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Abstract

The crisis that affected financial markets in the last years leaded market prac-

titioners to revise well known basic concepts like the ones of discount factors and

forward rates. A single yield curve is not sufficient any longer to describe the

market of interest rate products. On the other hand, using different yield curves

at the same time requires a reformulation of most of the basic assumptions made

in interest rate models. In this paper we discuss market evidences that led to the

introduction of a series of different yield curves. We then define a HJM framework

based on a multi-curve approach, presenting also a bootstrapping algorithm used

to fit these different yield curves to market prices of plain-vanilla contracts such

as basic Interest Rate Swaps (IRS) and Forward Rate Agreements (FRA). We

then show how our approach can be used in practice when pricing other interest

rate products, such as forward starting IRS, plain-vanilla European Swaptions,

Constant Maturity Swaps (CMS) and CMS spread options, with the final goal to

investigate whether the market is actually using a multi-curve approach or not.

We finally present some numerical examples for a simple formulation of the frame-

work which embeds by construction the multi-curve structure; once the model is

calibrated to market prices of plain-vanilla options, it can be used via a Monte

Carlo simulation to price more complicated exotic options.
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1 Introduction

Classical interest-rate models are formulated to embed by construction non-arbitrage re-

lationships, which allow to hedge forward-rate agreements in terms of zero-coupon bonds.

As a direct consequence, models predict that forward rates of different tenors are related

to each other by sharp constraints; however these non-arbitrage relationships might not

hold in practice (think for example of basis-swap spreads which, from a theoretical point

of view should be equal to zero, but they are actually traded in the market at quotes

larger than zero).

Then, the market virtually presents situations of possible arbitrage violations. This

is what happened starting from summer 2007, with the raising of the credit crunch,

where market quotes of forward rates and zero-coupon bonds began to violate the usual

non-arbitrage relationships in a macroscopic way, both under the pressure of a liquidity

crisis, which reduced the credit lines needed to hedge unfunded products using zero-

coupon bonds, and the possibility of a systemic break-down suggesting that counterparty

risk cannot be considered negligible any more. The resulting picture, as suggested by

Henrard (2007), describes a money market where each forward rate seems to act as a

different underlying asset.

In the upper panel of Figure 1 we show, starting from 2006, the weekly history

of the EONIA swap rates with maturity one year and EURIBOR swap rates on the

same maturity. The spread between the two rates may be considered as an indicator

of the presence of a growing systemic risk in the Euro area as soon as the crisis breaks

out. In the lower panel we show the basis-swap spread for six-months vs. three-months

EURIBOR rates on a swap with one year maturity over the same temporal scale. In

both cases we can observe a similar behaviour: before summer 2007 the spread between

Overnight Indexed Swaps (OIS) and standard Interest Rate Swaps (IRS) was quite low

and constant, indicating low liquidity and counterparty risk, and basis-swap spreads

were nearly zero, consistently with the usual interest-rate models predictions. With the

beginning of the crisis, this situation changed abruptly: spreads between OIS and IRS

widened, and traded basis-swap spreads are now significantly different from zero. In

particular the lower panel of Figure 1 shows that during the autumn 2008 the market

value of basis-swap spread was about 40 basis points, which is fully inconsistent with

traditional interest-rate models. In such situations a full-featured model comprehensive

of both liquidity and credit risks should be used, but it is far from being forged and ready

to be used by practitioners, so that, in order to overcome the problems posed by using a

unique yield curve for all forward rates, many simplified approaches were developed by

single banks or institutions.

The simplest receipt consists in using a different yield curve for each product, namely

if the instrument’s underlying is a particular rate with a given tenor, then a yield curve,

bootstrapped only from quoted instruments based on such underlying, is employed both

to discount cash flows and to calculate index fixings. This approach works for simple

products, but it fails, for instance, as soon as we consider products depending on forward

rates of different tenors.
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Figure 1: Upper panel: EONIA swap rate with maturity one year (white line) and

EURIBOR swap-rate (orange line) on the same maturity. Lower panel: basis-swap

spread for six-months vs. three-months EURIBOR rates on a swap with maturity one

year. The two figures are obtained from Bloomberg R© platform.
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Recently in the literature some authors started to deal with these issues, mainly

concerning the valuation of cross currency swaps as in Fruchard et al. (1995), Boenkost

and Schmidt (2005), Kijima et al. (2009), and Henrard (2007, 2009). They face the

problem in a pragmatic way by considering each forward rate as a single asset without

investigating the complex dynamics involved by liquidity and credit risks, although a

temptatives are made in Morini (2009) and Morini and Prampolini (2010). In particular

they propose methods to extend yield curve bootstrapping to a multi-curve setting, as in

Chibane and Sheldon (2009), in Bianchetti (2009) or in Kenyon (2010), or new pricing

models as in Kijima et al. (2009) or in Mercurio (2009). We cite also a slightly different

approach by Fujii et al. (2010) and Mercurio (2010), where they explicitly model each

basis spread.

In this paper we start in section 2 by introducing a HJM framework which is able

to incorporate all the initial yield curves, once a discounting curve is given, without as-

suming the usual non-arbitrage conditions on interest-rates. In section 3 we present an

efficient method for bootstrapping the initial yield curves starting from market quotes

of basic linear interest rate instruments, such as Interest Rate Swaps (IRS) and Forward

Rate Agreements (FRA). In section 4 we analyze the pricing of some more sophisticated

instruments, like forward starting IRS, plain-vanilla European swaptions, Constant Ma-

turity Swaps (CMS) and CMS spread options, trying to understand whether the market

is actually using the multi-curve approach or not. In particular we will provide evidences

that there is a market segmentation between basic money market instruments (spot and

forward IRS, FRA, etc.), that seem to be priced using the multi-curve setting, and in-

terest rate options, that are still priced using a single-curve setting. Then, in section 5

we define a restricted version of the model and we calibrate it to plain-vanilla swaptions.

Finally, a section of conclusions closes the paper.

2 HJM models with independent forward rates

Interest-rate derivatives are actively traded in the market. Many plain-vanilla contracts

are present in the market and their prices are quite liquid. It is a common practice to

start by bootstrapping an initial yield curve from market quotes of deposits, Forward

Rate Agreements (FRA), short futures and standard Interest Rate Swaps (IRS), and,

as a second step, to introduce an interest-rate model able to incorporate such initial

term-structure with enough free parameters to calibrate interest rate derivatives such as

caps and swaptions.

However, in the last three years, as the credit crisis grew, many problems arose in

interpreting all these quotes by means of a unique term-structure. The well known non-

arbitrage relationship between forward rates (F ) ans zero-coupon bonds (P ) cannot be

used safely any longer, namely the equality

Ft(T0, T1) =
1

T1 − T0

(
Pt(T0)

Pt(T1)
− 1

)
may be violated due to the presence of liquidity and counterparty risk, so that we
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are tempted to introduce different term-structures: one for the discounting curve, and

many for the forwarding curves, one for each interest-rate tenor, to recover a realistic

description of market quotes.

Indeed, if we try to replicate a forward rate by means of zero-coupon bonds, we are

forced both to buy and sell a bond. During the crisis many banks closed their credit lines

with counterparties resulting in the impossibility for trading desks to effectively build

such replication strategy, so that prices of zero-coupon bonds and forward contracts, not

being any longer constrained, may depart from the values required by non-arbitrage. In

a more general context, a strong distinction between funded and unfunded products is

needed: because of the presence of liquidity and credit issues, basic funded products like

simple deposits cannot be used to infer a risk-free discounting curve. On the other hand,

unfunded and collateralized products like IRS have cash-flows depending on rates like

EURIBOR which embed by their definition a credit risk.

We can add counterparty risk to the picture, by considering the possibility of a

systemic default. If we consider that forward rates are defined as the fair values of FRA

contracts, we can write following Mercurio (2009):

ΠFRA(t, T0, T1;K) := Et
[

(T1 − T0)(K − LT0(T1))

1 + (T1 − T0)LT0(T1)

Bt

BT0

]
where LT0(T1) is the Libor rate fixing at time T0 and paying at time T1, and Bt is the

bank account process. If the contract is sold at par we can solve for K, and we get

K =
1

T1 − T0

(
Pt(T0)

Pt(T1)Qt(T0, T1)
− 1

)
where Qt(T0, T1) is defined as

Qt(T0, T1) :=
1

Pt(T1)
Et
[

1

1 + (T1 − T0)LT0(T1)

Bt

BT0

]
Then, since the Libor rate L is the reference lending rate, we can define it in term of

the risky bond P̄t(T ) as

LT0(T1) :=
1

T1 − T0

(
1

P̄T0(T1)
− 1

)
, P̄t(T ) := Et

[
Bt

BT

1{τ>T}

∣∣∣τ > t

]
where τ is the systemic default event. We can plug the formula into the definition of Q:

Qt(T0, T1) =
1

Pt(T1)
Et
[
P̄T0(T1)

Bt

BT0

]
For sake of sketching the effect of counterparty risk on forward rates we consider that

the default probability is independent from the interest rates, leading to

P̄t(T ) = Pt(T )Q { τ > T |τ > t } , Qt(T0, T1) = Q { τ > T1|τ > T0 }

Notice that according to the above formula we get that forward rates with different tenors

belong to different term-structures, and, in particular, since the higher is the tenor the
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lesser is the conditional survival probability Q, we get positive basis relating lower tenors

to higher tenors, as quoted by the market. See also Morini (2009).

However, as done by many authors in the literature, starting from Henrard (2007),

we avoid to directly model liquidity or counterparty risk but we follow a more pragmatic

line. We do not try to model why the yield curves differ, but we describe how to consider

different dynamics for forward rates of different tenors.

2.1 The multi-curve framework

We start by introducing a different HJM model for each different Libor rate tenor. For

a standard introduction to the HJM framework see Brigo and Mercurio (2006), but see

also Liu and Wu (2008) where inflation dynamics is modeled within a two-curve HJM

framework.

Let us define a different family of instantaneous forward rates f∆
t for each Libor rate

with tenor ∆, whose dynamics under risk-neutral measure is given by

df∆
t (T ) = σ∆

t (T )

(∫ T

t

du σ∆
t (u)

)
dt+ σ∆

t (T ) dW∆
t

where σ∆
t (T ) is a volatility process. Notice that the above expression can be readily

generalized to consider a vector of Brownian motions.

Zero-coupon bonds P∆
t (T ) can be expressed in term of instantaneous forward rates

by means of

P∆
t (T ) := exp

{
−
∫ T

t

du f∆
t (u)

}
from which we can derive the zero-coupon bond dynamics under the risk-neutral measure

dP∆
t (T )

P∆
t (T )

= r∆
t dt−

(∫ T

t

du σ∆
t (u)

)
dW∆

t

where the drift terms r∆
t are generally different from the short rate rt used for discounting,

to reflect the fact that Libor rates are not any longer linked to discounting zero-coupon

bonds.

Indeed, since the HJM model requires the non-arbitrage relationship linking Libor

rates and zero-coupon bonds to work, we simply state that the zero-coupon bonds ap-

pearing in such HJM models are different from the ones we use for discounting.

LT−∆(T ) =
1

∆

(
1

P∆
T−∆(T )

− 1

)
6= 1

∆

(
1

PT−∆(T )
− 1

)
where ∆ is the Libor rate tenor.

In order to link Libor rates to market quotes, we have to price contracts paying the

Libor rate such as

Π(t, T −∆, T ) := Et
[

∆LT−∆(T )
Bt

BT

]
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Thus, according to the usual HJM framework we should introduce a family of forward

rates, starting from zero-coupon bond definition

Ft(T −∆, T ) :=
1

∆

(
P∆
t (T −∆)

P∆
t (T )

− 1

)
On the other hand, in the multi-curve HJM framework, if we consider a contract paying

the Libor rate we get

Π(t, T −∆, T ) = Et
[

∆LT−∆(T )
Bt

BT

]
6= ∆Ft(T −∆, T )Pt(T )

Hence, in the multi-curve HJM framework it is useful to define the following modified

forward rate (see also Mercurio (2009) for an analogous definition) under the discounting

forward measure, which enters most of the pricing formulas of contracts quoted by the

market.

F̃t(T −∆, T ) := EP (T )
t [LT−∆(T ) ] (1)

Notice that the modified forward rate F̃ is a martingale by construction under the

discounting forward measure. Further, we get

Π(t, T −∆, T ) = ∆F̃t(T −∆, T )Pt(T )

Forward-rate dynamics can be derived from zero-coupon bond dynamics by means

of Itô formula keeping into account that forward rates are not martingales under the

discounting forward measure. We get, under risk-neutral measure

dPt(T )

Pt(T )
= rt dt−

(∫ T

t

du σt(u)

)
dWt (2)

and, under discounting forward measure

dFt(T −∆, T )

Ft(T −∆, T ) + ∆−1
=

(∫ T

T−∆

du σ∆
t (u)

)(
ϑ∆
t (T ) dt+ dW∆

t

)
(3)

with

ϑ∆
t (T ) :=

∫ T

t

du
(
σ∆
t (u)− ρ∆σt(u)

)
and

ρ∆ :=
d

dt
〈W,W∆〉t

Then, by direct integration it is possible to calculate the F̃ s as given by

F̃t(T −∆, T ) = Ft(T −∆, T )

(
1 +

1 + ∆Ft(T −∆, T )

∆Ft(T −∆, T )
(Θ∆

t (T )− 1)

)
(4)

where

Θ∆
t (T ) := exp

{∫ T−∆

t

du

∫ T

T−∆

dv σ∆
u (v)ϑ∆

u (T )

}
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2.2 Discounting and funding curves

In the multi-curve HJM framework, risk-neutral measure will be defined as usual with

respect to the bank account used for risk-free funding. Since risk-free funding can be

done in term of overnight rates1, we get

Bt :=

n(t)∏
i=1

(1 + (ti − ti−1)cti)

where ct is the overnight rate at time t, and n(t) is the number of business days between

time 0 and time t. In the Euro area the discounting curve can be obtained starting from

the EONIA-based Overnight Indexed Swaps, that typically cover a time horizon up to

thirty years. The use of a discounting curve obtained from overnight rates is a typical

choice in the multi-curve setting, and it is made, among the others, by Fujii et al. (2010)

and Mercurio (2010). This choice can be justified by the the fact that, usually, interbank

operations are collateralized; if we assume that the collateral is revalued daily, then it

is straightforward to use an overnight rate (such as the EONIA rate) for discounting.

As noticed by Henrard (2009), different choices for the discounting curve can lead to

different prices of interest rate derivatives, and even if the difference is not relevant,

neverthless it is not negligible. In section 4 we present some evidences of market quotes

of Interest Rate Swaps that are coherent with the choice of a discounting curve obtained

from overnight rates.

From the bank account we can then define a discounting short rate rt and zero-coupon

bonds Pt(T ) by the usual formula and model them via a HJM model as given in the

previous section.

Remark 2.1. Counterparty and liquidity risk: If funding cannot be done in a

risk-free way, we should keep into account the possibility of default of the counterparties

entering the deal, and as a consequence we cannot define a unique funding curve, but it

does depend on the credit worthiness of the counterparties.

A possible approach is keeping a risk-free curve for discounting, but adjusting the

pricing formula to include bilateral counterparty risk, whose definition can be found in

Brigo and Capponi (2008), and also liquidity risk as done in Pallavicini (2010) although

in a rough way.

Notice that also collateralization impacts the definition of the funding curve, see for

instance Piterbarg (2010).

3 Bootstrapping the initial yield curves

In our HJM multi-curve framework we have one risk-free discounting curve and many

forwarding curves, one for each quoted Libor rate tenor:

T 7→ Pt(T ) , T 7→ F̃t(T −∆, T ) , ∆ ∈ 1m, 3m, 6m, 12m

1We assume here that the credit risk embedded in an overnight loan is negligible.
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As a practical example we consider the Euro area.

The problem of bootstrapping different curves corresponding to rates of different

tenors has been addressed for example in Ametrano and Bianchetti (2009) where they

solve the problem in terms of different yield-curves coherent with market quotes of basic

derivatives, or in Bianchetti (2009) where they follow an approach based on the FX

equivalence to discriminate between different curves as if they were curves corresponding

to different currencies.

Here, we follow an independent approach to bootstrap the term structures. We start

by considering the spread between modified forward rates of different tenor, see equation

(1), along with their spread with respect to forward rates calculated from the discounting

curve. We bootstrap the yield curves by interpolating on such spreads. In particular our

aim is to produce smooth curves of forward rates and basis spreads

Our bootstrap procedure is based on the assumption of a given discounting curve,

which in the following we refer to also as the 1d-tenor curve. As hinted at in the previous

section, we calibrate it (using standard techniques) against the following instruments:

• Discounting: EONIA fixing, OIS from one to thirty years,

Once the discounting curve is known, the forwarding curves are calibrated to the

following market quotes, listed below according to underlying tenors:

• Indexation over 1m: EURIBOR one-month fixing, swaps from one to thirty

years paying an annual fix rate in exchange for the EURIBOR 1m rate (some of

these swaps may be substituted with one-vs-three-months basis-swaps);

• Indexation over 3m: EURIBOR three-months fixing, Short Futures, FRA rates

up to one year, swaps from one to thirty years paying an annual fix rate in exchange

for the EURIBOR 3m rate (some of these swaps may be substituted with at-the-

money cap strikes or with three-vs-six-months basis-swaps);

• Indexation over 6m: EURIBOR six-months fixing, FRA rates up to one year

and a half, swaps from one to thirty years paying an annual fix rate in exchange for

the EURIBOR 6m rate (some of these swaps may be substituted with at-the-money

cap strikes);

• Indexation over 12m: EURIBOR twelve-months fixing, FRA rates up to two

years, six-vs-twelve-months basis-swaps from two to thirty years.

Notice that the payoffs of these instruments must be calculated without resorting to

the usual non-arbitrage relationships. In particular for FRA, IRS and Basis Swaps we

get relevant modifications, see also Mercurio (2009).

Before entering the details of the bootstrap procedure, let us give a brief look to the

main interest rate instruments considered.
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3.1 Libor fixings

According to formula (1) we can set the value of the modified forward at spot date2,

namely F̃0(0,∆), equal to the fixing of the Euribor rate corresponding to the given

tenor ∆.

3.2 FRA par-rates

The par rate K of FRA contracts is modified by a convexity adjustment. Indeed, we get

K =
E0

[
Ft(t,T )

1+(T−t)Ft(t,T )
D(0, t)

]
E0

[
1

1+(T−t)Ft(t,T )
D(0, t)

] =
E0

[
(1− P T−t

t (T ))D(0, t)
]

(T − t)E0

[
P T−t
t (T )D(0, t)

]
=

1

T − t

(
1

Et0
[
P T−t
t (T )

] − 1

)
(5)

which cannot be defined in term of the F̃ s. Thus, FRAs in a multi-curve framework

need a correction like futures.

3.3 Swap par-rates and basis-swap spreads

We can recalculate market quotes for any swap in term of forward rates F̃t(T −∆, T ) for

different tenors ∆. Indeed, for a standard IRS we get that the fair rate S is given by:

S0(0, Tn) :=
∆
∑n

i=1 F̃0(Ti −∆, Ti)P0(Ti)

∆′
∑n′

j=1 P0(T ′j)
(6)

where T1, . . . , Tn are the payment dates of the floating leg, T ′1, . . . , T
′
n′ are the payment

dates of the fixing leg. The definition of the forward-starting swap rate S0(Ta, Tb) follows

accordingly.

Analogously, for a basis-swap, the fair spread X is given by:

X :=
∆
∑n

i=1 F̃0(Ti −∆, Ti)P0(Ti)−∆′
∑n′

j=1 F̃0(T ′j −∆, T ′j)P0(T ′j)

∆′
∑n′

j=1 P0(T ′j)

which is generally different from zero.

3.4 The bootstrapping procedure

We start by considering the risk-free discounting curve. Since the quotes for EONIA and

OIS depend only on this curve, we can bootstrap it by means of the usual techniques,

2For Euro area spot date is two business days after trade date, but for sake of simplicity we set t = 0

in out formula, although numerical calculations are always performed taking into account all market

conventions.
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for instance we choose to employ the monotone cubic interpolation based on Hermite

polynomials (see Hagan and West (2006) and Ametrano and Bianchetti (2009) for a

review of bootstrapping techniques).

Once the discounting curve is known, we derive from it a curve of 1d forward rates

obtained by using the standard no arbitrage arguments:

F̃0(t−∆1d, t) ≡ F0(t−∆1d, t) =
1

∆1d

(
P0(t−∆1d)

P0(t)
− 1

)
then, starting from this curve, we obtain the forwarding curves corresponding to the

different rate tenors.

We start from the six-months tenor, which corresponds in the Euro area to the family

of most liquid instruments. We take the following steps:

1. we define the rate difference y6m/1d(t) := F̃0(t−∆6m, t)− F̃0(t−∆1d, t) (remember

that we use the label 1d to refer to the discounting curve);

2. we bootstrap the curve of the ys to match the six-months-tenor market quotes by

using as interpolation scheme the monotone cubic interpolation based on Hermite

polynomials;

3. we get the curve of the six-months F̃ s by inverting the definition of the ys.

Notice that we choose to bootstrap the rate differences y, instead of directly acting

on the rates F̃ , so that the interpolation scheme can produce a smoother basis between

the six-months and the 1-day forward rates.

Once we know the six-months curve, we can proceed in a similar way (interpolation

on rate differences) to obtain the curves corresponding to the other tenors. We consider

the liquidity of the underlying instruments to select which rate difference we want to

bootstrap, and

4. we obtain the three-months curve using as starting point the six-months curve,

since the market quotes the three-vs-six-months basis-swaps;

5. we obtain the one-month curve using as starting point the three-months curve,

since the market quotes the one-vs-three-months basis-swaps;

6. we obtain the twelve-months curve using as reference the six-months curve, since

the market quotes the six-vs-twelve-months basis-swaps.

The results of this procedure are shown in Figure 2. Notice that all the differ-

ent curves present a smooth behaviour over time; moreover, they respect the expected

fact that larger tenors should correspond to larger rates, indicating a larger impact of

credit/liquidity issues.
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Figure 2: Curve bootstrap in a multi-curve framework with monotone cubic interpolation

based on Hermite polynomials. Left panel shows forward rates of different tenors, where

1d means EONIA (on the x-axis we have the rate forward start date expressed in years

from the evaluation date while on the y-axis we have the value of the rate). Right panel

forward basis-swap spreads for a 1y-length swap (on the x-axis we have the swap forward

start date while on the y-axis we have the value of the spread in basis points). Market

data observed on 14 June 2010.

4 Market evidence of multi-curve pricing

Independence of forward rates is assumed to deal with basis-swap spreads consistently

different from zero. However, such evidence is not unique. In this section we are going

to present a survey of typical interest rate instruments available in the market, and

we analyze if their quoted prices/rates are compatible with the multi-curve framework

illustrated above.

For our test we get market quotes from ICAP R© pages listed on Bloomberg R© platform

on June 14th, 2010.

4.1 Forward swap rates

The money market quotes both spot and forward starting swap rates. These data are

useful to check whether market practice is coherent with a multi-curve framework when

pricing simple derivative contracts.

If we look at formula (3.3), which can be easily extended to forward starting swaps,

we notice that the fair rate of an IRS depends both on the discounting curve and on the

indexation curve corresponding to the floating rate tenor. Hence, the choice of these two

curves becomes crucial to obtain swap rates coherent with market quotes.

We compare in Figure 3 a set of forward swap rates quoted by the market with the

same rates calculated both in a single-curve framework3 (left panel) and in a multi-curve

3Notice that since the underlying rate tenor for IRS in the Euro market is equal to six-months,
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Figure 3: Forward swap rate calculated in a single-curve framework (left panel) and in a

multi-curve framework (right panel). Each bar represents the difference in basis points

with respect to market quotes. Left axis is swap forward start date, right axis is swap

tenor. Market data observed on 14 June 2010.

framework (right panel). We notice that in the single-curve framework the calculated

swap rates are badly fitted to market quotes while, on the other side, the swap rates

calculated in the multi-curve framework are in a very good accordance with all the

quoted values considered: this is a strong evidence that the market has abandoned the

single-curve approach for the multi-curve approach (at least for swap rates). Also, it

is a confirmation that the market is using a discounting curve obtained from instru-

ments based on the overnight rate: this is coherent with the fact that standard IRS are

collateralized instruments.

4.2 Plain Vanilla Swaptions

Given the accordance between the forward swap rates quoted in the market and those

computed via multi-curve pricing, it is natural to check what happens for options having

has underlying the forward swap rate. We can write the (payer) swaption price as:

π0(Ta, Tb;K) = P0(Ta)C0(Ta, Tb) Bl(S0(Ta, Tb), K, v(K,Ta)) (7)

where Bl(S,K, v) is the core of the Black formula for swaptions, with S the forward swap

rate, K the strike rate, and v the variance of the swap rate, and it is given by

Bl(S,K, v) := SΦ(d1)−KΦ(d2) , d1 :=
ln(S/K)√

v
+

1

2

√
v , d2 := d1 −

√
v

the unique curve used both for discounting and forwarding is obtained from classical bootstrap of

instruments based on six-months tenor rates. This is the curve which we will refer to also in the

following when we talk of single-curve pricing.
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Figure 4: Differences between market prices and prices computed starting from quoted

volatility of ATM swaption straddles. In the upper panels we plot the differences (abso-

lute errors in basis points on the left and relative errors in percentage on the right) when

prices are computed in a single-curve approach while in the lower panels we plot the

differences when prices are computed using a multi-curve approach. Left axis is option

expiry, right axis is underlying swap tenor. Market data observed on 14 June 2010.

where the variance v = v(K,T ) = σ2(K)(T − T0) can be obtained from quoted implied

volatilities. C0(Ta, Tb) is the swaption pseudo-numeraire that can be expressed as

C0(Ta, Tb) :=
b∑

i=a+1

(
1

1 + (Ti − Ti−1)S0(Ta, Tb)

)(Ti−Ta)

for cash settled options, while for physically settled options4 it is replaced by

1

P0(Ta)

b∑
i=a+1

(Ti − Ti−1)P0(Ti)

4We recall that if the option at expiry is in-the-money, then a physically settled swaption implies that

the two counterparties enter a swap contract, while a cash settled swaptions implies the payment of the

discounted cash flows of the theoretical underlying swap, where (by contract) the flows are discounted

using the swap rate fixing at option expiry itself. Usually, in the Euro market swaptions are traded

cash.
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A typical market practice is to quote plain-vanilla European swaptions according to

their implied volatility coherent with the price at which they are actually traded. We

computed swaption prices starting from the quoted implied volatility, both in the single

and in the multi-curve framework, and we compared it with the quoted price. We report

the results in Figure 4, where we can see that market prices are better fitted when the

swaptions are priced using a single-curve approach. So, even if market forward swap

rates are priced in a multi-curve setting, this does not hold for European swaptions, that

are still priced using a single-curve approach.

4.3 CMS swaps

A Constant Maturity Swap (CMS) is a swap with two legs of payments: on one side

we receive (or, alternatively, we pay) in Ti, i = 1, . . . , n the c-years IRS rate resetting

in Ti−1, with T0 = 0; on the other side, on the same payment dates, we pay (receive)

the Libor rate corresponding to the period ∆ going from Ti−1 to Ti plus a spread Xn,c.

The market quotes a value for Xn,c which makes the swap fair; this fair spread can be

expressed as follows:

Xn,c =

∑n
i=1

(
ETi0

[
STi−1

(Ti−1, Tc)
]
− F̃0(Ti −∆, Ti)

)
P0(Ti)∑n

i=1 P0(Ti)
(8)

where Tc = Ti−1 + c years and where all the accrual periods are considered to be equal

to ∆. In the Euro market ∆ is equal to three-months, while the c-years IRS used as

indexation in the CMS has Libor payments of six-months frequency.

Thus, CMS spreads theoretically depend on three different curves in our framework:

• a funding curve used to discount the cash flows of the CMS swap, which we consider

to be the risk-free curve since CMS swaps are collateralized products; notice that

this curve is also used as discounting curve when evaluating the indexation IRS

rate payed by the CMS swap;

• a three-months forwarding curve for the EURIBOR rates payed in the second leg

of the CMS;

• a six-months forwarding curve for the EURIBOR rates payed by the indexation

IRS.

We evaluate the expectation of the swap rates under the discounting forward measure

ETi0

[
STi−1

(Ti−1, Tc)
]
, appearing in Equation (8), by using the SABR model according to

market practice. We follow Mercurio and Pallavicini (2006) and we introduce the function

f̄(x) :=
(1 + δx)−

T−Ta
δ∑c

i=a+1
Ti−Ti−1

(1+(Ti−Ti−1)x)i−c

,

where δ is the year fraction of the floating leg of the CMS swap (usually three-months

for Euro area), and we calculate the relevant expectation by means of a static hedge as
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Figure 5: Results of the calibration of the SABR model to swaption volatility smiles and

CMS swaps spreads quoted by the market: left panel corresponds to the single-curve

framework, right panel to the complete multi-curve framework. Continuous lines are

CMS spreads implied by the model vs. underlying swap tenors, error bars are market

bid-ask spreads. Different curves correspond to different swap tenors: two, five and ten

years. x-axis is swap maturity, y-axis is the value of the CMS spread (in basis points).

Market data observed on 14 June 2010.

given by:

ET0 [STa(Ta, Tc) ] =
f̄(0)

f̄(S0)
St(Ta, Tc) (9)

+
1

f̄(S0)

∫ +∞

0

dx
(
f̄ ′′(x)x+ 2f̄ ′(x)

)
Bl(St(Ta, Tc), x, v(x, Ta))

where Bl(S,K, v) is the core of the Black formula for swaptions and the variance v can

be calculated starting from the SABR model. For instance, Hagan et al. (2002) reports

the following approximated variance

v(K,T ) := σ2
SABR(K,S)T

with

σSABR(K,S) ≈ α

(SK)
1−β
2

[
1 + (1−β)2

24
ln2
(
S
K

)
+ (1−β)4

1920
ln4
(
S
K

)] z

x(z)

·

{
1 +

[
(1− β)2α2

24(SK)1−β +
ρβεα

4(SK)
1−β
2

+ ε2
2− 3ρ2

24

]
T

}
,

where α, β, ρ and ε are SABR model parameters and

z :=
ε

α
(SK)

1−β
2 ln

(
S

K

)
and

x(z) := ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
.
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Figure 6: Results of the calibration of the SABR model to swaption volatility smiles

and CMS swaps spreads quoted by the market: the panel corresponds to the “hybrid”

approach. Continuous lines are CMS spreads implied by the model vs. underlying swap

tenors, error bars are market bid-ask spreads. Different curves correspond to different

swap tenors: two, five and ten years. x-axis is swap maturity, y-axis is the value of the

CMS spread (in basis points). Market data observed on 14 June 2010.

but see also for better approximations Berestycki et al. (2004), Ob lój (2008), Johnson

and Nonas (2009), or Rebonato (2010).

We consider a different SABR model for each swap rate contained in the CMS payoff

and we perform a calibration of all the SABR parameters (four parameters for each swap

rate) to swaption volatility smile and CMS spreads quoted by the market. See Mercurio

and Pallavicini (2006) for a detailed description of the calibration procedure. Here, in

order to achieve a better fit on the market, we modify their calibration procedure to

allow the β parameter to depend on swap-rate tenor, namely we consider the same β for

swap rates with different fixing dates but with the same tenor.

In Figure 5 we show the calibration results: the former (left panel) is performed in

the single-curve framework, while the second (right panel) in the multi-curve framework.

Looking at the figure, it could seem that the complete multi-curve approach results in

a better fit of market quotes. Actually, these results are not strong enough to make

an assessment on the actual market practice; in fact, it would at least sound a little bit

strange the fact that European swaptions are priced using a single-curve approach, while

CMS swaps are priced using a multi-curve approach, since the convexity adjustments for

the CMS rates are computed using swaption prices. Following these considerations, the

CMS leg should be evaluated using a single-curve approach; on the other side, we cannot

ignore the fact that the CMS is actually a swap, and the swap market works using multi-

curves, quoting in particular a spread between the six-months and the three-months

tenor rates.

Therefore, we could try and use an “hybrid” setting, where we price the CMS leg

using a six-months curve and the floating leg using a three-months curve. In Figure 6

we report the results of the calibration resulting from this approach and we see that
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we obtain a very good fit of market quotes, comparable with the complete multi-curve

calibration in the right panel of Figure 5.

These results lead to a couple of important considerations: i) the first key point is

that it is fundamental to price the floating leg using its appropriate forwarding curve,

because the existence of a spread between six-months and three-months rates is an

important market fact that cannot be neglected; ii) the CMS leg can be priced using

both a single-curve or a multi-curve approach, obtaining similar results: this is due to the

fact that the differences in the curves are recovered by the calibration of the SABR model,

which returns different calibration parameters in each different framework. Notice, in

particular, that in all cases the swaption volatility smiles are very well recovered by the

calibrated SABR models.

4.4 CMS spread options

The market quotes5 the price π0(Ta, Tb, Tc;K) of an option with strike rate K paying in

Ta the spread between two swap rates both fixing in Ta, the first maturing in Tb and the

second in Tc. The option price can be expressed as follows:

π0(Ta, Tb, Tc;K) = P0(Ta)ETa0

[
(STa(Ta, Tb)− STa(Ta, Tc)−K)+ ] (10)

where the rates are accrued on a unitary period.

By following market practice we consider the two swap rates as jointly lognormally

distributed with correlation ρbc. Thus, we can evaluate the spread option price by means

of a generalization of the Margrabe formula, see for instance Brigo and Mercurio (2006).

π0(Ta, Tb, Tc;K) = P0(Ta)
1√
2π

∫ +∞

−∞
e−

1
2
x2 Bl(f(x), k(x), u) dx (11)

where the effective forward rate f , strike rate k and variance u are given by

f(x) := ETa0 [STa(Ta, Tb) ] exp

{
−1

2
ρ2
bcσ

2
bTa + ρbcσb

√
Ta x

}

k(x) := K + ETa0 [STa(Ta, Tc) ] exp

{
−1

2
ρ2
bcσ

2
cTa + σc

√
Ta x

}
u := σ2

b (1− ρ2
bc)Ta

being the expectations calculated by means of the SABR model previously calibrated to

the swaption volatility smiles and to the CMS spreads (see the previous section), and

the volatilities σa and σb are taken from swaptions market quotes by interpolating the

volatility surface respectively at the following strikes:

Ka := K + ETa0 [STa(Ta, Tc) ] , Kb :=
(
ETa0 [STa(Ta, Tc) ]−K

)+

5Usually in the market we can find prices of strip of options, i.e. prices of cap/floor options on the

spread between two swap rates. Also, it is possible to find prices for single caplets at different expiries.

For sake of simplicity, in this section we deal with this second type of options.

19



Figure 7: Calibration of spread option prices quoted by the market with a flat correlation:

the left panel corresponds to the single-curve framework, the right panel corresponds to

the multi-curve framework. Continuous lines are model prices, dots are market quotes.

Different curves correspond to different option strikes ranging from 25 to 150 bps. x-axis

is the option expiry, y-axis is the option price (in basis points). Market data observed

on 14 June 2010.

The only unknown parameter is the correlation ρbc, which can be calibrated to quoted

spread option prices; in particular, in the market several quotes corresponding to different

strike rates K are available, and we use a unique flat correlation value for each strike K.

The results of the calibration are shown in Figure 7. We notice that the multi-curve

approach (right panel) does not present a significantly better fit with respect to the

single-curve approach (left panel). This fact can be explained considering that for CMS

spread options we haven’t a second leg paying a rate with different tenor like in the

case of CMS swaps, so there is not a real need for multi-curve pricing; also, as we have

previously seen, the SABR model is flexible enough to fit market data when calibrated

either in single-curve or in multi-curve setting.

4.5 Review of the results

Let us summarize all the results presented in the previous sections.

• IRS: they seem to be priced using a multi-curve framework; in particular, market

practice seems to be coherent with a discounting curve based on overnight rates.

Notice that coherence with spot-starting swaps is granted by construction of the

indexation curves; on the other side, this is not granted for forward starting swaps.

The goodness of the fit we have found in our analysis is a strong point in favour

of the multi-curve framework.

• Swaptions: they seem to be priced using a classical single-curve framework based

on a six-months curve. Notice, then, a market segmentation between the swap

sector and the option sector.
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• CMS: the fit of CMS spreads cannot be considered a strong proof of the use of a

complete multi-curve pricing. As we have seen, we just can state that CMS cannot

be priced in a single-curve framework, since we cannot ignore the basis spread

between the six-months and the three-months rates. Even if the hybrid approach

previously presented is probably the actual market practice coherent both with

swap and swaption pricing, also the complete multi-curve approach can be used,

leaving to the SABR model parameters the task to fit market quotes.

• CMS spread options: as for the plain-vanilla CMS, they cannot be used as

an evidence of a multi-curve pricing, since all the dynamics parameters can be

“hidden” in the correlation structure or in the SABR calibrated parameters.

Thus, it seems that the market has moved to a multi-curve setting for what concerns

the pricing of plain-vanilla instruments like IRS, but the situation is not so clear for

derivative contracts, where the calibration of volatility and correlation parameters may

hide the impact of which yield curve is used in pricing. In particular, this holds for CMS

swaps and CMS options, while the swaption market has a strong evidence of pricing in

the old single-curve approach.

5 A minimal model formulation within the multi-

curve HJM framework

The tempative to introduce a multi-curve interest-rate model able to reproduce all the

market quotes must face the problem of recovering prices which are not always coherent

with a multi-curve approach, as we have seen in the previous section.

Further, the market does not quote options on all rate tenors. In the Euro area

only options on the six-months tenor are widely listed, while the three-months tenor is

present only in few quotes (swaptions with one-year tenor and cap/floors with maturities

up to two years), and options on the other rate tenors are missing. Thus, any model

which requires a different dynamics for each term-structure, has the problem that market

quotes cannot be found to fix all its degrees of freedom.

Here, we select a simple but realistic volatility specification for the multi-curve HJM

framework presented in the second section, which is able to fit the swaption prices and

CMS swap spreads quoted by the market. Then, an exotic option pricing could be

performed by Monte Carlo simulations.

In particular, we define a multi-curve model with a unique common dynamics between

all the tenors, by extending the uncertain parameters Gaussian models, presented in

Mercurio and Pallavicini (2005) within the single-curve framework. We address to further

works the more ambitious task to define a fully stochastic volatility model within the

HJM multi-curve framework.
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5.1 Gaussian models with uncertain parameters

We select the instantaneous forward volatilities of the HJM model in order to obtain a

Gaussian model with uncertain parameters as in Mercurio and Pallavicini (2005). First,

we consider that the instantaneous forward volatilities are all equal and all the movements

of all term structures are perfectly correlated to the movements of the discount curve.

Then, we define

σ∆
t (T ) dW∆

t :=

q(I)∑
k=1

σk(t; I) e−ak(I)(T−t) dWk(t)

where I is a discrete random variable, independent of the Brownian motions, taking val-

ues in the set {1, . . . ,m} with probabilities ωi := Q { I = i } > 0 and
∑m

i=1 ωi = 1, while

σ(t; I) are positive deterministic functions and a(I) are positive constants. Further, in

each scenario i we allow the model to be driven by q(i) Brownian motions W1, . . . ,Wq(i),

whose number may be different varying the scenarios. The Brownian motions are corre-

lated according to

ρkh :=
d

dt
〈Wk,Wh〉t

With such choice we obtain the following Minimal Multi-Curve Gaussian (MMG)

model under discounting risk-neutral measure:

r = ϕ(t) +

q(I)∑
k=1

xk(t; I) , r∆(t) = ϕ∆(t) +

q(I)∑
k=1

xk(t; I) (12)

with

dxk(t; I) = −ak(I)xk(t; I) dt+ σk(t; I) dWk(t),

where r is the short rate entering the definition of the discounting zero-coupon bond P ,

and r∆ is the short rate entering the definition of the forwarding zero-coupon bond P∆.

Notice that, to reproduce the initial yield curves, we introduce a deterministic func-

tion ϕ∆ for each rate tenor and a deterministic function ϕ for the discounting curve. An

alternative approach may add uncertainty also on the ϕs, see for instance the discussion

in Mercurio and Pallavicini (2005).

All prices with MMG model can be calculated by explicitly taking the expectations on

the discrete random variable I since it is independent of the Brownian motions. Indeed,

we get for a generic payoff Π(t, T )

Et[ Π(t, T ) ] = Et
[
Et
[

Π(t, T )
∣∣I = i

] ]
=

m∑
i=1

ωi Et
[

Π(t, T )
∣∣I = i

]
5.2 Numerical results

We calibrate the MMG model to the following market quotes: at-the-money (ATM)

swaption volatilities, swaption volatility smile and CMS spreads.
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Figure 8: Swaption ATM prices, calculated with a two-scenario two-factor Gaussian

model for different swap tenors (right axis) and expiries (left axis). Swaptions with one-

year tenor are on three-months underlying rate, while the others are on six-months rate.

Each bar represents the difference between market and calibrated prices (absolute errors

in basis points on the left and relative errors in percentage on the right). Market data

observed on 14 June 2010.

Figure 9: Swaption out-of-the-money prices, calculated with a two-scenario two-factor

Gaussian model for different swap tenors and expiries (left axis) and differences (in basis

points) between strike and ATM forward rate (right axis). On the left axis each swap

tenor corresponds to four rows each referring to a different expiry (from right to left

within the left axis they are 2y, 5y, 10y and 20y). Each bar represents the difference

between market and calibrated prices (absolute errors in basis points on the left and

relative errors in percentage on the right). Market data observed on 14 June 2010.
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Figure 10: CMS spreads, calculated with a two-scenario two-factor Gaussian model for

different maturities. Continuous lines are CMS spreads implied by the model vs. under-

lying swap tenors, error bars are market bid-ask spreads. Different curves correspond

to different swap tenors: two, five and ten years. x-axis is swap maturity, y-axis is the

value of the CMS spread (in basis points). Market data observed on 14 June 2010.

Model calibration is performed by minimizing the L2-distance between market quotes

and model-implied quotes. The calibration engine is the Levenberg-Marquardt algorithm

implemented by Lourakis (2004).

In Figure 8 we report the results of the calibration to ATM swaptions prices, while

in Figure 9 we report the results of the calibration to swaption smiles.

Finally, in Figure 10 we analyze the CMS sector: we see that the results are quite

similar to the ones obtained with the SABR model in section 4. As already discussed

earlier, the good fit observed is coherent with the use of a three-months based curve for

the EURIBOR leg.

Globally, we have found quite good calibration results: the larger errors are in the

extreme wings of the swaption smiles, but this can be explained by the fact that the

Gaussian mixture is by construction less flexible than the SABR model to accomodate

smiles. Neverthless, the results are good enough to let the calibrated model to be used

for Monte Carlo simulations when pricing more complicated exotic instruments.

6 Conclusions

Recent turmoils in the world economies and in particular in the financial markets have

shown that credit and liquidity issues are crucial when evaluating financial products.

Fundamental assumptions used for many years in the interest rate market need to be

revised: the concept of risk-free yield curve is different from the standard idea of dis-

counting curve used in the past, and all the models used for pricing must be improved

to take into account these new features.
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In this paper we showed that it is fundamental to think of rates with different tenors

as if they were different assets, since the credit risk and the liquidity problems make

them actually different contracts. We have followed a HJM approach to define both the

dynamics of the discounting curve and the dynamics of the yield curves used to calculate

forward rates with different tenors.

We presented a methodology which allows to bootstrap market quotes of plain-vanilla

interest rate instruments in order to obtain a set of initial forwarding term structures, one

for each rate tenor, and we illustrated how this approach works in practice. In particular

we analyzed the case of forward starting IRS, plain-vanilla swaptions, CMS swaps and

CMS spread options, showing that the market has not moved yet to a complete multi-

curve pricing framework. On one side it is fundamental to price swap contracts including

rates of different tenors by means of the multi-curve setting, in order to be coherent with

the non-null quoted basis swap spreads; on the other side, swaptions are still requiring a

single-curve approach, while CMS derivatives, once the three-month leg is consistently

priced, can be values either using a single-curve or a multi-curve approach.

Finally, we presented a simple extension of a mixture of Gaussian models (MMG

model) incorporating the multi-curve structure: we showed that it is possible to obtain a

coherent calibration to a various set of options including basic rates with different tenors.

The calibrated model can then be used in a Monte Carlo simulation when pricing more

complicated exotic options.

The multi-curve HJM framework we proposed can be easily extended to incorporate

different dynamics for each yield curve, possibly with stochastic volatilities, so that, if

the market starts to quote a significant amount of options on different interest-rate tenors

or even on basis-swap spreads, we could include them in the calibration of models based

on our framework.

References

[1] F. Ametrano, M. Bianchetti (2009). Bootstrapping the Illiquidity: Multiple Yield

Curves Construction For Market Coherent Forward Rates Estimation. Published

in “Modeling Interest Rates: Latest Advances for Derivatives Pricing”, edited by

F. Mercurio, Risk Books.

[2] H. Berestycki, J. Busca and I. Florent (2004), Computing the implied volatility in

Stochastic Volatility Models, Communications on Pure and Applied Mathematics,

Vol. 57, No. 10, 13521373, October.

[3] M. Bianchetti (2009). Two Curves, One Price: Pricing ad Hedging Interest Rate

Derivatives Using Different Yield Curves for Discounting and Forwarding. Available

at http://ssrn.com/abstract=1334356.

[4] M. Bianchetti (2010). Multiple Curves, One Price: The Post Credit-Crunch Interest

Rate Market. Talk kept at “Risk and modeling fixed income interest rates”, Marcus

Evans conference, London, 15-16 April.

25



[5] W. Boenkost and W.M. Schmidt (2005). Cross currency swap valuation. Available

at http://ssrn.com/abstract=1375540.

[6] D. Brigo, and A. Capponi (2008). Bilateral counterparty risk valuation with stochas-

tic dynamical models and application to Credit Default Swaps. Available at

http://ssrn.com/abstract=1318024 or at http://arxiv.org/abs/0812.3705.

[7] D. Brigo, and F. Mercurio (2006). Interest Rate Models: Theory and Practice - with

Smile, Inflation and Credit, Second Edition, Springer Verlag.

[8] M. Chibane and G. Sheldon (2009). Building Curves on a Good Basis. Available at

http://ssrn.com/abstract=1394267.

[9] E. Fruchard, C. Zammouri and E. Willems (1995). Basis for change, Risk, Vol. 8,

No.10 , 70-75, October.

[10] M. Fujii, Y. Shimada and A. Takahashi (2010). On the Term Structure of Inter-

est Rates with Basis Spreads, Collateral and Multiple Currencies. Available at

http://ssrn.com/abstract=1556487

[11] P. S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward (2002). Managing

Smile Risk. Wilmott magazine, September, 84-108.

[12] P. S. Hagan and G. West (2006). Interpolation Methods for Curve Construction.

Applied Mathematical Finance, Vol. 13, No. 2, 89-129, June 2006

[13] M. Henrard, M. (2007). The Irony in the Derivatives Discounting. Wilmott Maga-

zine, July 2007, 92-98.

[14] M. Henrard (2009). The Irony in the Derivatives Discounting Part II: The Crisis.

Preprint, Dexia Bank, Brussels.

[15] S. Johnson and B. Nonas (2009). Arbitrage-free construction of the swaption cube.

Available at http://ssrn.com/abstract=1330869

[16] C. Kenyon (2010). Short-Rate Pricing after the Liquidity and Credit Shocks: In-

cluding the Basis. Available at http://ssrn.com/abstract=1558429

[17] M. Kijima, K. Tanaka and T. Wong (2009). A Multi-Quality Model of Interest

Rates, Quantitative Finance 9(2), 133-145.

[18] D. Liu D. and M. Wu (2008) Inflation Modeling. Available at

http://ssrn.com/abstract=1286502

[19] M. Lourakis (2004). A Brief Description of the Levenberg-Marquardt Algorithm

Implemented by levmar. Available at

http://www.ics.forth.gr/∼lourakis/levmar/levmar.pdf

26



[20] F. Mercurio and A. Pallavicini (2005). Mixing Gaussian Models to Price CMS

Derivatives. Available at http://ssrn.com/abstract=872708

[21] F. Mercurio and A. Pallavicini (2006). Smiling at Convexity. Risk, August, 64-69.

An extended version is available at http://ssrn.com/abstract=892287

[22] F. Mercurio (2009). Interest Rates and The Credit Crunch: New Formulas and

Market Models. Bloomberg Portfolio Research Paper No. 2010-01-FRONTIERS.

Available at http://ssrn.com/abstract=1332205

[23] F. Mercurio (2010). LIBOR Market Models with Stochastic Basis. Available at

http://ssrn.com/abstract=1563685

[24] M. Morini (2009). Solving the Puzzle in the Interest Rate Market. Available at

http://ssrn.com/abstract=1506046

[25] M. Morini and A. Prampolini (2010). Risky Funding: A unified framework for

counterparty and liquidity charges. Available at http://www.defaultrisk.com
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