/ X dP 2 P(A).
Q

e If X isasimplefunction,i.e,
X(w) = chlAk(w),
k=1

where each ¢, isarea number and each A isasetin F, we define
/ XdP 2y ck/ Ly, dIP =" e, IP(Ay).
Q k=1 Q k=1
¢ If X isnonnegative but otherwise general, we define
/XdP
Q
2 sup {/ Y dIP;Y issmpleand Y (w) < X (w) for every w € Q} .
Q

In fact, we can always construct a sequence of simple functionsY,,, n = 1, 2, ... such that
0< Yl(W) < YQ(W) < Yg(W) < ... for every w € Q,

and Y (w) = lim,, Y, (w) for every w € Q. With this sequence, we can define

/depé lim /YndP.
Q Q

n—0oo
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e If X isintegrable, i.e,
/X+d1P<oo, /X—dJP<oo,
Q Q

where
X+ (w) 2 max{X(w),0}, X (w)2 max{—X(w),0},

/depé/xwfp——/x—dp
Q Q Q

If AisasetinF and X isarandom variable, we define

/depé/u-xcup.
A Q

then we define

The expectation of arandom variable X is defined to be

jEXé/XdJP.
Q

The above integral has all the linearity and comparison properties one would expect. In particular,
if X andY arerandom variablesand cisareal constant, then

/(X+Y)d1P — /XdP+/Yd1P,
Q Q Q

/CXdP = c/XdP7
Q Q

If X(w) <Y(w) forevery w € Q, then

/XdPg/YdP.
Q Q

Infact, we don’t need to have X (w) < Y (w) for every w € 2 in order to reach this conclusion; itis
enough if the set of w for which X (w) < Y (w) has probability one. When a condition holds with
probability one, we say it holds almost surely. Finaly, if A and B are digoint subsets of €2 and X
isarandom variable, then

/ XdP:/XdP+/XdP.
AUB A B

We restate the L ebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditionsdon’t need to hold for every w; amost surely is enough.

Theorem 4.4 (Fatou'sLemma) Let X,,,n = 1,2, ... be a sequence of almost surely honnegative
random variables converging almost surely to a randomvariable X'. Then

/ X dP < liminf [ X, dPP,
Q n— 0o Q
or equivalently,

FEX <liminf IFX,,.

n—0oo
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Theorem 4.5 (Monotone Convergence Theorem) Let X,,, n = 1,2, ... be a sequence of random
variables converging almost surely to a randomvariable X. Assumethat

0< Xy <Xy < X3<--- amost surely.

Then
/XdP: lim /XndP,
Q n—0oo Q

X = lim IPX,,.
n—00

or equivalently,

Theorem 4.6 (Dominated Convergence Theorem) Let X,,,n = 1,2, ... be a sequence of random
variables, converging almost surely to a random variable X. Assume that there exists a random
variableY" such that

| X| <Y almost surely for every n.

Then
/XdP: lim /XndP,
Q Q

n—0oo

or equivalently,
FEFX = Ilm FX,.

n—0oo

In Example 1.13, we constructed a probability measure on (IR, B(IR)) by integrating the standard
normal density. Infact, whenever ¢ isanonnegative function defined on R satisfying [, ¢ dpo = 1,
we call ¢ adensity and we can define an associated probability measure by

Pa) 2 /A o du for every A € B(IR). 4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related thisway. We say
that ¢ in (4.3) is the Radon-Nikodym derivative of d P with respect to 1o, and we write

diP

= T (4.4)

¥

The probability measure IP weights different parts of thereal line according to the density . Now
suppose f isafunctionon (R, B(IR), IP). Definition 1.14 gives us a value for the abstract integral

/B FdP,

/ f@dﬂm
R

whichis anintegral with respec to Lebesgue measure over the real line. We want to show that

We can also evaluate

| rap= [ redu. (45)
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an equation which is suggested by the notation introduced in (4.4) (substitute d’P for ¢ in(4.5) and
“cancel” the dyp). We include a proof of this because it alows us to |IIustrate the concept of the
standard machine explained in Williams's book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assumethat f isan indicator function, i.e., f(z) = [4(z) for some Borel set A C IR. In
that case, (4.5) becomes
/ @ dpo.

Thisistrue becauseit isthe definition of IP(A).

Step 2. Now that we know that (4.5) holds when f is an indicator function, assume that f is a
simple function, i.e., alinear combination of indicator functions. In other words,

= Zn: crhi ()
k=1

where each ¢, isarea number and each 7, isan indicator function. Then

frae = [ [San] ar

k=1

= ch/ hi dIP
= Zi: /Bhwduo
[

k=1

e dpo

= /B fedpo.

Step 3. Now that we know that (4.5) holds when f is a simple function, we consider a general
nonnegativefunction f. We can always construct a sequence of nonnegative simple functions
fn,m=1,2 ... suchthat

0< f1($) < f2($) < f3($) < ... for every x € IR,
and f(z) = lim,—« f.(2) for every = € IR. We have already proved that

/fndP:/ Fro dug for every n.
R R

Welet n — oo and use the Monotone Convergence Theorem on both sides of this equality to

get
| rap= [ redu.
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Step 4. In the last step, we consider an integrable function f, which can take both positive and
negative values. By integrable, we mean that

/f+d1P<oo, /f—dJP<oo.
R R

¢From Step 3, we have

[orrar = [ rrodu,
[rmar = [ redu.

Subtracting these two equations, we obtain the desired resuilt:

= [ o
= /Rf+soduo—/Rf‘@duo
= /Rf@d,uo-

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
(Q, F, IP), dthough most of the examples we give will be for coin toss space.

1.5.1 Independence of sets

Definition 1.15 We say that twosets A € F and B € F areindependent if
P(An B) = IP(A)IP(B).

Suppose a random experiment is conducted, and w is the outcome. The probability that w € A is
IP(A). Suppose you are not told w, but you are told that w € B. Conditional on thisinformation,
the probability that w € A is

A P(A N B)

P(A|B) = P

The sets A and B are independent if and only if this conditional probability is the uncondidtional
probability /°(A), i.e., knowing that w € B does not change the probability you assignto A. This
discussion is symmetric with respect to A and B; if A and B are independent and you know that
w € A, the conditional probability you assignto B is still the unconditional probability IP(B).

Whether two sets are independent depends on the probability measure IP. For example, supposewe
toss a coin twice, with probability p for H and probability ¢ = 1 — p for T' on each toss. To avoid
trivialities, we assumethat 0 < p < 1. Then

P{HHY} = p*, P{HT} = P{TH} = pq, P{TT} = ¢". (5.0)
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LeeA={HH HT}and B={HT,TH}.Inwords, Aistheset”H onthefirsttoss’ and B isthe
set“one H andoneT’” Then AN B = {HT}. We compute

A) = p® +pg = p,
B) = 2pq,
A)IP(B) = 2p*q,
AN B) = pq.

TRIN

(
(
(
(

These sets are independent if and only if 2p2¢ = pq, whichisthe caseif and only if p = %

Ifp = % then IP(B), the probability of one head and one tail, is % If you are told that the coin
tosses resulted in a head on the first toss, the probability of B, which isnow the probability of a7
on the second toss, isstill 1.

Suppose however that p = 0.01. By far the most likely outcome of the two coin tossesis 7T, and
the probability of one head and one tail is quite small; in fact, IP(B) = 0.0198. However, if you
aretold that thefirst tossresulted in H, it becomes very likely that the two tosses result in one head
and onetail. In fact, conditioned on gettinga H on the first toss, the probability of one H and one
T isthe probability of a7 on the second toss, which is0.99.

1.5.2 Independence of-algebras

Definition 1.16 Let G and H besub-o-algebrasof F. We say that G and 7 areindependent if every
setin G isindependent of every setin?, i.e,

P(ANnB) = IP(A)IP(B) forevery A € H, B€gG.

Example 1.14 Toss a coin twice, and let IP be given by (5.1). Let G = F; be the o-adgebra
determined by the first toss: G containsthe sets

0,Q,{HH,HTY,{TH,TT}.
Let # bethe o-albegra determined by the second toss: 7 contains the sets
0,Q,{HH,THY,{HT,TT}.

These two o-algebras are independent. For example, if we choosethe set { H H, HT'} from G and
theset { H H,T H } from H, then we have

P{HH,HTYIP{HH,TH} = (p* + pg) (p* + pg) = p,
P({HH HT}n{HH,TH}) = P{HH} = .

No matter which set we choose in G and which set we choose in 7, we will find that the product of
the probabiltiesis the probability of theintersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tossesis
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a particular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilitiesthisway. Itisaso
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 Define IP for theindividual elements of 2 = {HH HT,TH, TT}tobe

P} = g, PLAT) = JP{TH} =2 PTT) = L
andfor every set A C (2, define P( ) to bethe sum of the pI’ObabllltIeSOf the elementsin A. Then
IP(Q) = 1, so IP is aprobability measure. Note that the sets { H onfirsttoss} = {HH, H1'} and
{H onsecondtoss} = {HH,TH?} have probabilities P{HH,HT} = 1 and P{HH,TH} =
2, so the product of the probabilities is 5=. On the other hand, the intersection of {H H, HT}
and {H H, TH} contains the single element {H H }, which has probability . These sets are not
independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variables X and Y are independent if the o-algebrasthey
generate o (.X') and o (V') are independent.

In the probability space of three independent coin tosses, the price S, of the stock at time 2 is
independent of i This is because S, depends on only the first two coin tosses, whereas i is
either « or d, dependl ng on whether the third cointossis H or T.

Definition 1.17 says that for independent random variables X and Y, every set defined in terms of
X isindependent of every set defined intermsof Y. Inthecase of S; and g—z just considered, for ex-

ample, the sets { S, = udSo} = {HTH, HTT} and {53 = u} = {HHH,HTH,THH,TTH}
are indepedent sets.

Suppose X and Y are independent random variables. We defined earlier the measure induced by X
on IR to be
Lx(A) 2 P{X € A}, AC R.

Similarly, the measure induced by Y is
Ly(B)2 P{Y € B}, BC RR.
Now the pair (X, Y") takes valuesin the plane I??, and we can define the measure induced by the
pair
Lxy(C)=P{(X,Y)e(C}, CC R

The set C' in thislast equation is a subset of the plane IR 2. In particular, C' could be a “rectangle”
i.e, asetof theform A x B,where A C IR and B C IR. Inthiscase,

{((X,Y) e Ax B} = {X € AAn{Y € B},
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and X and Y are independent if and only if

Lxy(AxB) = P({XeAn{yeB})
= IP{X € AAP{Y € B} (5.2)
= Lx(A)Ly(B).
In other words, for independent random variables X and Y, the joint distribution represented by the

measure Lx y factors into the product of the marginal distributions represented by the measures
L X and ,Cy.

A joint density for (X, Y) isanonnegative function fx y (x, y) such that

Lxy(AxB)= /A/BfX,Y(%y) da dy.

Not every pair of random variables (X, Y') has a joint density, but if a pair does, then the random
variables X and Y have marginal densities defined by

x@= [ peremdn fe) [ for€)de

These have the properties
Lx(A) = /fX(ac)dac, ACHR,
A

Ly(B) = /ny(y)dy, BCR.

Suppose X and Y have a joint density. Then X and Y are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent toindependenceof X andY . Take A = (—o0, z] and B = (—o0, y], write (5.1) interms
of densities, and differentiate with respect to both = and .

Theorem 5.7 Suppose X and Y are independent random variables. Let ¢ and £ be functionsfrom
IR to IR. Then ¢(X') and h(Y') are also independent random variables.

PROOF: Let usdenote W = ¢(X) and Z = h(Y'). We must consider setsin o (W) and o (7). But
atypical setin (W) isof theform

{wiW(w) e A} = {w:g(X(v)) € A},

which is defined in terms of the random variable X. Therefore, thisset isin o(.X). (In general,
we have that every set in o(W) isaso in o(X), which means that X contains at least as much
informationas W. Infact, X can contain strictly moreinformation than 17/, which meansthat o (X')
will contain al the setsin o (1) and others besides; thisisthe case, for example, if W = X 2))

In the same way that we just argued that every set in o (W) is aso in o(X), we can show that
every setino(Z) isdsoina(Y). Since every setin o (X ) isindependent of every setino(Y'), we
conclude that every set in o (W) isindependent of every setino(Z). o
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Definition 1.18 Let Xy, X5, ... be a sequence of random variables. We say that these random
variables are independent if for every sequence of sets A; € o(X4), A2 € 0(X3), ... andfor every
positiveinteger n,

P(A1nAyNn---A,) = IP(A)IP(Ay) - - - IP(A,).

1.5.4 Correlation and independence

Theorem 5.8 If two randomvariables X and Y areindependent, and if ¢ and / are functionsfrom
IR to IR, then
Elg(X)h(Y)] = Eg(X) - ER(Y),

provided all the expectations are defined.

PROOF: Let g(z) = I[4(x) and h(y) = Ir(y) beindicator functions. Then the equation we are
trying to prove becomes

P({X € A} {Y € B}) = IP{X € A}P{Y € B},

which istrue because X and Y areindependent. Now use the standard machine to get the result for
general functions g and h. o

The variance of arandom variable X isdefined to be
Var(X) 2 E[X — EX]%.
The covariance of two random variables X and Y isdefined to be
Cov(X,Y) £ I[(X - EX)(Y - EY)]
= [E[XY]- EX - EY.

According to Theorem 5.8, for independent random variables, the covariance is zero. If X and Y
both have positive variances, we define their correlation coefficient

A Cov(X,Y)
- NVa(X)Va(y)

p(X,Y)

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable, let Z be independent of X and have
the distribution IP{”Z = 1} = IP{Z = —1} = 0. DefineY = XZ. We show that Y isaso a
standard normal random variable, X and Y are uncorrelated, but X and Y are not independent.

The last claim is easy to see. If X and Y were independent, so would be X 2 and Y2, but in fact,
X? = Y?dmost surely.
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We next check that Y is standard normal. For y € IR, we have

P{Y <y} = P{Yy <yandZ=1}+P{Y <yandZ = —1}
= P{X<yadZ=1}+P{-X <yandZ= -1}
= P{X <ypP{Z =1} + P{-X < y}iP{Z = -1}

1 1
= PIX <yi+oPi-X <yl

Since X isstandard normal, IP{X <y} = IP{X < —y},andwehave IP{Y <y} = IP{X <y},
which showsthat Y isalso standard normal.

Being standard normal, both X and Y have expected value zero. Therefore,
Cov(X,Y)=E[XY]=E[X*Z]=EX* FZ=1-0=0.
Wherein IR? doesthe measure £y y putitsmass, i.e., what isthe distribution of (X, Y)?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. Indeed, if X and Y areindependentand 7 = X + Y,
then

12

Var(Z) E[(Z - E2)]

= E(X—|—Y EX - EY)?]

= JE[ )2+ 2X = EX)(Y = EY) + (Y — BY)?]
= Var(X)+ QE[X — EX]E[Y - EY] + Var(Y)

= Var(X)+ Va(Y).

This argument extends to any finite number of random variables. If we are given independent
random variables X1, X5, ..., X, then

Var(Xy + Xo + -+ -+ X)) = Var(X;) 4+ Var(X3) + - - - + Var(X,,). (5.9

1.5.5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams's book, page 88; we shall need only
the second assertion of the property:

(k) If arandom variable X isindependent of a o-algebra #, then

E[X|H] =

The point of this statement isthat if X isindependent of #, then the best estimate of X based on
theinformationin # is I X , the same as the best estimate of X based on no information.
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To show this equality, we observe first that I X is 7{-measurable, sinceit is not random. We must
also check the partial averaging property

/EXdP:/XdeoreveryAe%.
A A

If X isan indicator of some set B, which by assumption must be independent of 7, then the partial
averaging eguation we must check is

/AP(B) dP:/AIB 4P,

Theleft-hand side of thisequationis IP(A) IP(B), and the right hand sideis

/IAIBdP:/IAanP:P(AﬂB).
Q Q

The partial averaging eguation holds because A and B are independent. The partial averaging
equation for general X independent of 7 follows by the standard machine.

1.5.6 Law of Large Numbers

There are two fundamental theorems about sequences of independent random variables. Here isthe
first one.

Theorem 5.9 (Law of Large Numbers)Let X7, X5, ... bea sequence of independent, identically
distributed random variables, each with expected value 1 and variance o 2. Define the sequence of

averages

y, At Xe b X o
n

ThenY,, convergesto p almost surely asn — oo.

We are not going to give the proof of thistheorem, but here isan argument which makesit plausible.
We will use thisargument later when devel oping stochastic calculus. The argument proceedsin two
steps. We first check that IE'Y,, = p for every n. We next check that Var(Y,,) — 0 asn — 0. In
other words, the random variables Y, are increasingly tightly distributed around i as n — oc.

For the first step, we simply compute

1 1
BY, = ~[EXi+ EXo+ -+ EXo] = —[utp+--+pl=p

n

»n times

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variablesisthe sum of their variances. Therefore,
2

n X& "o o
Var(Y,) = > Var (—) =3 =

n

Asn — oo, wehave Var(Y,,) — 0.
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1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition of Y, isso large that the variance of Y,, convergesto zero. If we want
to prevent this, we should divide by \/n rather than n. In particular, if we again have a sequence of
independent, identically distributed random variables, each with expected value 1 and variance o2,

but now we set
A K-+ Xo—p) -+ (Xn—p)

\/ﬁ 9

Zn

then each 7,, has expected value zero and

Var(7,) = kZ:Var (X’i/%“) = Zn: %2 = o2,

k=1

Asn — oo, the distributions of al the random variables /7,, have the same degree of tightness, as
measured by their variance, around their expected value 0. The Central Limit Theorem asserts that
asn — oo, thedistribution of 7,, approachesthat of a normal random variable with mean (expected
value) zero and variance . In other words, for every set A C IR,

1 _ 2%
e 202dzx.

lim P{Z, € A} =
n—00 o\2m JA



48



Chapter 2

Conditional Expectation

Please see Hull’sbook (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denoted 5. At each time step, the stock price either goes up by a factor of «
or down by afactor of d. It will be useful to visualize tossing a coin at each time step, and say that

o the stock price moves up by afactor of « if the coin comes out heads (H), and

e down by afactor of d if it comes out tails (7).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

Q={HHH,HHT,HTH,HTT,THH,THH, THT, TTH, TTT}.

A typical sequence of €2 will be denoted w, and w. will denote the kth element in the sequence w.
We write S (w) to denote the stock price at “time” k (i.e. after k tosses) under the outcome w. Note
that Sy (w) dependsonly onwy, wy, . .. ,wg. Thusin the 3-coin-toss example we write for instance,

S1(w) £ Sy (w1, waws) £ 81 (wr),

Sa(w) £ Sy(wr,wa,ws) £ Sawr, ws).

Each S) is arandom variable defined on the set 2. More precisely, let 7 = P(2). Then F isa
o-algebraand (€2, F) isameasurable space. Each S;, isan F-measurable function Q— IR, that is,
S; ! isafunction B—F where B isthe Borel o-algebra on R. We will see later that Sy, isin fact

49
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- b~ S(HHH) = @ 5,
o

S, (HH) =u s,
W =H = SHHD = Pd S
S = ug, s3HTH) =P d S
0T S (THH) = Pd S
“= S (HT) = ud §
S (TH) = ud §
T
- / SHT=d’u S
2
%(n = d% S(THN=d"u S
i S3(TTH) = d°u S
w=T =

Figure 2.1: A three coin period binomial model.

measurable under asub-o-algebraof 7. Recall that the Borel o-algebra B isthe o-algebragenerated
by the open intervals of R. In this course we will always deal with subsets of R that belongto 5.

For any random variable X defined on a sample space Q2 and any y € IR, we will use the notation:

(X <y} S {weX(w) <y}

Thesets{X < y},{X >y}, {X = y}, etc, aredefined similarly. Similarly for any subset B of IR,
we define A
{XeB}={weX(w) € B}

Assumption 2.1 u > d > 0.

2.2 Information

Definition 2.1 (Sets determined by the first: tosses.)We say that aset A C Q is determined by
thefirst £ coin tossesif, knowing only the outcome of thefirst & tosses, we can decide whether the
outcome of all tossesisin A. In general we denote the collection of sets determined by the first &
tossesby 7. Itiseasy to check that . isac-agebra

Note that the random variable Sy, is F;-measurable, foreach k. = 1,2,... . n.

Example 2.1 In the 3 coin-toss example, the collection F; of sets determined by the first toss consists of:
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1. Ay £ {HHH, HHT,HTH, HTT},
2. Ar 2 {THH,THT, TTH,TTT},
3. &,

4. Q.

The collection F - of sets determined by the first two tosses consists of :

Apg S {HHH HATY,
Apr 2 {HTH, HTT),
Arg 2 {THH, THTY,

Ay 2 {TTH, TTT},

The complements of the above sets,

Any union of the above sets (including the complements),
¢ and €.

No gk DN PR

Definition 2.2 (Information carried by a random variable.) Let X be arandom variable Q— IR.
We say that aset A C 2 isdetermined by the random variable X if, knowing only the value X (w)
of the random variable, we can decide whether or notw € A. Another way of saying thisis that for
every y € IR, either X~1(y) C A or X~(y) N A = ¢. The collection of susbets of 2 determined
by X isac-agebra, which we call the o-algebra generated by X', and denote by o (.X).

If therandom variable X takesfinitely many different values, then o (X') is generated by the collec-
tion of sets
{(XTH (X () |w € Q

these sets are called the atoms of the o-algebra o (X).
In genera, if X isarandom variable Q— IR, then o (.X) isgiven by

o(X)={X"YB);B € B}.
Example 2.2 (Sets determined by-) The os-algebra generated by S, consists of the following sets:

Appg ={HHH HHT} = {w € Q; S5(w) = u*Sp},
App = {TTH, TTT} = {Ss = d*Sy},

Agr UArg = {5 = udSp},

Complements of the above sets,

Any union of the above sets,

¢ ={5(w) € ¢},

Q= {5%(w) € R}.

No gk wbdpE
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space (). Let us define

e p € (0,1)isthe probability of H,

¢ 2 (1 — p) isthe probability of T,

the coin tosses are independent, so that, e.g., IP(H HT) = p*q, €tc.
o P(A) 2 Y,y P(w), VA C Q.

Definition 2.3 (Expectation.)

EX2 Y X(w)Pw).

we
If A C Qthen
Al ifweA
IA(“’)—{ 0 ifwgA
and

E(I4X) = /AXdP = > X(wPw).
WEeA

We can think of IF'(14.X') asapartial average of X over the set A.

2.3.1 Anexample

Let us estimate Sy, given S;. Denote the estimate by /F'(.51|S2). From elementary probability,
IE(51]S2) isarandom variable Y whose value at w is defined by

Y(w) = E(Sl|52 = y)7
wherey = S (w). Properties of IF'(.S1].S2):
e [F(S1]52) should depend onw, i.e, itisarandomvariable.
o |f thevalue of S; isknown, then the value of IF(.51|S2) should also be known. In particular,

—Ifwo=HHHoOrw= HHT,then S;(w) = u%Sy. If weknow that Sy(w) = u?Sy, then
even without knowing w, we know that S (w) = u.S,. We define

—Ifw=TTTorw=TTH,then Sy(w) = d*Sy. If we know that S3(w) = d*Sy, then
even without knowing w, we know that S (w) = d.Sy. We define

E(S1]S2)(TTT) = IE(S1|S)(TTH) = dS.
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—fwe A={HTH,HTT,THH,THT},then Sy(w) = udSp. If weknow Sy (w) =
ud.Sp, then we do not know whether S; = u.Sy or S; = dSy. We then take a weighted
average:

P(A) = p*q + pg* + p*q + pg* = 2pq.

Furthermore,

/A SidlP = pzquSO + pq2u50 + pzquO + pq2d50

= pq(u+d)So
Forw € A we define
[, SidIP
E(5:1]5)(w) = f}pT) = 3(u+ d)S.

Then
/175(51|52)d1P:/ SydIP.
A A

In conclusion, we can write
IE(51]52) (w) = g(Sa2(w)),

where
uSg if z =425
g(z) = %(u +d)Se ifa=udSy
dSO if v = d250

In other words, I/(.51].52) is random only through dependence on .S;. We also write
(51|52 = 2) = g(2),

where ¢ isthe function defined above.
Therandom variable IF/(.51].52) has two fundamental properties:

e [F(51|52) iso(Sz)-measurable.

e Forevery set A € o(S2),
/175(51|52)d1P = /SldP.
A A

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let (2, F, IP) beaprobability space, and let G beasub-o-agebraof F. Let X bearandom variable
on (2, F, IP). Then IF'(X|G) isdefined to be any random variable Y that satisfies:

(a) Y isG-measurable,
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(b) For every set A € G, we have the“ partial averaging property”

/ VP = / XdP.
A A

Existence. There is aways a random variable Y satisfying the above properties (provided that
IF|X| < o0), i.e., conditional expectations always exist.

Uniqueness.There can be more than one random variable Y satisfying the above properties, but if
Y’ isanother one, thenY = Y’ amost surely, i.e,, IP{w € ;Y (w) =Y'(w)} = 1.

Notation 2.1 For random variables X, Y, it is standard notation to write
A
F(X|Y)=IEX|oY)).
Here are some useful ways to think about (X |G):

¢ A random experiment is performed, i.e., an element w of €2 is selected. The value of w is
partially but not fully revealed to us, and thus we cannot compute the exact value of X (w).
Based on what we know about w, we compute an estimate of X (w). Because this estimate
depends on the partial information we have about w, it dependson w, i.e., [ X|Y](w) isa
function of w, although the dependence on w is often not shown explicitly.

o If thes-algebra G containsfinitely many sets, therewill bea“smallest” set A in G containing
w, whichistheintersection of all setsin G containingw. Theway w ispartially revealed to us
isthat wearetolditisin A, but not told which element of A itis. Wethendefine IF[.X |Y](w)
to be the average (with respect to IP) value of X over thisset A. Thus, for all w inthisset A,
ETX|Y](w) will bethe same.

2.3.3 Further discussion of Partial Averaging
The partial averaging property is
/AE(X|Q)dP: /AXdJP,VA €q. (3.1)
We can rewrite thisas
E[I4.E(X|G)] = E[14.X]. (3.2)
Notethat 7 4 isaG-measurable random variable. In fact the following holds:

Lemma 3.10 If V' isany G-measurable randomvariable, then provided I|V.IE (X |G)| < oo,

E[V.E(X|9)] = E[V.X). (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) when 1V isa simple
G-measurable random variable, i.e., V isof theform V' =357 _, cx 14, , Wwhere each A isin G and
each ¢ isconstant. Next consider the case that V' is a nonnegative G-measurable random variable,
but is not necessarily simple. Such a V' can be written as the limit of an increasing sequence
of ssimple random variables V,,; we write (3.3) for each V,, and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) for V. Finaly, the general G-
measurable random variable V' can be written asthe difference of two nonnegative random-variables
V = V*+ —V~, and since (3.3) holds for V* and V'~ it must hold for V aswell. Williams calls
this argument the “ standard machine” (p. 56). [

Based on thislemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For every G-measurable random-variable V', we have

E[V.E(X|G)] = E[V.X]. (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(@) E(F(X]|9) = E(X).
Proof: Just take A in the partial averaging property to be Q.

The conditional expectation of X isthusan unbiased estimator of the random variable X'.
(b) If X isG-measurable, then
F(X|G6) = X.
Proof: The partial averaging property holdstrivially when Y isreplaced by X. And since X
isG-measurable, X satisfiesthe requirement (a) of aconditional expectation as well.
If theinformation content of G is sufficient to determine X, then the best estimate of X based
ongGis X itself.

(c) (Linearity)
(a1 X1+ a2 X2|G) = a2 (X41|G) + a2l (X4|G).

(d) (Positivity) If X > 0 amost surely, then
FE(X|G) > 0.
Proof: Take A = {w € Q; IF(X|G)(w) < 0}. Thissetising since IF (X |G) isG-measurable.
Partial averaging implies [, I/(X|G)dIP = [, XdIP. The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unless I°P(A) = 0. Therefore,
P(A) =0.
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(h) (Jensen'sInequality) If ¢ : R— R is convex and I£]6(X)| < oo, then
E(¢(X)IG) > o(IB(X|G)).
Recall the usual Jensen's Inequality: IE6(X) > ¢(IF(X)).
(i) (Tower Property) If 7 isasub-o-algebraof G, then
E(E(X|G)|H) = E(X[H).

H isasub-o-algebraof G meansthat G contains more information than 7. If we estimate X
based on the information in G, and then estimate the estimator based on the smaller amount
of information in 7, then we get the same result asif we had estimated X directly based on
theinformationin 7.

() (Taking out what isknown) If 7 is G-measurable, then
F(ZX|6) = Z.FE(X|G).

When conditioning on G, the G-measurable random variable 7 acts like a constant.

Proof: Let Z be aG-measurable random variable. A random variable Y is IF(Z X |G) if and
only if

(@) Y isG-measurable;
(b) [4YdIP= [, ZXdIP,YA€G.

TekeY = Z.IF(X|G). ThenY sdtisfies (a) (a product of G-measurable random variablesis
G-measurable). Y also satisfies property (b), as we can check below:

/YdJP — E(LY)
A

E[I4ZIE(X|G)]
= E[I4Z.X] (0)withV = 1,7

= / ZXdIP.
A

(k) (Role of Independence) If # isindependent of o (o (.X), G), then
E(X|o(G,H)) = E(X|9).
In particular, if X isindependent of 7, then
F(X|H) = E(X).

If # isindependent of X and G, then nothing is gained by including the information content
of # inthe estimation of X'.
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2.3.5 Examples from the Binomial Model

Recall that 1 = {¢, A, Ar,Q}. Noticethat IF/(Sz|F1) must be constant on Ay and A7.
Now since IF/(.S2| F1) must satisfy the partial averaging property,

/ IE(Sz|Fq)dIP = SodIP,
AH AH

/ (S| Fq)dIP = Sod IP.

AT AT
We compute

/A E(Sy|F1)dIP = P(Ag).JE (S| Fy)(w)
H
= plE(S:|F1)(w),Vw € Ag.
On the other hand,
SodIP = p*u*Sy + pqudSo.

Apg

Therefore,

(53| F1)(w) = pu*So + qudSo,Vw € Ap.
We can also write
E(S|F1)(w) = pu’So+ qudSo

(pu + qd)uSo
= (pu+qd)S(w),Yw € Ay

Similarly,
(52| F1)(w) = (pu+ qd)S1(w), Vw € Ar.

Thusin both cases we have
E(S:|71)(w) = (pu+ gd)Si(w),Yw € Q.
A similar argument one time step later shows that
(55 F2) (@) = (pu + qd) Sz (w).

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous eguations we have

IETE(S3|F2)|F1] = IE[(pu+ qd)S2|Fs]
= (pu+ qd)IE (5] F1) (linearity)
= (pu+ qd)*S;.

Thisfinal expressionis I£'(53|F1).
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2.4 Martingales

Theingredientsare:

e A probability space (2, F, IP).

e A sequence of o-algebras Fo, F1q, ..., F,, withthe property that 7o C 71 C ... C F,, C
F. Such asequence of o-algebrasis called afiltration.

e A sequence of random variables My, M, ..., M,. Thisis caled astochastic process.
Conditionsfor a martingale:

1. Each My is F-measurable. If you know the informationin F, then you know the value of
M. We say that the process { M}, } isadapted to the filtration {7 }.

2. Foreach k, IF(My41|Fr) = M. Martingalestend to go neither up nor down.

A supermartingaletendsto go down, i.e. the second conditionaboveisreplaced by IF' (M 41| Fr) <
My};; asubmartingaletendsto go up, i.e. I(My41|Fr) > M.

Example 2.3 (Example from the binomial model.) For £ = 1, 2 we already showed that
E(S}H_l |~7:k) = (pu + qd)Sk

For k = 0, weset 7y = {¢,2}, the “trivial o-algebra’. This o-algebra contains no information, and any
F-measurable random variable must be constant (nonrandom). Therefore, by definition, I£(.5;|F) is that
constant which satisfies the averaging property

/E(Sl|}"o)dﬂ3:/ S1diP.
Q Q

Theright hand sideis £S5, = (pu + ¢d) Sy, and so we have
FE(S1|Fo) = (pu+ qd)So.
In conclusion,

o If (pu+ qd) = 1 then {Sk, Fr; k =0,1,2,3} isamartingale.
o If (pu+qd) > 1then{Sy, Fr; k =0, 1,2,3} isasubmartingale.
o If (pu+qd) < 1then{Sy, Fr; k =0,1,2,3}isasupermartingae.
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Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model
Please see:

e Cox, Ross and Rubinstein, J. Financial Economics, 7(1979), 229-263, and
e Cox and Rubinstein (1985), Options Markets, Prentice-Hall.
Example 3.1 (Pricing a Call Option) Suppose u = 2,d = 0.5,r = 25%(interest rate), Sy = 50. (Inthis

and all examples, the interest rate quoted is per unit time, and the stock prices Sy, S1, . . . areindexed by the
same time periods). We know that

i) = { 25 ifw =T

Find the value at time zero of a call option to buy one share of stock at time 1 for $50 (i.e. the strike priceis
$50).

Thevaueof thecall attimelis

= s { B 1=

Suppose the option sellsfor $20 at time 0. Let us construct a portfolio:

1. Sell 3 optionsfor $20 each. Cash outlay is —$60.
2. Buy 2 shares of stock for $50 each. Cash outlay is $100.
3. Borrow $40. Cash outlay is —$40.

59
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This portfolio thusrequires no initial investment. For this portfolio, the cash outlay at time 1 is:

wle wlzT

Pay off option $150 $0
Sell stock —$200 —$50
Pay off debt $50 $50
$0 $0
The arbitrage pricing theory (APT) value of the optionat time 0is 1, = 20. ]

Assumptionsunderlying APT:

e Unlimited short selling of stock.

e Unlimited borrowing.

¢ No transaction costs.

e Agentisa“small investor”, i.e., his’her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilities of H
and 7.

3.2 General one-step APT

Suppose a derivative security pays off the amount V; at time 1, where V; is an F-measurable
random variable. (This measurability condition is important; this is why it does not make sense
to use some stock unrelated to the derivative security in valuing it, at least in the straightforward
method described below).

e Sell the security for V at time 0. (V4 isto be determined | ater).
e Buy A sharesof stock at time 0. (A isalso to be determined later)

o Invest Vi — ApSp in the money market, at risk-free interest rate ». (Vp — AgSe might be
negative).

e Thenwedthattimelis

>

X1 = AgSi+ (1 + T‘) (VO - AOSO)
= (1—|—T‘)V0—|—A0(Sl—(1—|—7‘)50)

e \We want to choose V; and A so that
X1 =V

regardless of whether the stock goes up or down.
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The last condition above can be expressed by two equations (which is fortunate since there are two
unknowns):

(1—|—T‘)V0—|—A0(51(H) - (1—|—7‘)50) :V1(H) (21)

(1—|—T‘)V0—|—A0(51(T) - (1—|—7‘)50) = Vl(T) (22)

Note that this is where we use the fact that the derivative security value V. is a function of Sy,
i.e,, when S is known for a given w, V. is known (and therefore non-random) at that « as well.
Subtracting the second equation above from thefirst gives

_WH) - W)

Bo = Sy(H) — S((T)

(2.3)

Plug the formula (2.3) for Aq into (2.1):

(14+rVe = Vi(H) = Ao(S1(H) — (14 7)5So)
Vi(H) — Vi (T)
C(w-d)S
= (= d)Vi(H) — (Vi(H) = V(D)) (1~ 1 = 1)

14+r—d w—1—r
u—d

= Vi(H) - (u—1-7r)S

Vi(T).

We have already assumed « > d > 0. We now also assume d < 1+ r < u (otherwise there would
be an arbitrage opportunity). Define

él—l—r—d

éu—l—r
u—d -

P q w—d

Thenp > 0andg§ > 0. Sincep+ ¢ =1, wehaved < p < 1and§ = 1 — p. Thus, p, § are like
probabilities. We will return to thislater. Thusthe price of the call at time O is given by

3.3 Risk-Neutral Probability Measure

Let ©2 be the set of possible outcomes from 7 coin tosses. Construct a probability measure /P on €
by the formula
Plwr,ws, ... wy,) 2 ptlwi=H) g#{iw;=T)

IP iscalled the risk-neutral probability measure. We denote by IE the expectation under IP. Equa-

tion 2.4 says
~ 1
=F .
Yo (1 + rvl)
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Theorem 3.11 Under /P, the discounted stock price process{(1+r) %S, Fi}i_, isamartingale.

Proof:

E[(1+ )~ 0554 [ Fy]
= (1+ )" (u + §d) Sy
= (14 )" (+D (u(l +r—d) N d(u—1- r)) 5

uw—d uw—d
_ (1+r)_(k+1)u—|—ur—ud—|—du—d—drsk
uw—d
= (1—|-r)_(k+1)—(u_ d)(l—l_r)Sk
uw—d

= (1 + T‘)_ksk.

3.3.1 Portfolio Process

The portfolioprocessis A = (Ag, Ay, ... ,A,_1), Where

e A} isthe number of shares of stock held between timesk and & 4+ 1.
e Each Ay is F-measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Procesa

e Start with nonrandom initial wealth X, which need not be 0.

e Define recursively

Xeg1 = AkSkH + (1 + T‘) (Xk — AkSk) (31)
= (1—|—T‘)Xk—|—Ak(Sk+1 — (1—|—T‘)Sk) (32)

e Theneach X, is F-measurable.

Theorem 3.12 Under P, the discounted self-financing portfolioprocessvalue { (1 4 r) ~* Xy, Fr}7_,
isamartingale.

Proof: We have

(L)~ X = (14 7) 7R X+ Ay ((1 + )G — (14 r)_kSk) )
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Therefore,

E[(1+ )= X | ]

= E[(1+r) "X |Fi]
+IE[(L+ )~ FHDALS, ] Fr]
—ﬁ[(l + T‘)_kAkSku:k]

= (1+r)"* X, (requirement (b) of conditional exp.)
FALE[(14 r)~ DS, | FL]  (taking out what is known)
—(147r)7"AgS).  (property (b))

= (1+r)7%X; (Theorem3.11)

3.4 Simple European Derivative Securities

Definition 3.1 () A simpleEuropean derivative security with expirationtimem isan F ,,,-measurable
random variable V,,,. (Here, m islessthan or equal to », the number of periods/coin-tossesin the
model).

Definition 3.2 () A simple European derivative security V,,, is said to be hedgeable if there exists
a constant X and a portfolio process A = (Ao, ...,A,,—1) such that the self-financing value
process X, X, ..., X, givenby (3.2) satisfies

Xp(w) =Viy(w), Ywel
Inthiscase, for £ = 0,1,...,m,wecdl X the APT valueat timek of V,,,.

Theorem 4.13 (Corollary to Theorem 3.12)If a simple European security V,,, is hedgeable, then
foreachk =0,1,...,m,the APT valueat time k of V,,, is

Vi 2 (14 1) E[(L+ )" Vi | Fil. (4.1)

Proof: We first observe that if {M;, Fi;k = 0,1,...,m} isamartingae, i.e., satisfies the
martingal e property

F[Mpy1|Fr] = M,

foreachk =0,1,...,m — 1, thenwe also have

E[M,|Fi] = My, k=0,1,...,m— 1. (4.2)
When k = m — 1, the equation (4.2) followsdirectly from the martingale property. For k = m — 2,
we use the tower property to write

ﬁ[Mme—z] = ﬁ[ﬁ[Mmu:m—l”]:m—?]

E[Mm—1|]:m—2]
= M, _,.
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We can continue by induction to obtain (4.2).

If the simple European security V,,, is hedgeable, then there is a portfolio process whose self-
financing value process X, Xy, ..., X, satisfies X,,, = V,,,. By definition, X;. isthe APT value
at time k of V,,,. Theorem 3.12 saysthat

Xoy (147" Xy, ..o, (1+7)"™X,,
isamartingale, and so for each &,
(L4 )% Xy = E[(1+ )" X | Fi] = E[(1+ 1)V, | Fil.

Therefore, .
Xy = (1+ ) E[(1+ 7)™V, | Frl.

3.5 The Binomial Model is Complete

Can asimple European derivative security always be hedged? It dependson themodel. If theanswer
is“yes’, the model is said to be complete. If the answer is“no”, the model is called incomplete.

Theorem 5.14 The binomial model iscomplete. In particular, let V,,, be a simple European deriva-
tive security, and set

Vilwis - wp) = (L4 )P E[(1+ 7)™ Vo | Fil (w1 - - - wp), (5.1)

_ Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) —Sk+1(w1,... 7Wk7T)'

Ak(wh s 7wk) (52)

Sartingwithinitial wealth Vo = 7E[(1 + r)~"V,,], the self-financing val ue of the portfolio process
Ag, Ay, ..., Ay, istheprocess Vo, Vi, ..., V.

Proof: Let Vp,...,V,,_1 and Ag, ..., A,,_1 bedefined by (5.1) and (5.2). Set Xy = V, and
define the self-financing value of the portfolio process Ay, . .. , A,,_1 by therecursive formula 3.2

Xit1 = ApSi1 + (14 7) (X — ApSk).
We need to show that
X =V, Vke {0,1,... ,m}. (53)

We proceed by induction. For & = 0, (5.3) holds by definition of Xy. Assume that (5.3) holds for
somevalue of k, i.e., for each fixed (wy, ..., w;), we have

Xk(wh s 7wk) = Vk(wh s 7wk)‘
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We need to show that
Xk—l—l(wlv s ,Wk,H) = Vk—l—l(wlv s 7wk7H)7

Xk_|_1(w1, e 7Wk7T) = Vk+1(w1, e 7Wk7T).

We prove the first equality; the second can be shown similarly. Note first that

E[(1+r)" V| Fi] = EE[(L+ )" Vil Fra]| Fi]
= E[(1+7)"Vu| Fy]
= (1—|—T‘)_ka

In other words, {(1 + r) %V} }2_, isa martingale under P. In particular,

Vilwr,..oowr) = E[1+7) """V Frl@r, ... wi)

1 . -
= 755 V(@ wn H) o+ Vi (@ wn, 1))

+r
Since (wi, . .. ,wy) Will befixed for the rest of the proof, we simplify notation by suppressing these
symbols. For example, we write the last equation as

1 . -
Vi= T (PVit1 (H) + ¢V (1) -
We compute
Xpy1(H)

= AkSk+1(H)+ (1—|—T‘)(Xk—AkSk)

= Ay (Sk+1(H)— (1—|—T‘)Sk)—|—(1—|—7‘)vk

Ve (H) = Vi (7) (14

— T Sk - (14 S
Vg1 (H) + GViq 1 (1)

- VHI?(LZZ = Z;ZI(T) (wSk = (147)5k)

FPVis1(H) + Vi (T)
= Wi () = Vira (D) () o BV () + Vi (1)

= (Vi1 (H) = Vit (1)) G+ pViyr (H) + Vi1 (T)
= Vi (1),
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Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recdl that V,, is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vi = (14 ) E[(1+7r)""Vy,|F, k=0,1,...,m— L

_ Vk+1(w1,... 7Wk7H) — Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) — Sk+1(wl7... 7Wk7T)7

Ap(wy, ... wg) E=0,1,...,m— 1.

Example 4.1 (Lookback Option) u = 2,d = 0.5,r = 0.25,Sy = 4,p = 1+:ld =05,¢=1-—p=0.5.

U

Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

Va = max (Sx —5)T.
0<k<2
Notice that
Vo(HH) = 11, Vo(HT) =3 £ Va(TH) =0, Va(TT) = 0.
The payoff isthus* path dependent”. Working backward in time, we have:
1 4
V() = r[ﬁVQ(HH) + ¢V (HT)] = 5[0.5 x 114+ 0.5 x 3] = 5.60,
r

1

Vi(T) = £05% 0+ 0.5 % 0] =0,

_ 4

Vo 5 0.5 x 5.604 0.5 x 0] = 2.24.

Using these values, we can now compute;

Vi(H) —Vi(T) _
Bo = Sy(H) — S(T) ~ 093,
_ Vo(HH) = Va(HT) _
AuH) = Sy(HH) — So(HT) — 067,
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S =1

Figure 4.1: Stock price underlying the lookback option.

Working forward in time, we can check that
Xl(H) = A()Sl(H) + (1 + T)(Xo — AOSO) = 559, Vl(H) = 560,
Xl(T) = AoSl(T) + (1 + T)(Xo — AOSO) = 001, Vl(T) = 0,
Xy (HH) = Ay (H)Sy (HH) + (1+7)(X1(H) — Ay (H)S (H)) = 11.01; Vi(HH) = 11,
etc.
|

Example 4.2 (European Call) Letu = 2,d = 3,7 = £,5, =
with expiration time 2 and payoff function

e

,p = ¢ = %, and consider a European call

Vy = (S — 5)7.

Note that
Vo(HH) =11, Vo(HT) = Vo(TH) = 0, Vo(TT) = 0,

4
Vi(H) = 5[%.11+ £.0] =4.40
4
Vi(T) = 3[%.0+ £.01=0

4
Vo= l3 x 440+ 3 x 0] = 176,
Define v () to be the value of the call at time k& when S, = . Then
va(z) = (& —5)*
[3v2(22) + 5v2(2/2)],

vi(z) =

vo(x) =

O W= O

[1v1(22) + Lv1(2/2)].
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In particular,
v5(16) = 11, vy(4) = 0, v2(1) = 0,

4
v1(8) = 3[%.11 + 5.0] = 4.40,

e

vi(2) = 3[%.0 +£.0] =0,

4
v = (3 x 440+ 5 x 0] = L.T6.

Let &5 («) be the number of shares in the hedging portfolioat time & when S;, = «. Then

51 (l‘) _ vk+1(2x) - vk+1(x/2)

k=0,1.
20 —x/2 ’ ’

4.2 Computational Issues

For a model with » periods (coin tosses), 2 has 2" elements. For period k, we must solve 2%
equations of the form

1 .
Vielwr, .o wi) = ——[pVipr (w1, -+ wiy H) + ¢Viga (w1, - ., wi, T
1+r

For example, a three-month option has 66 trading days. If each day istaken to be one period, then
n =66 and 2% ~ 7 x 10

There are three possible waysto deal with this problem:

1. Simulation. We have, for example, that
Vo= (1+r)"EV,,

and so we could compute V|, by simulation. More specificaly, we could ssimulate » coin
tossesw = (wy,...,w,) under the risk-neutral probability measure. We could store the
value of V,,(w). We could repeat this several times and take the average value of V,, as an
approximationto IE'V,.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We'll get to that.

3. Look for Markov structure. Example 4.2 hasthis. In period 2, the option in Example 4.2 has
threepossiblevaluesv, (16), v2(4), vo(1), rather thanfour possiblevalues Vo (H H ), Vo(HT), Vo(T H), Vo (T'T).
If there were 66 periods, then in period 66 there would be 67 possible stock price values(since
the final price dependsonly on the number of up-ticks of the stock price—i.e., heads— so far)
and hence only 67 possible option values, rather than 266 ~ 7 x 1019,
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4.3 Markov Processes

Technical condition always present:We consider only functionson R and subsets of R which are
Borel-measurable, i.e., we only consider subsets A of R that arein B and functions g : IR— IR such
that ¢—! isafunction B—5.

Definition 4.1 () Let (22, F,P) be a probability space. Let {F}}_, be afiltration under 7. Let
{X1}7_, beastochastic processon (2, 7, ). Thisprocessis said to be Markov if:

e The stochastic process { X, } isadapted to thefiltration { 7 }, and

e (The Markov Property). Foreachk = 0,1,...,n — 1, thedistribution of X, conditioned
on F isthe same asthe distribution of X ;,; conditioned on X .

4.3.1 Different ways to write the Markov property

(@) (Agreement of distributions). For every A € B 2B (IR), we have

P(Xk_H € A|.7:k) = E[IA(Xk+1)|]:k]
ETTA(Xpg1)| X4]
= P[Xp41 € AIXG].

(b) (Agreement of expectationsof all functions). For every (Borel-measurable) function s : IR— IR
for which IE|h(Xj41)| < oo, we have

ETh(Xp41)|Fr] = B[ Xpq1) [ X3]-
(c) (Agreement of Laplace transforms.) For every u € IR for which FEeXk+1 < 00, we have

b/ [e“X’“‘H

}"k] - [e“Xk‘H

Xk] :

(If wefix v and define (z) = €**, then the equationsin (b) and (c) are the same. However in
(b) we have a condition which holdsfor every function &, and in (c) we assume this condition
only for functions’ of theform h(z) = ¢"*. A mainresultinthetheory of Laplacetransforms
isthat if the equation holdsfor every & of thisspecial form, then it holdsfor every A, i.e., (C)
implies (b).)

(d) (Agreement of characteristic functions) For every « € IR, we have
E [eiuX]H_l |]:k} - FE [eiuX]H—l |Xk} ,

wherei = /—1. (Since|e*”| = | cos z +sin z| < 1 wedon't need to assumethat IE|e™*| <
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Remark 4.1 In every case of the Markov properties where IF[. . .| X;] appears, we could just as
well write g(.X) for some function ¢g. For example, form (a) of the Markov property can be restated
as.
For every A € B, we have
P(Xi1 € AlFy) = 9(Xk),

where ¢ isa function that depends on the set A.

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a“current” time & and one future time & + 1. Conditions (a)-(d) are also equivalent to conditions
involving the process at time & and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov propertyL et j be a positiveinteger.

(A) Forevery Ay C IR,... , Axy; C R,

P[Xkt1 € Akgry oo s Xigj € Ak Fr] = P[Xky1 € Appr, oo Xy € Ak [ X

(A) Forevery A € IR/,

P[(Xk+17 . 7Xk+j) - A|.7:k] = P[(Xk-l—h . 7Xk+j) € A|Xk]

(B) For every function i : IR/ — IR for which IE|h( X4 1, - - - , Xpa ;)| < oo, we have

E[h(Xk-I-h . e 7Xk_|_])|.7:k] — E[h(Xk-I-h . e 7Xk+])|Xk]

(C) Forevery u = (g1, .-, ups;) € IR for which IE|ets+1Xnt1t+urt; Xets | < o0, we have

E[euk+1Xk+1+~~~+uk+] KXitj |fk] — E[euk+1Xk+1+~~~+'U«k+] KXigy |Xk]

(D) Forevery u = (ugy1,-- . ,upy;) € IR? wehave

E[ei(ukHXkH+~~~+uk+JXk+J)|}‘k] - E[ei(uk+1Xk+1+~~+uk+gXk+;)|Xk]'

Once again, every expression of the form IF(...|X}) can aso be written as ¢(X}), where the
function g depends on the random variable represented by . . . in thisexpression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) = (A). (with j = 2 in (A)) Assume (b). Then (a) aso holds (take h = 1,).
Consider
P[Xpy1 € Apgr, Xpy2 € Apgo| Fil
= Ela,,  (Xep) g, (Xeg2)[Fi
(Definition of conditional probability)
= B A, (Xep) T4, (Xe2) [P ]| F]
(Tower property)
= By, (Xepr) By, (X)) 73]
(Taking out what isknown)
= Ela,, (Xppr) By, (X2 [ X ][ 7]
(Markov property, form (a).)
= By, (K1) -9(Xpp )| Fy]
(Remark 4.1)
= B, (Xen)-9(Xea) [ X
(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditioned on o (X ), and
use the tower property on the | eft, to obtain

PXkt1 € Apprs Xppo € Appal Xo] = B[4, (Xer1) g (Xiga) [ X 31
Since both
PP[Xk+1 € Akt1, Xpyo € Apyo| Fi

and
P[Xkt1 € Apyr, Xpgo € Apyo| Xi]

are equal to the RHS of (3.1)), they are equal to each other, and thisisproperty (A) withj = 2. =

Example 4.3 It isintuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove thislater. If we want to estimate the distributionof S 11 based on theinformationin
Fi, the only relevant piece of information isthe value of .Sj;. For example,

E[Sk11|Fk] = (pu+ §d)Sk = (1+1)8}, (3.2)

isafunction of S;. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that for any function £, B
ETh(Sk41)|F k]

isafunction of Sy. Equation (3.2) isthe case of h(z) = =.
Consider amodel with 66 periods and a simple European derivative security whose payoff at time 66 is

1
Ves = 3(564 + Ses + Ses).
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The value of thissecurity at time50is

Vso = (147)E[(14 r) "% Ve | Fs0]
= (14 7)Y B [Ves|S50],

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, the F5y-measurable random variable V5, can be written as

Vio(wi, ..., ws0) = 9(Sso(wi, ... ,ws0))

for some function ¢, which we can determine with a bit of work. [ ]

4.4 Showing that a process is Markov

Definition 4.2 (Independence)Let (2, F,I?) be a probability space, and let G and 7 be sub-o-
algebras of 7. We say that G and / are independent if for every A € G and B € H, we have

P(AN B) = IP(A)IP(B).

We say that arandom variable X isindependent of ac-algebrag if o(.X), the o-algebra generated
by X, isindependent of G.

Example 4.4 Consider the two-period binomial model. Recall that 7 isthe o-algebra of sets determined
by thefirst toss, i.e., F; containsthe four sets

Ap & {HH, HTY, Ar 2 (TH,TT}, ¢, Q.
Let H bethe o-algebra of sets determined by the second toss, i.e., # contains the four sets
{HH,TH} {HT TT}, ¢,%.

Then F, and # are independent. For example, if wetake A = {HH, HT}fromF,and B = {HH,TH}
from 7, then IP(A N B) = IP(HH) = p* and

P(A)P(B) = (9 +p9)(0° +pa) =P’ (p +0)° = p°.
Note that F; and S, are not independent (unlessp = 1 or p = 0). For example, one of the setsin ¢(Sz2) is
{w; Sy(w) = u?Sp} = {HH}. If weteke A = {HH,HT} from F; and B = {H H} from ¢(S5), then
P(ANB) = IP(HH) = p* but

P(A)IP(B) = (0” + po)p” =p°(p + ¢) =p°.

The following lemmawill be very useful in showing that a processis Markov:

Lemma 4.15 (Independence Lemma)Let X and Y be random variables on a probability space
(Q, F,P). Let G be a sub-c-algebra of F. Assume



74

e X isindependent of G;
e Y isG-measurable.

Let f(z, y) be afunction of two variables, and define

a(y) £ Ef(X,y).

Then
E[f(X,Y)|g] = g(Y).

Remark. In thislemma and the following discussion, capital |etters denote random variables and
lower case |etters denote nonrandom variables.

Example 4.5 (Showing the stock price process is MarkoviConsider an n-period binomial model. Fix a

time k and define X 2 Sg—;rl andG 2 Fp.. Then X = uifwpys = Hand X = dif wpy, = T. Since X
depends only onthe (£ + 1)st toss, X isindependent of G. DefineY’ 2 Sk, sothat Y isG-measurable. Let

be any functionand set f(xz, y) 2 h(zy). Then

9(y) = Ef(X,y) = ER(Xy) = ph(uy) + gh(dy).

The Independence Lemma asserts that

Eh(Sks1)|Fr] = Elh (ngl.sk) | 7]

= E[f(X,Y)|d]
= g(Y)
= ph(uSk) + q¢h(dSk).

This shows the stock price is Markov. Indeed, if we condition both sides of the above equation on (S} ) and
use the tower property on the left and the fact that the right hand sideis (S}, )-measurable, we obtain

Thus E[h(Sk+1)|Fi] and IE[h(Sk+1)| Xk are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
E[h(Sk+1)|Fr] asafunction of Si. Thisisaspecia case of Remark 4.1.

4.5 Application to Exotic Options

Consider an n-period binomia model. Define the running maximum of the stock price to be

A
M, = max S;.
1<j<k

Consider a simple European derivative security with payoff at time » of v, (S, M.,).
Examples:
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o v,(S,, M,) = (M, — K)* (Lookback option);
o 0,(Sy, M) = Ing, > (S, — K) (Knock-in Barrier option).

Lemma 5.16 Thetwo-dimensional process{ (S, My) }7_, isMarkov. (Here we areworking under
the risk-neutral measure P, although that does not matter).

Proof: Fix k. We have
Mps1 = MV Siqa,

where V indicates the maximum of two quantities. Let 7 = %:—1 so

P(Z=uw)=p P(Z=d=§
and Z isindependent of 7. Let h(z, y) beafunction of two variables. We have

h(Sk+1, Mg+1) = h(Sks1, MV Skt1)
h(ZSk, M Vv (ZSk))

Define

>

FEh(Zz,yV (Zz))
ph(uz,yV (ux))+ ¢h(dz,y v (dz)).

9(z,y)

The Independence Lemma implies
Eh(Sk1, Mit1)|Fi] = g(Sk, Mi) = ph(uS, My, V (uSk)) + Gh(dSi, M),

the second equality being a consequence of the fact that M A dS, = M. Since the RHS is a
function of (S, M), we have proved the Markov property (form (b)) for this two-dimensional
process. [ ]

Continuing with the exotic option of the previousLemma... Let V. denote the value of the derivative
security at time k. Since (1 + r)~*V}, isamartingale under /P, we have

1 ~—
Vk 147 [Vk+1|]:k]7 y Ly y T

At thefinal time, we have
Vi = v, (Sp, My).

Stepping back one step, we can compute

1 —
Vi = —Fv, Snan Fne
1 1+7r [U ( )| 1]
1
= —1 T [ﬁvn(USn—h USn_l vV Mn—l) + (jvn (dsn—h Mn—l)] .
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Thisleads usto define

oumt(e,9) & o o, uz V y) + o, (d, )]
S0 that
Vn—l = Un—l(Sn—h Mn—l)-

The general agorithmis

1T N
vp(2,Y) = —— | PUrg1 (uz, uz V y) + Gurgr (de, y) |,

1+r
and the value of the option at time & is v (Sk, Mj). Since thisis a simple European option, the
hedging portfoliois given by the usual formula, whichinthiscaseis

Vk4+1 (uSk, (uSk) vV Mk) — Uk41 (dSk, Mk)

Bk = (u—d)Sk
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Stopping Times and American Options

5.1 American Pricing

Let us first review the European pricing formula in a Markov model. Consider the Binomial
model with » periods. Let V,, = ¢(S,,) be the payoff of a derivative security. Define by backward
recursion:

va(2) = gla)
0(e) = i (us) + G (do))

Then v, (S) isthe value of the option at time &, and the hedging portfoliois given by

V1 (wSk) — vpg1 (diSk)
Ak (u — d)Sk 3 07 3 4 y T

Now consider an American option. Again a function ¢ is specified. In any period k, the holder
of the derivative security can “exercise” and receive payment ¢(.S;). Thus, the hedging portfolio
should create a wealth process which satisfies

Xk > g(Sk), Yk, amost surely.

Thisis because the value of the derivative security at time & isat least ¢(S ), and the wealth process
value at that time must equal the value of the derivative security.

American algorithm.

va(z) = g(2)

vp(z) = max{ !

1+r

(o (0) + o (ds), 9(a) |
Then v, (Sy) isthe value of the option at time k.
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S,(HH) = 16 12(10) =0

Sl(H) =8
SHT) =4
v2(4) =1
S,(TH) = 4
§(M =2

VA

S(M=1 w@) =4

Figure 5.1: Stock price and final value of an American put option with strike price 5.

Example 5.1 SeeFig.5.1. Sy = 4,u = 2,d = %,r: %,f): j= %,n: 2. Setva(z) = g(x) = (5 —=)*.
Then

Lo+11] (5—8)+}

g

v1(8) = max

5!
]
)

(S g ] OTI»-B

= 040

il

v1(2) = max

21+ 14] (5—2)+}
= max

= 3.00
vo(4) = max{% [£.(0.4)+ £.(3.0)], (5 — 4)"'}

= max{1.36,1}
= 1.36

Let us now construct the hedging portfolio for this option. Begin with initial wealth X ; = 1.36. Compute
A asfollows:

040 = v (Si(H))
= S (H)Ap+ (14 7)(Xo — AoSo)
= 8A¢+ 5(1 36 — 4A,)
= 3A¢+ 1.70 — Ay = —0.43
3.00 = v (S (T))
= 51 (T)Aq+ (1+ r)(Xo — ApSp)
= 2+ 5(1 36 — 4A,)
= —3A¢+1.70 => Ag = —0.43
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Using Ay = —0.43 resultsin

Xl(H) = 1)1(51 (H)) = 040, Xl(T) = Ul(Sl(T)) = 3.00

Now let us compute A; (Recall that S1(7T') = 2):

1 = 02(4)
= Sy (TH)A(T) + (1 + r)(X1(T) = A (T) S (T))

AN(T) + %(3 —2A4(T))
15AL(T) +3.75 = A (T) = —1.83

02(1)
= S(TT)A(T) + (1 4+ r)(X1(T) — A (T)5:(T))

e
Il

AT + 23— 2,(1))
—15A(T) +3.75 = A(T) = —0.16

We get different answers for A (T)! If we had X5 (T') = 2, the value of the European put, we would have
1=15A(T) 425 = A (T) = -1,

4=—15A(T) + 2.5 = A(T) = —1,

5.2 Value of Portfolio Hedging an American Option

Xit1 = ApSpyr+ (14 7)(Xe — Cr — ApSk)
= (1 + T‘)Xk + Ak(SkH — (1 + T‘)Sk) — (1 + T‘)Ck

Here, C';. isthe amount “consumed” at time k.
e The discounted value of the portfoliois a supermartingale.

e Thevaluesdtisfies X, > ¢(Sk),k=0,1,...,n.

e Thevaue processisthe smallest process with these properties.

When do you consume? If
B+ )~ D (Segn) | FR] < (14 1) " op(Sk),

or, equivalently,
1

E
(1—|—r

Vk41 (Sk4+1)|Fr) < vk (Sk)
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and the holder of the American option does not exercise, then the seller of the option can consume
to close the gap. By doing this, he can ensure that X, = v (Sk) for al k, where vy, is the value
defined by the American algorithm in Section 5.1.

In the previous example, v1 (S1 (1)) = 3, v2(S2(T'H)) = 1 and vg(S2(1T1")) = 4. Therefore,

1

IE
[1—|—r

v(S)|F)(T) = |51+ 54]
= 53]

vi(S1(T)) =

| Ot

Il
wdwm

so there isa gap of size 1. If the owner of the option does not exercise it a time one in the state
wy = T, thenthe seller can consume 1 at time 1. Thereafter, he usesthe usual hedging portfolio

Ukt1 (wSk) — vpg1(dSk)

Bk = (u—d)Sk

Inthe example, we have vy (S1(7")) = ¢(S1(1')). Itisoptimal for the owner of the American option
to exercise whenever itsvalue v, (S) agreeswithitsintrinsicvalue g (Sy).

Definition 5.1 (Stopping Time) Let (2, 7, P) be a probability space and let {F}}7_, be afiltra-
tion. A stoppingtimeisarandomvariable T : Q—{0,1,2,...,n} U {occ} with the property that:

{weQr(w)=k} e Fr, VE=0,1,...,n,00.

Example 5.2 Consider the binomial model withn = 2,5y = 4,u = 2,d = $,r = 1,

5 0j=q=1% Let
v, v1, v2 bethe value functions defined for the American put with strike price 5. Define

5 .

7(w) = min{k; vg(Sk) = (5 — Sk) T}

The stopping time 7 corresponds to “stopping the first time the value of the option agrees with itsintrinsic
value'. Itisan optimal exercise time. We note that

. 1 ifwe Ap
W= 9 iy € Ap

We verify that — isindeed a stopping time:

{wiTlw) =0} = ¢€Fy
fwitlw =1} = Arer
fwitlw) =2} = AmerFy

Example 5.3 (A random time which is not a stopping time) In the same binomial model asinthe previous
example, define
p(w) = min{k; Sy (w) = ma(w)},



CHAPTER 5. Stopping Times and American Options 81

where my 2 ming< ;<2 S;. In other words, p stops when the stock price reaches its minimum value. This
random variableis given by

0 ifw EAH,
pw)y=¢ 1 ifw=TH,
2 fw=1T
We verify that p isnot a stopping time:
{w; plw) =0} A & Fo
{wiplw) =1} = {TH}¢ F,
{wirlw) =21 = {TT}eF:

5.3 Information up to a Stopping Time

Definition 5.2 Let 7 be astoppingtime. We say that aset A C 2 isdetermined by time 7 provided
that
ANn{w;T(w) =k} € Fy, Vk.

The collection of setsdetermined by 7 isa o-algebra, which we denote by F ..
Example 5.4 In the binomial model considered earlier, let
7 = min{k; v (Sk) = (5 — Sk) T},

ifwe Ap

1
W) =9 9 ifwe Ay

Theset { HT'} isdetermined by time 7, but the set {7 H } is not. Indeed,

{HT}N{w;t(w) =0} = ¢ € Fy
{HTY{w;7(w) =1} = ¢&F,y
{HT}n{w;r(w) =2} = {HT}E€Fy

but
{THYN{w;r(w) =1}y ={TH} ¢ F;.
The atomsof F, are
{HT}, {HH}, Ap = {TH,TT}.
[ ]

Notation 5.1 (Value of Stochastic Process at a Stopping TimdY (2, F, P’) isaprobability space,
{Fr}r_, isafiltrationunder F, { X} }}_, isastochastic process adapted to thisfiltration, and 7 is
a stopping time with respect to the same filtration, then X ; is an F .-measurable random variable
whosevalue at w isgiven by
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Theorem 3.17 (Optional Sampling) Supposethat { Y, Fi }72, (or {Yx, Fr}i_,) isa submartin-
gale. Let 7 and p be bounded stopping times, i.e., there isa honrandom number » such that

7 <mn, p<mn, almostsurely.

If 7 < p almost surely, then
Y, < IE(Y,|F,).

Taking expectations, weobtain 'Y, < I'Y,, andinparticular, Yy = IEYy < IEY,. It {Yy, Fr}72,
isasupermartingale, then 7 < p impliesY, > IE(Y,|F;).
If {Y%, Fr}72, isamartingale then 7 < pimpliesY, = I (Y,|F;).

Example 5.5 Intheexample 5.4 considered earlier, we define p(w) = 2 foral w € Q. Under the risk-neutral
probability measure, the discounted stock price process (g)"“ Sk isamartingale. We compute

B[(2) sf]

Theatomsof F, ase {HH },{HT}, and Ar. Therefore,
~ | 74\?

FEl|l=-]) S

[(5) ’

~ | 7a\?

FEl|l=-]) S

[(5) ’

Sa(HH),

]—"T] (HH)

F. | (HT)

Sa(HT),

andforw € Arp,

]—"T] @ = 1 (g)zsz(m) Ty (%)ZSQ(TT)

= £ x256+ % x0.64
= 1.60

In every case we have gotten (see Fig. 5.2)

[

ﬂ] () = (g)““)sﬂw»
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/116/25) S)(HH) = 10.24

(4/5) S (H) = 6:40

\(16/25) S)(HT) = 2.56
% /(16/25) S,(TH) = 256

@s)§ (M = 1-6\
(16/25)S,(TT) = 0.64

Figure 5.2: Illustrating the optional sampling theorem.
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Chapter 6

Properties of American Derivative
Securities

6.1 The properties

Definition 6.1 An American derivative security is a sequence of non-negative random variables
{Gy}}_, such that each G}, is F-measurable. The owner of an American derivative security can
exercise a any time k, and if he does, he receives the payment G

(8) ThevalueV}, of the security at time k is
Vi = max (14 )P IE[(1 4 r)77G | Fil,
where the maximum isover al stoppingtimes r satisfying r > & amost surely.
(b) Thediscounted valueprocess{(1 + r) %V} }7_, isthe smallest supermartingalewhich satisfies
Vi > G, Yk, amost surely.
(c) Any stoppingtime 7 which satisfies
Vo= FE[(14r)""G,]
isan optimal exercise time. In particular
7 2 min{k; Vi = Gy}
isan optimal exercisetime.
(d) The hedging portfolioisgiven by

_ Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) — Sk+1(wl7... 7Wk7T)

Ap(wy, ... wg) k=0,1,...,n—1.

85
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(e) Supposefor some k and w, we have Vi (w) = Gk (w). Then the owner of the derivative security
should exerciseit. If he does not, then the seller of the security can immediately consume

Velw) = 1 FlVet 7))

and still maintain the hedge.

6.2 Proofs of the Properties

Let {G' }7_, be asequence of non-negative random variables such that each G}, is F1,-measurable.
Define T}, to be the set of all stopping times  satisfying k < 7 < n amost surely. Define also

Vi 2 (14 7)) max B [(1+r) 7G| Fy.

TETk

Lemma 2.18 V. > G, for every k.

Proof: Taker € T} to bethe constant %. ]

Lemma 2.19 The process { (1 + r) %V} }?_, isa supermartingale.
Proof: Let 7* attain the maximum in the definition of Vi1, i.e,

(1 1)~y = B [(1 4+ )77 G| Fpa
Because 7* isalsoin 7%, we have

El147) V| ] = B [E[(1+ )77 Goe| Pyl 4]

E[(1+1r)77 G e | Fy]
max I [(1+r)" 7G| Fi]

TETk

(1 + T‘)_ka.

IA

Lemma 2.20 If {Y} }}_, isanother process satisfying
Y > G, k=0,1,...,n, as,
and {(1 4 r)~*Y}, }7_, isa supermartingale, then

Y > Vi, k=0,1,...,n, as
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Proof: The optional sampling theorem for the supermartingale { (1 + r) ~*Y}. }7_, implies
E[(1+ )Y, Fr] < (14 r) %Y, V7 € Ty
Therefore,
Vi = (14 maxE[(1+7)77G,|Fy]

TETk

< (1+r)k%xﬁ[(1+r)—m|fk]
T k
< (L+n)TFL )Y
= Y.
|
Lemma 2.21 Define

1 —

Cr = Vk—l_l_—rE[VkHVk]

= L) = B )V F)

Snce {(1 + r)~*V,.}7_, isasupermartingale, C'x must be non-negative almost surely. Define

. Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)

A = )
k(wh 7<.Uk) Sk+1(w17...7Wk7H)_Sk-|—1(w17"'7wk7T)

Set Xy = Vy and define recursively
Xk-l—l = Aksk-H + (1 + r)(Xk — Ck — AkSk)

Then
X, =V, VE.

Proof: We proceed by induction on k. The induction hypothesisis that X, = V. for some
ke{0,1,...,n—1},i.e, for eachfixed (v, ... ,w;) we have

Xk(wh s 7wk) = Vk(wh s 7wk)‘
We need to show that
Xk_|_1(w1, e 7Wk7H) = Vk+1(w1, e 7Wk7H)7

Xk-l—l(wlv s 7wk7T) = Vk-l—l(wlv s 7wk7T)‘
We prove thefirst equality; the proof of the second is similar. Note first that

Vk(wh s 7wk) - Ck(wh s 7wk)
1 —~
= —F
1+r [Vk+1|]:k](w17 7wk)
1

= —(ﬁvk-l-l(wlv"' 7wk7H)+(ij+1(w17"- 7wk7T))'
14r
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Since (wy, ... ,wg) Will be fixed for the rest of the proof, we will suppress these symbols. For
example, the last equation can be written simply as

1 N -
Vk — Ck = m (ka+1(H) + qVk-I-l(T)) .

We compute

Xk-|—1(H) = Aksk+1(H)—|—(1—|—T‘)(Xk—0k—AkSk)
_ Vi (H) = Vi (T)
= S (E)Sen() S~ 1408
+(+ ) (Vi = Ck)
= VkH((Z)_—d)‘gc:l(T) (wSk — (14 7)S)
+pVir1 (H) + ¢Viy1 (T)
= (Vi1 (H) = Vit (1)) G + pVig1 (H) + ¢Vir (T)

= Vit (H).

6.3 Compound European Derivative Securities

In order to derive the optimal stopping time for an American derivative security, it will be useful to
study compound European derivative securities, which are also interesting in their own right.

A compound European derivative security consists of n + 1 different simple European derivative
securities (with the same underlying stock) expiring at times 0, 1, ... , n; the security that expires
at time j has payoff C';. Thusa compound European derivative security is specified by the process
{C;}}=0, Where each C; is F;-measurable, i.e., the process {C;}"_ is adapted to the filtration
{fk}zzo-

Hedging a short position (one payment) Here is how we can hedge a short positionin the j'th
European derivative security. The value of European derivative security j at time & is given by

VI = (L4 ) Bl 1) G| F, k=0,
and the hedging portfolio for that security is given by

Vk(j) (wiy.o.ywi, H) —Vk(j) (wiyeooywi, 1)

A(j)wl,...,wk: +1 +1 k=0,...,7—1.
i ) 5u) Wiyeon Wi, H _ s Wiy ewn WE, T
k+1 k+1

~—

Thus, starting with wealth Vo(j), and using the portfolio (Aéj), e ,Ay_l), we can ensure that at
time j we have wealth C’;.

Hedging a short position (all payments). Superpose the hedges for the individual payments. In
other words, start withwealth Vo = >°%_ VO(]). Ateachtimek € {0,1,... ,n — 1}, first make the
payment C';, and then use the portfolio

A = Ak(k+1) + Ak(k+2) +...+ Ak(n)
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corresponding to all future payments. At the fina time n, after making the final payment C',,, we
will have exactly zero wealth.

Suppose you own a compound European derivative security{C';}”_,. Compute

Vo=V =F [Z (14 r)=iC;

i=0

and the hedging portfoliois { A }7Z;. You can borrow V;, and consume it immediately. Thisleaves
you with wealth Xy = —Vj. In each period &, receive the payment C}. and then use the portfolio
—Ap. Atthefinal timen, after receiving the last payment C,, your wealth will reach zero, i.e., you
will no longer have a debit.

6.4 Optimal Exercise of American Derivative Security

In this section we derive the optimal exercise timefor the owner of an American derivative security.
Let {Gx}7_, be an American derivative security. Let 7 be the stopping time the owner plans to
use. (We assume that each G, is non-negative, so we may assume without loss of generality that the
owner stopsat expiration —time n—if not before). Using the stoppingtime r, in period j the owner
will receive the payment

Ci = Ir=pGi-

In other words, once he chooses a stopping time, the owner has effectively converted the American
derivative security into a compound European derivative security, whose valueis

vi) = F (1+r)7iC;

=

R
Il
=]

= F

I

Il
=]

L+ ) =G

J

= E[(1+r)7"G,).

The owner of the American derivative security can borrow this amount of money immediately, if
he chooses, and invest in the market so as to exaclty pay off his debt as the payments {C';}7_, are

received. Thus, his optimal behavior isto use a stopping time = which maximizes VO(T).
Lemma 4.22 VO(T) is maximized by the stopping time

7™ = min{k; Vi = G }.
Proof: Recall the definition

A I, -7 — (7)
Yo = m LA Te = o
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Let 7’ beastoppingtimewhich maximizesVO(T), e Vo=IE [(1 + r)_T/GT/} .Because { (1 + ) *V,}7_,
is a supermartingale, we have from the optional sampling theorem and the inequality V;, > Gy, the
following:

Vo > IE[(147)77Va| Fol
= E[1+n)7V]
> ﬁ[(Hr)—T’GT,}
=

Therefore,
Vo= [(1+1)"Vo| = B [(14+ 7)o,

and
V.= Gq-/7 as.

We have just shown that if 7/ attains the maximum in the formula

Vo = max IE[(1+r)"7G,], (4.1)
T€TH
then
VT/ = Gq-/7 as.

But we have defined
™ = min{k; Vi = G},

and so we must have 7* < 7/ < n amost surely. The optional sampling theorem implies
(I+47r)7Ger = (L47)7 Ve
> B [(1 + r)_T/VT/|}'T*}
= B[(1+r)7CoF].
Taking expectations on both sides, we obtain
E(147)7"Gre | > B [(141)77G] = Vo,

It followsthat 7* also attains the maximum in (4.1), and is therefore an optimal exercise time for
the American derivative security. [
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Jensen’s Inequality

7.1 Jensen’s Inequality for Conditional Expectations

Lemma 1.23 If ¢ : IR— IR isconvex and IF|¢(X)| < oo, then
Elp(X)[G] 2 ¢(IE[X|G]).
For instance, if G = {¢, Q}, p(z) = 2%

EX*> (EX)2

Proof: Since ¢ isconvex we can expressit as follows (See Fig. 7.1):

p(z) = max h(z).
h<e
hislinear

Now let /(z) = az + b liebelow ¢. Then,

Elp(X)|G] > ElaX + /7]
= aB[X|G] +b
= h(E[X]|G])

Thisimplies

Ele(X)|g) > max (E[X|g)
hislinear

= »E[X]|9).
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Figure 7.1: Expressing a convex function as a max over linear functions.

Theorem 1.24 If {Y;,}7_, isamartingaleand ¢ is convex then {¢(Y}) }7_, isa submartingale.

Proof:

Ele(Yes)|Fe] = @(EYig1|F])
= (V).

7.2 Optimal Exercise of an American Call

Thisfollowsfrom Jensen’sinequality.

Corollary 2.25 Given a convex function ¢ : [0, co)— IR where ¢(0) = 0. For instance, ¢(z) =
(x — K)™ isthe payoff function for an American call. Assumethat » > 0. Consider the American
derivative security with payoff ¢ (Sy) in period k. The value of this security isthe same asthe value
of the simple European derivative security with final payoff ¢(5,,), i.e,

B (14 r)7g(5,)] = max B [(1+ r)"g(S.)].

where the LHSis the European value and the RHSisthe American value. In particular 7 = n isan
optimal exercise time.

Proof: Because g isconvex, for al A € [0, 1] we have (see Fig. 7.2):
g(Ar) = gz +(1-1).0)
< Ag(z)+ (1= 2).9(0)
= Ag(x).
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(x9(x)
(AxA g(x)

\ X
(AX, g(AX))

Figure 7.2: Proof of Cor. 2.25

Therefore,
g (1 i T‘Sk+1) < ﬁg(skﬂ)
and
E [+ tgSl7] = (140)7E | g(Sun)l ]
o e ()i
> (147)~ ( [ Sk+1|fk)
— (14 Fg(s0),

So {(1+7)~*g(Sk)}7_, isasubmartingale. Let + be a topping time satisfying 0 < 7 < n. The
optional sampling theorem implies

(L4 7)779(S7) < E[(1+1r)"g(Sn)| F5].
Taking expectations, we abtain

E[1+)7g(5)] < E(E[1+7r)"g(S)|7])
= E[(1+7r)"g(Sn)].
Therefore, the value of the American derivative security is
max B [(1+ 1) ~7g(S,)] < B [(1+7)"g(S,)],

and this last expression is the value of the European derivative security. Of course, the LHS cannot
be strictly less than the RHS above, since stopping at time » is aways alowed, and we conclude
that

max I [(1+ ) 7g(S,)] = E[(1+7r)7"g(S)].
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/ S,(HH) = 16
§H=8

\ S(HT) =4

9= / S,(TH) = 4
§M =2

S =1

Figure 7.3: Athree period binomial model.

7.3 Stopped Martingales

Let {Y}}7_, be astochastic process and let ~ be a stopping time. We denote by {Yin,}7_, the
stopped process
Yirr@wy(w), k=0,1,...,n.

Example 7.1 (Stopped Process}igure 7.3 shows our familiar 3-period binomia example.

Define
_ 1 if Wi —T,
W=\ 9 i wi=H
Then
Sa(HH) =16 if w=HH,
) So(HT) =14 if w=HT,
Sune@) (@) =93 g(1) = 2 if w=TIHI,
S (T) =2 if w=1TT.

Theorem 3.26 A stopped martingale (or submartingale, or supermartingale) is still a martingale
(or submartingale, or supermartingal erespectively).

Proof: Let {Y}}7_, beamartingae, and  be a stopping time. Choosesome k£ € {0,1,...,n}.
Theset {7 < k}isinF;,sotheset {r > k4 1} = {r < k}°isadsoin F;. We compute
I {Y(H1)AT|}%} = F [I{Tgk}YT + ]{72k+1}Yk+1|fk}
= ToanYr + Lpspp B Y1 | Fr]

= l<Yr + Lok
= Yinr.
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Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample space €2 is the set of all infinite sequences
w = (w1, wy,...)of HandT. Assumethe tosses are independent, and on each toss, the probability
of H is }, asisthe probability of 7". Define

)1 if w; =4,
YJ(“)—{ 1 ifw =T,

MO — 07
k

My = > Y, k=1,2,...
J=1

The process { M}, } 72, isasymmetric randomwalk (see Fig. 8.1) Itsanalogue in continuoustimeis
Brownian motion.

Define
7 =min{k > 0; M = 1}.

If M) never getsto 1 (eg., w = (T'TTT...)), then T = co. Therandom variable 7 is called the
first passagetimeto 1. It isthefirst time the number of heads exceeds by one the number of tails.

8.2 7 is almost surely finite

It isshownina Homework Problem that { M}, } 72 o and { Ny }72 , where

[ -4
N, = exp{OMk—klog (6 —;e )}

= €€Mk ( 2 )k
el + e 0

97
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Mk
Figure 8.1: The randomwalk process M,
b 0 2
2 b O
1 1
3] ‘/\ 0

Figure 8.2: Illustrating two functions of ¢

are martingales. (Take M, = —.S;. in part (i) of the Homework Problem and take § = —o in part
(v).) Since Ny = 1 and astopped martingale isa martingale, we have

9 kAT
1= ENk/\T = JF [eeMkAT <€€ T 6_0) ] (21)

for every fixed 6 € IR (See Fig. 8.2 for anillustration of the various functionsinvolved). We want
to let k—oo in (2.1), but we have to worry a bit that for some sequencesw € €2, 7(w) = oo.

p
) <
( 9 )’f“_}{(ﬁy if < oo,

We consider fixed 8 > 0, so

As k— o0,

el + et 0 if =00

Furthermore, My, < 1, because we stop this martingale when it reaches 1, so

0 < ?Mrnr < (6
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and

In addition,

0 if 7=o0.

lim efMinr ( 2 )k/w = { e’ (eeﬂl—%) it 7 < oo,

Recall Equation (2.1):

E[€€MkAr< 5 2 e)k/\T =1
e’ + e~

Letting k—oc, and using the Bounded Convergence Theorem, we obtain

2 T ]
6 _
F [6 (69 i 6_0) I{T<OO}- =1. (22)
For al 6 € (0, 1], we have
2 T
6
0<e (m) Iircooy <6
sowecan let 10 in (2.2), using the Bounded Convergence Theorem again, to conclude
E [I{T < oo}} =1

e,
P{r < oo} =1.

We know there are paths of the symmetric random walk { M, }72, which never reach level 1. We
have just shown that these paths collectively have no probability. (In our infinite sample space €2,
each path individually has zero probability). We therefore do not need the indicator 7 {r < o0} in

(2.2), and we rewrite that equation as

E [(eu%)] =e?, (2.3)

8.3 The moment generating function forr

Let o € (0,1) begiven. Wewant to find # > 0 so that
2
o = 769{—6_9 .

Oeee—l—oee_e—QIO

Solution:

04(6_9)2 —2¢ 1 a=0



100

e =

s 1EV1-a?
" )

We want § > 0, so we must havee=? < 1. Now 0 < a < 1,s0

0<(l-a)<(l-a)<l-a?

l—a<V1-a?

1-V1-a?<a,

1—+vV1—a?

— <1

(8
We take the negative square root:

g 1=V1- o’

" .

Recall Equation (2.3):

2 N\,

Witha € (0,1) and § > 0 related by

_o 1—+1—=a2
€ = -
o b
2
“ = e +e-0)’
this becomes
1-vV1-a?
Fa=—"—Y""% gca<l.
(0%

We have computed the moment generating function for the first passage timeto 1.

8.4 Expectation ofr

Recall that
1-VIi-a?
Fa™ = Y 0<a<l,
a
SO
d
%EO(T = FE(ra™™h
d [1-V1-a?
- da o
1—+v1—a?

a?V/1— a2’

(3.1)
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Using the Monaotone Convergence Theorem, we can let «11 in the equation

1 1—+vV1-a?
FE(ra™) = ————,
a1 — a?
to obtain
Fr=oc

Thusin summary:
r2 min{k; My = 1},

P{r <0} =1,

Fr = 0.

8.5 The Strong Markov Property

The random walk process { M} }72, isaMarkov process, i.e.,

IF | random variabledependingonly on My, Mgio,...| Fil

= JF'[ samerandom variable |Mj].

In discrete time, this Markov property impliesthe Strong Markov property:

IF | random variabledependingonlyon M.y, M, 4o, ..

= [ samerandomvariable | M,].
for any almost surely finite stoppingtime 7.

8.6 General First Passage Times

Define
Tmémin{kZO;Mk:m}, m=1,2,...

| F5]
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Then 7 — 71 isthe number of periods between the first arrival at level 1 and thefirst arrival at level

2. Thedistributionof 7o — 7 isthe same asthe distributionof 7, (see Fig. 8.3), i.e.,

1-vVI—a?
Ea™ ™ = % a € (0,1).



102

To-1
Figure 8.3: General first passagetimes.

For o € (0,1),
Ela™|F,] = E[a"a™ " |F,]
= o Fa™ T F,]
(taking out what is known)
= o IFa™ M ]
(strong Markov property)
= o F[a™

(M;, =1, notrandom )

o 1—+v1—0o?
= —
Take expectations of both sidesto get
_ _ A2
Fam — ]Ea(li Vi-a )
(8
 [1-vitaz)’
- (8
In general,
1 —a2\™
Eamm = (ﬁ) o€ (0,1).
(8

8.7 Example: Perpetual American Put

Consider the binomial model, withu = 2,d = },r = %, and payoff function (5 — Si)*. Therisk
neutral probabilitiesare p = 1, § = 3, and thus

Sy, = SouMk,
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where M}, is a symmetric random walk under the risk-neutral measure, denoted by P. Suppose
So = 4. Here are some possible exercise rules:

Rule 0: Stop immediately. 7o = 0, V{0) = 1.

Rule 1: Stop as soon as stock pricefalsto 2, i.e., at time

T_1 = min{k; My = —1}.
Rule 2: Stop as soon as stock pricefalsto 1, i.e., at time

T_o 2 min{k; My = —2}.

Because the random walk is symmetric under P, 7_ has the same distribution under P asthe
stopping time 7,,, in the previous section. This observation leads to the following computations of
value. Value of Rule 1:

Ve = B[40 (5 5,,)"

= G-2*B )]

4
5

Value of Rule 2:
Vi) = (5= )PE (7]
= 4.(3)?

This suggeststhat the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
fallsto 2, and the value of the put is 2 if S = 4.

Suppose instead we start with .S, = 8, and stop the first time the price fallsto 2. This requires 2

down steps, so the value of thisrule with thisinitial stock priceis
— 3
_ 9t 2| g (L2 2
(65— |(3)7=] =3.(3) =2

In general, if Sy = 27 for some j > 1, and we stop when the stock price fallsto 2, then j — 1 down
stepswill be required and the value of the optionis

We define



104

If Sy = 27 for some j < 1, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the put is

v(@) 2597, j=1,0,-1,-2,...

Proposed exercise rule:Exercise the put whenever the stock price is at or below 2. The value of
this rule is given by v(27) as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. Thisleads us to make the following:

Conjecture 1 The value of the perpetual put at time £ isv(Sy).

How do we recognize the value of an American derivative security when we seeit?
There are three parts to the proof of the conjecture. We must show:

€)) U(Sk) > (5 — Sk)+ vk,

(b) {(g)kv(sk) }ZO_O isasupermartingale,

(€) {v(Sk)}72, isthe smallest process with properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the form S, = 27,50 S}, is
always of the form 27, with a possibly different ;.

Proof: (a). Just check that

v(2) £33 = (5-2)T for j> 1,

1
2
v(2) £ 5 -2 > (5-27)* for j < L.

Thisis straightforward. [

Proof: (b). We must show that

v(Sk)

v

I [$0(Sk)| 7]
L1025, + £.4o(4S).
By assumption, S = 2 for some j. We must show that

v(27) > 2u(20+h) 4 2o(2071).

If j > 2, thenv(27) = 3.(3)7~! and

= 23.(3) +23.(1)?

1 _
= 3 pgrd
- 3. )j—?
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If j = 1, thenv(27) = v(2) = 3 and

Zo(27F) 4 2u(207)
= Zv(4)+ 2v(1)
= 231+2%4

3/5+8/5

= 2l <v(2)=3

Thereisagap of size 2.
If j <0,thenv(27) = 5 — 2/ and

= 4-2 <u(2)=5-2,
Thereisagap of size 1. This concludesthe proof of (b).
Proof: (c). Suppose {Y}}}_, issome other process satisfying:
@) Yi > (5— Sp)* V&,
) {(})*Vi}2, isasupermartingale.
We must show that

Vi > v(Sy) Vk.
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(7.1)

Actually, since the put is perpetual, every time k islike every other time, so it will suffice to show

YO Z U(SO)7

(7.2)

provided we let S, in (7.2) be any number of theform 27. With appropriate (but messy) conditioning

on F, the proof we give of (7.2) can be modified to prove (7.1).

For j < 1, , , ,
v(2) =5-2" = (5-2)*,

soif Sy = 27 for somej < 1, then () implies
YO Z (5 - 2])+ = U(So).
Suppose now that S, = 27 for some j > 2,i.e., Sy > 4. Let

T = min{k; Sy =2}
= min{k; My =7 — 1}.
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Then

Because {(2)*V;,}52, isasupermartingale
Yo > E[(2)Y:] > B [(2)(5 - $-)t] = v(S0).
|

Comment on the proof of (c): If the candidate value process is the actua value of a particular
exercise rule, then (c) will be automatically satisfied. In thiscase, we constructed v so that v(.Sy) is
the value of the put at time % if the stock price at time k is.5; and if we exercise the put thefirst time
(k, or later) that the stock priceis 2 or less. In such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock priceswhich can fall at any pointin (0, o), not just at pointsof theform 27 for
integers j, then we can imagine the function v(z), defined for al = > 0, which gives the value of
the perpetual American put when the stock price isz. Thisfunction should satisfy the conditions:

(@ v(z) > (K —a)*, Va,

(b) v(z) > 3 [po(ua) + Go(da)], Va,

(c) Ateach z, either (a) or (b) holdswith equality.
In the example we worked out, we have

For j > 1:0(2)=3.(1)y71 = =

1
2

For j <1:v(2)=5-2.
This suggests the formula

We then have (see Fig. 8.4):
@ v(z)>(5- x)"';Vx,

(b) v(z) > % [%U(Qx) + %v(%)} for every x except for 2 < = < 4.
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V(X)

Figure 8.4: Graph of v(z).

Check of condition (c):

e If 0 < z < 3, then (a) holdswith equality.

e If 2 > 6, then (b) holdswith equality:

—_

[N
[N

2]_6
x| oz

e If3 < 2 <4o0r4 < z < 6, then both (8) and (b) are strict. Thisis an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (&) or (b) holdswith equality at every point.

x 6
e+ 23] = 1+

8.9 Distribution of First Passage Times
Let { M} }72 , beasymetric random walk under a probability measure /P, with M, = 0. Defining
7 =min{k > 0; M =1},

we recall that

1-vV1-aZ
Fa=-—Y""% gca<l.
(0%

We will use this moment generating function to obtain the distribution of 7. We first obtain the
Taylor series expasion of IFa™ asfollows:
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fle) = 1-vl-w f(0)=
1
fll@) = 3(1-2)72, f(0)=3
1 1 —§ 1 1
M@y = -2)7E )=
3 5 " 3
M) = -7 )= 3
1x3 .. 27 —3 2j—1
e = DX X@IZI -
. 1x3x... 27 —3
90 = XX QjX(J )
o Ix3x...x(2§-3) 2x4x...x (2] —-2)
B 27 ' 20-1(5 — 1)!
() (252!
= () (= 1!
The Taylor series expansion of f(z) isgiven by
fle) = 1-V1l-2
— i%f(j)(O)xf
i=0 7
_ 5 1\%! (25 -2)! ;
- ST e
_ S @t 1 2) =2\ ;
- 520 (7))
So we have
Eom — 1—+v1—a?
(8
= s
_ oo (o)L (22
a 2+]«§<2) (1—1)( j )
But also,

Fao™ = Zazj_lﬂ?{r =2j—1}.
J=1
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Figure 8.5: Reflection principle.

Figure 8.6: Examplewith j = 2.

Therefore,

P{r=1} = 1
NNt 1 2j — 2
P{r=2j-1} = (5) . (‘7. ) J=23...

8.10 The Reflection Principle

To count how many paths reach level 1 by time 2j — 1, count all those for which AM,;_; = 1 and
double count all those for which AM;_; > 3. (See Figures 8.5, 8.6.)
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In other words,
P{r <2j -1} = P{Myj_1 =1} +2P{M;_; > 3}
= IP{My;_y =1} + IP{My;_1 > 3} + IP{My;—1 < -3}
= 1—IP{My;—y = —1}.
Forj > 2,
P{r=2j-1} = P{r<2j-1}-IP{r<2j-3}

= [1—=IP{Mzj—1=—-1}] - [1 = IP{Mzj_3 = —1}]
= P{ng_g = —1} — P{sz_l = —1}

- O - O

= ()7 G- - ey
= ()7 e -2 - e hei-2)
- (0"

- (%)2]_1 (]il) (2]3'_2)



Chapter 9

Pricing in terms of Market Probabillities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym) Let P and 1P be two probability measures on a space (€2, F).
Assume that for every A € F satisfying IP(A) = 0, we also have IP(A) = 0. Then we say that
IP is absolutely continuouswith respect to P. Under this assumption, there is a nonegative random
variable 7 such that

PA) = /A ZdIP, VA € T, (L.1)

and Z is called the Radon-Nikodym derivative of 1P with respect to P.

Remark 9.1 Equation (1.1) impliesthe apparently stronger condition
EX = E[XZ]
for every random variable X for which IF'| X 7| < cc.

Remark 9.2 If P is absol utely continuous with respect to P, and P is absolutely continuous with
respect to /P, we say that P and /P are equivalent. P and IP are equivaent if and only if

IP(A) =0 exactly when IP(A) =0, YA e F.

If P and IP are equivalent and Z is the Radon-Nikodym derivative of IP w.r.t. P, then  isthe
Radon-Nikodym derivative of Pw.r.t. 713, i.e,

EX = E[XZ] VX, (1.2)

— 1
EY = E[Y.Z] VY. (1.3)

(Let X and Y berelated by theequation Y = X 7 to see that (1.2) and (1.3) are the same.)

111
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Example 9.1 (Radon-Nikodym Theorem)Let @ = {H H, HT,TH,TT}, the set of coin toss sequences
of length 2. Let P correspond to probability & for H and 2 for 7', and let /P correspond to probability 1 for

H and 1 for T'. Then Z (w) = %gl,so

)
Z(HH) = % ) ) J

L ZMHT) = ¢, Z(TH) = ¢, Z(TT) = 4.

9.2 Radon-Nikodym Martingales

Let 2 be the set of all sequences of n coin tosses. Let P be the market probability measure and et
IP be therisk-neutral probability measure. Assume

Pw) >0, P(w) >0, Yw € Q,
so that P and /P are equivalent. The Radon-Nikodym derivative of /P with respect to Pis

Define the P-martingale
7 2 ElZIF], k=0,1,...,n.
We can check that 7, isindeed a martingale:
E[Zx 1| Fi] = IEUE[Z|F ]| Fi]
= IE[Z]F%]
= Z.

Lemma 2.28 If X is Fj-measurable, then IEX = IE[X Z;].

Proof:

EX = [E[XZ]
EE[XZ|T]]
E[X.E[Z|F]
= E[XZ)].

Note that Lemma 2.28 impliesthat if X is 7 ,-measurable, thenfor any A € Fy,

I, X] = E[Z;14X],

or equivalently,
/Xd?ﬁ:/ X ZydP.
A A
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Zy(HH) = 9/4

1/3

7, (H) = 32
3 N
Z,(HT) = 9/8
o 23 13 H(TH) =98
Z2m =3
213
Z,(TT) = 9/16

Figure9.1: Showingthe 7 valuesin the 2-period binomial model example. The probabilitiesshown
arefor P, not IP.

Lemma 2.29 If X is F-measurableand 0 < j < k, then

— 1
BIX|F,) = - EIX %7
J

Proof. Notefirst that %E[XZM}}] is F ;-measurable. So for any A € F;, we have
J

/ ZLJE[XZM]CJ?I? / E[X Zy|F;)dIP  (Lemma2.28)
A Zj A
= /XdeP (Partial averaging)
A
- / XdP (Lemma2.28)
A

Example 9.2 (Radon-Nikodym Theorem, continued)We show in Fig. 9.1 the values of the martingale 7, .
We alwayshave 7, = 1, since

ZO:JEZ:/QZCIP:JTD(Q):L

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the following state price density process:

Ck:(1—|—r)—ka, k=0,...,n.
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We then have the following pricing formulas. For a Simple European derivative securitywith
payoff (. attime £,
Vo = IE[(147r)75]
- E [(1 1 r)—kzkck} (Lemma 2.28)
= IF[GCr)-

More generally for 0 < 5 < k,

V, = (14+r)E {(1"’7‘)_k0k|}—j}
_ ME {(1 + r)‘kaCij} (Lemma 2.29)
Z;
= %E[Ckcﬂfﬂ
J

Remark 9.3 {Cj%}?zo isamartingale under P, as we can check below:

ECi+1VinlFj] = IEUE[GCLF ]| F]
E[CCrl F]
GV

Now for an American derivative security {G'r. }7_,:

Vo = sup E[(1+7r)77G,]
T€TH

= sup E[(1+r)""Z;G;]
T€To

= sup B[GGo)
T€TH

More generally for 0 < j < n,

vV, = (1+ r)j sup E [(1+7r)77G|F]
TET)

4 1
= (14r)sup —E[(1+r)772.G;|F;]
reT; Zj

1
= —sup I[G.G,|F;].
C] 7Ty

Remark 9.4 Note that
(@) {¢;V;}—, isasupermartingale under P

(b) ¢V = GGy vy,
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Uy(HH) = 1.44
Sy(HH) = 16
13
Z4(H) =1.20
§H=8
L (HT)=0.72
13 R S§(HT) =4
b” 2/3 S(TH) =4
Z,=1.00 Y
0 §M =2 &, (TH)=0.72
4 (M=06
23 1,(TT)=0.36
S(m =1

Figure 9.2: Showing the state price values (.. The probabilities shown are for P, not P.

(c) {¢;V;} =, isthe smallest process having properties (a) and (b).

We interpret ¢ by observing that ¢, (w) IP(w) isthe value at time zero of a contract which pays $1
at timek if w occurs.

Example 9.3 (Radon-NikodymTheorem, continued)We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabilities. Recall thatp = £, ¢ = 2. The
state price values (i, are shown in Fig. 9.2.

For a European Call with strike price 5, expiration time 2, we have
Vo(HH) =11, G(HH)V2(HH) = 1.44 x 11 = 15.84.

Va(HT) = Vao(TH) = Vo (T'T) = 0.
1

1
Vo= 2 x = x 15.84 = 1.76.
0 3 X 3 X
G(HH) 1.44
Va(HH) = ~= % 11 = 1.20 x 11 = 13.20
G P = 557 8
1
Vi(H) = 3 % 13.20 = 4.40

Compare with the risk-neutral pricing formulas:
Vi(H) = $Vi(HH) + 2Vi(HT) = 2 x 11 = 4.40,
Vi(T) = 2Vi(TH) + 2Vi(TT) = 0,
Vo= 2Vi(H)+ 2Vi(T) = 2 x 4.40 = 1.76.

Now consider an American put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
Cx (5 — Sk)™. We compute the value of the put under various stopping times 7

(0) Stopimmediately: valueis 1.
Q) ¥r(HH) =7(HT) =2, 7(TH) = 7(TT) = 1, thevaueis

x 2 x0.724 3 x 1.80 = 1.36.

| —
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(5-S(HH)'= 0

{4HH)(5- %(HH)—
(5- sl(H)) =0 /
LH(E-SH) =0
(5-S(HM)'=1
\ L4HT) (5- %(HT)) =072
(5S0)"= (5-$(TH)'= 1
o5 S0 ZéTH) (5- %(TH)) =0.72
(5-§(M)"=3
M G-§M)* =180
2R G-smm)*=a

4TT) (5-S(TT) "= 1.44

Figure 29.3: Showing the values i.(5 — Si)* for an American put. The probabilities shown are for
P, not IP.

(2) If westop at time 2, thevalueis

1
%x072—|——><§><072+—><—><144—096

ool»—x

We see that (1) is optimal stopping rule. [ ]

9.4 Stochastic Volatility Binomial Model

Let Q2 bethe set of sequencesof n tosses, andlet 0 < dp < 1+7rg < ug, wherefor each k, di., ur, ry
are F-measurable. Also let

L+rg—dpy . up— (1+rg)
= 3 qr = .

up — dy, up — dy,

Let /P be the risk-neutral probability measure:
ﬁ{wl = H} = ]307
ﬁ{wl = T} = (207

andfor2 < k < n, .
PPlwyyr = H|Fr] = i,

Plwpyr = T|Fr] = G

Let P be the market probability measure, and assume P{w} > 0 Vw € €. Then P and /P are
equivalent. Define

Z(w) :# o € Q,
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Zp = E[Z|Fy], k=0,1,...,n.

We define the money market price process as follows:

M = (1 + rk—l)Mk—h k=1,...,n.
Note that M, is F},_;-measurable.

We then define the state price processto be

1
=—Z,, k=0,...,n.
Ck Mk ks ) y T

As before the portfolio process is {A k}Z;é- The self-financing value process (wealth process)
consistsof X, the non-random initial wealth, and

Xk-l—l = AkSkH + (1—|— T‘k)(Xk — AkSk), k=0,...,n—1.

Then the following processes are martingal es under P

1 " 1 "
—5 } and { —X } )
{ Mk g k=0 Mk g k=0
and the following processes are martingales under P:
{CSktizo  and  {CiXk}i—o-
We thus have the following pricing formulas:

Simple European derivative security with payoff Cj, at time k:

C
P

My, fj]

= LEGCF)]
G

American derivative security {G}7_:

adl

T

Vi = M; supﬁ
TET)

1
= —sup B[GGIF).
C] 7Ty

The usual hedging portfolio formulas still work.
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9.5 Another Applicaton of the Radon-Nikodym Theorem

Let (Q2, F, Q) be aprobability space. Let G be a sub-o-algebra of F, and let X be a non-negative
random variable with [ X dQ = 1. We construct the conditional expectation (under Q) of X
given G. On G, define two probability measures

P(A)=Q(A) VAeg;

TP“(A):/AXdQ YA EG.

Whenever Y isaG-measurable random variable, we have

/QYdP:/QYdQ;

if Y =1, forsome A € G, thisisjust the definition of /°, and the rest follows from the “standard
machine”. If A € G and IP(A) = 0, then)(A) = 0, 50 IP(A) = 0. In other words, the measure /P
is absolutely continuouswith respect to the measure /P. The Radon-Nikodym theorem implies that
there exists a G-measurable random variable Z such that

P(A)é/AZdJP VA €,

/AXdQ:/AZdP VA EG.

Thisshowsthat 7 has the “partia averaging” property, and since /7 is G-measurable, it is the con-
ditional expectation (under the probability measure () of X given G. The existence of conditional
expectationsis a consequence of the Radon-Nikodym theorem.
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Capital Asset Pricing

10.1 An Optimization Problem

Consider an agent who hasinitial wealth X' o and wantsto invest in the stock and money markets so
as to maximize
Flog X ,,.

Remark 10.1 Regardless of the portfolio used by the agent, {¢; X} 22, isamartingale under P, so
F(,X, =X (BC)
Here, (BC) standsfor “Budget Constraint”.
Remark 10.2 If £ isany random variable satisfying (BC), i.e.,
E¢.§ = Xo,

then there is a portfolio which starts with initial wealth X o and produces X,, = £ attimen. To see
this, just regard £ as asimple European derivative security paying off at timen. Then X isitsvalue
at time O, and starting from this value, there is a hedging portfolio which produces X ,, = &.

Remarks 10.1 and 10.2 show that the optimal X, for the capital asset pricing problem can be
obtained by solving the following
Constrained Optimization Problem:
Find arandom variable ¢ which solves:
Maximize IF'logé

Subjectto (& = Xo.

Equivalently, we wish to
Maximize Y (log&(w)) IP(w)
wef2
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Subjectto Y (Cp(w)é(w)P(w) — Xo=0.
wef?
There are 2" sequencesw in 2. Call themwy, ws, ... ,w9en. Adopt the notation

) =&(wr), 22 =&(wa), ..., Tgn = E(wan).

We can thus restate the problem as:

277,
Maximize Y (logay)IP(wy)
k=1

an

Subjectto Y Cu(wr)zplP(wr) — X, = 0.

k=1
In order to solve this problem we use:
Theorem 1.30 (Lagrange Multiplier) If (27, ..., 2,) solve the problem
Maxmize f(z1,...,%m)

Subjectto g(z1,...,2,) =0,
then thereisa number A such that
8 * * 8 * *
a—xkf(xl,... ,xm):/\a—xkg(xl,...,xm), k=1,...,m,
and
g(a3,...,a5)=0.

For our problem, (1.1) and (1.2) become

1
yc_*P(wk) = A (wp) P(wg), k=1,...,2",
k

271

Y Calwr)aiP(wr) = Xo. (1.2))

k=1
Equation (1.1') implies

.1
TN wn)
Plugging thisinto (1.2") we get
1 & 1

(1.1)

(1.1)

(1.2)
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Therefore,
Xo

Cn(wr)

Thuswe have shown that if £¢* solvesthe problem

= S k=1,...,2".

Maximize  Flogé
Subjectto  F(¢,&) = Xo,

then

_ %o

G

Theorem 1.31 If £* isgiven by (1.4), then £* solves the problem (1.3).

g*

Proof: Fix Z > 0 and define
flz)=loga —aZ.

We maximize f over = > 0:
1 1
4
= — — Z f = —
f(z) " 0 <= =z 7
1 1
The function f ismaximized at * = 7, i.e,
N 1
loga —aZ < f(z ):logg—l7 Ve >0, YZ > 0.
Let ¢ be any random variable satisfying
and let
_Xo
Cn

—&( 22 < — ) -1
log§ — ¢ ( X, log c 1
Taking expectations, we have

g*

From (1.5) we have

Blog¢ - 1 IB(G,6) < Flog¢ — 1

and so
Flogé¢ < IFlog&™.

121

(1.3)

(1.4)

(15)
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In summary, capital asset pricing works as follows: Consider an agent who has initial wealth X

and wantsto invest in the stock and money market so as to maximize
Flog X ,,.

Theoptimal X, is X, = 22, i.e,
Can = XO-

Since {¢x X1 }7_, isamartingale under P, we have

Cka = E[Can|]:k] :X07 k= 07 y Ty

0 X
Xy =22,
Ck
and the optimal portfolio isgiven by
R " Gen.
Ap(wr, .. wp) = E41(Wi, ... W H) E+1(@1, - - ., WE,T) ‘
k( ! k) Sk+1(wl7...7Wk7H)—Sk+1(wl7...7Wk7T)



Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variable X : Q— IR defined on the probability space (2, F, ). Recall
that:

e Fisac-agebraof subsetsof 2.
e Pisaprobability measureon 7, i.e, IP(A) isdefined for every A € F.

A function X : Q— IR isarandom variable if and only if for every B € B(IR) (the o-agebra of
Borel subsets of R), the set

(X eBY2XY(B)2 {w;X(w) € B} € F,

i.e, X : Q—IR isarandom variable if and only if X ~! is a function from B(IR) to F(See Fig.
11.1)

Thus any random variable X induces a measure px on the measurable space (IR, B(IR)) defined

by
px(B) =P (X7Y(B)) VB € B(R),

where the probabiliy on the right is defined since X ~!(B) € F. ux isoften called the Law of X —
in Williams' book thisisdenoted by £ x .

11.2 Density of a Random Variable
The density of X (if it exists) isafunction fx : IR—[0, co) such that
jix (B) = / fx(z) dz VB e B(R).
B
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{Xe B} Q

Figure 11.1: Illustrating a real-valued randomvariable X .

We then write
dux(z) = fx(x)dz,

where the integral is with respect to the Lebesgue measure on R. fx isthe Radon-Nikodym deriva-
tive of ;x with respect to the Lebesgue measure. Thus X has a density if and only if px is
absolutely continuous with respect to Lebesgue measure, which means that whenever B € B(IR)
has L ebesgue measure zero, then

P{X € B} =0.

11.3 Expectation

Theorem 3.32 (Expectation of a function ofX') Let % : IR— IR be given. Then
EhX) & /Q (X (@) dIP(w)

h(z) dpx (z)

Jr
Jr

h(z) fx(z) dz.

Proof: (Sketch). If h(z) = 1g(z) for some B C IR, then these equationsare

Flp(X) 2 P{X e B}
px (B)

= /fX(x) dz,
B

which are true by definition. Now use the “ standard machine” to get the equations for general h.
[ ]
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(X.Y)

{ (X.\V)e C} Q

Figure 11.2: Two real-valued randomvariables X, Y.

11.4 Two random variables

Let X, Y be two random variables Q— IR defined on the space (€2, F,I?’). Then X,Y induce a
measure on B(IRk?) (see Fig. 11.2) caled thejoint law of (X, Y'), defined by

pxy(C) & P{(X,Y) € C} YC € B(IRY).
Thejoint density of (X, Y) isafunction
fxy 1 R*—[0,00)

that satisfies
pxy (C) =/ fxy(z,y) dedy VC € B(IR?).
C

fx.y isthe Radon-Nikodym derivative of 1. x y with respect to the L ebesgue measure (area) on IR?.
We compute the expectation of afunctionof X, ¥ in amanner analogous to the univariate case:

(>

ELXY) & [ KX @)Y (@) dP)

= /kwyduxywy)

- / k2, ) fx.y (2, y) dady
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11.5 Marginal Density

Suppose (X, Y) hasjoint density fx y. Let B C IR be given. Then

py(B) = IP{Y € B}
= JP{(XY)eleB}

where

Y) 2 /B Ixy(z,y) de

Therefore, fy (y) isthe (marginal) density for Y.

11.6 Conditional Expectation

Suppose (X,Y) has joint density fyy. Let i : IR—IR be given. Recall that IE[h(X)[Y] £
IETh(X)|o(Y)] dependson w through Y, i.e., thereisafunction ¢(y) (¢ depending on /) such that

ERX)[Y](w) = g(Y(w)).

How do we determine g?

We can characterize g using partial averaging: Recall that A € o(Y )<= A = {Y € B} for some
B € B(IR). Thenthe following are equivalent characterizations of g¢:

/g(Y) P _/ AP YA€ oY), (6.1)
A

/Q 15(Y)g(Y) dP = / 15(Y)A(X) dIP VB € B(IR), 6.2)
| 1swgtnr(dy) = // 15(y)h(x) duxy(e,y) VB € B(R), (63)
R

/ y) fy(y) dy = / / ) fxy(z,y) dedy VB € B(IR). (6.4
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11.7 Conditional Density

A function fx |y (z]y) : IR?—[0, co) iscalled aconditional density for X' givenY” provided that for
any function i : IR— IR:

9() = [ 1@ Fry Goly) da. 7.

(Here ¢ isthe function satisfying
Eh(X)[Y]=g(Y),

and g dependson A, but fx - doesnot.)

Theorem 7.33If (X, Y) hasajoint density fx y, then

fxy(z,y)
frly)

Proof: Just verify that ¢ defined by (7.1) satisfies (6.4): For B € B(IR),

|| n@) eyl de sy dy = [ ] h@) fx(e,y) dady.

9(y)

fxy (zly) = (7.2)

Notation 11.1 Let ¢ be the function satisfying
ERX)Y]=g(Y).
The function ¢ is often written as
9(y) = ER(X)]Y = y],
and (7.1) becomes
BRI = 3] = [ () fxy (aly) do

In conclusion, to determine IE[A(.X)|Y] (afunction of w), first compute

9) = [ 1@ Fxy (aly) de
and then replace the dummy variable y by the random variable Y':

ERX)[Y](w) = g(Y(w)).

Example 11.1 (Jointly normal random variables) Given parameters. o1 > 0,02 > 0,—1 < p < 1. Let
(X,Y) have thejoint density

1 1 z? r vy y?
f YT, Y) = 76)(}){—7 [—_2 -2 4+ 4 )
xy (@) 2ro1094/1 — p? 2(1—p?) Lo? p0'1 oy 02
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The exponent is

N S O /AN s
2(1 — p?) o2 o2 202

We can compute the Marginal density of Y as follows

[N

Irly) =

ly
1 o _u? -4
= e~ 7 due 29

2moy

: H 7 _ 1 _ pox _ dz
using the substitution u = V=, (x - y) , du = =y
1 2
V2T oy
ThusY isnormal with mean 0 and variance o3.
Conditional density. From the expressions
L (e b2
Sy (,y) = e ) il
2ro10a/ 1 — p?
1 iy
[ — 95 ,
Iy (y) NG
we have
Ixy(x,y)
Ixpy(zly) = ————
v (z]y) (o)
2
1 1 g1
_ ! L ke (r - 2)

— ¢
V2m oy /1 — p?
Inthe z-variable, fx|y (z|y) isanormal density with mean 27y and variance (1 — p*)o7. Therefore,

EX]Y =] =/ xfxpy (xly) de = Py,

— oo a2

[l
P
2 8
TN

=

|

)
8‘3
Red
N

[S%)

&h
>
b d
®
=
=,
=
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From the above two formulas we have the formulas

Blxy] = 22y, (7.3)
a2
- 2
EKXJQﬂ V] = (1-p?el. (7.4)
g2
Taking expectationsin (7.3) and (7.4) yields
Ex =" gy =, (7.5)
a2
o 2
E l(x - p_ly) = (1—p?)ol. (7.6)
a2

Based on Y, the best estimator of X is %Y. This estimator is unbiased (has expected error zero) and the
expected square error is (1 — p*)o. No other estimator based on Y can have a smaller expected square error
(Homework problem 2.1). ]

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variables (X, X5, ..., X,,)7, and x the corresponding
column vector of values (z1, 23, . . . ,xn)T. X has amultivariate normal distributionif and only if
the random variables have the joint density
vdet A 1 T
Ix(%) = g7 O {-1X-wTAX-p}.

Here,

A A
w= (s ) = EX 2 (EXy, ..., EX,)T,

and Aisann x n nonsingular matrix. A~! isthe covariance matrix
AT = B (X - p) (X = )]

i.e. the (7, j)thelement of A=!isIF (X, —u;)(X;— ;). Therandom variablesin X areindependent
if and only if A~! isdiagonal, i.e,
A™Y = diag(o?, 03, ... ,0%),

rUn

where 02 = IF(X; — pu;)* isthe variance of X;.
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11.9 Bivariate normal distribution

Take n = 2 in the above definitions, and let

o (X — ) (X — pa)
- 0109 '

P

Thus,
Al — [ ot pPo102 ]

2
pPO102 g5

1 _ P
A= _Uf(l—ppz’) Cf1€f21(1—02) :
o102(1—p?) crg(l—p2)
1
vdet A = ————,
o102/ 1 — p?

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

2mo109 2] 0102 g5

11.10 MGF of jointly normal random variables

Let u = (uy,uy,...,u,)’ denote a column vector with components in IR, and let X have a
multivariate normal distribution with covariance matrix A ~! and mean vector g. Then the moment
generating function is given by
T 00 0o T
Fev X — /_OO.../_Ooeu ‘XfX17X27”_ 7Xn(acl,avg,... Ty doy .. oday,
= exp {%uTA_lu + uT,u} .
If any n random variables X, X», ..., X, have this moment generating function, then they are

jointly normal, and we can read out the means and covariances. The random variables are jointly
normal and independent if and only if for any real column vector u = (uy, ..., u,)"

T A n n
Ee" X2 IF exp {Z Uij} = exp {Z[%U?u? —I—Uj,u]‘]} .



Chapter 12

Semi-Continuous Models

12.1 Discrete-time Brownian Motion

Let{Y;}7_, beacollectionof independent, standard normal random variables defined on (€2, 7, ),
where P is the market measure. As before we denote the column vector (Y7, ...,Y,)7 by Y. We
therefore have for any real colum vector u = (uy, ..., u,)?

T n n
EeuY:Eexp{Zu]‘Yj}:eXp{ %U?}
1

Jj=1 J

Define the discrete-time Brownian motion (See Fig. 12.1):
BO - 07

k
B, = Y Y, k=1,...,n
j=1
If weknow Yy, Ys, ..., Vi, thenweknow By, By, ..., Bx. Conversdly, if weknow By, Bs, ..., By,
thenweknow Y; = B,Ys = By — By, ..., Y, = By — Bj_1. Definethefiltration

fO = {¢7Q}7
.7:k = O'(YhYQ,...7Yk)IO'(B17B27...7Bk>,kIL...,n.

Theorem 1.34 { B, }7_, isamartingale (under P).

Proof:

E[Biy|Fr] = IE[Yit1 + Bil|Fr
EYypi + By
= B;.
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Figure 12.1: Discrete-time Brownian motion.

Theorem 1.35 { B;.}}_, isa Markov process.

Proof: Notethat
IETh(Bry1)| Fr] = IE[h(Yiy1 + Br)| Fr]-

Use the Independence Lemma. Define

g(b) = IEh(Yiq1 +0) (y+b)e -3 dy.

==L

Then
IETh(Yiy1 + Be)|Fr] = 9(Bg),

which isafunction of B, aone.

12.2 The Stock Price Process

Given parameters:

e 1 € IR, themean rate of return.
e o > 0, thevolatility.
e Sy > 0, theinitial stock price.

The stock price processis then given by
Sk = Soexp{UBk—l— (e — %O‘z)k}7 k=0,...,n.

Note that
Skt1 = Spexp {UYk-I—l + (1 — %02)}7
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E[Sesi|Fa] = SuE[CYF1|F,].eh 37"
= Ske%UZ)e“_%UZ)
= "5,
Thus
1= log 7E[52—;|}-k] = log I/ [S;—:l fk] ,
and

var (108; SEH) = var (O‘Yk-l—l + (1 — %02)) = o2
k

12.3 Remainder of the Market

The other processesin the market are defined as follows.

Money market process:
My,=¢* k=0,1,...,n.

Portfolio process:

[ ] A(), Alv e 7An_17
e Each A} is F;-measurable.

Wealth process:

e X given, nonrandom.

Xpt1 = ApSpir + € (Xi — ApSk)
= Ap(Spy1 — € Sk) + " Xy,

e Each X, is F-measurable.

Discounted wealth process:

h - A Sk+1 _ Sk + Xi
Mk-l—l Mk.|_1 My, My

12.4 Risk-Neutral Measure

Definition 12.1 Let /P be a probability measure on (2, F), equivalent to the market measure P. If

A%—’Z}: isamartingale under /P, we say that IP is arisk-neutral measure.
=0
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Theorem 4.36 If IP isa risk-neutral measure, then every discounted wealth process {ﬁ—’;}n is

a martingale under P, regardless of the portfolio process used to generateit.

Proof:

7 | Xit1 _ Sk1 i) Xi ]
= [Mk-H fk] = B [Ak (Mk-H My ) T, F
_ TR Sk-|—1 Sk Xk
. ¢
= i

12.5 Risk-Neutral Pricing

Let V., be the payoff at time n, and say it is 7, -measurable. Note that V,, may be path-dependent.
Hedging a short position:

Sell the simple European derivative security V.

Receive X, at timeO.

Construct a portfolio process Ay, . .. , A, which startswith Xy and endswith X,, = V..
If thereis a risk-neutral measure IP, then

_FXe _ Ve
XO_EM_EMn'

Remark 12.1 Hedging in this *“semi-continuous’ model is usually not possible because there are
not enough trading dates. This difficulty will disappear when we go to the fully continuous model.

12.6 Arbitrage

Definition 12.2 An arbitrageisaportfolio which startswith X' = 0 and endswith X, satisfying
P(X,>0)=1, IP(X, >0)>0.

(P hereisthe market measure).

Theorem 6.37 (Fundamental Theorem of Asset Pricing: Easy part)fthereisarisk-neutral mea-
sure, then there isno arbitrage.
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Proof: Let IP be arisk-neutral measure, let X, = 0, and let X,, be the final wealth corresponding
to any portfolio process. Since {]\)2_2 }k_o isamartingale under P,

/)

=B =0, (6.1)
Suppose IP(X,, > 0) = 1. We have

P(X,>0)=1= P(X, <0)=0= P(X, <0)=0= IP(X, >0)=1.

(6.2)
(6.1) and (6.2) imply IP(X,, = 0) = 1. We have
P(X,=0)=1= P(X, >0)=0= P(X, >0)=0.

Thisisnot an arbitrage. n
12.7 Stalking the Risk-Neutral Measure
Recall that

e V1, Y,, ... Y, areindependent, standard normal random variables on some probability space

(Q, F,P).

e S, = Spexp {O‘Bk + (e — %02)16}.
[ ]
Sir1 = Soexp{o (Bt Vi) + (u— bo?)(k+ 1)}
= Spexp {O‘Yk_H + (p— %02)}.

Therefore,

Sk+1 _ S R
m—m-eXP{UYkH‘F(H—" 2‘7)}7

Skt1
Jp | 2+l
[Mk-H

]:k] = A%—’Z.E[exp{ayk+1}|fk]-exp{:u_r_%02}

= ]\%—kk-exp{%az},eXp{,u —r = %02}

P
p—r Dk
€ M

If & = r, the market measure isrisk neutral. If ;1 # r, we must seek further.
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Sk+1 Sk 12
Misr m-eXP{UYk—l—l‘F(N—"—QU )}
= A%—kk.exp{a(YkH + £5) - %02}
Sk

= Mk.exp{(ﬂ}kﬂ - %02},

where
Yip1 = Y + “U;r

The quantity = is denoted ¢ and is called the market price of risk.

We want a probability measure /P under which Y, . .. , Y,, are independent, standard normal ran-
dom variables. Then we would have
E M]—' = iﬁ{ex {0V }|]:} exp{—21o?}
Mk-l—l k = My P k+1 k| -€Xp B}
= A%—kk.exp{%az}.exp{—%az}
_ Sk
-

Cameron-Martin-Girsanov's ldea: Define the random variable

7 = exp [Zn:(—OYJ — %02)] .

Properties of 7:
o /> 0.
[ ]
- n
= —6Y;) +. ——4*
EZ IF exp {]Z::I( ])} exp{ 5 }
= exp{%@Q} .exp{—%@Q} =1.
Define

P(A):/ZdP YA € F.
A

Then IP(A) > 0 foral A € F and

PQ)=IEZ=1.

In other words, IP isa probability measure.
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We show that 1P isarisk-neutral measure. For thi s, it suffices to show that
Y=Y, +6,....Y, =Y, +6

are independent, standard normal under P.
Verification:

e Y1,Y5, ..., Y, Independent, standard normal under P, and

n
= exp %u? .
J=1

IF exp [Z u;Y;

i=1

Y=Y, +6,....Y, =Y, +6.

Z > 0 dmost surely.

7 = exp [Ty (—0Y; — 567)]
ﬁ(A):/ ZdP VYA€ F,
A

EX = IE(X Z) for every random variable X .

Compute the moment generating function of (¥, ... ,Y,,) under IP:

= Fexp | Y u;(Y;+0)+> (—0Y; — %02)]
Li=1

F exp [Z u]f/j

J=1

n

71=1

= exp Z L(u; —0)?

= exp Z ((%u? —u;f + %02) + (u;0 — %02))]

_n
- | S0
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12.8 Pricing a European Call

Stock priceattimen is

Sn = Spexp {O‘Bn + (pn— %0'2)71}

= Spexp {UZY} + (p— %02)71}

i=1

= Spexp {UZ”:(Y] + M;T) —(p=rn+ (p— %UQ)TL}

— Soexp{UZYj + (r-— %UQ)n}.

i=1
Payoff at timen is (S, — K)T. Priceat time zerois

, . +
ﬁi(snz\}fﬁ = F [e"’” (Soexp {UZY/J + (r- %UQ)n} —~ K) ]

i=1

_ /_O:o o= (So exp {o‘b—|— (r— %g2)n} — I()+ \/2177_”

since -7, Y; isnormal with mean O, variance n, under IP.

b2
e 212 db

Thisisthe Black-Scholes price. It does not depend on .
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Brownian Motion

13.1 Symmetric Random Walk

Tossafair coin infinitely many times. Define

1 if w;=H,
-1 if w;=T.

Xjw) = {

MOIO

k
Mp=> X;,  k>1

i=1

13.2 The Law of Large Numbers

We will use the method of moment generating functionsto derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

1
EMk—>0 almost surely, as  k—oc.

139
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Proof:

X]‘ (Def of Mk)

k
= H IF exp {%X]} (Independence of the X ;’s)

which implies,
_ 1 % 1 =%
log i (u) = klog (56k + g€ k)

Letz = -. Then

Jim log o (u) = lim

=0 x
Your _ Uo—us ]
= lim 2—2 (L’ Hopital’sRule)
r—0 eur 4 ie—ux

Therefore,

whichisthe m.g.f. for the constant O.

13.3 Central Limit Theorem
We use the method of moment generating functionsto prove the Central Limit Theorem.
Theorem 3.39 (Central Limit Theorem)

1
—M,— Sandardnormal,as k—co.

VEk

Proof:
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so that,

Sk

log i (u) = klog (%e% + e ) .

Letz = -. Then

lim 1 T (3e+ 3e7)
g g eel) = Jiny, =

‘ 1 Your _ Uo—uw
= lim 5 T 2 2
z—0 SEUT + Semur z—0 2z
U ur U, —ur
= lim 2° 2°
z—0 2x
ﬁeux _ ﬁe—ul’
= lim -2 2
z—0 2
_ 1U2.

Therefore,

. 12
kh—r>noo wk(U) =2 ’

whichisthe m.g.f. for astandard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks
Let n be apositiveinteger. If ¢ > 0 isof theform % then set

B (t) = LMM — LMk
n

vn vn

If + > 0 isnot of theform £, then define B (¢) by linear interpol ation (See Fig. 13.1).

Here are some properties of B(190)(¢):

(L'Hopital’sRule)

141

(L'Hopital’sRule)
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Kin (k+1)/n

Figure 13.1: Linear Interpolationto define B (t).

Propertiesof  B(1°0)(1) :

1 100
(100) (1} — , i
B(109) (1) m JZ:; X; (Approximately normal)
( ) 1 100
100 - —
1 100
var(BA9 (1)) = — 3 var(X;) = 1
100 =
Propertiesof ~ B(1°0)(2)
1 200
B0 9y = — > X (Approximately normal)
10 &
EB1%(2) =0
var(BU10)(2)) = 2

Also note that:

o BUO)(1) and BUO)(2) — B(190)(1) are independent.
o B(1%)(3) is acontinuousfunction of ¢.

To get Brownian motion, let n—oc in B (¢), ¢ > 0.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)



CHAPTER 13. Brownian Motion 143

B(t) = B(tw)

A

o |
w W AR

(Q,F,P)
Figure 13.2: Continuous-time Brownian Motion.

A random variable B(t) (see Fig. 13.2) is caled a Brownian Motion if it satisfies the following
properties:
1. B(0) =0,
2. B(t) isacontinuousfunction of ¢;
3. B hasindependent, normally distributed increments: If
O=tso<ti <ty <...<1y,
and
Y1 = B(t1) — B(ty), Y2=B(ts) — B(t1), ... Y,=B(t,)— B(tn-1),
then
e V1, Y,, ... Y, areindependent,
e EY;=0 Vj,
o var(Y;) =1¢; —t;1 Vj.

13.6 Covariance of Brownian Motion

Let 0 < s < ¢ begiven. Then B(s) and B(t) — B(s) are independent, so B(s) and B(t) =
(B(t) — B(s)) + B(s) arejointly normal. Moreover,
IEB(s) =0, var(B(s)) = s,
EB(t) =0, var(B(t)) = t,
EB(s)B(t) = IEB(s)[(B(t) = B(s)) + B(s)]
= EB(s)(B(1) - B(s))

0 s
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Thusfor any s > 0,t > 0 (not necessarily s < t), we have

EB(s)B(t) = s At.

13.7 Finite-Dimensional Distributions of Brownian Motion

Let
O<ti <ty <... <y,

be given. Then
(B(t1), B(ta),...,B(t,))

isjointly normal with covariance matrix

EB%*(ty)  FB(t1)B(t2) ... IEB(t1)B(t,)
Co EB(ty)B(ty)  IEB*(ty) ... IEB(ty)B(t,)
]EB (tn)B(t 1) EB(tn)B(tQ) ......... 1EB2(tn) ..
[t t
_ |l 2 to
t1t2 ....... tn

13.8 Filtration generated by a Brownian Motion

{F(®) )20

Required properties:

e Foreacht, B(t) is F(t)-measurable,

e Foreacht andfort < t; < ty < --- < t,, the Brownian motion increments

B(t1) — B(t), B(tz) —B(t1), ..., B(tn)— B(tn-1)
areindependent of F(t).
Here isone way to construct 7 (¢). Firstfix t. Let s € [0,¢] and C' € B(IR) be given. Put the set
{B(s) e O} ={w: B(s,w) € C'}

in F(t). Do thisfor all possible numbers s € [0,¢] and C' € B(IR). Then put in every other set
required by the o-algebra properties.

This F(t) contains exactly the information learned by observing the Brownian motion upto time ¢.
{F(t)}+>0 iscalled thefiltration generated by the Brownian motion.
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13.9 Martingale Property

Theorem 9.40 Brownian motion isa martingale.

Proof: Let 0 < s <t begiven. Then

E[B(t)|F(s)] = E[(B(t) — B(s)) + B(s)| 7 (s)]
= E[B(t) — B(s)] + B(s)
= B(s)
n
Theorem 9.41 Let 8 € IR begiven. Then
Z(t) = exp {~0B(t) - 16°t}
isa martingale.
Proof: Let0 < s < ¢ be given. Then
E[Z(1)|F(s)] = IE [exp{—O(B(t) — B(s) + B(s)) — 30°((t — 5) + 5)} f(s)]
- B [Z(S) exp{—6(B(t) — B(s)) — 16%(t — 5)} }'(s)]
= Z(s)IF [exp{-0(B(t) — B(s)) — 16*(t — 5)}]
= Z(s) exp { 1(~0)* var(B(t) — B(s)) — 16%(t — )}
= 7Z(s).
n

13.10 The Limit of a Binomial Model

Consider the »’th Binomia model with the following parameters:

o u, =1+ % “Up” factor. (o > 0).

o d,=1—- -2 “Down” factor.

\/ﬁ
o r=20.
S d=dy _ O/m 1
® Pn= upmdn ~ 20/Vm 2"
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Let i (H) denote the number of H inthefirst & tosses, and let £ (7") denote the number of 7" inthe
first k tosses. Then

ik (H) + 8 (T) = k,
fr(H) = 8x(T) = My,
whichimplies,
2e(H) = g(k + M)
2 (T) = 5k — My)

In the »n’th model, take » steps per unit time. Set S(()”) =1.Lett = % for some k, and let

1

(nt+Mn:) 5 (nt=My)
SM(1) = (1 + L) 2 (1 _ L) ? _
v vn

Under IP, the price process (™) is amartingale.
Theorem 10.42 As n—oco, the distribution of S (") (¢) convergesto the distribution of
exp{oB(t) — 1o°t},

where B is a Brownian motion. Note that the correction — %a% is necessary in order to have a
martingale.

Proof: Recall that from the Taylor series we have

log(1+2) =2 — 1a% + O(2?),

SO
log S () = L(nt + My) log(1 + %) + L(nt — M) log(1 — %)
= nt (% log(1 4+ %) + Llog(1 - %))
+ My ($lox(1+ 7o)~ Llow(1 - )

As n—oo, the distribution of log S ") () approaches the distribution of ¢ B(t) — Lo n
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B(t) = B(tw)

7,

] v (WAl

Q,F, PN

Figure 13.3: Continuous-time Brownian Motion, startingat = # 0.
13.11 Starting at Points Other Than 0

(The remaining sectionsin this chapter were taught Dec 7.)
For aBrownian motion B(¢) that starts at 0, we have:

P(B(0) = 0) = 1.

For a Brownian motion B(¢) that starts at =, denote the corresponding probability measure by P~
(See Fig. 13.3), and for such a Brownian motion we have:

P*(B(0)=2)=1.
Note that:

e If 2 #£ 0, then IP* putsall its probability on a completely different set from P,
e Thedistributionof B(t) under [P isthe same as the distribution of  + B(¢) under P.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43 Brownian motion has the Markov property.

Proof:
Lets >0, ¢ > 0begiven(SeeFig. 13.4).

E[h(B(s—H))‘}'(s)] = Eh(B(s+1) = Bls)+  Bls) )|F(s)

Independent of () F(s)-measurable
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59 |, -
Wos o L skt

/

restart

Figure 13.4: Markov Property of Brownian Motion.

Use the Independence Lemma. Define

= IE |h(z+ B(t) )
N~
samedistribution as B(s + t) — B(s)
= E*h(B(t)).

Then

E [ (B +0)|F(s)] = a(B(2)
= EBGIn(B(1)).

In fact Brownian mation has the strong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fix > 0 and define
r=min{t >0; B() ==z}.

Then we have:

15+ 0) 7] = a5 = 050,
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SN
\V\/T WT+'[

/

restart

Figure 13.5: Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p(t, x, y) be the probability that the Brownian motion changes value from z to y intime ¢, and
let 7 be defined asin the previous section.

1 _w=a)?
p(t,x,y):\/ﬁe ED
9(e) = E*h(B) = [ hw)p(t.a.9) dy.
I |n(B(s+ 0)|F(0)] = 9(B(s) = [ hwnte, Bs)) dy.

B [+ 0)|70)] = [ koo,

— 00

13.14 First Passage Time

Fix 2 > 0. Define
T=min{t > 0; B(t)==z}.

Fix 6 > 0. Then
102
exp {OB(t/\ T) — 507 (t A T)}

isamartingale, and

IE exp {OB(t/\ T) — 207 (t A T)} =1.
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We have

_lg2T .
. 142 _Je 2 if 7 < oo,
751i>1r1r100exp{—20 (t/\r)} = {0 (14.1)

if 7 = oo,
0 <exp{0B(tAT)—L16%(tAT)} < e
Let t— oo in (14.1), using the Bounded Convergence Theorem, to get

FE {exp{@x - %027}1{T<00}} =1.

Let 610 to get FElg .y =1,

P{r <0} =1,
Fexp{-16°r} = e 0", (14.2)
Let o = $62. We have the m.g.f.:
Fe=o™ = ¢~oV20 4 5. (14.3)
Differentiation of (14.3) w.r.t. « yields
—IE [re™®7] = ——Z_Oée_l’m
Letting o.).0, we obtain

Conclusion. Brownian motion reaches level = with probability 1. The expected time to reach level
x isinfinite.
We use the Reflection Principle below (see Fig. 13.6).

P{r <t, B(t) <z}=1IP{B(t) >z}
P{r <t} =IP{r <t,B(t) <a}+ IP{r <t,B(t) > z}
= IP{B(t) > 2} + IP{B(t) > «}
=2P{B(t) > z}

9 7 2
= e 2t
V27t Y
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shadow path

\Brownian motion

Figure 13.6: Reflection Principle in Brownian Motion.

Using the substitution = = &, d= = % we get

2 T 2
P{r <t} = E/e_sz.
%
Density:
i =dppr<ne St n
T A

which follows from the fact that if

then

Laplace transform formula:

Fe™o7 = /e_ath(t)dt = V20,
0
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Chapter 14

The 1t0 Integral

The following chapters deal with Stochastic Differential Equationsin Finance. References:

1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag,1995
2. J. Hull, Options, Futures and other Derivative Securities, Prentice Hall, 1993.

14.1 Brownian Motion

(SeeFig. 13.3)) (92, F,P) isgiven, alwaysin the background, even when not explicitly mentioned.
Brownian motion, B(t,w) : [0, 00) x 2— IR, has the following properties:

1. B(0) = 0; Technicaly, IP{w; B(0,w) =0} =1,
2. B(t) isacontinuousfunction of ¢,

0=t <t <...<t,,thentheincrements
B(t1) — B(to), ..., B(ty,) — B(tn-1)

are independent,normal, and

14.2 First Variation

Quadratic variation is a measure of volatility. First we will consider first variation, F'V'(f), of a
function f(¢).

153



154

f(t)

Figure 14.1: Example function f(¢).

For the function pictured in Fig. 14.1, thefirst variation over theinterval [0, 7'] is given by:

FVior(f) = [f(tr) = F(0)] = [f(t2) — F(t)]+ [F(T) — f(t2)]

to T
= [rwyde+ [=rwya+ [ 1o

Thus, first variation measures the total amount of up and down motion of the path.
The general definition of first variationis asfollows:

Definition 14.1 (First Variation) Let Il = {¢o,¢1,...,t,} beapartitionof [0,77,i.e,
O=to<t; <...<t,=T.
The mesh of the partitionis defined to be

II|| = t —tr).
| T1]] kzéf.l.?fé_l(’““ k)

We then define B
FVor)(f) = lim Y| f(tepr) — f(te)]-

=0 =

Suppose f isdifferentiable. Thenthe Mean Value Theorem impliesthat in each subinterval [¢x, tx+1],
thereisapoint ¢; such that

flteyr) = f(tr) = f1{5) (trr — ti).-
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Then . .
Do thgr) = FER) = D01 @) (trgr — tr),
k=0 k=0

and

n—1

Foa(f) = fim, 52 170010 = 0

T
= [17/ @) .

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) Thequadraticvariationof afunction f onaninterval [0, 7]
is

n—1

(M) = lim Zlf (tre1) = F(tR) [

[ —0 ;=

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f isdifferentiable, then (f)(T') =
0, because

n—1
Do f (k) - Z |F )P (thgr — tr)?
k=0
< [T} Z | )P (tegr — ti)
and

(HT) < lim |[H]]. lim Z|f ) P (trgr — tr)

[T —0 [T —0 =

= lim H/ "(6))? dt

||H||_mll | [ 1f ()]
0

=0.

Theorem 3.44

or more precisely,
P{w e Q; (B(.L,w)(T)=T} = 1.

In particular, the paths of Brownian motion are not differentiable.
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Proof: (Outline) Let IT = {t¢,ty,...,t,} beapartitionof [0, T]. To simplify notation, set D =
B(tg+1) — B(t). Define the sample quadratic variation

n—1
Qu=>_ Dj.
k=0
Then )
Qu —T =Y [D}f - (thp1 — ta)].
k=0
We want to show that

I Ty = 0.
(@ = 1)

Consider an individua summand

D = (tesr — t) = [B(tes1) — Bto)]) = (g — i)
This has expectation 0, so

n—1

EQu-T)=1IEY_[Dji- (taq1 — t)] = 0.

k=0
For j # k, theterms
D? = (tjy1 —t;) and  Dj — (tpyr — tg)
are independent, so

n—1

var(Qm — T) = Y var[Df = (tp41 — ty)]
k=0

n—1

=Y E[D} = 2(tppr — te) DF + (trgr — t)°]
k=0

= Z (tepr — 1) = 2(ther — tr)* + (trgr — t)?]
(|f X isnormal with mean 0 and variance o2, then IF(X*) = 30*)
n—1
=2 (tep1 — t)?
k=0
n—1

<2|T]| D (b — te)
k=0

— 9||1m)| 7.

Thuswe have

E@Qn-T)=0,
var(Qm — 1) < 2||I1]].T.
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As||lI||=0, var(Qn — 17)—0, o

e (@n = 1) =10

Remark 14.2 (Differential Representation) We know that
E[(B(ty+1) = B(tk))? = (ther — tr)] = 0.
We showed above that
var[(B(ty+1) — B(tr))? = (ther — tr)] = 2(thsr — t)™.
When (tgy1 — t1) issmall, (tg41 — t1)? isvery small, and we have the approximate equation
(B(tet1) — B(te))? =~ tegr — t,

which we can writeinformally as
dB(t) dB(t) = dt.

14.4 Quadratic Variation as Absolute Volatility

On any timeinterval [T, T3], we can sample the Brownian motion at times
T'=to<t1 <...<t, =15

and compute the squared sample absol ute vol atility

1 n—1

Ty 2 (Bl) = Bl

Thisis approximately equal to

! 1, -1
T [(BY(Ty) — (B)(T1)] = =1

As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion has absolute volatility 1.

Furthermore, consider the equation
T
(B)(T) = T:/l dt, YT >0.
0

This says that quadratic variation for Brownian motion accumulates at rate 1 at all times along
almost every path.
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14.5 Construction of the I Integral

The integrator is Brownian motion B(t),t > 0, with associated filtration F(¢),¢ > 0, and the
following properties:

1. s <t= every setin F(s) isasoin F(t),
2. B(t) isF(t)-measurable, Vt,

3. Fort <t; <...<t,, theincrements B(ty) — B(t), B(ty) — B(t1),...,B(t,) — B(t,-1)
areindependent of F(¢).

Theintegrand isé(t),t > 0, where

1. 6(¢) isF(t)-messurable Vt (i.e., ¢ isadapted)

2. ¢ issguare-integrable:
T

E/cs?(t) dt < oo,  VT.
0

We want to definethe It 6 Integral:
t
I(t):/ 5(u) dB(u), > 0.
0

Remark 14.3 (Integral w.r.t. a differentiable function) If f(¢) is a differentiable function, then
we can define

] 5) df() = [ 5 '(w) .

This won’'t work when the integrator is Brownian motion, because the paths of Brownian motion
are not differentiable.

14.6 It0 integral of an elementary integrand

Let 1T = {¢to,ty,...,t,} beapartitionof [0, T1],i.e,
0=to<t; <...<t,=T.

Assume that §(¢) is constant on each subinterval [¢x, tx+1] (See Fig. 14.2). We call such aé an
elementary process.

Thefunctions B(t) and §(¢) can be interpreted as follows:

e Think of B(t) asthe price per unit share of an asset at time¢.
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5(t)=35
A3y
6(t):6(t0) O
e O
-ty 1 t2 t3  Y=T
3(t) = 3(t,)

Figure 14.2: An elementary function 4.

e Think of ¢y, %4, ... ,t, asthetrading datesfor the asset.

e Think of §(¢x) asthe number of shares of the asset acquired at trading date ¢ ;. and held until
trading date ¢ .

Thenthe It integral /() can beinterpreted as the gain fromtrading at time¢; thisgain is given by:

0<t<t
——
=B(0)=0

14.7 Properties of the ID integral of an elementary process

AdaptednessFor each ¢, I(t) is F(t)-measurable.

Linearity If

then
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&%
®—

----- tk tk+1

Figure 14.3: Showing s and ¢ in different partitions.

and

£
CI(t) = / c5(u)dB(u).
0
Martingale I(t) isamartingale.

We prove the martingal e property for the elementary process case.

Theorem 7.45 (Martingale Property)
I(t) =) 8(t)[B(tjs1) = Bt)] + 8()[B(t) = B(tx)],  th <t <tenr

isa martingale.

Proof: Let0 < s < t be given. We treat the more difficult case that s and ¢ are in different
subintervals, i.e., there are partition points¢, and t;, suchthat s € [ty,ty1q] andt € [tx, try1] (See
Fig. 14.3).

Write
-1
I(t) = Z&@)[B(tm) = B(t;)] + 6(te)[Blteya) — B(to)]
k—1
+ D St)[B(ti4) = Bt)] + 3(tx)[B(t) — B(ty)]
j=t+1

We compute conditional expectations:

-1

=3 8(t))(B(tj41) — B(t))).

=0

{—1
I [Z 5(t5) (Bt 41) - B(tj))‘f(s)

I |5t (Bltes) = B(e0)|F(s)] = b00) (ELB(tesn) |F(5)) - Bleo)
= 8(t0)[B() - B(t0)
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These first two terms add up to /(s). We show that the third and fourth terms are zero.

[Z S(t;)(B(tiy1) — B(t;))|F

7=0l+1

k—1 -
= 3 BB [5)(B) - B)

j=0+1

)| |70

k—1 [
= Y I |(t;) (B[B(t;1)|F(1)] - B(t;))

j=t+1

F(s)

=0

o(ty) (IEIB@)|F ()] = B(tr))

=0

F(s)

B [5(0)(B() - B(t)

f(s)] =F

Theorem 7.46 (16 Isometry)
EF*t) =F / &% (u
Proof: To simplify notation, assumet = ¢, SO

Z 5(t;)[B(tj1) — B(;)]

D;

Each D; has expectation 0, and different D; are independent.

:Zk:(s ( DQ—I—QZ(S )DZD]

7=0 1<J

Since the cross terms have expectation zero,

IET?(t) ZE [6%(2;
JkO
=§Ekwwk%m B2 ()|
k
= ZE52(tj)(tj+1 —t;)
[N
= EZ_: / 52(u) du

[
rD\N
>,

[\]
&
="
<
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th of
pathof 5, "/ 0

VanY | | |
v 1 1 1

o=, U t2 t3 =T

Figure 14.4: Approximating a general process by an elementary process 4 4, over [0, 7'].

14.8 It0 integral of a general integrand
Fix T" > 0. Let § be aprocess (not necessarily an elementary process) such that

e 4(t) isF(t)-measurable, Vt € [0, 11,
o IE [T 8%(t) dt < oo.

Theorem 8.47 Thereis a sequence of elementary processes {4,, } >~ , such that
. T 2
nh_r}nooE/O 16,(1) — 6(1)]? dt = 0.

Proof: Fig. 14.4 showsthe main idea.

In the last section we have defined

for every n. We now define
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The only difficulty with this approach is that we need to make sure the above limit exists. Suppose
n and m are large positive integers. Then

T

var(Ly(T) — I, (T)) = IE ( /0 [6,(1) — 6, (¢)] dB(t))
T
(10 I sometry?) = I /0 [6.(t) — 6,.(1)]2 dt
= [ 113u00) = 501 4 150~ 5,01 P i
T T
(a+D)? < 2%+ 207 3) < QE/O 16.(1) — (1) di + QE/O 16,0 (1) — 5(¢)| dt,

whichissmall. This guarantees that the sequence {/,,(7") }52; hasalimit.

14.9 Properties of the (general) 16 integral

Here ¢ is any adapted, square-integrable process.

Adaptedness. For each ¢, I (t) is F(t)-measurable.

Linearity. If
I(t):/&(u) dB(u),  J(0) :/'y(u) dB(u)
then .
10+ (1) = [ (6u) &5 ()) dB(w
and

Martingale. [(t) isamartingale.
Continuity. 7(¢) isacontinuousfunction of the upper limit of integration¢.
Itd Isometry. IE1%(t) = IE f; 6*(u) du.

Example 14.1 () Consider the It0 integral

/OT B(u) dB(u).

We approximate the integrand as shown in Fig. 14.5
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ﬂ\/ - : . |

T/4 T/4 3T/4 T

Figure 14.5: Approximating the integrand B (u) with 4, over [0, T'].

B(0)=0 if 0<u<T/n;
B(T/n) if T/n<wu<2T/n;

B (M) it @=UT <y o
By definition,

/OT B(u) dB(u) = 13100!;3 (’%T) [B (@) B (’%T)] .

To simplify notation, we denote

kT
nen()
n
SO
T n—1
/ B(u) dB(u) = lim ZBk (Bry1 — By).
0
Wecompute

1 n—1 n—1
N (Brg1 — Be)?=1%> Bl — > BiBepi+3 Y BP
0 k=0 k=0

n—1
=iB.+%> Bj- ZBkBk+1+ ZBk
j=0

B
1l
o
B
1l

=3B, - ZBk(BkH — By).
k=0
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Therefore,
n—1 n—1
> Bi(Brg1 — Be) = $B2 — 3> (Brg1 — By)?,
k=0 k=0
or equivaently
n—1 n—1 2
kT (k+1)T 3 ETN] e o (k+1)T k
Yo (5 [ (5) - ()] = e - 2 s (555) ()]

Let n—oo and use the definition of quadratic variation to get

/OT B(u) dB(u) = $B*(T) — iT.

Remark 14.4 (Reason for thel 7" term) If f isdifferentiablewith f(0) = 0, then

[ s ast = [ ) du

In contrast, for Brownian motion, we have

T
/0 B(u)dB(u) = LBX(T) — LT.

The extraterm 17" comes from the nonzero quadratic variation of Brownian motion. It hasto be
there, because

T
E / B(u) dB(u) =0  (Itdintegral isamartingale)
0

but

ip.

FiB*(T)=1

14.10 Quadratic variation of an Ito integral
Theorem 10.48 (Quadratic variation of It integral) Let

() = /Ot(sw) dB(u).

Then
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Thisholdseven if § isnot an elementary process. The quadratic variation formula saysthat at each
time u, the instantaneous absolute volatility of 7 is §2(u). This is the absolute volatility of the
Brownian motion scaled by the size of the position (i.e. 4(¢)) in the Brownian motion. Informally,
we can write the quadratic variation formulain differential form as follows:

dI(t) dI(t) = §*(t) dt.
Compare thiswith
dB(t) dB(t) = dt.
Proof: (For an elementary processé). Let Il = {to,t1,...,t,} bethepartitionfor 4, i.e, §(t) =
d(tx) for t, <t < tr41. To Simplify notation, assume ¢ = ¢,,. We have

n—1

(D) =Y LD (tker) = (D) ()]

k=0
Let uscompute (1) (tx+1) — (I)(tx). Let = = {so, 51, ..., s} beapartition
p =80 <81 <o <8y =g

Then

It follows that

n—1

(1) = 3 () (e — 1)
k=0

5 (u) du

n—

k=0 th

t
I1TT||—0 / 52(u) du.
% 0
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It 0’'s Formula

15.1 Itd’s formula for one Brownian motion

We want a rule to “differentiate” expressions of the form f(B(t)), where f(z) is a differentiable
function. If B(t) were also differentiable, then the ordinary chain rulewould give

d 4 !
o/ (BO) = F(B)B(1),

which could be written in differential notation as

However, B(t) isnot differentiable, and in particular has nonzero quadratic variation, so the correct
formula has an extraterm, namely,

df (B(t)) = f(B(t)) dB(t) + 3f"(B(t)) dt
dB(t) dB(t)

Thisis|td’'sformulain differential form. Integrating this, we obtain 1t6’s formulain integral form:

1B0) - fBO) = [ 7B dBe + 1 [ 1(B) du.
f(0)

Remark 15.1 (Differential vs. Integral Forms) The mathematically meaningful form of 1t&’sfor-
mulais Itd'sformulain integral form:

1B0) = 1BO) = [ 7B dBe + 1 [ 1(B) du.

167
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This is because we have solid definitions for both integrals appearing on the right-hand side. The
first,

[ 7B s

isan It integral, defined in the previous chapter. The second,

/Ot F(B(w)) du,

isaRiemannintegral, the type used in freshman calculus.

For paper and pencil computations, the more convenient form of 1t&'sruleis|td’s formulain differ-
ential form:

df (B(t)) = f'(B(t)) dB(t) + 3.f"(B(1)) dt.

Thereisan intuitive meaning but no solid definition for theterms df (B(t)), d B(t) and dt appearing
in thisformula. Thisformula becomes mathematically respectable only after we integrateit.

15.2 Derivation of 1td’s formula
Consider f(z) = 127, sothat
f@)y=2z, f'(z)=1.
Let 2, 2141 be numbers. Taylor’'sformulaimplies
f(argn) = flaen) = (eppr — ) [(2n) + 5 (@1 — 22)° " (28)

In this case, Taylor'sformulato second order is exact because f isaquadratic function.

In the general case, the above equation is only approximate, and the error is of the order of (2441 —
z1)2. Thetotal error will have limit zero in the last step of the following argument.

FixT > 0andletll = {tg,t,...,t,} beapartitionof [0, 7]. Using Taylor'sformula, we write:

f(B(T)) = F(B(0))

— 1B(r) - 1B (0)

= N U (Bltien)) — FB(1))]
k=0

= Bltie) - B F(BU) + 1S [Blteer) — Bt /(B(t))
k=0 k=0
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We let ||I1||—0 to obtain

T ! T
:/0 F(B(w)) dB(u)—l—%/O F(B(u)) du.

ThisisItd’sformulainintegral form for the special case

15.3 Geometric Brownian motion

Definition 15.1 (Geometric Brownian Motion) Geometric Brownian motion is
S(t) = S(0) exp {UB(t) + (,u — %02) t} ,

where i and o > 0 are constant.

Define
f(t,2) = S(0)exp{ow+ (p— Lo?) 1},
SO
S(t) = f(t, B(t)).
Then

fo=(n=102) 1, o =0f, fow =,
According to I1t&’sformula,

dS(t) = df (t, B(t))

dt

=(p—3c*)fdt+ofdB+ic’fdt
= pS(t)dt + oS (t) dB(t)

Thus, Geometric Brownian motion in differential formis
dS(t) = pS(t)dt + oS(t) dB(t),

and Geometric Brownian motionin integral formis

S(t) = S(O)—I—/Ot,uS(u) du—l—/OtUS(u) dB(u).
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15.4 Quadratic variation of geometric Brownian motion
In theintegral form of Geometric Brownian motion,

t t
S(t) = 5(0) —I—/ S (u) du—l—/ oS (u) dB(u),
0 0
the Riemann integral
t
Ft) = / 15 () du
0
isdifferentiablewith F’(t) = pS(t). Thisterm has zero quadratic variation. The It0 integral
t
G(t) = / 05 (u) dB(u)
0
is not differentiable. It has quadratic variation
t
(G)(t) = / 0252 (u) du.
0
Thus the quadratic variation of .S is given by the quadratic variation of G. In differential notation,
we write
dS(t) dS(t) = (uS(t)dt + o S(1)dB(t))* = o2S%(t) dt
15.5 Volatility of Geometric Brownian motion

Fix0 < Ty < Ty Letll = {tg,...,t,} beapartition of [T, T5]. The squared absolute sample
volatility of S on [T, T3] is

1>
1 = 5 1
St — S(t ~ /0252 u) du
o B0 S0 = g T [ %500
1
~ o2 5*(Ty)

AsT, | T, the above approximation becomes exact. In other words, the instantaneous relative
volatility of S iso?. Thisisusually called simply the volatility of S.

15.6 First derivation of the Black-Scholes formula

Wealth of an investor. An investor begins with nonrandom initial wealth X, and at each time ¢,
holds A () shares of stock. Stock is modelled by a geometric Brownian motion:

dS(t) = uS(t)dt + oS(t)dB(t).
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A(t) can be random, but must be adapted. The investor finances his investing by borrowing or
lending at interest rate r.

Let X () denote the wealth of theinvestor at timet. Then
dX (t) = A®)dS(t) +r[X(t) — A(t)S(t)]dt
=A@ [SO)dt + oS (t)dB(t)] 4+ r [X(t) — A(t)S(t)]dt
=rX()dt + A@)S({t) (u—r) dt + A@)S(t)odB(t).
N——’
Risk premium
Value of an option. Consider an European optionwhich paysg(S(7')) attimeT". Let v(t, z) denote
the value of this option at time ¢ if the stock priceis S(¢t) = z. In other words, the value of the
optionat eachtimet € [0, T]is
v(t, S(1)).
The differential of thisvalueis
dv(t, S(t)) = vidt + v,dS + Fv,.dS dS
= vpdt + v, [uS dt + 0S dB] + %vmazsz dt
= {vt + pSv, + 50252%4 dt + o Sv,dB

A hedging portfolio starts with some initial wealth X and invests so that the wealth X (¢) at each
timetracks v(t, S(¢)). We saw above that

dX(t)=[rX +A(p—r)S] dt + cSAdB.

Toensurethat X (t) = v(t, S(¢)) for al ¢, we equate coefficientsin their differentials. Equating the
d B coefficients, we obtain the A-hedging rule:

Al) = va(t, S(1).
Equating the dt coefficients, we obtain:

v + pSvy + %aQS%m =rX+A(p—r)S.
But we have set A = v,,, and we are seeking to cause X to agree with v. Making these substitutions,
we obtain

v + pSv,y + %O‘QSQUMU =rv+ vy (p—r)S,
(Wherev = v(t, S(t)) and S = S(t)) which simplifiesto

vy + rSv, + %aQS%m = ru.
In conclusion, we should let » be the solution to the Black-Scholes partial differential equation
vi(t, @) + rave(t, @) + 0% 0., (¢, @) = ro(t, 2)
satisfying the terminal condition
v(T,z) = g(z).

If an investor startswith Xy = v(0,.5(0)) and usesthe hedge A (¢) = v, (¢, S(t)), then hewill have
X (t) =w(t,S(t)) foradl ¢, and in particular, X (1) = ¢(S(T)).
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15.7 Mean and variance of the Cox-Ingersoll-Ross process

The Cox-Ingersoll-Rossmodel for interest ratesis

dr(t) = a(b — er(t))dt + o\ /r(t) dB(D),

where a, b, ¢, o and (0) are positive constants. In integral form, thisequationis

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

We apply I1td’sformulato compute dr?(t). Thisisdf(r(t)), where f(z) = 2%. We obtain
rA(t ) = df (r(t))
F'(r () dr(t) + 5" (r(t)) dr(t) dr(?)
= 2r(t) |a(b - er(t)) di + 0\/r(t) dB(t)] n [a(b —er(t)) dt + oy/r (1) dB(t)]
= 2abr(t) dt — 2acr?(t) dt + 2073 (t) dB(t) + o2r(t) dt
= (2ab+ 0)r(t) dt — 2acr®(t) dt + 20v3 (t) dB(t)

The mean ofr(t). Theintegral form of the CIR equationis

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

Taking expectations and remembering that the expectation of an Itd integral is zero, we abtain

Er(t) = r(0) + a/ot(b — cEr(u) du.

Differentiation yields
%Er( t)=a(b—clEr(t)) = ab— aclEr(t),
which implies that

i |

d
e“CtEr(t)} — ot [acEr( )+ %Er(t)] = e*ab.

Integration yields
¢ b
e IBr(t) —r(0) = ab/ e du = — (e — 1).
0 C

We solvefor IEr(t):

Er(t) = é—|— et (r(O) — é) .

C C
If r(0) = 2, then Ir(t) = % for every t. If r(0) # 2, thenr(t) exhibits mean reversion:

lim FEr(t) = é
t—roo

c
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Variance of r(¢). Theintegral form of the equation derived earlier for dr?(t) is
F2(1) = #2(0) + (2ab + 0?) /Otr(u) du — 2ac/0t r2(u) du + 20 /Otr%(u) dB(u).
Taking expectations, we abtain
Er2(t) = r2(0) + (2ab + 0?) /0 "B (u) du — 2ac /0 "B () du,

Differentiation yields
%ErQ(t) = (2ab+ o?)IEr(t) — 2aclEr(t),

which implies that

d 2act 2 _ 2act|: 2 d 2 :|
e Er-(t)=ce 2aclEr*(t) + thr (t)

= 2" (2ab 4 o) IEr ().

Using the formula already derived for IF'r(t) and integrating the last equation, after considerable
algebrawe obtain

bo? b2 b\ [a* 20\ ..
B = g+ o+ (0= ) (_ § ?) o

C ac

2 9 2
+ (r(O) - é) T e=2act + 7 (; - r(O)) e 2act,

C ac ac

varr(t) = Erz(t) — (Er(t))2
b0-2 b 02 —act 02 b —2act
= 5.7 + (r(O) — E) e + g <% — r(O)) e .

15.8 Multidimensional Brownian Motion

Definition 15.2 (d-dimensional Brownian Motion) A d-dimensional Brownian Mation is a pro-
cess

B(t) = (By(t),...,By(t))

with the following properties:

e Each By (t) isaone-dimensional Brownian motion;

e If ¢ # j, thenthe processes B;(t) and B, (t) are independent.
Associated with a d-dimensiona Brownian motion, we have afiltration { F(¢)} such that

e For each ¢, the random vector B(t) is F(t)-measurable;

e Foreacht < t; < ... <t,, thevector increments

B(t1) — B(t),...,B(ts) — B(tn—1)
areindependent of F(¢).
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15.9 Cross-variations of Brownian motions

Because each component B; isa one-dimensiona Brownian motion, we have theinformal equation
dB; (t) dB; (t) = dt.
However, we have:

Theorem 9.491f: #£ j,
dB; (t) dB]‘ (t) =0

Proof: Letll = {to,...,t,} beapartitionof [0,7]. For i # j, define the sample cross variation
of B; and B; on [0, T'] to be

n—1

Crni= ) [Biltis1) — Bi(te)] [Bj(tr1) — Bj(te)]-
k=0

The increments appearing on the right-hand side of the above equation are all independent of one
another and all have mean zero. Therefore,

ECH = 0.
We compute var(Cyy). First note that
Ch = nz_: [Bi(tk-l—l) - Bz’(tk)] [Bj (tet1) — Bj(tr)
k=0
+2 Z i(tey1) — Bi(to)][Bj(tes1) — Bj(te)] - [Biltyt1) — Bi(tw)] [Bj(tit1) — Bj(tr)]
<k

All the increments appearing in the sum of cross terms are independent of one another and have
mean zero. Therefore,

var(Crr) = EC’%

=IF Z i(te1) — Bi(tp)]” [Bj(trar) — B (te)]? -

But [B;(try1) — Bi(tr)]* and [B;(trs1) — B;(tx)]* are independent of one another, and each has
expectation (tx+1 — t). ItfoIIowsthat

n—1 n—1
var(Cr) = ) (trpr = t1)* <Y (e — ) = |17
k=0 k=0

As||l1||—0, we have var(C1)—0, so C1 converges to the constant £C'; = 0. [
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15.10 Multi-dimensional Itdo formula

To keep the notation as simple as possible, we write the 1td formula for two processes driven by a
two-dimensional Brownian motion. The formula generalizes to any number of processes driven by
a Brownian motion of any number (not necessarily the same number) of dimensions.

Let X and Y be processes of the form
-I-/ du—l—/ S11(u) dBy(u -I-/ 12(u) dBy(u),
-I-/ du—l—/ 621 (u) dBy (u -I-/ S22 (u) dBy(u).

Such processes, consisting of a nonrandom initial condition, plus a Riemann integral, plus one or
more |t0 integrals, are called semimartingales. The integrands a(u), 3(u), and §;;(«) can be any
adapted processes. The adaptedness of the integrands guaranteesthat X and Y are also adapted. In
differential notation, we write

dX = o dt + 511 dB1 + 512 dB27
dY = ﬁ dt + 521 dB1 + 522 dB2

Given thesetwo semimartingales X and Y, the quadratic and cross variations are:

dX dX = (Oé dt + 511 dB1 + 512 dB2)27
=63, dBy dB, +261,6y2 dB; dBy +5%,dB, dB,
N—— N—— N——
dt 0 dt
= (0f) + 81y)* dt,
dY dY = (B dt + 691 dBy + 899 dBy)?
= (03, +83,)* dt,
(Oé dt + 511 dB1 + 512 dBQ)(ﬁ dt + 521 dB1 + 522 dBQ)
= (611021 + 012022) dt
Let f(t, 2, y) beafunction of three variables, and let X (¢) and Y (¢) be semimartingales. Then we
have the corresponding Itd formula:
df(t,z,y) = fidt + fodX + fydY + L[fon dX dX +2f,, dX dY + f,, dY dY].

Inintegral form, with X and Y as decribed earlier and with all the variablesfilled in, this equation
is

dX dY =

Jt, X (1), Y(t) - f(0,X(0),Y(0))
t
= /0 [fi+ afe + Bfy + 2071 4 672) fow + (811021 4 812022) foy + 3 (631 + 632) ] du

t t
+ /0 [B11fo + 621 f,] dB1 + /0 (612 fs + 022,] dBa,
where f = f(u, X (u),Y (u), fori, j € {1,2}, &; = &;;(u), and B; = B;(u).
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Chapter 16

Markov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider the stochastic differential equation:
dX(t) =a(t, X(t)) dt + o(t, X (t)) dB(?). (SDE)

Here a(t, 2) and o (¢, z) are given functions, usually assumed to be continuousin (¢, z) and Lips-
chitz continuousin z,i.e., thereisaconstant L such that

la(t,z) — a(t,y)| < Lz —yl, lo(t,z) —a(t,y)| < Llz — y

foralt, z,y.

Let (to, 2) be given. A solution to (SDE) with the initial condition (% ¢, x) isaprocess { X (t) };>+,
satisfying

X(to) =,

X(t):X(to)—|—/a(s,X(s))ds—|—/a(s,X(s))dB(s), £t

to to
The solution process { X () } ;>¢, will be adapted to thefiltration { 7 (¢) } ;>0 generated by the Brow-
nian motion. If you know the path of the Brownian motion up to time ¢, then you can evaluate
X ().
Example 16.1 (Drifted Brownian motion) Let ¢ beaconstantand o = 1, so
dX(t) = a dt + dB(1).
If (to, z) is given and we start with the initial condition

X(to) =,

177
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then

X(t) =z +a(t—to) + (B(t) — B(ty)), t>to.
To compute the differential w.r.t. ¢, treat ¢, and B(t,) as constants:

dX (1) = a dt + dB(1).

[ |
Example 16.2 (Geometric Brownian motion) Let » and o be constants. Consider
dX() =rX(t) dt +oX(t) dB(1).
Given theinitial condition
X(to) =,
the solutionis
X(t) = zexp {O'(B(t) — B(tg)) + (r — %UZ)(t — to)} )
Again, to compute the differential w.r.t. ¢, treat ¢, and B(ty) as constants:
dX(t) = (r— 30))X(t) dt + 0 X (t) dB(t) + 307X (1) dt
=rX(t) di+aX(t) dB().
[ |

16.2 Markov Property

Let 0 <ty < t; begivenand let .(y) beafunction. Denote by
E"h(X (1))

the expectation of 4(.X (¢1)), given that X (tg) = =. Now let £ € IR be given, and start with initial
condition
X(0)=¢.

We have the Markov property
B (WX ()] = 2o O ),

In other words, if you observe the path of the driving Brownian motion from time O to time ¢, and
based on thisinformation, you want to estimate 4 (X (¢1)), the only relevant information isthe value
of X (¢y). You imagine starting the (SDE) at time ¢, at value X (o), and compute the expected
valueof (X (t1)).
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16.3 Transition density

Denote by
p(to, t1; =, y)

the density (inthe y variable) of X (¢;), conditioned on X (¢) = z. In other words,

Eh(X (t1)) = /Rh(y)p(to, ts o, y) dy.

The Markov property saysthat for 0 < t5 < ¢, and for every &,
ok [h(X(tl))‘}'(to)] _ /Rh(y)p(to,tl; X (to), ) dy.

Example 16.3 (Drifted Brownian motion) Consider the SDE
dX(t) = a dit + dB(1).

Conditioned on X () = =, the random variable X (¢,) is normal with mean = + a(¢; — ty) and variance

(tl —to), i.e.,
1 (y— (Ha(tl—to)))z}
to, t1; z,y) = ——o— — .
plto, t1; 2,y) =) eXp{ STr—
Note that p depends on ¢, and ¢; only through their difference ¢, — ¢;. Thisisaways the case when a(¢, »)
and o (¢, z) don't depend on . [ |

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE
dX(t) =rX (@) dt+oX(t) dB(1),
withinitia condition X () = «, is Geometric Brownian motion:
X(t1) = wexp {o(B(t1) — B(to)) + (r — 50°)(t1 —to)} -

The random variable B(t,) — B(t) has density

1 b?
P{B(t;) — B(ty) € db} = —— ——— db,
1B) = Blo) € b= =) eXp{ 2(t1—to)}
and we are making the change of variable
Y = xexp {O'b—l— (r— %0'2)(151 - to)}

or equivalently,
b=

Q| =

[1og% —(r— Lot - to)] .

The derivativeis p J
v oy, or equivalently, b= Y.
db oy
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Therefore,
p(to, 152, y) dy = P {X(t1) € dy}
1 1 2
= ———————exp {—7 logg _ (r - %0’2)(151 —to)} } dy.

oyy/2m(ty — to) 2ty — to)o? x

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

EY(X(T) - K)* = /Ooo(y — K)*p(t, T;2,y) dy

1 x
_ r(T-t) -~ _ 1.2 _
—c xN(U T_t[logK—l—r(T 1)+ Lo¥(T t)D
—KN( ! {1og£+r(T—t)—laz(T—t)D
o T —1t K 2
where
Nin) = — /n g [T g
n) = — e 2 x_—/ e 2 T
V2T J_oo V2m J_y
Therefore,

E%¢ |77 T=(X(T) — K)*

_ 1 X(t) L2
= X(t)N (U — [1 (T =1+ 4o (T_t)D
Tt 1 X(t)
_ r(T—t) _ 1.2 _
e K N(O_\/m [log i +r(T—t) - 50°(T t)])
[ ]
16.4 The Kolmogorov Backward Equation
Consider
dX (t) = a(t, X (t)) dt + o(t, X (t)) dB(t),
and let p(to, t1; 2, y) bethe transition density. Then the Kolmogorov Backward Equationis:
0 0?
Y (t07 t; @, y) = a(t07 x)_p(t(h tiy @, y) + %(72(t07 95)—21)@07 t; @, y)
Jto Oz Oz (KBE)

Thevariablesty and z in (K BE') are called the backward variables.

In the case that « and o are functions of = alone, p(to, t1; z,y) dependsont, and ¢; only through
their difference 7 = ¢, — to. We then write p(7; x,y) rather than p(to,t1; z,y), and (K BE)
becomes

8 . _ 8 . 1.2 82 . 1
Ep(ﬂ T,y) = a(ﬂﬁ)a—xp(ﬂ T,y)+ 50 (96)@19(77 z,y). (KBE')
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Example 16.5 (Drifted Brownian motion)
dX(t) = adt+ dB(?)
1 — (x4 ar))?
p(r; x,y) = eXp{—u}.

=
=
=
=
8
l
=

= —%p—i— = l;_z_ ar) p-
Therefore,
apet dpan = [WTEZD L e,
=pr
Thisisthe Kolmogorov backward equation. ]

Example 16.6 (Geometric Brownian motion)

dX (1) = rX () dt + o X (1) dB(1).

(i 29) = —— Lo flog L — (r = d0%)7]”

; = — og=—(r—so’)t R
pP\T; Y cyv/2nT exp Y7ol g - 9

It istrue but very tediousto verify that p satisfiesthe KBE

1.2 2
Pr = TEPr + 507 Prg

16.5 Connection between stochastic calculus and KBE

Consider
dX(t) = a(X(t)) dt + o(X(t)) dB(1). (5.1)
Let ~(y) beafunction, and define

v(t, ) = E*h(X(T)),
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where0 < ¢ < T'. Then
vt z) = /h(y) p(T = t; @,y) dy,
—/h(y) p-(T = t; z,y) dy,
ve(t, ) = /h(y) pe(T = t; @,y) dy,
Upe(t, @) = /h(y) Pee(T = t; x,y) dy.
Therefore, the Kolmogorov backward equation implies

vt @) +a(@)v, ( )+ 1Uz(ﬂf)vm(fvﬂf):
/h —tix,y) +a(@)ps(T - t;2,y) + %02($)pxx(T—t;w7y)} dy =0

Let (0,£) beaninitia condition for the SDE (5.1). We simplify notation by writing /&' rather than
B¢,

Theorem 5.50 Startingat X (0) = &, the processv (¢, X (t)) satisfiesthe martingale property:

E [U(t,X(t))‘]:(s)] = v(s, X(s)), 0<s<t<T.

Proof: According to the Markov property,

I (X () |F(0)] = X O (D) = ot X (1),

[t0'sformulaimplies

dv(t, X (1)) = vdt + v,dX + Jv,.dX dX
= vdt + avydt + ovdB + 3 Lo20,,dt.
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In integral form, we have
ot, X (1)) = v(0, X (0))

+ / [, X () + X (@) vl X () £ 303X (1) ity X ()]
+/Ota(X(u))%(u,X(u)) dB(u).

We know that v(t, X (¢)) isamartingale, so theintegral fg [vt + avy + %a%m] du must be zero
for all ¢. Thisimpliesthat the integrand is zero; hence

2

1
Ut + avy + 5070 = 0.

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on Itd’s formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac)Define

o(t,z) = E"R(X(T)), 0<t<T,

where
dX (t) = a(X (1)) dt+ o(X (1)) dB(t).
Then
vty @) + a(z)vg(t, @) + %Uz(x)vm(t, z)=0 (FK)
and
(T, z) = h(z).

The Black-Scholes equation is a special case of thistheorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use 1td’sformulato prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes
Consider the SDE
dS(t) = rS(t) dt + oS(t) dB(t).

With initial condition
S(t) =z,

the solutionis

S(u) = wexp{o(Bu) = B#t) + (r— o) (u—1)},  wu>t.
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Define
v(t,z) = " R(S(T))
= IFEh (x exp{U(B(T) — B(t)) + (r — 30°)(T - t)}) ’

where h isafunction to be specified | ater.

Recall the Independence Lemma: If G isao-field, X isG-measurable, and Y isindependent of G,
then

B |n(x.v)|o] = 2(x),
where
v(z) = Eh(z,Y).
With geometric Brownian motion, for 0 < ¢ < 7', we have
S(t) = 8(0)exp{aB1) + (r = Jo?)t,
S(T) = S(0)exp{oB(T) + (r — 1?7}

L) exp {a(B(T) = B(t)) + (r — 3a*)(T = 1)}

independent of F (¢)

We thus have
S(T) = XY,
where
X =5(1)
Y =exp{a(B(T) = B(t) + (r — 3o*)(T = 1)}
Now

FEh(zY) =v(t,z).
The independence lemmaimplies

E |W(S()|F0)] = BBy Fe)

=ov(t, X)
=v(t,S(t)).
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We have shown that
olt, S(1)) = I [h(S(T))‘}'(t)] L 0<t<T.

Note that the random variable 2 (.5(7")) whose conditional expectation is being computed does not
depend on ¢t. Because of this, the tower property impliesthat v (¢, S(¢)),0 < ¢ < T, isamartingale:
For0<s<t<T,

E [v(t,S(t))‘}'(s)] - E [E [h(S(T))‘}'(t)] ‘}'(s)]
—E [h(S(T))‘}'(s)]
= v(s, 9(s)).

Thisisaspecia case of Theorem 5.51.

Because v(t, S(t)) is a martingale, the sum of the d¢ terms in dv(¢, S(¢)) must be 0. By Itd's
formula,

dv(t, S(0) = [vi(t, S(1)) dt + rS(B)va(t, S (1) + S02 5% (1) va(t, S (1)) ] dt
+ aS(t)ve(t, S(t)) dB(t).
Thisleads usto the equation
vty @) 4+ rave(t, @) + 3o%2 v, (t2) =0,  0<t<T, x>0.
Thisisaspecial case of Theorem 5.51 (Feynman-Kac).
Along with the above partial differential equation, we have the terminal condition
o(T,z) = h(x), z > 0.

Furthermore, if S(t) = 0 for somet € [0, 7], then dso S(7') = 0. This gives us the boundary
condition
v(t,0) = h(0), 0<t<T.

Finally, we shall eventually see that the value at time ¢ of a contingent claim paying 2 (S(7)) is
u(t,z) = e " T EHR(S(T))

=" T=Dp(t, 2)

attimet if S(t) = «. Therefore,

(t,2)
velt, ) = —re" Tt 2) + T Dyt 2),
vy(t,z) = e 75)ugg(t, z),
Upe(t, @) = er(T_t)um(t7 )
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Plugging these formulas into the partial differential equation for v and cancelling the e” (7 =) ap-
pearing in every term, we abtain the Black-Scholes partial differential equation:
—ru(t,z) + w(t, 2) + reug(t, @) + So%2 ug, (t, 2) = 0, 0<t<T, z>0.
(BS)
Compare thiswith the earlier derivation of the Black-Scholes PDE in Section 15.6.
In terms of the transition density
(4T 2y = ——— oxpl ot [10 Y (r = Lo?)(T t)] :
C ) = _ d_(p_1 _
PS5y oy 2x (T — 1) P 2(T —t)o? &2 2
for geometric Brownian motion (See Example 16.4), we have the “ stochastic representation”
u(t, 2) = e TV R(S(T)) (SR)

=T /Oo h(y)pt,T; x,y) dy.
0

In the case of acal,
h(y) = (y — K)*

and
u(t,z) =a N (ffx/% [log % +r(T-1t)+ %UQ(T - t)])
— eI N (70\/% [log % +r(T —t)— 1*(T - t)D

Even if 2 (y) is some other function (e.g., 2(y) = (K — y)t, aput), u(¢, =) is till given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholes with price-dependent volatility

dS(t) = rS(t) dt + 5(S(t)) dB(1),
o(t, x) = e " TDELY(S(T) — K)¥.

The Feynman-Kac Theorem now implies that
—ro(t,z) + v(t, @) + ravy (t, @) + 187 (2)vee(t, 2) = 0, 0<t<T, z>0.
v a'so satisfies the terminal condition

o(T,z) = (v — K)T, x>0,



CHAPTER 16. Markov processes and the Kolmogorov equations 187

and the boundary condition
v(t,0)=0, 0<t<T.

An example of such a processisthe following from J.C. Cox, Notes on optionspricing |I: Constant
elagticity of variance diffusions, Working Paper, Stanford University, 1975:

dS(t) = rS(t) dt + oS°(t) dB(t),

where 0 < & < 1. The “volatility” ¢.5°~!(t) decreases with increasing stock price. The corre-
sponding Black-Scholes equationis

—rv 4+ v + ravg + %sz%vm =0, 0<t<T z>0;
v(t,0) =0, 0<t<T
o(T,z) = (z — K)T, x> 0.
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Chapter 17

Girsanov’s theorem and the risk-neutral
measure

(Please see Oksendal, 4th ed., pp 145-151.)

Theorem 0.52 (Girsanov, One-dimensionallLet B(¢),0 < ¢ < T, be a Brownian motion on
a probability space (2, F,P). Let F(¢),0 < ¢t < T, be the accompanying filtration, and let
6(t),0 <t < T, bea processadapted to thisfiltration. For 0 < ¢ < 7', define

B(t) = /Ot 6(u) du+ B(t),

2(t) = exp{—/OtH(u) dB(u) - %/Ot 62 (u) du},
and define a new probability measure by
P(A) = /AZ(T) dP, VA€ F.
Under /P, the process B(t),0 < ¢t < T', isa Brownian motion.

Caveat: Thistheorem requires a technical condition on the size of 4. If
T
Eexp{%/ 0% (u) du} < 00,
0

We make the following remarks:

everything is OK.

Z(t) is a matingale. In fact,

dZ(t) = —0(t)Z(t) dB(t) + 10°(¢) Z(t) dB(t) dB(t) — 16 (t) Z(t) dt
= —0(t)Z(1) dB(1).
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IP is a probability measure. Since Z(0) = 1, we have IEZ(t) = 1 for every t > 0. In particular
P(Q) = / Z(T) dP = EZ(T) = 1,
Q

so0 [P isa probability measure.

IF interms of 2. Let I/ denote expectation under /P. If X isarandom variable, then
FEZ=IE[Z(T)X].
To seethis, consider first thecase X = 1 4, where A € F. We have
FEX =1P(A) = /AZ(T) dIP = /QZ(T)lA diP = E[Z(T)X].

Now use Williams' “standard machine”

P and IP. Theintuition behind the formula
P(A) = /A Z(T)dlP  VAeF

isthat we want to have N
P(w) = Z(T,0) P(w),

but since IP(w) = 0 and IP(w) = 0, thisdoesn’t really tell usanything useful about /P. Thus,
we consider subsets of €2, rather than individual elements of €2.

Distribution of B(T). If 6 isconstant, then
2(T) = exp {-0B(T) - 16°T}
B(T) = 0T + B(T).

Under P, B(T') isnormal with mean 0 and variance T', so B(T") isnormal with mean 7 and

variance T": ~ ,
1 (b—6T) .
——— > db.

el

Removal of Drift from B(T"). The change of measurefrom P to IP removes the drift from B(T).
To seerthis, we compute

EB(T) =

P(B(T) € db) =

E[Z(T)(0T + B(T))]
IE [exp {~0B(T) — 10*T} (07 + B(T))]

B 1 %] 12 b2
_m 3 (0T—|—b)exp{ 6b — HT}eXp{ o db
(b+06T)>
——— 5 db
\/T 0T—|—b { 5T
0 2
(y=0T+0b) = m/ yexp{ L } dy (Substitutey = 67T + b)

= 0.
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We can also see that I B(T') = 0 by arguing directly from the density formula

P{E(t) € dl;} = \/;T_Texp{—%} db.

Because
Z(T) = exp{—6B(T) — $6°T}
= exp{—0(B(T) - 0T) — 10°T}
= exp{—0B(T) + 16°T},
we have

P{B(T) € dby = P{B(T) € db} exp {05+ 16°T}

1 b—01) - .
- expl -2 gh 4 o2\ b,
2T { 2T 2

1 b2 i
= exps —— .
2T P 2T

Under 1P, B(T) is normal with mean zero and variance 7. Under 1P, B(T') is normal with
mean #7" and variance 7.

Means change, variances don’'tWhen we use the Girsanov Theorem to change the probability
measure, means change but variances do not. Martingales may be destroyed or created.
Volatilities, quadratic variations and cross variations are unaffected. Check:

dB dB = (8(t) dt + dB(t))? = dB.dB = dL.

17.1 Conditional expectations undedP

Lemma 1.53 Let 0 < ¢ < 7. If X isF(¢t)-measurable, then

EX = E[X.Z(1)].

Proof:
EX = E[X.Z(T)] = E[ E[X.Z(T)|F(1)]]
= F[X E[Z(T)|F®)]]
= IF[X.Z(t)]

because 7 (t),0 < t <T',isamartingale under /. [}
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Lemma 1.54 (Baye’s Rule)lf X is F(t)-measurableand 0 < s < ¢ < T, then

E[X|F(s)] = ﬁE[XZ(t)U'(s)]. (1.1)

Proof: It isclear that %E[XZ(t)U‘(s)] is F(s)-measurable. We check the partial averaging
property. For A € F(s), we have

/ —JE (X Z(0)|F(s)] dP = T |14 IE[X Z(1)|F(5)]

Z(s)
= I [1AIE[X Z(t)|F(s)]] (Lemma 1.53)
= W [IF[1AXZ(t)|F(s)]] (Taking in what is known)
= E[14XZ(1)]

= E[1,X]  (Lemmal.53again)

Although we have proved Lemmas 1.53 and 1.54, we have not proved Girsanov’'s Theorem. We
will not prove it completely, but here isthe beginning of the proof.

Lemma 1.55 Using the notation of Girsanov's Theorem, we have the martingale property

FE[B(t)|F(s)] = B(s), 0<s<t<T.

Proof: We first check that B(t)Z(t) isamartingale under IP. Recall

dB(t) = 0(t) dt + dB(1),
dZ(t) = —0(t) Z(t) dB(t).
Therefore,
d(BZ)=B dZ+ % dB+ dB dZ
=—B0Z dB+ Z0 dt + Z dB — 0Z dt
= (-B8Z + 7) dB.

Next weuseBayes Rule. For0 < s <t < T,

= J B 2(s)

Z(s)
= B(s).

EB(0)|F(5)) = 5 B0 Z()| 7()
1
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Definition 17.1 (Equivalent measures)Two measures on the same probability space which have
the same measure-zero sets are said to be equivalent.

The probability measures 1P and IP of the Girsanov Theorem are equivalent. Recall that P is
defined by

P(A) = /Z(T) iP, AeF.

If IP(A) =0,then [, Z(T) dIP = 0. Because Z(T") > 0 for every w, we can invert the definition
of IP to obtain

P(A):/A%dﬁ, AeF.

If IP(A) = 0, then [, 775 dIP = 0.

17.2 Risk-neutral measure

As usua we are given the Brownian motion: B(t),0 < ¢ < T', withfiltration F(¢),0 < t < T,
defined on a probability space (€2, F, ). We can then define the following.

Stock price:
dS(t) = p(t)S(t) dt + o(t)S(t) dB(t).

The processes p(t) and o(t) are adapted to the filtration. The stock price model is completely
general, subject only to the condition that the paths of the process are continuous.

Interest rate: r(¢),0 < ¢ < T. Theprocessr(t) is adapted.

Wealth of an agent, starting with X (0) = =. We can write the wealth process differential in
severa ways:

dX (1) A(t)dS(t)  +r[X (@) — A@)S(1)] dt

Capital gainsfrom Stock Interest earnings
= r(t)X (1) dt + A@)[dS(t) — rS(t) di]
= ()X (1) dt + At) (u(t) — r() S(t) dt + A(t)o(£)S (1) dB(1)

Risk premium

Market price of risk=6(t)
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Discounted processes:

Notation:

The discounted formulas are

Sy 1
d <W) = 5 [0S @) de +ds (1)

Then
(57) = smews do,
X)) _ AW,
d <ﬂ(t)) = S0 dB(
Under P, % and % are martingales.

Definition 17.2 (Risk-neutral measure) A risk-neutral measure (sometimes called a martingale
measure) is any probability measure, equivalent to the market measure 1P, which makes all dis-
counted asset prices martingales.
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For the market model considered here,
P(A) = / Z(T) dIP, A€ F,
A

where . .
Z(t) = exp{—/ 0(u) dB(u) — %/ 0% (u) du}7
0 0
isthe unique risk-neutral measure. Note that because #(¢) = %, we must assumethat o (¢) #
0.

Risk-neutral valuation. Consider a contingent claim paying an F (1")-measurable random variable
VatimeT.

Example 17.1
vV =(S(T) - K)*, European call
V =(K-5(T)t, European put
e "
V= —/ S(u) du—K) , Asian call
r 0

If thereisahedging portfolio, i.e., aprocess A(t), 0 < ¢ < T', whose corresponding wealth process
satisfies X (1) = V, then
X(0)= I [L] .

p(T)

Thisis because 2 1) isamartingale under P, so

A1)
X0 = 55 = [y = F 5]
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Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

See Oksendal, 4th ed., Theorem 4.11, p.50.

Theorem 1.56 Let B(t),0 < t < T', bea Brownian motionon (2, 7, P). Let 7(¢),0 <t < T, be
the filtration generated by this Brownian motion. Let X (¢),0 < ¢ < 7', bea martingale (under IP)
relative to thisfiltration. Then there isan adapted process 6(¢), 0 < ¢ < 7', such that

t
X (t) :X(O)—|—/ 5(u) dB(u), 0<t<T.
0
In particular, the paths of X are continuous.

Remark 18.1 We aready know that if X (¢) isaprocess satisfying
dX (t) = 4(t) dB(t),

then X (¢) isamartingale. Now we seethat if X (¢) isamartingal e adapted to thefiltration generated
by the Brownian motion B(t), i.e, the Brownian motion isthe only source of randomnessin X, then

dX (t) = 6(t) dB(t)

for some §(¢).

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppsethat 7(¢),0 < t < T is
the filtration generated by the Brownian motion B (under IP). Suppose that Y isa IP-martingale.
Then there is an adapted process~(t), 0 < ¢ < T, such that
t -
Y (1) :Y(O)—I—/ v(w) dB(w), 0<t<T.
0

197
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E@:Kmmm+mm
ﬂo:em{—A%@)ﬂﬂw—%A%%mdﬁ,
ﬁmyiézqym: VA€ F.

Then

SN _ S@) =
d(mg)_ﬁaﬂ@dB@.

Let A(t),0 <t < T, beaportfolio process. The corresponding wealth process X (¢) satisfies

XN _ Ao S0 45
d(ﬁ(t)) = A(t)a(t) 0 dB(t),
i.e.,
X _ VR ()

Let V' be an F(71')-measurable random variable, representing the payoff of a contingent claim at
time7". Wewant to choose X (0) and A(¢),0 <t < T, sothat

X(T)=V.

Define the IP-martingale

—I V
Y (¢t :E[—‘}'t], 0<t<T.
0 =T | 5570
According to Homework Problem 4.5, there is an adapted process ~(¢), 0 < ¢ < 7', such that

wozy@+/waé@, 0<t<T.

Set X(0)=Y(0)=F [%} and choose A (u) so that
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X vy o[
0 _Y(t)_E[ﬁ(T)‘f(t)], 0<t<T
In particular,
XD _ml v -
5 = E [0 =
S0
X(T)=V.

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although
it does not tell us how to compute it. It aso justifiesthe risk-neutral pricing formula

X(0) = B0 | 575|700

_ 00 g [%v‘m)]

t)

N

where

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 ¢-dimensional Girsanov) e B(t) = (Bi(t),...,B4(t)),0 <t < T, ad-
dimensional Brownian motionon (€2, 7, P);

e F(t),0 <t <T,theaccompanying filtration, perhapslarger than the one generated by B;
o 9(t) = (01(t),...,04(t)),0 <t <T,d-dimensional adapted process.
For 0 <t < T, define

- 1
Bj(t):/o 0:(u) du+ By(t),  j=1,....d,

20) =exp{ = [ o). aBt) =3 [ o0l duf

PA) = /A Z(T) dIP.
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Then, under P, the process

B(t) = (Bi(t), ..., Ba(t)), 0<t<T,

is a d-dimensional Brownian motion.

18.4 d-dimensional Martingale Representation Theorem

Theorem 4.58 e B(t) = (Bi(t),...,B4(t)),0 <t < T, ad-dimensional Brownian motion
on (2, F,IP);

o F(t),0 <t < T, thefiltration generated by the Brownian motion B.

If X(¢),0 <t < T, isamartingale (under IP) relativeto F(¢),0 < t < T, then thereisa
d-dimensional adpated process §(t) = (§1(¢), ..., d4(t)), such that

0)—|—/0t5(u).dB(u), 0<t<T.

Corollary 4.59 If we have a d-dimensional adapted processé(t) = (61 (t), ..., 04(t)), thenwecan
define B, 7 and IP asin Girsanov's Theorem. If Y (¢),0 < t < T',isamartingaleunder IP relative
to F(t),0 < t < T, then thereis a d-dimensional adpated process v (¢) = (v1(t),...,v4(t)) such
that

0) —I—/t'y(u).dg(u), 0<t<T.

18.5 Multi-dimensional market model

Let B(t) = (Bi(t),...,Bq4(t)), 0 < t < T, bead-dimensional Brownian motion on some
(Q,F,P), and let F(t ) 0 < t < T, be thefiltration generated by B. Then we can define the
following:

Stocks

dS;(t) = pi(t)S;(t) dt + S;(t ZU” i=1,...,m

Accumulation factor

B(t) = exp {/Otr(u) du}.

Here, 1 (t), o;;(t) and r(t) are adpated processes.
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Discounted stock prices

SO S S
(50) - 555 o 555
o d
L2 0w 6,0 + By (1] (5.)

= 4B, (1)

For 5.1 to be satisfied, we need to choose 4, (t), . . . , 64(t), so that
d
Zaij(t)ej(t):,ui(t)—f‘(t), t=1,...,m. (MPR)
7=1

Market price of risk. The market price of risk is an adapted process 6(t) = (6:(¢),...,04(t))
satisfying the system of equations (MPR) above. There are three cases to consider:

Case I: (Unique Solution). For Lebesgue-almost every ¢ and IP-amost every w, (MPR) has a
unique solution (¢). Using #(¢) in the d-dimensional Girsanov Theorem, we define a unique
risk-neutral probability measure IP. Under P, every discounted stock price is a martingale.
Consequently, the discounted wealth process corresponding to any portfolio processisa IP-
martingale, and this implies that the market admits no arbitrage. Finaly, the Martingale
Representation Theorem can be used to show that every contingent claim can be hedged; the
market is said to be complete.

Case II: (No solution.) If (MPR) has no solution, then there is no risk-neutral probability measure
and the market admits arbitrage.

Case lll: (Multiplesolutions). If (MPR) has multiple solutions, then there are multiplerisk-neutral
probability measures. The market admits no arbitrage, but there are contingent claims which
cannot be hedged; the market is said to be incomplete.

Theorem 5.60 (Fundamental Theorem of Asset Pricing) Part I(Harrison and Pliska, Martin-
galesand Stochasticintegral sinthe theory of continuoustrading, Stochastic Proc. and Applications
11 (1981), pp 215-260.):

If a market has a risk-neutral probability measure, then it admits no arbitrage.

Partll. (Harrisonand Pliska, A stochastic calculusmodel of continuoustrading: complete markets,
Stochastic Proc. and Applications 15 (1983), pp 313-316):
The risk-neutral measure isuniqueif and only if every contingent claim can be hedged.
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Chapter 19

A two-dimensional market model

Let B(t) = (By(t), B2(t)),0 < t < T, be atwo-dimensiona Brownian motion on (€2, 7, ). Let
F(t),0 <t < T, bethefiltration generated by B.

In what follows, all processes can depend on ¢ and w, but are adapted to F(¢),0 < ¢ < 7. To
simplify notation, we omit the arguments whenever there is no ambiguity.

Stocks:
dSy = Sy [y dt + o1 dBq],

dSQISQ H2 dt—|—p0’2 dB1—|— 1—p2 g9 dB2:|

Weassume o, > 0, 05 > 0, —1 < p < 1. Notethat

dS, dSy = S?o? dB, dB; = 015} dt,

dSy dSy = S3p*c3 dBy dBy + S3(1 — p*)o3 dBy dB;
= 0353 dt,

dSy dSy = S10153p05 dBy dBy = po10251.5; dt.

In other words,

e %L hasinstantaneousvariance o7,

e %2 hasinstantaneousvariance o3,

ds,

* =

and % have instantaneous covariance po .

ﬁ(t):exp{/otrdu}.

The market price of risk equations are

Accumulation factor:

o101 =1 —r
(MPR)
po2bh +1\/1 = p*ogly =y —r
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The solution to these equationsis

Olzlul_r
g1

9

o1(p2 — 1) — poa(p — 1)

o102/ 1 — p? '

0, =

provided —1 < p < 1.
Suppose —1 < p < 1. Then (MPR) has aunique solution (6, 6,); we define

Z(t) = exp{—/otol By — /Otoz B, — %/Ot(of +62) du},
P(A) = /A Z(T) dIP,  VAc F.
IP isthe unique risk-neutral measure. Define
N t
By (t) :/0 6, du + B (1),
Ba(t) = /Ot 6y du + By(t).
Then
s, = S, [r dt + o diél} :
dS; = S, [r dt + poy dBy + /1 — pzagdgg] .

We have changed the mean rates of return of the stock prices, but not the variances and covariances.
19.1 Hedgingwhen-1 < p <1

dX = Al dSl + AQ dSQ + T‘(X — A151 — AQSQ) dt

X 1
d(—) =—-dX -rXdt
5) =3 )
1 1
= BAl(dSl — T‘Sl dt) + BAQ(dSQ — T‘SQ dt)
1 ~ 1 ~ ~
= EAISIUl dB1 + EAQSQ [pUQ dB1 + 1- p20'2 dB2:| .
Let V be F(T')-measurable. Define the IP-martingale
Y({t)=IE [L‘}'(t)] 0<t<T
p(T) ’ -
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The Martingale Representation Corollary implies

t - t -
0 0
We have

d (ﬁ) - (%Alsm 4 %Azszpffz) 4B,

1 -
+ BAQSZV 1 — p?03 dBy,

dY = Y1 dél + Y2 dEQ

We solve the equations

1 1
5A15101 + B

1
BAZSQV L= p?oy =7

for the hedging portfolio (A1, Az). With thischoice of (A, A;) and setting

AgSepoy = 1

— vV
X(0)=Y(0) =B

wehave X (1) =Y (t), 0 <t < T, andin particular,
X(T)=V.

Every F(1")-measurable random variable can be hedged; the market is complete.

19.2 Hedging wherp =1

Thecase p = —1 isanalogous. Assumethat p = 1. Then

dSl = Sl[,ul dt + 01 dBl]
dSQ = SQ[,MQ dt + (] dBl]

The stocks are perfectly correlated.
The market price of risk equations are

o160y =p1—r (MPR)
o201 = pg — 1

The process 6, isfree. There are two cases:
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Case I ©5— # 2= There is no solution to (MPR), and consequently, there is no risk-neutral
measure ThIS ‘market admits arbitrage. Indeed

d (%) = %Al(dSl - T‘Sl dt) + %AQ(dSQ - T‘SQ dt)

1 1
= BAlSl[(,ul — T‘) dt—|— 01 dBl] —|— BAQSQ[(,UJQ — T‘) dt—|— (] dBl]
Suppose £5— > £2==. Set
1 1
A= —, Ay=-— .
! 01517 ? 025
Then
X 1 [pg—r 1 [pe—r
0(X) = L[ am] - [ an
B) Bl o 18l oy '
_l[#l—f‘ Mz—f‘]dt
B g1 02
Positive

Case II: 55— = &—=. The market price of risk equations

o101 =1 — 1

o2t = pg — 1

have the solution

H1—T Ho — T
01: =
g1 g2

9

9, isfree; there are infinitely many risk-neutral measures. Let /P be one of them.

Hedging:
X 1 1
d (ﬁ) = BAlSl[(,ul - T‘) dt + g1 dBl] + BAQSQ[(,UJQ - T‘) dt + g9 dBl]
1 1
= BAlle'l[el dt + dBl] + BAQSQO—Q[Ol dt + dBl]

1 1 ~
= (BAISlUl + EAQSQO—Q) dB1

Notice that B, does not appear.

LetV bean F(T')-measurablerandom variable. If V' dependson B, then it can probably not
be hedged. For example, if
V = h(51(T), 5(T)),

and o, or o5 depend on B, then thereistrouble.
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More precisely, we define the IP-martingale

TV
V()= [m‘m)] L 0<t<T.
We can write
¢ t
Y (t) = Y (0) —I-/0 71 dBy -I-/0 V2 dBz,
S0

dY = Y1 dEl + Y2 dEQ
Toget d (%) to match dY’, we must have

7220.
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Chapter 20

Pricing Exotic Options

20.1 Reflection principle for Brownian motion

Without drift.
Define

= B(t).
Then we have:

P{M(T) > m,B(T) < b}
= IP{B(T) > 2m — b}

! /Oo v d >0, b<
= ex - z, m , m
v/ 27T Jom—b P 2T

So the joint density is

2 1 o0 2
P{M(T) € dm,B(T) € db} = —% (\/ﬁ /Zm_bexp{—g—T} dx) dm db

0 1 (2m — b)?
=5 (mexp{— 5T }) dm db,

_ — b2
:Mexp _M dm db, m > 0,b < m.
27T 2T

With drift. Let
B(t) = 6t + B(1),

209
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mb T | . shadow path

Brownian motion

Figure 20.1: Reflection Principle for Brownian motion without drift

m=b

(B(T), M(T)) liesin here

Figure 20.2: Possiblevalues of B(T"), M (T').
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where B(t), 0 <t < T, isaBrownian motion (without drift) on (€2, 7, ?). Define

Z(T) = exp{—0B(T) — 10°T}
= exp{—0(B(T) + 6T) + £6°T}
= exp{—0B(t) + 16°T},

P(A) = /AZ(T) dIP, VA€ F.

SetM (T) = maxo<i<t B(T).

Under 1P, B is aBrownian motion (without drift), so

. o - 2(2m = b) 2m-b2 . - -
P{M(T) € din, B(T) € db}y = =“———~ = Ydmdb, m>0,b< .
{M(T) € dm, B(T) € db} TVorT exp{ 5T

Let (772, b) be afunction of two variables. Then

= I [h(M(T), B(T)) exp{0B(T) — 16°T}]

m=o00 b=m

m=0 j—_~o

But also,

m=o00 b=mn
ER(M(T), B(T)) = / / h(i,b) P{M (T) € din, B(T) € db}.

m=0 p=_co
Since h is arbitrary, we conclude that

(MPR)

P{M(T) € dm, B(T) e db}
= exp{fb — L6°T} P{M(T) € din, B(T) € db}
2(27m — b) (2 — b)?
varT {_ °T

} .exp{0b — L0°T}din db, 1 >0, b < 7.
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20.2 Up and out European call.

Let0 < K < L begiven. The payoff at timeT is
(S(T) — K) 1se(ry<r)s
where
S*(T) = max S(t).

0<i<T
To simplify notation, assumethat /P isalready the risk-neutral measure, so the value at time zero of
the optionis

0(0,8(0)) = eI [(S(T) = K) 1 se(ryery ] -
Because I istherisk-neutral measure,

dS(t) =rS(t) dt + oS(t) dB(t)
S(t) = Soexp{oB(t) + (r — 10%)t}

= Spexpl o | B(t) + (ﬁ — %)t
o
N —’

= Spexp{oB(t)},

-(-5).
o 2

B(t) = 6t + B(1).

where

Consequently,
S*(t) = Spexp{oM (1)},

where,

We compuite,
0(0,5(0)) = e T I [(S(T) = K)* 1 se7yeny|

=T (S ) exp{oB(
(s(0

A\t
T)} = K)" L (s expior iy < L}]

— e—rTE[

S exp{UB )}—I()]_{ET ll K o ll I }]
(1> log 5or (1)< log 5
S—_— S—_—

b 7
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M(T)
o x=y
B
(B(T), M(T)) liesin here
| X
5 B(T)

Figure 20.3: Possiblevalues of B(T'), M (T).

We consider only the case

S0)<K<L, so 0<b<in.
Theother case, K < S(0) < L leadsto b < 0 < 7 and the analysisissimilar.
We compute [ [ ...dy dz:

xr

— eX
vVorT 5T

v(0,5(0)) =T /:L /;n(S(O) exp{oz} — K)Q(Qy —2) {—M + 0z — %HQT} dy dx
" L exp {—Ly — )’ + fx — %OQT} !

=m

dz

= —6_7’T/g (S(0) exp{oz} — K)

V27T 2T y=a

7 2
= e_rT/g (5(0) exp{oaz} — K) \/2177—T [exp {—;—T + 6z — %OQT}

(2m — a)?
—exp{—T—l—Hw—%HzT dzx

1 7 m x? 9
= erS(O)/ expqor — — + 0 — L0°T 5 da
V27T b 2T ?

1 —rT /m ? 12
——e K exps —— +0x — z0°T 3 dx
27T b p{ 2T ?

m 2m — )2
1 e_rTS(O)/ exp {Ux _(@m o) + 0z — %OQT} dx
b

V2rT 2T
RS S (Y e LI
+ erlﬁ/ exp{ — + 0z — 0°T ; dx.
V2rT por { 2T 2

The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just
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give the result for the other three. The exponent in thefirst integrandis

v 1 6x — Le?T
axr 2T X B}

1
=——(—-0T- HT)2 + %O'QT—I— ofT

2T
1 v oT\?

In thefirst integral we make the change of variable
y=(z—rT/oc—oT/2)/NT, dy=da/VT,

to obtain

e—rTs(O) m $2 5
7/5 exp Ux—ﬁ—l—Ox—%HT dz

V27T
1 m 1 rT  oT\?
o _ /T _ONT
JT O 2
- Lso. [ ewt-Liay
- ] -5
2rt b T _OJT
T O 2
7 T T b T T
:S(O)[N(%_%_¥)_N(ﬁ_%_ff\z/_)].

0(0, 5(0)) = 5(0) [N (ﬂ T ﬂ) _N (i T Uﬁ)]

VT o 2 VT o 5
TR o VT oVT b T oJT
o [N(ﬁ_7+7)_N(ﬁ_ o T2 )]
e B e
. ({r © m T  oJT
“Xp{‘”“m(aﬁ)m(ﬁ* P )‘
(27%—(;) r\/T oVv’T
( I e )]
where
I;_l a m—llo L
T () R (1)
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V(T,X) = (x- K)F

v(t,0) =0 T

Figure 20.4: Initial and boundary conditions.

If welet L—oo we obtain the classical Black-Scholes formula

b T — oJT
v(0,5(0)) = S(0) [1_N(ﬁ_T_ 5 )]

T 1 b rv 1T oT
—eTEK [1—N(ﬁ— —+— )]

e TKN ( ! S(0) , rVT Uﬁ) .

1
O'\/T 8 K + o 2

If wereplace T by T' — t and replace S(0) by z in the formulafor v(0,.5(0)), we obtain aformula
for v(t, z), the value of the option at thetime ¢ if S(¢) = x. We have actually derived the formula
under the assumption + < K < [, but a similar abeit longer formula can aso be derived for
K < x < L. We consider the function

o(t,2) = B [ T(S(T) = K) L (swryery], 0<t<T,0<e <L
Thisfunction satisfies the terminal condition
vo(T,2)=(x— K)t, 0<z<L
and the boundary conditions
v(t,0)=0, 0<t<T,
v(t, L) =0, 0<t<T.
We show that v satisfies the Black-Scholes equation

—rv 4+ v +ravg + %U%%m, 0<t<T, 0<z< L.
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Let S(0) > 0 be given and define the stopping time
T =min{t > 0; S(t) = L}.
Theorem 2.61 The process
eIt AT, S(EAT)), 0<t<T,
isa martingale.

Proof: First note that
ST T)< L= r1>T.

Letw € © begiven, and chooset € [0, T]. If 7(w) < ¢, then

F €_TT(S(T) — I(Y)+1{S*(T)<L}

}'(t)] (@) = 0.
But when 7(w) < ¢, we have
VEAT(W), SEAT(W),w)) =v(tAT(w),L)=0,

SO we may write

F e_rT(S(T) — I(Y)+1{S*(T)<L}

}'(t)] (@) = e TNy (A7), S(A T(W),w)).
On the other hand, if 7(w) > ¢, then the Markov property implies

/)

e T(S(T) = K) 1 pge(ryery| F (t)] ()
I
= e_rt?](t7 S(t7 W))

= eIy (t AT, S(EAT(W),W)).

In both cases, we have

eyt AT, SAEAT)) = IE

e (S(T) = K) 1s+(1)<1y

}'(t)] .

Suppose0 < u <t <T. Then

E [e_r(t/w)v(t AT, S(tAT)) ‘J:(u)

:E[E

e (S(T) = K) 1s+(1)<1y

20150

_E }'(u)]

e T(S(T) = K) 1 (s2(ry<ry

=Wy (un T, S(uAT)).
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For 0 <t < T, we compute the differential
d ( ot S(t ))) = e " (=rv4 v + rSv, + 20°S%0,,) dt + e o Sv, dB.
Integratefrom0tot A 7:
ey (AT, S(EAT)) = 0(0,5(0))

tAT
—I—/ —rv+ v +rSv, + 10252vm) du

tAT
+ / e "™oSv, dB.
0

A stopped martingaleis still amartingale

Because ¢ " ("“y (t A T, S(t A 7)) isalso amartingale, the Riemann integral

INT
/ e "(=rv4 v+ rSv, + %UQS%M) du
0
isamartingale. Therefore,
—rv(u, S(w) + v (u, S () + 1S (w)ve(u, S(u) + 2025% (W) vee (u, S(u)) =0, 0<u<tAT

The PDE
—rv+ v+ raev, + 102x2vm:0, 0<t<T, 0<2< L,

then follows.
The Hedge

Let X () be thewealth process corresponding to some portfolio A(¢). Then

de™"' X (1)) = e ""A(t)aS(t) dB(1).

We should take
X(0) = v(0,5(0))
and
A(t) = v, (t,5(t)), 0<t<TAT.
Then

X(TAT)=o(TAT,S(TAT))
o(T,S(T)) = (S(T) — K)*t ifr>71T
v(r,L)=10 if r <T.
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V(T, X)

0 K =L X
v(t, X)

6 VK =L gx

Figure 20.5: Practial issue.

20.3 A practical issue

Fort < T but ¢ near T, v(t, z) has the form shown in the bottom part of Fig. 20.5.
In particular, the hedging portfolio
A(t) = ve(t, S (1))

can become very negative near the knockout boundary. The hedger isin an unstable situation. He
should take a large short position in the stock. If the stock does not cross the barrier I, he covers
this short position with funds from the money market, pays off the option, and is left with zero. If
the stock moves across the barrier, heisnow inaregion of A(t) = v,(t, S(t)) near zero. He should
cover his short position with the money market. Thisis more expensive than before, because the
stock price has risen, and consequently heisleft with no money. However, the option has “ knocked
out”, so no money is needed to pay it off.

Because alarge short positionis being taken, asmall error in hedging can create a significant effect.
Here isa possibleresolution.

Rather than using the boundary condition
v(t,L)=0, 0<t<T,
solve the PDE with the boundary condition
v(t, L)+ alv,(t,L)=0, 0<t<T,

where « is a “tolerance parameter”, say 1%. At the boundary, Lv,(t, L) is the dollar size of the
short position. The new boundary condition guarantees:

1. Lv,(t, L) remains bounded;

2. The value of the portfolio is always sufficient to cover a hedging error of « times the dollar
size of the short position.



Chapter 21

Asian Options

Stock:
dS(t) =rS(t) dt + aS(t) dB(t).

V:h(/TS(t) dt)

Payoff:

Value of the payoff at time zero:

X(0) = E [e"’Th (/TS(t) dt)] .

Introduce an auxiliary process Y (¢) by specifying

With the initial conditions

we have the solutions
S(T) = wexp{a(B(T) = B(t)) + (r — o) (T = 1)},

T
Y(T) = y—l—/ S(u) du.
t
Define the undiscounted expected payoff
u(t,z,y) = EY"YR(Y(T)), 0<t<T,2>0,yclR.

219
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21.1 Feynman-Kac Theorem

The function u satisfies the PDE
ut—l—rxux—l—%azxzum—l—wuy =0, 0<5tLT, 2>20,y€RR,

the terminal condition
w(l,z,y)=h{y), >0,y€lR,

and the boundary condition

u(t,0,y) =h(y), 0<t<T, yelR.

v (t,S(t),/OtS(u) du)

v(t,z,y) = e_r(T_t)u(t, z,y).

One can solve thisequation. Then

isthe option value at time ¢, where

The PDE for v is

—rv 4+ v + revg + %szzvm + zv, =0, 1.D
o(T,z,y) = h(y),
v(t,0,y) = e_r(T_t)h(y).

One can solve this equation rather than the equation for .

21.2 Constructing the hedge

Start with the stock price 5(0). The differential of the value X (¢) of aportfolio A(¢) is

dX =AdS+r(X —AS)dt
=AS(rdt+odB)+rX dt —rASdt
= AcS dB +rX dt.

We want to have

S0 that
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The differentia of the value of the optionis

t
dv (t, S(t),/ S (u) du) = vydt + v,dS + v,S dt + Lv,, dS dS
0

= (ve+rSvy + Svy + %UQS%M) dt + oSv, dB
=rou(t,S(t)) dt + v.(t,S(t)) o S(¢t) dB(t). (FromEq. 1.1)

Compare thiswith
dX(t) =rX(t) dt+ A(t) o S(t) dB(t).

Take A(t) = v, (1, S(1)). If X(0) = v(0, 5(0),0), then

1
X(t) = v (t,S(t),/ S(u) du) L 0<i<T,
0
because both these processes sati sfy the same stochastic differential equation, starting from the same

initial condition.

21.3 Partial average payoff Asian option

T
V:h(/ S(t)dt),
where 0 < 7 < T. We compute

o(r,x,y) = ET"Ye~"T=) (Y (T))

Now supposethe payoff is

just asbefore. For 0 < ¢ < 7, we compute next the value of a derivative security which pays off
v(r,5(7),0)

attimer. Thisvalueis
w(t,z) = Et’xe_r(T_t)v(T, S(7),0).
The function w satisfies the Black-Scholes PDE

—rw 4+ wy + rew, + %szzwm =0, 0<t<T, 220,

with terminal condition
w(r,z) =v(r,2,0), x>0,

and boundary condition

The hedgeis given by
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Remark 21.1 While no closed-form for the Asian option price isknown, the Laplace transform (in
the variable %Q(T — t)) has been computed. See H. Geman and M. Yor, Bessel processes, Asian
options, and perpetuities, Math. Finance 3 (1993), 349-375.
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Summary of Arbitrage Pricing Theory

A simple European derivative security makes a random payment at a time fixed in advance. The
value at time ¢ of such a security is the amount of wealth needed at time ¢ in order to replicate the
security by trading in the market. The hedging portfoliois a specification of how to do thistrading.

22.1 Binomial model, Hedging Portfolio

Let 2 be the set of all possible sequences of » coin-tosses. We have no probabilities at this point.
Letr >0, u>r+1, d=1/ubegiven. (SeeFig. 2.1)

Evolution of the value of a portfolio:
X1 = ApSpgr + (14 7) (X — ApSk).

Given asimple European derivative security V (w1, w2), we want to start with a nonrandom X, and
use a portfolio processes

Ao, A1(H), A(T)

S0 that

XQ(W17WQ) = V(wl,wg) le,wg. (four equationS)

There are four unknowns: X, Ag, A1 (H), A1(T). Solving the equations, we obtain:

223
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1 14+r—d 1+
Xi(w1) = s urd Xo(wr, H)+ ( dr) Xo(w, 1) |,
L V(wi,H) V(w1,T)
1 [1+r—d uw—(147r)
Xo_l—l—r_ uw—d Xa(H) uw—d X0
Xg(wl,H)—Xg(wl,T)
Al(wl) SQ(W17H)—SQ(WI7T)7
A ) = X(T)
° T S(H) = S,(T)

The probahilities of the stock price paths are irrelevant, because we have a hedge which works on
every path. From a practical point of view, what matters is that the paths in the model include all
the possibilities. We want to find a description of the pathsin the model. They all have the property

2
(g 5441~ log 51)* = (1og 2552 )

Sk
= (£logu)?
= (logu)*.

Letoc = logu > 0. Then
n—1
Z(log Sk+1 — log Sk)2 = o2n.
k=0

The paths of log S}, accumulate quadratic variation at rate o per unit time.

If we change «, then we change o, and the pricing and hedging formulas on the previous page will
give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation.
Recall:
Xit1 = ApSi1 + (14 7) (X — ApSk).

Define
Br=(1+n)"
Then X g g
k+1 k+1 k
= Ay —|— — — A=,
Br1 ﬁk+1 ﬁk " B
i.e.,

Xipr Xy _ A (Sk+1 B &)
Br+1 P Br+1 Br/)

In continuoustime, we will have the anal ogous equation

d (%) — A() d (%) .
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If we introduce a probability measure 1P under which % isamartingale, then % will also be a
martingale, regardless of the portfolio used. Indeed,

bl -e s (22 )
X
e (-3

=0

Suppose we want to have X, = V, where V' is some F-measurable random variable. Then we
must have

= 1:% [ﬂz fl]_~[;/2fl]’
sl sy

To find the risk-neutral probability measure 1P under which % is a martingale, we denote p =
P{wy = H}, § = IP{w; = T}, and compute

Sk
Br+1

- - Sk
N 1—|— [Pu+q ]ﬁk'

Sk+1

7|

Sk
fk]:ﬁ —I—qd

Br+1 ﬁk+1

We need to choose pp and ¢ so that

pu+gd=1+r,
p+q=1
The solution of these equationsis

. 1+4r—d uw—(147r)
 u—d w—d

L]
ll

22.2 Setting up the continuous model

Now the stock price S(t),0 < ¢t < T, isa continuous function of ¢. We would like to hedge
along every possible path of .S (), but that isimpossible. Using the binomial model as a guide, we
choose o > 0 and try to hedge along every path S(¢) for which the quadratic variation of log S(¢)
accumul ates at rate 0% per unit time. These are the paths with volatility o 2.

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian
motion, we need a probability measure. However, the only thing about this probability measure
which ultimately mattersis the set of pathsto which it assigns probability zero.
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Let B(¢),0 < ¢t < T, be aBrownian motion defined on a probability space (2, F,P). For any
p € IR, the paths of

pt + o B(t)
accumul ate quadratic variation at rate 0% per unit time. We want to define
S(t) = S(0) exp{pt + aB(1)},

so that the paths of
log S(t) =log S(0) + pt + o B(t)

accumul ate quadratic variation at rate o per unittime. Surprisingly, the choice of p inthisdefinition
isirrelevant. Roughly, the reason for thisisthe following: Choosew | € 2. Then, for p; € IR,

pit+oB(t,wy), 0<t<T,

is a continuous function of ¢. If we replace p; by p2, then pst 4+ o B(t,wy) isadifferent function.
However, thereisan ws € €2 such that

pit + oB(t,w1) = pot + 0B(t,wy), 0<t<T.

In other words, regardless of whether we use p; or p, in the definition of S (¢), wewill seethe same
paths. The mathematically precise statement isthe following:

If aset of stock price paths has a positive probability when S(¢) is defined by
S(t) = S(0) exp{pit + o B(t))},

then this set of paths has positive probability when S (t) is defined by
S(t) = S(0) exp{pat + o B(t)}.

Since we are interested in hedging along every path, except possibly for a set of paths
which has probability zero, the choice of p isirrelevant.

The most convenient choice of p is

_ 1.2
p—T‘—§O'7

S(t) = S(0) exp{rt + o B(t) — 10t},

and
e7"S(t) = S(0) exp{oB(t) — L%t}

isamartingale under IP. With thischoice of p,

dS(t) = rS(t) dt + oS(t) dB(1)
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and [P istherisk-neutral measure. If a different choice of p ismade, we have
5(t) = S(0) exp{pt + o B(t)},
dS(t) = (p+ 30*) S(t) dt + oS(t) dB(1).
N ——
I

= rS(t) dt + o [LLdt + dB(t))] .

dB(t)

B has the same paths as B. We can change to the risk-neutral measure /P, under which B is a

Brownian motion, and then proceed asif p had been chosen to be equal to r — %az.

22.3 Risk-neutral pricing and hedging

Let P denote the risk-neutral measure. Then
dS(t) = rS(t) dt + oS(t) dB(t),

where B isa Brownian motion under /P. Set

ﬁ(t) — ert
b 1 (59) 5045
B(1) (1) ’
s0 % isamartingale under P
Evolution of the value of a portfolio:
dX (1) = A@)dS(t) +r(X(t) — A(t)S(t)) dt, (3.1
whichis equivalent to
X0\ _ S(t)
d <W) =A(t)d <ﬁ(t)) (3.2
UNPOELU PP
A(t) 30 dB(t)

Regardless of the portfolio used, % isamartingal e under P.

Now suppose V' is a given F(1")-measurable random variable, the payoff of a simple European
derivative security. We want to find the portfolio process A(7),0 < ¢ < T, and initia portfolio

value X (0) sothat X (7') = V. Because % must be amartingale, we must have

X(t) — L
50 = F [gmme) ostest 7

Thisistherisk-neutral pricing formula. We have the following sequence:
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1. Visgiven,
2. Define X (¢),0 <t < T, by (3.3) (not by (3.1) or (3.2), because we do not yet have A(t)).

3. Construct A(t) so that (3.2) (or equivalently, (3.1)) is satisfied by the X (¢),0 < ¢ < T,
defined in step 2.

To carry out step 3, wefirst use the tower property to show that )ﬁﬂ(f)l defined by (3.3) isamartingale

under IP. We next use the corol lary to the Martingal e Representation Theorem (Homework Problem
4.5) to show that
X (t)) ~
d (— =~(t) dB(t 34
S0 ) =70 B (34
for some proecss v. Comparing (3.4), which we know, and (3.2), which we want, we decide to
define

A = SO0 (35)

Then (3.4) implies (3.2), which implies (3.1), which impliesthat X (¢),0 < ¢ < T, isthe value of
the portfolio process A(t),0 <t < T'.

From (3.3), the definition of X', we see that the hedging portfolio must begin with value

~T V
X0 =& [ﬁ(T)]’
and it will end with value

4 V
X(T) = TE[—‘}'T]: TY———=V.
(1) = BV | 557D = 8T) 575
Remark 22.1 Although we have taken r and ¢ to be constant, the risk-neutral pricing formulais
still “valid” when r and o are processes adapted to the filtration generated by B. If they depend on
either B or on S, they are adapted to the filtration generated by B. The“validity” of therisk-neutral
pricing formula means:

1. If you start with
—[V
X(0)=FE [—] ,
=" |5
then thereis a hedging portfolio A(¢),0 < ¢ < T, suchthat X (7') = V;

2. Ateachtimet, thevalue X (¢) of the hedging portfolioin 1 satisfies
2 —ﬁ[ - ‘}'(t)].

By LA

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the
risk-neutral pricing formulaisvalid provided there is a unique risk-neutral measure. A probability
measure is said to be risk-neutral provided



CHAPTER 22. Summary of Arbitrage Pricing Theory 229

e it hasthe same probability-zero sets as the original measure;

e it makesal the discounted asset prices be martingal es.

To seeif the risk-neutral measure is unique, compute the differential of all discounted asset prices
and check if there is more than one way to define B so that al these differentials have only d B
terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula
X)) [ V ‘ ]
—L = |—=|F)],
50 = " Ly

one usesthe Markov property. We need to identify some state variables, the stock price and possibly
other variables, so that

X(0) = O | 5775 10
isafunction of these variables.

Example 22.1 Assume r and & are constant, and V' = h(.S(T)). We can take the stock price to be the state
variable. Define

~1

R [e—’“(T—t)h(S(T))} .
Then
X(t)=e'E [e""Th(S(T))‘}"(t)]
= o(t, (1)),

and )/%(ti)l = e~"y(t, S(t)) isamartingale under IP. .

Example 22.2 Assume r and ¢ are constant.

V:h(/OTS(u) du).

Teke S(t) and Y (t) = fot S(u) du to be the state variables. Define

~t,r,y

v(t,z,y) = IE {6_T(T_t)h(Y(T))} )

where 7
Y(T) = y+/t S(u) du.
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Then
Xt)=e"E [e"“Th(S(T))‘}"(t)]
=wv(t,5(t),Y ()
and X(1)
50 e "t S(1),Y (1))
isamartingale under P. m

Example 22.3 (Homework problem 4.2)
dS(t) = r(t, Y (t)) S(t)dt + o(t,Y (1)) S(t) dB(t),
dY (t) = a(t, Y (t)) dt +v(t, Y (t)) dB(t),
V = h(S(T)).
Take S(t) and Y () to be the state variables. Define

ot e, y) = B exp{—/t r(u, Y (u) du}h(S(T))
I 5
Then
_ e | MS(T)
x(0 = o0 | "G o)
=FE [exp{—/t r(u, Y (u)) du}h(S(T))‘f(t)]
= u(t, S(), Y (1)),
and
&—ex — tru u U v
St = e [ vty o ote 0.7 )
isamartingale under IP. m

In every case, we get an expression involving v to be a martingale. We take the differential and
set the dt term to zero. This gives us a partia differential equation for v, and this equation must
hold wherever the state processes can be. The dB term in the differential of the equation is the
differential of a martingale, and since the martingaleis

&— t u)o
S =X+ [ A

we can solve for A(t). Thisisthe argument which uses (3.4) to obtain (3.5).

S(u) |~
5u) dB(u)
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Example 22.4 (Continuation of Example 22.3)

% = exp {_/Ot r(u, Y (u)) du} v(t, S(1), Y (1))

1/8(¢)

isamartingale under /7. We have

X(t) = L —r v
d(m) = ﬁ(t)[ (1Y (0)elt, S(1), Y (1)) dt

+ vedt + vedS + vy dY

+ %vwdS dS + vgydS dY + %vyde dy
= — [(—rv + v +rSve + avy + %UzSsz + 07 SVry + %'yzvyy) dt
+ (0Sve + yuy) dB

The partial differential equation satisfied by v is

122 1.2 _
=TV + U+ TTVp + Uy + 507 Ve + OYTULy + 5 Vyy =0

where it should be noted that v = v(¢, «, y), and al other variables are functions of (¢, ). We have

XOY e i
1(50) = siglese- + ol 4Bt
whereo = o(t,Y (t)), vy = v(t, Y (), v = v(t,S(t),Y (t)), and S = S(t). We want to choose A(¢) so that
(see (3.2)
XOY _ Aot yvenS® ai
d (ﬁ(t) ) =A(t)o(t,Y (1)) dB(t).

Therefore, we should take A(¢) to be

Alt) = v (8, S(),Y (1)) +
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Chapter 23

Recognizing a Brownian Motion

Theorem 0.62 (Levy) Let B(t),0 < ¢ < T, be a process on (2, F,P), adapted to a filtration
F(t),0 <t <T,suchthat:

1. the pathsof B(t) are continuous,
2. Bisamartingale,

3. (B)(t)=t,0<t<T,(i.e,informallydB(t) dB(t) = dt).
Then B is a Brownian motion.

Proof: (Idea) Let 0 < s < ¢ < T be given. We need to show that B(t) — B(s) isnormal, with
mean zero and variance t — s, and B(t) — B(s) isindependent of F(s). We shall show that the
conditional moment generating function of B(t) — B(s) is

E [eu<B<t>—B<s>>

12
f(s)] = 2w (79,

Since the moment generating function characterizes the distribution, this shows that B(t) — B(s)
is normal with mean 0 and variance ¢ — s, and conditioning on F(s) does not affect this, i.e.,
B(t) — B(s) isindependent of F(s).

We compute (this uses the continuity condition (1) of the theorem)

de"P0) = ye" PO 4B (1) + Lu?ePDdB(1) dB(1),

1 1
euB(t) _ euB(s) _I_/ ueuB(v) dB(U) + %UQ/ euB(v) @/
3 3 usescond. 3
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Now [ ue"B(")dB(v) isamartingale (by condition 2), and so

E [ / " B gB () }'(s)]
. / " e BB () + I [ /0 " ue BB () }'(s)]
=0. i
It follows that
E [equ f<s>] = PO g [ B [euB<v> f<s>] do.
We define
plo) = B | 0| 7(s)
so that
pls) = PO
and

Pluggingin s, we get

Therefore,
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23.1 Identifying volatility and correlation

Let By and B; be independent Brownian motions and

d

% =T dt—|— 011 dB1 + J12 dB27
1

d

% =T dt—|— 0921 dB1 + 099 dB27
2

Define

_ ] 2 2
o1 =\/01; + Ty,
_ ] 2 2
T2 = \/ 05 + T3,

011021 + 0120922

0109
Define processes I, and W5 by
o11 dBy 4 012 dBs

dWy =
g1

AW, = 091 dBy + 099 de‘
02

Then W, and W, have continuous paths, are martingales, and

1
dW1 dW1 = ;(O’lldBl + UleBQ)Q
1

1
= ;(O’%ldBl dB1 + U%deQ dBQ)
1

= dt,
and similarly

dWy dWy = dt.

Therefore, W, and W, are Brownian motions. The stock prices have the representation

d
i =rdt+ oy dWy,
S1

dS;

S—zzrdt-l—O'Q dW2

The Brownian motions W, and W, are correlated. Indeed,

1
dWy dW, = (611dB1 + 012dB3)(021d By + 022d By)

0102

1
= (011091 + 012092) dt
0102

= pdt.
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23.2 Reversing the process

Suppose we are given that
ﬁ =rdt +o1dWy,
S1
@ =r dt + odWs,
Sy

where W and W, are Brownian motions with correlation coefficient p. We want to find
v lUH 012]
021 022

S0 that

vy _011 012] lUH 021]

021 022| |012 022
I 2 2
_ 011+ 01, 011091 + 012092
= 2 2
011021 + 012022 051 + 09

[ 52
. 2 pPO102
- 2
_p0'10'2 09

A simple (but not unique) solutionis (see Chapter 19)
011 = 01, 12 =0,
021 = pPO2, 022:\/1—,02 g2.
This correspondsto
o1 dWy = o1dBi=dBy = dWy,
o9 dWy = poy dBy + £/ 1 — p?oy dBs

dWy — p dW
— dB; = —QT _,0p2 17 (p # £1)

If p = &1, thenthereisno B, and dWsy = p dBy = p dW;.
Continuingin the case p # +1, we have
dBy dBy = dW dW; = dt,

1
2

dB, dB; = (sz AWy — 2p AW, AW, + p*d W, sz)

= - _1,02 (dt = 2p* dt + p?* dt)

= dt,
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so both B and B, are Brownian motions. Furthermore,

1

dB1 dB2 = ﬁ (dWl dW2 — de1 dWl)
—p
=L pdt—pd)=0
BV A

We can now apply an Extension of Levy's Theoremthat says that Brownian motions with zero
cross-variation are independent, to concludethat By, By are independent Brownians.
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Chapter 24

An outside barrier option

Barrier process:

av() _
W = A dt—|— 01 dBl(t)
Stock process:
dS(t
T(t)) =pdt+ poy dBi(t) + /1 — p? 03 dBsy(t),

whereo; > 0, 09 > 0, —1 < p < 1, and By and B, are independent Brownian motions on some
(Q, F,P). The option pays off:

(S(T) = K) 1y (ry<ry
attime?’, where

0<S0)< K, 0<Y(0)<L,

(1) = Y (t).
YAHT) = max V(1)

Remark 24.1 The option payoff depends on both the Y and .S processes. In order to hedgeit, we
will need the money market and two other assets, which we taketo be Y and S. The risk-neutral
measure must make the discounted value of every traded asset be a martingale, which in this case
means the discounted Y and .S processes.

We want to find ¢, and 6, and define

dBy = 0, dt +dB;, dBy =05 dt + dB,

239
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so that
dY ~
7 =T dt—|— O'ldBl
=T dt—|— 0'101 dt—|— 01 ch
dS ~ ~
?:rdt—l—pag dBy 4+ /1 — p? 09d By
=rdt+ poy 01 dt ++/1 — p? o260, dt
—|—p0’2 dB1—|— 1—p2 (] dB2
We must have
A= r+0-1017 (01)
=1+ poyby + /1 — p? o96;. (0.2

We solveto get

A —
01: r7

01
02:u—r—p0201

V1—=p? oy '

We shall see that the formulas for §; and 6, do not matter. What matters is that (0.1) and (0.2)
uniquely determine 8, and #,. Thisimpliesthe existence and uniquenessof the risk-neutral measure.
We define

2(T) = exp {01 By (T) — 62 B(T) — 5(63 + 63)T},
PA) = /AZ(T) AP, VA€ F.

Under P, B; and B, are independent Brownian motions (Girsanov’'s Theorem). P isthe unique
risk-neutral measure.

Remark 24.2 Under both /P and 713, Y hasvolatility o, .S hasvolatility o5 and

dy ds »
W = po102 at,

i.e., the correlation between X and 42 is p.
The value of the option at time zero is
0(0,8(0),Y(0) = I [T (S(T) = K)* 1 yw(py<ry] -

We need to work out a density which permits us to compute the right-hand side.
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Recall that the barrier processis

dy ~
TITdt-I—O'l dB17

SO
Y (1) =Y (0)exp{rt+ o1 By (t) — Lot}
Set
0=r/c,— 012
B(t) = 6t + By (t),
M(T) = max B(t)
Then

Thejoint density of B(T) and M (T'), appearing in Chapter 20, is
IP{B(T) € db, M(T) € dn}

N AL .
:Mexp{_w+0b—%§2T} db dn,

TV2rT 2T
m > 0,b < 1.
The stock process.
d ~
; =rdt+ pUQdBl +1/1 = p? 09d By,

S(T) = S(0) exp{rT + pagBl( — 5,0 22T +4/1 — p? 0‘2B2
= 5(0) exp{rT — Lo3T + poaBy(T) 4+ /1 — p? 03By (T)}

From the above paragraph we have

By(T) = —8T + B(T),

S(T) = S(0) exp{rT + po, B(T) — LodT — pa T + /1 — p? 03B, (T)}

— )

03T}
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24.1 Computing the option value

0(0,5(0),Y(0)) = IB [ (S(T) = K)* L yyaryeny]

. . N - +
= TE[ (3@ exp{(r = S0} - poa)T 4 praBIT) 41— 2 0uBa(D) ) - )

Liv ) exp[almT)kL}]

We know the joint density of (B(T'), M (T)). Thedensity of B,(T) is

1 2
— X
V2T P { 2T

Furthermore, the pair of random variables (B(T'), M (T)) isindependent of Bz( ) becauseBlA and
B, areindependent under P. Therefore, thejoint density of therandom vector (B, (T)), B(T), M (T))
is

P{By(T) € db} = }db be R.

IP{B,y(T) € db, B(T) € db, M(T) € din,} = IP{By(T) € db}.IP{B(T) € db, M(T) € din}
The option value at time zero is

v(0,5(0), ¥Y(0))

O' logY m

R ) 3 +
=7 / //( exp{ — 305 = po2f)T + pasb + 1—,0202(’}_[()

0 —00 —00

1 b2
L expd -
2T P 2T

(21 — b) 2m—b)? ~ |
e expl———— 40— LT
TV27T p{ 2T 2

.db db din.

The answer depends on 7, S(0) and Y (0). It also dependson 01,02, p, 7, K and L. It does not
depend on \, ¢, 8, nor 6,. The parameter § appearing in the answer is§ = 91

U_T'

Remark 24.3 If we had not regarded Y as a traded asset, then we would not have tried to set its
mean return equal to ». We would have had only one equation (see Egs (0.1),(0.2))
=1+ poyby +1/1 — p? o96s (1.2

to determine #; and #;. The nonuniqueness of the solution alerts us that some options cannot be
hedged. Indeed, any option whose payoff dependson Y cannot be hedged when we are allowed to
trade only in the stock.
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If we have an option whose payoff depends only on 5, then Y is superfluous. Returning to the
original equation for 5,

g:udt—kpaz dB1 + /1 — p? 05 dBs,
we should set

dW = P dB1 + 1- pde27

so W isa Brownian motion under IP (Levy’stheorem), and

d
?S = p dt + oodW.

Now we have only Brownian mation, there will be only one ¢, namely,

o=L""

g2

sowith dW = 6 dt + dW, we have

g:rdt—l—ag dW7

and we are on our way.

24.2 The PDE for the outside barrier option

Returning to the case of the option with payoff
(S(T) — K) gy« (ry<rys
we obtain a formulafor
ot 2,y) = T [(S(T) = KV fimas,gocr Vi) < L
by replacing 7", S(0) and Y (0) by 7" — ¢, = and y respectively in the formulafor v(0, .5(0), Y(0)).
Now start at timeO at .S(0) and Y (0). Using the Markov property, we can show that the stochastic

process
e "o(t, S(t),Y(t))

isamartingale under /P. We compute
d et (t, S(1), Y (1))]
= e‘”[ (—rv + v+ rSv, +rYo, + %U%Szvm + po102SY vy, + %O‘%szyy) dt

+ poaSv, dBy 4+ /1 — p? o9Sv, dBy + O'1Y1jyd§1
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vit,x,L)=0, x >= 0

V\\

V(t,0,0)= 0

Figure 24.1: Boundary conditionsfor barrier option. Notethat ¢ € [0, 7] isfixed.

Setting the dt term equal to 0, we obtain the PDE

1.2.2
— TV 4 U+ rev; + ryvy + 5058 Vg

+ P0102$yvxy + %U%yQUyy = 07
0<t<T,

The terminal conditionis

o(T,z,y)= (x — K)T, 2>0,0<y<1l,

and the boundary conditionsare

v(t,0,0)=0, 0<t<T,
v(t,z,L)=0, 0<¢t<T, a>0.
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z=0 y=20

12,2 12,2
—rv 4+ v+ ryvy + 507y 0y =0 —TUF v+ rTvy + 5052

Vpy = 0

This is the usual Black-Scholes formula | This is the usua Black-Scholes formula

iny. inz.

The boundary conditionsare The boundary conditionis

v(t,0,1) =0, v(t,0,0) = 0; v(t,0,0) = e (T=0(0 - K)t = 0;
the terminal conditionis theterminal conditionis

o(T,0,y)=(0— K)T =0, y>0. o(T,2,0)= (z — K)*, a>0.

On the z = 0 boundary, the option value | On the y = 0 boundary, the barrier isir-
isv(t,0,y)=0, 0<y<L. relevant, and the option value is given by
the usual Black-Scholesformulafor aEu-
ropean call.

24.3 The hedge

After setting the dt term to O, we have the equation
d e~ (e, (1), Y (1))]

= e—rt [pUQSUx dél + 1- P2 UQSUx dEQ + Ulyvydgl] ’

where v, = v,.(t, S(t), Y (1)), v, = v,(t,S(t),Y(t)), and By, By, S,Y are functions of . Note
that

d e S(1)] = e [-rS (1) di + dS(1)]
=" [,OUQS(t) dB, (t) + /1 — p? 725(t) dB, (t)] :
d ey (1)] = e [=rY (1) di + dY ()]
= e "oy Y (t) dBy(t).
Therefore,

d e~ to(t, S(1), Y (£)] = vpd[e " S] + vyd[e™1Y ],

Let A, () denote the number of shares of stock held at time ¢, and let A (¢) denote the number of
“shares’ of thebarrier process Y. Thevalue X (¢) of the portfolio has the differential

dX = Agds + AldY + T‘[X - AQS - A1Y] dt.
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Thisis equivalent to
dle™" X ()] = Ay (t)d[e™" S ()] + A ()d[eY (1)].
Toget X (1) = v(t, S(t), Y (1)) for al £, we must have
X(0) = v(0,5(0),Y(0))

and
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American Options

This and the following chapters form part of the course Sochastic Differential Equations for Fi-
nancell.

25.1 Preview of perpetual American put

dS=rSdt+o5SdB

Intrinsicvalue at timet : (K — S(¢))*.
Let L € [0, K] be given. Suppose we exercise the first time the stock priceis L or lower. We define
r, = min{t > 0; S(t) < L},
vp (7)) = Be LK — S(rp))t
K-z ifx <L,
{(K — LYEe ™= ife> L.

The plan isto comute vy, (z) and then maximize over L to find the optimal exercise price. We need
to know the distribution of 7.

25.2 First passage times for Brownian motion: first method

(Based on the reflection principle)
Let B beaBrownian motion under /P, let = > 0 be given, and define

T =min{t > 0; B(t) = z}.
T iscalled thefirst passagetime to =:. We compute the distribution of 7.

247



248

Intrinsic value

A
|

| K Sock price  y

Figure 25.1: Intrinsic value of perpetual American put

Define

M(t) = Jnax, B(u).

From thefirst section of Chapter 20 we have

2(2m —b 2m — b)?
P{Zw(t)Edm,B(t)Edb}:Lexp{—%}dmdb7 m > 0,b< m.

Therefore,

2t

b=m

P{M (1) Zw}:/oo/m Mexp{—w}dbdm

dm
b=—00

We make the change of variable =z = % intheintegral to get

_[" iex —i dz
N /Tt V 27 P 2 ‘
Now

T <= M(t) > =z,
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SO
)
Piredi} = 2 P{r <t} dt
P

= S P{M(1) > 2} dt

a [~ 2 22
= [%/M\ﬁﬁexp{—?}dzl dt
2 22| 0 [z
el )

T x? dt
= expl —— .
2wt P 2t

We aso have the Laplace transform formula

Fe o = / e~ IP{T € dt}
0
= e‘l’m, a> 0. (See Homework)

Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.

25.3 Drift adjustment

Reference: Karatzas/Shreve, Brownian motion and Stochastic Calculus, pp 196-197.
For 0 < ¢ < oo, define

B(t) = 6t + B(1),
Z(t) = exp{—0B(t) —
= exp{—0B(t) +
Define

7 = min{t > O;E(t) =ua}.

249

We fix afinite time T and change the probability measure “only up to 7. More specifically, with

T fixed, define

P(A) :/AZ(T) dP, A€ F(T).

Under P, the proc&sﬁ(t), 0 <t < T,isa(nondrifted) Brownian motion, so

P{7 € dt} = IP{r € dt}

T T
= ——expli——, dt, 0<t<T.
tv/2rt p{ Qt} =
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For 0 < ¢ < T we have

P{f’ < t} =F {1{7’@5}}
1
i< m]

(1<) exp{0B(T) — 1677}

-F :1{;375}% [exp{@E(T) — %OZT}‘]‘-(% A t)”

I
St

I
St

= I [L(s<ey exp{0B(7 A 1) — 0% (F A1)}
=F {1{;3,5} exp{fz — %027:}}
t —
= / exp{fz — 26°s}IP{7 € ds}
0
t g 22
= 0 — 1675 — — % d
0 s\/27rsexp{ rTave 28} N
b (z — 0s)?
= ——— ds.
/0 sV27s exp{ 2s } i

Therefore,

N x (z — 6t)?
P{7 e di} = ———— 0 dt, 0<t<T.
t N eXp{ 2 } =

Since T isarbitrary, thismust in fact be the correct formulafor al ¢ > 0.

25.4 Dirift-adjusted Laplace transform
Recall the Laplace transform formulafor
T =min{t > 0; B(t) =z}

for nondrifted Brownian motion:

o) T $2
Fe™ " = / exps —at — — pdi = 6_9”\/%7 a >0,z >0.
0o 2wt p{

7 =min{t > 0;6t + B(t) = z},
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the Laplace transform is

i < g (z — 6t)?
E@ om':/ ex —ot — —— dt
o 1oent p{ “ 21 }

o) T $2
= exp{ —at — — + 20 — 10%t Y dt
/0 tv/ 27t p{ 2t 2
" 2

c0 [ 1,2 z
—e exps —(a+ 20t — — 3 di
/0 tV2mt p{ (ot 58") Qt}
— ex@—x\/2a+€27 a> 07 > 07

wherein the last step we have used the formulafor e~ with o replaced by o + £62.
If 7(w) < oo, then

lim e~ 7@ = 1;
oz\l/O

if 7(w) = oo, then e=27(«) =  for every a > 0, s0

lim e~ 7)) = q.

oz\l/O
Therefore,

lim e~ 7)) = lsce.
oz\l/O <
Letting )0 and using the Monotone Convergence Theorem in the Laplace transform formula

Ee—oﬁ' — ex@—x\/ 200462

9

we obtain _
P{f’ < OO} _ 61’6’—1’\/6’2 _ exé’—x|€|‘
If & > 0, then
P{7 < oo} =1.
If ¢ < 0, then

P{7 < o0} = ¥ < 1.

(Recall that = > 0).

25.5 First passage times: Second method

(Based on martingales)

Let o > 0 begiven. Then
Y (t) = exp{oB(t) — 307t}
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isamartingale, so Y (¢ A 7) isalso amartingale. We have
1=Y(0AT)
=FEY({tAT)
= Fexp{oB(tAnT) - %UQ(t AT)}.
= 751i>1r1r100 Fexp{oB(tAT) — %02 (tAT)}
We want to take the limit inside the expectation. Since
0 < exp{oB(tAT)—30*(tAT)} < €,
thisisjustified by the Bounded Convergence Theorem. Therefore,
1= Etlgnoo exp{oB(t AT) — Lo*(t A T)}.
There are two possibilities. For those w for which 7(w) < oo,
: O'x—lU2T
751i>1r1r100 exp{oB(t AT) —1o?(tAT)} =772,
For thosew for which 7(w) = oo,
751i>1r1r100 exp{oB(tAT) — io*(t AT)} < 751i>1r1r100 exp{oz — L1o%t} = 0.
Therefore,
1= Etlgnoo exp{oB(t A7) — 2o*(t A T)}

152
F Or—50°T1T
- € 2 1T<OO

152
:EeUx—zO' 7'7

Ox—

1 2 .
where we understand ¢?“~27° 7 to be zero if T = .

Let o = $0?, 00 = /2. We have again derived the Laplace transform formula
e~V e 0> 0,2 > 0,

for the first passage time for nondrifted Brownian motion.

25.6 Perpetual American put

dS=rSdt+oS dB
S(0) ==z
S(t) = wexp{(r — 1o*)t + oB(t)}



CHAPTER 25. American Options

Intrinsic value of the put at time¢: (K — S(¢))*.
Let . € [0, K] begiven. Definefor z > L,

77, = min{t > 0; S(¢) = L}
1 L
= min{t > 0; 6t + B(t) = —log —}
o "

1
= min{t > 0; —0t — B(t) = —log %}
o

Define
v, = (K = L)IFe "
6 1
:(K—L)exp{—;log%—;log%\/%—l—@?}
-2 L./ r+62
T\ OO
=(K-L)|— .
k-1)(7)
We compute the exponent
1 2
—g—l\/2r+02:—%+%——¢2r—l—(ﬁ—a/Q)
o o o o o
roo, 1 r?
:—§+§—;¢2r—l—ﬁ—r—l—02/4
roo, 1 [r?
ST\ gttt
r 1 r 2
__§+5_E\/<E+U/2)
r . 1/
= §+5_E<E+"/2)
2r
=
Therefore,
(2) (K —z), 0<z<L,
vp(x) =
TlE-n @ e

Thecurves (K — L) (%)_27’/(72 ,areall of theform C'a=2/7",

We want to choose the largest possible constant. The constant is

C=(K-LL¥,

253
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value

(K- L) (x/L)'2r/ g2

| K Sock price

Figure 25.2: Value of perpetual American put

value

B 2
Cl X 2r/ o

Stock price  x

Figure 25.3: Curves.
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and
aC 2r 2r 2r 4
L =-L07 + (K- L)L??
JL T 02( )
2r 2r 1
=107 |1+ S (K-L)=
-1+ S - nyg]
2r 2r 2r K
- [ (1 5+ 5
We solve
<1+ 27‘) 4 2r K _ 0
o2 o2 [
to get
_ 2rkK
T
Since0 < 2r < o2 + 2r, we have
0< L < K.

Solution to the perpetual American put pricing problem (see Fig. 25.4):

B (K - z), 0<a<L™
v(z) = (K — L7) (%)—27»/02 7 > L~
where
. 2rK
= o
Note that
vl(w):{_127 2 2 Pse<d
_0_72*([( _ L)*(L*)Zr/a p—2r/0 —17 x> L*.
We have
tim /(2) = 2L (K - L*)%
_ _QL (K— 2rkK ) o+ 2r
o2 c2+2r) 2rK
—_QL (02—|—2r—2r) o+ 2r
o2 o2+ 2r 2r
=-1
= lim o(z).

xTL*
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value

2
(K - L*)(X/L* )-ZF/O'

L K Sock price
Figure 25.4: Solution to perpetual American put.
25.7 Value of the perpetual American put

Set

2r 2rkK vy i
= — = = K.
T L a2 +2r v+1
If0<az< L*thenv(z) =K — 2. If L* <2 < oo, then
v(z)= (K - L") (L) a™" (7.2)
N—_——
c
— B [e—”(K . L*)+1{T<Oo}} : (7.2)
where
S(0) ==z (7.3)
T=min{t > 0; S(t) = L*}. (7.4)
If 0 <z < L* then
—rv(z) + rav’(z) + 30%2%0" (@) = —r(K —2)+ra(-1) = —rK.

If L* <2 < oo, then

—rv(z) + rav'(z) + 30%2%0" (2)
2

= Cl—ra™ —raya 771 = 1o 2y (—y = 1277

= Ca[—r —ry = 30°y(=y - 1)]

=C(=y—-1)z™" [r — 15° (2—2)]

= 0.

In other words, v solves the linear complementarity problem: (See Fig. 25.5).
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KA v

I~ K ¢

Figure 25.5: Linear complementarity

Fordlz € IR, 2 # L*,

122 1

rv—rav' — fotz*v" > 0, @
v> (K -2)t, (b)
One of theinequalities(a) or (b) isan equality. (©

The half-line [0, co) is divided into two regions:

¢ = {: v(a) > (K - 2)*),

S ={z; rv—rav’ — 1o%2%" > 0},

and L~ is the boundary between them. If the stock price isin €, the owner of the put should not
exercise (should “continue”). If the stock priceisin S or at L*, the owner of the put should exercise
(should “stop”).

25.8 Hedging the put

Let S(0) be given. Sell the put at time zero for v(.S(0)). Invest the money, holding A(¢) shares of
stock and consuming at rate C'(¢) at time¢. The value X (¢) of thisportfolio isgoverned by

dX (1) = A(t) dS(t) + r(X(t) — A@t)S(t)) dt — C(t) dt,
or equivalently,

d(e X (1) = —e "C(t) dt + e P A(t)oS(t) dB(t).
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The discounted value of the put satisfies

d (e7'o(S(1)) = e [=ro(S () + rSEV(SM) + o2 (" (S (1)) dt
+e eSS () (S(t)) dB(t)
= —rKe " spycrndt + oS ()0 (S (1)) dB(t).

We should set

C(t) = rK’l{S(t)<L*}7

A(t) = V' (S(1).
Remark 25.1 If S(t) < L*, then

v(S) =K - S(t), A(t) =v(S(t) = —1.

To hedge the put when S(¢) < L*, short one share of stock and hold K in the money market. As
long as the owner does not exercise, you can consume the interest from the money market position,
i.e,

C(t) = rKY]-{S(t)<L*}'

Properties of e=""v(5(¢)):
1. e7"v(S(t)) isasupermartingale (seeits differential above).
2. e7"o(S(t) > eT(K - S(t)T, 0<t< oo
3. e "w(S(t)) isthe smallest process with properties 1 and 2.
Explanation of property 3. Let Y be a supermartingale satisfying
Y(t)>e K -St)T, 0<t<co. (8.2)
Then property 3 saysthat
Y(t) > e "o(S(t), 0<t< oo. (8.2
We use (8.1) to prove (8.2) fort = 0, i.e,,
Y(0) > 0(5(0)). (8.3)

If ¢ is not zero, we can take ¢ to be the initial time and S (¢) to be the initial stock price, and then
adapt the argument below to prove property (8.2).
Proof of (8.3), assuming” is a supermartingale satisfying (8.1)

Case |:5(0) < L*. We have

Y(0) > (K - 5(0)* = v(S(0).
(8.1)
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Case ll: S(0) > L*: For T" > 0, we have
Y(0) > EY(rAT) (Stopped supermartingaleis a supermartingale)
> B Y (r AT)1(rcoy] . (SinceY > 0)

Now let T'— oo to get

Y(0)> lim Y (F AT Loy

> F [Y(r)l{moo}} (Fatou's Lemma)

> e (K - S(T) 1<y (by81)
ol
=0(S(0)). (Seeeq. 7.2)

25.9 Perpetual American contingent claim
Intinsic value: A(S(t)).
Value of the American contingent claim:

o(e) = sup I [e™"R(S(7))],

where the supremum isover al stopping times.
Optimal exercise rule: Any stopping time + which attains the supremum.

Characterization of v:

1. e "'v(S(t)) isasupermartingale;
2. e " (S(t) > eT"h(S(t), 0<t< oo;

3. e "w(S(t)) isthe smallest process with properties 1 and 2.

25.10 Perpetual American call

o) = sup B [ (S(r) = )]

Theorem 10.63

v(z) =2 Va>0.
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Proof: For every t,

Lett—ootoget v(z) > =.
Now start with S(0) = 2 and define

Y(t) = e S ().
Then:
1. Y isasupermartingale (in fact, Y isamartingale);
22.Y() > e "(St) - K)T, 0<t< oo

Therefore, Y (0) > v(5(0)),i.e,
z > v(z).

Remark 25.2 No matter what = we choose,
E*[e77(S(r) = K)T] < E"[e7779(r)] < = = v(z).

There isno optimal exercise time.

25.11 Put with expiration

Expirationtime: 7" > 0.
Intrinsicvalue: (K — S(¢))™.
Value of the put:

v(t, ) = (valueof theput at timet if S(t) = z)
= sup El’e_r(T_t)(K - S(NHt.
t<r<T

N——
7:stopping time

See Fig. 25.6. It can be shown that v, v, v, are continuous across the boundary, while v, has a
jump.

Let S(0) begiven. Then
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v> K —u v(l,2)=0, 2> K

—rv+ v+ rav, + %02902%95 =0

T

e

v=K-—u v(lz)=K -2z, 0<2<K
v =0, v, =—-1, v, =0
—rv+ v + rev, + %0'2$2Uxx =—rK

T

Figure 25.6: Value of put with expiration

1. e"tw(t,S(t), 0 <t <T,isasupermartingale;
2 (1, S(1) 2 (K = SW), 0<1<T;

3. e ""w(t, S(t)) isthe smallest process with properties 1 and 2.

25.12 American contingent claim with expiration

Expirationtime: 7" > 0.
Intrinsic value: 2 (S5(t)).
Value of the contingent claim:

v(t,z) = 75<su£)T F=eU00(5 (7).

Then

rU — Uy — TV — %szzvm >0,
v > h(z),
Atevery point (¢, z) € [0,7] x [0, c0), either (a) or (b) isan equality.

Characterization of v: Let .S (0) be given. Then

261
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1. e "w(t,S(t)), 0<t<T,isasupermartingale;
2. e "ot S(t) > e "Th(S(1));
3. e "w(t, S(t)) isthe smallest process with properties 1 and 2.
The optimal exercisetimeis
7 =min{t 2 0; v(t, 5(t)) = h(S(1))}

If 7(w) = oo, then there isno optimal exercise time along the particular path w.
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Options on dividend-paying stocks

26.1 American option with convex payoff function

Theorem 1.64 Consider the stock price process
dS(t) =r(t)S(t) dt 4+ o(t)S(t) dB(t),

where r and o are processesand r(t) > 0, 0 < ¢ < T, as. This stock pays no dividends.
Let 2(x) be a convex function of = > 0, and assume 1 (0) = 0. (E.g., h(z) = (z — K)*). An
American contingent claim paying ~(S(t)) if exercised at time ¢ does not need to be exercised
before expiration, i.e., waiting until expiration to decide whether to exercise entailsno loss of value.

Proof: For0 < o < 1landz > 0, we have

h(az) = h((1 - )0+ az)
< (1= a)h(0) + ah(z)
= ah(z).

Let 7" be the time of expiration of the contingent claim. For0 < ¢ < T,

OS%:exp{—/tTr(u) du}§1

and S(T) > 0, s0

B0 B(1) ,
h (wsm) < SEhs ) )

Consider a European contingent claim paying ~(5(7)) at time 7". The value of thisclaim at time
tel0,T]is

—h(S(T))‘}'(t)] .
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' (2, h(2))
ah(z)|----=----==--==--= | i
haz)|----=-----====--2 : ~ o h i
Figure 26.1: Convex payoff function
Therefore,
50 = 7 e @]

> B [ (Gsm) re] even

> ﬁh (ﬂ(t) E [%‘m)]) (Jensen'sinequality)

= ﬁh (ﬁ(t)%) (= isamartingale)

1
= %h(S (t))

This shows that the value X (¢) of the European contingent claim dominates the intrinsic value
h(S(t)) of the American claim. In fact, except in degenerate cases, the inequality

X(t) > h(S(t), 0<t<T,

isstrict, i.e., the American claim should not be exercised prior to expiration. [

26.2 Dividend paying stock

Let » and o be constant, let 6 be a*dividend coefficient” satisfying

0<d<l.
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Let 7' > 0 be an expiration time, and let ¢; € (0,7") be the time of dividend payment. The stock
priceisgiven by
(1) = {S(O)exp{(r— to?)t+oB(t)}, 0<t<ty,
(1= 8)S(ty) exp{(r — 1o (t—t1) + o(B(t) — B(t1))}, ty <t <T.

Consider an American call on thisstock. Attimest € (¢1,7"), it isnot optimal to exercise, so the
value of the call is given by the usual Black-Scholes formula

v(t,2) = aN(dp (T —t,2)) — Ke " TON@_(T —t,2)), t;<t<T,
where

1 x 9
de(T —t, z) o T log K—I—(T t(r+o°/2)

Attimet;, immediately after payment of the dividend, the value of the call is
v(ty, (1 —0)S(t1)).
Attimet;, immediately before payment of the dividend, the value of the call is
w(ty, S(t1)),

where
w(ty, z) = max {(z — K)%, v(ty, (1 - 8)z}.

Theorem 2.65 For 0 < ¢ < ¢, the value of the American call isw(¢, S(t)), where
wit,z) = B e Dy, S(t))]
This function satisfiesthe usual Black-Scholes equation
—rw + wy + rewy + 2072w, =0, 0<t <ty, @ >0,
(where w = w(t, z)) with terminal condition
w(ty, r) = max {(z — K)T, v(ty, (1-38)x)}, 2 > 0,

and boundary condition
w(t,0)=0, 0<t<T.

The hedging portfoliois

A@:{%@S@% 0<t<t,
v (t,5(1), i <t<T.

Proof: We only need to show that an American contingent claim with payoff w(¢,, S(¢1)) at time
t; need not be exercised before time ¢;. According to Theorem 1.64, it sufficesto prove

1. w(ty,0) =0,
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2. w(ty, ) isconvexinz.
Sincev(t1,0) = 0, we have immediately that
w(t1,0) = max { (0 — K)*, v(ty, (1-6)0)} = 0.

To provethat w(ty, z) isconvex in z, we need to show that v(¢4, (1—4)x) isconvex isz. Obviously,
(¢ — K)T isconvex in 2, and the maximum of two convex functionsis convex. The proof of the
convexity of v(ty, (1 — &)z) in z isleft asahomework problem. |

26.3 Hedging at timet,

Case l:v(ty, (1 = d)z) > (¢ — K)T.
The option need not be exercised at time ¢; (should not be exercised if theinequality is strict). We
have

w(ty, z) = v(ty, (1 - 0)x),
Aty) = we(ty, ) = (1 = vty (1= 8)a) = (1 — )A(L+),

where
A(ti+) = lim A(¥)

tht1

isthe number of shares of stock held by the hedge immediately after payment of the dividend. The
post-dividend position can be achieved by reinvesting in stock the dividends received on the stock
held in the hedge. Indeed,

1 )
Alti+) = ——A(t1) = A(t) + ——A(t)
1-9 1-9
B OA(t1)S(t1)
=AW+ T 5
dividendsreceived
price per share when dividend is reinvested

= # of shares held when dividendis paid +

Case ll: v(ty, (1 = 8)z) < (z — K)T.

The owner of the option should exercise before the dividend payment at time ¢, and receive (z — K).
The hedge has been constructed so the seller of the option has  — K before the dividend payment
attimet,. If theoptionisnot exercised, itsvaluedropsfrom z — K towv(ty, (1 —4)x), and the seller
of the option can pocket the difference and continue the hedge.
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Bonds, forward contracts and futures

Let {W(¢), F(t); 0 <t < T} beaBrownian motion (Wiener process) on some (2, 7, P). Con-
sider an asset, which we call a stock, whose price satisfies

dS(t) = r(t)S(t) dt + o(t)S(t) dW (t).

Here, r and o are adapted processes, and we have aready switched to the risk-neutral measure,
which we cal IP. Assume that every martingale under /P can be represented as an integral with
respect to Iv.

Define the accumul ation factor

gt) = exp{/otr(u) du}.

A zero-coupon bond, maturing at time 7', pays 1 at time 7" and nothing before time T". According
to the risk-neutral pricing formula, itsvalueat timet € [0, T] is

B(,T) = B(1) IE [ﬁ‘m)]
—E [%‘m)

=F [exp {— /tTr(u) du} ‘]—'(t)] .

Given B(t,T') dollars at time ¢, one can construct a portfolio of investment in the stock and money

267
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market so that the portfolio value at time T' is 1 almost surely. Indeed, for some process v,

B(,T) = B(1) IE [ﬁ‘m)]

martingale
=50 [ (535 ) + [ 7w )]

¢
t[BO,T —I—/'yu qu],

dB(,T) = r(1)5( [ 0T—|—/ ]dt+ﬂ() (£) AW (1)
=r()B(t,T) dt + B(t)y(t) dW(1).

The value of aportfolio satisfies
dX (t) = A(t) dS(t) + r(t)[X (1) — A(t)S(¢)]dt
*)

We set

If, at any timet, X (¢) = B(t,T") and we usethe portfolio A(u), ¢t < u < T, then we will have
X(T)=B(T,T) =

If »(¢) isnonrandom for al ¢, then

B(t,T) = exp {— /tTr(u) du} )

dB(t,T) = r(t)B(t,T) dt,

i.e.,, v = 0. Then A given aboveiszero. If, at timet, you are given B(t, 1) dollarsand you always
invest only in the money market, then at time 7" you will have

B(t,T)exp {/tTr(u) du} = 1.

If r(¢) israndom for al ¢, then + is not zero. One generally has three different instruments: the
stock, the money market, and the zero coupon bond. Any two of them are sufficient for hedging,
and the two which are most convenient can depend on the instrument being hedged.
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27.1 Forward contracts

We continue with the set-up for zero-coupon bonds. The T'-forward price of the stock at time
t € 10,7 isthe F(t)-measurable price, agreed upon at time ¢, for purchase of a share of stock at
time T, chosen so the forward contract has value zero at timet. In other words,

E [ﬁ (S(T) — F(1)) ‘}'(t)] —0, 0<i<T.

We solvefor F'(t):

0= 55 (1) - 1) |70
-+[Stlp]- 530 o]
_ % _ %B(t,T).
Thisimpliesthat
0= 3or

Remark 27.1 (Value vs. Forward price) The T'-forward price F'(¢) is not the value at time ¢ of
the forward contract. The value of the contract at time ¢ is zero. I'(¢) isthe price agreed upon at
time¢ which will be paid for the stock at time 7.

27.2 Hedging a forward contract

Enter a forward contract at time O, i.e., agree to pay F'(0) = % for a share of stock at time T'.

At time zero, this contract hasvalue 0. At later times, however, it does not. In fact, itsvalue at time
t€[0,17is

ST = FO)|F0)

e
=5(t) IF [%‘f(t)] - F(0) I [%‘f(t)]
— 905 - FOBT)

= S(t) — F(0)B(t,T).

This suggeststhe following hedge of a short positionin the forward contract. At time 0, short /'(0)
T-maturity zero-coupon bonds. This generatesincome

S(0)

FO)BO.T) = 557

B(0,T) = 5(0).
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Buy one share of stock. This portfolio requires no initia investment. Maintain this position until
time 7', when the portfolio isworth

S(T) — F(0)B(T,T) = S(T) — F(0).

Deliver the share of stock and receive payment F'(0).

A short position in the forward could also be hedged using the stock and money market, but the
implementation of this hedge would require aterm-structure model.

27.3 Future contracts

Future contracts are designed to remove the risk of default inherent in forward contracts. Through
the device of marking to market, the value of the future contract is maintained at zero at al times.
Thus, either party can close out his/her position at any time.

Let usfirst consider the situation with discrete trading dates
O=to<ty<...<t,=T.

Oneach[¢;,¢;41), r isconstant, so

is F (tx)-messurable.

Enter afuture contract at time ¢, taking the long position, when the future priceis (¢ ;). At time
tr+1, When the future price is ®(¢;41), you receive a payment ®(t;11) — ®(¢x). (If the price has
falen, you make the payment —(®(tx4+1) — ®(¢x)). ) The mechanism for receiving and making
these paymentsis the margin account held by the broker.

By time T = t,,, you have received the sequence of payments

Q(tpt1) — @(tr), P(tit2) — Pht1)s -y B(tn) — P(t-1)
attimestyy1,tgyo, ..., t,. Thevaluea timet = ¢, of thissequenceis
n—1 1
50 I | Y 57— @(tas) - 06 |70
=k ﬁ(t]‘Fl)

Because it costs nothing to enter the future contract at time ¢, this expression must be zero almost
surely.
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The continuous-time version of this conditionis
T 1 p
t) IV —— d®P(u
S| [ 50 det
Note that 3(t;4+1) appearing in the discrete-time versionis F (¢ ;)-measurable, asit should be when
approximating a stochastic integral .

}'(t)]zo, 0<t<T.

Definition 27.1 The T'-future price of the stock is any F (¢)-adapted stochastic process
{®(t); 0<t < T},
satisfying
¢(T)=5(T) as, and €)

L |
E[t qu)(U)

Theorem 3.66 The unique process satisfying (a) and (b) is

f(t)] =0, 0<t<T. (b)

o(t) = IF [S(T)‘}'(t)] 0<t<T.

Proof: We first show that (b) holds if and only if ® isa martingale. If ® is a martingale, then
s ty 4®(u) isalso amartingale, so

}'(t)] _ /Oti 4 (u)

o l [ St o) o)

(u)

}'(t)] _E [/Ot ﬁ 4 (u)

= 0.

On the other hand, if (b) holds, then the martingale

r 1
M(t):JEl/O Sy 1200 }'(t)]
satisfies
to] T
M(t):/o Sy A2+ | [ e de }'(t)]
_/tﬁd (W), 0<t<T
thisimplies
1
AM(1) = 57 (),
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and so ¢ isamartingale (its differential has no dt¢ term).

Now define
() =F [S(T)‘f(t)] , 0<t<T.

Clearly (a) is satisfied. By the tower property, ¢ isamartingale, so (b) isalso satisfied. Indeed, this
® isthe only martingale satisfying (a). [

27.4 Cash flow from a future contract

With aforward contract, entered at time O, the buyer agrees to pay F'(0) for an asset valued at S (7).
Theonly paymentisattimeT.

With a future contract, entered at time O, the buyer receives a cash flow (which may at times be
negative) between times0and 7. If he still holdsthe contract at time 7", then he pays S (7) at time
T for an asset valued at .S (7). The cash flow received between times 0 and 7' sumsto

T
/ dP(u) = B(T) — B(0) = S(T) — (0).
0
Thus, if the future contract holder takes delivery at time 7', he has paid a total of
(@(0) = S(T) + S(T') = @(0)

for an asset valued at S (7).

27.5 Forward-future spread

Future price: & (1) = IF [S(T) ‘}'(t)].

Forward price:

If ﬁ and S(T') are uncorrelated,
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If ﬁ and S(T) are positively correlated, then
®(0) < F(0).

Thisisthe case that arise in stock price tends to occur with afal in the interest rate. The owner
of the future tends to receive income when the stock price rises, but investsit at a declining interest
rate. If the stock price fals, the owner usually must make payments on the future contract. He
withdrawsfrom the money market to do thisjust asthei nterest rate rises. In short, the long position
in the future is hurt by positive correlation between 57 and S(T'). The buyer of the future is
compensated by a reduction of the future price below the f)orward price.

27.6 Backwardation and contango

Suppose
dS(t) = pS(t) dt + oS (t) dW (t).

Define 6 = =2 W(t) = 0t + W (t),

Z(T) = exp{—6W (T') — £6°T}
P(A) = /A Z(T) dIP, VA ¢ F(T).

Then W is aBrownian motion under /P, and
dS(t) = rS(t) dt + oS(t) dW (t).

We have
o)t + oW (t)}

(0) exp{(r — % D+ oW (1)

Because ﬁ = ¢~ isnonrandom,

= T8,

~ BWLT)
The expected future spot price of the stock under /P is
ES(T) = S(0)etT I {exp {—%O‘ZT + UW(T)H
= e"15(0).
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Thefuturepriceat time0 is
®(0) = e 15(0).

If o > r,then®(0) < IFS(T'). Thissituationis called normal backwardation (see Hull). If u < r,
then ®(0) > IF'S(T"). Thisiscalled contango.
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Term-structure models

Throughout thisdiscussion, {WW (¢); 0 < ¢ < T*} isaBrownian motion on some probability space
(Q,F,P),and {F'(t); 0 <t < T} isthefiltration generated by V.

Suppose we are given an adapted interest rate process {r(¢); 0 < ¢ < 7™ }. We define the accumu-
lation factor

ﬂ(t):exp{/otr(u) du}7 0<t<T™

In aterm-structure model, we take the zero-coupon bonds (“ zeroes’) of various maturitiesto be the
primitive assets. We assume these bonds are default-free and pay $1 at maturity. For 0 < ¢ < T <
T, let

B(t,T) = priceattimet of the zero-coupon bond paying $1 at time 7"

Theorem 0.67 (Fundamental Theorem of Asset PricingA term structure model is free of arbi-
trageif and only if there is a probability measure /P on 2 (a risk-neutral measure) with the same
probability-zero setsas P (i.e., equivalent to IP), such that for each 7" € (0,7 *], the process

0<t<T,

isa martingale under P.
Remark 28.1 We shall alwayshave

dB(t,T) = p(t, T)B(t, T) dt 4+ p(t, T)B(t,T) dW(t), 0<t<T,
for some functions ii(¢, 7') and p(t, T'). Therefore

d (Bg(’t)T)) — B(,T) d (ﬁ) + ﬁ dB(t,T)

= (e, 1) = (0] 4, )

B(t,T)
B(t)

dw (1),
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so [P isarisk-neutral measureif and only if 1(t,1"), the mean rate of return of B(¢,T') under [P, is
theinterest rate r(¢). If the mean rate of return of B(¢, T') under I isnot r(¢) at each time ¢ and for

each maturity 7°, we should change to a measure /P under which the mean rate of returnis»(t). If
such a measure does not exist, then the model admits an arbitrage by trading in zero-coupon bonds.

28.1 Computing arbitrage-free bond prices: first method

Begin with a stochastic differential equation (SDE)
dX (t) = a(t, X (t)) dt + b(t, X (t)) dW(1).

The solution X (¢) is the factor. If we want to have n-factors, we let 1 be an n-dimensional
Brownian motion and let X be an n-dimensional process. We |et theinterest rate r(¢) be a function
of X (¢). In the usual one-factor models, we take r(¢) to be X (¢) (e.g., Cox-Ingersoll-Ross, Hull-
White).

Now that we have an interest rate process {r(¢); 0 < ¢t < T*}, we define the zero-coupon bond
pricesto be

We showed in Chapter 27 that
dB(t,T)=r(t)B(t,T) dt + p(t)y(t) dW(¥)

for some process~. Since B(t, 1) hasmean rate of return »(¢) under /P, IP isarisk-neutral measure
and there is no arbitrage.

28.2 Some interest-rate dependent assets

Coupon-paying bond: Payments P, P, ..., P, attimesTy,T,, ..., T,. Pricea timet is

> BBt Ty).

{k:t<Tk}

Call option on a zero-coupon bond: Bond matures at time 7’. Option expires at time 77 < T.
Priceat timet is

(B(Ty,T) — K)*

}‘(t)], 0<i<T.
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28.3 Terminology

Definition 28.1 (Term-structure model) Any mathematical model which determines, at |east the-
oretically, the stochastic processes

B(t,T), 0<t<T,
forall T € (0,77].

Definition 28.2 (Yield to maturity) For 0 < ¢ < 7' < T*, the yield to maturity Y (¢, 7') is the
JF (t)-measurable random-variable satisfying

B, T)exp {(T - )Y (t,T)} = 1,

or equivalently,

1
Y(t,T) = ——log B(t.T).

Determining
B(t,T), 0<t<T<T™,

is equivalent to determining
Y(t,T), 0<t<T<T~

28.4 Forward rate agreement

Let0 <t <T < T+ e <T*begiven. Suppose you want to borrow $1 at time 7" with repayment
(plusinterest) at timeT" + ¢, at an interest rate agreed upon at time ¢. To synthesize a forward-rate
agreement to do this, at time ¢ buy a7'-maturity zero and short B](Bt(tT’ﬂ) (T + ¢)-maturity zeroes.

Thevalue of thisportfolioat timet is

B(t,T)

B, 1) - B(t,T +¢)

B(t,T +¢) =0.

At time T, you receive $1 from the 7-maturity zero. Attime T + ¢, you pay $ %. The

t, 1 +e
effective interest rate on the dollar you receive at time 7" is R(t, T, T + €) given by

% =exp{e R(t,T,T +¢)},
or equivalently,
R, T, T+¢) = _log B(t,T + ei - logB(t,T)‘
Theforward rateis
[, T) = hfg R(t,T,T+¢) = —%log B(t,T). (4.)
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Thisisthe instantaneousinterest rate, agreed upon at time ¢, for money borrowed at time T'.
Integrating the above eguation, we obtain

T T 5
/t flt,u) du= —/t %logB(t,u) du
u=T
= —log B(t, u)

u=t

= _logB(th)v

B(t,T) = exp{—/tTf(t,u) du}.

You can agree at time¢ to receiveinterest rate f(¢, v) at eschtimew € [t,17]. If youinvest$ B(t,T')
at time¢ and receive interest rate f(¢, u) at each time u between ¢ and 7', thiswill grow to

B(t,T) exp{/tTf(t,u) du} =1

attimeT.

28.5 Recovering the interest(t) from the forward rate

B(t,T)=IF -exp{—/tTr(u) du} ‘]—'(t)] ,

8iTE:(lt,T) = _—r(T) exp{—/tTf‘(U) dU} ‘f(t)] )
9

B 1) =1 [ro]F0] = -
On the other hand,
B(t,T) = exp {— /tTf(t,u) du} ,
8%B(lt,T) =—f(t,T) exp{—/tTf(M) dU} ;
0
57 BET) = —f(t,1).

Conclusion: »(t) = f(t,t).
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28.6 Computing arbitrage-free bond prices: Heath-Jarrow-Morton
method

For eachT" € (0,7™], let the forward rate be given by
t t

£t T) :f(O,T)—l—/ a(u, T) du—l—/ o(u, T) dW(u), 0<t<T.
0 0

Here {a(u,T); 0 <u <T}and{o(u,T); 0 <u < T} are adapted processes.

In other words,
df(t,T) = a(t,T) dt + o(t,T) dW ().

B(t,T) = exp{—/tT f(t,u) du}.

d{—/tTf(t,u) du} — f(t,0) dt—/tTdf(t,u) du

T
— (1) dt—/t [a(t,u) dt + o (t, u) AW ()] du

— (1) dit — [/Toe(t,u) du] dt - [/Ta(t,u) du] aw (1)

a*(t,T) o*(t,T)
= r(t) dt — o (t, T) dt — o*(t,T) dW (2).

Recall that

Now

Let
g(x) =€, ¢'(x) =€, ¢"(x) = €".
Then
T
B(t,T) = (—/t (i, ) du) ,
and

59" (— /tT dU)
= B(t,T) [r(t) = a”(t, 1) + § (o7 (¢
— o*(t, T)B(t,T) dW(t).

T))}d
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28.7 Checking for absence of arbitrage

IP isarisk-neutral measure if and only if

a*(t,T) = (a*(t,T))*, 0<t<T<T,

T T 2
/ aft,u) du = 3 / olt,u)ydu) , 0<t<T <T™ (7.1)
t t
Differentiating thisw.r.t. 7', we obtain
T
aft, T) = a(t,T)/ o(t,u) du, 0<t<T<T" (7.2)
t

Not only does (7.1) imply (7.2), (7.2) aso implies(7.1). Thiswill be ahomework problem.

Suppose (7.1) does not hold. Then IP is not a risk-neutral measure, but there might still be a risk-
neutral measure. Let {6(¢); 0 < ¢ < 7™} be an adapted process, and define

<>=/0 O(w) du + W),

= exp /OtH - %/(Jt02(u) du}7
PA ):/AZ(T*) AP YA € F(T™).

Then
dB(t,T)= B, T) |r(t) — o™ (t,T) + %(a*(t,T))Q} dt

JB(t,T) dW(t)
r(t) — o (t,T) + (o™ (t,T))* + a*(t,T)O(t)} dt
JB(t,T)dW(t), 0<t<T.
In order for B(t, T') to have mean rate of return r(t) under 1P, we must have

o (t,T)=2(0*(t,T))> + o*(t, T)0(t), 0<t<T <T* (7.3)
Differentiationw.r.t. T' yieldsthe equivalent condition

at,T)=0c(t,T)o"(t,T)+o(t, T)8(t), 0<t<T <T". (7.4)

Theorem 7.68 (Heath-Jarrow-Morton) For each 7' € (0,77, let a(u,T), 0 < u < T, and
o(u,T),0 < u < T, be adapted processes, and assume o(u, 1) > 0 for all w and 7. Let

£(0,7), 0 <t <T*, beadeterministic function, and define

F(t.T) :f(O,T)—|—/0toa(u,T) du—l—/ota(u,T) AW ().
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Then f(¢,7), 0 <t <T < T~ isafamily of forward rate processes for a term-structure model
without arbitrage if and only if there is an adapted process §(¢), 0 < ¢ < T'*, satisfying (7.3), or
equivalently, satisfying (7.4).

Remark 28.2 Under IP, the zero-coupon bond with maturity 7" has mean rate of return
r(t) = o (t,T) + 3(o™(t, 1))
and volatility o*(¢,7"). The excess mean rate of return, above the interest rate, is
—a*(t,T) + (" (t,T))?,
and when normalized by the volatility, this becomes the market price of risk

—a” (tv T) + %(U*(tv T))2
o*(t,T)

The no-arbitrage conditionis that thismarket price of risk at time ¢ does not depend on the maturity
T of the bond. We can then set
—a*(t,T) + 1(c*(¢,T))?

o*(t,T) '

b(t) = —

and (7.3) is satisfied.
(The remainder of this chapter was taught Mar 21)

Suppose the market price of risk does not depend on the maturity 7', so we can solve (7.3) for 6.
Plugging thisinto the stochastic differential equation for B(t,7"), we obtain for every maturity 7':

dB(t,T) = r(t)B(t,T) dt — o™ (t, T)B(t,T) diV ().

Because (7.4) is equivaent to (7.3), we may plug (7.4) into the stochastic differential equation for
f(t,T) to obtain, for every maturity 7":

df (t,T) = [o(t, T)o* (t,T) + o (t, T)O(1)] dt + o(t, T) dW (%)

= o(t,T)o"(t,T) dt + o (t,T) dWW (t).

28.8 Implementation of the Heath-Jarrow-Morton model

Choose
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These may be stochastic processes, but are usually taken to be deterministic functions. Define

a(t,T) = o(t, T)o"(t,T) + o(t, T)O(L),

Let f(0,7), 0 <T <T*, bedetermined by the market; recall from equation (4.1):

9
<T <7
~oplog BO,T), 0<T<T

f0,T) =
Then f(¢,7T) for 0 < ¢ < T isdetermined by the equation
df (t,T) = o(t, T)o*(t,T) dt + o(t,T) dW (1), (8.1)
this determines the interest rate process

r(t) = flt,0), 0<t<T", (82)

and then the zero-coupon bond prices are determined by the initial conditions B(0,7), 0 < T <
T*, gotten from the market, combined with the stochastic differential equation

dB(t,T) = r(t)B(t,T) dt — o™ (t, T)B(t,T) diV (). (8.3)

Because all pricing of interest rate dependent assets will be done under the risk-neutral measure P,
under which W is a Brownian maotion, we have written (8.1) and (8.3) in terms of W rather than
W. Written thisway, it isapparent that neither 6(¢) nor «(¢, T') will enter subsequent computations.
The only processwhich mattersiso(¢,7), 0 <t < T < T*, and the process

T
o*(t,T) = / o(tyu)du, 0<t<T<T™, (8.4
t

obtained from o (¢, T').
From (8.3) we seethat o* (¢, 1") isthe volatility at time ¢ of the zero coupon bond maturing at time
T'. Equation (8.4) implies

o (T, T)=0, 0<T<T". (8.5
Thisisbecause B(T,T') = 1 and so ast approaches 1" (from below), the volatility in B(¢, 7") must
vanish.

In conclusion, to implement the HIM model, it sufficesto have theinitial market data B(0,7), 0 <
T < T, and the volatilities
o (t,T), 0<t<T<T"
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We requirethat o* (¢, 7") be differentiablein 7" and satisfy (8.5). We can then define

o(t,T) = 8iTU*(t,T)7

and (8.4) will be satisfied because

o*(t,T) = o™ (t,T) — o™ (1, 1) = /tT ga*(t, w) du.

U

We then let W be a Brownian motion under a probability measure P, and we let B(t,T), 0<t<
T < T*, begiven by (8.3), where r(t) isgiven by (8.2) and f(¢,7') by (8.1). In (8.1) we use the
initial conditions

f0,7) = —8%1ogB(o,T), 0<T<T"

Remark 28.3 It is customary in the literature to write W rather than W and P rather than P,
so that /P is the symbol used for the risk-neutral measure and no reference is ever made to the
market measure. The only parameter which must be estimated from the market is the bond vol atility
o*(t,T), and volatility is unaffected by the change of measure.
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Chapter 29

Gaussian processes

Definition 29.1 (Gaussian ProcessA Gaussianprocess X (¢), ¢ > 0, is a stochastic process with
the property that for every set of times0 < ¢ <ty < ... < t,, the set of random variables

X(t1), X (t2), ..., X(tn)
isjointly normally distributed.
Remark 29.1 If X isaGaussian process, then itsdistributionis determined by its mean function
m(t) = FEX(t)
and its covariance function
p(s,t) = IE[(X(s) = m(s)) - (X (1) —m(1))].

Indeed, the joint density of X (¢1),..., X (¢,) is

P{X(t;) € dwl,... X (t,) € day}

(zﬂ)n/z det > p{ )X (x - m(t))T} dzy ... dz.,

where Y. isthe covariance matrix

plti,t1)  p(tista) pt1,tn)
= P(t27t1) P(t27t2) p(t27tn)
p(tnvtl) p(tnth) tee p(tnvtn)
x istherow vector [z1, z2, . .. , z,], tistherow vector [¢1, t3, . .. , &), andm(t) = [m(t1), m(t2), ...

The moment generating functionis

Eexp{zn: ukX(tk)} = exp{u-m(t)T + %u-E . uT}7

k=1

where u = [uy, ug, ..., uy,)].
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29.1 An example: Brownian Motion

Brownian motion W isa Gaussian processwith m () = 0 and p(s,t) = s At. Indeed, if 0 < s < ¢,
then

pls,t) = IE[W(s)W ()] = IE [W(s) (W (1) — W(s)) + W(s)]
= EW (s).0E (W (t) — W(s)) + IEW?(s)
= IEW?(s)
=sAt.

To prove that a processis Gaussian, one must show that X (¢4), ..., X (¢,,) haseither adensity or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually call s and ¢. We will want to show that

IE exp {u1 X (s) + us X ()} = exp {u1m1 + ugma + 1[uq ] lffn Ul?] l?h] } ‘

021 022] |U2

Theorem 1.69 (Integral w.r.t. a Brownian) Let 1V (¢) be a Brownian motion and (¢) a nonran-
dom function. Then

t
X(t) = / 5(u) dW (u)
0
isa Gaussian processwith m(¢) = 0 and

p(s,t) = /OSM 5% (u) du.

Proof: (Sketch.) We have

dX = 3§ dW.
Therefore,
de" X = ue X5 (s) dW (s) + Lue ¥ (52 (s) ds,
X () = nXO) 4y, / T X5 (0) AW (0) +5u? / CXOR () do,
Martingale
EeX6) =1 4 12 /0 82 (0) e X o,
diijEeuX () = 14252 (5) e X (o),

X () — uX(0) oy, {%uz /“’ 52(v) dv} (1.2)
0

:exp{%ﬁ/:(s?(v) dv}.

Thisshowsthat X (s) isnormal with mean 0 and variance [; 6%(v) dv.
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Now let 0 < s < ¢ be given. Just as before,
de" X0 = we XD (1) dW (1) + Lue X 52 (2) dt.
Integrate from s to¢ to get
t t
X = guX (o) 4 u/ 5(v)e“X(”) dW(v) + %uz/ 52(v)e“X(”) dv.

Teke IF]. . .| F(s)] conditional expectations and use the martingale property

E [/:5(@)@“(”) AW (v) (s)] —E [/()t5(v)e“X(”) AW (v) (s)] —/055(11)61“(”) AW (v)

=0
to get
B [e“X(t) f(s)] = "X 4 Ly / () E [e“X(”) }'(s)] dv
ZE [ X(0) (s)] — LR [e“X(t) }'(s)] Ltz
The solution to this ordinary differential equation with initia time s is
E [e“X(t) }'(s)] — X0 exp {%qﬁ / "5 (0) dv}, t> . (12)

We now compute the m.g.f. for (X (s), X (¢)), where0 < s < ¢
(s)] _ e XO) g [6“2X(t) (s)]
D ¥ O o {102 [0 v},
E {eulX(s)-I—uQX(t)} _ E{E [eulX(s)+u2X(t) f(s)]}
= {etmtexe], exp{% 2 /St(sz(v) dv}
(lz'l)exp{%(ul—l—UQ) / 52(v) dv + %ug/t(s?(v) dv}
_exp{ (u1—|—2u1u2)/05 52(v) do + L2 /()t52(v) dv}
fi 2 £}
Thisshowsthat (X (s), X (¢)) isjointly normal with IEX (s) = IEX (t) = 0,
EX2(s) :/0552@) dv,  EX() :/(f&?(v) dv,

E[X ()X (1)] = /0 52(v) do.

E [eulX(s)+u2X(t)
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, isto prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

isamartingaleand X (0) = 0, so

For fixed s > 0,

by the 1t6 isometry. For 0 < s < ¢,

X (s) (X (1) = X(s))]

[l
&
&
——
ﬁ
=
T
Jal

Therefore,
EIX (5)X (1)] = E[X () (X (1) — X(s)) + X*(s)]
— EX(s) = 05 52(v) do.
If § were a stochastic proess, the Itd isometry says
EX?(s) = /0 " B8 (v) dv
and the same argument used above showsthat for 0 < s < ¢,
E[X ()X (£)] = EX(s) = /0 E6(v) do.

However, when § is stochastic, X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 When ¢ is nonrandom,

X () = /Ot(sw) AW (u)

isalso Markov. We proved thisbefore, but note again that the Markov property followsimmediately
from (1.2). The equation (1.2) saysthat conditioned on (), the distribution of X (¢) dependsonly
on X (s); infact, X (¢) isnormal with mean X (s) and variance [ §2(v) dv.
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Figure 29.1: Range of values of y, z, v for the integralsin the proof of Theorem 1.70.

Theorem 1.70 Let W (t) be a Brownian motion, and let §(¢) and A (¢) be nonrandom functions.
Define

Then Y isa Gaussian process with mean function my (¢) = 0 and covariance function

py (s,1) = /OSM 6% (v) (/Ush(y) dy) (/:h(y) dy) dv. (L3)

Proof: (Partial) Computation of py (s,?): Let 0 < s < t be given. It is shown in a homework
problem that (Y (s), Y (¢)) isajointly normal pair of random variables. Here we observe that

my (1) = EY (1) = /Oth(u) EX (u) du =0,

and we verify that (1.3) holds.



py(s,1) = I [Y(S)Y(t)]

We have
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h..LO((( hh ~ —_— "~~~
/hhh/z/ fos T o 2ot_o BB =
/////+ T =S o =T e T o % %
N R Y~ t~st—s —s —s —s —~s< — s s
_

X(u) duis

1
0

d(u) dW(u), the process Y (t) = |,

1
0

Remark 29.4 Unlike the process X (t) = |
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neither Markov nor amartingale. For 0 < s < ¢,

mwmﬂm:/%wmwwwwﬂfumﬂwm

0 i
=Y )+ [ LY (0| F()] du
:w@+luwﬂ@m

:Y@+X@/hwm%

S

where we have used the fact that X isa martingale. The conditional expectation I2[Y (¢)|F(s)] is
not equal to Y (s), nor isit afunction of Y (s) alone.
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Chapter 30

Hull and White model

Consider

dr(t) = (aft) = 5(t)r(t)) dt + o (1) dW (1),
where a(t), 5(t) and o (t) are nonrandom functions of ¢.
We can solve the stochastic differential equation. Set

K(t) = /Ot B(u) du.
Then

4 (K00 (1)) = K10 (ﬂ(t)r(t) di + dr(t))
=KW (a(t) dt + o (1) dW (1)).

Integrating, we get

(‘ﬁ
A

PO+ [ K Oa dut [ K W (u),
r(t) = e K [ +/ du—l—/ (u)].

From Theorem 1.69 in Chapter 29, we seethat r(¢) isa Gaussian process with mean function
m,(t) = e KO [r(O) + /0 t KW (u) du] (0.2)
and covariance function
pulsyt) = KK [T 20020 g, 02)
0
The process r(t) isaso Markov.

293
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We want to study [ r(t) dt. To do this, we define
¢ T
X (1) = / KW () dW (), Y(T) = / EOX (1) du.
0 0

Then

t

r(t) = e KO [r(O) —I—/ KW (u) du] + e KX @),

/OTr(t) dt:/o K [ +/ du] dt +Y(T).

According to Theorem 1.70 in Chapter 29, fOT r(t) dt isnormal. Itsmean is

T
JE/ r(t)dt:/ —K(@ [ +/ du] dt,
0 0
and itsvarianceis
T
var (/ r(t) dt) = EY*(T)
0
T T 2
:/ 2R W2 (p) (/ e~ KW dy) dv.
0 v
The price at time 0 of azero-coupon bond paying $1 at time 7" is
T
B(0,T) :Eexp{ / ()dt}
T
= exp{ E/ t) dt + 2(-1)% var (/ r(t) dt)}
0
:exp{—r(O)/ —K( dt—/ / KO+ () du dt
0
41 / 2K (v (/ —IX( ) dy) dv}

= exp{—r(0)C(0,T) — A(0,T)},

where

T .
c,T) = / KO gy,

T T :
A(0,T) / / ~KO+K) o (u) du dt — / 2R g2 (p) (/ e~ KW dy) dv.
0 v

(0.3)
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— u
Figure 30.1: Range of values of «, ¢ for the integral.
30.1 Fiddling with the formulas
Note that (see Fig 30.1)
T t - ’
/ / e KOTEW) o (4) du dt
0 0
T T - ’
= / / e KO o (4) dt du
0 U
T -

T .
(y=t; v=u) = / e o (v) (/ e~ KW dy) dv.
0 v

Therefore,

T - T - - T - 2
A(0,T) :/ KW a (o) (/ e~ KW dy) — %62B(U)0'2(U) (/ e KW dy) dv,
0 v v

T .
c(0,7) :/ e K@) gy,

B(0,T) =exp{—r(0)C(0,7)— A(0,T)}.

Consider the price at timet € [0, 7] of the zero-coupon bond:

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

Because r isaMarkov process, this should be random only through a dependence on (). In fact,

B(t,T)=exp{—r(t)C(t,T)— A(t,T)},
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where

T - T - - T - 2
A, T) = / KW (o) (/ e~ KW dy) — 12K ®) o2 (1) (/ e~ KW dy) dv,
€ v v

. T .
C(t,T) = K0 / KW gy,

t

The reason for these changesis the following. We are now taking theinitial timeto be ¢ rather than
zero, soitisplausiblethat [ ... dv shouldbereplaced by [ ... dv. Recall that

and this should be replaced by

Similarly, K (y) should be replaced by K (y) — K (t). Making these replacementsin A(0,7"), we
seethat the K (¢) terms cancel. In C'(0,7"), however, the K (¢) term does not cancel.

30.2 Dynamics of the bond price

Let C(,T) and Ay(t, T') denotethe partial derivativeswith respect to . From the formula
B(t,T) = exp {—r(t)C(t,T) — A(t,T)},
we have
dB(t,T) = B(t,T) [~C(t,T) dr(t) = LC?(8,T) dr(t) dr(t) = r(Co(t, T) dt = Ay(t, T) di]
— B(t,T) [ _ O, T) (alt) — Blt)r(t)) di
—C(t, T)o(t) dW(t) — 2C?*(t,T)o?(t) dt

— (1)t T) dt — Ay(t,T) dt] .

Because we have used the risk-neutral pricing formula

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]

to obtain the bond price, its differential must be of the form

AB,T) = r(t) B, T) dt + (...) dW (1)
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Therefore, we must have
—C(t,T) (a(t) = BO)r (1)) — LC?(t, T)o* (1) — r()Ce(t, T) — A (1, T) = r(t).

We leave the verification of this equation to the homework. After this verification, we have the
formula

dB(t,T) = r(t)B(t,T) dt — c()C(t, T)B(t, T) dW (t).

In particular, the volatility of the bond priceis o (t)C'(¢, T').

30.3 Calibration of the Hull & White model

Recall:

dr(t) = (a(t) = f(t)r(t)) dt + a(t) dB(1),

T - T - - T - 2
A(t,T) = / KW a (o) (/ e~ KW dy) — LR ©) o2 (1) (/ e~ KW dy) dv,
€ v v

. T .
C(t,T) = KO / KW gy,

t

B(t,T) =exp{—r(t)C(t,T) — A(t,T)}.

Supposewe obtain B(0, T') for al T' € [0, 7] from market data (with some interpolation). Can we
determine the functions a(¢), 5(¢), and o (¢) for all ¢ € [0,7*]? Not quite. Here is what we can do.

We take the following input data for the calibration:

1. B(0,T),0<T < T

4. o(t), 0 <t < T (usualy assumed to be constant);

5 ¢(0)C(0,T), 0 <T <T*,i.e,thevolatility at time zero of bonds of al maturities.

Step 1.From 4 and 5 we solvefor
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We can then compute

iC(o T) = ¢~ KT

aT
. d
= K(T') = —log 8_TC(O T),
G_TK 8T/ B(T).

We now have 5(T') foral T € [0, T%].
Step 2.From the formula

B(0,T) = exp{~r(0)C(0,T) - A(0,T)},
we can solvefor A(0,7') for all 7' € [0, T*]. Recall that

Ao = [ [e“”)o«(v) ([ as) - g ([ eor ) ] o

We can use thisformulato determine o(7), 0 < 7' < 7™ asfollows:
K2 —K(T) _ 2K () 12 () o~ K(T) / T kW
GTA (0,7) [ e o”(v)e e dy || dv,
oy O T
K(T) — 2]&( ) —-K(y)
e 8TA(O T) [ o*(v) (/U e dy)] dv,
i eK(T) d A(O T) _ ) / 621((1/)0'2(?]) e_K(T) dv
or or ’
e[x"(T)i e[x"(T) 0 A(O T) — 621((T)04(T) _ /T e?]x"(v)O_Q (U) dv
or or 0 '
9 [ ke 9 [ k9 ] 1o 2K (T) 2K(T) 2K (T) .2 .
_ _— —_ — — <T < .
a7 | a7 | 8TA(O,T) | = (T)e +2a(1)B(T)e e o*(T), 0<T<T

Thisgives usan ordinary differential equationfor «, i.e.,
o (1) KD 4 2a(1) f(1) M — 2K 52 (1) = known function of ¢.

From assumption 4 and step 1, we know al the coefficients in this equation. From assumption 3,
we have theinitial condition «(0). We can solve the equation numerically to determine the function
a(t), 0 <t <T™.

Remark 30.1 The derivation of the ordinary differential equation for «(t) requires three differ-
entiations. Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives. Consider, for example,

flz)y=0 VzelR,

sin(1000z)

g(z) = 100 Ve € IR.
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Then
— <
@) = g(a)| < o5 Vo€ IR
but because
g'(z) = 10 cos(1000z),
we have

|f'(@) = g'(x)] = 10

for many values of x.

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-
ties. These volatilities can be implied by the prices of options on bonds. We consider now how the
model prices options.

30.4 Option on a bond

Consider a European call option on a zero-coupon bond with strike price K and expirationtime 7', .
The bond matures at time T, > 7. The price of the option at time O is

E [6_ Jo rtw a (B(Th, T») - K)+]
=Fe fOTl r(u) du(exp{—r(Tl)C(Tl, Ty) — A(Ty, Ty)} — K)"',
= /_00 /_OO e " (exp{_yC(ThTz) - A(T1,Ty)} — K)—l_f(av7 y) da dy,

where f(x, y) isthejoint density of (fo r(u) du, r(71)).

We observed at the beginning of this Chapter (equation (0.3)) that fOTl r(u) du isnormal with
A T1 Tl
= IFE l/ r(u) du] :/ Er(u) du
0 0

T
=,
A T T . T . 2
o? = var / r(u) du| = / KW g2 (v) / e KW qy ) do.
0 0 v

We also observed (equation (0.1)) that »(77) isnormal with

v

r(o)e—K(u)_l_e—K(v)/

B (u) du] dv,
0

. . AT
i) = Er(Ty) = r(O)e_B (T1) 4 =K (Tl)/ e (“)a(u) du,
0

. T .
O'% 2 var (r(7T1)) = e 2K (Tl)/ o2k (“)Uz(u) du.
0
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In fact, (fOTl r(u) du, r(Tl)) isjointly normal, and the covarianceis

T
poros = IE l/o (r(u) = Er(w)) du. (r(T1) — Er(Ty))
_ /OTl El(r(u) — Er(w)) (r(T1) — Er(T1))] du

T
= [ petu 1)
0

where p,. (u, T1) isdefined in Equation 0.2.
The option on the bond has price at time zero of

[ [ e (optovemm - g, m) - K)+

1 1 2?2 2pzy  y?
—— | = dz dy. (4.1
exp{ 2<1—p2>[ ] )

2ro109y/ 1 — p? of 0109

The price of theoption at time¢ € [0, Ty] is

}'(t)] (42)

Because of the Markov property, thisis random only through a dependence on »(¢). To compute
this option price, we need the joint distribution of ( tTl r(u) du, r(Tl)) conditioned on r(¢). This
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pair of random variables has ajointly normal conditional distribution, and

pi(t) = IE /tTl r(u) du

f(t)]

T, - Y e
:/ [r(t)e—lx(v)-l—lx(t)_I_e—Ix(v)/ KW o () du] dv,
t t

o) = I ( / ) du ul(t))

Tl_ i T 2
:/ 2R W52 (p) (/ e~ KW dy) dv,
t v

palt) = I [+(1) ()
T

— p(1)e KK ) _I_e—K(Tl)/ W () du,

t

f(t)]

7Hit) = B [(r(T) - al0)* (0

_ 6—2]((T1)/T1 KW 02 (y) du,
1

T
01 0)020) = | [ 1601 =) 07 = st 0

_ /Tl e-]«'@)-K(Tl)/“ KW 62 () dv du.
t t

The variances and covariances are not random. The means are random through a dependence on
r(t).
Advantages of the Hull & White mode!:

1. Leadsto closed-form pricing formulas.
2. Allowscadlibrationtofit initial yield curve exactly.
Short-comings of the Hull & White model:
1. One-factor, so only allows parallel shifts of theyield curve, i.e.,
B(t,T) =exp{-r(t)C(t,T)— A, T)},
so bond prices of al maturities are perfectly correlated.

2. Interest rate is normally distributed, and hence can take negative values. Consequently, the

bond price
T
B(t,T)=IF [exp {—/t r(u) du} ‘]—'(t)]

can exceed 1.
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Chapter 31

Cox-Ingersoll-Ross model

IntheHull & Whitemodel, () isaGaussian process. Since, for each ¢, r(t) isnormally distributed,
thereisapositiveprobability that r(¢) < 0. The Cox-Ingersoll-Rossmodel isthe simplest onewhich
avoids negative interest rates.

We begin with a d-dimensional Brownian motion (W1, W5, ... W,). Let g > 0 ando > 0 be
constants. For j = 1,...,d, let X;(0) € IR be given so that

XP(0) + X3(0) + ...+ X7(0) > 0,
and let X ; be the solution to the stochastic differential equation
dX;(t) = —1BX;(t) dt + Fo dW;(1).

X iscalled the Orstein-Uhlenbeck process. It always has a drift toward the origin. The solution to
this stochastic differential equationis

X;(t) = e 3% [Xj(()) 1o /Ote%ﬁu dwj(u)] .
Thissolutionis a Gaussian process with mean function
mj () = 27X (0)
and covariance function

1 1 SNt
p(s,t) = 1026_25(5“)/0 e du.

Define
A

r(t) = X7 + X3 +...+ X3(0).
If d =1, wehaver(t) = X{(t) andfor each ¢, IP{r(t) > 0} = 1, but (see Fig. 31.1)

P{Thereareinfinitely many valuesof ¢ > 0 for which r(t) = 0} =1

303
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r() = X5 (0

5%3/— (X ®, %®)

Figure 31.1: »(t) can be zero.

If d > 2, (seeFig. 31.1)

IP{Thereisat least onevalue of ¢ > 0 for whichr(t) =0} = 0.
Let f(z1,22,...,2q) = 27+ 23+ ...+ 2% Then

2 ifi=j,

Joo =200 Jain, {0 if i £ 7.

[t0'sformulaimplies

d d

d d
1
:g;z&(—%ﬂxﬂu+%adwxo)+§:Zgzﬂ%dwg

= —ﬁf‘(t) dt + Uzd:XZ’ dW; + d;‘z dt
2 - d .
:(%}_ﬁmo)a+a¢ﬁﬁgjﬁiimm@.

Define
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Then W isamartingale,

>
dW = - dW;,
=1 \/F

d X2
dW dw =" =t dt = dt,

N r
=1

so W is a Brownian motion. We have

do?

dr(t) = (T — ﬁr(t)) dt + oy/r(t) dW (t).
The Cox-Ingersoll-Ross (CIR) processis given by

dr(t) = (a = Br(t) dt + oy/r(t) dW (1),
We define

but we do not require d to be an integer. If d < 2 (i.e., a < £0?), then
IP{There are infinitely many valuesof ¢ > 0 for whichr(t) =0} = 1.

Thisis not a good parameter choice.
Ifd > 2 (i.e, o > L0?), then

IP{Thereisat least onevalue of ¢ > 0 for whichr(t) =0} = 0.

With the CIR process, one can derive formulas under the assumption that d = ;47—% is a positive
integer, and they are still correct even when d is not an integer.

For example, hereisthe distributionof »(¢) for fixed¢ > 0. Let »(0) > 0 be given. Take
X1(0) =0, X2(0) =0, ..., Xg-1(0) =0, X4(0) = /7r(0).

Fori=1,2,...,d— 1, X;(¢) isnormal with mean zero and variance

0.2
p(t ) = E(l —e .



306

X4(t) isnormal with mean

and variance p(t, t). Then

d—1 ) 2
= ety ( j%) i X2 (1) ©.1)

Normal squared and independent of the other

da—0?
o2

Chi-squarewithd — 1 =
freedom

degreesof  term

Thusr(t) has anon-central chi-square distribution.

31.1 Equilibrium distribution of ()

Ast—o0, my(t)—0. We have

d ) 2
r(t) = p(t,t) Z: (\/)%) :

Ast—oo, we have p(t,t) = %, and so the limiting distribution of »(t) is Z—; times a chi-square

with d = % degrees of freedom. The chi-sguare density with ;47—% degrees of freedom is

1 20—02

fW) = ———F—~vy o
(y) 220/ T (22)

We make the change of variable r = Z-y. Thelimiting density for r(t) is

20—
=G (Br) T
0?2 92a/02T (2_a)

2

2a
o2 a=0?
=(B)7 e
o

o2 2_a)
0'2

We computed the mean and variance of () in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

AX () = b(X (1)) dt + o(X (1)) dW (2).
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Figure 31.2: The function i (y)

Because we are going to apply the following analysis to the case X (t) = r(t¢), we assume that
X(t) > 0forall t.

We start at X (0) = = > 0 at time 0. Then X (¢) is random with density p(0,¢, z,y) (in the y
variable). Since 0 and = will not change during the following, we omit them and write p(t, y) rather
than p(0,¢, 2, y). We have

BhX0) = [ k() dy

for any function h.

The Kolmogorov forward equation (KFE) isa partial differential equationin the“forward” variables
t and y. We deriveit below.

Let 4(y) beasmooth function of y > 0 which vanishesnear y = 0 and for all large values of y (see
Fig. 31.2). Ito’'sformulaimplies

dh(X (1)) = [W(X ()X (1) + SH" (X (0)* (X ()] dt + 1/ (X (£)a(X (£) dW (1),

PO 0) = X))+ [ WX DB )+ 3 X ()X ()] ds+
[ H e ) aw s,

A (0) = WX )+ 1 [ [0 ) di -+ 1 (X () (X ()] s,
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or equivalently,

/Oooh(y)p(t y) dy = —I—/ / h'(y (s,y) dy ds +

// R (y p(s,y) dy ds.

Differentiate with respect to ¢ to get

[ vt dy = [0 @b@pe) dy+ 5 [T 10 ) dy.

Integration by partsyields

y=oo

| W @@ty dy = iy

/0 TRy (y)p(t, ) dy = B ()0 ()p(t, y)

_ /OOO h(y)é% (0(y)p(t,y)) dy,

y=0

- [Trg () dy

y=0

Therefore,
[ mpt s dy == [ ) 2 @t ) dy+ [ ) (@) dy
T o 3y ’ 2 o 8y2 ’ ’
or equivalently,
82

/OOO h(y) [pt(t y) + a% bwrt:v) = 353 (o*ww(t, y))] dy = 0.

Y

Thislast equation holdsfor every function % of the form in Figure 31.2. It implies that

2

plt.) + 5 (G ) - S5 (it ) =0, (KFE)

If there were a place where (KFE) did not hold, then we could take . (y) > 0 at that and nearby
points, but take / to be zero elsewhere, and we would obtain

/OOO h lpt + g(bp) - —88—2(0219)] dy # 0.
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If the process X (¢) has an equilibrium density, it will be
ply) = lim p(t,y).
In order for thislimit to exist, we must have
0= t1i>moo Pt (tv y)
Letting t— oo in (KFE), we obtain the equilibrium Kolmogorov forward equation

55 )~ b (W) = 0.

When an equilibrium density exists, it isthe unique solution to this equation satisfying

ply) 20 Vy >0,

/Ooop(y) dy = 1.

31.3 Cox-Ingersoll-Ross equilibrium density

We computed thisto be

2002 28

where
C[28\oF 1
=)
We compute
2
piry = 227 P28

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

% ((ev = Br)p(r)) — %;—;(Uzr‘p(r)) =0. (EKFE)



Now
% (o = Br)p(r)) = =Bp(r) + (a = pr)p'(r),
%(02@(7‘)) = %(Uzp(f‘) +a*rp'(r))

= 202])’(7‘) + 0'27‘])//(7‘).
The LHS of (EKFE) becomes

—Bp(r) + (o = Br)p'(r) = P/ (r) — So2rp" (r)

— p(r) :—ﬂ b (a— Br— 02)%(04 _ 152 gy

+ %(a — 307 = fr) + 4 - %(a —30° - ﬂr)2]
= p0)[(0 = 3% = 1) St — b = )

~ ot e ot — )

+ %(04 — 30— pr) - %(a — 0% - mﬂ]

as expected.

31.4 Bond prices in the CIR model

Theinterest rate process r(t) is given by
dr(t) = (o — pr(t)) dt + or/r(t) dW (1),

where (0) isgiven. The bond price processis

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

exp{—/otr(u) du}B(t,T) - [exp{—/OTr(u) du} ‘}'(t)],

the tower property implies that thisis a martingale. The Markov property impliesthat B(¢, T) is
random only through a dependence on r(¢). Thus, thereisafunction B(r, ¢, 1) of the three dummy
variablesr, ¢, T such that the process B(t, T') isthe function B(r,¢,7T") evaluated at r(t),t, 7', .,

Because

B(t,T) = B(r(t),t,T).
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Because exp {— o r(u) du} B(r(t),t,T) isamartingale, itsdifferential has no dt term. We com-

pute

Theexpressionin[...] equals

=—rBdt+ B,(oo— fr) dt + B,o\/r dW
+ %BMU27‘ dt + B; dt.

Setting the d¢ term to zero, we obtain the partia differential equation

—rB(r,t,TY+ Bi(r,t,T)+ (o« — pr)B,.(r, ¢, T) + %UerM(r, t,T)=0,

0<t<T, r>0.

Theterminal conditionis
B(r,T,7)=1, r>0.

(4.1)

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,

we look for a solution of theform
B(T‘, ¢, T) _ e—rC’(t,T)—A(t,T)7

whereC'(1,T) = 0, A(T,T) = 0. Then we have

Bt = (—T‘Ct — At)B7
B, =-CB, B, =C"B,

and the partial differential equation becomes

0=—-rB+4 (—rC;— A)B — (v — gr)CB+ %UerzB
=rB(-1-Cy+ BC 4 £0°C?*) = B(Ai 4 oC)

We first solve the ordinary differential equation
—1-Cy(t,T) 4+ BC(t,T) + 36°C*(t,T) =0; C(T,T)=0,

and then set .
A(L,T) :a/ C(u,T) du,
1
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0o A(T,T)=0and
A, T) = —aC(t,T).

It istediousbut straightforward to check that the solutionsare given by
sinh(y(T —t))
yeosh(y(T = 1)) + 3B sinh(y(T = 1))’
B )
veosh(y(T = t)) + 13sinh(y(T — t))

Ct,T) =

9

2
A(t,T) = —U—O;log

where _ _
v = %\/ﬁQ + 202, sinhu= %, coshu = %.

Thusin the CIR model, we have

T
E [exp{—/t r(u) du} ‘}'(t)] - B(r(1),t,T),
where
B(r,t,T) = exp{—rC(t,T) - A(t,T)}, 0<t<T, r>0,

and C'(t,T) and A(t,T') are given by the formulas above. Because the coefficientsin

dr(t) = (a = fr(t)) dt + oy/r(t) AV (1)

do not depend on ¢, the function B(r, ¢, T") depends on ¢ and 7" only through their difference r =
T —t. Similarly, C'(¢t,T) and A(t,T') are functionsof 7 = T — t. We write B(r, 1) instead of
B(r,t,T), and we have

B(r,7) = exp{—rC(r) = A(r)}, 720, r>0,

where
sinh (y7)
C =
) v cosh(y7) + 13sinh(y7)’
1
200 ~e2PT
A(r) = —=1
(7) o 8 ['y cosh(y7) 4+ 13 sinh('yr)]
v = %\/ﬁQ + 202,
We have

B(r(0),T) = Eexp{—/OTr(u) du}.

Now r(u) > 0 for each u, almost surely, so B(r(0),1") isstrictly decreasing in 7’. Moreover,
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Tli_r>nooB(r(0),T) = IFexp {— /OOO r(u) du} =0.

But also,
B(r(0),T) = exp{-r(0)C(T) — A(T)},
S0
r(0)C'(0)+ A(0) =0,
Tli_1r>nOO r(0)C(T) + A(T)] = oo,
and

r(0)C(T) + A(T)

isstrictly inreasingin 7.

31.5 Option on a bond

Thevaue at time¢ of an option on abond inthe CIR model is

T
o(t,r(t) = IE [exp {—/t r(u) du} (B(T1, T) — K)* }'(t)] ,

where T} isthe expiration time of the option, 7', isthe maturity time of thebond, and 0 < ¢ < 7 <
Ty. Asusual, exp { - 5 r(u) du} v(t, (1)) isamartingale, and thisleads to the partial diifferential
equation

—rv+ v+ (o = friv,. + %O‘ZT‘UW =0, 0<t<Ty, r>0.

(where v = v(t, r).) Theterminal conditionis
o(Ty,r) = (B(r,T1,T2) - K)*, r>0.

Other European derivative securities on the bond are priced using the same partia differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministic time change of CIR model

Processtime scale: In thistime scale, the interest rate r(¢) is given by the constant coefficient CIR
equation

dr(t) = (o — pr(t)) dt + or/r(t) dW(t).
Real timescale: In thistime scale, the interest rate () is given by atime-dependent CIR equation

di(f) = (a(f) — BE)#(D)) di 4+ 6(D)\/#(f) dW ({).
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Figure 31.3: Time change function.

Thereis astrictly increasing time change function ¢ = () which relates the two time scales (See
Fig. 31.3).

Let B(#,#,1) denotethe price at real time{ of abond with maturity 7" when the interest rate at time
t is#. We want to set things up so

B(#, 1, T) = B(r,t,T) = e—T’C(t,T)—A(t7T)7

wheret = (1), T = o(T),and C'(t, T) and A(t, T) are as defined previously.
We need to determine the relationship between 7 and ». We have

B(r(0),0,T) = IE exp {— /Tr(t) dt} ,
B(#(0),0,T) = IE exp {— /Tf(f) df} .

With 7' = ¢(T"), make the change of variablet = o (f), dt = /(i) df inthefirst integral to get

T A~ ~
B(r(0),0,T) = IE exp {— | rtetine dt},

and thiswill be B(#(0), 0, T if we set

P(f) = r(e(D) ¢'(1)-
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31.7 Calibration

P ()

@(5&(@)

¢ ()
e {—f@w - Al (D), so(T))}
©'(t)

= exp {—f‘(f)é'(f, 1) - A(i, T)} )

B(#(t),1,T) :B(

where

(i T) = %(;(TD
AL, T) = Alp(d), 9(1))

do not depend on 7 and 7" only through 7" — #, since, in the real time scale, the model coefficients
are time dependent.

Suppose we know #(0) and B(#(0), 0, T) for all 7' € [0, 7). We calibrate by writing the equation
B(#(0),0,7) = exp {=#(0)C(0,7) = A(0,7) },

or equivalently,

g B0).0,7) = JEEC((0), (1)) + A((0), (1),

Take «, # and o so the equilibrium distribution of r(¢) seems reasonable. These values determine
the functions C', A. Take ¢'(0) = 1 (we justify thisin the next section). For each 7', solve the
equation for p(1'):

—log B(#(0),0,T) = #(0)C(0, (1)) + A0, o(T)). *)

The right-hand side of this equation isincreasing in the ¢(7') variable, starting at O at time 0 and
having limit co at oo, i.e.,
7(0)C'(0,0) + A(0,0) =0,

Jlim [#(0)C(0,7) 4 A(0,T)] = oc.

Since0 < —log B(#(0),0,T) < oo, (*) hasaunique solution for each 7". For 7' = 0, this solution

iSp(0) = 0. If Ty < Ty, then
—logB(r(O),O,Tl) < —10)5_);3(7‘(0),0,1%2)7

s0 (1) < ¢(1,). Thusp isastrictly increasing time-change-function with the right properties.
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31.8 Tracking down¢'(0) in the time change of the CIR model

Result for general term structure models:

0 log B(0,T)

~a7 =r(0).

T=0

Justification:
T
B(0,T) = Eexp{—/ r(u) du} .
0

—log B(0,T) = —logEexp{—/OTr(u) du}

F [r(T)e_ foT r(w) d“]

d
~a7 log B(0,T) =

Fe~ fOT r(u) du

=r(0).
T=0

0

Inthereal time scale associated with the calibration of CIR by time change, we write the bond price
as

B(#(0),0,T),
thereby indicating explicitly theinitial interest rate. The above says that
0 R .
——log B(#(0),0,T = #(0).
o7 08 BE0,0.1)] = (0)

The calibration of CIR by time change requires that we find a strictly increasing function ¢ with
©»(0) = 0 such that

~log B(#(0),0,T) = FO)C (o(D) + Ale(T)), T 20, (cal)

¢'(0)
where B(#(0),0 T) determined by market data, isstrictly increasingin T, startsat 1when 7' = 0,
and goes to zero as T—oc. Therefore, — log B(#(0), 0, T) isasshownin Fig. 31.4.

Consider the function

HO)C(T) + A(T),
Here C'(T') and A(T') are given by
sinh (vT
(1) = — 0T 7
7 cosh(yT) 4 38 sinh (yT)
1
2o e2PT
A(T) = = log R
o ycosh(yT) + 58sinh(yT)

= 1./B% + 202
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— log B(#(0),0,T)
Goesto oo

Strictly increasing

Figure 31.4: Bond pricein CIR model

H0)C(T)+ A(T)

—log B(#(0),0,7) ~F--—-----;

Figure 31.5: Calibration

The function #(0)C(1T") + A(T) iszeroat T' = 0, is strictly increasing in 7', and goes to co as
T—oco. Thisisbecause the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let usfirst consider the related equation
—log B(#(0),0, 1) = #(0)C((1)) + A(p(T)). (cal’)
Fix 7' and define @(T) to be the unique T" for which (see Fig. 31.5)
—log B(#(0),0,T) = #(0)C(T) 4 A(T)

If 7 = 0, then p(T) = 0. If T} < Ty, then p(T1) < @(12). AsT—o0, p(T)—o0. We have thus
defined a time-change function ¢ which has al the right properties, except it satisfies (cal’) rather
than (cal).
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We conclude by showingthat ’(0) = 1 so ¢ also satisfies(cal). From (cal’) we compute

Weshowina

F(O):—ailogB 7(0),0 )

T=0

(
= #(0)C"((0))#'(0) + A((0))'(0)
= #(0)C(0)'(0) + A'(0)¢'(0),

moment that C’(0) = 1, A’(0) = 0, sowe have

#0) = #(0)¢(0).

Notethat 7(0) istheinitial interest rate, observed in the market, and is striclty positive. Dividing by
7(0), we obtain
¢'(0) = 1.
Computation of C’(0):
1
C'(r) = 5 ['y cosh(y7) (’y cosh(vy1)+ %ﬁ sinh('yr))

c'(0)

('y cosh(y7) 4+ £ sinh(’ﬂ))
— sinh(y7) (72 sinh(y71) 4+ %ﬂ'y cosh('yr))]

= % [+ 0 =00+ 3] = 1.

Computation of A’(0):

Al(r) = -

__2fk[il;t11] ! [%37

2« [y cosh(y7) 4+ $3sinh(y7)
o2 vePT/2

1 [éﬁleﬁr/z
. 2 2
('y cosh(yr) 4+ %ﬁ smh('yr))

__ya%42(72$nh(7r)+-%ﬂvcoﬂ477>)]

X

('y cosh(y7) + 16 sinh(’ﬂ))

(r+0) = 3(0+ 167)|

o>l v 1(y+0)?
200 1 | py? 1.2
o2 42|72 2P
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A two-factor model (Duffie & Kan)

Let us define:

Xi(t) = Interest rate at time 't
X,(t) = Yield at time ¢ on abond maturing at time ¢ + 7

Let X;(0) > 0, X2(0) > 0 begiven, and let X;(¢) and X (¢) be given by the coupled stochastic
differential equations

Xm(t) = (a11X1 (t) + angg(t) + bl) dt + Ul\/ﬁle(t) + ﬁQXQ(t) + dWl(t)7 (SDE].)
dXQ(t) = (angl(t) + a22X2(t> + bz) dt + O'Q\/ﬁle(t) + ﬁQXQ(t) + (p dWl(t) + 1- p2 dWQ(t))7
(SDE2)

where W, and W, are independent Brownian motions. To simplify notation, we define

Y (t) - biXa(t) + B2Xo () + a,
Wa(t) £ pWi(t) + /1 — p2Wa(t).

Then W5 isaBrownian motion with
dWi(t) dWs(t) = p dt,
and
dX, dX, = oY dt, dX;dX,=o03Y dt, dX;dX; = poio,Y dt.

319
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32.1 Non-negativity ofY”

dY = 31 dX; + 3, dX,
= (Bra11 X1 + PrareXo + Bi1b1) dt + (Pra01 X1 + Paage Xo + B2bs) dt

VY (Broy AWy + Bapoy AWy + Bar/1 — p2ay dWs)
= [(Bra11 + B2a21) X1 + (Brarz + Baagz) Xo] dt 4 (8101 + [2b2) dt

1
+ (8301 + 251 Baporos + B303) 24 /Y (1) dW4(1)
where

(Bro1 + Bapoa)Wi(t) + Ba/1 — ploaWa(t)

W4(t) - 2 <2 2 2
\/ﬁ1 o7+ 2031 32pc102 + ﬁzgz

is a Brownian motion. We shall choose the parameters so that:

Assumption 1: For somey, fiaii + faagr = v,  Braiz + Paagz = v
Then
dY = [y51.X1 + 702 X2 + avy] dt + (8101 + B2bs — ay) dt
1
+ (Biot + 2B1B2po103 + Br03) 2VY dW;

1
= ’yY dt + (ﬁlbl + ﬁzbg — Oé’y) dt + ( %O’% + Qﬁlﬁszle + ﬁ%O’%)Q\/)_/ dW4
From our discussion of the CIR process, we recall that Y will stay strictly positive provided that:
Assumption 2: Y (0) = 51 X1(0) 4+ 52X2(0) + a > 0,

and
Assumption 3: ﬁlbl + ﬁzbg —yo > %(ﬁ%()’% + 2ﬁ1ﬁ2p0’10’2 + ﬁ%O’%)

Under Assumptions1,2, and 3,
Y(t) >0, 0<t< oo, dmostsurely,
and (SDE1) and (SDE2) make sense. These can be rewritten as

Xm(t) = (a11X1 (t) + angg(t) + bl) dt + O'ly/Y(t) dWl(t)7 (SDEI)
dXQ(t) = (a21X1 (t) + a22X2 (t) + bz) dt + O'Q\/Y(t) de(t) (SDEZ)
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32.2 Zero-coupon bond prices

Thevalueat timet < T of azero-coupon bond paying $1 attime T is

T
B(t,T) = IE [exp {—/ X, (u) du} ‘}'(t)] .
t
Since the pair (X1, X3) of processes is Markov, this is random only through a dependence on
X1(t), X2(t). Since the coefficientsin (SDE1) and (SDE2) do not depend on time, the bond price

dependson ¢ and 7" only through their difference - = 7' — t. Thus, thereisafunction B(z 1, 2, 7)
of the dummy variables zy, =, and 7, so that

B(X1(t), Xa(t), T — t) = IE [exp {— /tT X1 (u) du} ‘}'(t)] .
The usual tower property argument shows that
exp {— /Ot X1 () du} B(X1(t), Xa(t), T — 1)
isamartingale. We compute its stochastic differential and set the dt term equal to zero.
d (exp {— /Ot X1 () du} B(X1(t), Xa(t), T — t))
= exp {— /Ot X1 (u) du} [—XlB dt + B, dX1+ By, dX; — B, dt
44 Boysy dX) dX0 4 By X0 dXs 4 By, dX3 o]

= exp {— /Ot X1 (u) du} [(—XlB + (@11 X1 4+ a12X2 4 b1) By, + (a21 X1 + a2 X2 + b2) By, — B~

+ 101Y Byo, + po102Y By o, + %U%YBMM) dt

+ 01VY By, dWy + 0VY B, dwg]

The partia differential equation for B(z1, 22, 7) is
—961B—BT+(G119€1+G129€2+51)BQU1+(0219€1+a229€2+52)3x2+%U%(519€1+529€2+&)Bmx1
+ poroa(Brzy + Bexe + o) By oy + %U%(ﬁlﬂh + G222 + ) By, = 0. (PDE)
We seek a solution of the form
B(z1, 29, 7) = exp{—21C1(1) — 22C3(7) — A(7) },
vaidforal r > 0and al x, x5 satisfying

ﬁ1$1 + ﬁ2$2 +a> 0. (*)
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We must have
B(z1,22,0) =1, Vap,2, satisfying(*),
because = = 0 correspondsto ¢ = T'. Thisimpliesthe initial conditions
C1(0) = C5(0) = A(0) = 0. (o)
We want to find C (1), Ca(7), A(7) for 7 > 0. We have

(PDE) becomes
0= B(zy,22,7) [—xl + 21C(7) + 22C5(7) + A'(7) = (a1171 + a1222 + b1)C1(7)

— (az1z1 + az2x2 + b3)Co(7)
+ %U%(ﬁlﬂh + Baxg + 04)012(7') + poroa(Brixr + Bara + a)Cr(17)Co(T)

+ 305(Brey + B + 04)022(7')]
= z1B(21, 22, 7) [ — 14+ O (1) — a11C1(1) — az1Ca(7)
+ 301B1CH(T) + po1a2 i Ci(T)Ca(T) + 50351022(7)-
+ 22 B(x1, 22, 7) [CQ(T) — a12C1(7) — az2Co(7)

+ 3015207 (1) + po10252C1 (T)Ca(7) + £05682C5(7)

 Bla1, 20, 7) [A'(T) — bCr () — byCir(7)

+ 207aCH(7) + po102aCy (1) Co(T) 4+ $050C5(7)
We get three equations:
Clr) = 14 anCi (1) + anCy(r) — 3016:CH(7) — po10251C1(r)Ca(r) — $056:C3 (1),
D
Cy(1) = ar2Ci(7) + aneCa(T) = §015:CT (1) = pa12f2C1 (1) Ca(T) — §035:C5(1), ()

a
0

= b1C1(7) + b2C3(7) — $01aCi (1) — po1o2aCy (T)Ca(T) — 205aC3 (1), (3)
0
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We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A(T).

32.3 Calibration

Let 7o > 0 be given. Thevalue at time¢ of abond maturing at time ¢ + ; is
B(Xl (t), X2(t)7 To) = exp{—X1 (t)Cl(To) — XQ(t)CQ(TO) — A(Tg)}

andtheyieldis

— L og BOX1 (1), Xa(t), 70) = — [X1(1)Ch (7o) + Xa(t)Ca(70) + A(70)].

To To

But we have set up the model so that X ;(¢) istheyield at time ¢ of abond maturing at timet + 7.
Thus

X(t) = T—lo (X1 (1)Ch (70) + Xa()Ca(70) + A(7o)].
This equation must hold for every value of X (¢) and X (¢), which impliesthat
Cy(10) =0, Cy(m0) =70, A(T) =0.
We must choose the parameters

aii, @12, 01 agi, ago,byy B, o, o1, p,09;

so that these three equations are satisfied.



324



Chapter 33

Change of nuneraire

Consider a Brownian motion driven market model with time horizon 7. For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS(t) = r(t) S(t) dt + o(1)S(t) dW (1), (0.1)

where the interest rate process r(¢) and the volatility process o (t) are adapted to some filtration
{F(t); 0 <t < T} W isaBrownian motion relative to thisfiltration, but {F(¢); 0 <t < T*}
may be larger than the filtration generated by V.

Thisis not a geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by aterm structure model we have not yet specified.

We shall work only under the risk-neutral measure, which isreflected by the fact that the mean rate
of return for the stock isr(t).

We define the accumul ation factor

50 =esp{ [ rw au},

so that the discounted stock price % isamartingale. Indeed,

SN _ S()
d <W) = S0 v,

The zero-coupon bond prices are given by

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]
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T = o]

is also a martingale (tower property).

The T'-forward price F'(¢,7T") of the stock isthe price set at time ¢ for delivery of one share of stock
at time 7" with payment at time 7'. The value of the forward contract at time ¢ is zero, so

0= I [% (S(T) — F(1,T)) ‘}'(t)]
_ S B
B [ o ‘Ft] F(,T)IE [ﬁ(T) ‘}'(t)]
_an>@
= () 5]~ P T)B(T)
= S(t) - F(t,T)B(t, T)
Therefore,
PO = g

Definition 33.1 (Numéraire) Any asset inthe model whose priceis alwaysstrictly positive can be
taken as the numéraire. We then denominate al other assetsin units of this numéraire.

Example 33.1 (Money market as nurefaire) The money market could be the numéraire. At time ¢, the
stock isworth % unitsof money market and the 7-maturity bond is worth £ [gig) units of money market.

Example 33.2 (Bond as nurafaire) The 7-maturity bond could be the numéraire. Attimet < 7", the stock
isworth F'(¢, T') units of T-maturity bond and the T-maturity bond isworth 1 unit. ]

We will say that a probability measure [Py isrisk-neutral for the numéraire N if every asset price,
divided by NV, isamartingale under /Py . The original probability measure IPP isrisk-neutral for the
numéraire 3 (Example 33.1).

Theorem 0.71 Let N be a numéraire, i.e., the price process for some asset whose price is always
strictly positive. Then IPx defined by

Py = 55 /A ];7 ((5:)) AP, YA € F(T%),

isrisk-neutral for N.
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Note: IP and Py are equivalent, i.e., have the same probability zero sets, and

P(A) = N(0) /A ]@‘(g*)) APy, WA € F(T%).

Proof: Because N isthe price processfor some asset, N/ isamartingale under IP. Therefore,

~N(0) ﬁ(O)

9

and we see that /Py isaprobability measure.

Let Y be an asset price. Under IP, Y/ isa martingale. We must show that under Py, Y/N is
amartingale. For this, we need to recall how to combine conditional expectations with change of
measure (Lemma 1.54). If 0 < ¢ < T < 7™ and X isF(T')-measurable, then

_ N(0)s() N(T)
Ex [X‘}'(t)] - 56 [N(O)ﬁ(T)X‘}'(t)]
_ B [N
= 5 [ o)
Therefore,
Y(T) _ B L [N(T) Y(T)
Ex [y 7] = w5 [y w0
_ B0 Y
N(t) p(t)
_Y@
= W’
which isthe martingale property for Y/N under Py . [

33.1 Bond price as nungraire

Fix T € (0,7*] and let B(t, T') be the numéraire. The risk-neutral measure for thisnuméraireis

o B(T,T)
P = 57y, sy

_B(l )/Aﬂ( T)

dIP YA ¢ F(T).
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Because this bond is not defined after time 7', we change the measure only “up to time 7™, i.e,,

using %%%1 and only for A € F(T).

IPr is called the T-forward measure. Denominated in units of T-maturity bond, the value of the
stockis

S() <t<T.

FT) = 5y 0%

Thisisamartingale under Py, and so has a differential of the form
dF(tv T) = O-F(tv T)F(tv T) dWT(t)7 0<t<T, (11)

i.e., adifferential without a dt term. The process {Wr; 0 < ¢ < T'} isaBrownian motion under
IPr. We may assume without loss of generality that o -(¢,7') > 0.

We write F'(t) rather than £'(¢, 1) from now on.

33.2 Stock price as nuraraire

Let S(t) be the numéraire. In terms of this numéraire, the stock price isidentically 1. The risk-
neutral measure under this numéraireis

Ps(A) = ﬁ/fl % AP, VA€ F(T%).

Denominated in shares of stock, the value of the T-maturity bond is

B(L,T) 1
St F)

Thisisamartingale under /Ps, and so has a differential of the form

d (ﬁ) (1, T) (ﬁ) AW s(t), 2.1

where {Ws(t); 0 <t < T*} isaBrownian motion under /Ps. We may assume without |oss of
generdlity that v (¢,7) > 0.

Theorem 2.72 The volatility v (¢, T") in (2.1) is equal to the volatility o (¢, 7") in (1.1). In other
words, (2.1) can be rewritten as

d (ﬁ) — op(t,T) (ﬁ) AW s(t), @.1)
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Proof: Letg(z) = 1/2,50¢'(z) = —1/2%, ¢"(x) = 2/2° Then

= g'(F(1)) dF(t) + 39" (F(t)) dF(t) dF(1)

1 1
- e T W)+ s

_ ﬁ [0 (6.T) dWr(t) + o3 (1,T) di]

of(t, T)F*(t,T) dt

— op(t,T) (ﬁ) [—dWr(t) + o (1, T) di].

Under Py, — Wy isaBrownian motion. Under thismeasure, () hasvolatllltyap(t T') and mean

rate of return o7.(¢, 7). The change of measure from [Py to IPs makes s a martingale, i.e, it
changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,
(¢, T)in(2.1) must be o (¢, T') and Ws must be

Wislt) = —Wrp(t) + /Ot or(u,T) du.

33.3 Merton option pricing formula

The price at time zero of a European call is

1 .
VO0) = I | S5 - K7
S(T .
= [%1 )>K}] - KIE [ﬁl{S(TbK}]
S(T) s |

© /{S( 7)>1K} S(0)3(T) P~ KB(0.1) /s y>Kk7 B(0,T)3(T) i
(0)Ps{S(T) > K} — KB(0, T)IPr{S(T) > K}

(0)Ps{F(T) > K} — KB(0, T)IPr{F(T) > K}

(0P {ﬁ < %} _ KB, T)IPr{F(T) > K}.

S
S
S
S
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Thisisacompletely general formulawhich permits computation as soon as we specify o i (¢, T'). If
we assume that o (¢, 7") isa constant o i, we have the following:

_ B(0,T)
) S(0)

1
BT
sy <)~ s i <)

_ Ws(T) 1 S5(0)
—’Ps{ \S/T < VT B KB0,T) 2 UF\/_}

exp {O‘FWS — %O‘%T} ,

= N(p1),
where
S(0) | 2
P = UF\/_[ KB( )—|-§O'FT:|.
Similarly,
) = 20 ey (o) - it}
Pr{F(T) > K} = IPr {UFWT(T) — 16%T > log KB(( ’) )}
_ Wr(T) 1 KB(0,T)
_PT{ Nis >UF\/T[1 S0 +20FT]}
_p, [ ZW(T) 1 SO,
_PT{ Nis <UF\/T[1 RB0.T) 3 FT]}
= N(p2),
where

_ S0 1]
n= e e wmo s -]

If r isconstant, then B(0,7) = e~"7,

_ 1 S(0) | ]

= orVT [log K Tt 2T,
1 S(0

e~ [10g (')“’“‘%"%)T]’

and we have the usual Black-Scholes formula. When r is not constant, we still have the explicit
formula

V(0) = S(0)N(p1) — KB(0,T)N (py).
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Asthisformulasuggests, if o = isconstant, thenfor 0 < ¢ < 7', thevalue of a European call expiring
atime? is
V() = SEN(p1(t)) — KB(t, T)N(pa2(t)),

where

_ ! Ft) 1 o ]
pl(t) - O'Fm |:10g K + QUF(T t) )
_ ! Ft) 1 o ]
pZ(t) - O'Fm |:10g K - QUF(T t) :
This formula also suggests a hedge: at each time ¢, hold N (p4(t)) shares of stock and short
K N (p2(t)) bonds.
We want to verify that this hedge is self-financing. Suppose we begin with $ V'(0) and at each time
t hold N (p1(t)) shares of stock. We short bonds as necessary to finance this. Will the position in
the bond alwaysbe — K'N (p2(t))? If so, the value of the portfolio will awaysbe

SON(pr(t)) = KB(t, T)N (p2(1)) = V (1),

and we will have a hedge.
Mathematically, this question takes the following form. Let

A(t) = N(pi(1)).
At timet, hold A(t) shares of stock. If X (¢) isthe value of the portfolio at time ¢, then X (¢) —

A(t)S(t) will be invested in the bond, so the number of bonds owned is %%QS@) and the
portfolio value evolves according to

X() - AQ)

AX (1) = A) dS(0) + =5

S(t) dB(t,T). (3.1)

The value of the option evolves according to
AV (t) = N(py(t)) dS(t) + S(t) AN (p1(t)) + dS(t) dN (pa (1))
— KN (p2(t)) dB(t,T) — K dB(t,T) dN(pa(t)) — KB(t,T) dN (p2(t)). (3.2)
If X(0)=V(0),will X(t) = V(t)for0 <t <T?

Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change of numéraire.
Thischangeisjustified by the following theorem.

Theorem 3.73 Changes of numéraire affect portfolio valuesin the way you would expect.

Proof: Suppose we have a model with & assets with prices Sy, So, ..., S,. At eachtimet, hold
A, (t) sharesof asseti,7 = 1,2,...,k — 1, and invest the remaining wealth in asset k. Begin with
anonrandom initial wealth X (0), and let X (¢) be the value of the portfolio at time¢. The number
of sharesof asset £ held at timet is

(X0 - i Awsi)

Ag(t) = D) ,
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and X evolves according to the equation

k—1
=3 A dS + ( ZAS) 15
=1
k
=" A dS..
=1
Note that

k
= Eﬁi(t)s (t)

and we only get to specify Aq,..., Ar_q, ot Ay, in advance.
Let N be anuméraire, and define

Then
~ 1 1 1
dX:—dX Xd|— dX d| —
+ (N)+ (N)

k

— ey (Yas)a() X aasa(y)
= f:Ai (N dS; + Sid (%) +d5id <%))

Now

X - il AS)
Sk
(X/N = Sk Asi/N)
Sp/N
_ )A( - Zf:_f Aigi
- = -

A

Therefore,

ZA ds; +( ZAS) 25

=1
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Thisistheformulafor the evolution of aportfoliowhichholds A ; sharesof asset,i = 1,2,... , k—
1, and al assets and the portfolio are denominated in unitsof V. [

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as numéraire. We still hold A(t) = N(p4(t)) shares of stock at each time ¢.
In terms of the new numéraire, the asset values are

Stock: Bftit)T) = F(t),
. BT _
Bond: BT) 1.
The portfolio value evolves according to
dX (1) = A(t) dF(t) + (X (1) — A(t))@ = A(t) dF(t). (3.1)

1

In the new numéraire, the option value formula
V() = N(pa(1))S(t) = KB(t, T)N (p2(t))

becomes

and

AV = N(p1(1)) dF (1) + F(t) dN (p1(1)) + dN (p1 (1)) dF(1) — K dN (palt))- o2

To show that the hedge works, we must show that
(1) dN (p1(t)) + dN (pa(1)) dF(t) — K dN(pa(t)) = 0.

Thisisahomework problem.
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Chapter 34

Brace-Gatarek-Musiela model

34.1 Review of HIM under risk-neutral IP

f(t,T) = Forward rate at time¢ for borrowing at time 7".
df(t, Ty = o, T)o"(t,T)dt +o(t,T) dW (t),
where
T
o*(t,T) :/ o(t,u) du
t

Theinterestrateisr(t) = f(¢,¢). Thebond prices

B(t,T)=IF [exp{—/tTr(u) du}
= exp{—/tTf(t,u) du}

dB(t,T)=r(t) B(t,T) dt — o*(t,T) B(t,T) dW(t).
N——
volatility of T'-maturity bond.
To implement HIM, you specify afunction

o(t,T), 0<t<T.

f(t)]

satisfy

A simple choice we would liketo useis
o(t,T)=0of(t,T)

where o > 0 isthe constant “volatility of the forward rate”. Thisis not possible because it leads to
T
o (t,T) = O'/ f(t,u) du,
t
T
At T) = o2 f(t, T) (/ F(t,u) du) dt + o f(t,T) dW (1),
t

335
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and Heath, Jarrow and Morton show that solutionsto this equation explode before 7'

The problem with the above equation is that the dt term grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

J'(#6)y =2,
where f(0) = ¢ > 0. We have
' _
o
d 1
O
—L—I—L— 751du—t
o) F0) S
—L—zt—i—zt—l/c:at_1
(1) 1(0) ’
J(t) = —.

Thissolutionexplodesatt = 1/c.

34.2 Brace-Gatarek-Musiela model

New variables:
Current time ¢
Timeto maturity 7 =T — t.
Forward rates:
r(t,7) = ft,t+71), rt0)= f(tt)=r(),

J J

Er(t, T) = 8—Tf(t7 t+7)
Bond prices:

D(t,7)=B(t,t+ 1)

= exp{—/tH—T f(t,v) dv}

(u=wv—t; du=dv): :exp{—/OTf(t,t—l—u) du}

= exp {— /OTr(t,u) du}

d

or -~ aT

—D(t,T)= iB(t,t—l— T) = —r(t,7)D(t, 7).

2.1)
(2.2)

(2.3)

(2.4)
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We will now write o (¢, 7) = o(t, T — t) rather than o (¢, T'). In this notation, the HIM model is

df (t,T) = o(t,7)o™(t,7) dt + o(t,7) dW (1), (2.5)
dB(t,T) = r(t)B(t,T) dt — o*(t,7)B(t,T) dW (), (2.6)
where
o (t,7) = /0 "oty u) du, @27
a%“*(t’ ) =o(t, 7). (2.8)

We now derive the differentials of » (¢, 7) and D(t, 7), analogousto (2.5) and (2.6) We have

dr(t,7) = df(t,t 4+ 1) + %f(t,t—l—r) dt

differential appliesonly to first argument

(25)(2.2) a(t,7)o™(t,7) dt +o(t, ) dW(t) + %r(tv T) dt

@9 0 [(t,7) + 307 (0.7)7] dt 4 o(t,7) VY (1), (2.9)
Also,

J
dD(t, 1) = dB(t,t+ ) +8—TB(t,t—|—T) dt
differential appliesonly to first argument

@Y L1y Bt,t +7) dt — o™ (t,7)B(t,t + ) dW(t) — r(t, ) D(t, ) dt
@ 1r(t,0) = r(t, 7)) D(t, 7) dt — o*(t,7)D(L, T) AW (). (2.10)

34.3 LIBOR

Fix § > 0 (say, § = % year). $ D(t, ) invested at timet in a (¢ + &)-maturity bond growsto $ 1 at
timet + §. L(¢,0) isdefined to be the corresponding rate of simpleinterest:

D(t,8)(1 + 6L (t,0)) = 1,

1 d
14 6L(t,0) = D, 5) :exp{ ; r(t, u) du}7

2]
L(t.0) = exp {fo r(t, u) du} — 1'
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34.4 Forward LIBOR

d > 0isdtill fixed. Attimet, agreetoinvest $ % at timet + 7, with payback of $1 at time

t + 7+ 4. Candothisat time ¢ by shorting 2”28 honds maturing at time ¢ + 7 and going long

one bond maturing at time ¢ + 7 + 8. Thevalue of thisportfolioat timet is
D(t, 7+ 9)

D(t,7)
Theforward LIBOR L(t, 7) isdefined to be the simple (forward) interest rate for thisinvestment:
D(t, 74 9)

D(t,7)

D(t,7)+ D(t,7+6) = 0.

(1+6L(t, 7)) =1,

D(t,7) _ exp{— Jo r(t,u) du}
D(t,7+9)  exp {— f07+5 r(t, u) du}

= exp {/:+5 r(t, u) du} )

_exp {f:+5r(t,u) du} -1

1+ 0L(t, 1) =

L(t,7)= 3 (4.1)
Connection with forward rates:
o T+6 T+6
=< exp / r(t,u) du =r(t,7+ ) exp / (t,u) du
85 T §=0 T §=0
=r(t, 1),
SO
exp f:"'ér tybu)dup —1
flt,t+71)=r(t,7)=Ilim { ) }
slo 6
exp f:+5rt,u dup —1
L(t,7)= { (5 ) } ,  0>0 fixed.
4.2

r(t, 7) isthe continuously compounded rate. (¢, 7) isthe simplerate over a period of duration J.

We cannot have alog-normal model for (¢, 7) because solutionsexplode aswe saw in Section 34.1.
For fixed positive §, we can have alog-normal model for L(¢, 7).

34.5 The dynamics ofL(¢, )

We want to choose o (¢, 7), t > 0, 7 > 0, appearing in (2.5) so that
dL(t,7) = (...)dt+ L(t,7)y(t,7) dW(t)
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for some y(¢t,7), t > 0,7 > 0. Thisisthe BGM model, and is a subclass of HIM models,
corresponding to particular choicesof o (¢, 7).

Recall (2.9):
dr(t,r) = % [t w) + L(o™ (8, w))?] dt+ o (t,u) AWV (D).
Therefore,
d (/T-I_(g r(t, u) du) = /T-I_(g dr(t,u) du (5.1
T+8 T+8
= /T ’ % {r(t, u) 4 £ (o™ (¢, u))ﬂ du dt +/T ' o(t,u) du dW(t)
= [r(t 4 6) = r(t,7) + S(07 (6,7 + ) = Lo (t,7))?] dt
+[o"(t, 7+ 0) — o™ (t, )] dW(¥)

and

dL(t,7) = 5

1 T+6 T+6
= s exp {/ r(t, u) du} d/ r(t,u) du

T+6 T+6 2
—I—%exp{/T ' r(t, u) du} (d/T ' r(t, u) du)

41,61 1
8

(4.1) d [QXP {f:H r(t, u) du} - 1]

[1+0L(t, )] X (5.2
X {[r(t, T4 68) —r(t, )+ %(U*(t7 T+ 5))2 - %(U*(t7 T))z] dt

+[o*(t, 7+ 0) — o™ (t, )] AW (1)

+ Lo (b T+ 8) — o™ (t, ) dt}

1

5[1 + dL(t, T)]{[r(t, T+ 68) —r(t,0)] dt

+ o (t, T+ 0)[o"(t, T+ &) — o™(t, )] dt

= +o*(t, T+ 0) — (¢, T)] dW(t)}.
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But
9 9 exp{f:-l'ér(t,u) du}—l
a7 = 57 [ 5
— exp {/:+5 r(t, ) du} [t 7+ 8) = r(t, 8)]
= L[ OL (Tt 7+ ) (1, 6)]
Therefore,

dL(t,7) = iL(t7 T) dt + l[1 +SL(t, )][o"(t, T+ 8) — o™ (t, 7)].[o"(t, T+ O) dt + dW ()]

or 5
Take v (¢, T) to be given by
y(t, T)L(t, T) = %[1 +0L(t,T)][o"(t, 7+ &) — o™(t, T)]. (5.3
Then
dL(t,7) = [;L(t, )+t )L, 7)o" (6, T+ 0)] dt + (¢, 7)L(t, 7) dW (2).
i (5.4)
Note that (5.3) isequivaent to
o*(t,7 4 8) = (1, ) 4 LTI (53)

14+ 0L(t,7)
Plugging thisinto (5.4) yields

SLA(t, T)y*(t, )
14+ 68L(t,T)
+(t, T)L(t,T) dW (t). (5.4)

dt

dL(t,7) = %L(t7 )+, 7)L(t, T)o" (t, T) +

34.6 Implementation of BGM

Obtain the initial forward LIBOR curve
L(0,7), 72>0,
from market data. Choose aforward LIBOR volatility function (usually honrandom)

v(t,7), t>0,7>0.
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Because LIBOR gives no rate information on time periods smaller than &, we must aso choose a
partial bond volatility function

o*(t,7), t>0,0<7<$

for maturities lessthan § from the current time variable t.

With these functions, we can for each + € [0, §) solve (5.4) to obtain
L(t,7), t>0,0<7 <4

Plugging the solutioninto (5.3), we obtain o *(¢, 7) for § < 7 < 24. We then solve (5.4’) to obtain
L(t,7), t>0,8<7 <20,

and we continue recursively.

Remark 34.1 BGM is a specid case of HIM with HIM’s o* (¢, 7) generated recursively by (5.3').
INBGM, ~(t, 7) isusualy taken to be nonrandom; the resulting o * (¢, 7) israndom.

Remark 34.2 (5.4) (equivaently, (5.4')) isastochastic partial differential equation because of the
%L(t, T) term. Thisis not as terrible as it first appears. Returning to the HIM variables¢ and 7',
set
K, T)=L(t,T —1t).
Then 9
dK(t,T)=dL(t,T —t) — 8—L(t,T —t)dt
T

and (5.4) and (5.4’) become

AK(,T) = v(t, T — K (t,T) [0 (t, T — t + &) dt + dW ()]
SK(t,T)y(t, T —1)
1+ 0K (t,T)

=y (t, T - K, T) |o"(t, T — t) dt + dt + dw ()] .

(6.1)

Remark 34.3 From (5.3) we have

o*(t, 7+ 6) — o*(t, T)

y(t, T)L(t, 7) =[1 4 6L(t,7)]

If welet |0, then

7(t,7’)L(t,r)—>ﬁU*(t,T—|—5) =o(t, 1),
96 5=0

and so
vy, T —t)K(t,T)—o(t, T —t).

We saw before (eg. 4.2) that as§0,

L(t,m)—=r(t,7)= f(t,t+ 1),
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K, T)—=f(t,T).

Therefore, the limit as 4.0 of (6.1) isgiven by equation (2.5):
df(t, Ty =o(t, T —t)[c"(t, T —t) dt + dW(1)].

SYA(t, T-t)K?(+,T

) . . -9 .
TFR(T) involving K ¢, solutions

Remark 34.4 Althoughthe dt termin (6.1) has the term
to this equation do not explode because

§vit, T — t)K2(¢,T) < §v3(, T — t)K2(¢,T)
1+ 6K (t,T) SK(t,T)
<A T - K(t,T).

34.7 Bond prices

Let 3(t) = exp {fg r(u) du} . From (2.6) we have

d(B(t’T)) :ﬁl () B(t,T) dt + dB(t, T)]

B(t) (t)
=- Bg(’t)T) o*(t, T —t) dW (1).
The solution Bfg’é g) to this stochastic differential equation is given by
Bt T) = Co 1 b _ 2
s = ([ T - [ w2

Thisisamartingale, and we can use it to switch to the forward measure

1 1
P = 5075 J, 50
B(T,T)

~ JaBI)BO.T)

Girsanov’s Theorem implies that

dIP VA ¢ F(T).

—I—/ (u, T —u)du, 0<t<T,

isaBrownian motion under /Py .
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34.8 Forward LIBOR under more forward measure

From (6.1) we have

AK(,T) = v(t, T — )K(t,T) [o"(t, T — t + &) dt + dW (1)]
=y (t, T — K (t,T) dWrs(t),

SO
t t
K(t,T)=K(0,T) exp{/ Y(u, T —u) dWris(u) — %/ v (u, T — u) du}
0 0
and
T T
K(T,T)= K(0,T) exp{/ Y(u, T —u) dWris(u) — %/ v (u, T — u) du}
0 0
(8.1)
T T
=K(,T) exp{/ Y(u, T —u) dWrys(u) — %/ v (u, T — u) du
t
We assume that + is nonrandom. Then
T T
X(t) = / Y(u, T — w) dWrys(u) — %/ Y3 (u, T — u) du (8.2
t t

is normal with variance

and mean —1p?(t).

34.9 Pricing an interest rate caplet

Consider afloating rate interest payment settled in arrears. Attime T + 4, the floating rate interest
payment due is §L(7,0) = SK(T,T), the LIBOR at time 7. A caplet protects its owner by
requiring him to pay only the cap dc if § K (7', T) > dc. Thus, the value of the caplet at time 7" + &
iso(K(T,T)— ¢)T. Wedetermineitsvalueat times0 < ¢ < 7'+ 4.

Casel:T' <t <T+4.

Cros(t) = E %5(1{(1 T)— o)
B(t)

_S(K(T,T) = ) IE [m‘m)]

= §(K(T,T)— )" B(t,T + §).

f(t)] 9.1)
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Casell:0<t<T.
Recall that

Prys(A) = /AZ(T L 8)dIP, YA€ F(T +34),

where
B(t, T +9)
0= 500+
We have
Cras(t) = %5(1{@, T)— o)t }'(t)]
B B(t)B(0,T +9) B(T + 6,17 +9) .
= 0B(t, T + ) BT 1 0) BT 1 OBO.TLI) (K(T,T) - ¢)"|F(t)
1 Z(T+6)

7

= 0B(t, T+ §) Erys |[(K(T,T) — )T | F(t)

From (8.1) and (8.2) we have
K(T,T)=K(t,T)exp{X(t)},

where X (¢) isnormal under /Py with variance p*(t) = [;" v*(u, T — u) du and mean —1p%(1).
Furthermore, X (t) isindependent of F(t).

Crslt) = SB(T + 8) Brys | (K (.7 exp{ X(0)) - o 7(0)]
Set
9(y) = Brys [(yexp{X (1)} - )]
—y N (ﬁlog Ly %p(t)) _eN (ﬁlog J_ %p(t))
Then

Cras(t) =8 B(t,T+8) g(K(1,T)), 0<t<T—5. (9.2)

In the case of constant ~, we have
p(t) =T —t,
and (9.2) is called the Black caplet formula.
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34.10 Pricing an interest rate cap

Let
/‘TOIO7 T1:57 T2:257 ey Tn:ncs
A cap isaseries of payments
S(K(Ty, Ty) — o)t attimeTy q, k=0,1,...,n— 1.

Thevalue at timet of the cap isthe value of al remaining caplets, i.e.,

)= 3, Cr().

k:tSTk

34.11 Calibration of BGM

Theinterest rate caplet c on L(0,7") at time " + § hastime-zero value
CT+5(0) = 5B(07 T+ 5) g(I((Ov T))7

where ¢ (defined in the last section) depends on

T
/ Y (u, T — u) du.
0
Let us suppose v is a deterministic function of its second argument, i.e.,

vt ) =7(7).

Then ¢ depends on

T T
/ YT — ) du = / v2(v) dv.
0

0

If we know the caplet price C'45(0), we can “back out” the squared volatility fOT 72 (v) dv. If we
know caplet prices
CT0+5 (0)7 CT1_|_5 (0)7 sy CTn+5(0)7

whereTy < T < ... < T, wecan “back out”

/OTO 7 (v) dv, /Tl v (v) dv = /Tl v (v) dv — /TO +2(0) dv,

Ty 0 0

Ty
oy / 3 (v) dv. (11.1)

Tn—l

In this case, we may assume that ~ is constant on each of theintervals

(07T0)7 (T07T1)7 e (Tn—17Tn)7
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and choose these constants to make the above integrals have the valuesimplied by the caplet prices.

If we know caplet pricesCT+5( ) for alI T > 0, we can “back out” OTfy?(v) dv and then differen-
tiate to discover v2(7) and v (1) = /~42(r) foral = > 0.

To implement BGM, we need both 7(7), T >0, and
o*(t,7), t>0,0<7 <4

Now o*(t, T) is the volatility at time ¢ of a zero coupon bond maturing at time ¢ 4+ 7 (see (2.6)).
Since§ issmall (say i year), and 0 < 7 < §, it isreasonable to set

o*(t,7)=0, t>0, 0<7 <4
We can now solve (or simulate) to get
L(t,7), t>0,7>0,

or equivalently,
K(t,T), t>0,T>0,

using the recursive procedure outlined at the start of Section 34.6.

34.12 Long rates

Thelong rate is determined by long maturity bond prices. Let » be alarge fixed positiveinteger, so
that nd is20 or 30 years. Then

1 né
Dl n9) = exp{/o r(t, u) du}

. kS

= kl;[lexp {/(k_1)5 r(t, u) du}
= T+ 3100,k — 1))
k=1

where the last equality followsfrom (4.1). The long rateis

! zn: [+ SL(t, (k — 1)8)].

né log D(t,n

34.13 Pricing a swap

Let 7y > 0 begiven, and set

T1:T0—|—57 T2:T0+2(S7 ey TnIT0—|—n(S
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The swap isthe series of payments
(S(L(Tk, 0) - C) aItimeTkH, k=0,1,...,n—1.
For 0 < t < Ty, thevalue of theswapis

Z E[ Tk+1) §(L(Ty,0) — ¢) (t)] :
Now
L+ FL(T00) =
SO
1 1
Mﬂﬂﬁﬁ{ﬁﬁﬁﬂﬁ_q'
We compute
B(t)
Ebaun““”m‘” @]

= :ﬂgrgl) () #0)

_ B(t) B(Ty) ) )

- B(Tk) B(Tk, Tht1) " [ﬂ(TkH) (Tk)] ‘f(t) (1+0¢)B(t, Thy1)
- B(Tx,Tr11)

_ [ B0 B .

= 575l 0] - 0+ 608 i)

=B(t,Ty) — (14 6¢)B(t, Trt1)-
The value of theSNapaItimet is

Z JE[ SRS (L(T0) = )

]

- Z (t,Tx) — (L+8¢)B(t, Try1)]

= B(t To) — (1 +6e)B(t,Th) + B(t,Th) — (1+6¢)B(t,13) + ...+ B(t,T,,—1) — (1 + 6¢)B(t, T},)
= B(t,Ty) — 6eB(t,Ty) — 6eB(t,Ty) — ... = deB(t,T,) — B(t,T),).
The forward swap rate wr, (t) at time ¢t for maturity 7} is the value of ¢ which makes the time-¢
value of the swap equal to zero:
B B(t,Ty) — B(t, 1))
nll) = STEGT + o+ BT

In contrast to the cap formula, which depends on the term structure model and requires estimation
of v, the swap formulais generic.



348



Chapter 35

Notes and References

35.1 Probability theory and martingales.

Probability theory is usually learned in two stages. In the first stage, one learns that a discrete ran-
dom variable has a probability mass function and a continuousrandom variable has a density. These
can be used to compute expectationsand variances, and even conditional expectations. Furthermore,
one learns how transformations of continuous random variables cause changesin their densities. A
well-written book which contains all these thingsis DeGroot (1986).

The second stage of probability theory is measure theoretic. In this stage one views a random
variable as a function from a sample space 2 to the set of real numbers IR. Certain subsets of €2 are
called events, and the collection of all eventsformsac-agebraF. Each set A in F hasaprobability
IP(A). Thispoint of view handles both discrete and continuous random variables within the same
unifying framework. A conditional expectation isitself arandom variable, measurable with respect
to the conditioning o-algebra. Thispoint of view isindispensiblefor treating the rather complicated
conditional expectationswhich arisein martingaletheory. A well-written book on measure-theoretic
probability is Billingsley (1986). A succinct book on measure-theoretic probability and martingales
in discretetime isWilliams (1991). A more detailed book is Chung (1968).

The measure-theoretic view of probability theory was begun by Kolmogorov (1933). The term
martingalewas apparently first used by Ville (1939), although the concept dates back to 1934 work
of Lévy. Thefirst complete account of martingale theory is Doob (1953).

35.2 Binomial asset pricing model.

The binomial asset pricing model was developed by Cox, Ross & Rubinstein (1979). Accounts of
this model can be found in several places, including Cox & Rubinstein (1985), Dothan (1990) and
Ritchken (1987). Many models are first developed and understood in continuous time, and then
binomial versions are devel oped for purposes of implementation.
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35.3 Brownian motion.

In 1828 Robert Brown observed irregular movement of pollen suspended in water. This motion is
now known to be caused by the buffeting of the pollen by water molecules, as explained by Einstein
(1905). Bachelier (1900) used Brownian motion (not geometric Brownian motion) as a model of
stock prices, even though Brownian motion can take negative values. Lévy (1939, 1948) discov-
ered many of the nonintuitive properties of Brownian motion. The first mathematically rigorous
construction of Brownian motion was carried out by Wiener (1923, 1924).

Brownian motion and its properties are presented in a numerous texts, including Billingsley (1986).
The development in this course is a summary of that found in Karatzas & Shreve (1991).

35.4 Stochastic integrals.

The integral with respect to Brownian motion was developed by [td (1944). It was introduced to
finance by Merton (1969). A mathematical construction of thisintegral, with a minimum of fuss, is
given by @ksendal (1995).

The quadratic variation of martingales was introduced by Fisk (1966) and developed into the form
used in this course by Kunita & Watanabe (1967).

35.5 Stochastic calculus and financial markets.

Stochastic calculus begins with 110 (1944). Many finance books, including (in order of increasing
mathematical difficulty) Hull (1993), Dothan (1990) and Duffie (1992), include sections on It0’s
integral and formula. Some other bookson dynamic modelsin finance are Cox & Rubinstein (1985),
Huang & Litzenberger (1988), Ingersoll (1987), and Jarrow (1988). An excellent reference for
practitioners, now in preprint form, is Musiela & Rutkowski (1996). Some mathematics texts on
stochastic calculus are @ksendal (1995), Chung & Williams (1983), Protter (1990) and Karatzas &
Shreve (1991).

Samuelson (1965, 1973) presents the argument that geometric Brownian motion is a good model
for stock prices. Thisis often confused with the efficient market hypothesis, which asserts that all
information which can belearned from technical analysisof stock pricesisalready reflected in those
prices. According to this hypothesis, past stock prices may be useful to estimate the parameters of
the distribution of future returns, but they do not provide information which permits an investor to
outperform the market. The mathematical formulation of the efficient market hypothesisisthat there
is a probability measure under which all discounted stock prices are martingales, a much weaker
condition than the claim that stock prices follow a geometric Brownian maotion. Some empirical
studies supporting the efficient market hypothesis are Kendall (1953), Osborne (1959), Sprenkle
(1961), Boness (1964), Alexander (1961) and Fama (1965). The last of these papers discusses
other distributionswhich fit stock prices better than geometric Brownian motion. A criticism of the
efficient market hypothesisis provided by LeRoy (1989). A provocative article on the source of
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stock price movementsis Black (1986).

The first derivation of the Black-Scholes formula given in this course, using only Itd’s formula,
is similar to that originally given by Black & Scholes (1973). An important companion paper is
Merton (1973), which makes good reading even today. (This and many other papers by Merton
are collected in Merton (1990).) Even though geometric Brownian motion is a less than perfect
model for stock prices, the Black-Scholes option hedging formula seems not to be very sensitiveto
deficiencies in the model.

35.6 Markov processes.

Markov processes which are solutionsto stochastic differential equations are called diffusion pro-
cesses. A good introduction to this topic, including discussions of the Kolmogorov forward and
backward equations, is Chapter 15 of Karlin & Taylor (1981). The other books cited previoudly,
@ksendal (1995), Protter (1990), Chung & Williams (1983), and Karatzas & Shreve (1991), all treat
this subject. Kloeden & Platen (1992) is a thorough study of the numerical solution of stochastic
differential equations.

The constant elasticity of variance model for option pricing appearsin Cox & Ross (1976). Another
aternative model for the stock price underlying options, due to Follmer & Schweizer (1993), has
the geometric Ornstein-Uhlenbeck process as a special case.

The Feynman-K ac Theorem, connecting stochastic differential equationsto partial differential equa-
tions, is due to Feyman (1948) and Kac (1951). A numerical treastment of the partial differential
equations arising in finance is contained in Wilmott, Dewynne and Howison (1993, 1995) and also
Duffie (1992).

35.7 Girsanov's theorem, the martingale representation theorem, and
risk-neutral measures.

Girsanov’s Theorem in the generality stated here is due to Girsanov (1960), although the result for
constant # was established much earlier by Cameron & Martin (1944). The theorem requires a
technical conditionto ensurethat I (7T") = 1, so that IP isa probability measure; see Karatzas &
Shreve (1991), page 198.

The form of the martingale representation theorem presented here is from Kunita & Watanabe
(1967). It can dso befound in Karatzas & Shreve (1991), page 182.

The application of the Girsanov Theorem and the martingal e representation theorem to risk-neutral
pricing is due to Harrison & Pliska (1981). This methodology frees the Brownian-motion driven
model from the assumption of constant interest rate and volatility; these parameters can be random
through dependence on the path of the underlying asset, or even through dependence on the paths of
other assets. When both the interest rate and volatility of an asset are allowed to be stochastic, the
Brownian-motion driven model is mathematically the most general possiblefor asset priceswithout
jumps.
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When asset processes have jumps, risk-free hedging is generally not possible. Some works on
hedging and/or optimization in models which alow for jumps are Aase (1993), Back (1991), Bates
(1988,1992), Beinert & Trautman (1991), Elliott & Kopp (1990), Jarrow & Madan (1991b,¢), Jones
(1984), Madan & Seneta (1990), Madan & Milne (1991), Mercurio & Runggaldier (1993), Merton
(1976), Naik & Lee (1990), Schweizer (1992a,b), Shirakawa (1990,1991) and Xue (1992).

The Fundamental Theorem of Asset Pricing, as stated here, can befound in Harrison & Pliska (1981,
1983). It istempting to believe the converse of Part |, i.e., that the absence of arbitrage impliesthe
existence of arisk-neutral measure. This is true in discrete-time models, but in continuous-time
models, a dlightly stronger conditionis needed to guarantee existence of arisk-neutral measure. For
the continuous-time case, results have been obtained by many authors, including Stricker (1990),
Delbaen (1992), Lakner (1993), Delbaen & Schachermayer (1994a,b), and Fritelli & Lakner (1994,
1995).

In addition to the fundamental papers of Harrison & Kreps (1979), and Harrison & Pliska (1981,
1983), some other works on the relationship between market completeness and uniqueness of the
risk-neutral measure are Artzner & Heath (1990), Delbaen (1992), Jacka (1992), Jarrow & Madan
(19914), Milller (1989) and Tagqu & Willinger (1987).

35.8 Exotic options.

Thereflection principle, adjusted to account for drift, istaken from Karatzas & Shreve (1991), pages
196-197.

Explicit formulasfor the prices of barrier optionshave been obtained by Rubinstein & Reiner (1991)
and Kunitomo & Ikeda (1992). Lookback options have been studied by Goldman, Sosin & Gatto
(1979), Goldman, Sosin & Shepp (1979) and Conzé & Viswanathan (1991).

Because it is difficult to obtain explicit formulas for the prices of Asian options, most work has
been devoted to approximations. We do not provide an explicit pricing formula here, although the
partial differential equation given here by the Feynman-Kac Theorem characterizes the exact price.
Bouaziz, Bryis & Crouhy (1994) provide an approximate pricing formula, Rogers & Shi (1995)
provide alower bound, and Geman & Yor (1993) obtain the Laplace transform of the price.

35.9 American options.

A general arbitrage-based theory for the pricing of American contingent claims and options begins
with the articles of Bensoussan (1984) and Karatzas (1988); see Myneni (1992) for a survey and
additional references. The perpetual American put problem was solved by McKean (1965).

Approximation and/or numerical solutions for the American option problem have been proposed
by severa authors, including Black (1975), Brennan & Schwartz (1977) (see Jaillet et al. (1990)
for atreatment of the American option optimal stopping problem viavariational inequalities, which
leads to ajustification of the Brennan-Schwartz algorithm), by Cox, Ross & Rubinstein (1979) (see
Lamberton (1993) for the convergence of the associated binomial and/or finite difference schemes)
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and by Parkinson (1977), Johnson (1983), Geske & Johnson (1984), MacMillan (1986), Omberg
(1987), Barone-Adesi & Whalley (1987), Barone-Adesi & Elliott (1991), Bunch & Johnson (1992),
Broadie & Detemple (1994), and Carr & Faguet (1994).

35.10 Forward and futures contracts.

The distinction between futures contracts and daily resettled forward contracts has only recently
been recognized (see Margrabe (1976), Black (1976)) and even more recently understood. Cox,
Ingersoll & Ross (1981) and Jarrow & Oldfield (1981) provide a discrete-time arbitrage-based anal-
ysis of the relationship between forwards and futures, whereas Richard & Sundaresan (1981) study
these claims in a continuous-time, equilibrium setting. Our presentation of thismateria issimilar to
that of Duffie & Stanton (1992), which also considers options on futures, and to Chapte 7 of Duffie
(1992). For additional reading on forward and futures contracts, one may consult Duffie (1989).

35.11 Term structure models.

TheHull & White (1990) model isa generalization of the constant-coefficent Vasicek (1977) model.
Implementations of the model appear in Hull & White (1994a,b). The Cox-Ingersoll-Rossmodel is
presented in (1985a,b). The presentations of these given models here is taken from Rogers (1995).
Other surveys of term structure models are Duffie & Kan (1994) and Vetzal (1994). A partial list of
other term structure modelsis Black, Derman & Toy (1990), Brace & Musiela (1994a,b), Brennan
& Schwartz (1979, 1982) (but see Hogan (1993) for discussion of aproblem with thismodel), Duffie
& Kan (1993), Ho & Lee (1986), Jamshidian (1990), and L ongstaff & Schwartz (1992a,b).

The continuous-time Heath-Jarrow-Morton model appears in Heath, Jarrow & Morton (1992), and
a discrete-time version is provided by Heath, Jarrow & Morton (1990). Carverhill & Pang (1995)
discuss implementation. The Brace-Gatarek-Musiela variation of the HIM model is taken from
Brace, et a. (1995). A summary of this model appears as Reed (1995). Related works on term
structure models and swaps are Flesaker & Hughston (1995) and Jamshidian (1996).

35.12 Change of nuraraire.

Thismaterial in this courseis taken from Geman, El Karoui and Rochet (1995). Similar ideas were
used by by Jamshidian (1989). The Merton option pricing formula appearsin Merton (1973).

35.13 Foreign exchange models.

Foreign exchange options were priced by Biger & Hull (1983) and Garman & Kohlhagen (1983).
The pricesfor differential swaps have been worked out by Jamshidian (1993a, 1993b) and Brace &
Musiela (1994a).
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