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Motivation

• Implied volatilities are derived from market prices. So 
you may ask, if the underlying price changes how will 
the implied volatilities change? 

• This is a very interesting question for option traders, 
because the answer will give us the volatility sensitivity 
to price term, ∂σ/ ∂S, that is an important determinant of 
the option delta 

• An answer to this question will also: 
– Tell us how to construct scenarios for prices and fixed strike 

(or fixed delta) implied volatilities 
– Indicate how to correlate the two diffusion processes in a two 

factor model for option pricing with stochastic volatility.



Copyright 2001, Carol Alexander

3

Application to Delta Hedging

• With non-constant volatility the delta of an option f(S, σ)
is:

∆(S, σ) = ∂ f / ∂S + [∂f / ∂σ][ ∂σ/ ∂S ] 
= ∆BS + vega [ ∂σ/ ∂S ]

• Traders often approximate ∂σ/ ∂S by ∂σ/ ∂K
• This paper shows how to calculate ∂σ/ ∂S using 

principal component analysis of the volatility smile
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Application to Smile Scenarios

Figure 13: Smile surface of the FTSE, De 1
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Principal Component Analysis

• Various attempts to model volatility smiles and skew with 
principal component analysis have almost invariably used 
daily changes in implied volatilities, by strike or by 
moneyness, as the input to PCA. 

• Derman and Kamal (1997) analyze S&P500 and Nikkei 225 
index options where the volatility surface is specified by delta
and maturity. 

• Skiadopoulos, Hodges and Clewlow (1998) apply PCA to log 
differences of implied volatilities for fixed maturity buckets. 

• Fengler et.al. (2000) employ a common PCA that allows 
options on equities in the DAX of different maturities to be 
analyzed simultaneously.
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Fixed Strike Deviations

• There is an important difference between the research 
just cited and the approach taken in this paper.

• Instead of applying PCA to daily changes in implied 
volatilities, a PCA is applied to daily changes in the 
deviations of fixed strike volatilities from at-the-money 
volatility. 

• The advantages of this approach are both empirical and 
theoretical.
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Empirical Advantages

• Time series data on fixed strike or fixed delta volatilities 
often display much negative autocorrelation, possibly 
because markets over-react. 

• But the daily variations in fixed strike deviations from 
ATM volatility are much less noisy than the daily 
changes in fixed strike (or fixed delta) volatilities. 

• Consequently the application of PCA to fixed strike 
deviations from ATM volatility yields more robust 
results.
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Theoretical Advantages

• It will be shown that the models of the skew in equity 
markets that were introduced by Derman (1999) can 
be expressed in a form where fixed strike volatility 
deviations from ATM volatility always have the same 
relationship with the underlying index. 

• The particular market regime is determined only by a 
different behaviour in ATM volatility. 

• Thus the stability of PCA on daily changes in fixed 
strike deviations is implied by Derman's models.
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Derman’s Models

Figure 2.6: 1mth Fixed-Strike Volatilities, At-the-Money Volatility and 
the Index Level
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Equity Index Volatility Regimes

• Derman (1999) formulated three different types of 
market regime and defined a different linear 
parameterization of the volatility skew in each regime. 

• These are known as 'sticky' models, because each 
parameterization implies a different type of 'stickiness' 
for the local volatility in a binomial tree. 

• For a fixed maturity t denote by σK the implied volatility 
of an option with strike K, and by σATM the volatility of 
the t-maturity ATM option. Let S the current value of the 
index and σ0 and S0 the initial implied volatility and price 
used to calibrate the tree: 
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Sticky Strike

In a range bounded market skews should be parameterized as
σK = σ0 - b (K-S0)

So fixed strike volatility σK is independent of the index level. Since
σATM = σ0 - b (S-S0)

σσATM will decrease as the index increases

Local volatilities will be constant with respect to strike. That is, each option has its own 
binomial tree, with a constant volatility that is determined by the strike of the option. To 

see the effect of a change in the index all that happens is that the root of the tree is 
moved to the new level of the index. The same tree is still used to price the option.
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Sticky Delta

In a stable trending market skews are parameterized as:
σK = σ0 - b (K-S)

So fixed strike volatility σK will increase with the index level. 
But σATM will be  independent of the index:

σATM = σ0

ATM volatility will remain constant as the index moves.

Local volatilities are constant with respect to delta. That is, it is the delta (or moneyness) 
of the option that determines the local volatility in the tree. For a change in the index we 

move to a different tree, the one corresponding to the new option delta. 
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Sticky Tree

In jumpy markets skews should be parameterized as:
σK = σ0 - b (K+S) + 2bS0

So fixed strike volatility σK will decreases when the index goes up, 
and increase when the index falls. Since 

σATM = σ0 - 2b (S-S0)
ATM volatility will increase as the index falls, and twice as fast 

as the fixed strike volatilities do.

Local volatilities are no longer constant in the tree, but there is one 
unique tree that can be used to price all options, that is determined by 

the current skew. 
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Fixed Strike Deviations

In all of Derman's 'sticky' models there is a linear relationship 
between the deviation of a fixed strike volatility from ATM 
volatility and the underlying price:

σK - σATM = - b (K-S)

Derman’s models imply that for any given maturity, the 
deviations of all fixed strike volatilities from ATM 
volatility will change by the same amount b as the index 
level changes. 
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Effect of Index Change

σΚ(t) - σATM(t)

KL K1 K2 KH

dL

dH

Strike

Figure 6.5a: Parallel Shift in Skew Deviations as Price Moves Up
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Effect of Index Change
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Figure 2b: Parallel Shifts in Fixed-Strike Volatilities as Price Moves Up
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3mth Deviations

Figure 4b: 3mth Fixed Strike Volatility Deviations from ATM Volatility
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Non-Parallel Shifts in Very Short Term 
Volatilities

• Derman’s models predict that all shifts in the skew are 
parallel.

• Three month implied volatilities on the FTSE100 and 
SP500 do appear to have fairly parallel shifts

• However the behaviour of two month and, more 
particularly of one month volatilities in the FTSE100 
market appear to be highly non-linear

• Often there is a range narrowing in the skew when the 
market moves up and a range widening when the 
market moves down.
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1mth Deviations

Figure 3: Deviations of 1mth Fixed-Strike Volatility from At-the-Money 
Volatility
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Principal Component Analysis

• Non-linear movements in the skew may be modelled using 
principal component analysis

• For a fixed volatility maturity t and strike K a three 
component principal component decomposition is used:

∆(σK - σATM) = ωK,1 P1 + ωK,2 P2 + ωK,3P3 (1)

• Daily data on ∆(σK - σATM) are used to estimate the time 
series of principal components P1, P2 and P3 , and the 
constant factor weights ωK,1 , ωK,2 and ωK,3. 
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Factor Weights (3 mth)

PC Eigenvalue Cumulative R2

P1 13.3574 0.742078
P2 2.257596 0.8675

P3 0.691317 0.905906

P1 P2 P3
4225 0.53906 0.74624 0.26712

4325 0.6436 0.7037 0.1862

4425 0.67858 0.58105 0.035155
4525 0.8194 0.48822 -0.03331

4625 0.84751 0.34675 -0.19671

4725 0.86724 0.1287 -0.41161

4825 0.86634 0.017412 -0.43254

4925 0.80957 -0.01649 -0.28777

5025 0.9408 -0.18548 0.068028

5125 0.92639 -0.22766 0.13049

5225 0.92764 -0.21065 0.12154

5325 0.93927 -0.22396 0.14343

5425 0.93046 -0.25167 0.16246

5525 0.90232 -0.20613 0.017523

5625 0.94478 -0.2214 0.073863

5725 0.94202 -0.22928 0.073997

5825 0.93583 -0.22818 0.074602
5925 0.90699 -0.22788 0.068758
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Dynamics of Fixed Strike Volatilities with 
Respect to Price

Each component is assumed to have a linear 
relationship with daily changes ∆S in the underlying:

Pi ≈ γi ∆S (2)
The skew will only shift parallel as the index moves if 

γ2 = γ3 = 0.
If γ2 < 0 the range of the skew will narrow and if γ2 > 0 
the range of the skew will widen as the index moves up.

NB The gamma are time-varying parameters representing the conditional 
correlations between the principal componants and the index. The unconditional 
correlations are zero, by definition.
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Effect of Index Change: γ2 < 0 

σΚ(t) - σATM(t)

KL K1 K2

KH
dL

dH

Strike

Figure 5a: Non-Parallel Shift in Skew Deviations as Price Moves Up
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Range Narrowing

σL

σ1

σH

 σ2

σL = σ1 + dL
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 dL

 dH

Figure 6a: Effect on Fixed-Strike Volatilities as Price Moves Up (γ 2 < 0)

σL = σ2 + eL

σH = σ2 - eH

Normally eL is a little 

greater than dL  unless γ2 

becomes very large and 
negative. The range of the 
skew will narrow, more so 
when γ2 is very large and 
negative.

But eH will be less than dH 

so most of the movement 
in the skew will come from 
the low strike volatilities 
and there may be little 
movement in high strike 
volatilities.
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Effect of Index Change: γ2 > 0 

σΚ(t) - σATM(t)

KL K1 K2

KH
dL

dH

Strike

Figure 5b: Non-Parallel Shift in Skew Deviations as Price Moves Up
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Range Widening
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Figure 6b: Effect on Fixed-Strike Volatilities as Price Moves Up (γ 2 > 0)

σL = σ2 + eL

σH = σ2 - eH

Normally eH is a little less 

than dH and eL is certainly 

greater than dL. 

Unless eH is substantially 

less than dH more than 

usual movement in high 
strike volatilities will be 
observed. And low strike 
volatilities will move less 
than they do when γ 2 is 
negative.
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Empirical Evidence (1mth)

Figure 7a: Gamma Estimates for 1mth Volatilities
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Empirical Evidence (2mth)

Figure 7b: Gamma Estimates for 2mth Volatilities
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Empirical Evidence (3mth)

Figure 7c: Gamma Estimates for 3mth Volatilities
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Dynamics of ATM Volatility with 
Respect to Price

• Assume

∆σATM ≈ β ∆S (3)

• Estimate the ATM volatility sensitivity β with an 
exponentially weighted moving average (again with λ = 
0.94, as for the gamma coefficients).

• It is found that the sensitivity of ATM volatility will move 
with the level of the index. It will not jump unless the 
index jumps:
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ATM Volatility Sensitivity

Figure 8: ATM Volatility Sensitivity and the FTSE 100
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Fixed Strike Volatility Sensitivity: ∂σ/ ∂S

The sensitivity of the fixed strike volatility σk to the index 
is given by combining (1), (2) and (3):

∆σ∆σk ≈≈ ββK ∆∆S

where ββK = β= β + Σ + Σ ωωK,i γγi
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Scenarios for Fixed Strike Volatilities

Figure 9: Change in 1mth Fixed Strike Volatility per Unit Increase in Index
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Low Strike Sensitivities

• Low strike volatilities are normally more sensitive to 
index changes than high strike volatilities

• The 4675 volatility gains about 1 or 2 basis points for 
every point fall in the FTSE index, but the sensitivity 
varies considerably during the period

• High sensitivity is associated with range narrowing of 
the skew as the index increases, and widening as the 
index increases, with most of the movement coming 
from low strike volatility 
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High Strike Sensitivities

• High strike volatilities are less sensitive, moving between 
about 0.5 and 1 basis points for every point change in the 
FTSE index

• But these sensitivities showed a marked increase during 
the crash period: since the FTSE fell by 1500 points 
during the crash, the 5875 sensitivity of about 1.5 basis 
points indicates a 22.5% increase in 5875 volatility

• At the height of the crash the 5875 sensitivity was an 
impressive -0.028, indicating a further 2.8 basis point 
increase in 5875 volatility would have occurred for every 
point off the FTSE at that time.
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Conclusions

• This paper has presented a new principal component 
model of fixed strike volatility deviations from ATM 
volatility. It has been used to quantify the change that 
should be made to any given fixed strike volatility per 
unit change in the underlying. 

• Empirical application of the model to the FTSE 100 
index options has shown that 2mth and 3mth skews 
should normally be shifted parallel as the index moves, 
as predicted by Derman's models. 
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Conclusions

• But for very short term volatility the empirical analysis 
has revealed two distinct regimes of equity index 
volatilities

• In stable markets the range of the 1mth skew narrows 
as the index moves up and widens as the index moves 
down. Most of the movement is in low strike volatilities. 

• In jumpy markets the high strike volatilities move much 
more than usual. During the market crash and recovery 
of 1998 the 1mth skew range actually narrowed as the 
index fell and widened as the index moved up.
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Summary

• Principal component analysis is a powerful analytical 
tool for the computation of movements in fixed strike 
implied volatilities as the underlying price moves

• The model presented in this paper has extended 
Derman’s models of the skew in equity index markets 

• It will admit non-linear movements in the volatility smile 
as the underlying moves.

• It gives a formal model for computing ∂σ/ ∂S with 
applications to delta hedging

• It has been applied to equity index markets but also has 
applications to currency and interest rate option 
markets; this is a subject of future research.
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