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Abstract

We describe a method to compute the decomposition of portfolio risk in additive asset
components suitable for numerical simulations. The standard results in the covariance frame-
work provide risk components computed from the derivative of the risk function with respect
to the asset exposure. These results are generalized to a generic positively-homogeneous risk
measure, but cannot be easily applied to value at risk because of the resulting instabilities. We
show how introducing a new risk measure, the unbiased average value at risk, it is possible to
split exactly the portfolio risk into stable additive components. The results obtained in this
paper are general, stable, and can be used in portfolios containing products belonging any asset
class. The risk-decomposition results are generalized to the computation of risk components
at segment levels. Finally, we show a real-world application of the described method with a
numerical example.

1 Introduction

One of the important results of modern portfolio theory is that portfolio risk is smaller than the
sum of the risk of its constituent assets. This well-known fact is welcome because allows to lower
risk but poses a challenge to the risk manager trying to identify the risk sources. Indeed, if a
portfolio of assets smooths out the risk coming from all its assets, what shall we do to further
reduce portfolio risk?

The purpose of risk decomposition is to determine how portfolio risk depends from its consti-
tuting assets. Given an asset in a portfolio one may ask two questions:

1. How much portfolio risk can I attribute to this asset?

2. How much would the portfolio risk change if I were to buy, or sell, a small quantity of this
asset?

In the first instance we are looking for a global risk quantity: the contribution of an asset to the
total portfolio risk, the answer is given by the asset risk component. In the second query we are
looking for a small risk change: the marginal risk resulting from buying, or selling, a small position
in an asset. It goes without saying that the answer to this second question is usually denoted as
marginal risk. Answering to both questions will allow us to modify the portfolio risk profile and
possibly reduce portfolio risk.

The bibliography on risk decomposition is quite limited. In the seminal paper of Garman,
see reference [3], value at risk, sometimes shortened as VaR in this paper, is decomposed in the
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variance/covariance framework using the partial derivative of VaR. In reference [4] Jorion describes
the same concepts at length and links risk component to marginal risk (see, later, formula (17)).
Unfortunately this method cannot be directly applied to computer simulations of VaR because of its
instability. A method that can be used for both Monte Carlo and historical simulations is described
by Epperlein and and Smillie in reference [2]. However, such method feels a bit artificial in its use
of kernels introduces unnecessary parameters. The method described here has the advantage of
being simple enough, to retain the financial intuition, and robust so that it can be used daily by
practitioners. All the parameters introduced have a straightforward statistical meaning.

In order to understand this paper it is not necessary to have a strong mathematical background,
one only needs to be familiar with basic calculus and the computation of partial derivatives. It is
necessary, however, to pay close attention to the notation. In order to keep the paper as simple
as possible, we limit the discussions only to a single level of decomposition. Since risk components
are additive, the generalization to multi-level decomposition is straightforward.

Risk decomposition can also be performed relative to a benchmark, however, the details of
relative risk decomposition need a separate paper and are described in reference [5] together with
risk allocation.

After introducing the paper notation in section 2, the standard risk decomposition in the co-
variance framework is described in section 3. In section 4 risk decomposition is defined for value at
risk in a generic simulation framework, i.e. a framework that can be used both for Monte Carlo and
historical simulations. The unstable components of value at risk can be replaced by more stable
ones, as shown in section 5, by introducing the unbiased average value at risk. In section 6 the
covariance and simulation methods are extended to a general risk decomposition formulation. The
computation of risk components and marginal risk at sector level are shown in section 7. Finally,
in section 8, we show an example of computation of risk decomposition for a simple, but realistic,
portfolio.

2 Basic definitions and notation

In this section we describe the building blocks of a portfolio and the computation of its current and
future value. It is also an opportunity to introduce the basic notation used in the paper.

2.1 Current and future portfolio values

Consider a market of n assets available to be bought or sold in order to build a portfolio. Suppose
that each asset1 i, for i = 1, . . . , n, has an outstanding value of Wi, so that the initial portfolio
value is given by,

W = W1 + . . . +Wn . (1)

Since not all assets in the universe might be present in the portfolio, we set Wi = 0 for the assets
that are not part of the portfolio. Considering a number of assets bigger than the number of asset
in our portfolio is useful, for example, when considering the risk consequences of adding a new asset
to an existing portfolio.

In order to simplify the following discussions, in this paper we consider only assets for which
the exposure to risk of an asset is the same as its outstanding value. Therefore, assets that have
an outstanding value different from their risk exposure, such as futures or swaps, need to be split
into two or more legs each of which is counted as a separate asset.

Consider now a one-period evolution of the portfolio: after a certain period of time, usually
chosen to be one day, each asset will have a value, denoted by uiWi, different from the initial

1From now on we will often avoid to mention the possible values for i which will always be understood to run
from 1 to n.
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Country
UK
France
Germany
USA
Mexico
Japan
China

Table 1: List of possible segments for an example portfolio grouped according to the attribute
country

value. We also assume that there is no re-balancing of the portfolio during the evolution period,
hence the portfolio value after the evaluation period will be,

P = u1W1 + . . . + unWn . (2)

Notice that whilst the values of the Wi’s are well known before and after the period, the quantities
ui’s are random variable for which we assume to be able to compute the expectation values and
their moments. The choice of the probability space for the ui’s is not trivial, however, we will not
discuss in the current paper all the different possibilities and assume this choice to have been made.

2.2 Portfolio segments and asset attributes

In the analysis of a portfolio it is helpful to group the portfolio assets in subsets. We assume
that any portfolio can be split into a number of sectors so that in each sub-portfolio assets are
homogeneous. We will call segments the different components that grouped up make the portfolio
and call attribute the particular property that each asset has in common with the others in a
particular segment.

For example, in an equity portfolio one may wish to group the assets according to the country
of origin. In this case the attribute is country and each stocks in the portfolio could be in one of
the segments listed in table 1. The partitioning of a portfolio in segments can be accomplished
using many different attributes. For example, one may decide that the portfolio assets should be
identified by the following attributes: asset class, country, sector, and ISIN code. For instance, the
value of these attributes for the Italian stock ENI are:

Asset class ⇒ Equity
Country ⇒ Italy
Sector ⇒ Energy
ISIN ⇒ IT0003132476

For simplicity, in the present paper, we consider only one attribute and one particular portfolio
segmentation. In terms of notation we will denote with an alphabet letter each segment, or sector,
so that the portfolio is split into sectors a, b, c, . . . . Furthermore we also assume that each asset
belongs to one and only one sector.

The portfolio value, as given by expression (1), can be split as,

W = W1 + . . . +Wn = Wa +Wb + . . . , (3)

where for each segment, e.g. for segment a, the segment outstanding value Wa is given by the sum
of the asset outstanding values Wi’s for each asset in the sector. We use the notation

Wa =
∑
i∈a

Wi , (4)

Statpro Quantitative Research Series: Risk decomposition and attribution
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where the symbol i ∈ a means that the sum is performed over all assets in segment a. The future
portfolio value, defined by expression (2), can also be decomposed as,

P = Pa + Pb + . . . , (5)

where for each segment, e.g. for segment a, we have

Pa =
∑
i∈a

uiWi . (6)

Now that we have defined the basic portfolio quantities, we can perform some statistical analysis
on the portfolio future values and, in following sections, define risk in several different ways.

3 Covariance framework for risk

The first measure of portfolio risk ever used is probably volatility, i.e. the standard deviation of a
portfolio value. This risk measure is also important because it is usually easy to compute and is
widely used in portfolio optimization. In this section we briefly derive how to compute volatility
in the covariance framework. The covariance framework will also give us a simple and analytical
example on how to decompose risk into the sum of additive components.

3.1 The covariance matrix

Consider the statistics of the portfolio possible future values, with a certain probability the assets
in the portfolio can have a number of different values. We can compute the future portfolio average
value as,

P̄ = 〈P 〉 = ū1W1 + . . .+ ūnWn , (7)

and its variance as,

σ2 =
〈(
P − P̄

)2〉 =
n∑
i,j

Γij WiWj , (8)

where the symbol 〈(.)〉 denotes the average of (.). In expressions (7) and (8) we used equation (2),
set ūi = 〈ui〉, and defined the covariance matrix Γij as,

Γij = 〈(ui − ūi) (uj − ūj)〉 . (9)

Notice that the covariance matrix is symmetric, i.e, Γij = Γji.
In the covariance framework one assumes risk to be proportional to the portfolio standard

deviation σ. Without losing any generality, in this framework, we will assume the proportionality
constant between risk and the portfolio volatility to be one, so that the portfolio risk Rcov(P ), is
defined as,

Rcov(P ) = σ =

√√√√ n∑
i,j

Γij WiWj . (10)

3.2 Risk decomposition in the covariance framework

Given the covariance definition of portfolio risk it is easy to writeRcov(P ) as the sum of components,
i.e.,

Rcov(P ) =
σ2

σ
=

1
σ

n∑
i,j

Γij WiWj , (11)
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so that,

Rcov(P ) =
n∑
i=1

Ci , (12)

where for each i,

Ci = Wi

n∑
j=1

Γij
σ
Wj , (13)

is the i-th risk component. The sum on the right-hand side of equation (13) can be simplified
noticing,

∂Rcov

∂Wi
=

1
2σ

∂σ2

∂Wi
=

1
2σ

∂

∂Wi

n∑
i,j

Γij WiWj =
n∑
j=1

Γij
σ
Wj , (14)

so that equation (13) becomes

Ci = Wi
∂Rcov

∂Wi
. (15)

In section 6 we will see that this decompositions of risk, obtained here in the covariance framework,
is indeed more general and can be applied to any homogeneous risk function.

The terms in the sum on the right-hand side of equation (12) can be grouped by sector so that,

Rcov(P ) = Ca + Cb + . . . , (16)

where for each sector, e.g. sector a, we have,

Ca =
∑
i∈a

Wi
∂Rcov

∂Wi
. (17)

Equation (16) provides the risk decomposition of the portfolio by sector.

4 VaR decomposition in a simulation framework

So far we have seen that, when risk is defined as the standard deviation of the portfolio future
values, it is possible to write portfolio risk as the sum of contributions coming from each asset as
given by equation (15). In this section we consider few other risk measures, value at risk in primis,
in the framework of portfolio simulations and show how it is also possible to decompose them into
additive components. We will then generalize the results of section 3 and those of this section to a
generic risk decomposition in section 6.

In the previous section we defined risk as the standard deviation of the portfolio value in a certain
probability space. While that definition of risk is completely legitimate and has been used in risk
management for a long time, it is often not detailed enough for portfolios containing corporate
bonds, exotic options, credit derivatives, or other complex financial products. For example one
important shortcoming of the standard deviation used as a risk measure is that it is symmetric in
losses and gains. In order to improve on the standard deviation as a risk measure, at least two
other frameworks have been used by practitioners: historical simulations, described for example in
reference [7], and Monte Carlo simulations.

In this section we take a common view to both historical and Monte Carlo simulations consider-
ing a generic simulation framework to compute the additive components of risk. We show that, by
its own nature, value at risk gives rise to unstable components. In order to overcome this problem,
in the next section, we introduce a proxy risk measure, namely average value at risk, to replace
value at risk. Finally we show how to use the extra parameters in average value at risk to obtain
an unbiased risk decomposition of value at risk.

Statpro Quantitative Research Series: Risk decomposition and attribution



6 Marco Marchioro

4.1 A generic simulation framework

In section 2 we discussed how the evaluate portfolio changes from an initial value W to a future
value P . Recall that while the initial value W is well known, the final value P is a random variable.
The change in portfolio value is caused by the change in the intrinsic value of the underlying assets,
as described by the coefficients ui’s and does not arise because of rebalancing.

In the general simulation framework we assume that N simulations are performed2. In each
simulation s, each asset i changes its value from Wi to usi Wi, so that the asset percentage loss is
given by

Wi − usi Wi

Wi
= 1− usi . (18)

The portfolio value P s in simulation s is equal to

P s = us1W1 + . . . + usnWn . (19)

For simplicity we assign the same weight to each simulation and leave the general case where each
simulation has a different weight to the reader. Finally, we assume that N is large so that all the
financially relevant scenarios, especially those with large losses, are included in the simulations.

4.2 Decomposition of simulation-generated value at risk

Consider a large number of simulations N and a percentile c, for example c=99%. Value at risk
is defined as the loss in the scenario s̄ so that 99% of the portfolio scenarios have an higher value
than P s̄. In other words, we take all the simulated portfolios P s, order them by value and choose
the scenario that is between the worst 1% and the best 99%.

More formally, for a generic percentile c, value at risk is the loss incurred in the simulation s̄ so
that cN scenarios (in a later paragraph we describe how to apply this method when cN is not an
integer) have a P s not higher than P s̄. The scenario s̄ is chosen so that,

Prob(P s ≤ P s̄) = 1− c and Prob(P s > P s̄) = c . (20)

We write RVaR(P ) to denote the portfolio value at risk and, when the dependence from the per-
centile c is to be made explicit, we write RVaR

c (P ). In the simulation framework, given a percentile
c and a corresponding scenario s̄ satisfying equation (20), we define value at risk as the best of the
N(1− c) worst losses, i.e.,

RVaR(P ) = max(W − P s̄, 0) . (21)

Notice that value at risk, representing a loss, cannot be negative. We will not consider the trivial
case in which value at risk is zero and always assume risk to be positive. Hence, expression (21)
can be written as

RVaR(P ) = W − P s̄ = W1 − ū1W1 + . . .+Wn − ūnWn , (22)

so that,
RVaR(P ) = (1− ū1)W1 + . . .+ (1− ūn)Wn , (23)

where,
ū1 = us̄1 , . . . , ūn = us̄n . (24)

Expression (23) gives a decomposition of value at risk in additive components similar to expression
(12), however with the risk components Ci given by,

C1 = (1− ū1)W1 , . . . , Cn = (1− ūn)Wn . (25)
2N is the number of simulations and should not be confused with the number of assets in the universe n.
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Technical note on fractional scenarios In practice unless N(1 − c) is an integer there is
no scenario s̄ satisfying equation (20). In order to deal with this problem, given a generic N
and a generic c, we define c1 as the highest percentile c1 < c such that N(1 − c1) is an integer
and c2 as the lowest percentile c2 > c such that N(1 − c2) is also an integer (we obviously have
N(1− c1) + 1 = N(1− c2)). The coefficients ūi’s can be obtained by searching for the scenarios s1

and s2 satisfying expression (20) with c respectively substituted by c1 and c2. Hence define ūi as
the linear interpolation of us1i and us2i with respect to the percentiles:

ūi =
c2 − c
c2 − c1

us1i +
c− c1
c2 − c1

us2i . (26)

We can use this synthetic scenario in the value at risk computation of expressions (23) and (25).

4.3 Volatility decomposition in the simulation framework

In section 3 we obtained a decomposition of volatility into additive components starting from the
covariance matrix. Here we obtain an analogous result for the portfolio volatility computed in a
generic simulation framework.

According to equation (8) the portfolio variance can be written in general as,

σ2 =
N

N − 1
〈(
P − P̄

) (
P − P̄

)〉
=

N

N − 1
〈
[(u1 − ū1)W1 + . . .+ (un − ūn)Wn]

(
P − P̄

)〉
=

N

N − 1
〈
(u1 − ū1)

(
P − P̄

)〉
W1 + . . .+

〈
(un − ūn)

(
P − P̄

)〉
Wn , (27)

where we used equations (2) and (7) to write the first term inside the average. This expression
should be compared with equations (15) and (16) to provide the generic volatility decomposition,

σ = W1M
σ
1 + . . .+WnM

σ
n , (28)

where,

Mσ
i =

N

σ (N − 1)
〈
(ui − ūi)

(
P − P̄

)〉
. (29)

When the portfolio distribution is known, this expression allows the computation of the marginal
volatility Mσ

i without computing the covariance matrix. Equation (29) can be used in the particular
case of the generic simulation framework to give,

Mσ
i =

1
σ (N − 1)

N∑
s=1

(usi − ūi)
(
P s − P̄

)
, (30)

where P s is defined in expression (19).

4.4 Instability of value-at-risk components

At this point one may think that risk decomposition was successfully defined. However the risk
components defined in equations (25) are usually not stable: in the historical simulation case they
may vary significantly form one day to next; in Monte Carlo simulations may be completely different
from one simulation run to the next.

It is easier to understand the nature of this instability noticing that each risk component, as
defined in expressions (25), simply singles out the asset loss in one specific simulation (i.e. simulation
s̄). As such, from one day to next, or in a second Monte Carlo simulation, the specific values assumed
by us̄i might be very different from the previous one. Let’s clarify even further with an example.

Statpro Quantitative Research Series: Risk decomposition and attribution
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Numerical example Consider a portfolio of two assets in a historical simulation, with the fol-
lowing two scenarios s1 and s2:

us11 = 0.90 , us12 = 0.81 , us21 = 0.80 , us22 = 0.90 .

Suppose that, on the first day we have W1=W2=1000 $, so that,

P s1 = 1, 000 $ ∗ 0.90 + 1000 $ ∗ 0.81 = 1, 710 $ , (31)
P s2 = 1, 000 $ ∗ 0.80 + 1000 $ ∗ 0.90 = 1, 700 $ . (32)

Assuming the value at risk to be be given by scenario s2=s̄, i.e. 300 $, we have,

C1 = 1, 000 $ ∗ (1− 0.80) = 200 $ , (33)
C2 = 1, 000 $ ∗ (1− 0.90) = 100 $ . (34)

The loss at risk of 300 $ is split 200 $ to the first asset and 100 $ to the second asset.
On a second day suppose we had a decrease of 10% in the value of the first asset, therefore

W1=900 $ and an increase of the 10% in the value of the second asset so that W2=1,100 $, therefore,

P s1 = 900 $ ∗ 0.90 + 1100 $ ∗ 0.81 = 1, 701 $ , (35)
P s2 = 900 $ ∗ 0.80 + 1100 $ ∗ 0.90 = 1, 700 $ . (36)

Now let’s assume that, in this case, s1=s̄ so that VaR is 299$, hence,

C1 = 900 $ ∗ (1− 0.90) = 90 $ , (37)
C2 = 1, 100 $ ∗ (1− 0.81) = 209 $ . (38)

Here the loss of 299 $ was split to 90 $ to the first asset and 209 $ to the second one completely
changing the portfolio risk components.

Even though this is an extreme example, as shown in section 8, similar events can happen in
the real world and completely change the component VaR of historical simulation from one day to
next.

5 Building a stable risk decomposition

In order to avoid the unstable behavior just described we can define the different risk components
as the average of more than one scenarios. In the previous example we would have liked to split
risk at about 150 $ for each asset. This result can be accomplished rigorously introducing average
value at risk, also denoted as average VaR or aVaR.

Given two percentiles we define average value at risk as the average loss for all simulations
falling between the two percentiles. Formally, to define average VaR consider two percentile values,
the lower percentile č, and the higher percentile ĉ, so that,

č < ĉ . (39)

For example one can choose č=98.5% and ĉ=99.5%. Then, see expression (20), find the two
scenarios š and ŝ needed to compute value at risk with percentiles č and ĉ. Now define the set S
of all simulations that have a portfolio value between P ŝ and P š,

s ∈ S if and only if P ŝ ≤ P s ≤ P š . (40)

2010,2011 c©Copyright by Marco Marchioro and Statpro Italia. All rights reserved.
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The average value at risk, denoted as RaVaR(P ), or RaVaR
čĉ (P ) when explicitly dependent on č and

ĉ, is then defined as the average loss of all scenarios in set S, i.e.,

RaVaR(P ) = max

(
W − 1

NS

∑
s∈S

P s, 0

)
, (41)

where Ns is the number of scenarios included in S.
Again we will assume the average VaR to be positive and explicitly write the loss term in

equation (41) as,

W − 1
NS

∑
s∈S

P s = W1 + . . .+Wn −
1
NS

∑
s∈S

(us1W1 + . . .+ usnWn) , (42)

so that,

RaVaR(P ) =
n∑
i=1

Ci , (43)

with,

Ci =
1
NS

∑
s∈S

(1− usi )Wi , for i = 1, . . . , n . (44)

Comparing this expression with equation (25) we notice that the average VaR components are given
by the average of the risk components of VaR for percentiles between č and ĉ. Given a number of
scenarios in S sufficiently large, the averaging of VaR components just mentioned gives stability to
the risk decomposition between one day and another, for historical simulations, and between one
set of simulations and another for Monte Carlo simulations.

Another technical note on fractional scenarios We show here how to compute average VaR
when either or both N ∗ (1 − č) and N ∗ (1 − ĉ) are not integers. For simplicity we will order
scenarios so that,

P s ≥ P s+1 . (45)

We then search for the unique four scenarios s1, s2, s3, s4, with s2 = s1 + 1, s4 = s3 + 1, and the
corresponding percentiles c1, c2, c3, and c4, so that,

c1 < č ≤ c2 ≤ c3 < ĉ ≤ c4 , (46)

which implies,
P s1 ≥ P s2 ≥ P s3 ≥ P s4 . (47)

Noticing that,
c2 − c1
ĉ− č

[
c2 − č
c2 − c1

+ s3 − s2 +
ĉ− c3
c4 − c3

]
= 1 , (48)

we define the average value at risk to be the positive quantity,

RaVaR(P ) = W − c2 − c1
ĉ− č

[
c2 − č
c2 − c1

P s1 + P s2 + . . .+ P s3 +
ĉ− c3
c4 − c3

P s4
]
, (49)

so that it can be shown the risk components to be given by,

Ci =
c2 − c1
ĉ− č

[
c2 − č
c2 − c1

(1− us1i ) + (1− us2i ) + . . .+ (1− us3i ) +
ĉ− c3
c4 − c3

(1− us4i )
]
Wi . (50)

Statpro Quantitative Research Series: Risk decomposition and attribution
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Risk function č ĉ
Value at Risk 99% 99%

Expected shortfall 99% 100%
Percentile-symmetric aVaR 98.5% 99.5%

Loss-symmetric aVaR satisfying (53) 99.5%

Table 2: List of possible choices for č and ĉ for a given value-at-risk percentile c=99%.

5.1 Choice of percentiles for average value at risk

We defined a risk decomposition for VaR that is unstable and a stable decomposition for average
VaR. In this section we bring this two notions together to find a stable risk decomposition for VaR.
The main disadvantage of average VaR is that two different percentiles are needed instead of the
single one for VaR. Here given a choice of the percentile c, we define a number of possible choices
for č and ĉ and examine the resulting risk measures.

The easiest choice for č and ĉ is to set č = c and ĉ = c. With this choice average VaR matches
exactly VaR. Clearly this choice was discussed for completeness, however, it should not be used in
practice for the reasons already explained in subsection 4.2.

Expected shortfall Another choice is to set č = c and ĉ=100% for any given c. It can be
shown that with this choice the resulting risk measure, RaVaR

č,ĉ (P ), matches the expected shortfall
of a portfolio. The expected shortfall, the average of all losses exceeding a given percentile, is
a very useful risk measure and is widely used in many risk management applications. However,
particularly when using historical simulations, there might be some foul scenarios in the far tails of
the loss distribution, scenarios that would completely skew the risk decomposition results. For this
reason, the use of expected shortfall decomposition is recommended only when we are absolutely
certain that there are no artifacts in the tails of the simulated scenarios.

Percentile-symmetric average VaR Another choice, similar to expected shortfall, is to keep
the difference between ĉ and č to be 1-c, centering the two percentiles around c itself. This definition
of average VaR has the advantage to avoid the inclusion in the averaging of scenarios in the far
tails of the loss distribution. Specifically, choose the upper and lower percentiles so that3,

č = c− 1− c
2

, (51)

and,

ĉ = c+
1− c

2
. (52)

For example if c=95 % we define ĉ=97.5 % and č=92.5 %. This definition results in a risk measure
that is well suited to be decomposed and that does not have the shortcomings of expected shortfall.
The main problem with this decomposition is that the sum of contributions is, in general, close to
the portfolio Var but does not match it. Since the scenarios between č and c bring a different loss
to the average than the scenarios between c and ĉ, the average VaR defined in this way is slightly
biased.

3This is the original definition of average VaR introduced by Dario Cintioli, in the year 2004, in the second version
of the StatPro risk decomposition.
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5.2 Loss-symmetric average VaR

In order to remove the bias introduced by the percentile-symmetric average VaR, we can choose ĉ
as in equation (52) and choose č so that it contains enough scenarios to bring the average VaR to
match VaR. In other words write equation,

RVaR
c (P ) = RaVaR

č,ĉ (P ) , (53)

and solve this expression for č. In this way the losses between č and c will match those between
c and ĉ. In summary one first computes the standard value at risk, then sets ĉ as in equation
(52), solves for č so that equation (53) is satisfied and finally computes risk contributions Ci as in
expressions (44). The end result is to obtain a risk decomposition of value at risk,

RVaR
c (P ) =

n∑
i=1

Ci , (54)

where the Ci’s are stable, do not contain potentially-harmful tail scenarios, and do not vary signif-
icantly from one set of simulations to another.

Existence and uniqueness of a solution When equation (53) has more than one solutions for
the percentile č, we should choose the solution that yields the smallest percentile.

In some rare cases with a very flat loss distribution, equation (53) does not have any solution,
this is because ĉ, chosen with definition (52), is too high. In these cases we should try with a
smaller ĉ, for example given by,

ĉ = c+
1− c
k

, (55)

with k = 3, 4, 5, and so on4. We then choose the percentile ĉ obtained from the smallest k for
which equation (53) has a solution.

In table 2 we list the possible suggestions for the upper and lower percentiles of average VaR in
the case of c=99%.

6 Risk decomposition for a generic risk function

So far we defined portfolio risk in a number of different ways: as portfolio volatility, as value at
risk, as expected shortfall, and so on. What all these definitions of risk have in common? They
are all risk measures. In this section we consider the risk decomposition of a generic risk measure
R. It turns out that if the risk measure has the property of positive homogeneity we can provide
a risk decomposition for it.

In order to compute the additive components for a generic risk function, we need to determine
the increase, or decrease, of risk obtained by adding a small amount of an asset: marginal risk.

6.1 Marginal Risk

Intuitively the marginal risk of a portfolio with respect to an asset, or one of its segments, is the
increment in risk that we obtain by buying a small amount of that asset. According to reference
[4], marginal risk is defined to be the change in portfolio risk resulting from taking an additional
dollar of exposure in a given segment.

4Notice that equation (52) is a special case of equation (55) with k = 2.
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Consider portfolio risk written explicitly as a function of its asset outstanding values: R(W1, . . . ,Wn).
Given an asset identified by the index i, let us increase the exposure in this asset by an additional
amount ε. The new portfolio risk is then R(W1, . . . ,Wi + ε, . . . ,Wn). When the risk function R
is smooth in its argument Wi using the Taylor rule we have,

R(W1, . . . ,Wi + ε, . . . ,Wn) = R(W1, . . . ,Wi, . . . ,Wn) +
∂R
∂Wi

ε+ . . . , (56)

so that, neglecting contributions coming from higher order derivatives, the portfolio risk increases
by an amount

∂R
∂Wi

ε . (57)

Marginal risk is defined by this risk increase normalized by the increment size ε in the limit of
vanishingly small ε. In other words the marginal risk Mi of a portfolio with respect an asset i, is
the partial derivative of the portfolio risk with respect to the asset value, i.e.,

Mi =
∂R
∂Wi

. (58)

Examples of marginal-risk computations Marginal risk in the covariance framework was
already computed in equation (14),

Mi =
∂Rcov

∂Wi
=

n∑
j=1

Γij
σ
Wj . (59)

The computation of risk in the generic simulation framework yields marginal risk for VaR5 to be
computed directly from equation (23),

Mi =
∂RVaR

∂Wi
= 1− ūi , (60)

and that for average value at risk from equations (43) and (44),

Mi =
∂RaVaR

∂Wi
=

1
NS

∑
s∈S

(1− usi ) . (61)

Comparing these three different expressions for marginal risk with the corresponding expressions
for component risk we notice that in all three cases we have,

Ci = MiWi . (62)

As we will show next, it turns out that this expression for component risk is quite general and
can be derived from Euler’s theorem on homogeneous functions.

6.2 Homogeneous risk functions and risk decomposition

We define a generic risk measure R as a function from the portfolio domain to the cash domain. We
assume to be able to compute risk for any possible portfolio. Among the many properties that a

5Value at risk as defined in the present paper presents a finite number of discontinuities for the first derivatives.
The results presented here, however, are still valid when computing the derivatives looking at the VaR function as
a distribution.
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risk measure needs to satisfy in order to be considered sound (see reference [9] for more details), the
interesting property in this context is positive homogeneity. A risk measures is said to be positively
homogeneous if, for each positive number x, we have,

R (xW1, . . . , xWn) = xR (W1, . . . ,Wn) . (63)

For example when x is ten, the above definition implies that a portfolio that holds each asset
in a quantity that is ten times bigger than our portfolio, is exactly ten times riskier. Examples of
risk functions R that satisfy positive homogeneity are: value at risk, tracking error, average VaR,
and expected shortfall.

Euler’s theorem states that a positive homogeneous function, in the domain where it is positive,
satisfies Eurler’s equation:

R = W1
∂R
∂W1

+ . . .+Wn
∂R
∂Wn

. (64)

Substituting in this equation definition (58) we obtain,

R = W1M1 + . . .+WnMn . (65)

Hence, it is always possible to decompose any positively homogeneous risk measure as,

R = C1 + . . .+ Cn , (66)

with the components Ci’s given by

Ci = WiMi for i = 1, . . . n . (67)

The different decomposition of previous sections were just particular cases of this general statement.

7 Risk decomposition by segments

The method described so far in this section, ultimately leading to equation (54), has enable us to
decompose portfolio risk as the sum of contributions coming from the portfolio assets. We can now
group the terms of equation (54) together according to the segment they belong to, so that we can
write,

RVaR(P ) = Ca + Cb + . . . , (68)

where for each sector, e.g. sector a, we have,

Ca =
∑
i∈a

Ci . (69)

Equation (16) provides the risk decomposition of a portfolio by sector.

7.1 Top-down risk decomposition

We have shown how to compute the additive risk components of each asset and segment for a generic
risk measure. Here we show how these results can be applied to the computation of marginal and
component risk at segment level without computing them at asset level.

As already shown previously the terms in equation (66) can be grouped by sector to give

R = Ca + Cb + . . . , (70)
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i Code Description Wi

1 US5949181045 Microsoft Corp 100,000 $
2 US594918AC82 MSFT 4.200 01-Jun-19 100,000 $
3 DJZ0 DJ IND AVG DEC0 100,000 $

Table 3: The investment universe composed of a stock, i=1, a corporate bond, i=2, and (the equity
leg of) an index futures, i=3.

where for each sector, e.g. sector a, we have,

Ca =
∑
i∈a

WiMi . (71)

Inspired by expression (67), for the generic sector a for which Wa is not null, we can define the
marginal risk Ma to satisfy,

Ca = WaMa , (72)

where Wa is the exposure of sector a as defined by expression (4). More explicitly, we have,

Ma =
Ca
Wa

=
∑
i∈a

Wi

Wa
Mi . (73)

Since Wi/Wa is the relative weight of asset i in segment a, equation (73) states that the marginal
risk of a segment is given by the sum of marginal risk of each asset in that segment multiplied by
its relative weight.

Marginal risk was defined to be the extra risk taken for a small increment in a certain asset
normalized by the increment. Such definition holds also for marginal risk at sector level since,
because of equation (73), we have,

Ma =
∑
i∈a

Wi

Wa

∂R
∂Wi

= lim
α→0

1
α

[
R

(
W + α

∑
i∈a

Wi

Wa

)
−R(W )

]
. (74)

In other words for α=1, the marginal risk of a sector is given by the difference between the risk of
a portfolio with an extra cash in that segment and the original portfolio risk. Notice that in the
modified portfolio the extra cash is split up in the segment with the quantities Wi’s modified so
that,

Wi → Wi +
Wi

Wa
. (75)

if i ∈ a, and unmodified otherwise.
In the top-down approach to risk decomposition we can directly compute Ma and Ca without

computing risk component and marginal risk at asset level. Proceed in the following way: for any
given sector a with Wa not null, first compute sector-level marginal risk Ma, as given by equation
(74), then use definition (72) to compute sector-level component risk Ca.

8 Numerical example

In this section we consider a simple numerical example useful to obtain a deeper understanding
of the results obtained in this paper. Even thought the portfolio analyzed is very simple, the risk
computation is performed using real-world data and the results obtained represent a sample of
every-day risk management.
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Risk Measure Stock Bond Futures
Value at risk 7,834 $ 2,484 $ 5,821 $

Expected shortfall 8,897 $ 2,771 $ 7,113 $
Perc.-symmetric aVaR 7,509 $ 2,525 $ 6,195 $

Table 4: Risk computed with 500 historical simulations for each asset in the universe when held
by itself, i.e. not in the portfolio. The value at risk and expected shortfall were computed with
a percentile c equal 99%. The average value at risk (aVar) was computed using the percentile-
symmetric definition of subsection 5.1 with č=98.5% and ĉ = 99.5%

Simulation details We consider an investment universe composed of three assets (hence n=3).
The first asset is a stock, the second one is an investment-grade corporate bond, and the last one
is the equity leg of an index futures (referred from here on as a futures). Table 3 summarizes the
universe composition together with the outstanding values of each asset in the portfolio.

To perform the risk analysis on the given portfolio we used the historical-simulation method de-
scribed in reference [7], the credit risk of the corporate bond was accounted for by using the method
of reference [1]. The simulations were performed using about two years of history, corresponding
to exactly N=500 simulations.

Risk analysis In table 4 we show a summary of the risk results obtained for each single asset
when held outside the portfolio. The computation of risk was performed with a confidence level of
c=99%. At single-asset level we notice a moderate risk for the bond, a bigger risk for the index
futures, and an even bigger risk for the stock: these results are expected. Comparing the different
risk measures, while expected shortfall always gives bigger risk than both VaR and average VaR,
average VaR is bigger than VaR for the equity and the futures but is smaller for the bond.

We performed the computation of portfolio risk using the method described in sections 4 and 5.
Again as expected, we found that the diversification effect resulted in a total portfolio risk smaller
then the sum of the single-asset risks. The different measures of portfolio risk are listed in the
left-most column of table 6. In table 5 we list the values obtained for the simulated scenarios usi for
the top eight portfolio biggest losses, together with the corresponding scenario percentile. Notice
how in the eight worse scenarios the stock and the index are always at a loss, i.e. us1,3 < 1, while the
bond is loosing money in some scenarios (us2 < 1) and making money in other scenarios (us2 > 1).
Intuitively, these gains in the bond price corresponding to stock market losses are an example of
the natural dynamics existing between equity and fixed-income markets.

Risk decomposition More interesting are perhaps the results for the additive risk components
obtained using the methods described earlier in this paper. Intuitively, while we expect the stock
and the index futures to give a big positive contribution to risk, the bond should introduce enough
diversification to provide a negative risk component.

We provide in table 6 the results for the risk components computed for four different risk
measures. Notice that the bond component of risk is positive for VaR and negative for all the
others risk measure. This happens because the bond component of value at risk was computed
using only scenario 496 (see table 5). A slight variation of market conditions could bring this
components to either scenario 495 or scenario 497, in both case changing the sign of the component
to negative. Expected shortfall and average VaR do not suffer from this shortcoming since an
average is performed on more than one scenario. The expected shortfall by definition gives higher
values, in absolute terms, for the risk components. While quantitatively both flavors of average
VaR give similar results, the unbiased average VaR components have the advantage to exactly sum
up to value at risk.
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c s us1 us2 us3
99.8% 500 0.9128 1.0145 0.9298
99.6% 499 0.9217 0.9996 0.9418
99.4% 498 0.8829 0.9929 0.9877
99.2% 497 0.9204 1.0255 0.9235
99.0% 496 0.9326 0.9920 0.9485
98.8% 495 0.9402 1.0162 0.9210
98.6% 494 0.9691 0.9892 0.9284
98.4% 493 0.9384 1.0011 0.9485

Table 5: Numerical simulation results for the stock, the corporate bond, and the futures. The
scenarios are ordered so that equations (46) and (47) are satisfied.

Risk Measure Stock Bond Futures Portfolio
VaR 6,744 $ 803 $ 5,150 $ 12,697 $

Expected shortfall 8,595 $ -488 $ 5,376 $ 13,484 $
Perc.-symmetric aVaR 7,080 $ -269 $ 5,764 $ 12,575 $
Average VaR unbiased 7,162 $ -283 $ 5,819 $ 12,697 $

Table 6: Portfolio risk and risk components computed using the different methods described in
section 5. In the computation of loss-symmetric average VaR the lower percentile č, satisfying
equation (53), had a numerical value of 98.5984%.

9 Conclusions

In this paper we have shown how to compute the additive components of risk in portfolio simulations
for a number of risk measures.

All the results obtained in this paper for the loss-side of the portfolio distribution can be applied,
with few modifications, to the gain side of the distribution. Hence, we can define a decomposition
for the potential upside, average upside, and so on.

In reference [5] we show an extension of this method to the computation of risk components
and marginal risk of a portfolio relative to a benchmark.

We have seen how it is possible to estimate how much portfolio risk can be attributed to a sector,
a sub-sector, or even to a single asset. However consider, for example, a portfolio of convertible
bonds for which we want to go even further and compute how much risk comes from interest
rates, equities, and credit spread (i.e. the risk factors). In this case we need a tool to analyze risk
components at risk-factor level: the so called risk-factor decomposition.

When the dependence of the asset price can be linearized on its risk factors, it is possible to
apply the results of section 6 to obtain such a decomposition. Indeed a similar linearized solution
was found, for example, in reference [8].

It turns out that the approach introduced in this paper can do much better. As shown by
reference [6], it is possible to compute a non-linear risk-factor decomposition. Such method, for
example, can be combined with the simulation method described in reference [1] to compute the
component of portfolio risk coming from credit risk.

Finally, the method presented here should be useful to practitioners because is general enough,
so that it can be used on a wide range of different portfolios, and simple enough to be understood
by all the people involved in the risk management process.
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