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Abstract

For a long time interest-rate models were built on a single yield curve used both
for discounting and forwarding. However, the crisis that has affected financial mar-
kets in the last years led market players to revise this assumption and accommodate
basis-swap spreads, whose remarkable widening can no longer be neglected. In recent
literature we find many proposals of multi-curve interest-rate models, whose calibra-
tion would typically require market quotes for all yield curves. At present this is
not possible since most of the quotes are missing or extremely illiquid. Thanks to a
suitable extension of the HJM framework, we propose a parsimonious model based
on observed rates that deduces yield-curve dynamics from a single family of Markov
processes. Furthermore, we detail a specification of the model reporting numerical
examples of calibration to quoted market data.
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1 Introduction

Classical interest-rate models were formulated to satisfy by construction no-arbitrage rela-
tionships, which allow to hedge forward-rate agreements in terms of zero-coupon bonds. As
a direct consequence, these models predict that forward rates of different tenors are related
to each other by strong constraints. In practice, these no-arbitrage relationships might not
hold. An example is provided by basis-swap spread quotes, which are significantly non-zero,
while they should be equal to zero if such constraints held.

This is what happened starting from summer 2007, with the raising of the credit crunch,
where market quotes of forward rates and zero-coupon bonds began to violate the usual no-
arbitrage relationships in a macroscopic way, under both the pressure of a liquidity crisis,
which reduced the credit lines, and the possibility of a systemic break-down suggesting
that counterparty risk could not be considered negligible any more. The resulting picture,
as suggested by Henrard (2007), describes a money market where each forward rate seems
to act as a different underlying asset.

There are empirical studies supporting the idea that Libor rate levels cannot be utterly
justified by counterparty credit risk arguments. In a European Central Bank working
paper, Eisenschmidt and Tapking (2009) compare the spread of the Euribor over the general
collateral repo rate to the spread of banking-sector credit default swaps of the same tenor
during the crisis period. Authors found that there is evidence of a large, persistent and
time varying component of the Euribor-Eurepo spread that cannot not be explained by
counterparty credit risk. In figure 1 we show the historical series of Euribor-Eurepo spread
for a rate tenor of one year and of a synthetic index composed by senior one-year CDS
spread of a basket of twelve European banks representative of the Libor panel. Surely the
two series have some common qualitative characteristics. Yet, we find that the sharp rise in
the Euribor-Eurepo spread of September 2008 is only found three-four months later in the
CDS spread series, confirming that a liquidity crisis needs time to evolve as credit crisis.
Hence, counterparty risk is only one of the Libor dynamics driving factors, as discussed in
Heideret al. (2009).

Recently in the literature some authors started to deal with these issues, mainly con-
cerning the valuation of cross currency swaps as Boenkost and Schmidt (2005), Kijima
et al. (2009). In these papers, as in Henrard (2007, 2009), the problem is faced in a
pragmatic way by considering each forward rate as a single asset without investigating the
microscopical dynamics implied by liquidity and credit risks. Attempts in this different
direction are made in Morini (2009), Morini and Prampolini (2010) and Fries (2010). In
particular, we refer to Moreni and Morini (2010) where Libor rates of different tenors are
microscopically associated to different short rates, which, in turn, are obtained by adding
an instantaneous credit spread to the risk-free short rate.

Besides microscopic approaches, many authors extended yield-curve bootstrapping to
a multi-curve setting, eventually resulting in new pricing models. These latters are often
inspired by other asset classes, as Bianchetti (2009), Chibane and Sheldon (2009), Kijima
et al. (2009), Mercurio (2009), Mart̀ınez (2009), Kenyon (2010), or Pallavicini and Tarenghi
(2010). We cite also a slightly different approach by Fujii et al. (2010) and Mercurio (2010),
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Figure 1: Historical series of Euribor-1y minus Eurepo-1y spread (black line) and a syn-
thetic index formed by senior one-year CDS of a basket of twelve representative European
banks (red line) ranging from May 2007 up to March 2010. Values are in basis points. The
figures are obtained from Bloomberg R© platform.

where each basis spread is modelled as a different process.
However, the hypothesis of introducing different underlying assets may lead to over-

parametrization issues that affect the calibration procedure. Indeed, the presence of swap
and basis-swap quotes on many different yield curves is not sufficient, as the market quotes
swaption premia only on few yield curves. For instance, even if the Euro market quotes
one-, three-, six- and twelve-month swap contracts, liquidly traded swaptions are only those
indexed to the three-month (maturity one-year) and the six-month (maturities from two
to thirty years) Euribor rates. Swaptions referring to other Euribor tenors or to Eonia
are not actively quoted. A similar line of reasoning holds also for caps/floors and other
interest-rate options.

In this paper we wish to introduce a parsimonious model which is able to describe a
multi-curve setting by starting from a limited number of (Markov) processes. Among the
classical single yield-curve models, this goal is achieved by the HJM framework by Heath,
Jarrow and Morton (1992), and by the functional Markov models by Hunt, Kennedy and
Pelsser (2000), where a single family of Markov processes is used to drive all the interest-
rate derived quantities. Our proposal is to extend the logic of the former (HJM) to describe
with a family of Markov processes all the curves we are interested in.

The structure of the paper is the following: Section 2 reviews the fundamental money-
market concepts that underlie the construction of a multi-curve framework; in Section 3
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we describe an original extended HJM framework able to handle many yield curves; in
Section 4, we detail a simple yet relevant specification (dubbed the Weighted Gaussian
Model) of the model that allows for simple evaluation of plain vanilla options, together with
the results of its calibration to market data; finally, Section 5 reviews our contributions
and hints for further developments.

2 Multi-curve relevant features

In order to motivate our modelling choices, it is useful to summarize the changes that
occurred because of the credit crunch and the crucial issues a multi-curve framework should
face. In this section we start identifying the risk-neutral measure, i.e. the risk-free discount
term-structure, with the one coming from Overnight Indexed Swaps (OIS), and then we
introduce risky rates (Libor). We also discuss, supporting our arguments with empirical
analysis, the monotonicity properties of basis spreads and multi-tenor Libors.

2.1 Risk-free rates

First of all we assume that the market is arbitrage free, hence postulating the existence of
a risk-neutral measure. Under this measure every (risk-free) tradable asset instantaneously
increases its value at the risk-free rate rt. Furthermore, we introduce (risk-free) zero-coupon
bond prices and instantaneous forward rates as

Pt(T ) := Et

[
−
∫ T

t

du ru

]
ft(T ) := ET

t [ rT ]

(1)

where the first expectation is taken under risk-neutral measure, and the last expectation
is taken under a measure whose numeraire is Pt(T ) (hereafter simply T -forward measure).

As usual, we wish to link our risk-free rates to market quotes. In classical single-curve
interest-rate models, zero-coupon bond prices observed at time t = 0 form a term structure

T 7→ P0(T )

which can be made consistent with a selection of quotes (deposits, futures and interest-rate
swaps). However, since the beginning of the crisis, many of them have been carrying a
relevant amount of credit and/or liquidity risk and cannot be considered as belonging to the
risk-neutral economy. Thus, the subset of the instruments to bootstrap the risk-free term
structure from has to be carefully chosen. A closer look at the Euro money market makes
clear that quoted instruments are indexed on three reference indices1: Eonia, Euribor and
Eurepo.

1See European Banking Federation site at http://www.euribor-ebf.eu .
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• Eonia is an effective rate calculated from the weighted average of all overnight unse-
cured lending transactions undertaken in the interbank market.

• Euribor(s) are offered rates at which Euro interbank term deposits of different ma-
turities are traded by one prime bank to another one.

• Eurepo(s) are offered rates at which Euro interbank secured money market transac-
tions are traded.

Eonia and Euribor rates are unsecured, so that they incorporate the default risk of
the counterparty of the transaction, while Eurepo rates are secured and free of credit risk.
Thus, Eurepo rates could seem the natural proxy for risk-free rates2. The main issue with
Eurepo is that the longest quoted instrument has a maturity of one year. Longer maturities
Euro money market deals are only indexed on Euribor and Eonia indices. In particular, we
found Eonia swap contracts (OIS) up to thirty years. Because of the plurality of available
OIS instruments and of the reduced credit/liquidity exposure on overnight deposits, to
many extent Eonia rates are the best available proxy for risk-free rates. This point has been
stressed by many authors, and we refer to Fujii et al. (2010) for more detailed arguments.

2.2 Libor rates

It is a common habit to refer to unsecured deposit rates over the period [t, T ] as Libor rates
(Lt(T )). In this paper we follow this nomenclature and we reserve the term Euribor for
the index used as reference rate for deposits in the Euro area. As usual we can introduce
the forward rates Ft(T, x) defined as

Ft(T, x) := ET
t [LT−x(T ) ] . (2)

Forward rates Ft(T, x) are by construction martingales under the T -forward measure and
each of them represents the par rate seen at t for a swaplet accruing over [T − x, T ] and
paying at T a fixed rate in exchange for LT−x(T ).

Notice that accordingly to what said in the previous section, we consider one-day de-
posits as being risk-free, while the longer the tenor, the greater will be the credit charge
on unsecured deposit rates. In other words we are thinking Eonia rates as (non-quoted)
one-day-tenor Libor rates reducing as much as possible the deposit risks . By pushing
this analogy further we interpret Libor rates as microscopic rates at the same level of the
short-rate, and write

rt = lim
x→0

Lt(t+ x), (3)

which, given Eqs. (1) and (2), also reads

ft(T ) = lim
x→0

Ft(T, x). (4)

2See for instance Eisenshmidt and Tapking (2009) where the Euribor-Eurepo spread is used as an
indicator of credit risk.
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Figure 2: Historical series of Euribor-6m minus Euribor-3m spread (black line) OIS-6m
minus OIS-3m spread (red line) ranging from August 2007 up to February 2009. The
figures are obtained from Bloomberg R© platform.

2.2.1 Credit risk premium and liquidity issues

The usual no-arbitrage relationship between (risk-free) zero-coupon bond prices and Libor
rates holds only for non-defaultable counterparties and instruments without liquidity risk.
Hence, if Lt(x) is a Libor rate related to the period [t, t+ x], we get in general

Lt(t+ x) 6= 1

x

(
1

Pt(t+ x)
− 1

)
, ∀x > 0 .

Hence, when the presence of credit and liquidity risks invalidate the possibility of replicating
Libor indexed deposits with non-risky bonds Pt(T ), then interest-rate modelling should
consider Libor rates of different tenors as different assets. Yet, they should not move apart
in a random way. At first glance, credit risk arguments imply that deposits with longer
tenor must be charged for a higher risk premium, so that, if the risk-free yield curve is non
decreasing, forward-rates should be a non-decreasing function of x.

For instance, let us consider the EUR money market and focus on the risk-free yield
curve bootstrapped from Eonia indexed products, such as OIS up to one year of maturity.
We identify risk-free linearly compounding rates with single-period OIS rates defined as

Et(T, x) :=
1

x

(
exp

{∫ T

T−x
du ft(u)

}
− 1

)
.
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Figure 3: Historical series of basis-swap spread between Euribor-12m and Euribor-6m
ranging from August 2009 up to August 2010. The figures are obtained from Bloomberg R©

platform.

If the risk-free curve is not inverted, credit risk premium arguments should lead to

E0(x, x) > E0(x′, x′) =⇒ L0(x) > L0(x′) , ∀x > x′.

However, liquidity issues may invalidate such relationships. Actually let us recall
that both Eonia and Euribor rates refer to unsecured contracts, but Euribor rates do
not represent effective transactions, while Eonia rate does. As an example of violations,
we plot in figure 2 the daily historical values of spreads sE := E0(6m) − E0(3m) and
sL = L0(6m)−L0(3m). We notice that in periods of great turmoil, as the last trimester of
2007, even if the risk-free yield curve was often non-inverted, still the sL happened to be
negative.

As a consequence, in the following we will not impose direct constraints on Libor or
forward rates, focusing on relationships to link forward-rate volatilities.

2.2.2 Basis-swap spreads

The starting point of our analysis was the raise of basis-swap spreads after the credit crisis.
Once again simple credit risk arguments would require basis-swap spreads to be positive,
but liquidity issues should also be considered. In the Euro area basis-swaps are quoted
with maturities ranging from one year up to thirty years, so that each leg contains a strip
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of many Euribor rates. The averaging effect weakens the liquidity impact, but does not
cancel it out. Indeed, in figure 3 we see that the basis-swap spread between one year and
six-month Euribor rates was often negative in the last trimester of 2009.

However, we find that in most cases quotes of basis-swap spreads are positive. In the lit-
erature only Fujii et al. (2010) and Mercurio (2010) force constraints on basis-swap spreads
by direct modelling basis-swap spreads with respect to the EONIA rates with non-negative
processes, but this condition does not ensure that all quoted basis-swap spreads remain
positive.

Within our modeling framework, it will be quite difficult to impose constraints on
basis-swap spreads positivity, since we will not model them directly.

3 Extending the HJM framework

Our goal is to extend the classical HJM framework to include curves associated to different
tenors by modelling forward Libor rates by means of a common family of (Markov) pro-
cesses. In the literature other authors proposed generalizations of the HJM framework, see
for instance Chiarella (2010) or Carmona (2004). In particular, in recent papers Mart̀ınez
(2009) and Fujii (2010) extended the HJM framework to incorporate multiple-yield curves
and to deal with foreign currencies.

Our approach differs from the previous ones mainly on two relevant points. First, we
model only observed rates as in Libor market model approaches, avoiding the introduction
of quantities such as forecasting curve bonds or instantaneous rates. Second, we consider
a common family of processes for all the yield curves of a given currency, so that we are
able to build parsimonious yet flexible models.

As a consequence of the discussion of previous sections, and in order to keep the model
as simple as possible, let us summarize the basic requirements the model must fulfill:

i) existence of a risk free curve, with instantaneous forward rates ft(T )

ii) existence of Libor rates, typical underlying of traded derivatives, with associated
forwards Ft(T, x)

iii) no arbitrage dynamics of the ft(T ) and the Ft(T, x) (both being T -forward measure
martingales) ensuring the limit case of Eq.(4)

iv) possibility of writing both the ft(T ) and the Ft(T, x) as function of a common family
of Markov processes.

While the first two requisites are related to the set of financial quantities we are about to
model, the last two are conditions we impose on their dynamics, and will be granted by a
befitting choice of model volatilities.
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3.1 Generalized dynamics

According to requirements i) and ii) we model risk-free forward instantaneous rates ft(T )
and (risky) forward Libor rates Ft(T, x), for which we choose, under the T−forward mea-
sure, the following SDE3.

dft(T ) = σ∗t (T ) · dWt

d(k(T, x) + Ft(T, x))

(k(T, x) + Ft(T, x))
= Σ∗t (T, x) · dWt

σt(T ) := σt(T ;T, 0)

Σt(T, x) :=

∫ T

T−x
du σt(u;T, x) ,

(5)

where we introduced the family of volatility (row) vector processes σt(u;T, x), the (row)
vector of independent Brownian motions Wt, and the set of shifts k(T, x) that are required
to satisfy4

lim
x→0

x k(T, x) = 1,

that is, k(T, x) ≈ 1/x if x ≈ 0.
The identification of the volatility of risk free instantaneous forward rates ft(T ) with
σt(T ;T, 0) is easily justified if we explicitly integrate the SDE for Ft(T, x)

Ft(T, x) = k(T, x)

((
1 +

F0(T, x)

k(T, x)

)
exp

{
−1

2

∫ t

0

||Σs(T, x)| |2ds+

∫ t

0

Σ∗s(T, x) · dWs

}
− 1

)
and take the limit x → 0, such that Σs(T, x) ≈ xσs(T ;T, 0) +O(x2) and the exponential
may be expanded in series of x.

The particular choice of a shifted forward Libor dynamics ensures the limit of Eq.(4)
and is formally equivalent to the evolution of risk-free simple rates Et(T, x), which are
for instance shifted lognormal when standard HJM volatilities leads to an Hull and White
model. In literature, direct modelling of shifted forward rates is also considered in Eberlein
and Kluge (2007) (see also references therein), and in Papapantaleon (2010).

By means of the change of numeraire technique we have that

dW
(T )
t = dW

(rn)
t − d

〈
W (rn), logP (T )

〉
t

= dW
(rn)
t +

(∫ T

t

duσt(u;u, 0)

)
dt

where W (T ) and W (rn) are standard Brownian motions under T−forward and risk-neutral
measure, respectively. It is then straightforward to write the dynamics of forward Libor

3See appendix A for vector and matrix notation.
4This assumption may be generalized asking that k(T, x) ≈ φ(T, x)/x for a function φ such that

limx→0 φ(T, x) = 1.
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rates and instantaneous risk-free rates under the risk neutral measure as

d(k(T, x) + Ft(T, x))

(k(T, x) + Ft(T, x))
= Σ∗t (T, x) ·

[∫ T

t

du σt(u;u, 0)dt+ dWt

]
,

dft(T ) = σ∗t (T ) ·
[∫ T

t

du σt(u;u, 0)dt+ dWt

] (6)

Wt being a risk-neutral measure multidimensional standard Brownian motion.

3.2 Constraints on the volatility process

Let us analyse more in detail the dynamics of the shifted forward Libors under risk-neutral
measure. By integrating the SDE over the time period [0, t] we get

ln

(
k(T, x) + Ft(T, x)

k(T, x) + F0(T, x)

)
=

∫ t

0

Σ∗s(T, x) ·
[
dWs −

1

2
Σs(T, x)ds+

∫ T

s

duσ∗s(u;u, 0)ds

]
.

To ensure the tractability and a Markovian specification of the model, we extend the
single-curve HJM approach of Ritchken and Sankarasubramanian (1995), by setting

σt(u;T, x) := ht · q(u;T, x)g(t, u)

g(t, u) := exp

{
−
∫ u

t

dy λ(y)

}
q(u;u, 0) = 1 ,

(7)

where h is a matrix adapted process, q is a diagonal matrix deterministic function (i.e. qij =
qi1i=j) and λ is a deterministic array function. The condition on q when T = u is needed to
ensure that in the limit case x→ 0 we recover the standard Ritchen-Sankarasubramanian
separability condition.
By plugging the expression for the volatility into Eq.(6), it is possible to work out the
expression ending up with the representation

ln

(
k(T, x) + Ft(T, x)

k(T, x) + F0(T, x)

)
=

G∗(t, T − x, T ;T, x) ·
(
Xt + Yt ·

(
G0(t, t, T )− 1

2
G(t, T − x, T ;T, x)

))
, (8)

where we have defined the Itô stochastic process Xt

X i
t :=

N∑
k=1

∫ t

0

gi(s, t)

(
h∗ik,sdWk,s + (h∗shs)ik

∫ t

s

dy gk(s, y)ds

)
, i = 1, . . . , N

and the auxiliary matrix process Yt

Y ik
t :=

∫ t

0

ds gi(s, t)(h
∗
shs)ikgk(s, t) i, k = 1, . . . , N
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with X i
0 = 0 and Y ik

0 = 0, as well as the vectorial deterministic functions

G0(t, T0, T1) :=

∫ T1

T0

dy g(t, y)

G(t, T0, T1;T, x) :=

∫ T1

T0

dy q(y;T, x)g(t, y) .

The limit case x→ 0, as previously detailed for general σt(u;T, x) still holds and we may
check that ft(T ) = limx→0 Ft(T, x).

3.2.1 Dynamics of state variables

Equation (8) is the analogous of standard HJM reconstruction formula and is the main
result of our paper. Let us notice that it returns a reconstruction formula for forward Libor
rates, while standard HJM one is based on bonds. This important feature is consistent
with the requirement of a model capable to directly describe market relevant quantities.

Thanks to our assumption we are fully able to describe instantaneous forward rates
(i.e. discounting curve bonds) and forward Libor rates once we know the state variables
{Xt, Yt} , which satisfy, under the risk neutral measure, the following coupled (S)DE

dX i
t =

N∑
k=1

(
Y ik
t − λi(t)X i

t

)
dt+ h∗t · dWt

dY ik
t =

[
(h∗tht)ik − (λi(t) + λk(t))Y

ik
t

]
dt.

Let us notice that forward Libor diffusion pre-factors5 G(t, T−x, T ;T, x) depend on the
q(u;T, x). This flexibility is a desirable feature, as it allows for a locally tuned dynamics
for forward Libor rates, as we show in the next section.

3.2.2 Exact calibration and sensitivities

Our approach focuses on market quantities and leaves us the freedom of choosing the
q(u;T, x) and the κ(T, x) such as to exactly calibrate a selection of market data. These
free parameters are independent from the skew/smile patterns that endogenously come
with the risk free HJM dynamics of Eonia single-period rates. This is a relevant advantage
over other microscopic multi-curve models where the dynamics of microscopic quantities
uniquely determines implied volatility patterns for rates of any tenor and maturity.

Thus, as relevant tenors and maturities form a discrete set (for instance x ∈ {1, 3, 6, 12}
months), we may reasonably set κ(T, x) to be a piece-wise-constant deterministic function

5Actually, starting from (8), and switching to the terminal QT measure, we have

dFt(T, x) = [κ(T, x) + Ft(T, x)]G∗(t, T − x, T ;T, x) · h∗t · dWt .
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to be exactly calibrated to a subset of caplet or swaption skews. Further, we have the same
possibility for a subset of at-the-money caplet or swaption volatilities by properly defining
the q(u;T, x) process.

For instance, it is possible to set

q(u;T, x) := q̂(T, x)p(u) ,

with q̂ a scalar function and p an array function. With this prescription q̂ may be used
to exactly calibrate a subset of at-the-money quotes, while the array p allows to select the
subset of the X that is relevant for the diffusion of Ft(T, x). In this way we may associate
the dynamics of a chosen rate to a selection of relevant “diffusion modes”.

The possibility of an exact calibration to a subset of at-the-money caplet or swaption
volatilities and skews easily allows for sensitivity computation, and is similar to what
happens in stochastic local volatility models, see for instance Torrealba (2010), where,
after having calibrated the parameters of the volatility process, the local term allows for
an exact calibration to some relevant market quotes.

3.3 Eonia simple rates

For sake of completeness we may also compute Eonia simple rates Et(T, x) by plugging the
separable volatility form within the relationship

1 + xEt(T, x) = exp

{∫ T

T−x
dy ft(y)

}
such that

ln

(
1 + xEt(T, x)

1 + xE0(T, x)

)
=

G∗0(t, T − x, T ) ·
(
Xt + Yt ·

(
G0(t, t, T )− 1

2
G0(t, T − x, T )

))
. (9)

Let us notice that if we set q(u;T, x) ≡ 1, then G0(t, T − x, T ) ≡ G(t, T − x, T, x, T )
such that Ft(T, x) and Et(T, x) would differ only in their shifts and initial values. If
we moreover choose κ(T, x) = 1/x, we would obtain a model with perfect instantaneous
correlation between Libors and Eonia simple rates in which

1 + xFt(T, x)

1 + xEt(T, x)
=

1 + xF0(T, x)

1 + xE0(T, x)
,

hence showing that the static correction model of Henrard (2009) is a particular case of
this extended HJM framework.
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3.4 Swap rates

Our framework also allows us to derive an (approximated) expression for swap rates dy-
namics.
Let us consider a swap with a x tenor floating leg and a x̄ tenor fixed one paying at times
{Ta+1, . . . , Tb} and {Tā+1, . . . , Tb̄}, respectively. The swap par rate equating the two legs is

Sabt (x, x̄) :=

∑b
k=a+1 τkPt(Tk)Ft(Tk, x)∑b̄

k=ā+1 τ̄kPt(Tk)

where the quantities with a bar refer to the fix leg. We introduce the weights w as

wabk (t)(x, x̄) :=
τkPt(Tk)∑b̄

k=ā+1 τ̄kPt(Tk)

and perform the usual freezing (see Errais and Mercurio (2005)) technique to obtain, under
the swap measure Qab,

dSabt (x, x̄) ≈
b∑

k=a+1

wabk (t)dFt(Tk, x)

=
b∑

k=a+1

wabk (t) [κ(Tk, x) + Ft(Tk, x)] Σ∗t (Tk, x) · dWt

≈
(
Sabt (x, x̄) + ψab(x, x̄)

) b∑
k=a+1

δabk Σ∗t (Tk, x) · dWt ,

where

ψab(x, x̄) :=

∑b
k=a+1 τkP0(Tk)κ(Tk, x)∑b̄

j=ā+1 τ̄jP0(Tj)

δabk (x) :=
τkPt(Tk)(κ(Tk, x) + F0(Tk, x))∑b

j=a+1 τjPt(Tj)(κ(x, Tj) + F0(x, Tj))
.

With similar arguments we get an expression also for basis swap spreads, since we have

Bab
t (x, x′) =: Sabt (x, x′)− Sabt (x′, x′) .

3.5 Volatility dynamics

As in the single-curve HJM framework we can add a stochastic volatility process to our
model by extending the filtration to include also the information generated by the volatility
process. A popular choice is to model the matrix process ht by means of a square-root
process (see for instance Trolle and Schwartz (2009) and reference therein).
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We start by replacing the ht process by

ht :=
√
vtR

∗

where R is a lower triangular matrix, while the variance vt is a vector process whose
dynamics under risk neutral measure is given by

dvt = κ (θ − vt) dt+ ν
√
vt dZt , v0 = v̄

where κ,θ,ν,v̄ are constant deterministic vectors, and Zt is a vector of independent Brow-
nian motions correlated to the Wt processes as given by

ρii dt := d〈Z,Wi〉t , and ρij = 0 for i 6= j

where ρ is a diagonal deterministic correlation matrix.
With this choice we get shifted Heston dynamics for market rates, so that we can

calculate option pricing with usual Fourier transform techniques (see Lewis (2001)).

4 Model calibration and numerical examples

As shown in Pallavicini and Tarenghi (2010) there are evidences that the money market
for Euro area has moved to a multi-curve setting for what concerns the pricing of plain-
vanilla instruments like interest-rate swaps, but the situation is not so clear for derivative
contracts, where the calibration of volatility and correlation parameters may hide the
impact of which yield curve is used in pricing. In particular, this holds for CMS swaps
and CMS options, while the swaption market has evidences of pricing in the old single-
curve approach, although some contributors start quoting in multi-curve framework from
September 2010.

On the other hand, the money market for Euro area does not quote options on all rate
tenors. In Euro area only options on the six-months tenor are widely listed, while the three-
months tenor is present only in few quotes (swaptions with one-year tenor and cap/floors
with maturities up to two years), and options on the other rate tenors are missing. Thus,
any model which requires a different dynamics for each term-structure, has the problem
that market quotes cannot be found to fix all its degrees of freedom.

Here, we select a simple but realistic volatility specification for the multi-curve HJM
framework, which we calibrate to at-the-money swaption prices quoted by ICAP R© on
Bloomberg R© platform on 12 of August 2010. We limit ourselves to a very simple cal-
ibration data-set since we are interested only in highlighting a relevant property of our
framework, namely the possibility to build all volatility term-structures starting from few
market quotes. We address to Pallavicini and Tarenghi (2010) for further calibration details
for a simpler model specification (which consider independently each yield curve).

In particular, we consider a simple extension of a two-factor Gaussian model (see G2++
model in Brigo and Mercurio (2006)), that we call Weighted Gaussian model (WG2++
model), since the terms depending on Libor tenors appear as multiplicative weights of the

15



X processes. Notice that we could use more than two factors (WGn++ model), or we
could add stochastic volatility to calibrate also the swaption volatility smile, leading to a
Weighted Heston model (WHn++ model).

4.1 The Weighted Gaussian model

As an example we introduce a simple specification of our generic HJM multi-curve ap-
proach, with different dynamics for each forward Libor rate. In practice it is a generaliza-
tion of a shifted n-factor Hull and White model associated to risk-free rates.
Let us set the volatility process ht to be in the form

ht := ε(t)hR∗ ,

where h is a diagonal constant matrix hij = hiδi=j, R is a lower triangular matrix repre-
senting the pseudo-square root of a correlation matrix ρ, and we allow for a time varying
common volatility shape in the form

ε(t) := 1 + (β0 − 1 + β1t)e
−β2t ,

where β0, β1, β2 are three positive constants. Microscopical Markov factors X and Y evolve
under the risk free measure, as

dX i
t =

(
n∑
j=1

Y ij
t − λiX i

t

)
dt+ ε(t)hidŴ

i
t

dY ij
t =

(
ε2(t)hihjρij + (λi + λj)Y

ij
t

)
dt

d〈Ŵ iŴ j〉t = ρijdt

(10)

where the λi are non negative constants, and dŴt := R∗ · dWt.
The risk free short rate is given as usual by

rt := f0(t) +
n∑
k=1

X i
t

and the shift term f0(t) allows to recover t = 0 risk free yield curve6.
As for the tenor-maturity factors q, we chose a maturity independent form of the type

qi(u;T, x) := e−xηi .

Numerical tests are done with n = 2, hence leading to ten free parameters

{λ1, λ2, h1, h2, η1, η2, ρ12, β0, β1, β2} ,

and for sake of simplicity we set κ(T, x) = 1/x.
By construction this model supports different forecasting curves and we bootstrapped
initial forward Libors F0(T, x) by means of the Eonia term structure (discounting) and
different tenors Euribor term structures.

6As the Y are deterministic, this model is often written by explicitly computing the Y -related quantities
such as the drift of the X. Those quantities are then incorporated into a generic shift.
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Eonia Euribor
Date zero rate 3M rate 6M rate

13-Aug-10 0.4770%
16-Aug-10 0.4343% 0.8990% 1.1540%
17-Aug-10 0.4174% 0.8990% 1.1536%
23-Aug-10 0.4456% 0.9002% 1.1519%
30-Aug-10 0.4379% 0.9036% 1.1507%
06-Sep-10 0.4323% 0.9087% 1.1502%
16-Sep-10 0.4472% 0.9180% 1.1500%
18-Oct-10 0.4743% 0.9460% 1.1530%
16-Nov-10 0.5046% 0.9500% 1.1540%
16-Dec-10 0.5275% 0.9550% 1.1560%
17-Jan-11 0.5464% 0.9540% 1.1560%
16-Feb-11 0.5624% 0.9710% 1.1625%
16-May-11 0.6031% 1.0176% 1.2094%
16-Aug-11 0.6357% 1.0829% 1.2827%
16-Aug-12 0.7806% 1.4838% 1.6889%

Eonia Euribor
Date zero rate 3M rate 6M rate

16-Aug-13 0.9866% 2.0188% 2.2145%
18-Aug-14 1.2261% 2.4872% 2.6658%
17-Aug-15 1.4595% 2.8650% 3.0248%
16-Aug-16 1.6768% 3.1778% 3.3186%
16-Aug-17 1.8705% 3.4018% 3.5233%
16-Aug-18 2.0402% 3.5240% 3.6264%
16-Aug-19 2.1851% 3.6114% 3.6957%
17-Aug-20 2.3158% 3.7665% 3.8339%
16-Aug-22 2.5474% 3.9389% 3.9812%
18-Aug-25 2.7750% 3.7835% 3.8062%
16-Aug-30 2.9349% 3.2752% 3.2921%
16-Aug-35 2.8907% 2.5129% 2.5297%
16-Aug-40 2.7639% 2.2390% 2.2559%
16-Aug-50 2.5716% 2.5083% 2.5252%
16-Aug-60 2.4562% 2.6407% 2.6576%

Table 1: Eonia term-structure expressed in term of ACT/360 zero-rates and Euribor term
structures for three- six- month tenors expressed in terms of ACT/360 forward rates.
Bootstrapping details can be found on Pallavicini and Tarenghi (2010). Data bootstrapped
from market quotes observed on 12 of August 2010.

4.2 Benchmark models

In our numerical examples we compare the results of the WG2++ model with respect to
other two HJM-like models, all with two driving factors and time-dependent volatilities.
We discount flows by means of the Eonia term structure and use for forecasting purposes
the Euribor term structures.

• The G2++ model of Brigo and Mercurio (2006). This is a single-curve (old-style)
model which we extend to incorporate time-dependent volatilities via the common
time-dependent factor ε(t). It is obtained by setting ηj ≡ 0, (i.e. q ≡ 1,) and
F0(T, x) ≡ E0(T, x). For this model we use, as discounting and forwarding curve,
a term structure obtained with old-style standard techniques from deposits, futures
and swap rates.

• The MMG model of Pallavicini and Tarenghi (2010). This is an uncertain parameter
multi-curve model which we restrict to have only one scenario. It is obtained by
setting ηj ≡ 0, uses separate forwarding and discounting curves and, as discussed in
Sect.3.3, reduces to Henrard static correction model. It has eight free parameters
(λ1,h1,λ2,h2,ρ12,β0,β1,β2) and uses the same curves as the Weighted Gaussian.
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1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 15Y 20Y
1Y 0.27% 0.56% 0.85% 1.12% 1.37% 1.61% 1.85% 2.08% 2.30% 2.50% 3.44% 4.24%
2Y 0.43% 0.83% 1.22% 1.59% 1.95% 2.30% 2.63% 2.95% 3.26% 3.56% 4.83% 5.95%
3Y 0.51% 0.98% 1.44% 1.87% 2.31% 2.71% 3.11% 3.48% 3.84% 4.20% 5.61% 6.90%
4Y 0.55% 1.07% 1.56% 2.02% 2.47% 2.92% 3.35% 3.77% 4.17% 4.55% 6.05% 7.42%
5Y 0.58% 1.11% 1.63% 2.12% 2.59% 3.06% 3.51% 3.94% 4.37% 4.77% 6.37% 7.80%
6Y 0.59% 1.15% 1.69% 2.20% 2.68% 3.15% 3.60% 4.04% 4.48% 4.89% 6.53% 8.02%
7Y 0.60% 1.16% 1.72% 2.24% 2.74% 3.21% 3.67% 4.12% 4.57% 5.00% 6.69% 8.20%
8Y 0.61% 1.18% 1.74% 2.26% 2.77% 3.25% 3.71% 4.17% 4.63% 5.07% 6.80% 8.33%
9Y 0.62% 1.19% 1.75% 2.28% 2.79% 3.28% 3.75% 4.22% 4.68% 5.13% 6.88% 8.45%
10Y 0.62% 1.19% 1.76% 2.29% 2.81% 3.31% 3.79% 4.24% 4.70% 5.14% 6.90% 8.49%
15Y 0.59% 1.14% 1.69% 2.21% 2.70% 3.20% 3.68% 4.14% 4.59% 5.04% 6.72% 8.27%
20Y 0.55% 1.07% 1.58% 2.08% 2.57% 3.05% 3.51% 3.95% 4.37% 4.75% 6.39% 7.81%

Table 2: At-the-money swaption prices quoted by ICAP R© on Bloomberg R© platform on 12
of August 2010. Underlying swap’s tenor on columns, its starting time on rows. In Euro
area swaptions with one-year tenor are claims to enter a swap whose floating leg is indexed
with the three-month Euribor rate, while all the other refer to the six-month Euribor rate.

4.3 Initial forwarding and discounting curves

The initial yield curves can be bootstrapped from the money market quotes. We refer again
to Pallavicini and Tarenghi (2010) and references therein for a complete discussion. Here,
we adopt their methodology. In particular we use the Eonia term-structure to discount
cash flows, as a proxy for the risk-free yield curve (see also Fujii et al. (2010) and Mercurio
(2010)).

In table 1 we show the Eonia term-structure expressed in term of ACT/360 zero-rates,
and the Euribor term structures for three- six- month tenors expressed in terms of ACT/360
forward rates.

4.4 Swaption pricing formula

Swaption prices are given by the following expectation value under risk-neutral measure

Πab
t := Et

[
exp

{
−
∫ Ta

t

du ru

}
Aab(Ta; x̄)(Sab(Ta;x, x̄)−K)+

]
Under the approximation of Section 3.4, which is pretty good for ATM swaptions, we get
a log-shifted dynamics for swap rates such that

Πab
t = Aab(t; x̄) Bl(K + ψab(x, x̄), Sab(t;x, x̄) + ψab(x, x̄),Γab(x))

18



where the annuity Aab is given by

Aab(t; x̄) :=
b∑

k=a+1

τ̄kPt(Tk)

and Bl(·) is the usual Black formula with given strike, forward rate and volatility. In
particular the volatility Γab is given by

Γab(x) :=
√

(∆ab(x))∗Σab ∆ab(x)

with the deterministic vector ∆ab defined as

∆ab(x) := he−ηx
b∑

k=a+1

δabk (x)
e−λTk−1 − e−λTk

λ

and the deterministic matrix Σab defined as

Σab :=

∫ Ta

t

du (eλu)∗ ρ eλuε2(u) .

For our calibration examples we consider at-the-money swaption prices quoted by
ICAP R© on Bloomberg R© platform on 12 of August 2010, as given in table 2. Notice that in
the Euro area swaptions with one-year tenor are claims to enter a swap whose floating leg
is indexed with the three-month Euribor rate, while all the other refer to the six-month
Euribor rate. Swaptions referring to other Euribor tenors or to Eonia are not actively
quoted.

4.5 Calibration examples

In table 3 we list the model parameters obtained from the calibration procedure. Notice
that the two driving processes X1

t and X2
t operate on two different time scales. Indeed, by

construction the first process has always a speed of mean reversion smaller than the one
of the second process. This constraint is enforced while calibrating to avoid a degenerate
problem.

In the figure on the right side of table 2 the volatility backbones of each driving factor,
namely the product ε(t)hk with k ∈ {1, 2} plotted with respect to time t in years. We
can see that, allowing for more degrees of freedom along the Euribor tenor space as we
increase the complexity of the model, the volatilities of the two driving processes X1

t and
X2
t split apart: a higher volatility for the process with higher speed of mean reversion

(process acting on a shorter time scale).
Calibration errors in term of implied swaption volatilities are shown in figure 4. We

can see that the calibration error for swaptions with a tenor of one year is less as long as
the model allows for incorporating multiple yield curves (MMG) and differentiating their
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Model
Pars G2++ MMG WG2++
λ1 0.0008 0.0090 0.0073
η1 - - 0.1581
h1 0.0132 0.0057 0.0059
λ2 0.0036 5.0077 4.7344
η2 - - 0.8894
h2 0.0162 0.0318 0.0411
ρ12 -0.9488 -0.8396 -0.8577
β0 1.0976 1.2811 1.3160
β1 1.5277 1.3109 1.3327
β2 0.4928 0.6059 0.5900
χ2 100% 22.08% 16.99%

Table 3: Model parameters obtained from the calibration procedure to at-the-money swap-
tion prices quoted by ICAP R© on Bloomberg R© platform on 12 of August 2010. The Last
row shows the calibration error normalized to the one obtained with the G2++ model. On
the right panel the volatility backbone of each driving factor, namely the product ε(t)hk
with k ∈ {1, 2} with respect to time t in years.

dynamics (WG2++). Indeed, as previously stated in the Euro area swaptions with one-
year tenor are claims to enter a swap whose floating leg is indexed with the three-month
Euribor rate, while all the other refer to the six-month Euribor rate.

We show in figure 5 the implied volatility for swaptions of different tenors and expiries
as predicted by the WG2++ model and by the benchmark models. We show both claims
to enter a swap whose floating leg is indexed with the three-month Euribor rate and the
ones referring to the six-month Euribor rate. Notice that only the WG2++ model and the
MMG model are able to differentiate between the two types of swaptions. In particular,
we observe that only the WG2++ model is able to preserve such difference also for longer
swaption tenors. Indeed, the MMG model produces the split because of different initial
yield curves, while the WG2++ model relies also on a dynamical mechanism.

5 Conclusions and further developments

Interest-rate modelling requires a framework able to incorporate many initial yield curves,
one for each Libor rate tenor plus one for discounting. Classical models may be extended
in many ways, but, unfortunately, the market is too young to quote options on all tenors:
only limited number of quotes are available and they are concentrated only in few tenors.
Thus, a model, which allows a minimal extension of classical frameworks and, at the same
time, allows for more complex dynamics when quotes will be available, is a relevant tool
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Figure 4: Differences in basis points between market and model-implied volatilities, namely
calibration error in term of implied swaption volatilities. Upper panel is G2++ model,
lower-left panel is MMG model, and lower-right panel is WG2++ model. Each panel
shows on the left axis the underlying swap’s tenor, while on the right axis its starting time.

for both quants and practitioners.
In this paper we presented an extension of the HJM model which is able to deduce the

dynamics of the discounting yield curve and of market Libor rates of any tenor starting
from a single family of Markov processes. Further, we calibrate a simplified version of the
model, the Weighted Gaussian model, with two driving factors and deterministic volatility,
to at-the-money swaption prices to size the effect of the new degree of freedom introduced
to model different tenors. We also made a comparison with two benchmark models, already
published in the literature, which turn out to be special cases of our model.

Our next step will be the calibration of a stochastic volatility version of the model, the
Weighted Heston model, to the whole cube of swaption prices, and at the same time we
hope the market evolves by quoting options on more tenors.
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Figure 5: Each panel shows the implied volatilities by changing the underlying swap’s
starting time. Top-left panel is one-year underlying swap’s tenor, top-right two-year tenor,
bottom-left five-year tenor, bottom-right ten-year tenor.

A Appendix: vector and matrix notation

When we consider a vector quantity v, we think it as a matrix with only one row, if a
“column” vector is needed we use the transposition operator, namely v∗. Further, we
introduce also the vector whose entries are all of ones and we name it 1.

Let us consider two matrix quantities a and b, whose elements are respectively aij and
bij with 1 ≤ i ≤ n and 1 ≤ j ≤ m. We define element-wise multiplication as the matrix ab
with elements:

(ab)ij := aijbij

and, in the same fashion, also multiplication by a vector v, whose elements are vi with
1 ≤ i ≤ n, or a scalar κ as

(va)ij := viaij , (κa)ij := κaij
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while index contraction as the matrix a∗ · b with elements:

(a∗ · b)jk :=
n∑
i=1

aijbik
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