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Abstract

This note describes estimation algorithms for generalized hyperbolic, hyperbolic and nor-
mal inverse Gaussian distributions. These distributions provide a better fit to empirically
observed log-return distributions of financial assets than the classical normal distributions.
Based on the better fit to the semi-heavy tails of financial assets we can compute more
realistic Value-at-Risk estimates.

The modelling of financial assets as stochastic processes is determined by distributional assump-
tions on the increments and the dependence structure. It is well known that the returns of most
financial assets have semi-heavy tails, i.e. the actual kurtosis is higher than the zero kurtosis of
the normal distribution (see Pagan (1996)). On the other hand the use of stable distributions
leads to models with nonexisting moments.

The class of generalized hyperbolic distributions and its sub-classes — the hyperbolic and the
normal inverse GGaussian distributions — possess these semi-heavy tails. Generalized hyperbolic
distributions were introduced by Barndorff-Nielsen (1977) and applied e.g. to model grain size
distributions of wind blown sands. The mathematical properties of these distributions are well-
known (see Barndorff-Nielsen/Bleesild (1981)). Recently generalized hyperbolic distributions
resp. their sub-classes were proposed as a model for the distribution of increments of financial
price processes (see Eberlein/Keller (1995), Rydberg (1996), Barndorff-Nielsen (1998), Eber-
lein/Keller/Prause (1997)) and as limit distributions of diffusions (see Bibby/Sgrensen (1997)).
Nevertheless studies were only published concerning the estimation and application to financial
data in the special case of hyperbolic distributions. In this study we present parameter estima-
tions for German stock and US stock index data and evaluate the goodness of fit. In particular
we look at the tails of the distributions.



1 Generalized Hyperbolic Distributions

Generalized hyperbolic (GH) distributions are given by the Lebesgue density
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where K is a modified Bessel function. The parameters g and § describe the location and the
scale of the distribution. Note that this distribution may be represented as a normal variance-
mean mixture with the generalized inverse Gaussian as mixing distribution (see Barndorff-
Nielsen/Bleesild (1981)). The normal distribution is obtained as a limiting case for 6 — oo
and §/a — 0% (see Barndorff-Nielsen (1978)). Generalized hyperbolic distributions are in-
finitely divisible, hence they generate a Lévy processes (see Barndorff-Nielsen/Halgreen (1977),
Eberlein/Keller (1995)).

Using the properties of Bessel functions K it is possible to simplify the function gh whenever
A= -0.5,0,0.50r 1. For A = —0.5 we get the normal inverse Gaussian (NIG) distribution
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and for A = 1 the hyperbolic distribution (HYP)
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One drawback of using hyperbolic distributions instead of the normal distribution is that the
meaning of the parameters seems to be obscure. Different parametrizations of the generalized
hyperbolic distribution have been proposed to circumvent this problem
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In the case of hyperbolic distributions the parameters (v, &) may be plotted in a shape trian-
gle, which reflects asymptotically the shape, i.e. skewness and kurtosis of the distribution (see
Barndorff-Nielsen et al. (1985)).

We restrict this study to the sub-classes given above because the hyperbolic law is the fastest
to estimate (see Section 2) and the NIG law is closed under convolution.



2 Estimation Algorithm

In order to estimate GH distributions we assume independent observations and maximize the
log-likelihood function. We choose a numerical estimation procedure mainly based on an op-
timization for each coordinate. For the optimization step in one direction we implemented a
refined bracketing method (see Thisted (1988), Jarrat (1970)) which makes no use of derivatives.
This gives us the possibility to replace the likelihood function easily by different metrics (see
Section 6), but the resulting algorithm is not as fast as a method based on derivatives could be.
It was necessary to adapt the algorithm to the parameter restrictions given above. In contrast
to the hyperbolic case the estimation of GH parameters for financial return data converges quite
often to limit distributions at the boundary of the parameter space. Moreover, we modified the
algorithm to estimate parameters for a given constant sub-class characterized by A.

Although the computational power increases it is necessary to find a reasonable tradeoff
between the introduction of additional parameters and the possible improvement of the fit.
Barndorff-Nielsen /Bleesild (1981) mentioned the flatness of the likelihood function yet for the
hyperbolic distribution. The change in the likelihood function of the GH distribution is even
smaller for a wide range of parameters (see Section 5 below). Consequently the generalized
hyperbolic distribution as a model for financial data leads to overfitting. This will become
clearer in the following sections. The first four moments of return distributions yield simple and
useful econometric interpretations: trend, riskiness, asymmetry and the probability of extreme
events. Therefore it seems to be appropriate to model return data with one of the sub-classes
which has four parameters.

Because of the restrictions on the parameter values and the flatness of the likelihood function
it is not possible to use standard minimization algorithms. These ready implemented routines
(see Press et al. (1992)) often assume that the parameters and the value of the function have the
same order and that the gradient is not too small. Although we have no theoretically guaranteed
convergence of our algorithm, the tests with different start values reveal that for financial data
the use of reasonable start values results in convergence to a global extremum. In the case
of hyperbolic distributions we estimate the same parameters with our algorithm and the hyp
program implemented by Blasild/Sgrensen (1992).

The Bessel functions are calculated by a numerical approximation (see Press et al. (1992)).
Note that for A = 1 this function appears only in the norming constant. For a data set with n
independent observations we need to evaluate n+1 Bessel functions for NIG and GH distributions
and only one for A = 1. This leads to a striking reduction in the time necessary to calculate the
likelihood function in the hyperbolic case.

3 Results of the Estimation

We applied the estimator to log-return data from the German stock market and to New York
Stock Exchange (NYSE) indices. The stock data set consists of daily closing prices from January
1988 to May 1994. We had to correct these quoted prices due to dividend payments. The NYSE
indices are reported from January 2, 1990 to November 29, 1996. In the Tables 5 and 6 we present
the estimated GH, NIG and hyperbolic distributions. The tables contain also the log-likelihood
function and the second and third parametrizations (x, ) and (p, C).

The estimation for A ranges from —2.4 to 0.8 but for 23 of 30 stocks in the DAX we get
—2 < A < —1.4. In these cases the following sub-class of the generalized hyperbolic distribution



with A = —3/2 could be justified empirically
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The disadvantage of this sub-class is that it is not closed under convolution and that the estima-
tion is time consuming because of the Bessel function outside the norming constant. Therefore
we have not applied this distribution in this study.

The variation in the likelihood function for the GH distribution and the sub-classes is very
small. However the comparison of the sub-classes yields a clear result: for all data sets the
normal inverse Gaussian density has a higher likelihood than the hyperbolic distribution.

For seven German stocks (Allianz-Holding, Bayerische Vereinsbank, Commerzbank,
Karstadt, MAN, Mannesmann, Siemens) and the NYSE Composite Index the GH distribu-
tion converges to the boundary of the parameter space as § — «, A < 0, 0 < §. In terms of
the other parametrizations this means y, &, p — 1 and {( — 0. The limit distribution has the
following form
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This limit distribution is calculated using the well-known properties of the modified Bessel
function K, (z) = K_,(z) and K, (2) ~ T'(v)2""1a=" for x | 0, v > 0 (see Abramowitz/Stegun
(1968)). The parametrization in this limit case is 4-dimensional but a substantial change appears
only in the norming constant.

4 Comparison of the Fits

The aim of this study is to evaluate the fit of the generalized hyperbolic distributions and their
sub-classes. For a first graphical comparison we show plots of the densities and qq-plots for the
NYSE Industrial Index and Bayer in Figure 1. Clearly, generalized hyperbolic distributions are
leptokurtic, i.e. the peak in the centre is higher and there is more mass in the tails than for the
normal distribution.

We also compare the estimates with fitted normal distributions. As a measure for the
goodness of the fit we used various distances between the fitted and the empirical cumulative
density function (cdf). The Kolmogorov distance is defined as the supremum over the absolute
differences between two cumulative density functions. We also compute L' and L? distances of
the cumulative density functions. The Anderson & Darling statistic is given by
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where I'.,,,, and Fis are the empirical and the estimated cdf. We use this statistic because it pays
more attention to the tails of the distribution (see Hurst, Platen, Rachev (1995)) and therefore
hints at the possibility to model the probability of extreme events with a given distribution. In
Table 1 we give the results for the some share values of the German DAX.

(9)




Figure 1:  Density and gq-plots of the returns of NYSE Industrial Index and Bayer.

For all the analyzed metrics we get better results for the GH distributions and their sub-
classes than for the normal distribution. The poor fit of the normal distribution to the semi-heavy
tails is obvious from the values of the Anderson & Darling statistic. Looking at the statistics
for the GH, NIG and HYP distributions we find no striking differences. Because of the flatness
of the likelihood function and the proximity of the log-likelihood values in Tables 5 and 6 this
result is no surprise and underlines the overfitting of the generalized hyperbolic distribution.
The values of the Kolmogorov and L? distances of the GH, NIG and HYP are very close and
the distribution with the highest value changes. The Anderson & Darling statistic and the L!
distances reveal the following ranks in the goodness of fit: GH, NIG, hyperbolic and normal
distribution.



Kolmogorov Distance L?-Distance

GH NIG HYP Normal GH NIG HYP Normal

Allianz-Holding  0.0329 0.0290  0.0225  0.0683 0.0016 0.0018 0.0019  0.0097

BASF 0.0164 0.0150 0.0136  0.0524 0.0010 0.0012 0.0014  0.0068
Bayer 0.0164 0.0167 0.0160  0.0593 0.0011 0.0012 0.0015 0.0070
BHW 0.0220 0.0225 0.0227  0.0637 0.0015 0.0014 0.0017  0.0079
BMW 0.0228 0.0229 0.0222  0.0713 0.0010 0.0013 0.0017  0.0087
Commerzbank  0.0319 0.0295  0.0269  0.0581 0.0017 0.0016 0.0015 0.0072
Continental 0.0235 0.0246  0.0247  0.0526 0.0015 0.0015 0.0016 0.0071

Daimler Benz 0.0122 0.0122  0.0120  0.0628 0.0014 0.0013 0.0014 0.0085

Anderson & Darling Statistic L!-Distance
GH NIG HYP  Normal GH NIG HYP  Normal

Allianz-Holding  0.1301 0.5426  3.0254  5.84e07 0.0004 0.0006 0.0007 0.0024

BASF 0.0674 0.2621  0.9902  9.10e05 0.0003 0.0003 0.0004 0.0016
Bayer 0.0604 0.0884  0.1462 17.8506 0.0003 0.0003 0.0004 0.0015
BHW 0.1477 1.0116 12.7087  2.82¢l4 0.0004 0.0004 0.0005 0.0019
BMW 0.0639 0.3166  2.0842  3.45e08 0.0003 0.0004 0.0005 0.0022
Commerzbank  0.1096 0.5284  1.9754  3.08e08 0.0004 0.0004 0.0005 0.0017
Continental 0.0508 0.0713  0.1081 23.8127 0.0005 0.0005 0.0005 0.0019

Daimler Benz 0.1094 0.5533 4.0783  6.58e09 0.0004 0.0005 0.0005 0.0021

Table 1: Comparison of the fits of the GH, NIG, hyperbolic and normal distributions. Different
metrics are applied to measure the difference between the estimated and the empirical cumulative
density functions.

5 Simulation

In this section we are going to analyze the stability of the estimation by a simulation study. We
generate random numbers from the GH distribution by the use of the quantile function and a
uniform random number generator on [0, 1]. We produce data sets with different sample sizes
n from the distributions estimated above. Note that the choice of the sampling distributions
restricts the validity of the following results to financial return data sets. In Table 7 we provide
the results of the simulation for Bayer. Similar results were also obtained for other sampling
distributions.

In Table 7 we see that for large n the parameter A is close to the sampling distribution. This
reveals that the estimation of sub-classes characterized by A is quite good although the difference
between the sub-classes in terms of the likelihood is small. On the other hand it becomes clear
that the parameters («, 3,6, 1) are converging very slowly to the sampling distribution. Note
that it is not possible to find financial time series at any given length without getting trouble
with changes of regime. Due to the overfitting it is not useful to compare the parameters of the



Sample Size Kolmogorov Distance Anderson & Darling Statistic

50 0.046873 2748.095
100 0.028267 10.383349
125 0.042437 0.088472
150 0.013544 0.032380
175 0.005031 0.025219
200 0.021564 0.050546
350 0.021612 0.049411
500 0.020363 0.051141
1000 0.018077 0.050193
2000 0.010560 0.025539
5000 0.006787 0.016018

10000 0.001574 0.013654

Table 2:  Kolmogorov distance and Anderson & Darling statistic for the estimates given in
Table 7 (sampling distribution: maximum likelihood estimate for Bayer).

sampling and the estimated distribution. For a better comparison we provide the Kolmogorov
distance and the Anderson & Darling statistic in Table 2.

The fit of the tails becomes bad for sample sizes smaller than 150. From these results we
obtain the rule of thumb that more than 150 observations are necessary for an acceptable fit to
the tails.

6 Estimation with Different Metrics

In this section we apply different estimation methods by replacing the log-likelihood function
by other metrics. The aim of these different approaches to the estimation is to investigate the
possible improvement of the fit to the tails of the distribution. This may help for the modelling
of the probability of extreme events. We estimate parameters for the GH, NIG and hyperbolic
distributions using the metrics given in Section 4.

Is it useful to use different metrics for the estimation of return distributions? To answer
this question we compare the empirical skewness and kurtosis with those values of the estimated
distributions. The exact values of the skewness and kurtosis for a specified generalized hyperbolic
distribution can be computed by the formulas given in Barndorff-Nielsen/Blaesild (1981). Both
values are complicated expressions of Bessel functions. The results are given in Table 4.

Clearly generalized hyperbolic distributions provide a better fit to the empirical observed
skewness and kurtosis than the normal distribution. But this depends on the method used to
estimate the parameters.

The results given in Table 4 show that the Anderson & Darling statistic and the Kolmogorov
distance are less useful for the estimation than the LP-norms or the maximum likelihood ap-
proach. On the one hand the kurtosis of the estimated generalized hyperbolic distributions is
always closer to the empirical kurtosis. On the other hand the estimated generalized hyperbolic



A @ I’ 1) I value Y £ p ¢

Maximum Likelihood

-1.0024 39.6 4.14 0.0118 -0.000158 4878.00 0.086 0.827 0.104 0.463
NIG 59.4  4.64 0.0094 -0.000226 4877.62 0.063 0.802 0.078 0.556
HYP 114.8 3.35 0.0000 -0.000000 4872.25 0.029 1.000 0.029 0.000

Minimal Kolmogorov Distance

-0.5002 63.8 3.81 0.0097 -0.000211 0.013469 0.047 0.786 0.060 0.620
NIG 63.8  3.81 0.0097 -0.000211 0.013470 0.047 0.786 0.060 0.621
HYP 116.8 4.60 0.0000 -0.000211 0.014424 0.039 1.000 0.039 0.000

Minimal Anderson & Darling Statistic

-0.7162 39.6  4.00 0.0117 -0.000158 0.10 0.083 0.827 0.101 0.463
NIG 48.5 4.05 0.0118 -0.000158 0.13 0.067 0.799 0.084 0.568
HYP 80.5 2,98 0.0000 -0.000162 0.20 0.037 1.000 0.037 0.000

Minimal L'-Distance

0.0590 85.5  5.62 0.0073 -0.000282 0.000352 0.052 0.786 0.066 0.620
NIG 64.9  3.79 0.0098 -0.000064 0.000337 0.046 0.782 0.058 0.636
HYP 116.5 6.12 0.0000 -0.000328 0.000407 0.053 1.000 0.053 0.000

Minimal L2-Distance

0.4900 102.7 7.24 0.0052 -0.000459 0.00111 0.057 0.807 0.070 0.536
NIG 64.2  6.48 0.0098 -0.000382 0.00119 0.079 0.785 0.101 0.623
HYP 122.7 7.68 0.0022 -0.000503 0.00114 0.056 0.887 0.063 0.270

Table 3: Estimation of the GH, NIG and hyperbolic distributions for the Deutsche Bank returns
with different metrics.

distributions are sometimes skewed in the other direction than the empirical distribution. Sim-
ilar results are obtained for other stock data sets. In general the Anderson & Darling statistic
and the Kolmogorov distance yield estimates for which skewness and kurtosis deviates in an
irregular pattern from the empirical values. The estimates with LP-norms are closer to the em-
pirical kurtosis, but the estimation of the skewness is rather poor. Regarding also the other data
sets, we obtain the best fits to the empirial skewness and kurtosis with the maximum likelihood
approach. Therefore it is not favourable to replace the ML approach.

7 Value-at-Risk

A good fit of the heavy tails is also important for the estimation of the Value-at-Risk (VaR). The
motivation for invention of the concept of Value-at-Risk was the necessity to quantify the risk
for complex portfolios in a simple way. The VaR to a given level of probability o is defined as the
maximal loss inherent to a portfolio position over a future holding period which is exceeded only
with a probability of . The level of probability is typically chosen as 1% or 5% and should not



Metric Distribution Skewness Kurtosis Skewness Kurtosis

Deutsche Bank Bay.Hyp.u.Wechselbank

Empirical —0.519 10.872 —1.220 15.919
Normal 0.0 0.0 0.0 0.0

Maximum Likelihood GH 0.378 7.492 0.291 10.413
Maximum Likelihood NIG 0.314 5.529 0.178 4.490
Maximum Likelihood HYP 0.123 3.010 0.071 3.003
Kolmogorov Distance GH 0.227 4.906 —0.793 1.007
Kolmogorov Distance NIG 0.227 4.903 —0.002 0.020
Kolmogorov Distance HYP 0.166 3.018 —0.010 2.708
Anderson & Darling  GH 0.419 7.233 0.058 3.211
Anderson & Darling  NIG 0.332 5.427 —1.141 9.068
Anderson & Darling  HYP 0.156 3.016 0.043 2.579
L'-Distance GH 0.261 3.887 0.238 4.438
L'-Distance NIG 0.219 4.782 0.237 4.252
L'-Distance HYP 0.222 3.032 0.249 2.563
L*-Distance GH 0.281 3.315 0.323 4.087
L?-Distance NIG 0.383 5.010 0.320 4.024
L*-Distance HYP 0.246 2.764 0.227 3.034

Table 4: Comparison of the directly estimated skewness and kurtosis with the skewness and
kurtosis calculated from the estimations for GH, NIG and hyperbolic distributions with different
metrics (Deutsche Bank and Bay.Hyp.u. Wechselbank returns).

be confused with a confidence level. We are looking at the whole interval of levels of probability.
This approach corresponds to the multivariate approach in Davé/Stahl (1997). We analyze the
VaR for portfolios with linear risk, i.e. portfolios consisting of only one stock or index. The
results of the VaR-estimation for the GH, NIG and hyperbolic distribution are given in Figure
2.

Obviously the class of generalized hyperbolic distributions and its sub-classes provide better
fits to the empirical VaR, especially for small levels of probability, than the normal distribution.

The analysis of VaR, for linear positions is also useful as a visualisation of the fitting behaviour
in the tails of a distribution. From a mathematical point of view, VaR is in this case similar to
the well-known qq-plots.

8 Conclusion

In this study we developed an algorithm to estimate parameters for the class of generalized
hyperbolic distributions which includes the hyperbolic and the normal inverse Gaussian distri-



Figure 2:  VaR of a portfolio with linear risk and the value of one currency unit (US-$ or
Deutsche Mark). The exposure period is one trading day. We compare the empirical VaR
at different levels of probability to the estimated VaR using GH, NIG, hyperbolic and normal
distributions.

bution as special cases. We compared the results of the estimations for financial return data
sets. In general, generalized hyperbolic distributions and their sub-classes provide better fits to
the data than the normal distribution. As expected, the best fits are obtained for the generalized
hyperbolic distributions followed by the NIG and the hyperbolic distributions. It is worth to
mention that GH distributions lead to overfitting and that the estimation is computationally
demanding. The hyperbolic distribution provides an acceptable tradeoff between the accuracy
of the fit and and the necessary numerical effort.
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10 Tables

A o p 6 Iz LogLH  x 3 P ¢

NYSE Composite Index

0.8357 214.4 -6.17 0.0022 0.000666 6399.07 -0.024 0.826 -0.029 0.466
NIG 136.6 -8.95 0.0059 0.000791 6397.57 -0.049 0.743 -0.066 0.811
HYP 211.6 -4.40 0.0000 0.000597 6396.03 -0.021 1.000 -0.021 0.000

NYSE Finance Index

0.0680 152.4 -4.51 0.0062 0.000746 6070.17 -0.021 0.718 -0.030 0.939
NIG 125.5 -4.22 0.0078 0.000730 6070.05 -0.024 0.711 -0.034 0.977
HYP 174.7 -2.89 0.0000 0.000657 6061.61 -0.017 1.000 -0.017 0.000

NYSE Industrial Index

0.2678 178.8 -8.81 0.0044 0.000843 6322.48 -0.037 0.749 -0.049 0.784
NIG 135.6 -9.36 0.0064 0.000872 6322.02 -0.051 0.733 -0.069 0.863
HYP 222.3 -8.74 0.0022 0.000834 6321.88 -0.032 0.817 -0.039 0.499

NYSE Transport Index

-2.3017 6.9 6.89  0.0156 -0.000260 5729.41 1.000 1.000 1.000 0.000
NIG 109.4 7.66 0.0099 -0.000311 5725.87 0.049 0.692 0.070 1.086
HYP 169.1 8.10 0.0049 -0.000338 5721.87 0.035 0.738 0.048 0.835

NYSE Utility Index

-1.1379  144.2 -9.15 0.0088 0.000521 6380.96 -0.042 0.664 -0.063 1.268
NIG* 180.1 -9.17 0.0075 0.000521 6380.88 -0.033 0.652 -0.051 1.354
HYP* 2572 -9.44 0.0041 0.000529 6380.16 -0.026 0.698 -0.037 1.050

Table 5:  Maximum likelihood estimation of the parameters for generalized hyperbolic, NIG
and hyperbolic distributions for New York Stock FExchange Indices from January 2, 1990 to
November 29, 1996.
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A o p 6 Iz LogLH  x 3 P ¢

Allianz—Holding

-1.8015 4.0 4.04 0.0175 -0.000172 4749.17 1.000 1.000 1.000 0.000
NIG 60.6  6.17 0.0110 -0.000501 4740.82 0.079 0.775 0.102 0.665
HYP 112.3  9.06 0.0033 -0.000948 4729.27 0.069 0.856 0.081 0.366

BASF

-1.9594 3.8 3.09 0.0157 -0.000112 5030.18 0.793 0.983 0.807 0.036
NIG 82.6  4.55 0.0102 -0.000275 5025.99 0.041 0.738 0.055 0.838
HYP 140.2  5.90 0.0041 -0.000419 5019.47 0.034 0.796 0.042 0.576

Bayer

-1.7882 21.3  2.67 0.0153 -0.000004 5003.69 0.109 0.869 0.125 0.323
NIG 81.6  3.69 0.0103 -0.000123 5001.54 0.033 0.737 0.045 0.843
HYP 139.0 5.35 0.0044 -0.000311 4996.00 0.030 0.789 0.039 0.608

Bay.Hyp.u.Wechselbank

-1.5909 17.9  2.19 0.0157 -0.000072 4815.05 0.108 0.884 0.122 0.278
NIG 63.8  3.12 0.0106 -0.000211 4813.37 0.038 0.773 0.049 0.674
HYP 118.5 4.03 0.0035 -0.000330 4806.13 0.029 0.840 0.034 0.418

BMW

-1.6630 9.0 2.73 0.0161 0.000048 4797.13 0.283 0.937 0.302 0.138
NIG 61.1  3.09 0.0105 0.000012 4793.19 0.039 0.780 0.051 0.643
HYP 115.0 3.78 0.0030 -0.000074 4783.72 0.028 0.862 0.033 0.345

Daimler Benz

-1.6801 13.0  3.93 0.0182 -0.000539 4625.48 0.272 0.903 0.301 0.227
NIG 57.6  5.09 0.0120 -0.000748 4623.24 0.068 0.769 0.088 0.691
HYP 105.2  6.58 0.0039 -0.000999 4616.28 0.053 0.843 0.063 0.406

Deutsche Bank

-1.0024 39.6  4.14 0.0118 -0.000158 4878.00 0.086 0.827 0.104 0.463
NIG 59.4  4.64 0.0094 -0.000226 4877.62 0.063 0.802 0.078 0.556
HYP 116.2  5.31 0.0009 -0.000290 4872.20 0.043 0.951 0.046 0.106

Lufthansa

-0.5919 45.9  4.59 0.0177 -0.001271 4172.28 0.074 0.744 0.100 0.808
NIG 48.0  4.63 0.0170 -0.001283 4172.27 0.072 0.743 0.096 0.813
HYP 79.6  5.10 0.0050 -0.001415 4171.03 0.054 0.845 0.064 0.400

Siemens

-1.8856 3.1 3.12 0.0164 -0.000002 4914.73 1.000 1.000 1.000 0.000
NIG 74.7 4.76 0.0107 -0.000188 4908.68 0.047 0.745 0.064 0.800
HYP 131.8 5.52 0.0049 -0.000266 4898.64 0.033 0.780 0.042 0.644

Table 6: Maximum likelihood estimation of the parameters for generalized hyperbolic, NIG
and hyperbolic distributions for German stocks from January 1988 to May 1994.
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A o p 6 Iz LogLH  x 3 P ¢
Sampling distribution (ML-estimation for Bayer)
-1.7882  21.3  2.67 0.0153 -0.000004 0.109 0.869 0.125 0.323
Estimated parameters for n =10000
-1.8012 3.0 2.95 0.0151 -0.000038 31189.29 1.000 1.000 1.000 0.000
NIG 714 3.62 0.0097 -0.000100 31149.38 0.039 0.770 0.051 0.689
HYP 1214 242 0.0000 0.000062 31053.33 0.020 1.000 0.020 0.000
Estimated parameters for n =2000
-1.6079 2.3 2.33 0.0135 0.000078  6282.07  1.000 1.000 1.000 0.000
NIG 60.1  3.32 0.0085 -0.000009 6263.12 0.045 0.814 0.055 0.508
HYP 122.6  5.06 0.0000 -0.000214 6228.70 0.041 1.000 0.041 0.000
Estimated parameters for n =1000
-1.3570  36.7 -2.59 0.0123 0.000461 3185.43 -0.059 0.831 -0.071 0.448
NIG 76.2  -3.16  0.0089 0.000521 3184.83 -0.032 0.771 -0.041 0.680
HYP 130.8 -3.56  0.0000 0.000566 3180.12  -0.027 1.000 -0.027 0.000
Estimated parameters for n =500
-1.2375 234 -2.62 0.0113 0.000399 1574.76  -0.100 0.890 -0.112 0.262
NIG 60.2 -3.61 0.0082 0.000515 1573.87 -0.049 0.819 -0.060 0.490
HYP 125.4  -4.25  0.0000 0.000566 1568.80  -0.034 1.000 -0.034 0.000
Estimated parameters for n =350
-1.4060 12.7  1.98 0.0123 0.000320 1098.07 0.145 0.931 0.156 0.154
NIG 60.0  2.09 0.0084 0.000325 1096.90 0.028 0.816 0.035 0.501
HYP 123.4  2.36 0.0000 0.000306 1092.72  0.019 1.000 0.019 0.000
Estimated parameters for n =200
-1.7709 16.6  8.09 0.0147 -0.000046 629.24 0.443 0.908 0.488 0.212
NIG 77.2  8.94 0.0096 -0.000118 628.86 0.088 0.759 0.116 0.736
HYP 126.6 10.56  0.0000 -0.000327 628.10 0.083 1.000 0.083 0.000
Estimated parameters for n =150
-1.6539 14.3  6.04 0.0147 -0.000605 464.14 0.387 0917 0.422  0.190
NIG 68.0 6.44 0.0096 -0.000624 463.80 0.074 0.778 0.095 0.652
HYP 119.1 2.86 0.0000 -0.000111 462.94 0.024  1.000 0.024 0.000
Estimated parameters for n =100
0.6042 108.7 -11.68 0.0033 0.001483  312.97 -0.092 0.857 -0.107 0.361
NIG 67.3 -13.02 0.0087 0.001687 312.67 -0.154  0.797 -0.193 0.576
HYP 124.9 -6.61  0.0000 0.000816 313.12 -0.053 1.000 -0.053 0.000
Estimated parameters for n =50
0.1545 109.4 4.80 0.0087 0.000808  155.27 0.031 0.716 0.044 0.949
NIG 86.3 4.14 0.0112 0.000888  155.25 0.034 0.713 0.048 0.966
HYP 120.3 6.48 0.0000 0.000528  154.69 0.054  1.000 0.054 0.000
Table 7:  Estimations for data sets with sample size n (sampling distribution: maximum

likelihood estimate of the generalized

hyperbolic distribution for Bayer returns).
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